
Global
edition

G
lo

b
a

l
ed

it
io

n

this is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. if you
purchased this book within the United States
or Canada you should be aware that it has
been imported without the approval of the
Publisher or author.

Pearson Global Edition

Global
edition

For these Global editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. this Global edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization and
adaptation from the north american version.

Paul Deitel • Harvey Deitel • Abbey Deitel

android™

How to Program
SeCond edition

a
ndroid

™
H

ow
 to Program

D
eitel • D

eitel • D
eitel

SeC
o

n
d

 ed
it

io
n

Deitel_027379339X_mech.indd 1 01/07/14 8:17 am

ONLINE ACCESS

Thank you for purchasing a new copy of Android™ How to Program, Second Edition.
Your textbook includes 12 months of prepaid access to the book’s Companion
Website. This prepaid subscription provides you with full access to the following
student support areas:

• Source code
• Premium web chapters

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Android How to Program, Second Edition, Companion Website for the
first time, you will need to register online using a computer with an Internet connection
and a web browser. The process takes just a couple of minutes and only needs to be
completed once.

1. Go to www.pearsonglobaleditions.com/deitel

2. Click on Companion Website.

3. Click on the Register button.

4. On the registration page, enter your student access code* found beneath the scratch-
off panel. Do not type the dashes. You can use lower- or uppercase.

5. Follow the on-screen instructions. If you need help at any time during the online
registration process, simply click the Need Help? icon.

6. Once your personal Login Name and Password are confirmed, you can begin using
the Android How to Program Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any
time at www.pearsonglobaleditions.com/deitel by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for 12
months upon activation and is not transferable. If this access code has already been
revealed, it may no longer be valid. If this is the case, you can purchase a subscription
by going to www.pearsonglobaleditions.com/deitel going to the Android book and
following the on-screen instructions.

Deitel_027379339X_ifc.indd 1 01/07/14 5:29 pm

Global Edition

A01_DEIT3397_02_SE_TP.fm Page 1 Monday, July 7, 2014 8:26 AM

Deitel® Ser ies Page
How To Program Series
Android How to Program, 2/e
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic 2010: An App-Driven

Approach, 4/E

(continued from previous column)
Visual Basic® 2012 How to Program, 6/E
Visual Basic® 2010 How to Program, 5/E
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

Deitel® Developer Series
Android for Programmers: An App-Driven

Approach, 2/e, Volume 1
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2012 for Programmers
Dive Into® iOS 6 for Programmers: An App-Driven

Approach
Java™ for Programmers, 2/e
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android App Development Fundamentals,
C++ Fundamentals
Java™ Fundamentals
C# 2012 Fundamentals
C# 2010 Fundamentals
iOS® 6 App Development Fundamentals
JavaScript Fundamentals
Visual Basic Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan

• Twitter®—@deitel

• Google+™—google.com/+DeitelFan

• YouTube™—google.com/+DeitelFan

• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:
 www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
www.deitel.com
www.pearsonglobaleditions.com/Deitel

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iOS app development, and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

A01_DEIT3397_02_SE_TP.fm Page 2 Monday, July 7, 2014 8:26 AM

Paul Deitel • Harvey Deitel • Abbey Deitel
Deitel & Associates, Inc.

Global Edition contributions by Muthuraj M.

Global Edition

A01_DEIT3397_02_SE_TP.fm Page 3 Monday, July 7, 2014 8:26 AM

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Paul Deitel, Harvey Deitel, and Abbey Deitel to be identified as the authors of this work have been
asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Android: How to Program, 2nd edition, ISBN 978-0-13-
376403-1, by Paul Deitel, Harvey Deitel, and Abbey Deitel, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, withouteither the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this text does not
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks
imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 0-273-79339-X

ISBN 13: 978-0-273-79339-7

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

Typeset in Adobe Garamond by GEX Publishing Services.

Printed and bound by Courier Westford in the United States of America.

Editorial Director, ECS: Marcia Horton
Head of Learning Asset Acquisition, Global Edition:
Laura Dent
Executive Editor: Tracy Johnson (Dunkelberger)
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Assistant: Jon Bryant
Director of Program Management: Erin Gregg
Program Management-Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Management-Team Lead: Laura Burgess
Project Manager: Robert Engelhardt
Publishing Administrator and Business Analyst,
Global Edition: Shokhi Shah Khandelwal
Acquisitions Editor, Global Edition: Karthik Subramanian

Assistant Project Editor, Global Edition: Sinjita Basu
Media Producer, Global Edition: M. Vikram Kumar
Senior Manufacturing Controller, Production, Global
Edition: Trudy Kimber
Procurement Specialist: Linda Sager
Permissions Supervisor: Michael Joyce
Permissions Administrator: Jenell Forschler
Director, Image Asset Services: Annie Atherton
Manager, Visual Research: Karen Sanatar
Media Project Manager: Renata Butera
Cover Designer: Shree Inbakumar
Cover Photo: Kirill__M/ Shutterstock
Cover Printer: Courier Westford

A01_DEIT3397_02_SE_TP.fm Page 4 Monday, July 7, 2014 8:26 AM

In Memory of Amar G. Bose, MIT Professor and
Founder and Chairman of the Bose Corporation:

It was a privilege being your student—and members
of the next generation of Deitels, who heard our dad
say how your classes inspired him to do his best work.

You taught us that if we go after the really hard prob-
lems, then great things can happen.
Harvey Deitel
Paul and Abbey Deitel

A01_DEIT3397_02_SE_TP.fm Page 5 Monday, July 7, 2014 8:26 AM

Trademarks
DEITEL, the double-thumbs-up bug and DIVE-INTO are registered trademarks of Deitel & Associates, Inc.

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Google, Android, Google Play, Google Maps, Google Wallet, Nexus, YouTube, AdSense and AdMob
are trademarks of Google, Inc.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

A01_DEIT3397_02_SE_TP.fm Page 6 Monday, July 7, 2014 8:26 AM

Preface 19

Before You Begin 31

1 Introduction to Android 39
1.1 Introduction 40
1.2 Android—The World’s Leading Mobile Operating System 41
1.3 Android Features 41
1.4 Android Operating System 45

1.4.1 Android 2.2 (Froyo) 45
1.4.2 Android 2.3 (Gingerbread) 46
1.4.3 Android 3.0 through 3.2 (Honeycomb) 46
1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich) 46
1.4.5 Android 4.1–4.3 (Jelly Bean) 47
1.4.6 Android 4.4 (KitKat) 48

1.5 Downloading Apps from Google Play 49
1.6 Packages 50
1.7 Android Software Development Kit (SDK) 51
1.8 Object-Oriented Programming: A Quick Refresher 54

1.8.1 The Automobile as an Object 55
1.8.2 Methods and Classes 55
1.8.3 Instantiation 55
1.8.4 Reuse 55
1.8.5 Messages and Method Calls 55
1.8.6 Attributes and Instance Variables 56
1.8.7 Encapsulation 56
1.8.8 Inheritance 56
1.8.9 Object-Oriented Analysis and Design (OOAD) 56

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 57
1.9.1 Running the Doodlz App in the Nexus 4 Smartphone AVD 57
1.9.2 Running the Doodlz App in a Tablet AVD 66
1.9.3 Running the Doodlz App on an Android Device 68

1.10 Building Great Android Apps 68
1.11 Android Development Resources 70
1.12 Wrap-Up 73

Contents

A02_DEIT3397_02_SE_TOC.fm Page 7 Tuesday, July 8, 2014 8:13 AM

8 Contents

2 Welcome App 76
Dive-Into® the Android Developer Tools: Introducing Visual GUI Design,
Layouts, Accessibility and Internationalization
2.1 Introduction 77
2.2 Technologies Overview 78

2.2.1 Android Developer Tools IDE 78
2.2.2 TextViews and ImageViews 78
2.2.3 App Resources 78
2.2.4 Accessibility 78
2.2.5 Internationalization 78

2.3 Creating an App 79
2.3.1 Launching the Android Developer Tools IDE 79
2.3.2 Creating a New Project 79
2.3.3 New Android Application Dialog 80
2.3.4 Configure Project Step 81
2.3.5 Configure Launcher Icon Step 81
2.3.6 Create Activity Step 83
2.3.7 Blank Activity Step 84

2.4 Android Developer Tools Window 85
2.4.1 Package Explorer Window 86
2.4.2 Editor Windows 86
2.4.3 Outline Window 86
2.4.4 App Resource Files 86
2.4.5 Graphical Layout Editor 87
2.4.6 The Default GUI 87

2.5 Building the App’s GUI with the Graphical Layout Editor 89
2.5.1 Adding Images to the Project 89
2.5.2 Changing the Id Property of the RelativeLayout and the TextView 90
2.5.3 Configuring the TextView 91
2.5.4 Adding ImageViews to Display the Images 95

2.6 Running the Welcome App 97
2.7 Making Your App Accessible 98
2.8 Internationalizing Your App 100
2.9 Wrap-Up 104

3 Tip Calculator App 107
Introducing GridLayout, LinearLayout, EditText, SeekBar, Event Handling,
NumberFormat and Defining App Functionality with Java
3.1 Introduction 108
3.2 Test-Driving the Tip Calculator App 109
3.3 Technologies Overview 110

3.3.1 Class Activity 110
3.3.2 Activity Lifecycle Methods 110
3.3.3 Arranging Views with LinearLayout and GridLayout 111

A02_DEIT3397_02_SE_TOC.fm Page 8 Monday, July 7, 2014 8:28 AM

Contents 9

3.3.4 Creating and Customizing the GUI with the Graphical Layout
Editor and the Outline and Properties Windows 111

3.3.5 Formatting Numbers as Locale-Specific Currency and
Percentage Strings 112

3.3.6 Implementing Interface TextWatcher for Handling EditText
Text Changes 112

3.3.7 Implementing Interface OnSeekBarChangeListener for
Handling SeekBar Thumb Position Changes 112

3.3.8 AndroidManifest.xml 113
3.4 Building the App’s GUI 113

3.4.1 GridLayout Introduction 113
3.4.2 Creating the TipCalculator Project 115
3.4.3 Changing to a GridLayout 115
3.4.4 Adding the TextViews, EditText, SeekBar and LinearLayouts 116
3.4.5 Customizing the Views to Complete the Design 118

3.5 Adding Functionality to the App 122
3.6 AndroidManifest.xml 130
3.7 Wrap-Up 131

4 Twitter® Searches App 135
SharedPreferences, Collections, ImageButton, ListView, ListActivity,
ArrayAdapter, Implicit Intents and AlertDialogs
4.1 Introduction 136
4.2 Test-Driving the App 137

4.2.1 Importing the App and Running It 137
4.2.2 Adding a Favorite Search 138
4.2.3 Viewing Twitter Search Results 139
4.2.4 Editing a Search 140
4.2.5 Sharing a Search 142
4.2.6 Deleting a Search 142
4.2.7 Scrolling Through Saved Searches 143

4.3 Technologies Overview 143
4.3.1 ListView 143
4.3.2 ListActivity 144
4.3.3 Customizing a ListActivity’s Layout 144
4.3.4 ImageButton 144
4.3.5 SharedPreferences 144
4.3.6 Intents for Launching Other Activities 145
4.3.7 AlertDialog 145
4.3.8 AndroidManifest.xml 146

4.4 Building the App’s GUI 146
4.4.1 Creating the Project 146
4.4.2 activity_main.xml Overview 147
4.4.3 Adding the GridLayout and Components 148

A02_DEIT3397_02_SE_TOC.fm Page 9 Monday, July 7, 2014 8:28 AM

10 Contents

4.4.4 Graphical Layout Editor Toolbar 153
4.4.5 ListView Item’s Layout: list_item.xml 154

4.5 Building the MainActivity Class 155
4.5.1 package and import Statements 155
4.5.2 Extending ListActivity 157
4.5.3 Fields of Class MainActivity 157
4.5.4 Overriding Activity Method onCreate 158
4.5.5 Anonymous Inner Class That Implements the saveButton’s

OnClickListener to Save a New or Updated Search 160
4.5.6 addTaggedSearch Method 162
4.5.7 Anonymous Inner Class That Implements the ListView’s

OnItemClickListener to Display Search Results 163
4.5.8 Anonymous Inner Class That Implements the ListView’s

OnItemLongClickListener to Share, Edit or Delete a Search 165
4.5.9 shareSearch Method 167
4.5.10 deleteSearch Method 168

4.6 AndroidManifest.xml 170
4.7 Wrap-Up 170

5 Flag Quiz App 174
Fragments, Menus, Preferences, AssetManager, Tweened Animations, Handler,
Toasts, Explicit Intents, Layouts for Multiple Device Orientations
5.1 Introduction 175
5.2 Test-Driving the Flag Quiz App 177

5.2.1 Importing the App and Running It 177
5.2.2 Configuring the Quiz 177
5.2.3 Taking the Quiz 179

5.3 Technologies Overview 181
5.3.1 Menus 181
5.3.2 Fragments 181
5.3.3 Fragment Lifecycle Methods 182
5.3.4 Managing Fragments 182
5.3.5 Preferences 182
5.3.6 assets Folder 182
5.3.7 Resource Folders 183
5.3.8 Supporting Different Screen Sizes and Resolutions 183
5.3.9 Determining the Screen Size 184
5.3.10 Toasts for Displaying Messages 184
5.3.11 Using a Handler to Execute a Runnable in the Future 184
5.3.12 Applying an Animation to a View 184
5.3.13 Logging Exception Messages 185
5.3.14 Using an Explicit Intent to Launch Another Activity in the

Same App 185
5.3.15 Java Data Structures 185

5.4 Building the GUI and Resource Files 185

A02_DEIT3397_02_SE_TOC.fm Page 10 Monday, July 7, 2014 8:28 AM

Contents 11

5.4.1 Creating the Project 185
5.4.2 strings.xml and Formatted String Resources 186
5.4.3 arrays.xml 187
5.4.4 colors.xml 188
5.4.5 dimens.xml 188
5.4.6 activity_settings.xml Layout 189
5.4.7 activity_main.xml Layout for Phone and Tablet

Portrait Orientation 189
5.4.8 fragment_quiz.xml Layout 189
5.4.9 activity_main.xml Layout for Tablet Landscape Orientation 192
5.4.10 preferences.xml for Specifying the App’s Settings 193
5.4.11 Creating the Flag Shake Animation 194

5.5 MainActivity Class 196
5.5.1 package Statement, import Statements and Fields 196
5.5.2 Overridden Activity Method onCreate 197
5.5.3 Overridden Activity Method onStart 199
5.5.4 Overridden Activity Method onCreateOptionsMenu 199
5.5.5 Overridden Activity Method onOptionsItemSelected 200
5.5.6 Anonymous Inner Class That Implements

OnSharedPreferenceChangeListener 201
5.6 QuizFragment Class 202

5.6.1 package Statement and import Statements 202
5.6.2 Fields 203
5.6.3 Overridden Fragment Method onCreateView 204
5.6.4 Method updateGuessRows 206
5.6.5 Method updateRegions 207
5.6.6 Method resetQuiz 207
5.6.7 Method loadNextFlag 209
5.6.8 Method getCountryName 211
5.6.9 Anonymous Inner Class That Implements OnClickListener 211
5.6.10 Method disableButtons 214

5.7 SettingsFragment Class 214
5.8 SettingsActivity Class 215
5.9 AndroidManifest.xml 215
5.10 Wrap-Up 216

6 Cannon Game App 220
Listening for Touches, Manual Frame-By-Frame Animation, Graphics, Sound,
Threading, SurfaceView and SurfaceHolder
6.1 Introduction 221
6.2 Test-Driving the Cannon Game App 223
6.3 Technologies Overview 223

6.3.1 Attaching a Custom View to a Layout 223
6.3.2 Using the Resource Folder raw 223
6.3.3 Activity and Fragment Lifecycle Methods 223

A02_DEIT3397_02_SE_TOC.fm Page 11 Monday, July 7, 2014 8:28 AM

12 Contents

6.3.4 Overriding View Method onTouchEvent 224
6.3.5 Adding Sound with SoundPool and AudioManager 224
6.3.6 Frame-by-Frame Animation with Threads, SurfaceView and

SurfaceHolder 224
6.3.7 Simple Collision Detection 225
6.3.8 Drawing Graphics Using Paint and Canvas 225

6.4 Building the App’s GUI and Resource Files 225
6.4.1 Creating the Project 225
6.4.2 strings.xml 226
6.4.3 fragment_game.xml 226
6.4.4 activity_main.xml 227
6.4.5 Adding the Sounds to the App 227

6.5 Class Line Maintains a Line’s Endpoints 227
6.6 MainActivity Subclass of Activity 228
6.7 CannonGameFragment Subclass of Fragment 228
6.8 CannonView Subclass of View 230

6.8.1 package and import Statements 230
6.8.2 Instance Variables and Constants 231
6.8.3 Constructor 232
6.8.4 Overriding View Method onSizeChanged 234
6.8.5 Method newGame 235
6.8.6 Method updatePositions 236
6.8.7 Method fireCannonball 239
6.8.8 Method alignCannon 240
6.8.9 Method drawGameElements 241
6.8.10 Method showGameOverDialog 243
6.8.11 Methods stopGame and releaseResources 244
6.8.12 Implementing the SurfaceHolder.Callback Methods 245
6.8.13 Overriding View Method onTouchEvent 246
6.8.14 CannonThread: Using a Thread to Create a Game Loop 247

6.9 Wrap-Up 248

7 Doodlz App 253
Two-Dimensional Graphics, Canvas, Bitmap, Accelerometer, SensorManager,
Multitouch Events, MediaStore, Printing, Immersive Mode
7.1 Introduction 254
7.2 Technologies Overview 256

7.2.1 Using SensorManager to Listen for Accelerometer Events 256
7.2.2 Custom DialogFragments 256
7.2.3 Drawing with Canvas and Bitmap 257
7.2.4 Processing Multiple Touch Events and Storing Lines in Paths 257
7.2.5 Android 4.4 Immersive Mode 257
7.2.6 GestureDetector and SimpleOnGestureListener 257
7.2.7 Saving the Drawing to the Device’s Gallery 257

A02_DEIT3397_02_SE_TOC.fm Page 12 Monday, July 7, 2014 8:28 AM

Contents 13

7.2.8 Android 4.4 Printing and the Android Support Library’s
PrintHelper Class 258

7.3 Building the App’s GUI and Resource Files 258
7.3.1 Creating the Project 258
7.3.2 strings.xml 258
7.3.3 dimens.xml 259
7.3.4 Menu for the DoodleFragment 260
7.3.5 activity_main.xml Layout for MainActivity 261
7.3.6 fragment_doodle.xml Layout for DoodleFragment 261
7.3.7 fragment_color.xml Layout for ColorDialogFragment 262
7.3.8 fragment_line_width.xml Layout for LineWidthDialogFragment 264
7.3.9 Adding Class EraseImageDialogFragment 265

7.4 MainActivity Class 266
7.5 DoodleFragment Class 267
7.6 DoodleView Class 274
7.7 ColorDialogFragment Class 286
7.8 LineWidthDialogFragment Class 289
7.9 EraseImageDialogFragment Class 293
7.10 Wrap-Up 294

8 Address Book App 298
ListFragment, FragmentTransactions and the Fragment Back Stack,
Threading and AsyncTasks, CursorAdapter, SQLite and GUI Styles
8.1 Introduction 299
8.2 Test-Driving the Address Book App 302
8.3 Technologies Overview 302

8.3.1 Displaying Fragments with FragmentTransactions 303
8.3.2 Communicating Data Between a Fragment and a Host Activity 303
8.3.3 Method onSaveInstanceState 303
8.3.4 Defining Styles and Applying Them to GUI Components 303
8.3.5 Specifying a Background for a TextView 303
8.3.6 Extending Class ListFragment to Create a Fragment That

Contains a ListView 304
8.3.7 Manipulating a SQLite Database 304
8.3.8 Performing Database Operations Outside the GUI Thread

with AsyncTasks 304
8.4 Building the GUI and Resource Files 304

8.4.1 Creating the Project 304
8.4.2 Creating the App’s Classes 305
8.4.3 strings.xml 305
8.4.4 styles.xml 306
8.4.5 textview_border.xml 307
8.4.6 MainActivity’s Layout: activity_main.xml 308
8.4.7 DetailsFragment’s Layout: fragment_details.xml 308
8.4.8 AddEditFragment’s Layout: fragment_add_edit.xml 310
8.4.9 Defining the Fragments’ Menus 311

A02_DEIT3397_02_SE_TOC.fm Page 13 Monday, July 7, 2014 8:28 AM

14 Contents

8.5 MainActivity Class 312
8.6 ContactListFragment Class 318
8.7 AddEditFragment Class 325
8.8 DetailsFragment Class 331
8.9 DatabaseConnector Utility Class 339
8.10 Wrap-Up 344

9 Google Play and App Business Issues 348
9.1 Introduction 349
9.2 Preparing Your Apps for Publication 349

9.2.1 Testing Your App 350
9.2.2 End User License Agreement 350
9.2.3 Icons and Labels 350
9.2.4 Versioning Your App 351
9.2.5 Licensing to Control Access to Paid Apps 351
9.2.6 Obfuscating Your Code 351
9.2.7 Getting a Private Key for Digitally Signing Your App 352
9.2.8 Screenshots 352
9.2.9 Promotional App Video 353

9.3 Pricing Your App: Free or Fee 354
9.3.1 Paid Apps 355
9.3.2 Free Apps 355

9.4 Monetizing Apps with In-App Advertising 356
9.5 Monetizing Apps: Using In-App Billing to Sell Virtual Goods 357
9.6 Registering at Google Play 358
9.7 Setting Up a Google Wallet Merchant Account 359
9.8 Uploading Your Apps to Google Play 360
9.9 Launching the Play Store from Within Your App 361
9.10 Managing Your Apps in Google Play 362
9.11 Other Android App Marketplaces 362
9.12 Other Popular Mobile App Platforms 362
9.13 Marketing Your Apps 363
9.14 Wrap-Up 367

A Introduction to Java Applications 370
A.1 Introduction 371
A.2 Your First Program in Java: Printing a Line of Text 371
A.3 Modifying Your First Java Program 375
A.4 Displaying Text with printf 377
A.5 Another Application: Adding Integers 377
A.6 Memory Concepts 381
A.7 Arithmetic 382
A.8 Decision Making: Equality and Relational Operators 385
A.9 Wrap-Up 389

A02_DEIT3397_02_SE_TOC.fm Page 14 Monday, July 7, 2014 8:28 AM

Contents 15

B Introduction to Classes, Objects, Methods
and Strings 394

B.1 Introduction 395
B.2 Declaring a Class with a Method and Instantiating an Object of a Class 395
B.3 Declaring a Method with a Parameter 398
B.4 Instance Variables, set Methods and get Methods 401
B.5 Primitive Types vs. Reference Types 405
B.6 Initializing Objects with Constructors 406
B.7 Floating-Point Numbers and Type double 408
B.8 Wrap-Up 412

C Control Statements 416
C.1 Introduction 417
C.2 Algorithms 417
C.3 Pseudocode 418
C.4 Control Structures 418
C.5 if Single-Selection Statement 419
C.6 if…else Double-Selection Statement 419
C.7 while Repetition Statement 422
C.8 Case Study: Counter-Controlled Repetition 422
C.9 Case Study: Sentinel-Controlled Repetition 426
C.10 Case Study: Nested Control Statements 431
C.11 Compound Assignment Operators 434
C.12 Increment and Decrement Operators 434
C.13 Primitive Types 436
C.14 Essentials of Counter-Controlled Repetition 437
C.15 for Repetition Statement 438
C.16 Examples Using the for Statement 440
C.17 do…while Repetition Statement 442
C.18 switch Multiple-Selection Statement 443
C.19 break and continue Statements 450
C.20 Logical Operators 450
C.21 Wrap-Up 453

D Methods: A Deeper Look 461
D.1 Introduction 462
D.2 Program Modules in Java 462
D.3 static Methods, static Fields and Class Math 463
D.4 Declaring Methods with Multiple Parameters 465
D.5 Notes on Declaring and Using Methods 468
D.6 Method-Call Stack and Activation Records 469
D.7 Argument Promotion and Casting 469
D.8 Java API Packages 470

A02_DEIT3397_02_SE_TOC.fm Page 15 Monday, July 7, 2014 8:28 AM

16 Contents

D.9 Introduction to Random-Number Generation 471
D.9.1 Scaling and Shifting of Random Numbers 472
D.9.2 Random-Number Repeatability for Testing and Debugging 473

D.10 Case Study: A Game of Chance; Introducing Enumerations 474
D.11 Scope of Declarations 478
D.12 Method Overloading 480
D.13 Wrap-Up 483

E Arrays and ArrayLists 490
E.1 Introduction 491
E.2 Arrays 491
E.3 Declaring and Creating Arrays 492
E.4 Examples Using Arrays 493
E.5 Case Study: Card Shuffling and Dealing Simulation 502
E.6 Enhanced for Statement 506
E.7 Passing Arrays to Methods 507
E.8 Case Study: Class GradeBook Using an Array to Store Grades 511
E.9 Multidimensional Arrays 516
E.10 Case Study: Class GradeBook Using a Two-Dimensional Array 520
E.11 Class Arrays 526
E.12 Introduction to Collections and Class ArrayList 528
E.13 Wrap-Up 531

F Classes and Objects: A Deeper Look 536
F.1 Introduction 537
F.2 Time Class Case Study 537
F.3 Controlling Access to Members 541
F.4 Referring to the Current Object’s Members with the this Reference 542
F.5 Time Class Case Study: Overloaded Constructors 544
F.6 Default and No-Argument Constructors 550
F.7 Composition 551
F.8 Enumerations 554
F.9 Garbage Collection 556
F.10 static Class Members 557
F.11 final Instance Variables 561
F.12 Packages 561
F.13 Package Access 562
F.14 Wrap-Up 562

G Object-Oriented Programming: Inheritance
and Polymorphism 565

G.1 Introduction to Inheritance 566
G.2 Superclasses and Subclasses 567
G.3 protected Members 568

A02_DEIT3397_02_SE_TOC.fm Page 16 Monday, July 7, 2014 8:28 AM

Contents 17

G.4 Relationship between Superclasses and Subclasses 569
G.4.1 Creating and Using a CommissionEmployee Class 569
G.4.2 Creating and Using a BasePlusCommissionEmployee Class 574
G.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 579
G.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Instance Variables 582
G.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Instance Variables 585
G.5 Class Object 590
G.6 Introduction to Polymorphism 591
G.7 Polymorphism: An Example 592
G.8 Demonstrating Polymorphic Behavior 593
G.9 Abstract Classes and Methods 596
G.10 Case Study: Payroll System Using Polymorphism 597

G.10.1 Abstract Superclass Employee 598
G.10.2 Concrete Subclass SalariedEmployee 601
G.10.3 Concrete Subclass HourlyEmployee 603
G.10.4 Concrete Subclass CommissionEmployee 604
G.10.5 Indirect Concrete Subclass BasePlusCommissionEmployee 606
G.10.6 Polymorphic Processing, Operator instanceof and Downcasting 607
G.10.7 Summary of the Allowed Assignments Between Superclass and

Subclass Variables 612
G.11 final Methods and Classes 613
G.12 Case Study: Creating and Using Interfaces 614

G.12.1 Developing a Payable Hierarchy 615
G.12.2 Interface Payable 616
G.12.3 Class Invoice 617
G.12.4 Modifying Class Employee to Implement Interface Payable 619
G.12.5 Modifying Class SalariedEmployee for Use in the Payable

Hierarchy 621
G.12.6 Using Interface Payable to Process Invoices and Employees

Polymorphically 623
G.13 Common Interfaces of the Java API 624
G.14 Wrap-Up 625

H Exception Handling: A Deeper Look 629
H.1 Introduction 630
H.2 Example: Divide by Zero without Exception Handling 630
H.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions 632
H.4 When to Use Exception Handling 637
H.5 Java Exception Hierarchy 637
H.6 finally Block 640
H.7 Stack Unwinding and Obtaining Information from an Exception Object 644
H.8 Wrap-Up 647

A02_DEIT3397_02_SE_TOC.fm Page 17 Monday, July 7, 2014 8:28 AM

18 Contents

I GUI Components and Event Handling 650
I.1 Introduction 651
I.2 Nimbus Look-and-Feel 651
I.3 Text Fields and an Introduction to Event Handling with Nested Classes 652
I.4 Common GUI Event Types and Listener Interfaces 658
I.5 How Event Handling Works 659
I.6 JButton 660
I.7 JComboBox; Using an Anonymous Inner Class for Event Handling 665
I.8 Adapter Classes 668
I.9 Wrap-Up 669

J Other Java Topics 670
J.1 Introduction 671
J.2 Collections Overview 671
J.3 Type-Wrapper Classes for Primitive Types 672
J.4 Interface Collection and Class Collections 672
J.5 Lists 673

J.5.1 ArrayList and Iterator 673
J.5.2 LinkedList 675
J.5.3 Views into Collections and Arrays Method asList 678

J.6 Collections Methods 680
J.6.1 Method sort 680
J.6.2 Method shuffle 682

J.7 Interface Queue 683
J.8 Sets 683
J.9 Maps 684
J.10 Introduction to Files and Streams 687
J.11 Class File 688
J.12 Introduction to Object Serialization 689
J.13 Introduction to Multithreading 690
J.14 Creating and Executing Threads with the Executor Framework 691
J.15 Overview of Thread Synchronization 695
J.16 Concurrent Collections Overview 696
J.17 Multithreading with GUI 696
J.18 Wrap-Up 703

K Operator Precedence Chart 706

L Primitive Types 708

Index 709

A02_DEIT3397_02_SE_TOC.fm Page 18 Monday, July 7, 2014 8:28 AM

Build a better mousetrap, and the world will beat a path to your door.
—Ralph Waldo Emerson

Science and technology and the various forms of art,
all unite humanity in a single and interconnected system.
—Zhores Aleksandrovich Medvede

Welcome to the dynamic world of Android smartphone and tablet app development with
the Android Software Development Kit (SDK), the Java™ programming language, the
Android Development Tools IDE, and the new and rapidly evolving Android Studio. We
present leading-edge mobile computing technologies for students, instructors and profes-
sional software developers.

Android How to Program, 2/e
With this unique book—the second edition of the world’s first Android computer science
textbook—you can learn Android even if you don’t know Java and even if you’re a pro-
gramming novice. This book includes a complete, 300-page introduction to the Java core
programming concepts that you’ll need when developing Android apps. The Java content
is appropriate for programming novices.

Android How to Program, 2/e was formed by merging

• our professional book Android for Programmers: An App-Driven Approach, 2/e,
Volume 1

• additional online chapters selected from Android for Programmers: An App-Driven
Approach, 2/e, Volume 2

• condensed, introductory core content on object-oriented Java programming
from our college textbook Java How to Program, 9/e

• hundreds of Android short-answer questions and app-development exercises we
created for this book—most are in the book and many of the short-answer ques-
tions are in the test-item file for instructors.

We scoured the Android material, especially the fully coded Android apps, and enu-
merated the Java features that you’ll need to build these and similar apps. Then we
extracted the corresponding Java content from Java How to Program, 9/e. That’s a 1500-
page book, so it was challenging to whittle down that much content and keep it friendly,
even for programming novices.

When you study the Android content, you’ll be thinking like a developer from the
start. You’re going to study and build lots of real stuff and you’ll face the kinds of chal-
lenges professional developers must deal with. We’ll point you to the online documenta-

Preface

A03_DEIT3397_02_SE_PREF.fm Page 19 Tuesday, July 8, 2014 8:14 AM

20 Preface

tion and forums where you can find additional information and get answers to your
questions. We’ll also encourage you to read, modify and enhance open-source code as part
of your learning process.

Intended Audiences
There are several audiences for this book. Most commonly, it will be used in upper-level
elective college courses and industry professional courses for people familiar with object-
oriented programming but who may or may not know Java and want to learn Android app
development.

Uniquely, the book can also be used in introductory courses like CS1, intended for
programming novices. We recommend that schools typically offering many sections of
CS1 in Java consider designating one or two sections for ambitious students who have at
least some prior programming experience and who want to work hard to learn a good
amount of Java and Android in an aggressively paced one-semester course. The schools
may want to list the courses with “honors” or “accelerated” designations. The book works
especially well in two-semester introductory programming sequences where the introduc-
tion to Java is covered first.

App-Development Courses
In 2007, Stanford offered a new course called Creating Engaging Facebook Apps. Students
worked in teams developing apps, some of which landed in Facebook’s top 10, earning some
of the student developers millions of dollars.1 This course gained wide recognition for en-
couraging student creativity and teamwork. Scores of colleges now offer app-development
courses across many social networking and mobile platforms such as Android and iOS. We
encourage you to read the online mobile app development syllabi and check out the You-
Tube™ videos created by instructors and students for many of these courses.

Android Ecosystem: Competition, Innovation, Explosive Growth
and Opportunities
Sales of Android devices and app downloads have been growing exponentially. The first-
generation Android phones were released in October 2008. A study by Strategy Analytics
showed that by October 2013, Android had 81.3% of the global smartphone market
share, compared to 13.4% for Apple, 4.1% for Microsoft and 1% for Blackberry.2 Accord-
ing to an IDC report, by the end of the first quarter of 2013 Android had 56.5% of the
global tablet market share, compared to 39.6% for Apple’s iPad and 3.7% for Microsoft
Windows tablets.3

There are now over one billion Android smartphones and tablets in use,4 and more
than 1.5 million Android devices are being activated daily.5 According to IDC, Samsung

1. http://www.businessinsider.com/these-stanford-students-made-millions-taking-a-
class-on-facebook-2011-5.

2. http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-
81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx.

3. http://www.idc.com/getdoc.jsp?containerId=prUS24093213.
4. http://www.android.com/kitkat.
5. http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-million.

A03_DEIT3397_02_SE_PREF.fm Page 20 Monday, July 7, 2014 8:29 AM

 App-Driven Approach 21

is the leading Android manufacturer, accounting for nearly 40% of Android device ship-
ments in the third quarter of 2013.

Billions of apps have been downloaded from Google Play™—Google’s marketplace
for Android Apps. The opportunities for Android app developers are enormous.

Fierce competition among popular mobile platforms and carriers is leading to rapid
innovation and falling prices. Competition among the dozens of Android device manufac-
turers is driving hardware and software innovation within the Android community.

App-Driven Approach
At the heart of the book is our app-driven approach—we present concepts in the context
of seven complete working Android apps in the print book and more online. We begin each
of the app chapters with an introduction to the app, an app test-drive showing one or more
sample executions, and a technologies overview. We build the app’s GUI and resource files.
Then we proceed with a detailed code walkthrough of the app’s source code in which we
discuss the programming concepts and demonstrate the functionality of the Android APIs
used in the app. All the source code is available at the book’s Companion Website
www.pearsonglobaleditions.com/Deitel. We recommend that you have the source
code open in the IDE as you read the book. Figure 1 lists the book’s apps and the key tech-
nologies we used to build each.

App Technologies

Chapter 2, Welcome App The Android Developer Tools (the Eclipse IDE
and the ADT Plugin), visual GUI design, lay-
outs, TextViews, ImageViews, accessibility and
internationalization.

Chapter 3, Tip Calculator App GridLayout, LinearLayout, EditText, SeekBar,
event handling, NumberFormat and defining app
functionality with Java.

Chapter 4, Twitter® Searches App SharedPreferences, collections, ImageButton,
ListView, ListActivity, ArrayAdapter, implicit
intents and AlertDialogs.

Chapter 5, Flag Quiz App Fragments, menus, preferences, AssetManager,
tweened animations, Handler, Toasts, Explicit
Intents, layouts for multiple device orientations.

Chapter 6, Cannon Game App Listening for touches, frame-by-frame anima-
tion, graphics, sound, threading, SurfaceView
and SurfaceHolder.

Chapter 7, Doodlz App Two-dimensional graphics, Canvas, Bitmap,
accelerometer, SensorManager, multitouch
events, MediaStore, printing and Immersive
Mode.

Chapter 8, Address Book App AdapterViews and Adapters

Fig. 1 | Android How to Program apps in the print book.

A03_DEIT3397_02_SE_PREF.fm Page 21 Monday, July 7, 2014 8:29 AM

22 Preface

Online Chapters and Book Updates
The Companion Website contains additional app-development chapters that introduce
property animation, Google Play game services, video, speech synthesis and recognition,
GPS, the Maps API, the compass, object serialization, Internet-enabled apps, audio re-
cording and playback, Bluetooth®, HTML5 mobile apps and more. Most of these chap-
ters will be available for fall 2014 courses. For the status of the online chapters and for
continuing book updates, visit

Join the Deitel communities on Facebook® (http://www.deitel.com/deitelfan),
Twitter® (@deitel), LinkedIn® (http://bit.ly/DeitelLinkedIn) Google+™ (http://
google.com/+DeitelFan), and YouTube™ (http://youtube.com/user/DeitelTV) and
subscribe to the Deitel® Buzz Online newsletter (http://www.deitel.com/newsletter/
subscribe.html).

Copyright Notice and Code License
All of the Android code and Android apps in the book are copyrighted by Deitel & Associates,
Inc. The sample Android apps in the book are licensed under a Creative Commons Attribution
3.0 Unported License (http://creativecommons.org/licenses/by/3.0), with the excep-
tion that they may not be reused in any way in educational tutorials and textbooks, whether in
print or digital format. Additionally, the authors and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or to the documentation contained in this
book. The authors and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these pro-
grams. You’re welcome to use the apps in the book as shells for your own apps, building on their
existing functionality. If you have any questions, contact us at deitel@deitel.com.

Getting up to Speed in Java and XML
The Android portion of this book assumes that you already know Java and object-oriented
programming. If you’re not familiar with these, the appendices provide a condensed,
friendly introduction to Java and the object-oriented programming techniques you’ll need
to develop Android apps. If you’re interested in learning Java in more depth, you may want
to check out the comprehensive treatment in our textbook Java How to Program, 10/e
www.pearsonglobaleditions.com/Deitel.

Because of the improved Android development tools, we were able to eliminate
almost all XML markup in this edition. There are still two small, easy-to-understand XML
files you’ll need to manipulate. If you’re not familiar with XML, see these online tutorials:

• http://www.deitel.com/articles/xml_tutorials/20060401/XMLBasics/

• http://www.deitel.com/articles/xml_tutorials/20060401/

XMLStructuringData/

• http://www.ibm.com/developerworks/xml/newto/

• http://www.w3schools.com/xml/xml_whatis.asp

www.pearsonglobaleditions.com/Deitel

A03_DEIT3397_02_SE_PREF.fm Page 22 Monday, July 7, 2014 8:29 AM

 Key Features of Android How to Program, 2/e 23

Key Features of Android How to Program, 2/e
• Android SDK 4.3 and 4.4. We cover various new Android Software Develop-

ment Kit (SDK) 4.3 and 4.4 features. [Note: The apps in this book are configured
to run on Android devices with Android 4.3 and higher; however, most apps will
work in 4.0 and higher by changing their minimum required SDK.]

• Fragments. Starting with Chapter 5, we use Fragments to create and manage por-
tions of each app’s GUI. You can combine several fragments to create user inter-
faces that take advantage of tablet screen sizes. You also can easily interchange
fragments to make your GUIs more dynamic, as you’ll do in Chapter 8.

• Support for multiple screen sizes and resolutions. Throughout the app chapters
we demonstrate how to use Android’s mechanisms for automatically choosing re-
sources (layouts, images, etc.) based on a device’s size and orientation.

• Eclipse-Based Android Development Tools (ADT) coverage in the print book.
The free Android Development Tools (ADT) integrated development environ-
ment (IDE)—which includes Eclipse and the ADT plugin—combined with the
free Java Development Kit (JDK) provide all the software you’ll need to create,
run and debug Android apps, export them for distribution (e.g., upload them to
Google Play™) and more.

• Android Studio. This is the preferred IDE for the future of Android app develop-
ment. Because this IDE is evolving quickly, we put our discussions of it online at:

• Immersive Mode. The status bar at the top of the screen and the menu buttons at
the bottom can be hidden, allowing your apps to fill more of the screen. Users
can access the status bar by swiping down from the top of the screen, and the sys-
tem bar (with the back button, home button and recent apps button) by swiping
up from the bottom.

• Printing Framework. Android 4.4 KitKat allows you to add printing functional-
ity to your apps, such as locating available printers over Wi-Fi or the cloud, se-
lecting the paper size and specifying which pages to print.

• Testing on Android Smartphones, Tablets and the Android Emulator. For the best
app-development experience, you should test your apps on actual Android smart-
phones and tablets. You can still have a meaningful experience using the Android
emulator (see the Before You Begin section), however it’s processor-intensive and
can be slow—particularly with games that have a lot of moving parts. In Chapter 1,
we mention some Android features that are not supported on the emulator.

• Multimedia. The apps in the print book use a broad range of Android multime-
dia capabilities, including graphics, images, frame-by-frame animation and au-
dio. The apps in the online chapters use property animation, video, speech
synthesis and speech recognition.

• Android Best Practices. We adhere to accepted Android best practices, pointing
them out in the detailed code walkthroughs. For more information, visit http://
developer.android.com/guide/practices/index.html.

• Java Content in the Appendices Can Be Used With Java SE 6 or Higher.

 www.pearsonglobaleditions.com/Deitel

A03_DEIT3397_02_SE_PREF.fm Page 23 Monday, July 7, 2014 8:29 AM

24 Preface

• Java Exception Handling. We integrate basic exception handling early in the Java
content then present a richer treatment in Appendix H; we use exception han-
dling throughout the Android chapters.

• Classes Arrays and ArrayList; Collections. Appendix E covers class Arrays—
which contains methods for performing common array manipulations—and ge-
neric class ArrayList—which implements a dynamically resizable array-like data
structure. Appendix J introduces Java’s generic collections that are used frequent-
ly in our Android treatment.

• Java Multithreading. Maintaining app responsiveness is a key to building robust
Android apps and requires extensive use of Android multithreading. Appendix J
introduces multithreading fundamentals so that you can understand our use of
the Android AsyncTask class in Chapter 8.

• GUI Presentation. Appendix I introduces Java GUI development. Android pro-
vides its own GUI components, so this appendix presents a few Java GUI com-
ponents and focuses on nested classes and anonymous inner classes, which are
used extensively for event-handling in Android GUIs.

Working with Open-Source Apps
There are numerous free, open-source Android apps available online which are excellent
resources for learning Android app development. We encourage you to download open-
source apps and read their source code to understand how they work. Throughout the
book you’ll find programming exercises that ask you to modify or enhance existing open-
source apps. Our goal is to give you handles on interesting problems that may also inspire
you to create new apps using the same technologies. Caution: The terms of open source
licenses vary considerably. Some allow you to use the app’s source code freely for any pur-
pose, while others stipulate that the code is available for personal use only—not for creat-
ing for-sale or publicly available apps. Be sure to read the licensing agreements carefully.
If you wish to create a commercial app based on an open-source app, you should con-
sider having an intellectual property attorney read the license; be aware that these attor-
neys charge significant fees.

Pedagogic Features
Syntax Shading. For readability, we syntax shade the code, similar to Eclipse’s and An-
droid Studio’s use of syntax coloring. Our syntax-shading conventions are as follows:

Code Highlighting. We emphasize the key code segments in each program by enclosing
them in light gray rectangles.

Using Fonts for Emphasis. We use various font conventions:

• The defining occurrences of key terms appear in bold for easy reference.

• On-screen IDE components appear in bold Helvetica (e.g., the File menu).

comments appear in gray
constants and literal values appear in bold darker gray
keywords appear in bold black
all other code appears in non-bold black

A03_DEIT3397_02_SE_PREF.fm Page 24 Monday, July 7, 2014 8:29 AM

 Software Used in Android How to Program, 2/e 25

• Program source code appears in Lucida (e.g., int x = 5;).

In this book you’ll create GUIs using a combination of visual programming (point
and click, drag and drop) and writing code.

We use different fonts when we refer to GUI elements in program code versus GUI
elements displayed in the IDE:

• When we refer to a GUI component that we create in a program, we place its class
name and object name in a Lucida font—e.g., “Button saveContactButton.”

• When we refer to a GUI component that’s part of the IDE, we place the compo-
nent’s text in a bold Helvetica font and use a plain text font for the component’s
type—e.g., “the File menu” or “the Run button.”

Using the > Character. We use the > character to indicate selecting a menu item from a
menu. For example, we use the notation File > New to indicate that you should select the
New menu item from the File menu.

Source Code. All of the book’s source code is available for download from:

Chapter Objectives. Each chapter begins with a list of learning objectives.

Figures. Hundreds of tables, source code listings and screen shots are included.

Software Engineering. We stress program clarity and performance, and concentrate on
building well-engineered, object-oriented software.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self study.

Exercises with a Current Flair. We’ve worked hard to create topical Android app-develop-
ment exercises. You’ll develop apps using a broad array of current technologies. All of the
Android programming exercises require the implementation of complete apps. You’ll be
asked to enhance the existing chapter apps, develop similar apps, use your creativity to de-
velop your own apps that use the chapter technologies and build new apps based on open-
source apps available on the Internet (and again, be sure to read and comply with the
open-source code-license terms for each app). The Android exercises also include short-
answer fill-in and true/false questions.

In the Java exercises, you’ll be asked to recall important terms and concepts; indicate
what code segments do; indicate what’s wrong with a portion of code; write Java state-
ments, methods and classes; and write complete Java programs.

Index. We include an extensive index for reference. The page number of the defining oc-
currence of each key term in the book is highlighted in the index in bold.

Software Used in Android How to Program, 2/e
All the software you’ll need for this book is available free for download from the Internet.
See the Before You Begin section for the download links.

www.pearsonglobaleditions.com/Deitel

A03_DEIT3397_02_SE_PREF.fm Page 25 Monday, July 7, 2014 8:29 AM

26 Preface

Documentation. All the Android and Java documentation you’ll need to develop Android
apps is available free at http://developer.android.com and http://www.oracle.com/
technetwork/java/javase/downloads/index.html. The documentation for Eclipse is
available at www.eclipse.org/documentation. The documentation for Android Studio is
available at http://developer.android.com/sdk/installing/studio.html.

Instructor Resources
The following supplements are available to qualified college instructors only through Pear-
son Education’s Instructor Resource Center www.pearsonglobaleditions.com/Deitel:

• PowerPoint® slides containing all the code and figures in the text.

• Test Item File of short-answer questions.

• Solutions Manual with solutions to the end-of-chapter short-answer exercises
for both the Java and Android content. For the Java content, solutions are pro-
vided for most of the programming exercises.
 The suggested Android app-development project exercises are not typical
homework problems. These tend to be substantial projects—many of which
could require weeks of effort, possibly with students working in teams. Selected
solutions only are provided for these project exercises—these will be available on
the Pearson Instructor’s Resource Center (IRC) for fall semester 2014 classes.
Contact us at deitel@deitel.com if you have any questions.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center.
Access is restricted to qualified college instructors teaching from the book. Instructors may
obtain access only through their Pearson representatives. If you’re not a registered faculty
member, contact your Pearson representative.

Before You Begin
For information configuring your computer so that you can develop apps with Java and
Android, see the Before You Begin section that follows this Preface.

Acknowledgments
Thanks to Barbara Deitel for long hours devoted to this project—she created all of our Java
and Android Resource Centers, and patiently researched hundreds of technical details.

This book was a cooperative effort between the academic and professional divisions
of Pearson. We appreciate the guidance, wisdom and energy of Tracy Johnson, Executive
Editor, Computer Science. Tracy and her team handle all of our academic textbooks.
Carole Snyder recruited the book’s academic reviewers and managed the review process.
Bob Engelhardt managed the book’s publication. We selected the cover art and Marta
Samsel designed the cover.

We also appreciate the efforts and 18-year mentorship of our friend and professional
colleague Mark L. Taub, Editor-in-Chief of the Pearson Technology Group. Mark and his
team handle all of our professional books and LiveLessons video products. Kim Boe-

A03_DEIT3397_02_SE_PREF.fm Page 26 Monday, July 7, 2014 8:29 AM

 Acknowledgments 27

digheimer recruited and managed the professional reviewers for the Android content. John
Fuller manages the production of all of our Deitel Developer Series books.

We’d like to thank Michael Morgano, a former colleague of ours at Deitel & Associ-
ates, Inc., now an Android developer at Imerj™, who co-authored the first editions of this
book and our book, iPhone for Programmers: An App-Driven Approach. Michael is an
extraordinarily talented software developer.

Reviewers of the Content from Android How to Program and Android for Program-
mers: An App-Driven Approach Recent Editions
We wish to acknowledge the efforts of our first and second edition reviewers. They scru-
tinized the text and the code and provided countless suggestions for improving the presen-
tation: Paul Beusterien (Principal, Mobile Developer Solutions), Eric J. Bowden, COO
(Safe Driving Systems, LLC), Tony Cantrell (Georgia Northwestern Technical College),
Ian G. Clifton (Independent Contractor and Android App Developer, Daniel Galpin (An-
droid Advocate and author of Intro to Android Application Development), Jim Hathaway
(Application Developer, Kellogg Company), Douglas Jones (Senior Software Engineer,
Fullpower Technologies), Charles Lasky (Nagautuck Community College), Enrique Lo-
pez-Manas (Lead Android Architect, Sixt, and Computer Science Teacher at the Univer-
sity of Alcalá in Madrid), Sebastian Nykopp (Chief Architect, Reaktor), Michael Pardo
(Android Developer, Mobiata), Ronan “Zero” Schwarz (CIO, OpenIntents), Arijit Sen-
gupta (Wright State University), Donald Smith (Columbia College), Jesus Ubaldo
Quevedo-Torrero (University of Wisconsin, Parkside), Dawn Wick (Southwestern Com-
munity College) and Frank Xu (Gannon University).

Reviewers of the Content from Java How to Program Recent Editions
Lance Andersen (Oracle), Soundararajan Angusamy (Sun Microsystems), Joseph Bowbeer
(Consultant), William E. Duncan (Louisiana State University), Diana Franklin (Univer-
sity of California, Santa Barbara), Edward F. Gehringer (North Carolina State Universi-
ty), Huiwei Guan (Northshore Community College), Ric Heishman (George Mason
University), Dr. Heinz Kabutz (JavaSpecialists.eu), Patty Kraft (San Diego State Univer-
sity), Lawrence Premkumar (Sun Microsystems), Tim Margush (University of Akron),
Sue McFarland Metzger (Villanova University), Shyamal Mitra (The University of Texas
at Austin), Peter Pilgrim (Consultant), Manjeet Rege, Ph.D. (Rochester Institute of Tech-
nology), Manfred Riem (Java Champion, Consultant, Robert Half), Simon Ritter (Ora-
cle), Susan Rodger (Duke University), Amr Sabry (Indiana University), José Antonio
González Seco (Parliament of Andalusia), Sang Shin (Sun Microsystems), S. Sivakumar
(Astra Infotech Private Limited), Raghavan “Rags” Srinivas (Intuit), Monica Sweat (Geor-
gia Tech), Vinod Varma (Astra Infotech Private Limited) and Alexander Zuev (Sun
Microsystems).

As you read the book, we’d sincerely appreciate your comments, criticisms and sug-
gestions for improving the text. Please address all correspondence to:

We’ll respond promptly. We really enjoyed writing this book—we hope you enjoy reading it!

Paul Deitel
Harvey Deitel
Abbey Deitel

deitel@deitel.com

A03_DEIT3397_02_SE_PREF.fm Page 27 Monday, July 7, 2014 8:29 AM

28 Preface

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. He holds the Java Certified Program-
mer and Java Certified Developer certifications, and is an Oracle Java Champion.
Through Deitel & Associates, Inc., he has delivered hundreds of programming courses
worldwide to clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity,
NASA at the Kennedy Space Center, the National Severe Storm Laboratory, White Sands
Missile Range, Rogue Wave Software, Boeing, SunGard Higher Education, Nortel Net-
works, Puma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M.
Deitel, are the world’s best-selling programming-language textbook/professional book/
video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S. degrees
in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University.
He has extensive college teaching experience, including earning tenure and serving as the
Chairman of the Computer Science Department at Boston College before founding
Deitel & Associates, Inc., in 1991 with his son, Paul Deitel. The Deitels’ publications have
earned international recognition, with translations published in Simplified Chinese, Tra-
ditional Chinese, Korean, Japanese, German, Russian, Spanish, French, Polish, Italian,
Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming
courses to corporate, academic, government and military clients.

Abbey Deitel, President of Deitel & Associates, Inc., is a graduate of Carnegie Mellon
University’s Tepper School of Management where she received a B.S. in Industrial Manage-
ment. Abbey has been managing the business operations of Deitel & Associates, Inc. for 16
years. She has contributed to numerous Deitel & Associates publications and, together with
Paul and Harvey, is the co-author of Android for Programmers: An App-Driven Approach, 2/e,
iPhone for Programmers: An App-Driven Approach, Internet & World Wide Web How to Pro-
gram, 5/e, Visual Basic 2012 How to Program, 6/e and Simply Visual Basic 2010, 5/e.

Deitel® Dive-Into® Series Programming Languages Training
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Android app development, Objective-
C and iOS app development, Java™, XML®, C++, C, Visual C#®, Visual Basic®, Visual
C++®, Python®, object technology, Internet and web programming and a growing list of
additional programming and software development courses.

Through its 37-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming college textbooks and professional
books in print and a wide range of electronic formats and LiveLessons video courses. Deitel
& Associates, Inc. and the authors can be reached at:

deitel@deitel.com

A03_DEIT3397_02_SE_PREF.fm Page 28 Monday, July 7, 2014 8:29 AM

 Deitel® Dive-Into® Series Programming Languages Training 29

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information,
please contact your Pearson representative.

Pearson wishes to thank and acknowledge the following people for their work on the
Global Edition:

Contributor:
Muthuraj M., Android Developer

Reviewers:
SC Raghavendra SSE, Intuit, India
Manasa S., NMAM Institute of Technology, Nitte, India

http://www.deitel.com/training

A03_DEIT3397_02_SE_PREF.fm Page 29 Monday, July 7, 2014 8:29 AM

30 Preface

A03_DEIT3397_02_SE_PREF.fm Page 30 Monday, July 7, 2014 8:29 AM

In this section, you’ll set up your computer for use with this book. The Android develop-
ment tools are frequently updated. Before reading this section, check the book’s website

to see if we’ve posted an updated version.

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to show on-screen compo-
nents in a sans-serif bold Helvetica font (for example, Project menu) and to show file
names, Java code and commands in a sans-serif Lucida font (for example, the keyword
public or class Activity). When specifying commands to select in menus, we use the >
notation to indicate a menu item to select. For example, Window > Preferences indicates
that you should select the Preferences menu item from the Window menu.

Software and Hardware System Requirements
To develop Android apps you need a Windows®, Linux or Mac OS X system. To view the
latest operating-system requirements visit:

and scroll down to the SYSTEM REQUIREMENTS heading. We developed the apps in this
book using the following software:

• Java SE 7 Software Development Kit

• Android SDK/ADT Bundle based on the Eclipse IDE

• Android SDK versions 4.3 and 4.4

You’ll see how to obtain each of these in the next sections.

Installing the Java Development Kit (JDK)
Android requires the Java Development Kit (JDK) version 7 (JDK 7) or 6 (JDK 6). We used
JDK 7. To download the JDK for Windows, OS X or Linux, go to

You need only the JDK. Choose the 32-bit or 64-bit version based on your computer
hardware and operating system. Most recent computers have 64-bit hardware—check
your system’s specifications. If you have a 32-bit operating system, you must use the 32-
bit JDK. Be sure to follow the installation instructions at

www.pearsonglobaleditions.com/Deitel

http://developer.android.com/sdk/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Before You
Begin

A04_DEIT3397_02_SE_BYB.fm Page 31 Tuesday, July 8, 2014 8:15 AM

32 Before You Begin

Android Integrated Development Environment (IDE) Options
Google now provides two Android IDE options:

• Android SDK/ADT bundle—a version of the Eclipse IDE that comes preconfig-
ured with the latest Android Software Development Kit (SDK) and the latest An-
droid Development Tools (ADT) plugin. At the time of this writing, these were
Android SDK version 4.4 and ADT version 22.3.

• Android Studio—Google’s new Android IDE based on IntelliJ® IDEA and their
preferred future IDE.

The Android SDK/ADT bundle has been widely used in Android app development for
several years. Android Studio, introduced in May 2013, is an early access version and will
be evolving rapidly. For this reason, we’ll stay with the widely used Android SDK/ADT
bundle in the book, and as online supplements at

we’ll provide Android Studio versions of the Chapter 1 Test-Drive section and the Build-
ing the GUI section for each app, as appropriate.

Installing the Android SDK/ADT Bundle
To download the Android SDK/ADT bundle, go to

and click the Download the SDK ADT Bundle button. When the download completes, extract
the ZIP file’s contents to your system. The resulting folder has an eclipse subfolder con-
taining the Eclipse IDE and an sdk subfolder containing the Android SDK. As with the
JDK, you can choose a 32-bit or 64-bit version. The Android SDK/ADT bundle 32-bit ver-
sion should be used with the 32-bit JDK, and the 64-bit version with the 64-bit JDK.

Installing Android Studio
The IDE instructions in the printed book use the Android SDK/ADT bundle. You can
also optionally install and use Android Studio. To download Android Studio, go to

and click the Download Android Studio button. When the download completes, run the in-
staller and follow the on-screen instructions to complete the installation. [Note: For Android
4.4 development in Android Studio, Android now supports Java SE 7 language features, in-
cluding the diamond operator, multi-catch, Strings in switch and try-with-resources.]

Set the Java Compiler Compliance Level and Show Line Numbers
Android does not fully support Java SE 7. To ensure that the book’s examples compile cor-
rectly, configure Eclipse to produce files that are compatible with Java SE 6 by performing
the following steps:

1. Open Eclipse (or), which is located in the eclipse subfolder of the An-
droid SDK/ADT bundle’s installation folder.

2. When the Workspace Launcher window appears, click OK.

www.pearsonglobaleditions.com/Deitel

http://developer.android.com/sdk/index.html

http://developer.android.com/sdk/installing/studio.html

A04_DEIT3397_02_SE_BYB.fm Page 32 Monday, July 7, 2014 8:45 AM

 Android 4.3 SDK 33

3. Select Window > Preferences to display the Preferences window. On Mac OS X,
select ADT > Preferences….

4. Expand the Java node and select the Compiler node. Under JDK Compliance, set
the Compiler compliance level to 1.6 (to indicate that Eclipse should produce
compiled code that’s compatible with Java SE 6).

5. Expand the General > Editors node and select TextEditors, then ensure that Show
line numbers is selected and click OK.

6. Close Eclipse.

Android 4.3 SDK
This book’s examples were written using the Android 4.3 and 4.4 SDKs. At the time of
this writing, 4.4 was the version included with the Android SDK/ADT bundle and An-
droid Studio. You should also install Android 4.3 (and any other versions you might want
to support in your apps). To install other Android platform versions, perform the follow-
ing steps (skipping Steps 1 and 2 if Eclipse is already open):

1. Open Eclipse. Depending on your platform, the icon will appear as or .

2. When the Workspace Launcher window appears, click OK.

3. On Mac OS X, if you see a window indicating “Could not find SDK folder '/Users/
YourAccount/android-sdk-macosx/',” click Open Preferences then Browse… and
select the sdk folder located where you extracted the Android SDK/ADT bundle.

4. Select Window > Android SDK Manager to display the Android SDK Manager (Fig. 1).

5. The Android SDK Manager’s Name column shows all of the tools, platform versions
and extras (such as APIs for interacting with Google services, like Maps) that you

Fig. 1 | Android SDK Manager window.

A04_DEIT3397_02_SE_BYB.fm Page 33 Monday, July 7, 2014 8:45 AM

34 Before You Begin

can install. Uncheck the Installed checkbox. Then, if any of Tools, Android 4.4
(API19), Android 4.3 (API18) and Extras appear in the Packages list, ensure that
they’re checked and click Install # packages… (# is the number of items to be in-
stalled) to display the Choose Packages to Install window. Most items in the Extras
node are optional. For this book, you’ll need the Android Support Library and
Google Play services. The Google USB Driver is necessary for Windows users who
wish to test apps on Android devices.]

6. In the Choose Packages to Install window, read the license agreements for each
item. When you’re done, click the Accept License radio button, then click the In-
stall button. The status of the installation process will be displayed in the Android
SDK Manager window.

Creating Android Virtual Devices (AVDs)
The Android emulator, included in the Android SDK, allows you to test apps on your com-
puter rather than on an actual Android device. This is useful if you’re learning Android and
don’t have access to Android devices, but can be very slow, so a real device is preferred if you
have one. There are some hardware acceleration features that can improve emulator perfor-
mance (developer.android.com/tools/devices/emulator.html#acceleration). Before
running an app in the emulator, you must create an Android Virtual Device (AVD) which
defines the characteristics of the device you want to test on, including the screen size in pixels,
the pixel density, the physical size of the screen, size of the SD card for data storage and more.
To test your apps for multiple Android devices, you can create AVDs that emulate each
unique device. For this book, we use AVDs for Google’s Android reference devices—the
Nexus 4 phone, the Nexus 7 small tablet and Nexus 10 large tablet—which run unmodified
versions of Android. To do so, perform the following steps:

1. Open Eclipse.

2. Select Window > Android Virtual Device Manager to display the Android Virtual De-
vice Manager window, then select the Device Definitions tab (Fig. 2).

Fig. 2 | Android Virtual Device Manager window.

A04_DEIT3397_02_SE_BYB.fm Page 34 Monday, July 7, 2014 8:45 AM

 Creating Android Virtual Devices (AVDs) 35

3. Google provides preconfigured devices that you can use to create AVDs. Select
Nexus 4 by Google, then click Create AVD… to display the Create new Android Vir-
tual Device (AVD) window (Fig. 3), then configure the options as shown and click
OK to create the AVD. If you check Hardware keyboard present, you’ll be able to
use your computer’s keyboard to type data into apps that are running in the
AVD, but this may prevent the soft keyboard from displaying on the screen. If
your computer does not have a camera, you can select Emulated for the Front
Camera and Back Camera options. Each AVD you create has many other options
specified in its config.ini. You can modify this file as described at

to more precisely match the hardware configuration of your device.

4. We also configured Android 4.3 AVDs that represent Nexus 7 by Google and Nex-
us 10 by Google for testing our tablet apps. Their settings are shown in Fig. 4. In

 http://developer.android.com/tools/devices/managing-avds.html

Fig. 3 | Configuring a Nexus 4 smartphone AVD for Android 4.3.

A04_DEIT3397_02_SE_BYB.fm Page 35 Monday, July 7, 2014 8:45 AM

36 Before You Begin

addition, we configured Android 4.4 AVDs for the Nexus 4, Nexus 7 and Nexus
10 with the names: AVD_for_Nexus_4_KitKat, AVD_for_Nexus_7_KitKat, and
AVD_for_Nexus_10_KitKat,

(Optional) Setting Up an Android Device for Development
As we mentioned, testing apps on AVDs can be slow due to AVD performance. If you
have an Android device available to you, you should test the apps on that device. In addi-
tion, there are some features that you can test only on actual devices. To execute your apps
on Android devices, follow the instructions at

If you’re developing on Microsoft Windows, you’ll also need the Windows USB driver for
Android devices. In some cases on Windows, you may also need device-specific USB driv-
ers. For a list of USB driver sites for various device brands, visit:

Fig. 4 | Configuring Nexus 7 and Nexus 10 tablet AVDs.

http://developer.android.com/tools/device.html

http://developer.android.com/tools/extras/oem-usb.html

A04_DEIT3397_02_SE_BYB.fm Page 36 Monday, July 7, 2014 8:45 AM

 Obtaining the Book’s Code Examples 37

Obtaining the Book’s Code Examples
The examples for Android How to Program, 2/e are available for download at

If you’re not already registered at our website, go to www.deitel.com and click the Register
link. Fill in your information. Registration is free, and we do not share your information
with anyone. Please verify that you entered your registration e-mail address correctly—
you’ll receive a confirmation e-mail with your verification code. You must click the verifi-
cation link in the e-mail before you can sign in at www.deitel.com for the first time. Config-
ure your e-mail client to allow e-mails from deitel.com to ensure that the verification e-
mail is not filtered as junk mail. We send only occasional account-management e-mails
unless you register separately for our free Deitel® Buzz Online e-mail newsletter at

Next, visit www.deitel.com and sign in using the Login link below our logo in the
upper-left corner of the page. Go to http://www.deitel.com/books/AndroidHTP2/.
Click the Examples link to download a ZIP archive file containing the examples to your
computer. Double click the ZIP file to unzip the archive, and make note of where you
extract the file’s contents on your system.

A Note Regarding the Android Development Tools
Google frequently updates the Android development tools. This often leads to problems
compiling our apps when, in fact, the apps do not contain any errors. If you import one
of our apps into Eclipse or Android Studio and it does not compile, there is probably a
minor configuration issue. Please contact us by e-mail at deitel@deitel.com or by post-
ing a question to:

• Facebook®—facebook.com/DeitelFan

• Google+™—google.com/+DeitelFan

and we’ll help you resolve the issue.

You’ve now installed all the software and downloaded the code examples you’ll need
to study Android app development with Android How to Program, 2/e and to begin devel-
oping your own apps. Enjoy!

www.pearsonglobaleditions.com/Deitel

http://www.deitel.com/newsletter/subscribe.html

A04_DEIT3397_02_SE_BYB.fm Page 37 Monday, July 7, 2014 8:45 AM

A04_DEIT3397_02_SE_BYB.fm Page 38 Monday, July 7, 2014 8:45 AM

1Introduction to Android

O b j e c t i v e s
In this chapter you’ll be

introduced to:

■ The history of Android and
the Android SDK.

■ Google Play Store for
downloading apps.

■ The Android packages used
in this book to help you
create Android apps.

■ Basic object-technology
concepts.

■ Key software for Android app
development, including the
Android SDK, the Java SDK,
the Eclipse integrated
development environment
(IDE) and Android Studio.

■ Important Android
documentation.

■ Test-driving an Android
drawing app in Eclipse (in the
print book) and in Android
Studio (online).

■ Characteristics of great
Android apps.

M01_DEIT3397_02_SE_C01.fm Page 39 Tuesday, July 8, 2014 8:21 AM

40 Chapter 1 Introduction to Android

1.1 Introduction
Welcome to Android app development! We hope that working with Android How to Pro-
gram, 2/e will be an informative, challenging, entertaining and rewarding experience for you.

This portion of the book is geared toward students with Java programming experience.
We use only complete working apps, so if you don’t know Java but have object-oriented
programming experience in another language, such as C#, Objective-C/Cocoa or C++
(with class libraries), you should be able to master the material quickly, learning Java and
Java-style object-oriented programming as you learn Android app development. If you do
not know Java, we also provide a friendly, rich introduction to it in the book’s appendices.

App-Driven Approach
We use an app-driven approach—new features are discussed in the context of complete
working Android apps, with one app per chapter. For each app, we first describe it, then
have you test-drive it. Next, we briefly overview the key Eclipse IDE (integrated develop-
ment environment), Java and Android SDK (Software Development Kit) technologies we
use to implement the app. For apps that require it, we walk through designing the GUI
visually using Eclipse. Then we provide the complete source-code listing, using line num-
bers, syntax shading and code highlighting to emphasize the key portions of the code. We
also show one or more screen shots of the running app. Then we do a detailed code walk-
through, emphasizing the new programming concepts introduced in the app. You can
download the source code for all of the book’s apps from http://www.deitel.com/
books/AndroidHTP2/.

1.1 Introduction
1.2 Android—The World’s Leading

Mobile Operating System
1.3 Android Features
1.4 Android Operating System

1.4.1 Android 2.2 (Froyo)
1.4.2 Android 2.3 (Gingerbread)
1.4.3 Android 3.0 through 3.2

(Honeycomb)
1.4.4 Android 4.0 through 4.0.4 (Ice Cream

Sandwich)
1.4.5 Android 4.1–4.3 (Jelly Bean)
1.4.6 Android 4.4 (KitKat)

1.5 Downloading Apps from Google Play
1.6 Packages
1.7 Android Software Development Kit

(SDK)
1.8 Object-Oriented Programming: A

Quick Refresher

1.8.1 The Automobile as an Object
1.8.2 Methods and Classes
1.8.3 Instantiation
1.8.4 Reuse
1.8.5 Messages and Method Calls
1.8.6 Attributes and Instance Variables
1.8.7 Encapsulation
1.8.8 Inheritance
1.8.9 Object-Oriented Analysis and Design

(OOAD)
1.9 Test-Driving the Doodlz App in an

Android Virtual Device (AVD)
1.9.1 Running the Doodlz App in the

Nexus 4 Smartphone AVD
1.9.2 Running the Doodlz App in a Tablet

AVD
1.9.3 Running the Doodlz App on an

Android Device
1.10 Building Great Android Apps
1.11 Android Development Resources
1.12 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

M01_DEIT3397_02_SE_C01.fm Page 40 Monday, July 7, 2014 8:53 AM

1.2 Android—The World’s Leading Mobile Operating System 41

For each chapter, we also provide Android Studio IDE versions of any Eclipse-specific
instructions. Because Android Studio is an early access version and will be evolving rap-
idly, we provide the Android Studio instructions on the book’s website

This will enable us to keep the instructions up to date.

1.2 Android—The World’s Leading Mobile Operating
System
Android device sales are growing quickly, creating enormous opportunities for Android
app developers.

• The first-generation Android phones were released in October 2008. By October
2013, a Strategy Analytics report showed that Android had 81.3% of the global
smartphone market share, compared to 13.4% for Apple, 4.1% for Microsoft and
1% for Blackberry.1

• According to an IDC report, by the end of the first quarter of 2013 Android had
56.5% of the global tablet market share, compared to 39.6% for Apple’s iPad and
3.7% for Microsoft Windows tablets.2

• As of April 2013, more than 1.5 million Android devices (including smart-
phones, tablets, etc.) were being activated daily.3

• At the time of this writing, there were over one billion activated Android devices.4

• Android devices now include smartphones, tablets, e-readers, robots, jet engines,
NASA satellites, game consoles, refrigerators, televisions, cameras, health-care de-
vices, smartwatches, automobile in-vehicle “infotainment” systems (for control-
ling the radio, GPS, phone calls, thermostat, etc.) and more.5

1.3 Android Features

Openness and Open Source
One benefit of developing Android apps is the openness of the platform. The operating sys-
tem is open source and free. This allows you to view Android’s source code and see how its
features are implemented. You can also contribute to Android by reporting bugs (see http:/
/source.android.com/source/report-bugs.html) or by participating in the Open Source
Project discussion groups (http://source.android.com/community/index.html). Nu-
merous open-source Android apps from Google and others are available on the Internet

http://www.deitel.com/books/AndroidHTP2

1. http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-
81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx.

2. http://www.idc.com/getdoc.jsp?containerId=prUS24093213.
3. http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-

million.
4. http://venturebeat.com/2013/09/03/android-hits-1b-activations-and-will-be-called-

kitkat-in-next-version.
5. http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-

android-and-its-everywhere.

M01_DEIT3397_02_SE_C01.fm Page 41 Monday, July 7, 2014 8:53 AM

42 Chapter 1 Introduction to Android

(Fig. 1.1). Figure 1.2 shows you where you can get the Android source code, learn about the
philosophy behind the open-source operating system and get licensing information.

The openness of the platform spurs rapid innovation. Unlike Apple’s proprietary iOS,
which is available only on Apple devices, Android is available on devices from dozens of orig-

URL Description

http://en.wikipedia.org/wiki/

List_of_open_source_Android

_applications

Extensive list of open-source apps, organized by cate-
gory (e.g., games, communication, emulators, multime-
dia, security).

http://developer.android.com/

tools/samples/index.html

Google’s sample apps for the Android platform;
includes over 60 apps and games such as Lunar Lander,
Snake and Tic Tac Toe.

http://github.com/ GitHub allows you to share your apps and source code
and contribute to others’ open-source projects.

http://sourceforge.net SourceForge also allows you to share apps and source
code and contribute to others’ open-source projects.

http://f-droid.org/ Hundreds of free and open-source Android apps
including the Adblock Plus advertisement blocker,
aMetro public transportation navigation, AnySoftKey-
board (available in several languages), Apollo music
player, Chinese Checkers game, DroidWeight weight
tracker, Earth Live Wallpaper and more.

http://blog.interstellr.com/

post/39321551640/14-great-

android-apps-that-are-also-

open-source

Lists 14 open-source Android apps with links to the
code.

http://www.openintents.org/

en/libraries

Provides nearly 100 open-source libraries that can be
used to enhance app capabilities.

http://www.androidviews.net Customized GUI controls for enhancing your app’s
appearance.

http://www.stackoverflow.com Stack Overflow is a question-and-answer website for
programmers. Users can vote on each answer, and the
best responses rise to the top.

Fig. 1.1 | Open-source Android app and library resource sites.

 Title URL

Get Android Source Code http://source.android.com/source/downloading.html

Governance Philosophy http://source.android.com/about/philosophy.html

Licenses http://source.android.com/source/licenses.html

FAQs http://source.android.com/source/faqs.html

Fig. 1.2 | Resources and source code for the open-source Android operating system.

M01_DEIT3397_02_SE_C01.fm Page 42 Monday, July 7, 2014 8:53 AM

1.3 Android Features 43

inal equipment manufacturers (OEMs) and through numerous telecommunications carriers
worldwide. The intense competition among OEMs and carriers benefits customers.

Java
Android apps are developed with Java—one of the world’s most widely used programming
languages. Java was a logical choice for the Android platform, because it’s powerful, free,
open source and millions of developers already know it. Experienced Java programmers
can quickly dive into Android development, using Google’s Android APIs (Application
Programming Interfaces) and others available from third parties.

Java is object oriented and has access to extensive class libraries that help you develop
powerful apps quickly. GUI programming in Java is event driven—in this book, you’ll
write apps that respond to various user-initiated events such as screen touches. In addition
to directly programming portions of your apps, you’ll also use the Eclipse and Android
Studio IDEs to conveniently drag and drop predefined objects such as buttons and text-
boxes into place on your screen, and label and resize them. Using these IDEs, you can
create, run, test and debug Android apps quickly and conveniently.

Multi-touch Screen
Android smartphones wrap the functionality of a mobile phone, Internet client, MP3
player, gaming console, digital camera and more into a handheld device with full-color
multi-touch screens. With the touch of your fingers, you can navigate easily between using
your phone, running apps, playing music, web browsing and more. The screen can display
a keyboard for typing e-mails and text messages and entering data in apps (some Android
devices also have physical keyboards).

Gestures
The multi-touch screens allow you to control the device with gestures involving one touch
or multiple simultaneous touches (Fig. 1.3).

Gesture name Physical action Used to

Touch Tap the screen once. Open an app, “press” a button or a menu item.

Double touch Tap the screen twice. Zoom in on pictures, Google Maps and web
pages. Tap the screen twice again to zoom back
out.

Long press Touch the screen and hold
your finger in position.

Select items in a view—for example, checking
an item in a list.

Swipe Touch the screen, then move
your finger in the swipe
direction and release.

Flip item-by-item through a series, such as
photos. A swipe automatically stops at the next
item.

Drag Touch and drag your finger
across the screen.

Move objects or icons, or scroll through a web
page or list.

Pinch zoom Pinch two fingers together,
or spread them apart.

Zoom in and out on the screen (e.g., resizing
text and pictures).

Fig. 1.3 | Some common android gestures.

M01_DEIT3397_02_SE_C01.fm Page 43 Monday, July 7, 2014 8:53 AM

44 Chapter 1 Introduction to Android

Built-in Apps
Android devices come with several default apps, which may vary, depending on the device,
the manufacturer or the mobile service carrier. These typically include Phone, People,
Email, Browser, Camera, Photos, Messaging, Calendar, Play Store, Calculator and more.

Web Services
Web services are software components stored on one computer that can be accessed by an
app (or other software component) on another computer over the Internet. With web ser-
vices, you can create mashups, which enable you to rapidly develop apps by quickly combin-
ing complementary web services, often from different organizations and possibly other forms
of information feeds. For example, 100 Destinations (www.100destinations.co.uk) com-
bines the photos and tweets from Twitter with the mapping capabilities of Google Maps to
allow you to explore countries around the world through the photos of others.

Programmableweb (http://www.programmableweb.com/) provides a directory of
over 9,400 APIs and 7,000 mashups, plus how-to guides and sample code for creating
your own mashups. Figure 1.4 lists some popular web services. According to Programma-
bleweb, the three most widely used APIs for mashups are Google Maps, Twitter and You-
Tube.

Web services source How it’s used

Google Maps Mapping services
Twitter Microblogging
YouTube Video search
Facebook Social networking
Instagram Photo sharing
Foursquare Mobile check-in
LinkedIn Social networking for business
Groupon Social commerce
Netflix Movie rentals
eBay Internet auctions
Wikipedia Collaborative encyclopedia
PayPal Payments
Last.fm Internet radio
Amazon eCommerce Shopping for books and lots of other products
Salesforce.com Customer Relationship Management (CRM)
Skype Internet telephony
Microsoft Bing Search
Flickr Photo sharing
Zillow Real-estate pricing
Yahoo Search Search
WeatherBug Weather

Fig. 1.4 | Some popular web services (http://www.programmableweb.com/apis/
directory/1?sort=mashups).

M01_DEIT3397_02_SE_C01.fm Page 44 Monday, July 7, 2014 8:53 AM

1.4 Android Operating System 45

1.4 Android Operating System
The Android operating system was developed by Android, Inc., which was acquired by
Google in 2005. In 2007, the Open Handset Alliance™—which now has 84 company
members (http://www.openhandsetalliance.com/oha_members.html)—was formed to
develop, maintain and evolve Android, driving innovation in mobile technology and im-
proving the user experience while reducing costs.

Android Version Naming Convention
Each new version of Android is named after a dessert, going in alphabetical order
(Fig. 1.5).

1.4.1 Android 2.2 (Froyo)
Android 2.2 (also called Froyo, released in May 2010) introduced external storage, allow-
ing you to store apps on an external memory device rather than just in the Android device’s
internal memory. It also introduced the Android Cloud to Device Messaging (C2DM)
service. Cloud computing allows you to use software and data stored in the “cloud”—i.e.,
accessed on remote computers (or servers) via the Internet and available on demand—rath-
er than having it stored on your desktop, notebook computer or mobile device. Cloud
computing gives you the flexibility to increase or decrease computing resources to meet
your resource needs at any given time, making it more cost effective than purchasing ex-
pensive hardware to ensure that you have enough storage and processing power for occa-
sional peak levels. Android C2DM allows app developers to send data from their servers
to their apps installed on Android devices, even when the apps are not currently running.
The server notifies the apps to contact it directly to receive updated app or user data.6

C2DM is now deprecated in favor of Google Cloud Messaging.
For information about additional Android 2.2 features—OpenGL ES 2.0 graphics

capabilities, the media framework and more—visit http://developer.android.com/
about/versions/android-2.2-highlights.html.

Android version Name

Android 1.5 Cupcake

Android 1.6 Donut

Android 2.0–2.1 Eclair

Android 2.2 Froyo

Android 2.3 Gingerbread

Android 3.0–3.2 Honeycomb

Android 4.0 Ice Cream Sandwich

Android 4.1–4.3 Jelly Bean

Android 4.4 KitKat

Fig. 1.5 | Android version numbers and the corresponding names.

6. http://code.google.com/android/c2dm/.

M01_DEIT3397_02_SE_C01.fm Page 45 Monday, July 7, 2014 8:53 AM

46 Chapter 1 Introduction to Android

1.4.2 Android 2.3 (Gingerbread)
Android 2.3 (Gingerbread), released later in 2010, added more user refinements, such as
a redesigned keyboard, improved navigation capabilities, increased power efficiency and
more. It also added several developer features for communications (e.g., technologies that
make it easier to make and receive calls from within an app), multimedia (e.g., new audio
and graphics APIs) and gaming (e.g., improved performance and new sensors, such as a
gyroscope for better motion processing).

One of the most significant new features in Android 2.3 was support for near-field
communication (NFC)—a short-range wireless connectivity standard that enables com-
munication between two devices within a few centimeters. NFC support and features vary
by Android device. NFC can be used for payments (for example, touching your NFC-
enabled Android device to a payment device on a soda machine), exchanging data such as
contacts and pictures, pairing devices and accessories and more.

For a more Android 2.3 developer features, see http://developer.android.com/
about/versions/android-2.3-highlights.html.

1.4.3 Android 3.0 through 3.2 (Honeycomb)
Android 3.0 (Honeycomb) included user-interface improvements specifically for large-
screen devices (e.g., tablets), such as a redesigned keyboard for more efficient typing, a vi-
sually appealing 3D user interface, easier navigation between screens within an app and
more. New Android 3.0 developer features included:

• fragments, which describe portions of an app’s user interface and can be com-
bined into one screen or used across multiple screens

• a persistent Action Bar at the top of the screen providing users with options for
interacting with apps

• the ability to add large-screen layouts to existing apps designed for small screens
to optimize your app for use on different screen sizes

• a visually attractive and more functional user interface, known as “Holo” for its
holographic look and feel

• a new animation framework

• improved graphics and multimedia capabilities

• ability to use multicore processor architectures for enhanced performance

• increased Bluetooth support (e.g., enabling an app to determine if there are any
connected devices such as headphones or a keyboard)

• and an animation framework for animating user-interface or graphics objects.

For a list of Android 3.0 user and developer features and platform technologies, go to
http://developer.android.com/about/versions/android-3.0-highlights.html.

1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich)
Android 4.0 (Ice Cream Sandwich), released in 2011, merged Android 2.3 (Gingerbread)
and Android 3.0 (Honeycomb) into one operating system for use on all Android devices.
This allowed you to incorporate into your smartphone apps Honeycomb’s features that

M01_DEIT3397_02_SE_C01.fm Page 46 Monday, July 7, 2014 8:53 AM

1.4 Android Operating System 47

previously were available only on tablets—the “Holo” user interface, a new launcher (used
to customize the device’s home screen and launch apps) and more—and easily scale your
apps to work on different devices. Ice Cream Sandwich also added several APIs for im-
proved communication between devices, accessibility for users with disabilities (e.g., vision
impairments), social networking and more (Fig. 1.6). For a complete list of Android 4.0
APIs, see http://developer.android.com/about/versions/android-4.0.html.

1.4.5 Android 4.1–4.3 (Jelly Bean)
Android Jelly Bean, released in 2012, includes support for external displays, improved se-
curity, appearance enhancements (e.g., resizable app widgets and larger app notifications)
and performance improvements that make switching between apps and screens more
seamless (Fig. 1.7). For the Jelly Bean features list, see http://developer.android.com/
about/versions/jelly-bean.html.

Feature Description

Face detection Using the camera, compatible devices can determine the posi-
tioning of the user’s eyes, nose and mouth. The camera can also
track the user’s eye movement, allowing you to create apps that
change perspective, based on where the user is looking.

Virtual camera operator When filming video of multiple people, the camera will auto-
matically focus on the person who is speaking.

Android Beam Using NFC, Android Beam allows you to touch two Android
devices to share content (e.g., contacts, pictures, videos).

Wi-Fi Direct Wi-Fi P2P (peer-to-peer) APIs allow you to connect multiple
Android devices using Wi-Fi. The devices can communicate
wirelessly at a greater distance than when using Bluetooth.

Social API Access and share contact information across social networks and
apps (with the user’s permission).

Calendar API Add and share events across multiple apps, manage alerts and
attendees and more.

Accessibility APIs Use the new Accessibility Text-to-Speech APIs to enhance the
user experience of your apps for people with disabilities such as
vision impairments and more. The explore-by-touch mode
allows users with vision impairments to touch anywhere on the
screen and hear a voice description of the touched content.

Android@Home frame-
work

Use the Android@Home framework to create apps that control
appliances in users’ homes, such as, thermostats, irrigation sys-
tems, networked light bulbs and more.

Bluetooth Health
Devices

Create apps that communicate with Bluetooth health devices
such as scales, heart-rate monitors and more.

Fig. 1.6 | Some Android Ice Cream Sandwich developer features
(http://developer.android.com/about/versions/android-4.0.html).

M01_DEIT3397_02_SE_C01.fm Page 47 Monday, July 7, 2014 8:53 AM

48 Chapter 1 Introduction to Android

1.4.6 Android 4.4 (KitKat)
Android 4.4 KitKat, released in October 2013, includes several performance improvements
that make it possible to run the operating system on all Android devices, including older,
memory-constrained devices, which are particularly popular in developing countries.7

Enabling more users to update to KitKat will reduce the “fragmentation” of Android
versions in the market, which has been a challenge for developers who previously had to
design apps to run across multiple versions of the operating system, or limit their potential
market by targeting their apps to a specific version of the operating system.

Android KitKat also includes security and accessibility enhancements, improved
graphics and multimedia capabilities, memory-use analysis tools and more. Figure 1.8 lists
some of the key new KitKat features. For a complete list, see

Feature Description

Android Beam You can use Android Beam to easily pair your smartphone or tablet with wire-
less Bluetooth® speakers or special headphones.

Lock screen widgets Create widgets that appear on the user’s screen when the device is locked, or
modify your existing home-screen widgets so that they’re also visible when the
device is locked.

Photo Sphere APIs for working with the new panoramic photo features that enable users to
take 360-degree photos, similar to those used for Google Maps Street View.

Daydreams Daydreams are interactive screensavers that are activated when a device is
docked or charging. Daydreams can play audio and video and respond to user
interactions.

Language support New features help your apps reach international users, such as bidirectional
text (left-to-right or right-to-left), international keyboards, additional key-
board layouts and more.

Developer options Several new tracking and debugging features help you improve your apps,
such as bug reports that include a screen shot and device state information.

Fig. 1.7 | Some Android Jelly Bean features (http://developer.android.com/about/
versions/jelly-bean.html).

7. http://techcrunch.com/2013/10/31/android-4-4-kitkat-google/.

http://developer.android.com/about/versions/kitkat.html

Feature Description

Immersive mode The status bar at the top of the screen and the menu buttons at the
bottom can be hidden, allowing your apps to fill more of the screen.
Users can access the status bar by swiping down from the top of the
screen, and the system bar (with the back button, home button and
recent apps button) by swiping up from the bottom.

Fig. 1.8 | Some Android KitKat features (http://developer.android.com/about/
versions/kitkat.html). (Part 1 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 48 Monday, July 7, 2014 8:53 AM

1.5 Downloading Apps from Google Play 49

1.5 Downloading Apps from Google Play
At the time of this writing, there were over one million apps in Google Play, and the number
is growing quickly.8 Figure 1.9 lists some popular free and fee-based apps. You can download
apps through the Play Store app installed on the device. You can also log into your Google
Play account at http://play.google.com through your web browser, then specify the An-
droid device on which to install the app. It will then download via the device’s WiFi or 3G/
4G connection. In Chapter 9, Google Play and App Business Issues, we discuss additional
app stores, offering your apps for free or charging a fee, app pricing and more.

Printing framework Build printing functionality into your apps, including locating
available printers over Wi-Fi or the cloud, selecting the paper size
and specifying which pages to print.

Storage access framework Create document storage providers that allow users to browse, cre-
ate and edit files (e.g., documents and images) across multiple
apps.

SMS provider Create SMS (Short Message Service) or MMS (Multimedia Mes-
saging Service) apps using the new SMS provider and APIs. Users
can now select their default messaging app.

Transitions framework The new framework makes it easier to create transition anima-
tions.

Screen recording Record video of your app in action to create tutorials and market-
ing materials.

Enhanced accessibility The captioning manager API allows apps to check the user's cap-
tioning preferences (e.g., language, text styles and more).

Chromium WebView Supports the latest standards for displaying web content including
HTML5, CSS3 and a faster version of JavaScript.

Step detector and step
counter

Create apps that detect whether the user is running, walking or
climbing stairs and count the number of steps.

Host Card Emulator
(HCE)

HCE enables any app to perform secure NFC transactions (e.g.,
mobile payments) without the need for a secure element on the
SIM card controlled by the wireless carrier.

8. en.wikipedia.org/wiki/Google_Play.

Google Play category Some popular apps in the category

Books and Reference Kindle, Wikipedia, Audible for Android, Google Play Books

Business Office Suite Pro 7, Job Search, Square Register, GoToMeeting

Fig. 1.9 | Some popular Android apps in Google Play. (Part 1 of 2.)

Feature Description

Fig. 1.8 | Some Android KitKat features (http://developer.android.com/about/
versions/kitkat.html). (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 49 Monday, July 7, 2014 8:53 AM

50 Chapter 1 Introduction to Android

1.6 Packages
Android uses a collection of packages, which are named groups of related, predefined classes.
Some of the packages are Android specific, some are Java specific and some are Google spe-
cific. These packages allow you to conveniently access Android OS features and incorporate
them into your apps. The Android packages help you create apps that adhere to Android’s
unique look-and-feel conventions and style guidelines (http://developer.android.com/
design/index.html). Figure 1.10 lists the packages we discuss in this book. For a complete
list of Android packages, see developer.android.com/reference/packages.html.

Comics ComicRack, Memedroid Pro, Marvel Comics, Comic Strips

Communication Facebook Messenger, Skype™, GrooVe IP

Education Duolingo: Learn Languages Free, TED, Mobile Observatory

Entertainment SketchBook Mobile, Netflix, Fandango® Movies, iFunny :)

Finance Mint.com Personal Finance, Google Wallet, PayPal

Games: Arcade & Action Minecraft—Pocket Edition, Fruit Ninja, Angry Birds

Games: Brain & Puzzle Where’s My Water?, Draw Something, Can You Escape

Games: Cards & Casino Solitaire, Slots Delux, UNO™ & Friends, DH Texas Poker

Games: Casual Candy Crush Saga, Hardest Game Ever 2, Game Dev Story

Health & Fitness RunKeeper, Calorie Counter, Workout Trainer, WebMD®

Lifestyle Zillow Real Estate, Epicurious Recipe App, Family Locator

Live Wallpaper PicsArt, GO Launcher EX, Beautiful Widgets Pro

Media & Video MX Player, YouTube, KeepSafe Vault, RealPlayer®

Medical Epocrates, ICE: In Case of Emergency, Medscape®

Music & Audio Pandora®, Shazam, Spotify, Ultimate Guitar Tabs & Chords

News & Magazines Flipboard, Pulse News, CNN, Engadget, Drippler

Personalization Beautiful Widgets Pro, Zedge™, GO Launcher EX

Photography Camera ZOOM FX, Photo Grid, InstaPicFrame for Instagram

Productivity Adobe® Reader®, Dropbox, Google Keep, SwiftKey Keyboard

Shopping eBay, Amazon Mobile, Groupon, The Coupons App

Social Facebook®, Instagram, Vine, Twitter, Snapchat, Pinterest

Sports SportsCenter for Android, NFL ’13, Team Stream™

Tools Titanium Backup PRO, Google Translate, Tiny Flashlight®

Transportation Uber, Trapster, Lyft, Hailo™, Ulysse Speedometer

Travel & Local Waze, GasBuddy, KAYAK, TripAdvisor, OpenTable®

Weather WeatherBug, AccuWeather, The Weather Channel

Widgets Zillow, DailyHoroscope, Starbucks, Family Locator

Google Play category Some popular apps in the category

Fig. 1.9 | Some popular Android apps in Google Play. (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 50 Monday, July 7, 2014 8:53 AM

1.7 Android Software Development Kit (SDK) 51

1.7 Android Software Development Kit (SDK)
The Android SDK provides the tools you’ll need to build Android apps. It’s available at
no charge through the Android Developers’ site. See the Before You Begin section for de-
tails on downloading the Android app-development tools you’ll need to develop Android
apps, including the Java SE, the Android SDK/ADT Bundle (which includes the Eclipse
IDE) and the Android Studio IDE.

Package Description

android.app Includes high-level classes in the Android app model. (Chapter 3’s Tip
Calculator app.)

android.content Access and publish data on a device. (Chapter 6’s Cannon Game app.)
android.content.res Classes for accessing app resources (e.g., media, colors, drawables, etc.),

and device-configuration information affecting app behavior.
(Chapter 5’s Flag Quiz app.)

android.database Handling data returned by the content provider. (Chapter 8’s Address
Book app.)

android.database.sqlite SQLite database management for private databases. (Chapter 8’s
Address Book app.)

android.graphics Graphics tools used for drawing to the screen. (Chapter 5’s Flag Quiz
app and Chapter 7’s Doodlz app.)

android.hardware Device hardware support. (Chapter 7’s Doodlz app.)
android.media Classes for handling audio and video media interfaces. (Chapter 6’s

Cannon Game app.)
android.net Network access classes. (Chapter 4’s Twitter® Searches app.)
android.os Operating-systems services. (Chapter 3’s Tip Calculator app.)
android.preference Working with an app’s user preferences. (Chapter 5’s Flag Quiz app.)
android.provider Access to Android content providers. (Chapter 7’s Doodlz app.)
android.support.

 v4.print
Android Support Library features for using the Android 4.4 printing
framework. (Chapter 7’s Doodlz app.)

android.text Rendering and tracking text on a device. (Chapter 3’s Tip Calculator app.)
android.util Utility methods and XML utilities. (Chapter 6’s Cannon Game app.)
android.widget User-interface classes for widgets. (Chapter 3’s Tip Calculator app.)
android.view User interface classes for layout and user interactions. (Chapter 4’s Twit-

ter® Searches app.)
java.io Streaming, serialization and file-system access of input and output facil-

ities. (Chapter 5’s Flag Quiz app.)
java.text Text formatting classes. (Chapter 4’s Twitter® Searches app.)
java.util Utility classes. (Chapter 4’s Twitter® Searches app.)
android.graphics.

 drawable
Classes for display-only elements (e.g., gradients, etc.). (Chapter 5’s
Flag Quiz app.)

Fig. 1.10 | Android and Java packages used in this book, listed with the chapter in which they
first appear.

M01_DEIT3397_02_SE_C01.fm Page 51 Monday, July 7, 2014 8:53 AM

52 Chapter 1 Introduction to Android

Android SDK/ADT Bundle
The Android SDK/ADT Bundle—which includes the Eclipse IDE—is the most widely
integrated development environment for Android development. Some developers use only
a text editor and command-line tools to create Android apps. The Eclipse IDE includes:

• Code editor with support for syntax coloring and line numbering

• Auto-indenting and auto-complete (i.e., type hinting)

• Debugger

• Version control system

• Refactoring support

You’ll use Eclipse in Section 1.9 to test-drive the Doodlz app. Starting in Chapter 2, Wel-
come App, you’ll use Eclipse to build apps.

Android Studio
Android Studio, a new Android IDE based on the JetBrains IntelliJ IDEA Java IDE
(http://www.jetbrains.com/idea/), was announced in 2013 and is Google’s preferred
Android IDE of the future. At the time of this writing, Android Studio was available only
as an early access preview—many of its features were still under development. For each
chapter, we also provide Android Studio versions of any Eclipse-specific instructions on
the book’s website

To learn more about Android Studio, installing it and migrating from Eclipse, visit http:/
/developer.android.com/sdk/installing/studio.html.

Android Development Tools (ADT) Plugin for Eclipse
The Android Development Tools (ADT) Plugin for Eclipse (part of the Android SDK/
ADT Bundle) allows you to create, run and debug Android apps, export them for distri-
bution (e.g., upload them to Google Play), and more. ADT also includes a visual GUI de-
sign tool. GUI components can be dragged and dropped into place to form GUIs without
any coding. You’ll learn more about ADT in Chapter 2.

The Android Emulator
The Android emulator, included in the Android SDK, allows you to run Android apps in a
simulated environment within Windows, Mac OS X or Linux, without using an actual An-
droid device. The emulator displays a realistic Android user-interface window. It’s particu-
larly useful if you do not have access to Android devices for testing. You should certainly test
your apps on a variety of Android devices before uploading them to Google Play.

Before running an app in the emulator, you’ll need to create an Android Virtual
Device (AVD), which defines the characteristics of the device on which you want to test,
including the hardware, system image, screen size, data storage and more. If you want to
test your apps for multiple Android devices, you’ll need to create separate AVDs to emu-
late each unique device, or use a service (like testdroid.com or appthwack.com) that
enables you to test on many different devices.

We used the emulator (not an actual Android device) to take most but not all of the
Android screen shots for this book. You can reproduce on the emulator most of the

http://www.deitel.com/books/AndroidHTP2

M01_DEIT3397_02_SE_C01.fm Page 52 Monday, July 7, 2014 8:53 AM

1.7 Android Software Development Kit (SDK) 53

Android gestures (Fig. 1.11) and controls (Fig. 1.12) using your computer’s keyboard and
mouse. The gestures on the emulator are a bit limited, since your computer probably
cannot simulate all the Android hardware features. For example, to test GPS apps in the
emulator, you’ll need to create files that simulate GPS readings. Also, although you can
simulate orientation changes (to portrait or landscape mode), simulating particular accel-
erometer readings (the accelerometer allows the device to respond to up/down, left/right
and forward/backward acceleration) requires features that are not built into the emulator.
There is a Sensor Simulator available at

that you can use to send simulated sensor information into an AVD to test other sensor
features in your apps. Figure 1.13 lists Android functionality that’s not available on the
emulator. You can, however, upload your app to an Android device to test these features.
You’ll start creating AVDs and using the emulator to develop Android apps in Chapter 2’s
Welcome app.

https://code.google.com/p/openintents/wiki/SensorSimulator

Gesture Emulator action

Touch Click the mouse once. Introduced in Chapter 3’s Tip Calculator app.

Double touch Double click the mouse. Introduced in Chapter 6’s Cannon Game app.

Long press Click and hold the mouse.

Drag Click, hold and drag the mouse. Introduced in Chapter 6’s Cannon
Game app.

Swipe Click and hold the mouse, move the pointer in the swipe direction and
release the mouse. Introduced in Chapter 8’s Address Book app.

Pinch zoom Press and hold the Ctrl (Control) key. Two circles that simulate the two
touches will appear. Move the circles to the start position, click and
hold the mouse and drag the circles to the end position.

Fig. 1.11 | Android gestures on the emulator.

Control Emulator action

Back Esc

Call/dial button F3

Camera Ctrl-KEYPAD_5, Ctrl-F3

End call button F4

Home Home button

Menu (left softkey) F2 or Page Up button

Power button F7

Fig. 1.12 | Android hardware controls on the emulator (for additional controls,
go to http://developer.android.com/tools/help/emulator.html). (Part 1 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 53 Monday, July 7, 2014 8:53 AM

54 Chapter 1 Introduction to Android

1.8 Object-Oriented Programming: A Quick Refresher
Android uses object-oriented programming techniques, so in this section we review the ba-
sics of object technology. We use all of these concepts in this book.

Building software quickly, correctly and economically remains an elusive goal at a
time when demands for new and more powerful software are soaring. Objects, or more pre-
cisely the classes objects come from, are essentially reusable software components. There are
date objects, time objects, audio objects, video objects, automobile objects, people objects,
etc. Almost any noun can be reasonably represented as a software object in terms of attri-
butes (e.g., name, color and size) and behaviors (e.g., calculating, moving and communi-
cating). Software developers are discovering that using a modular, object-oriented design-
and-implementation approach can make software development groups much more pro-
ductive than they could be with earlier popular techniques like “structured program-
ming”—object-oriented programs are often easier to understand, correct and modify.

Search F5

* (right softkey) Shift-F2 or Page Down button

Rotate to previous orientation KEYPAD_7, Ctrl-F11

Rotate to next orientation KEYPAD_9, Ctrl-F12

Toggle cell networking on/off F8

Volume up button KEYPAD_PLUS, Ctrl-F5

Volume down button KEYPAD_MINUS, Ctrl-F6

Android functionality not available on the emulator

• Making or receiving real phone calls (the emulator allows simulated calls only)

• Bluetooth

• USB connections

• Device-attached headphones

• Determining connected state of the phone

• Determining battery charge or power charging state

• Determining SD card insert/eject

• Sensors (accelerometer, barometer, compass, light sensor, proximity sensor)

Fig. 1.13 | Android functionality not available on the emulator
(http://developer.android.com/tools/devices/emulator.html).

Control Emulator action

Fig. 1.12 | Android hardware controls on the emulator (for additional controls,
go to http://developer.android.com/tools/help/emulator.html). (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 54 Monday, July 7, 2014 8:53 AM

1.8 Object-Oriented Programming: A Quick Refresher 55

1.8.1 The Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal hides the mechanisms that slow the car, and the steering wheel hides the
mechanisms that turn the car. This enables people with little or no knowledge of how en-
gines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the
driver must press the pedal to accelerate the car.

1.8.2 Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform its tasks. The method hides these statements from its user, just
as the accelerator pedal of a car hides from the driver the mechanisms of making the car
go faster. A program unit called a class houses the methods that perform the class’s tasks.
For example, a class that represents a bank account might contain one method to deposit
money to an account, another to withdraw money from an account and a third to inquire
what the account’s current balance is. A class is similar in concept to a car’s engineering
drawings, which house the design of an accelerator pedal, steering wheel, and so on.

1.8.3 Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object is
then referred to as an instance of its class.

1.8.4 Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

1.8.5 Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—that
is, to go faster. Similarly, you send messages to an object. Each message is a method call

M01_DEIT3397_02_SE_C01.fm Page 55 Monday, July 7, 2014 8:53 AM

56 Chapter 1 Introduction to Android

that tells a method of the object to perform its task. For example, a program might call a
particular bank-account object’s deposit method to increase the account’s balance.

1.8.6 Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

1.8.7 Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects—an object’s attributes
and methods are intimately related. Objects may communicate with one another, but
they’re normally not allowed to know how other objects are implemented—implementa-
tion details are hidden within the objects themselves. This information hiding is crucial to
good software engineering.

1.8.8 Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new class
absorbs the characteristics of an existing one, possibly customizing them and adding unique
characteristics of its own. In our car analogy, a “convertible” certainly is an object of the more
general class “automobile,” but more specifically, the roof can be raised or lowered.

1.8.9 Object-Oriented Analysis and Design (OOAD)
How will you create the code for your programs? Perhaps, like many programmers, you’ll
simply turn on your computer and start typing. This approach may work for small pro-
grams, but what if you were asked to create a software system to control thousands of au-
tomated teller machines for a major bank? Or suppose you were asked to work on a team
of 1,000 software developers building the next U.S. air traffic control system? For projects
so large and complex, you should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like Java are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

M01_DEIT3397_02_SE_C01.fm Page 56 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 57

1.9 Test-Driving the Doodlz App in an Android Virtual
Device (AVD)
In this section, you’ll run and interact with your first Android app. The Doodlz app allows
you to drag your fingers on the screen to “paint.” You can control the brush sizes and col-
ors using options provided in the app’s options menu. There is no need to look at the app’s
code—you’ll build the app and study its code in Chapter 7.

The following steps show how to import the app’s project into Eclipse and how to
test-drive the app in the Nexus 4 Android Virtual Device (AVD) that you set up in the
Before You Begin section following the Preface. Later in this section, we’ll also discuss how
to run the app on a tablet AVD and on an Android device. When the app is running in
an AVD, you can create a new painting by “dragging your finger” anywhere on the canvas.
You “touch” the screen by using the mouse.

Android SDK/ADT Bundle and Android Studio IDEs
The IDE screen captures in the following steps (and throughout this book) were taken on
a computer running Windows 7, the Java SE 7 JDK and the Android SDK/ADT Bundle
that you installed in the Before You Begin section. Because Android Studio is an early ac-
cess version and will be evolving rapidly, we provide the Android Studio instructions for
this test-drive on the book’s website

This will enable us to update the instructions in response to Google’s changes. Both the
Android SDK/ADT Bundle and Android Studio use the same Android emulator, so once
an app is running in an AVD, the steps are identical.

1.9.1 Running the Doodlz App in the Nexus 4 Smartphone AVD
To test-drive the Doodlz app, perform the following steps:

1. Checking your setup. If you have not done so already, perform the steps specified
in the Before You Begin section located after the Preface.

2. Opening Eclipse. Open the eclipse subfolder of the Android SDK/ADT bun-
dle’s installation folder, then double click the Eclipse icon (or , depending
on your platform).

3. Specifying your workspace location. When the Workspace Launcher window ap-
pears, specify where you’d like the apps that you create to be stored, then click
OK. We used the default location—a folder named workspace in your user direc-
tory. A workspace is a collection of projects, and each project is typically an app
or a library that can be shared among apps. Each workspace also has its own set-
tings, such as where various Eclipse subwindows are displayed. You can have
many workspaces and switch between them for different development tasks—for
example, you could have separate workspaces for Android app development, Java
app development and web app development, each with its own custom settings.
If this is your first time opening Eclipse, the Welcome page (Fig. 1.14) is dis-
played.

www.deitel.com/books/AndroidHTP2

M01_DEIT3397_02_SE_C01.fm Page 57 Monday, July 7, 2014 8:53 AM

58 Chapter 1 Introduction to Android

4. Launching the Nexus 4 AVD. For this test-drive, we’ll use the Nexus 4 smart-
phone AVD that you configured for Android 4.4 (KitKat) in the Before You Be-
gin section—in Section 1.9.2, we’ll show the app running in a tablet AVD. An
AVD can take several minutes to load, so you should launch it in advance of
when you intend to use it and keep it running in the background while you’re
building and testing your apps. To launch the Nexus 4 AVD, select Window > An-
droid Virtual Device Manager to display the Android Virtual Device Manager dialog
(Fig. 1.15). Select the Nexus 4 AVD for Android KitKat and click Start…, then
click the Launch button in the Launch Options dialog that appears. You should
not attempt to execute the app until the AVD finishes loading. Once the AVD
appears as shown in Fig. 1.16, unlock the AVD by dragging the mouse pointer
from the lock icon to the edge of the screen.

Fig. 1.14 | Welcome page in Eclipse.

Fig. 1.15 | Android Virtual Device Manager dialog.

M01_DEIT3397_02_SE_C01.fm Page 58 Friday, June 20, 2014 12:18 PM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 59

5. Importing the Doodlz app’s project. Select File > Import… to open the Import dialog
(Fig. 1.17(a)). Expand the General node and select Existing Projects into Work-
space, then click Next > to proceed to the Import Projects step (Fig. 1.17(b)).
Click the Browse… button to the right of the Select root directory textbox. In the

Fig. 1.16 | Nexus 4 AVD home screen (for Android 4.4) when the AVD finishes loading.

Fig. 1.17 | Importing an existing project. (Part 1 of 2.)

Drag the mouse pointer
from the lock icon to
the edge of the screen
to unlock the AVD

a) Import dialog

M01_DEIT3397_02_SE_C01.fm Page 59 Monday, July 7, 2014 8:53 AM

60 Chapter 1 Introduction to Android

Browse For Folder dialog, locate the Doodlz folder in the book’s examples folder,
select it and click Open. Click Finish to import the project into Eclipse. The proj-
ect now appears in the Package Explorer window (Fig. 1.18) at the left side of
Eclipse. If the Package Explorer window is not visible, you can view it by selecting
Window > Show View > Package Explorer.

6. Launching the Doodlz app. In Eclipse, right click the Doodlz project in the Pack-
age Explorer window, then select Run As > Android Application (Fig. 1.19). This
will execute Doodlz in the AVD that you launched in Step 4 (Fig. 1.20).

Fig. 1.18 | Package Explorer window.

Fig. 1.17 | Importing an existing project. (Part 2 of 2.)

b) Import dialog’s
Import Projects step

M01_DEIT3397_02_SE_C01.fm Page 60 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 61

Fig. 1.19 | Launching the Doodlz app.

Fig. 1.20 | Doodlz app running in the Android Virtual Device (AVD).

Recent apps button

Home button

Back button

App bar Options menu

Status bar

Navigation bar

M01_DEIT3397_02_SE_C01.fm Page 61 Monday, July 7, 2014 8:53 AM

62 Chapter 1 Introduction to Android

7. Exploring the AVD and immersive mode. At the AVD screen’s bottom are vari-
ous soft buttons that appear on the device’s touch screen. You touch these (by
using the mouse in an AVD) to interact with apps and the Android OS. The back
button goes back to the app’s prior screen, or back to a prior app if you’re in the
current app’s initial screen. The home button returns you to the device’s home
screen. The recent apps button allows you to view the recently used apps list, so
that you can switch back to them quickly. At the screen’s top is the app’s app bar,
which displays the app’s icon and name and may contain other app-specific soft
buttons—some appear on the app bar (COLOR and LINE WIDTH in Fig. 1.20) and
the rest appear in the app’s options menu (). The number of options on the app
bar depends on the size of the device—we discuss this in Chapter 7. Android 4.4
supports a new immersive mode that enables apps to use the entire screen. In this
app, you can tap once in the white drawing area to hide the device’s status and
navigation bars as well as the app’s action bar. You can redisplay these by tapping
the drawing area again or by swiping from the top edge of the screen.

8. Understanding the app’s options. To display the options that do not appear on
the app bar, touch (i.e., click) the options menu () icon. Figure 1.21(a) shows
the action bar and options menu on the Nexus 4 AVD and Fig. 1.21(b) shows
them on a Nexus 7 AVD—options shown on the action bar appear in small cap-
ital letters. Touching COLOR displays a GUI for changing the line color. Touch-
ing LINE WIDTH displays a GUI for changing the thickness of the line that will be
drawn. Touching Eraser sets the drawing color to white so that as you draw over
colored areas, the color is erased. Touching Clear first confirms whether you wish
to erase the entire image, then clears the drawing area if you do not cancel the
action. Touching Save Image saves the image into the device’s Gallery of images.
On Android 4.4, touching Print displays a GUI for selecting an available printer
so can print your image or save it as a PDF document (the default). You’ll explore
each of these options momentarily.

Fig. 1.21 | Doodlz options menu expanded.

Doodlz options menu
contents—on tablet
AVDs and devices,
some of these options
might appear directly
on the action bar

Drawing area

a) Action bar and
expanded

options menu on
a Nexus 4 AVD

b) Action bar
and expanded

options menu on
a Nexus 7 AVD

M01_DEIT3397_02_SE_C01.fm Page 62 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 63

9. Changing the brush color to red. To change the brush color, first touch COLOR on
the action bar to display the Choose Color dialog (Fig. 1.22). Colors are defined us-
ing the ARGB color scheme in which the alpha (i.e., transparency), red, green and
blue components are specified by integers in the range 0–255. For alpha, 0 means
completely transparent and 255 means completely opaque. For red, green and blue, 0
means none of that color and 255 means the maximum amount of that color. The
GUI consists of Alpha, Red, Green and Blue SeekBars that allow you to select the
amount of alpha, red, green and blue in the drawing color. You drag the SeekBars
to change the color. As you do, the app displays the new color below the SeekBars.
Select a red color now by dragging the Red SeekBar to the right as in Fig. 1.22.
Touch the Set Color button to return to the drawing area.

10. Changing the line width. To change the line width, touch LINE WIDTH on the ac-
tion bar to display the Choose Line Width dialog. Drag the SeekBar for the line
width to the right to thicken the line (Fig. 1.23). Touch the Set Line Width button
to return to the drawing area.

11. Drawing the flower petals. Tap the screen to enter immersive mode, then drag
your “finger”—the mouse when using the emulator—on the drawing area to
draw flower petals (Fig. 1.24).

Fig. 1.22 | Changing the drawing color to red.

Fig. 1.23 | Changing the line thickness.

Set Color button

SeekBars for changing
the alpha (transparency),

red, green and blue
components of the color

Current color (red)

SeekBar for line width

Current line width in the
current drawing color (red)

Set Line Width button

M01_DEIT3397_02_SE_C01.fm Page 63 Monday, July 7, 2014 8:53 AM

64 Chapter 1 Introduction to Android

12. Changing the brush color to dark green. Tap the screen to leave immersive mode
then touch COLOR to display the Choose Color dialog. Select a dark green color
by dragging the Green SeekBar to the right and ensuring that the Red and Blue
SeekBars are at the far left (Fig. 1.25(a)).

13. Changing the line width and drawing the stem and leaves. Touch LINE WIDTH to
display the Choose Line Width dialog. Drag the SeekBar for the line width to the
right to thicken the line (Fig. 1.25(b)). Tap the screen to re-enter immersive

Fig. 1.24 | Drawing flower petals.

Fig. 1.25 | Changing the color to dark green and making the line thicker.

a) Selecting dark green as the drawing color b) Selecting a thicker line

M01_DEIT3397_02_SE_C01.fm Page 64 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 65

mode, then draw the flower stem and leaves. Repeat Steps 12 and 13 for a lighter
green color and thinner line, then draw the grass (Fig. 1.26).

14. Finishing the drawing. Tap the screen to exit immersive mode. Next, change the
drawing color to blue (Fig. 1.27(a)) and select a narrower line (Fig. 1.27(b)).
Then tap the screen to enter immersive mode and draw the raindrops (Fig. 1.28).

Fig. 1.26 | Drawing the stem and grass.

Fig. 1.27 | Changing the line color to blue and narrowing the line.

a) Selecting blue as the drawing color b) Selecting a thinner line

M01_DEIT3397_02_SE_C01.fm Page 65 Monday, July 7, 2014 8:53 AM

66 Chapter 1 Introduction to Android

15. Saving the image. You can save your image to the device’s Gallery app by selecting
Save from the options menu . You can then view this image and others stored
on the device by opening the Gallery app.

16. Printing the image. To print the image, select Print from the options menu. This
displays the print dialog, which allows you to save the image as a PDF document
by default. To select a printer, tap Save as PDF and select from the available print-
ers. If no printers appear in the list, you may need to configure Google Cloud
Print for your printer. For information on this, visit

17. Returning to the home screen. You can return to the AVD’s home screen by tap-
ping the home () button on the AVD. To view the drawing in the Gallery app
touch to display the list of apps installed on the AVD. You can then open
the Gallery app to view the drawing.

1.9.2 Running the Doodlz App in a Tablet AVD
To test the app in a tablet AVD, first launch the AVD by performing Step 4 in
Section 1.9.1, but select the Nexus 7 AVD rather than the Nexus 4 AVD. Next, right click
the Doodlz project in Eclipse’s Package Explorer window and select Run As > Android Ap-
plication. If multiple AVDs are running when you launch an app, the Android Device
Chooser dialog (Fig. 1.29) appears so that you can choose the AVD on which to install
and execute the app. In this case, both the Nexus 4 and Nexus 7 AVDs were running on
our system, so there were two Android virtual devices on which we could possibly run the

Fig. 1.28 | Drawing the rain in the new line color and line width.

 http://www.google.com/cloudprint/learn/

M01_DEIT3397_02_SE_C01.fm Page 66 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 67

app. Select the Nexus 7 AVD and click OK. This app runs in portrait orientation (the
width is less than the height) on phone and small tablet devices. If you run the app on a
large tablet AVD (or large tablet device) the app runs in landscape orientation (the width
is greater than the height). Figure 1.30 shows the app running in the Nexus 7 AVD. If the
AVD is too tall to display on your screen, you can change the AVD’s orientation by typing
Ctrl + F12 (on a Mac use fn + control + F12). On some keyboards the Ctrl key is labeled
Control.

Fig. 1.29 | Android Device Chooser dialog.

Fig. 1.30 | Drawing in the Nexus 7 AVD.

M01_DEIT3397_02_SE_C01.fm Page 67 Monday, July 7, 2014 8:53 AM

68 Chapter 1 Introduction to Android

1.9.3 Running the Doodlz App on an Android Device
If you have an Android device, you can easily execute an app on it for testing purposes.

1. Enabling the developer options on the device. First, you must enable debugging
on the device. To do so, go to the device’s Settings app, then select About phone,
(or About tablet) locate the Build number (at the bottom of the list) and tap it re-
peatedly until you see the message You are now a developer on the screen. This
will enable an entry named Developer options to the Settings app.

2. Enabling debugging on the device. Return to the Settings app, select Developer
options and ensure that USB debugging is checked—this is the default when you
first enable the developer options on the device.

3. Connecting your device. Next, connect the device to your computer via the USB
cable that came with your device. If you’re a Windows user, recall from the Before
You Begin section that you might need to install a USB driver for your device.
See the following two web pages for details:

4. Running Doodlz on the Android device. In Eclipse, right click the Doodlz project
in the Package Explorer window, then select Run As > Android Application. If you
do not have any AVDs open, but do have an Android device connected, the IDE
will automatically install the app on your device and execute it. If you have one
or more AVDs open and/or devices connected, the Android Device Chooser dia-
log (Fig. 1.29) is displayed so that you can select the device or AVD on which to
install and execute the app.

Preparing to Distribute Apps
When you build apps for distribution via app stores like Google Play, you should test the
apps on as many actual devices as you can. Remember that some features can be tested only
on actual devices. If you don’t have many devices available to you, create AVDs that sim-
ulate the various devices on which you’d like your app to execute. When you configure
each AVD to simulate a particular device, look up the device’s specifications online and
configure the AVD accordingly. In addition, you can modify the AVD’s config.ini file
as described in the section Setting hardware emulation options at

This file contains options that are not configurable via the Android Virtual Device Manager.
Modifying these options allows you to more precisely match the hardware configuration
of an actual device.

1.10 Building Great Android Apps
With over 800,000 apps in Google Play,9 how do you create an Android app that people will
find, download, use and recommend to others? Consider what makes an app fun, useful, in-

 developer.android.com/tools/device.html
 developer.android.com/tools/extras/oem-usb.html

developer.android.com/tools/devices/
 managing-avds-cmdline.html#hardwareopts

9. http://www.pureoxygenmobile.com/how-many-apps-in-each-app-store/.

M01_DEIT3397_02_SE_C01.fm Page 68 Monday, July 7, 2014 8:53 AM

1.10 Building Great Android Apps 69

teresting, appealing and enduring. A clever app name, an attractive icon and an engaging de-
scription might lure people to your app on Google Play or one of the many other Android
app marketplaces. But once users download the app, what will make them use it regularly
and recommend it to others? Figure 1.31 shows some characteristics of great apps.

Characteristics of great apps

Great Games

• Entertaining and fun.

• Challenging.

• Progressive levels of difficulty.

• Show your scores and use leaderboards to record high scores.

• Provide audio and visual feedback.

• Offer single-player, multiplayer and networked versions.

• Have high-quality animations.

• Offloading input/output and compute-intensive code to separate threads of execution
to improve interface responsiveness and app performance.

• Innovate with augmented reality technology—enhancing a real-world environment
with virtual components; this is particularly popular with video-based apps.

Useful Utilities

• Provide useful functionality and accurate information.

• Increase personal and business productivity.

• Make tasks more convenient (e.g., maintaining a to-do list, managing expenses).

• Make the user better informed.

• Provide topical information (e.g., the latest stock prices, news, severe storm warnings,
traffic updates).

• Use location-based services to provide local services (e.g., coupons for local businesses,
best gas prices, food delivery).

General Characteristics

• Up-to-date with the latest Android features, but compatible with multiple Android ver-
sions to support the widest possible audience.

• Work properly.

• Bugs are fixed promptly.

• Follow standard Android app GUI conventions.

• Launch quickly.

• Are responsive.

• Don’t require too much memory, bandwidth or battery power.

• Are novel and creative.

• Enduring—something that your users will use regularly.

• Use professional-quality icons that will appear in Google Play and on the user’s device.

Fig. 1.31 | Characteristics of great apps. (Part 1 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 69 Monday, July 7, 2014 8:53 AM

70 Chapter 1 Introduction to Android

1.11 Android Development Resources
Figure 1.32 lists some of the key documentation from the Android Developer site. As you
dive into Android app development, you may have questions about the tools, design is-
sues, security and more. There are several Android developer newsgroups and forums
where you can get the latest announcements or ask questions (Fig. 1.33). Figure 1.34 lists
several websites where you’ll find Android development tips, videos and resources.

General Characteristics (cont.)

• Use quality graphics, images, animations, audio and video.

• Are intuitive and easy to use (don’t require extensive help documentation).

• Accessible to people with disabilities (http://developer.android.com/guide/topics/
ui/accessibility/index.html).

• Give users reasons and a means to tell others about your app (e.g., you can give users the
option to post their game scores to Facebook or Twitter).

• Provide additional content for content-driven apps (e.g., game levels, articles, puzzles).

• Localized (Chapter 2) for each country in which the app is offered (e.g., translate the
app’s text and audio files, use different graphics based on the locale, etc.).

• Offer better performance, capabilities and ease-of-use than competitive apps.

• Take advantage of the device’s built-in capabilities.

• Do not request excessive permissions.

• Are designed to run optimally across a broad variety of Android devices.

• Future-proofed for new hardware devices—specify the exact hardware features your app
uses so Google Play can filter and display it for only compatible devices
(http://android-developers.blogspot.com/2010/06/future-proofing-your-app.html).

 Title URL

App Components http://developer.android.com/guide/components/

index.html

Using the Android Emulator http://developer.android.com/tools/devices/

emulator.html

Package Index http://developer.android.com/reference/

packages.html

Class Index http://developer.android.com/reference/

classes.html

Android Design http://developer.android.com/design/index.html

Fig. 1.32 | Key online documentation for Android developers. (Part 1 of 2.)

Characteristics of great apps

Fig. 1.31 | Characteristics of great apps. (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 70 Monday, July 7, 2014 8:53 AM

1.11 Android Development Resources 71

Data Backup http://developer.android.com/guide/topics/

data/backup.html

Security Tips http://developer.android.com/training/

articles/security-tips.html

Managing Projects from Eclipse with
ADT

http://developer.android.com/guide/developing/

projects/projects-eclipse.html

Getting Started with Android Studio http://developer.android.com/sdk/installing/

studio.html

Debugging http://developer.android.com/tools/debugging/

index.html

Tools Help http://developer.android.com/tools/help/

index.html

Performance Tips http://developer.android.com/training/

articles/perf-tips.html

Keeping Your App Responsive http://developer.android.com/training/

articles/perf-anr.html

Launch Checklist (for Google Play) http://developer.android.com/distribute/

googleplay/publish/preparing.html

Get Started with Publishing http://developer.android.com/distribute/

googleplay/publish/register.html

Managing Your App’s Memory http://developer.android.com/training/

articles/memory.html

Google Play Developer
Distribution Agreement

http://play.google.com/about/

developer-distribution-agreement.html

Title Subscribe Description

Android Discuss Subscribe using Google Groups:
android-discuss

Subscribe via e-mail:
android-discuss-

subscribe@googlegroups.com

A general Android discussion group
where you can get answers to your app-
development questions.

Stack Overflow http://stackoverflow.com/

questions/tagged/android
Use this list for beginner-level Android
app-development questions, including
getting started with Java and Eclipse, and
questions about best practices.

Android Developers http://groups.google.com/

forum/?fromgroups#!forum/

android-developers

Experienced Android developers use this
list for troubleshooting apps, GUI design
issues, performance issues and more.

Fig. 1.33 | Android newsgroups and forums. (Part 1 of 2.)

 Title URL

Fig. 1.32 | Key online documentation for Android developers. (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 71 Monday, July 7, 2014 8:53 AM

72 Chapter 1 Introduction to Android

Android Forums http://www.androidforums.com Ask questions, share tips with other
developers and find forums targeting spe-
cific Android devices.

Android development tips, videos and
resources URL

Sample Android apps from Google http://code.google.com/p/apps-for-

android/

O’Reilly article, “Ten Tips for Android
Application Development”

http://answers.oreilly.com/topic/

862-ten-tips-for-android-application-

development/

Bright Hub™ website for Android pro-
gramming tips and how-to guides

http://www.brighthub.com/mobile/

google-android.aspx

The Android Developers Blog http://android-developers.blogspot.com/

The Sprint® Application Developers
Program

http://developer.sprint.com/site/

global/develop/mobile_platforms/

android/android.jsp

HTC’s Developer Center for Android http://www.htcdev.com/

The Motorola Android development site http://developer.motorola.com/

Top Android Users on Stack Overflow http://stackoverflow.com/tags/android/

topusers

AndroidDev Weekly Newsletter http://androiddevweekly.com/

Chet Haase’s Codependent blog http://graphics-geek.blogspot.com/

Cyril Mottier’s Android blog http://cyrilmottier.com/

Romain Guy’s Android blog http://www.curious-creature.org/

category/android/

Android Developers Channel on YouTube® http://www.youtube.com/user/

androiddevelopers

Android Video Playlists http://developer.android.com/develop/

index.html

What’s New in Android Developer Tools http://www.youtube.com/

watch?v=lmv1dTnhLH4

Google I/O 2013 Developer
Conference session videos

http://developers.google.com/events/io/

sessions

Fig. 1.34 | Android development tips, videos and resources.

Title Subscribe Description

Fig. 1.33 | Android newsgroups and forums. (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 72 Monday, July 7, 2014 8:53 AM

1.12 Wrap-Up 73

1.12 Wrap-Up
This chapter presented a brief history of Android and discussed its functionality. We pro-
vided links to some of the key online documentation and to the newsgroups and forums
you can use to connect with the developer community. We discussed features of the An-
droid operating system and provided links to some popular free and fee-based apps on
Google Play. We introduced the Java, Android and Google packages that enable you to
use the hardware and software functionality you’ll need to build a variety of Android apps.
You’ll use many of these packages in this book. We also discussed Java programming and
the Android SDK. You learned the Android gestures and how to perform each on an An-
droid device and on the emulator. We provided a quick refresher on basic object-technol-
ogy concepts, including classes, objects, attributes and behaviors. You test-drove the
Doodlz app on the Android emulator for both smartphone and tablet AVDs. In the next
chapter, you’ll build your first Android app using only visual programming techniques.
The app will display text and two images. You’ll also learn about Android accessibility and
internationalization.

Self-Review Exercises
1.1 Fill in the blanks in each of the following statements:

a) App developers can send data from their servers to their apps installed on Android devices
even if the apps are not running currently using .

b) is a short-range wireless connectivity standard that allows communication
between two devices within a few centimeters.

c) describe portions of an app’s user interface, which can be combined into
one screen or used across multiple screens.

d) With web services, you can create , which enable you to rapidly develop
apps by quickly combining complementary web services, often from different organiza-
tions and possibly other forms of information feeds.

e) Android uses a collection of , which are named groups of related, pre-
defined classes.

f) The , included in the Android SDK, allows you to run Android apps in a
simulated environment within Windows, Mac OS X or Linux.

g) Almost any noun can be reasonably represented as a software object in terms of
 (e.g., name, color and size) and behaviors (e.g., calculating, moving and

communicating).
h) Using NFC allows you to touch two Android devices to share content.
i) You send messages to an object. Each message is a(n) that tells a method

of the object to perform its task.

1.2 State whether each of the following is true or false. If false, explain why.
a) Android 2.2 introduced external storage, which allows one to store apps on an external

memory device.
b) Cloud computing allows one to use software and data stored in the local machines.
c) Java is neither object-oriented nor has access to extensive class libraries that help you de-

velop powerful apps quickly.
d) Attributes are specified by the class’s methods.
e) Objects may communicate with one another, but they’re normally not allowed to know

how other objects are implemented—implementation details are hidden within the ob-
jects themselves.

M01_DEIT3397_02_SE_C01.fm Page 73 Monday, July 7, 2014 8:53 AM

74 Chapter 1 Introduction to Android

1.3 Fill in the blanks in each of the following statements (based on Section 1.8):
a) Objects have the property of —although objects communicate with one an-

other, they’re normally not allowed to know how other objects are implemented.
b) The that objects come from are essentially reusable software components;

they include attributes and behaviors.
c) The process of analyzing and designing a system from an object-oriented point of view

is called .
d) With , new classes of objects are derived by absorbing characteristics of existing

classes, then adding unique characteristics of their own.
e) The size, shape, color and weight of an object are considered of the object’s class.
f) A class that represents a bank account might contain one to deposit money to

an account, another to withdraw money from an account and a third to inquire what the
account’s current balance is.

g) You must build an object of a class before a program can perform the tasks that the class’s
methods define—this process is called .

h) The balance of a bank account class is an example of a(n) of that class.
i) Your project’s requirements define what the system is supposed to do and your design

specifies the system should do it.

Answers to Self-Review Exercises
1.1 a) Android C2DM. b) Near-field communication (NFC). c) Fragments. d) mashups. e)
packages. f) Android emulator. g) attributes. h) Android Beam. i) method call.

1.2 a) True. b) False. It allows you to use software and data stored in the “cloud”. c) False. Java
is object-oriented and has access to extensive class libraries. d) False. Attributes are specified by the
class’s instance variables. e) True.

1.3 a) information hiding. b) classes. c) object-oriented analysis and design (OOAD).
d) inheritance. e) attributes. f) method. g) instantiation. h) attribute. i) how.

Exercises
1.4 Fill in the blanks in each of the following statements:

a) Android apps are developed with —one of the world’s most widely used pro-
gramming language, a logical choice because it’s powerful, free and open source.

b) are software components stored on one computer that can be accessed by
an app (or other software component) on another computer over the Internet.

c) Android version 2.3 is also known as .
d) Touching the screen, moving your finger in a direction and releasing it generates a

 gesture.
e) Before running an app in the emulator, you'll need to create an , which de-

fines the characteristics of the device on which you want to test, including the hardware,
system image, screen size, data storage and more.

f) Performing a task in a program requires a which houses the program state-
ments that actually perform its tasks.

g) You must build an object of a class before a program can perform the tasks that the
class’s methods define. The process of doing this is called .

h) helps you build more reliable and effective systems, because existing classes
and components often have gone through extensive testing, debugging and perfor-
mance tuning.

M01_DEIT3397_02_SE_C01.fm Page 74 Monday, July 7, 2014 8:53 AM

 Exercises 75

i) Classes (i.e., wrap) attributes and methods into objects—an object’s attri-
butes and methods are intimately related.

j) A new class of objects can be created quickly and conveniently by —the
new class absorbs the characteristics of an existing one, possibly customizing them and
adding unique characteristics of its own.

k) Unlike actual buttons on a device, buttons appear on the device’s touch
screen.

l) Colors are defined using the RGBA color scheme in which the red, green, blue and
 components are specified by integers in the range 0–255.

1.5 State whether each of the following is true or false. If false, explain why.
a) The vast majority of Android development is done in C++.
b) Microsoft Visual Studio is the recommended integrated development environment for

Android development, though developers may also use a text editor and command-line
tools to create Android apps.

c) Reuse helps you build more reliable systems as existing classes and components have
often gone through extensive testing, debugging and performance tuning.

d) An object has attributes that it carries along as it’s used in a program. These attributes
are specified as part of the object’s class.

1.6 One of the most common objects is a car. Discuss how each of the following terms and
concepts applies to the notion of a car: object, attributes, behaviors, class, inheritance (consider, for
example, an automatic car), messages, encapsulation, and information hiding.

M01_DEIT3397_02_SE_C01.fm Page 75 Monday, July 7, 2014 8:53 AM

2 Welcome App

O b j e c t i v e s
In this chapter you’ll:

■ Learn the basics of the
Android Developer Tools (the
Eclipse IDE and the ADT
Plugin), which you’ll use to
write, test and debug your
Android apps.

■ Use the IDE to create a new
app project.

■ Design a graphical user
interface (GUI) visually
(without programming)
using the IDE’s Graphical
Layout editor.

■ Display text and two images
in a GUI.

■ Edit the properties of GUI
components.

■ Build and launch an app in
the Android emulator.

■ Make the app more accessible
to visually impaired people by
specifying strings for use with
Android’s TalkBack and
Explore-by-Touch features.

■ Support internationalization
so your app can display
strings localized in different
languages.

M02_DEIT3397_02_SE_C02.fm Page 76 Tuesday, July 8, 2014 8:26 AM

2.1 Introduction 77

2.1 Introduction
In this chapter, without writing any code you’ll build the Welcome app that displays a wel-
come message and two images. You’ll use the Android Developer Tools IDE to create an app
that runs on Android phones. In later chapters you’ll also create apps that run on tablets or
on both phones and tablets. You’ll create a simple Android app (Fig. 2.1) using the IDE’s

2.1 Introduction
2.2 Technologies Overview

2.2.1 Android Developer Tools IDE
2.2.2 TextViews and ImageViews
2.2.3 App Resources
2.2.4 Accessibility
2.2.5 Internationalization

2.3 Creating an App
2.3.1 Launching the Android Developer

Tools IDE
2.3.2 Creating a New Project
2.3.3 New Android Application Dialog
2.3.4 Configure Project Step
2.3.5 Configure Launcher Icon Step
2.3.6 Create Activity Step
2.3.7 Blank Activity Step

2.4 Android Developer Tools Window
2.4.1 Package Explorer Window

2.4.2 Editor Windows
2.4.3 Outline Window
2.4.4 App Resource Files
2.4.5 Graphical Layout Editor
2.4.6 The Default GUI

2.5 Building the App’s GUI with the
Graphical Layout Editor

2.5.1 Adding Images to the Project
2.5.2 Changing the FrameLayout to a

RelativeLayout
2.5.3 Adding and configuring a TextView
2.5.4 Adding ImageViews to Display the

Images
2.6 Running the Welcome App
2.7 Making Your App Accessible
2.8 Internationalizing Your App
2.9 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Fig. 2.1 | Welcome app running in the Android emulator.

TextView component

ImageView components

Android’s top system bar
shows the time, battery

indicator, cellular connection
status and notifications

Android’s bottom system bar
shows the back, home and

recent apps buttons

Client area in which your
app’s content is displayed

M02_DEIT3397_02_SE_C02.fm Page 77 Monday, July 7, 2014 8:54 AM

78 Chapter 2 Welcome App

Graphical Layout editor, which allows you to build GUIs using drag-and-drop techniques.
You’ll execute your app in the Android emulator (and on an Android phone, if you have one
available). Finally, you’ll learn how to make the app more accessible for people with disabili-
ties and how to internationalize it to display strings localized in different languages. On the
book’s website—http://www.deitel.com/books/AndroidHTP2—we provide an Android
Studio IDE version of this chapter. This chapter assumes that you’ve read the Preface, Before
You Begin and Section 1.9.

2.2 Technologies Overview
This section introduces the technologies you’ll learn in this chapter.

2.2.1 Android Developer Tools IDE
This chapter introduces the Android Developer Tools IDE. You’ll use it to create a new project
(Section 2.3). As you’ll see, the IDE creates a default GUI that contains the text "Hello
world!" You’ll then use the IDE’s Graphical Layout editor and Properties window to visually
build a simple graphical user interface (GUI) consisting of text and two images (Section 2.5).

2.2.2 TextViews and ImageViews
This app’s text is displayed in a TextView and its pictures are displayed in ImageViews. The
default GUI created for this app contains a TextView, which you’ll modify by using the
IDE’s Properties window to configure various options, such as the TextView’s text, font
size and font color (Section 2.5.3). Next, you’ll use the Graphical Layout editor’s Palette of
GUI controls to drag and drop ImageViews onto the GUI (Section 2.5.4).

2.2.3 App Resources
It’s considered good practice to define all strings and numeric values in resource files that
are placed in the subfolders of a project’s res folder. You’ll learn in Section 2.5.3 how to
create resources for strings (such as the text on a TextView) and measurements (such as a
font’s size). You’ll also learn how to use a built-in Android color resource to specify the
TextView’s font color.

2.2.4 Accessibility
Android contains many accessibility features to help people with various disabilities use
their devices. For example, people with visual and physical disabilities can use Android’s
TalkBack to allow a device to speak screen text or text that you provide to help them un-
derstand the purpose and contents of a GUI component. Android’s Explore by Touch en-
ables the user to touch the screen to hear TalkBack speak what’s on the screen near the
touch. Section 2.7 shows how to enable these features and how to configure your app’s
GUI components for accessibility.

2.2.5 Internationalization
Android devices are used worldwide. To reach the largest possible audience with your
apps, you should consider customizing them for various locales and spoken languages—
this is known as internationalization. Section 2.8 shows how to provide Spanish text for

M02_DEIT3397_02_SE_C02.fm Page 78 Monday, July 7, 2014 8:54 AM

2.3 Creating an App 79

the Welcome app’s TextView and the ImageViews’ accessibility strings, then shows how to
test the app on an AVD configured for Spanish.

2.3 Creating an App
This book’s examples were developed using the versions of the Android Developer Tools
(version 22.x) and the Android SDK (versions 4.3 and 4.4) that were current at the time
of this writing. We assume that you’ve read the Before You Begin section, and set up the
Java SE Development Kit (JDK) and the Android Developer Tools IDE that you used in
the test-drive in Section 1.9. This section shows you how to use the IDE to create a new
project. We’ll introduce additional features of the IDE throughout the book.

2.3.1 Launching the Android Developer Tools IDE
To launch the IDE, open the Android SDK/ADT bundle installation folder’s eclipse sub-
folder, then double click the Eclipse icon (or), depending on your platform).
When you start the IDE for the first time, the Welcome page (shown originally in
Fig. 1.14) is displayed. If it is not displayed, select Help > Android IDE to display it.

2.3.2 Creating a New Project
A project is a group of related files, such as code files and images that make up an app. To
create an app, you must first create its project. To do so, click the New Android Application…
button on the Welcome page to display the New Android Application dialog (Fig. 2.2). You
can also do this by selecting File > New > Android Application Project or by clicking the New
() toolbar button’s drop-down list and selecting Android Application Project.

Fig. 2.2 | New Android Application dialog.

Displays help text
for the setting
that you are
configuring

M02_DEIT3397_02_SE_C02.fm Page 79 Monday, July 7, 2014 8:54 AM

80 Chapter 2 Welcome App

2.3.3 New Android Application Dialog
In the New Android Application dialog’s first step (Fig. 2.2), specify the following informa-
tion, then click Next >:

1. Application Name: field—Your app’s name. Enter Welcome in this field.

2. Project Name: field—The project’s name, which is displayed in the project’s root
node in the IDE’s Package Explorer tab. By default, the IDE sets this to the app
name without spaces and with each word capitalized—for an app named Address
Book, the project name would be AddressBook. If you prefer to use a different
name, enter it in the Project name: field.

3. Package Name: field—The Java package name for your app’s source code. Android
and the Google Play store use this as the app’s unique identifier, which must remain
the same through all versions of your app. The package name normally begins with
your company’s or institution’s domain name in reverse—ours is deitel.com, so we
begin our package names with com.deitel. Typically, this is followed by the app’s
name. By convention, package names use only lowercase letters. The IDE specifies
a package name that begins with com.example by default—this is for learning pur-
poses only and must be changed if you intend to distribute your app.

4. Minimum Required SDK: field—The minimum Android API level that’s required to
run your app. This allows your app to execute on devices at that API level and high-
er. We use the API level 18, which corresponds to Android 4.3—the lower of the
two versions we use in this book. Figure 2.3 shows the Android SDK versions and
API levels. Other versions of the SDK are now deprecated and should not be used.
The percentage of Android devices running each platform version is shown at:

5. Target SDK: field—The preferred API level. We use level 19 (Android 4.4) for this
book’s apps. At the time of this writing, 26% of Android devices still used level 10.
When developing apps for distribution, you often want to target as many devices
as possible. For example, to target devices with Android 2.3.3 and higher (98% of
all Android devices), you’d set the Minimum Required SDK to 10. If it’s set to an ear-
lier API level than the Target SDK, you must ensure either that your app does not use
features from API levels above the Minimum Required SDK or that it can detect the API
level on the device and adjust its functionality accordingly. The Android Lint tool that
the IDE runs in the background points out unsupported features that you use.

 http://developer.android.com/about/dashboards/index.html

SDK version API level SDK version API level SDK version API level

4.4 19 4.0.3–4.0.4 15 2.2 8
4.3 18 4.0.1 14 2.1 7
4.2.x 17 3.2 13 1.6 4
4.1.x 16 2.3.3–2.3.7 10

Fig. 2.3 | Android SDK versions and API levels. (http://developer.android.com/
about/dashboards/index.html)

M02_DEIT3397_02_SE_C02.fm Page 80 Monday, July 7, 2014 8:54 AM

2.3 Creating an App 81

6. Compile With: field—The version of the API used when compiling your app.
Normally this is the same as the Target SDK, but it could be an earlier version that
supports all the APIs used in your app.

7. Theme: field—Your app’s default Android theme, which gives the app a look-and-
feel that’s consistent with Android. There are three themes you can choose from—
Holo Light, Holo Dark and Holo Light with Dark Action Bars (the default specified
by the IDE). When designing a GUI, you can choose from many variations of the
Holo Light and Holo Dark themes. For this chapter we’ll use the default theme,
and we’ll discuss themes in more detail in subsequent chapters. For more informa-
tion about each theme and to see sample screen captures, visit

2.3.4 Configure Project Step
In the New Android Application dialog’s Configure Project step (Fig. 2.4), leave the default set-
tings as shown and click Next >. These settings allow you in subsequent steps to specify your
app’s icon and configure your app’s Activity—a class that controls the app’s execution.

2.3.5 Configure Launcher Icon Step
When your app is installed on a device, its icon and name appear with all other installed
apps in the launcher, which you can access via the icon on your device’s home screen.
Android runs on a wide variety of devices that have different screen sizes and resolutions.

 http://developer.android.com/design/style/themes.html

Fig. 2.4 | New Android Application dialog—New Android Application step 2.

M02_DEIT3397_02_SE_C02.fm Page 81 Monday, July 7, 2014 8:54 AM

82 Chapter 2 Welcome App

To ensure that your images look good on all devices, you should provide several versions
of each image your app uses. Android can automatically choose the correct image based
on various specifications, such as the screen’s resolution (width and height in pixels) or
DPI (dots per inch). We discuss these mechanisms starting in Chapter 3. You can find
more information about designing for varying screen sizes and resolutions at

and about icons in general at

The Configure Launcher Icon step (Fig. 2.5) enables you to configure the app’s icon
from an existing image, a piece of clip art or text. It takes what you specify and creates ver-
sions scaled to 48-by-48, 72-by-72, 96-by-96 and 144-by-144 to support various screen
resolutions. For this app, we used an image named DeitelOrange.png. To use it, click
Browse… to the right of the Image File: field, navigate to the images folder in the book’s
examples folder, select DeitelOrange.png and click Open. Previews of the scaled images
are shown in the dialog’s Preview area. These images will be placed into appropriate folders
in the app’s project. Images do not always scale well. For apps that you intend to place in
the Google Play store, you might want to have an artist design icons for the appropriate
resolutions. In Chapter 9, we discuss submitting apps to the Google Play store and list sev-
eral companies that offer free and fee-based icon design services. Click Next > to continue
to the Create Activity step.

http://developer.android.com/training/multiscreen/index.html

http://developer.android.com/design/style/iconography.html

Fig. 2.5 | New Android Application dialog—Configure Launcher Icon step.

M02_DEIT3397_02_SE_C02.fm Page 82 Monday, July 7, 2014 8:54 AM

2.3 Creating an App 83

2.3.6 Create Activity Step
In the Create Activity step (Fig. 2.6), you select the template for your app’s Activity.
Templates save you time by providing preconfigured starting points for commonly used
app designs. Figure 2.7 briefly describes the three templates shown in Fig. 2.6. For this
app, select Blank Activity, then click Next >. We’ll use the other templates in later chapters.

Fig. 2.6 | New Android Application dialog—Create Activity step.

Template Description

Blank Activity Used for a single-screen app in which you build most of the GUI yourself. Pro-
vides an action bar at the top of the app that displays the app’s name and can
display controls that enable a user to interact with the app.

Fullscreen

Activity
Used for a single-screen app (similar to Blank Activity) that occupies the entire
screen, but can toggle visibility of the device’s status bar and the app’s action bar.

Master/Detail
Flow

Used for an app that displays a master list of items from which a user can
choose one item to see its details—similar to the built-in Email and People
apps. For tablets, the master list and details are shown side-by-side on the same
screen. For phones, the master list is shown on one screen, and selecting an
item displays the item’s details in a separate screen.

Fig. 2.7 | Activity templates.

M02_DEIT3397_02_SE_C02.fm Page 83 Monday, July 7, 2014 8:54 AM

84 Chapter 2 Welcome App

2.3.7 Blank Activity Step
This step depends on the template selected in the previous step. For the Blank Activity tem-
plate, this step allows you to specify:

• Activity Name—MainActivity is the default name provided by the IDE. This is
the name of a subclass of Activity that controls the app’s execution. Starting in
Chapter 3, we’ll modify this class to implement an app’s functionality.

• Layout Name—activity_main is the default file name provided by the IDE. This
file stores an XML representation of MainActivity’s GUI. In this chapter, you’ll
build the GUI (Section 2.5) using visual techniques.

• Fragment Layout Name—fragment_main is the default file name provided by the
IDE. An activity’s GUI typically contains one or more fragments that describe
portions of the activity’s GUI. In the default app template, activity_main dis-
plays the GUI described by fragment_main. We discuss fragments in detail start-
ing in Chapter 5. Until then we’ll simply ignore the fragment_main file.

• Navigation Type—None is the default specified by the IDE. The Welcome app
does not provide any functionality. In an app that supports user interactions, you
can select an appropriate Navigation Type to enable the user to browse through
your app’s content. We’ll discuss navigation options in more detail in later apps.

Click Finish to create the project.

Fig. 2.8 | New Android Application dialog—Blank Activity step.

M02_DEIT3397_02_SE_C02.fm Page 84 Monday, July 7, 2014 8:54 AM

2.4 Android Developer Tools Window 85

2.4 Android Developer Tools Window
After creating the project, the IDE opens MainActivity.java and fragment_main.xml.
Close these, then open activity_main.xml from the project’s res/layout folder, so the
IDE appears as shown in Fig. 2.9. The IDE shows the Graphical Layout editor so you can
begin designing your app’s GUI. In this chapter, we discuss only the IDE features we need
to build the Welcome app. We’ll introduce many more IDE features throughout the book.

Fig. 2.9 | Welcome project open in the Android Developer Tools.

Tabbed interface to the Problems, Javadoc, Declaration,
Console and LogCat windows occupies the center column

Package
Explorer

Editor windows—like the Graphical Layout
editor for activity_main.xml—appear here

Outline with the currently
selected item’s Properties

M02_DEIT3397_02_SE_C02.fm Page 85 Monday, July 7, 2014 8:54 AM

86 Chapter 2 Welcome App

2.4.1 Package Explorer Window
The Package Explorer window provides access to all of the project’s files. Figure 2.10 shows
the Welcome app project in the Package Explorer window. The Welcome node represents
the project. You can have many projects open in the IDE at once—each will have its own
top-level node. Within a project’s node, the contents are organized into folders and files. In
this chapter, you’ll use only files located in the res folder, which we discuss in
Section 2.4.4—we’ll discuss the other folders as we use them in later chapters.

2.4.2 Editor Windows
To the right of the Package Explorer in Fig. 2.9 is the Graphical Layout editor window.
When you double click a file in the Package Explorer, its contents are displayed in an ap-
propriate editor window, depending on the file’s type. For a Java file, the Java source-code
editor is displayed. For an XML file that represents a GUI (such as activity_main.xml),
the Graphical Layout editor is displayed.

2.4.3 Outline Window
The Outline is displayed at the right side of the IDE (Fig. 2.9). This window shows infor-
mation related to the file that’s currently being edited. For a GUI, this window shows all
the elements that compose the GUI. For a Java class, it shows the class’s name and its
methods and fields.

2.4.4 App Resource Files
Layout files like activity_main.xml (in the project’s res/layout folder) are considered
app resources and are stored in the project’s res folder. Within that folder are subfolders
for different resource types. The ones we use in this app are shown in Fig. 2.11, and the

Fig. 2.10 | Package Explorer window.

Expanded node

Collapsed node

M02_DEIT3397_02_SE_C02.fm Page 86 Monday, July 7, 2014 8:54 AM

2.4 Android Developer Tools Window 87

others (menu, animator, anim, color, raw and xml) are discussed as we need them through
the book.

2.4.5 Graphical Layout Editor
When you first create a project, the IDE opens the app’s fragment_main.xml file in the
Graphical Layout editor. If you have not already done so, close this file then double click
activity_main.xml file in your app’s res/layout folder to open it in the Graphical Lay-
out editor (Fig. 2.12).

Selecting the Screen Type for GUI Design
Android devices can run on many types of devices. In this chapter, you’ll design an Android
phone GUI. As we mentioned in the Before You Begin section, we use an AVD that emu-
lates the Google Nexus 4 phone for this purpose. The Graphical Layout editor comes with
many device configurations that represent various screen sizes and resolutions that you can
use to design your GUI. For this chapter, we use the predefined Nexus 4, which we selected
in the screen-type drop-down list in Fig. 2.12. This does not mean that the app can execute
only on a Nexus 4 device—it simply means that the design is for devices similar in screen size
and resolution to the Nexus 4. In later chapters, you’ll learn how to design your GUIs to scale
appropriately for a wide range of devices.

2.4.6 The Default GUI
The default GUI (Fig. 2.12) for a Blank Page app consists of a FrameLayout (named con-
tainer) with a light background (specified by the theme we chose when creating the proj-

Resource subfolder Description

drawable Folder names that begin with drawable typically contain images.
These folders may also contain XML files representing shapes and
other types of drawables (such as the images that represent a button’s
unpressed and pressed states).

layout Folder names that begin with layout contain XML files that describe
GUIs, such as the activity_main.xml file.

values Folder names that begin with values contain XML files that specify
values for arrays (arrays.xml), colors (colors.xml), dimensions
(dimen.xml; values such as widths, heights and font sizes), strings
(strings.xml) and styles (styles.xml). These file names are used by
convention but are not required—actually, you can place all resources
of these types in one file. It’s considered best practice to define the
data from hard-coded arrays, colors, sizes, strings and styles as
resources so they can be modified easily without changing the app’s
Java code. For example, if a dimension resource is referenced from
many locations in your code, you can change the resource file once,
rather than locating all occurrences of a hard-coded dimension value
in your app’s Java source files.

Fig. 2.11 | Subfolders of the project’s res folder that are used in this chapter.

M02_DEIT3397_02_SE_C02.fm Page 87 Monday, July 7, 2014 8:54 AM

88 Chapter 2 Welcome App

ect). A FrameLayout is designed to display only one GUI component—typically a layout
that contains many other GUI components. In this app, you’ll use a RelativeLayout that
arranges GUI components relative to one another or relative to the layout itself—for exam-
ple, you can specify that a GUI component should appear below another GUI component
and centered horizontally within the RelativeLayout. A TextView displays text. We’ll say
more about each of these in Section 2.5.

ii

Fig. 2.12 | Graphical Layout editor view of the app’s default GUI.

Canvas (the GUI design area)

The Palette contains Widgets (GUI
components), Layouts and other items that can
be dragged and dropped on the canvas

Graphical Layout editor tab

Screen-type drop-down list specifies devices to
which you can target your GUI’s design—select
Nexus 4 for this chapter

M02_DEIT3397_02_SE_C02.fm Page 88 Monday, July 7, 2014 8:54 AM

2.5 Building the App’s GUI with the Graphical Layout Editor 89

2.5 Building the App’s GUI with the Graphical Layout
Editor
The IDE’s Graphical Layout editor allows you to build a GUI by dragging and dropping
components—such as TextViews, ImageViews and Buttons—onto a design area. By de-
fault, the GUI layout for a Blank App’s MainActivity is stored in the XML file
activity_main.xml, located in the project’s res folder in the layout subfolder. In this
chapter, we’ll use the Graphical Layout editor and the Outline window to build the GUI
and will not study the generated XML. The Android development tools have improved to
the point that, in most cases, you do not need to manipulate the XML markup directly.

2.5.1 Adding Images to the Project
For this app, you’ll need to add the Deitel bug image (bug.png) and the Android logo im-
age (android.png) to the project. These are located with the book’s examples in the
images folder’s Welcome subfolder. File names for image resources—and all the other resources
you’ll learn about in later chapters—must be in all lowercase letters.

Because Android devices have various screen sizes, resolutions and pixel densities (that is,
dots per inch or DPI), you typically provide images in varying resolutions that the oper-
ating system chooses based on a device’s pixel density. For this reason your project’s res
folder contains several subfolders that begin with the name drawable. These folders store
images with different pixel densities (Fig. 2.13).

Images for devices that are similar in pixel density to the Google Nexus 4 phone we use
in our phone AVD are placed in the folder drawable-hdpi. Images for devices with higher
pixel densities (such as those on some phones and tablets) are placed in the drawable-xhdpi
or drawable-xxhdpi folders. Images for the medium- and low-density screens of older
Android devices are placed in the folders drawable-mdpi and drawable-ldpi, respectively.

For this app, we provide only one of each image. If Android cannot find an image in
the appropriate drawable folder, it scales the version from another drawable folder up or
down to different densities as necessary.

Perform the following steps to add the images to this project:

1. In the Package Explorer window, expand the project’s res folder.

2. Locate and open images folder’s Welcome subfolder on your file system, then drag
the images onto the res folder’s drawable-hdpi subfolder. In the File Operation

Density Description

drawable-ldpi Low density—approximately 120 dots-per-inch.
drawable-mdpi Medium density—approximately 160 dots-per-inch.
drawable-hdpi High density—approximately 240 dots-per-inch.
drawable-xhdpi Extra high density—approximately 320 dots-per-inch.
drawable-xxhdpi Extra Extra high density—approximately 480 dots-per-inch.
drawable-xxxhdpi Extra Extra Extra high density—approximately 640 dots-per-inch.

Fig. 2.13 | Android pixel densities.

M02_DEIT3397_02_SE_C02.fm Page 89 Monday, July 7, 2014 8:54 AM

90 Chapter 2 Welcome App

dialog that appears, ensure that Copy Files is selected, then click OK. In general,
you should use PNG images, but JPG and GIF images are also supported.

These images can now be used in the app.

2.5.2 Changing the FrameLayout to a RelativeLayout
When a GUI is displayed in the Graphical Layout editor, you can use the Properties win-
dow at the bottom of the Outline window to configure the selected layout’s or component’s
properties without editing the XML directly. To select a layout or component, either select
its node in the Outline window (Fig. 2.14) or click it in the Graphical Layout editor. Select-
ing specific components is often easier in the Outline window.

To begin building the GUI, right click the container FrameLayout in the Outline
window, select Change Layout…, then select Relative Layout and click OK.

You should give a relevant name to each layout and component—especially if it will be
manipulated programmatically (as we’ll do in later apps). This is done via the component’s
Id property—the default Id for the FrameLayout in activity_main.xml is container,
which you’ll change. You can use the Id to access and modify a component in a layout and
from Java code. As you’ll soon see, the Id is used to specify the relative positioning of compo-
nents in a RelativeLayout. At the top of the Properties window set the Id value to

and press Enter. In the Update References dialog, click Yes, then in the Rename Resource
dialog, click OK to complete the change. The + in the syntax @+id indicates that a new id
for referring to that GUI component should be created with the identifier to the right of
the forward slash (/). The Properties window should now appear as in Fig. 2.15.

In most apps, you should provide some extra space around a layout—known as pad-
ding—to separate the layout’s components from those in other layouts or from the device’s
screen edges. Due to recent changes in Google’s default app template, this padding is no
longer provided in activity_main.xml. To add it for this app, scroll to the Properties
window’s View subsection. For the Padding Left and Padding Right properties click the
ellipsis () button, then select activity_horizontal_margin and click OK. Repeat this
for Padding Top and Padding Bottom but select activity_vertical_margin. We’ll discuss
padding in more detail in the next chapter.

Look-and-Feel Observation 2.1
Low-resolution images do not scale well. For images to render nicely, a high-pixel-density
device needs higher resolution images than a low-pixel-density device.

Look-and-Feel Observation 2.2
For detailed information on supporting multiple screens and screen sizes in Android, visit
http://developer.android.com/guide/practices/screens_support.html.

Fig. 2.14 | Hierarchical GUI view in the Outline window.

@+id/welcomeRelativeLayout

M02_DEIT3397_02_SE_C02.fm Page 90 Monday, July 7, 2014 8:54 AM

2.5 Building the App’s GUI with the Graphical Layout Editor 91

2.5.3 Adding and Configuring a TextView

Adding the TextView and Setting Its Id Property
To add the TestView to the GUI, from the Palette at the Graphical Layout editor’s left side,
drag a TextView onto the welcomeRelativeLayout node in the Outline window. By de-
fault, the IDE gives the TextView the Id textView1. With the TextView selected in the
Outline window, change its Id property to

Configuring the TextView’s Text Property Using a String Resource
According to the Android documentation for application resources

it’s considered a good practice to place strings, string arrays, images, colors, font sizes, di-
mensions and other app resources in XML file within the subfolders of the project’s res
folder, so that the resources can be managed separately from your app’s Java code. This is
known as externalizing the resources. For example, if you externalize color values, all com-
ponents that use the same color can be updated to a new color simply by changing the col-
or value in a central resource file.

If you wish to localize your app in several languages, storing the strings separately from
the app’s code allows you to change them easily. In your project’s res folder, the subfolder
values contains a strings.xml file that’s used to store the app’s default language strings—
English for our apps. To provide localized strings for other languages, you can create sep-
arate values folders for each language, as we’ll demonstrate in Section 2.8.

To set the TextView’s Text property, create a new string resource in the strings.xml
file as follows:

1. Ensure that the welcomeTextView is selected.

2. Locate its Text property in the Properties window, then click the ellipsis button
to the right of the property’s value to display the Resource Chooser dialog.

Fig. 2.15 | Properties window after changing the Id property of the RelativeLayout.

@+id/welcomeTextView

http://developer.android.com/guide/topics/resources/index.html

M02_DEIT3397_02_SE_C02.fm Page 91 Monday, July 7, 2014 8:54 AM

92 Chapter 2 Welcome App

3. In the Resource Chooser dialog, click the New String… button to display the Cre-
ate New Android String dialog (Fig. 2.16).

4. Fill the String and New R.string fields as shown in Fig. 2.16, check the Replace in
all XML file for different configurations checkbox then click OK to dismiss the dia-
log and return to the Resource Chooser dialog. The String field specifies the text
that will be displayed in the TextView, and the R.string field specifies the string
resource’s name so that we can reference it in the TextView’s Text property.

5. The new string resource named welcome is automatically selected. Click OK in the
Resource Chooser dialog to use this resource.

In the Properties window, the Text property should now appear as in Fig. 2.17. The syntax
@string indicates that a string resource will be selected from the strings.xml file (located
in the project’s res/values folder) and welcome indicates which string resource to select.

Fig. 2.16 | Create New Android String dialog.

Fig. 2.17 | Properties window after changing the TextView’s Text property.

M02_DEIT3397_02_SE_C02.fm Page 92 Monday, July 7, 2014 8:54 AM

2.5 Building the App’s GUI with the Graphical Layout Editor 93

Configuring the TextView’s Text Size Property—Scaled Pixels and Density-Indepen-
dent Pixels
The sizes of GUI components and text can be specified in various measurement units
(Fig. 2.18). The documentation for supporting multiple screen sizes

recommends that you use density-independent pixels for the dimensions of GUI compo-
nents and other screen elements, and scale-independent pixels for font sizes.

Defining your GUIs with density-independent pixels enables the Android platform
to scale the GUI, based on the pixel density of a given device’s screen. One density-inde-
pendent pixel is equivalent to one pixel on a 160-dpi screen. On a 240-dpi screen, each den-
sity-independent pixel will be scaled by a factor of 240/160 (i.e., 1.5). So, a component
that’s 100 density-independent pixels wide will be scaled to 150 actual pixels wide. On a
screen with 120 dpi, each density-independent pixel is scaled by a factor of 120/160 (i.e.,
0.75). So, the same component that’s 100 density-independent pixels wide will be 75
actual pixels wide. Scale-independent pixels are scaled like density-independent pixels, and
they’re also scaled by the user’s preferred font size (as specified in the device’s settings).

You’ll now increase the TextView’s font size and add some padding above the Text-
View to separate the text from the edge of the device’s screen. To change the font size:

1. Ensure that the welcomeTextView is selected.

2. Locate its Text Size property in the Properties window, then click the ellipsis but-
ton to the right of the property’s value to display the Resource Chooser dialog.

3. In the Resource Chooser dialog, click the New Dimension… button.

4. In the dialog that appears, specify welcome_textsize for the Name and 40sp for
the Value, then click OK to dismiss the dialog and return to the Resource Chooser
dialog. The letters sp in the value 40sp indicate that this is a scale-independent pix-
el measurement. The letters dp in a dimension value (e.g., 10dp) indicate a density-
independent pixel measurement.

5. The new dimension resource named welcome_textsize is automatically select-
ed. Click OK to use this resource.

Configuring Additional TextView Properties
Use the Properties window to specify the following additional TextView properties:

http://developer.android.com/guide/practices/screens_support.html

Unit Description

px pixel

dp or dip density-independent pixel

sp scale-independent pixel

in inches

mm millimeters

Fig. 2.18 | Measurement units.

M02_DEIT3397_02_SE_C02.fm Page 93 Monday, July 7, 2014 8:54 AM

94 Chapter 2 Welcome App

• Set its Text Color property to @android:color/holo_blue_dark. Android has var-
ious predefined color resources. When you type @android:color/ in the Text Color
property’s value field, a drop-down list of color resources appears (Fig. 2.19). Select
@android:color/holo_blue_dark from that list to make the text bright blue.

• To center the text in the TextView if it wraps to multiple lines, set its Gravity prop-
erty to center. To do so, click the Value field for this property, then click the ellipsis
button to display the Select Flag Values dialog with the Gravity property’s options
(Fig. 2.20). Click the center checkbox, then click OK to set the value.

The Graphical Layout editor window should now appear as shown in Fig. 2.21.

Fig. 2.19 | Setting a TextView’s Text Color property to @android:color/
holo_blue_dark.

Fig. 2.20 | Options for the Gravity property of an object.

M02_DEIT3397_02_SE_C02.fm Page 94 Monday, July 7, 2014 8:54 AM

2.5 Building the App’s GUI with the Graphical Layout Editor 95

2.5.4 Adding ImageViews to Display the Images
Next, you’ll add two ImageViews to the GUI to display the images you added to the project
in Section 2.5.1. You’ll do this by dragging the ImageViews from the Palette’s Images &
Media section onto the GUI below the TextView. To do so, perform the following steps:

1. Expand the Palette’s Images & Media category, then drag an ImageView onto the
canvas as shown in Fig. 2.22. The new ImageView appears below the welcome-
TextView node. When you drag a component onto the canvas area, the Graphical
Layout editor displays green rule markers and a tooltip appears. The rule markers
help you position components in the GUI. The tooltip displays how the GUI
component will be configured if you drop it at the current mouse position. The
tooltip in Fig. 2.22 indicates that the ImageView will be centered horizontally in
the parent layout (also indicated by the dashed rule marker that extends from the
top to the bottom of the GUI) and will be placed below the welcomeTextView
component (also indicated by the dashed rule marker with an arrowhead).

2. When you drop the ImageView, the Resource Chooser dialog (Fig. 2.23) appears
so that you can choose the image resource to display. For every image you place
in a drawable folder, the IDE generates a resource ID (i.e., a resource name) that
you can use to reference that image in your GUI design and in code. The resource
ID is the image’s file name without the extension—for android.png, the resource
ID is android. Select android and click OK to display the droid image. When you
add a new component to the GUI, it’s automatically selected and its properties
are displayed in the Properties window.

Fig. 2.21 | GUI after completing the TextView’s configuration.

M02_DEIT3397_02_SE_C02.fm Page 95 Monday, July 7, 2014 8:54 AM

96 Chapter 2 Welcome App

Fig. 2.22 | Dragging and dropping an ImageView onto the GUI.

Fig. 2.23 | Selecting the android image resource from the Resource Chooser dialog.

M02_DEIT3397_02_SE_C02.fm Page 96 Monday, July 7, 2014 8:54 AM

2.6 Running the Welcome App 97

3. The IDE sets the new ImageView’s Id property to @+id/imageView1 by default.
Change this to @+id/droidImageView. An Update References? dialog appears to
confirm the renaming operation. Click Yes. Next, a Rename Resource dialog ap-
pears to show you all the changes that will be made. Click OK to complete the
renaming operation.

4. Repeat Steps 1–3 above to create the bugImageView. For this component, drag
the ImageView below the droidImageView, select the bug image resource from the
Resource Chooser dialog and set the Id property to @+id/bugImageView in the
Properties window, then save the file.

The GUI should now appear as shown in Fig. 2.24.

2.6 Running the Welcome App
To run the app in an Android Virtual Device (AVD) for a phone, perform the steps shown
in Section 1.9.1. Figure 2.25 shows the running app in the Nexus 4 AVD that you con-

Fig. 2.24 | Completed GUI design.

These warning symbols indicate
that an ImageView property for
visually impaired users is not set for
these two images. (We correct this
in Section 2.7.)

M02_DEIT3397_02_SE_C02.fm Page 97 Monday, July 7, 2014 8:54 AM

98 Chapter 2 Welcome App

figured in the Before You Begin section. The app is shown in portrait orientation, where
the device’s height is greater than its width. Though you can rotate your device or AVD
to landscape orientation (where the width is greater than the height), this app’s GUI was
not designed for that orientation. In the next chapter, you’ll learn how to restrict an app’s
orientation and in subsequent chapters, you’ll learn how to create more dynamic GUIs
that can handle both orientations.

If you’d like, you can follow the steps in Section 1.9.3 to run the app on an Android
device. Though this app will run on an Android tablet AVD or a tablet device, the app’s
GUI will occupy only a small part of a tablet’s screen. Typically, for apps that run on both
phones and tablets, you’ll also provide a tablet layout that makes better use of the screen’s
available space, as we’ll demonstrate in later chapters.

2.7 Making Your App Accessible
Android contains accessibility features to help people with various disabilities use their de-
vices. For people with visual disabilities, Android’s TalkBack can speak screen text or text
that you provide (when designing your GUI or programmatically) to help the user under-
stand the purpose of a GUI component. Android also provides Explore by Touch, which
enables the user to hear TalkBack speak what’s on the screen where the user touches.

Fig. 2.25 | Welcome app running in an AVD.

M02_DEIT3397_02_SE_C02.fm Page 98 Monday, July 7, 2014 8:54 AM

2.7 Making Your App Accessible 99

When TalkBack is enabled and the user touches an accessible GUI component, Talk-
Back speaks the component’s accessibility text and vibrates the device to provide feedback
to users who have trouble hearing. All standard Android GUI components support acces-
sibility. For those that display text, TalkBack speaks that text by default—e.g., when the
user touches a TextView, TalkBack speaks the TextView’s text. You enable TalkBack in
the Settings app under Accessibility. From that page, you can also enable other Android
accessibility features such as a larger default text size and the ability to use gestures that mag-
nify areas of the screen. Unfortunately, TalkBack is not currently supported in AVDs, so you
must run this app on a device to hear TalkBack speak the text. When you enable Talk-
Back, Android gives you the option to step through a tutorial of how to use TalkBack with
Explore by Touch.

Enabling TalkBack for the ImageViews
In the Welcome app, we don’t need more descriptive text for the TextView, because Talk-
Back will read the TextView’s content. For an ImageView, however, there is no text for
TalkBack to speak unless you provide it. It’s considered a best practice in Android to en-
sure that every GUI component can be used with TalkBack by providing text for the Con-
tent Description property of any component that does not display text. For that reason, the
IDE actually warned us that something was wrong with our GUI by displaying small
warning () icons in the Graphical Layout editor next to each ImageView. These warn-
ings—which are generated by a tool in the IDE known as Android Lint—indicate that we
did not set the Content Description property of each image. The text that you provide
should help the user understand the purpose of the component. For an ImageView, the text
should describe the image.

To add a Content Description for each ImageView (and eliminate the Android Lint
warnings), perform the following steps:

1. Select the droidImageView in the Graphical Layout editor.

2. In the Properties window, click the ellipsis button to the right of the Content De-
scription property to open the Resource Chooser dialog.

3. Click the New String… button to display the Create New Android String dialog.

4. In the String field specify "Android logo" and in the R.string field specify
android_logo, then press OK.

5. The new android_logo string resource is selected in the Resource Chooser dia-
log, so click OK to specify that resource as the value for the droidImageView’s
Content Description property.

6. Repeat the preceding steps for the bugImageView, but in the Create New Android
String dialog, specify "Deitel double-thumbs-up bug logo" for the String field
and "deitel_logo" for the R.string field. Save the file.

As you set each ImageView’s Content Description, the warning icon () for that ImageView
in the Graphical Layout editor is removed.

Testing the App with TalkBack Enabled
Run this app on a device with TalkBack enabled, then touch the TextView and each
ImageView to hear TalkBack speak the corresponding text.

M02_DEIT3397_02_SE_C02.fm Page 99 Monday, July 7, 2014 8:54 AM

100 Chapter 2 Welcome App

Learning More About Accessibility
Some apps dynamically generate GUI components in response to user interactions. For
such GUI components, you can programmatically set the accessibility text. The following
Android developer documentation pages provide more information about Android’s ac-
cessibility features and a checklist to follow when developing accessible apps:

2.8 Internationalizing Your App
As you know, Android devices are used worldwide. To reach the largest possible audience,
you should consider customizing your apps for various locales and spoken languages—this
is known as internationalization. For example, if you intend to offer your app in France,
you should translate its resources (e.g., text, audio files) into French. You might also
choose to use different colors, graphics and sounds based on the locale. For each locale,
you'll have a separate, customized set of resources. When the user launches the app, An-
droid automatically finds and loads the resources that match the device’s locale settings.

Localization
A key benefit of defining your string values as string resources (as we did in this app) is
that you can easily localize your app by creating additional XML resource files for those
string resources in other languages. In each file, you use the same string-resource names,
but provide the translated string. Android can then choose the appropriate resource file based
on the device user’s preferred language.

Naming the Folders for Localized Resources
The XML resource files containing localized strings are placed in subfolders of the project’s
res folder. Android uses a special folder-naming scheme to automatically choose the correct
localized resources—for example, the folder values-fr would contain a strings.xml file for
French and the folder values-es would contain a strings.xml file for Spanish. You can also
name these folders with region information—values-en-rUS would contain a strings.xml
file for United States English and values-en-rGB would contain a strings.xml file for
United Kingdom English. If localized resources are not provided for a given locale, Android
uses the app’s default resources—that is, those in the res folder’s values subfolder. We dis-
cuss these alternative-resource naming conventions in more detail in later chapters.

Adding a Localization Folder to the App’s Project
Before you can add a localized version of the Welcome app’s strings.xml file that contains
Spanish strings, you must add the values-es folder to the project. To do so:

1. In the IDE’s Package Explorer window, right click the project’s res folder and
select New > Folder to display the New Folder dialog.

2. In the dialog’s Folder name: field, enter values-es, then click Finish.

You’d repeat these steps with an appropriately named values-locale folder for each lan-
guage you wish to support.

http://developer.android.com/design/patterns/accessibility.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://developer.android.com/guide/topics/ui/accessibility/
 checklist.html

M02_DEIT3397_02_SE_C02.fm Page 100 Monday, July 7, 2014 8:54 AM

2.8 Internationalizing Your App 101

Copying the strings.xml File into the values-es Folder
Next, you’ll copy the strings.xml file from the values folder into the values-es folder.
To do so:

1. In the IDE’s Package Explorer window, open the res folder’s values subfolder,
then right click the strings.xml file and select Copy to copy the file.

2. Next, right click the values-es folder, then select Paste to place the copy of
strings.xml in the folder.

Localizing the Strings
In this app, the GUI contains one TextView that displays a string and two content-descrip-
tion strings for the ImageViews. All of these strings were defined as string resources in the
strings.xml file. You can now translate the strings in the new version of the strings.xml
file. App-development companies often have translators on staff or hire other companies
to perform translations. In fact, in the Google Play Developer Console—which you use to
publish your apps in the Google Play store—you can find translation-services companies.
For more information on the Google Play Developer Console, see Chapter 9 and

 For this app, you’ll replace the strings

with the Spanish strings

To do so:

1. In the IDE’s Package Explorer window, double click the strings.xml file in the
values-es folder to display the Android Resources editor, then select the welcome
string resource (Fig. 2.26).

2. In the Value field, replace the English string "Welcome to Android App Develop-
ment!" with the Spanish string "¡Bienvenido al Desarrollo de App Android!".
If you cannot type special Spanish characters and symbols on your keyboard, you
can copy the Spanish strings from our res/values-es/strings.xml file in the
final version of the Welcome app (located in the WelcomeInternationalized
folder with the chapter’s examples). To paste the Spanish string into the Value
field, select the English string, then right click it and select Paste.

3. Next, select the android_logo resource and change its Value to "Logo de Android".

4. Finally, select the deitel_logo resource and change its Value to "El logo de De-
itel que tiene el insecto con dedos pulgares hacia arriba".

5. Delete the app_name, action_settings and hello_world string resources by se-
lecting one at a time and clicking the Remove… button. You’ll be asked to con-

developer.android.com/distribute/googleplay/publish/index.html

"Welcome to Android App Development!"
"Android logo"
"Deitel double-thumbs-up bug logo"

"¡Bienvenido al Desarrollo de App Android!"
"Logo de Android"
"El logo de Deitel que tiene el insecto con dedos pulgares
 hacia arriba"

M02_DEIT3397_02_SE_C02.fm Page 101 Monday, July 7, 2014 8:54 AM

102 Chapter 2 Welcome App

firm each delete operation. These three resources were placed in the default
strings.xml file when you created the app’s project. Only the app_name string
resource is used in this project. We’ll explain why we deleted it momentarily.

6. Save the strings.xml file by selecting File > Save or clicking the toolbar icon.

Testing the App in Spanish
To test the app in Spanish, you must change the language settings in the Android emulator
(or on your device). To do so:

1. Touch the home () icon on the emulator or on your device.

2. Touch the launcher () icon, then locate and touch the Settings app () icon.

3. In the Settings app, scroll to the PERSONAL section, then touch Language & in-
put.

4. Touch Language (the first item in the list), then select Español (España) from the
list of languages.

The emulator or device changes its language setting to Spanish and returns to the Lan-
guage & input settings, which are now displayed in Spanish.

Next, run the Welcome app from the IDE, which installs and runs the international-
ized version. Figure 2.27 shows the app running in Spanish. When the app begins exe-
cuting, Android checks the AVD’s (or device’s) language settings, determines that the
AVD (or device) is set to Spanish and uses the welcome, android_logo and deitel_logo
string resources defined in res/values-es/strings.xml in the running app. Notice,
however, that the app’s name still appears in English in the action bar at the top of the app.
This is because we did not provide a localized version of the app_name string resource in
the res/values-es/strings.xml file. Recall that when Android cannot find a localized
version of a string resource, it uses the default version in the res/values/strings.xml file.

Fig. 2.26 | Android Resources editor with the welcome string resource selected.

Resources tab shows the
localization as a flag

Localization code es corresponds to the
res folder’s values-es subfolder

Provide the translated string for the
selected resource in the Value field

M02_DEIT3397_02_SE_C02.fm Page 102 Monday, July 7, 2014 8:54 AM

2.8 Internationalizing Your App 103

Returning the AVD (or Device) to English
To return your AVD (or Device) to English:

1. Touch the home () icon on the emulator or on your device.

2. Touch the launcher () icon, then locate and touch the Settings app ()
icon—the app is now called Ajustes in Spanish.

3. Touch the item Idioma y entrada de texto to access the language settings.

4. Touch the item Idioma, then in the list of languages select English (United States).

TalkBack and Localization
TalkBack currently supports English, Spanish, Italian, French and German. If you run the
Welcome app on a device with Spanish specified as the device’s language and TalkBack en-
abled, TalkBack will speak the app’s Spanish strings as you touch each GUI component.

When you first switch your device to Spanish and enable TalkBack, Android will
automatically download the Spanish text-to-speech engine. If TalkBack does not speak the
Spanish strings, then the Spanish text-to-speech engine has not finished downloading and
installing yet. In this case, you should try executing the app again later.

Common Programming Error 2.1
Modifying the names of resources can lead to runtime errors. Android uses the default re-
source names when loading localized resources. When you create a localized resource file,
be sure to modify only the values of the resources, not their names.

Fig. 2.27 | Welcome app running in Spanish in the Nexus 4 AVD.

M02_DEIT3397_02_SE_C02.fm Page 103 Monday, July 7, 2014 8:54 AM

104 Chapter 2 Welcome App

Localization Checklist
For more information on localizing your app’s resources, be sure to check out the Android
Localization Checklist at:

2.9 Wrap-Up
In this chapter, you used the Android Developer Tools IDE to build the Welcome app that
displayed a welcome message and two images without writing any code. You created a sim-
ple GUI using the IDE’s Graphical Layout editor and configured properties of GUI com-
ponents using the Properties window.

The app displayed text in a TextView and pictures in ImageViews. You modified the
TextView from the default GUI to display the app’s text centered in the GUI, with a larger
font size and in one of the standard theme colors. You also used the Graphical Layout
editor’s Palette of GUI controls to drag and drop ImageViews onto the GUI. Following
best practices, you defined all strings and numeric values in resource files in the project’s
res folder.

You learned that Android has accessibility features to help people with various disabil-
ities use their devices. We showed how to enable Android’s TalkBack to allow a device to
speak screen text or speak text that you provide to help the user understand the purpose
and contents of a GUI component. We discussed Android’s Explore by Touch feature,
which enables the user to touch the screen to hear TalkBack speak what’s on the screen
near the touch. For the app’s ImageViews, you provided content descriptions that could
be used with TalkBack and Explore by Touch.

Finally, you learned how to use Android’s internationalization features to reach the
largest possible audience for your apps. You localized the Welcome app with Spanish
strings for the TextView’s text and the ImageViews’ accessibility strings, then tested the app
on an AVD configured for Spanish.

Android development is a combination of GUI design and Java coding. In the next
chapter, you’ll develop a simple Tip Calculator app by using the Graphical Layout editor to
develop the GUI visually and Java programming to specify the app’s behavior.

developer.android.com/distribute/googleplay/publish/localizing.html

Self-Review Exercises
2.1 Fill in the blanks in each of the following statements:

a) Android and the Google Play Store use as the app’s unique identifier, which
must remain the same through all versions of your app.

b) When designing an Android GUI, you typically want it to be so that it dis-
plays properly on various devices.

c) Resource folder names that begin with contain XML files that specify values
for arrays, colors, dimensions, strings and styles.

d) Images for the medium-density screens of older Android devices are placed in the fold-
ers and , respectively.

e) To run an app in an Android Virtual Device (AVD), right click the app’s root node in
Eclipse in the window and select Run As > Android Application.

f) enables the user to hear TalkBack speak what’s on the screen where the user
touches.

M02_DEIT3397_02_SE_C02.fm Page 104 Friday, June 20, 2014 5:46 PM

 Answers to Self-Review Exercises 105

g) Android uses a special folder-naming scheme to automatically choose the correct local-
ized resources—for example, the folder would contain a strings.xml file for
French and the folder would contain a strings.xml file for Spanish.

2.2 State whether each of the following is true or false. If false, explain why.
a) An Android app can be compiled using SDK with an API level that is lesser than the

Target SDK, provided that it supports all the APIs used in your app.
b) The layout RelativeLayout arranges components relative to one another or relative to

their parent container.
c) Android’s Explore by Touch feature enables a device to speak out the entire text on the screen.
d) The resource ID in Android is the resource’s (such as layout, image) file name without

the extension.
e) For people with visual disabilities, Android’s SpeakBack can speak screen text or text

that you provide to help the user understand the purpose of a GUI component.
f) It’s considered a best practice in Android to ensure that every GUI component can be

used with TalkBack by providing text for the Content Description property of any com-
ponent that does not display text.

Answers to Self-Review Exercises
2.1 a) package name. b) scalable. c) values. d) drawable-mdpi, drawable-ldpi. e) Project Explorer.
f) Explore by Touch. g) values-fr, values-es.

2.2 a) True. b) True. c) False. Explore By Touch enables a device to speak what’s on the screen
near the touch. d) True. e) False. The feature is named TalkBack. f) True.

Exercises
2.3 Fill in the blanks in each of the following statements:

a) The ADT’s allows you to build GUIs using drag-and-drop techniques.
b) A arranges GUI components relative to one another or relative to the lay-

out itself.
c) Eclipse IDE’s window is used to configure various options, such as the

TextView’s text, font size and font color.
d) Your project’s res folder contains three subfolders for images—drawable-hdpi (high

density), drawable-mdpi (medium density) and drawable-ldpi (low density). These
folders store images with different densities.

e) The documentation for supporting multiple screen sizes recommends that you use den-
sity-independent pixels for the dimensions of GUI components and other screen ele-
ments and for font sizes.

f) One density-independent pixel is equivalent to one pixel on a screen with 160 dpi (dots
per inch). On a screen with 240 dpi, each density-independent pixel will be scaled by a
factor of .

g) On a screen with 120 dpi, each density-independent pixel is scaled by a factor of
. So, the same component that’s 100 density-independent pixels wide will

be 75 actual pixels wide.

2.4 State whether each of the following is true or false. If false, explain why.
a) For images to render nicely, a high-pixel-density device needs lower-resolution images

than a low-pixel-density device.
b) It’s considered a good practice to “externalize” strings, string arrays, images, colors, font

sizes, dimensions and other app resources so that you, or someone else on your team,
can manage them separately from your application’s code.

M02_DEIT3397_02_SE_C02.fm Page 105 Friday, June 20, 2014 5:46 PM

106 Chapter 2 Welcome App

c) You can use the Graphical Layout editor to create a working Android app without writ-
ing any code.

2.5 (Scrapbooking App) Find open source images of any four nations of your choice. Create an
app in which you arrange these flags in a grid format. Add text that identifies each nation’s flag.
Recall that image file names must use lowercase letters only.

2.6 (Scrapbooking App with Accessibility) Using the techniques you learned in Section 2.7, en-
hance your solution to Exercise 2.5 to provide strings that can be used with Android’s TalkBack ac-
cessibility feature. If you have an Android device available to you, test the app on the device with
TalkBack enabled.

2.7 (Scrapbooking App with Internationalization) Using the techniques you learned in
Section 2.8, enhance your solution to Exercise 2.6 to define a set of strings for another spoken lan-
guage. Use an online translator service, such as translate.google.com to translate the strings and
place them in the appropriate strings.xml resource file. Use the instructions in Section 2.8 to test
the app on an AVD (or a device if you have one available to you).

M02_DEIT3397_02_SE_C02.fm Page 106 Monday, July 7, 2014 8:54 AM

3Tip Calculator App

O b j e c t i v e s
In this chapter you’ll:

■ Design a GUI using
LinearLayouts and a
GridLayout.

■ Use the IDE’s Outline
window to add GUI
components to
LinearLayouts and a
GridLayout.

■ Use TextView, EditText
and SeekBar GUI
components.

■ Use Java object-oriented
programming capabilities,
including classes, objects,
interfaces, anonymous inner
classes and inheritance to
add functionality to an
Android app.

■ Programmatically interact
with GUI components to
change the text that they
display.

■ Use event handling to
respond to user interactions
with an EditText and a
SeekBar.

■ Specify that the keypad
should always be displayed
when an app is executing.

■ Specify that an app supports
only portrait orientation.

M03_DEIT3397_02_SE_C03.fm Page 107 Tuesday, July 8, 2014 8:27 AM

108 Chapter 3 Tip Calculator App

3.1 Introduction
The Tip Calculator app (Fig. 3.1(a)) calculates and displays possible tips for a restaurant bill.
As you enter each digit of a bill amount by touching the numeric keypad, the app calculates
and displays the tip amount and total bill (bill amount + tip) for a 15% tip and a custom tip

3.1 Introduction
3.2 Test-Driving the Tip Calculator App
3.3 Technologies Overview

3.3.1 Class Activity
3.3.2 Activity Lifecycle Methods
3.3.3 Arranging Views with GridLayout

and LinearLayout
3.3.4 Creating and Customizing the GUI

with the Graphical Layout Editor and
the Outline and Properties Windows

3.3.5 Formatting Numbers as Locale-Specific
Currency and Percentage Strings

3.3.6 Implementing Interface
TextWatcher for Handling
EditText Text Changes

3.3.7 Implementing Interface OnSeekBar-
ChangeListener for Handling
SeekBar Thumb Position Changes

3.3.8 AndroidManifest.xml

3.4 Building the App’s GUI
3.4.1 GridLayout Introduction
3.4.2 Creating the TipCalculator Project
3.4.3 Changing to a GridLayout
3.4.4 Adding the TextViews, EditText,

SeekBar and LinearLayouts
3.4.5 Customizing the Views to Complete

the Design
3.5 Adding Functionality to the App
3.6 AndroidManifest.xml
3.7 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Fig. 3.1 | Entering the bill total and calculating the tip.

Move the
SeekBar thumb
to change the
custom tip
percentage

a) Initial GUI
b) GUI after user enters the amount 34.56 and
changes the custom tip percentage to 20%

Use the keypad’s
numbers to enter
the bill amount as a
whole number of
pennies—the app
will divide what you
enter by 100.0 to
calculate the bill
amount

Use the delete
button to remove
digits from right to
left

The custom tip
percentage
selected with the
SeekBar is
displayed here

M03_DEIT3397_02_SE_C03.fm Page 108 Monday, July 7, 2014 8:57 AM

3.2 Test-Driving the Tip Calculator App 109

percentage (18% by default). You can specify a custom tip percentage from 0% to 30% by
moving the SeekBar thumb—this updates the custom percentage shown and displays the
custom tip and total (Fig. 3.1(b)). We chose 18% as the default custom percentage, because
many restaurants in the United States add this tip percentage for parties of six people or
more. The keypad in Fig. 3.1 may differ based on your AVD’s or device’s Android version,
or based on whether you’ve installed and selected a custom keyboard on your device.

You’ll begin by test-driving the app—you’ll use it to calculate 15% and custom tips.
Then we’ll overview the technologies you’ll use to create the app. You’ll build the app’s
GUI using the Android Developer Tools IDE’s Graphical Layout editor and the Outline
window. Finally, we’ll present the complete Java code for the app and do a detailed code
walkthrough. We provide online an Android Studio version of Sections 3.2 and 3.4 at
http://www.deitel.com/books/AndroidHTP2.

3.2 Test-Driving the Tip Calculator App
Open and Run the App
Open the Android Developer Tools IDE and import the Tip Calculator app project. Per-
form the following steps:

1. Launching the Nexus 4 AVD. For this test-drive, we’ll use the Nexus 4 smart-
phone AVD that you configured in the Before You Begin section. To launch the
Nexus 4 AVD, select Window > Android Virtual Device Manager to display the An-
droid Virtual Device Manager dialog. Select the Nexus 4 AVD and click Start…,
then click the Launch button in the Launch Options dialog that appears.

2. Opening the Import Dialog. Select File > Import… to open the Import dialog.

3. Importing the Tip Calculator app’s project. Expand the General node, select Existing
Projects into Workspace, then click Next > to proceed to the Import Projects step.
Ensure that Select root directory is selected, then click Browse…. In the Browse For
Folder dialog, locate the TipCalculator folder in the book’s examples folder, select
it and click OK. Ensure that Copy projects into workspace is not selected. Click Fin-
ish to import the project. It now appears in the Package Explorer window.

4. Launching the Tip Calculator app. Right click the TipCalculator project in the
Package Explorer window, then select Run As > Android Application to execute Tip
Calculator in the AVD.

Entering a Bill Total
Using the numeric keypad, enter 34.56. Just type 3456—the app will position the cents
to the right of the decimal point. If you make a mistake, press the delete () button to
erase one rightmost digit at a time. The TextViews under the 15% and the custom tip per-
centage (18% by default) labels show the tip amount and the total bill for these tip per-
centages. All the Tip and Total TextViews update each time you enter or delete a digit.

Selecting a Custom Tip Percentage
Use the Seekbar to specify a custom tip percentage. Drag the Seekbar’s thumb until the
custom percentage reads 20% (Fig. 3.1(b)). As you drag the thumb, the tip and total for
this custom tip percentage update continuously. By default, the Seekbar allows you to se-
lect values from 0 to 100, but we specified a maximum value of 30 for this app.

M03_DEIT3397_02_SE_C03.fm Page 109 Monday, July 7, 2014 8:57 AM

110 Chapter 3 Tip Calculator App

3.3 Technologies Overview
This section introduces the IDE features and Android technologies you’ll use to build the
Tip Calculator app. We assume that you’re already familiar with Java object-oriented pro-
gramming—if you’re not, the appendices contain an introduction to Java. You’ll:

• use various Android classes to create objects

• call methods on Android classes and objects

• define and call your own methods

• use inheritance to create a subclass of Android’s Activity class that defines the
Tip Calculator’s functionality

• use event handling, anonymous inner classes and interfaces to process the user’s
GUI interactions

3.3.1 Class Activity
Unlike many Java apps, Android apps don’t have a main method. Instead, they have four types
of executable components—activities, services, content providers and broadcast receivers. In this
chapter, we’ll discuss activities, which are defined as subclasses of Activity (package an-
droid.app). Users interact with an Activity through views—that is, GUI components. Be-
fore Android 3.0, a separate Activity was typically associated with each screen of an app. As
you’ll see, starting in Chapter 5, an Activity can manage multiple Fragments. On a phone,
each Fragment typically occupies the entire screen and the Activity switches between the
Fragments based on user interactions. On a tablet, activities often display multiple Fragments
per screen to take better advantage of the larger screen size.

3.3.2 Activity Lifecycle Methods
Throughout its life, an Activity can be in one of several states—active (i.e., running), paused
or stopped. The Activity transitions between these states in response to various events:

• An active Activity is visible on the screen and “has the focus”—that is, it’s in the
foreground. This is the Activity the user is interacting with.

• A paused Activity is visible on the screen but does not have the focus—such as
when an alert dialog is displayed.

• A stopped activity is not visible on the screen and is likely to be killed by the system
when its memory is needed. An Activity is stopped when another Activity be-
comes active.

As an Activity transitions among these states, the Android runtime calls various
Activity lifecycle methods—all of which are defined in the Activity class

You’ll override the onCreate method in every activity. This method is called by the Android
runtime when an Activity is starting—that is, when its GUI is about to be displayed so
that the user can interact with the Activity. Other lifecycle methods include onStart,
onPause, onRestart, onResume, onStop and onDestroy. We’ll discuss most of these in
later chapters. Each Activity lifecycle method you override must call the superclass’s
version; otherwise, an exception will occur. This is required because each lifecycle method

http://developer.android.com/reference/android/app/Activity.html

M03_DEIT3397_02_SE_C03.fm Page 110 Monday, July 7, 2014 8:57 AM

3.3 Technologies Overview 111

in superclass Activity contains code that must execute in addition to the code you define in
your overridden lifecycle methods.

3.3.3 Arranging Views with LinearLayout and GridLayout
Recall that layouts arrange views in a GUI. A LinearLayout (package android.widget)
arranges views either horizontally (the default) or vertically and can size its views propor-
tionally. We’ll use this to arrange two TextViews horizontally and ensure that each uses
half of the available horizontal space.

GridLayout (package android.widget) was introduced in Android 4.0 as a new layout
for arranging views into cells in a rectangular grid. Cells can occupy multiple rows and col-
umns, allowing for complex layouts. In many cases, GridLayout can be used to replace the
older, and sometimes less efficient TableLayout, which arranges views into rows and col-
umns where each row is typically defined as a TableRow and the number of columns is
defined by the TableRow containing the most cells. Normally, GridLayout requires API level
14 or higher. However, the Android Support Library provides alternate versions of Grid-
Layout and many other GUI features so that you can use them in older Android versions.
For more information on this library and how to use it in your apps, visit:

A GridLayout cannot specify within a given row that the horizontal space should be
allocated proportionally between multiple views. For this reason, several rows in this app’s
GUI will place two TextViews in a horizontal LinearLayout. This will enable you to place
two TextViews in the same GridLayout cell and divide the cell’s space evenly between
them. We’ll cover more layouts and views in later chapters—for a complete list, visit:

3.3.4 Creating and Customizing the GUI with the Graphical Layout
Editor and the Outline and Properties Windows
You’ll create TextViews, an EditText and a SeekBar using the IDE’s Graphical Layout ed-
itor (that you used in Chapter 2) and Outline window, then customize them with the
IDE’s Properties window—which is displayed at the bottom of the Outline window when
you’re editing a GUI in the Graphical Layout editor. You’ll do this without directly manip-
ulating the XML stored in the files of the project’s res folder.

An EditText—often called a text box or text field in other GUI technologies—is a sub-
class of TextView (presented in Chapter 2) that can display text and accept text input from
the user. You’ll specify an EditText for numeric input, allow users to enter only digits and
restrict the maximum number of digits that can be entered.

A SeekBar—often called a slider in other GUI technologies—represents an integer in
the range 0–100 by default and allows the user to select a number in that range by moving
the SeekBar’s thumb. You’ll customize the SeekBar so the user can choose a custom tip
percentage only from the more limited range 0 to 30.

In the Properties window, a view’s most commonly customized properties typically
appear at the top with their names displayed in bold (Fig. 3.2). All of a view’s properties
are also organized into categories within the Properties window. For example, class Text-
View inherits many properties from class View, so the Properties window displays a Text-

http://developer.android.com/tools/support-library/index.html

http://developer.android.com/reference/android/widget/
 package-summary.html

M03_DEIT3397_02_SE_C03.fm Page 111 Monday, July 7, 2014 8:57 AM

112 Chapter 3 Tip Calculator App

View category with TextView-specific properties, followed by a View category with
properties that are inherited from class View.

3.3.5 Formatting Numbers as Locale-Specific Currency and Percentage
Strings
You’ll use class NumberFormat (package java.text) to create locale-specific currency and
percentage strings—an important part of internationalization. You could also add accessi-
bility strings and internationalize the app using the techniques you learned in
Sections 2.7–2.8, though we did not do so in this app.

3.3.6 Implementing Interface TextWatcher for Handling EditText
Text Changes
You’ll use an anonymous inner class to implement the TextWatcher interface (from package
android.text) to respond to events when the user changes the text in this app’s EditText.
In particular, you’ll use method onTextChanged to display the currency-formatted bill
amount and to calculate the tip and total as the user enters each digit.

3.3.7 Implementing Interface OnSeekBarChangeListener for
Handling SeekBar Thumb Position Changes
You’ll implement the SeekBar.OnSeekBarChangeListener interface (from package an-
droid.widget) to respond to the user moving the SeekBar’s thumb. In particular, you’ll
use method onProgressChanged to display the custom tip percentage and to calculate the
custom tip and total as the user moves the SeekBar’s thumb.

Fig. 3.2 | Properties window showing a TextView’s most commonly customized
properties.

Most commonly
customized
TextView

properties You can click to
expand a category or

 to collapse an
expanded category

M03_DEIT3397_02_SE_C03.fm Page 112 Monday, July 7, 2014 8:57 AM

3.4 Building the App’s GUI 113

3.3.8 AndroidManifest.xml
The AndroidManifest.xml file is created by the IDE when you create a new app project.
This file contains many of the settings that you specify in the New Android Application di-
alog, such as the app’s name, package name, target and minimum SDKs, Activity
name(s), theme and more. You’ll use the IDE’s Android Manifest editor to add a new set-
ting to the manifest that forces the soft keyboard to remain on the screen. You’ll also specify
that the app supports only portrait orientation—that is, the device’s longer side is vertical.

3.4 Building the App’s GUI
In this section, we’ll show the precise steps for building the Tip Calculator’s GUI. The GUI
will not look like the one shown in Fig. 3.1 until you’ve completed the steps. As you pro-
cede through this section, the number of details presented may seem large, but they’re re-
petitive and you’ll get used to them as you use the IDE.

3.4.1 GridLayout Introduction
This app uses a GridLayout (Fig. 3.3) to arrange views into five rows and two columns.
Each cell in a GridLayout can be empty or can hold one or more views, including layouts
that contain other views. Views can span multiple rows or columns, though we did not use
that capability in this GUI. You can specify a GridLayout’s number of rows and columns
in the Properties window.

Each row’s height is determined by the tallest view in that row. Similarly, the width of
a column is defined by the widest view in that column. By default, views are added to a
row from left to right. As you’ll see, you can specify the exact row and column in which a
view is to be placed. We’ll discuss other GridLayout features as we present the GUI-
building steps. To learn more about class GridLayout, visit:

Fig. 3.3 | Tip Calculator GUI’s GridLayout labeled by its rows and columns.

http://developer.android.com/reference/android/widget/GridLayout.html

column 0 column 1

row 0

row 1

row 2

row 3

row 4

In each of these three
rows, the second column
(i.e., column 1) contains
a horizontal
LinearLayout with
two TextViews

M03_DEIT3397_02_SE_C03.fm Page 113 Monday, July 7, 2014 8:57 AM

114 Chapter 3 Tip Calculator App

Id Property Values for This App’s Views
Figure 3.4 shows the views’ Id property values. For clarity, our naming convention is to
use the view’s class name in the view’s Id property and Java variable name.

In the right column of the first row, there are actually two components in the same
grid cell—the amountDisplayTextView is hiding the amountEditText that receives the
user input. As you’ll soon see, we restrict the user’s input to integer digits so that the user
cannot enter invalid input. However, we want the user to see the bill amount as a currency
value. As the user enters each digit, we divide the amount by 100.0 and display the cur-
rency-formatted result in the amountDisplayTextView. In the U.S. locale, if the user enters
3456, as each digit is entered the amountDisplayTextView will show the values $0.03,
$0.34, $3.45 and $34.56, respectively.

LinearLayout Id Property Values
Figure 3.5 shows the Ids of the three horizontal LinearLayouts in the GridLayout’s right
column.

Fig. 3.4 | Tip Calculator GUI’s components labeled with their Id property values.

Fig. 3.5 | Tip Calculator GUI’s LinearLayouts with their Id property values.

amountTextView
customPercentTextView

percent15TextView

tipTextView

totalTextView

customTipSeekBar

amountDisplayTextView (behind this is the amountEditText)

percentCustomTextView

tip15TextView

tipCustomTextView

total15TextView

totalCustomTextView

percentLinearLayout

tipLinearLayout

totalLinearLayout

M03_DEIT3397_02_SE_C03.fm Page 114 Monday, July 7, 2014 8:57 AM

3.4 Building the App’s GUI 115

3.4.2 Creating the TipCalculator Project
The Android Developer Tools IDE allows only one project with a given name per work-
space, so before you create the new project, delete the TipCalculator project that you test-
drove in Section 3.2. To do so, right click it and select Delete. In the dialog that appears,
ensure that Delete project contents on disk is not selected, then click OK. This removes the
project from the workspace, but leaves the project’s folder and files on disk in case you’d
like to look at our original app again later.

Creating a New Blank App Project
Next, create a new Android Application Project. Specify the following values in the New An-
droid Project dialog’s first New Android Application step, then press Next >:

• Application Name: Tip Calculator

• Project Name: TipCalculator

• Package Name: com.deitel.tipcalculator

• Minimum Required SDK: API18: Android 4.3

• Target SDK: API19: Android 4.4

• Compile With: API19: Android 4.4

• Theme: Holo Light with Dark Action Bar

• Create Activity: TipCalculator

• Build Target: Ensure that Android 4.3 is checked

In the New Android Project dialog’s second New Android Application step, leave the default
settings, then press Next >. In the Configure Launcher Icon step, click the Browse… button,
select the DeitelGreen.png app icon image (provided in the images folder with the book’s
examples), click the Open button, then press Next >. In the Create Activity step, select Blank
Activity, then press Next >. In the Blank Activity step, leave the default settings, then press Fin-
ish to create the project. Close MainActivity.java and fragment_main.xml, then open
activity_main.xml. In the Graphical Layout editor, select Nexus 4 from the screen-type
drop-down list (as in Fig. 2.12). Once again, we’ll use this device as the basis for our design.

3.4.3 Changing to a GridLayout
The default layout in activity_main.xml is a FrameLayout. Here, you’ll change that to a
GridLayout. Right click the RelativeLayout in the Outline window and select Change Lay-
out…. In the Change Layout dialog, select GridLayout and click OK. The IDE changes the
layout and sets its Id to GridLayout1. We changed this to gridLayout using the Id field in
the Properties window. By default, the GridLayout’s Orientation property is set to horizontal,
indicating that its contents will be laid out row-by-row. Ensure that the GridLayout’s Pad-
ding Left and Padding Right properties are set to activity_horizontal_margin and that the
Padding Top and Padding Bottom properties are set to activity_vertical_margin.

Specifying Two Columns and Default Margins for the GridLayout
Recall that the GUI in Fig. 3.3 consists of two columns. To specify this, select gridLayout in
the Outline window, then change its Column Count property to 2 (in the Properties window’s
GridLayout group). By default, there are no margins—spaces that separate views—around
a GridLayout’s cells. Set the GridLayout’s Use Default Margins property to true to

M03_DEIT3397_02_SE_C03.fm Page 115 Monday, July 7, 2014 8:57 AM

116 Chapter 3 Tip Calculator App

indicate that the GridLayout should place margins around its cells. By default, the Grid-
Layout uses the recommended gap between views (8dp), as specified at

3.4.4 Adding the TextViews, EditText, SeekBar and
LinearLayouts
You’ll now build the GUI in Fig. 3.3. You’ll start with the basic layout and views in this
section. In Section 3.4.5, you’ll customize the views’ properties to complete the design. As
you add each view to the GUI, immediately set its Id property using the names in
Figs. 3.4–3.5. You can change the selected view’s Id via the Properties window or by right
clicking the view (in the Graphical Layout editor or Outline window), selecting Edit ID… and
changing the Id in the Rename Resource dialog that appears.

In the following steps, you’ll use the Outline window to add views to the GridLayout.
When working with layouts, it can be difficult to see the layout’s nested structure and to
place views in the correct locations by dragging them onto the Graphical Layout editor
window. The Outline window makes these tasks easier because it shows the GUI’s nested
structure. Perform the following steps in the exact order specified—otherwise, the views
will not appear in the correct order in each row. If this happens, you can reorder views by
dragging them in the Outline window.

Step 1: Adding Views to the First Row
The first row consists of the amountTextView in the first column and the amountEditText
behind the amountDisplayTextView in the second column. Each time you drop a view or
layout onto the gridLayout in the Outline window, the view is placed in the layout’s next
open cell, unless you specify otherwise by setting the view’s Row and Column properties.
You’ll do that in this step so that the amountEditText and amountDisplayTextView are
placed in the same cell.

All of the TextViews in this app use the medium-sized font from the app’s theme. The
Graphical Layout editor’s Palette provides preconfigured TextViews named Large, Medium
and Small (in the Form Widgets section) to represent the theme’s corresponding text sizes.
In each case, the IDE configures the TextView’s Text Appearance property accordingly.
Perform the following tasks to add the two TextViews and the EditText:

1. Drag a Medium TextView from the Palette’s Form Widgets section and drop it on
the gridLayout in the Outline window. The IDE creates a new TextView named
textView1 and nests it in the gridLayout node. The default text "Medium Text"
appears in the Graphical Layout editor. Change the TextView’s Id to amountText-
View. You’ll change its text in Step 6 (Section 3.4.5).

2. This app allows you to enter only non-negative integers, which the app divides by
100.0 to display the bill amount. The Palette’s Text Fields section provides many
preconfigured EditTexts for various forms of input (e.g., numbers, times, dates,
addresses and phone numbers). When the user interacts with an EditText, an ap-
propriate keyboard is displayed based on the EditText’s input type. When you
hover over an EditText in the Palette, a tooltip indicates the input type. From the
Palette’s Text Fields section, drag a Number EditText (displayed with the number
42 on it) and drop it on the gridLayout node in the Outline window. Change the

http://developer.android.com/design/style/metrics-grids.html

M03_DEIT3397_02_SE_C03.fm Page 116 Monday, July 7, 2014 8:57 AM

3.4 Building the App’s GUI 117

EditText’s Id to amountEditText. The EditText is placed in the second column
of the GridLayout’s first row.

3. Drag another Medium TextView onto the gridLayout node in the Outline win-
dow and change the Id to amountDisplayTextView. The new TextView is initially
placed in the first column of the GridLayout’s second row. To place it in the second
column of the GridLayout’s first row, set this TextView’s Row and Column prop-
erties (located in the Properties window’s Layout Parameters section) to the values
0 and 1, respectively.

Step 2: Adding Views to the Second Row
Next, you’ll add a TextView and SeekBar to the GridLayout. To do so:

1. Drag a Medium TextView (customPercentTextView) from the Palette’s Form
Widgets section onto the gridLayout node in the Outline window.

2. Drag a SeekBar (customTipSeekBar) from the Palette’s Form Widgets section
onto the gridLayout node in the Outline window.

Step 3: Adding Views to the Third Row
Next, you’ll add a LinearLayout containing two TextViews to the GridLayout. To do so:

1. From the Palette’s Layouts section, drag a Linear Layout (Horizontal) (percent-
LinearLayout) onto the gridLayout node in the Outline window.

2. Drag a Medium TextView (percent15TextView) onto the percentLinearLayout
node in the Outline window. This nests the new TextView in the LinearLayout.

3. Drag another Medium TextView (percentCustomTextView) onto the percent-
LinearLayout node in the Outline window.

4. The percentLinearLayout and its two nested TextViews should be placed in the
second column of the GridLayout. To do so, select the percentLinearLayout in
the Outline window, then set its Column property to 1.

Step 4: Adding Views to the Fourth Row
Next, you’ll add a TextView and a LinearLayout containing two more TextViews to the
GridLayout. To do so:

1. Drag a Medium TextView (tipTextView) onto the gridLayout node.

2. Drag a Linear Layout (Horizontal) (tipLinearLayout) onto the gridLayout node.

3. Drag two Medium TextViews (tip15TextView and tipCustomTextView) onto the
tipLinearLayout node.

Step 5: Adding Views to the Fifth Row
To create the last row of the GUI, repeat Step 4, using the Ids totalTextView, total-
LinearLayout, total15TextView and totalCustomTextView.

Reviewing the Layout So Far
The GUI and Outline window should now appear as shown in Fig. 3.6. The warning sym-
bols shown in the Graphical Layout editor and the Outline window will go away as you
complete the GUI design in Section 3.4.5.

M03_DEIT3397_02_SE_C03.fm Page 117 Monday, July 7, 2014 8:57 AM

118 Chapter 3 Tip Calculator App

3.4.5 Customizing the Views to Complete the Design
You’ll now complete the app’s design by customizing the views’ properties and creating
several string and dimension resources. As you learned in Section 2.5, literal string values
should be placed in the strings.xml resource file. Similarly, literal numeric values that
specify view dimensions (e.g., widths, heights and spacing) should be placed in the di-
mens.xml resource file.

Step 6: Specifying Literal Text
Specify the literal text for the amountTextView, customPercentTextView, percent-
15TextView, percentCustomTextView, tipTextView and totalTextView:

1. Select the amountTextView in the Outline window.

2. In the Properties window, click the ellipsis button next to the Text property.

3. In the Resource Chooser Dialog, click New String….

4. In the Create New Android String dialog, specify Amount in the String field and
amount in the New R.string field, then click OK.

5. In the Resource Chooser dialog, click OK to set the amountTextView’s Text prop-
erty to the string resource identified as amount.

Repeat the preceding tasks for the other TextViews using the values shown in Fig. 3.7.

Fig. 3.6 | The GUI and the IDE’s Outline window after adding all the views to the GridLayout.

View String New R.string

customPercentTextView Custom % custom_tip_percentage

percent15TextView 15% fifteen_percent

Fig. 3.7 | String resource values and resource IDs. (Part 1 of 2.)

a) GUI design so far b) Outline window showing Tip Calculator components

M03_DEIT3397_02_SE_C03.fm Page 118 Monday, July 7, 2014 8:57 AM

3.4 Building the App’s GUI 119

Step 7: Right Aligning the TextViews in the Left Column
In Fig. 3.3, each of the left column’s TextViews is right aligned. For the amountTextView,
customPercentTextView, tipTextView and totalTextView, set the layout Gravity prop-
erty to right—located in the Layout Parameters section in the Properties window.

Step 8: Configuring the amountTextView’s Label For Property
Generally, each EditText should have a descriptive TextView that helps the user under-
stand the EditText’s purpose (also helpful for accessibility)—otherwise, Android Lint is-
sues a warning. To fix this, you set the TextView’s Label For property to the Id of the
associated EditText. Select the amountTextView and set its Label For property (in the
Properties window’s View section) to

The + is required because the TextView is defined before the EditText in the GUI, so the
EditText does not yet exist when Android converts the layout’s XML into the GUI.

Step 9: Configuring the amountEditText
In the final app, the amountEditText is hidden behind the amountDisplayTextView and
is configured to allow only digits to be entered by the user. Select the amountEditText and
set the following properties:

1. In the Properties window’s Layout Parameters section, set the Width and Height
to wrap_content. This indicates that the EditText should be just large enough
to fit its content, including any padding.

2. Remove the layout Gravity value fill_horizontal, leaving the property’s value
blank. We’ll discuss fill_horizontal in the next step.

3. Remove the Ems property’s value, which indicates the EditText’s width, mea-
sured in uppercase M characters of the view’s font. In our GridLayout, this causes
the second column to be too narrow, so we removed this default setting.

4. In the Properties window’s TextView section, set Digits to 0123456789—this al-
lows only digits to be entered, even though the numeric keypad contains minus
(-), comma (,), period (.) and space buttons. By default, the Digits property is
not displayed in the Properties window, because it’s considered to be an advanced
property. To display it, click the Show Advanced Properties () toggle button
at the top of the Properties window.

5. We restricted the bill amount to a maximum of six digits—so the largest support-
ed bill amount is 9999.99. In the Properties window’s TextView section, set the
Max Length property to 6.

percentCustomTextView 18% eighteen_percent

tipTextView Tip tip

totalTextView Total total

@+id/amountEditText

View String New R.string

Fig. 3.7 | String resource values and resource IDs. (Part 2 of 2.)

M03_DEIT3397_02_SE_C03.fm Page 119 Monday, July 7, 2014 8:57 AM

120 Chapter 3 Tip Calculator App

Step 10: Configuring the amountDisplayTextView
To complete the formatting of the amountDisplayTextView, select it and set the following
properties:

1. In the Properties window’s Layout Parameters section, set the Width and Height
to wrap_content to indicate that the TextView should be large enough to fit its
content.

2. Remove the Text property’s value—we’ll programmatically display text here.

3. In the Properties window’s Layout Parameters section, set the layout Gravity to
fill_horizontal. This indicates that the TextView should occupy all remaining
horizontal space in this GridLayout row.

4. In the View section, set the Background to @android:color/holo_blue_bright.
This is one of several predefined colors (each starts with @android:color) in An-
droid’s Holo theme. As you start typing the Background property’s value, a drop-
down list of the theme’s available colors is displayed. You can also use any custom
color created from a combination of red, green and blue components called RGB
values—each is an integer in the range 0–255 that defines the amount of red, green
and blue in the color, respectively. Custom colors are defined in hexadecimal (base
16) format, so the RGB components are values in the range 00–FF. Android also
supports alpha (transparency) values in the range 0 (completely transparent) to 255
(completely opaque). To use alpha, you specify the color in the format #AARRGGBB,
where the first two hexadecimal digits represent the alpha value. If both digits of
each color component are the same, you can use the abbreviated formats #RGB or
#ARGB. For example, #9AC is treated as #99AACC and #F9AC is treated as #FF99AACC.

5. Finally, you’ll add some padding around the TextView. To do so, you’ll create a
new dimension resource named textview_padding, which you’ll use several times
in the GUI. A view’s Padding property specifies space on all sides of the views’s
content. In the Properties window’s View section, click the Padding property’s el-
lipsis button. Click New Dimension… to create a new dimension resource. Specify
textview_padding for the Name and 8dp for the Value and click OK, then select
your new dimension resource and click OK.

Step 11: Configuring the customPercentTextView
Notice that the customPercentTextView is aligned with the top of the customTipSeek-
Bar’s thumb. This looks better if it’s vertically centered. To do this, in the Properties win-
dow’s Layout Parameters section, modify the Gravity value from right to

The vertical bar (|) character is used to separate multiple Gravity values—in this case indi-
cating that the TextView should be right aligned and centered vertically within the grid cell.
Also set the customPercentTextView’s Width and Height properties to wrap_content.

Step 12: Configuring the customTipSeekBar
By default, a SeekBar’s range is 0 to 100 and its current value is indicated by its Progress
property. This app allows custom tip percentages from 0 to 30 and specifies a default of
18. Set the SeekBar’s Max property to 30 and the Progress property to 18. Also, set the
Width and Height to wrap_content.

right|center_vertical

M03_DEIT3397_02_SE_C03.fm Page 120 Monday, July 7, 2014 8:57 AM

3.4 Building the App’s GUI 121

Step 13: Configuring the percent15TextView and percentCustomTextView
Recall that GridLayout does not allow you to specify how a view should be sized relative
to other views in a given row. This is why we placed the percent15TextView and per-
centCustomTextView in a LinearLayout, which does allow proportional sizing. A view’s
layout Weight (in certain layouts, such as LinearLayout) specifies the view’s relative im-
portance with respect to other views in the layout. By default, all views have a Weight of 0.

In this layout, we set Weight to 1 for percent15TextView and percentCustomText-
View—this indicates that they have equal importance, so they should be sized equally. By
default, when we added the percentLinearLayout to the GridLayout, its layout Gravity
property was set to fill_horizontal, so the layout occupies the remaining space in the
third row. When the LinearLayout is stretched to fill the rest of the row, the TextViews
each occupy half of the LinearLayout’s width.

We also wanted each TextView to center its text. To do this, in the Properties
window’s TextView section, set the Gravity property to center. This specifies the Text-
View’s text alignment, whereas the layout Gravity property specifies how a view aligns with
respect to the layout.

Step 14: Configuring the tip15TextView, tipCustomTextView, total15TextView
and totalCustomTextView
To finalize these four TextViews, perform the following tasks on each:

1. Select the TextView.

2. Delete its Text value—we’ll set this programmatically.

3. Set the Background to @android:color/holo_orange_light.

4. Set the layout Gravity to center.

5. Set the layout Weight to 1.

6. Set the layout Width to 0dp—this allows the layout to use the Weight to determine
the view’s width.

7. Set the TextView Gravity to center.

8. Set the TextView Padding to @dimen/textview_padding (the dimension resource
you created in a previous step).

Notice that there’s no horizontal space between the TextViews in the tipLinearLayout and
totalLinearLayout. To fix this, you’ll specify an 8dp right margin for the tip15TextView
and total15TextView. In the Properties window’s Layout Parameters section, expand the
Margin section, then set the Right margin to 8dp by creating a new dimension resource named
textview_margin. Next, use this resource to set the total15TextView’s Right margin.

Step 15: Vertically Centering the tipTextView and totalTextView
To vertically center the tipTextView and totalTextView with the other views in their re-
spective rows, modify their layout Gravity properties from right to

When you do this for the totalTextView, the GridLayout centers this component verti-
cally in the remaining space from the fifth row to the bottom of the screen. To fix this problem,
drag a Space view (in the Palette’s Layout section) onto the gridLayout node in the Outline

right|center_vertical

M03_DEIT3397_02_SE_C03.fm Page 121 Monday, July 7, 2014 8:57 AM

122 Chapter 3 Tip Calculator App

window. This creates a sixth row that occupies the rest of the screen. As its name implies,
a Space view occupies space in a GUI. The GUI should now appear as in Fig. 3.8.

3.5 Adding Functionality to the App
Class MainActivity (Figs. 3.9–3.16) implements the Tip Calculator app’s functionality. It
calculates the 15% and custom percentage tips and total bill amounts, and displays them in
locale-specific currency format. To view the file, open src/com.deitel/tipcalculator and
double clck MainActivity.java. You’ll need to enter most of the code in Figs. 3.9–3.16.

The package and import Statements
Figure 3.9 shows the package statement and import statements in MainActivity.java.
The package statement in line 3 was inserted when you created the project. When you
open a Java file in the IDE, the import statements are collapsed—one is displayed with a

 to its left. You can click the to see the complete list of import statements.

Lines 5–14 import the classes and interfaces the app uses:

• Class NumberFormat of package java.text (line 5) provides numeric formatting
capabilities, such as locale-specific currency and percentage formats.

Fig. 3.8 | Final GUI design.

1 // MainActivity.java
2 // Calculates bills using 15% and custom percentage tips.
3 package com.deitel.tipcalculator;
4
5 import java.text.NumberFormat; // for currency formatting
6
7 import android.app.Activity; // base class for activities
8 import android.os.Bundle; // for saving state information
9 import android.text.Editable; // for EditText event handling

10 import android.text.TextWatcher; // EditText listener
11 import android.widget.EditText; // for bill amount input
12 import android.widget.SeekBar; // for changing custom tip percentage
13 import android.widget.SeekBar.OnSeekBarChangeListener; // SeekBar listener
14 import android.widget.TextView; // for displaying text
15

Fig. 3.9 | MainActivity’s package and import statements.

M03_DEIT3397_02_SE_C03.fm Page 122 Monday, July 7, 2014 8:57 AM

3.5 Adding Functionality to the App 123

• Class Activity of package android.app (line 7) provides the basic lifecycle meth-
ods of an app—we’ll discuss these shortly.

• Class Bundle of package android.os (line 8) represents an app’s state information.
Android gives an app the opportunity to save its state before another app appears
on the screen. This might occur, for example, when the user launches another app
or receives a phone call. The app that’s currently on the screen at a given time is in
the foreground (the user can interact with it, and the app consumes the CPU) and
all other apps are in the background (the user cannot interact with them, and
they’re typically not consuming the CPU). When another app comes into the
foreground, the app that was previously in the foreground is given the opportu-
nity to save its state as it’s sent to the background.

• Interface Editable of package android.text (line 9) allows you to modify the
content and markup of text in a GUI.

• You implement interface TextWatcher of package android.text (line 10) to re-
spond to events when the user changes the text in an EditText.

• Package android.widget (lines 11–14) contains the widgets (i.e., views) and lay-
outs that are used in Android GUIs. This app uses EditText (line 11), SeekBar
(line 12) and TextView (line 14) widgets.

• You implement interface SeekBar.OnSeekBarChangeListener of package an-
droid.widget (line 13) to respond to the user moving the SeekBar’s thumb.

As you write code with various classes and interfaces, you can use the IDE’s Source >
Organize Imports command to let the IDE insert the import statements for you. For cases
in which the same class or interface name appears in more than one package, the IDE will
let you select the appropriate import statement.

Tip Calculator App Activity and the Activity Lifecycle
Class MainActivity (Figs. 3.10–3.16) is the Tip Calculator app’s Activity subclass. When
you created the TipCalculator project, the IDE generated this class as a subclass of Ac-
tivity and provided an override of class Activity’s inherited onCreate method
(Fig. 3.11). Every Activity subclass must override this method. The default code for class
MainActivity also included an onCreateOptionsMenu method, which we removed be-
cause it’s not used in this app. We’ll discuss onCreate shortly.

Class Variables and Instance Variables
Lines 20–32 of Fig. 3.11 declare class MainActivity’s variables. The NumberFormat ob-
jects (lines 20–23) are used to format currency values and percentages, respectively. Num-
berFormat static method getCurrencyInstance returns a NumberFormat object that
formats values as currency using the device’s default locale. Similarly, static method get-
PercentInstance formats values as percentages using the device’s default locale.

16 // MainActivity class for the Tip Calculator app
17 public class MainActivity
18 {

Fig. 3.10 | Class MainActivity is a subclass of Activity.

extends Activity

M03_DEIT3397_02_SE_C03.fm Page 123 Monday, July 7, 2014 8:57 AM

124 Chapter 3 Tip Calculator App

The bill amount entered by the user into amountEditText will be read and stored as
a double in billAmount (line 25). The custom tip percentage (an integer in the range
0–30) that the user sets by moving the Seekbar thumb will be multiplied by 0.01 to create
a double for use in calculations, then stored in customPercent (line 26). For example, if
you select 25 with the SeekBar, customPercent will store 0.25, so the app will multiply
the bill amount by 0.25 to calculate the 25% tip.

Line 27 declares the TextView that displays the currency-formatted bill amount. Line
28 declares the TextView that displays the custom tip percentage based on the SeekBar
thumb’s position (see the 18% in Fig. 3.1(a)). The variables in line 29–32 will refer to the
TextViews in which the app displays the calculated tips and totals.

Overriding Method onCreate of Class Activity
The onCreate method (Fig. 3.12)—which is auto-generated with lines 38–39 when you
create the app’s project—is called by the system when an Activity is started. Method on-
Create typically initializes the Activity’s instance variables and views. This method
should be as simple as possible so that the app loads quickly. In fact, if the app takes longer
than five seconds to load, the operating system will display an ANR (Application Not Re-
sponding) dialog—giving the user the option to forcibly terminate the app. You’ll learn
how to prevent this problem in Chapter 8.

19 // currency and percent formatters
20 private static final NumberFormat currencyFormat =
21 NumberFormat.getCurrencyInstance();
22 private static final NumberFormat percentFormat =
23 NumberFormat.getPercentInstance();
24
25 private double billAmount = 0.0; // bill amount entered by the user
26 private double customPercent = 0.18; // initial custom tip percentage
27 private TextView amountDisplayTextView; // shows formatted bill amount
28 private TextView percentCustomTextView; // shows custom tip percentage
29 private TextView tip15TextView; // shows 15% tip
30 private TextView total15TextView; // shows total with 15% tip
31 private TextView tipCustomTextView; // shows custom tip amount
32 private TextView totalCustomTextView; // shows total with custom tip
33

Fig. 3.11 | MainActivity class’s instance variables.

34 // called when the activity is first created
35
36
37 {
38 super.onCreate(savedInstanceState); // call superclass's version
39
40

Fig. 3.12 | Overriding Activity method onCreate. (Part 1 of 2.)

@Override
protected void onCreate(Bundle savedInstanceState)

setContentView(R.layout.activity_main); // inflate the GUI

M03_DEIT3397_02_SE_C03.fm Page 124 Monday, July 7, 2014 8:57 AM

3.5 Adding Functionality to the App 125

onCreate’s Bundle Parameter
During the app’s execution, the user could change the device’s configuration by rotating the
device or sliding out a hard keyboard. For a good experience, the app should continue operat-
ing smoothly through such configuration changes. When the system calls onCreate, it passes
a Bundle argument containing the Activity’s saved state, if any. Typically, you save state in
Activity methods onPause or onSaveInstanceState (demonstrated in later apps). Line 38
calls the superclass’s onCreate method, which is required when overriding onCreate.

Generated R Class Contains Resource IDs
As you build your app’s GUI and add resources (such as strings in the strings.xml file
or views in the activity_main.xml file) to your app, the IDE generates a class named R
that contains nested classes representing each type of resource in your project’s res folder.
You can find this class in your project’s gen folder, which contains generated source-code
files. The nested classes are declared static, so that you can access them in your code with
R.ClassName. Within class R’s nested classes, the IDE creates static final int constants
that enable you to refer to your app’s resources programmatically from your code (as we’ll
discuss momentarily). Some of the nested classes in class R include:

• class drawable—contains constants for any drawable items, such as images, that
you put in the various drawable folders in your app’s res folder

41 // get references to the TextViews
42 // that MainActivity interacts with programmatically
43
44
45 percentCustomTextView =
46 (TextView) findViewById(R.id.percentCustomTextView);
47 tip15TextView = (TextView) findViewById(R.id.tip15TextView);
48 total15TextView = (TextView) findViewById(R.id.total15TextView);
49 tipCustomTextView = (TextView) findViewById(R.id.tipCustomTextView);
50 totalCustomTextView =
51 (TextView) findViewById(R.id.totalCustomTextView);
52
53 // update GUI based on billAmount and customPercent
54 amountDisplayTextView.setText(
55 currencyFormat.format(billAmount));
56 updateStandard(); // update the 15% tip TextViews
57 updateCustom(); // update the custom tip TextViews
58
59 // set amountEditText's TextWatcher
60 EditText amountEditText =
61 (EditText) findViewById(R.id.amountEditText);
62 amountEditText.addTextChangedListener(amountEditTextWatcher);
63
64 // set customTipSeekBar's OnSeekBarChangeListener
65 SeekBar customTipSeekBar =
66 (SeekBar) findViewById(R.id.customTipSeekBar);
67 customTipSeekBar.setOnSeekBarChangeListener(customSeekBarListener);
68 } // end method onCreate
69

Fig. 3.12 | Overriding Activity method onCreate. (Part 2 of 2.)

amountDisplayTextView =
 (TextView) findViewById(R.id.amountDisplayTextView);

M03_DEIT3397_02_SE_C03.fm Page 125 Monday, July 7, 2014 8:57 AM

126 Chapter 3 Tip Calculator App

• class id—contains constants for the views in your XML layout files

• class layout—contains constants that represent each layout file in your project
(such as, activity_main.xml)

• class string—contains constants for each String in the strings.xml file.

Inflating the GUI
The call to setContentView (line 39) receives the constant R.layout.activity_main to
indicate which XML file represents MainActivity’s GUI—in this case, the constant rep-
resents the main.xml file. Method setContentView uses this constant to load the corre-
sponding XML document, which is then parsed and converted into the app’s GUI. This
process is known as inflating the GUI.

Getting References to the Widgets
Once the layout is inflated, you can get references to the individual widgets so that you can
interact with them programmatically. To do so, you use class Activity’s findViewById
method. This method takes an int constant representing a specific view’s Id and returns a
reference to the view. The name of each view’s R.id constant is determined by the com-
ponent’s Id property that you specified when designing the GUI. For example, amount-
EditText’s constant is R.id.amountEditText.

Lines 43–51 obtain references to the TextViews that are changed by the app. Lines
43–44 obtain a reference to the amountDisplayTextView that’s updated when the user
enters the bill amount. Lines 45–46 obtain a reference to the percentCustomTextView
that’s updated when the user changes the custom tip percentage. Lines 47–51 obtain ref-
erences to the TextViews where the calculated tips and totals are displayed.

Displaying Initial Values in the TextViews
Lines 54–55 set amountDisplayTextView’s text to the initial billAmount (0.00) in a lo-
cale-specific currency format by calling the currencyFormat object’s format method.
Next, lines 56–57 call methods updateStandard (Fig. 3.13) and updateCustom

(Fig. 3.14) to display initial values in the tip and total TextViews.

Registering the Event Listeners
Lines 60–61 get a reference to the amountEditText, and line 62 calls its addTextChanged-
Listener method to register the TextChangedListener that will respond to events generated
when the user changes the text in the EditText. We define this listener (Fig. 3.16) as an anon-
ymous-inner-class object that’s assigned to the instance variable amountEditTextWatcher.

Lines 65–66 get a reference to the customTipSeekBar and line 67 calls its setOnSeek-
BarChangeListener method to register the OnSeekBarChangeListener that will respond
to events generated when the user moves the customTipSeekBar’s thumb to change the
custom tip percentage. We define this listener (Fig. 3.15) as an anonymous-inner-class
object that’s assigned to the instance variable customSeekBarListener.

Method updateStandard of Class MainActivity
Method updateStandard (Fig. 3.13) updates the 15% tip and total TextViews each time
the user changes the bill amount. The method uses the billAmount value to calculate the
tip amount and the total of the bill amount and tip. Lines 78–79 display the amounts in
currency format.

M03_DEIT3397_02_SE_C03.fm Page 126 Monday, July 7, 2014 8:57 AM

3.5 Adding Functionality to the App 127

Method updateCustom of Class MainActivity
Method updateCustom (Fig. 3.14) updates the custom tip and total TextViews based on
the tip percentage the user selected with the customTipSeekBar. Line 86 sets the percent-
CustomTextView’s text to the customPercent value formatted as a percentage. Lines
89–90 calculate the customTip and customTotal. Then, lines 93–94 display the amounts
in currency format.

Anonymous Inner Class That Implements Interface OnSeekBarChangeListener
Lines 98–120 of Fig. 3.15 create the anonymous-inner-class object named customSeekBar-
Listener that responds to customTipSeekBar’s events. If you’re not familiar with anony-
mous inner classes, visit the following page:

Line 67 (Fig. 3.12) registered customSeekBarListener as customTipSeekBar’s OnSeek-
BarChangeListener event handler. For clarity, we define all but the simplest event-handling
objects in this manner so that we do not clutter the onCreate method with this code.

70 // updates 15% tip TextViews
71 private void updateStandard()
72 {
73 // calculate 15% tip and total
74 double fifteenPercentTip = billAmount * 0.15;
75 double fifteenPercentTotal = billAmount + fifteenPercentTip;
76
77 // display 15% tip and total formatted as currency
78 tip15TextView.setText(currencyFormat.format(fifteenPercentTip));
79 total15TextView.setText(currencyFormat.format(fifteenPercentTotal));
80 } // end method updateStandard
81

Fig. 3.13 | Method updateStandard calculates and displays the 15% tip and total.

82 // updates the custom tip and total TextViews
83 private void updateCustom()
84 {
85 // show customPercent in percentCustomTextView formatted as %
86 percentCustomTextView.setText(percentFormat.format(customPercent));
87
88 // calculate the custom tip and total
89 double customTip = billAmount * customPercent;
90 double customTotal = billAmount + customTip;
91
92 // display custom tip and total formatted as currency
93 tipCustomTextView.setText(currencyFormat.format(customTip));
94 totalCustomTextView.setText(currencyFormat.format(customTotal));
95 } // end method updateCustom
96

Fig. 3.14 | Method updateCustom calculates and displays the custom tip and total.

http://bit.ly/AnonymousInnerClasses

M03_DEIT3397_02_SE_C03.fm Page 127 Monday, July 7, 2014 8:57 AM

128 Chapter 3 Tip Calculator App

Overriding Method onProgressChanged of Interface OnSeekBarChangeListener
Lines 102–119 implement interface OnSeekBarChangeListener’s methods. Method on-
ProgressChanged is called whenever the SeekBar’s thumb position changes. Line 107 cal-
culates customPercent using the method’s progress parameter—an int representing the
SeekBar’s thumb position. We divide this by 100.0 to get the custom percentage. Line 108
calls method updateCustom to recalculate and display the custom tip and total.

Overriding Methods onStartTrackingTouch and onStopTrackingTouch of Inter-
face OnSeekBarChangeListener
Java requires that you override every method in an interface that you implement. This app
does not need to know when the user starts moving the slider’s thumb (onStartTracking-
Touch) or stops moving it (onStopTrackingTouch), so we simply provide an empty body for
each (lines 111–119) to fulfill the interface contract.

Anonymous Inner Class That Implements Interface TextWatcher
Lines 123–156 of Fig. 3.16 create the anonymous-inner-class object amountEditText-
Watcher that responds to amountEditText’s events. Line 62 registered this object to listen
for amountEditText’s events that occur when the text changes.

Overriding Method onTextChanged of Interface TextWatcher
The onTextChanged method (lines 126–144) is called whenever the text in the amount-
EditText is modified. The method receives four parameters. In this example, we use only

97 // called when the user changes the position of SeekBar
98 private OnSeekBarChangeListener customSeekBarListener =
99 new OnSeekBarChangeListener()
100 {
101 // update customPercent, then call updateCustom
102
103
104
105 {
106 // sets customPercent to position of the SeekBar's thumb
107 customPercent = / 100.0;
108 updateCustom(); // update the custom tip TextViews
109 } // end method onProgressChanged
110
111 @Override
112 public void onStartTrackingTouch(SeekBar seekBar)
113 {
114 } // end method onStartTrackingTouch
115
116 @Override
117 public void onStopTrackingTouch(SeekBar seekBar)
118 {
119 } // end method onStopTrackingTouch
120 }; // end OnSeekBarChangeListener
121

Fig. 3.15 | Anonymous inner class that implements interface OnSeekBarChangeListener to
respond to the events of the customSeekBar.

@Override
public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser)

progress

M03_DEIT3397_02_SE_C03.fm Page 128 Monday, July 7, 2014 8:57 AM

3.5 Adding Functionality to the App 129

CharSequence s, which contains a copy of amountEditText’s text. The other parameters
indicate that the count characters starting at start replaced previous text of length before.

Line 133 converts the user input from amountEditText to a double. We allow users to
enter only whole numbers in pennies, so we divide the converted value by 100.0 to get the
actual bill amount—e.g., if the user enters 2495, the bill amount is 24.95. Lines 142–143 call
updateStandard and updateCustom to recalculate and display the tips and totals.

Other Methods of the amountEditTextWatcher TextWatcher
This app does not need to know what changes are about to be made to the text (before-
TextChanged) or that the text has already been changed (afterTextChanged), so we simply
override each of these TextWatcher interface methods with an empty body (lines 146–155)
to fulfill the interface contract.

122 // event-handling object that responds to amountEditText's events
123 private TextWatcher amountEditTextWatcher = new TextWatcher()
124 {
125 // called when the user enters a number
126
127
128
129 {
130 // convert amountEditText's text to a double
131 try
132 {
133 billAmount = Double.parseDouble(s.toString()) / 100.0;
134 } // end try
135 catch (NumberFormatException e)
136 {
137 billAmount = 0.0; // default if an exception occurs
138 } // end catch
139
140 // display currency formatted bill amount
141 amountDisplayTextView.setText(currencyFormat.format(billAmount));
142 updateStandard(); // update the 15% tip TextViews
143 updateCustom(); // update the custom tip TextViews
144 } // end method onTextChanged
145
146 @Override
147 public void afterTextChanged(Editable s)
148 {
149 } // end method afterTextChanged
150
151 @Override
152 public void beforeTextChanged(CharSequence s, int start, int count,
153 int after)
154 {
155 } // end method beforeTextChanged
156 }; // end amountEditTextWatcher
157 } // end class MainActivity

Fig. 3.16 | Anonymous inner class that implements interface TextWatcher to respond to the
events of the amountEditText.

@Override
public void onTextChanged(CharSequence s, int start,
 int before, int count)

M03_DEIT3397_02_SE_C03.fm Page 129 Monday, July 7, 2014 8:57 AM

130 Chapter 3 Tip Calculator App

3.6 AndroidManifest.xml
In this section, you’ll modify the AndroidManifest.xml file to specify that this app’s Ac-
tivity supports only a device’s portrait orientation and that the soft keypad should always
remain on the screen. You’ll use the IDE’s Android Manifest editor to specify these settings.
To open the Android Manifest editor, double click the app’s AndroidManifest.xml file in
the Package Explorer. At the bottom of the editor, click the Application tab (Fig. 3.17),
then select the MainActivity node in the Application Nodes section at the bottom of the
window. This displays settings for the MainActivity in the Attributes for com.deitel.tipcal-
culator.MainActivity section.

Fig. 3.17 | Android Manifest editor’s Application tab.

Application tab Select this node to specify settings
for the app’s MainActivity

M03_DEIT3397_02_SE_C03.fm Page 130 Monday, July 7, 2014 8:57 AM

3.7 Wrap-Up 131

Configuring MainActivity for Portrait Orientation
In general, most apps should support both portrait and landscape orientations. In portrait
orientation, the device’s height is greater than its width. In landscape orientation, the de-
vice’s width is greater than its height. In the Tip Calculator app, rotating the device to land-
scape orientation on a typical phone would cause the numeric keypad to obscure most of
the Tip Calculator’s GUI. For this reason, you’ll configure MainActivity to support only
portrait orientation. In the Android Manifest editor’s Attributes for com.deitel.tipcalcula-
tor.MainActivity section, scroll down to the Screen orientation option and select portrait.

Forcing the Soft Keypad to Always Display for MainActivity
In the Tip Calculator app, the soft keypad should be displayed immediately when the app
executes and should remain on the screen at all times. In the Android Manifest editor’s At-
tributes for com.deitel.tipcalculator.MainActivity section, scroll down to the Window soft in-
put mode option and select stateAlwaysVisible. Note that this will not display the soft
keyboard if a hard keyboard is present.

3.7 Wrap-Up
In this chapter, you created your first interactive Android app—the Tip Calculator. We
overviewed the app’s capabilities, then you test-drove it to calculate standard and custom
tips based on the bill amount entered. You followed detailed step-by-step instructions to
build the app’s GUI using the Android Developer Tools IDE’s Graphical Layout editor,
Outline window and Properties window. We also walked through the code of the Activity
subclass MainActivity, which defined the app’s functionality.

In the app’s GUI, you used a GridLayout to arrange the views into rows and columns.
You displayed text in TextViews and received input from an EditText and a SeekBar.

The MainActivity class required many Java object-oriented programming capabilities,
including classes, objects, methods, interfaces, anonymous inner classes and inheritance. We
explained the notion of inflating the GUI from its XML file into its screen representation.
You learned about Android’s Activity class and part of the Activity lifecycle. In particular,
you overrode the onCreate method to initialize the app when it’s launched. In the onCreate
method, you used Activity method findViewById to get references to each of the views that
the app interacts with programmatically. You defined an anonymous inner class that imple-
ments the TextWatcher interface so the app can calculate new tips and totals as the user
changes the text in the EditText. You also defined an anonymous inner class that imple-
ments the OnSeekBarChangeListener interface so the app can calculate a new custom tip
and total as the user changes the custom tip percentage by moving the SeekBar’s thumb.

Finally, you opened the AndroidManifest.xml file in the IDE’s Android Manifest
editor to specify that the MainActivity supports only portrait orientation and that the
MainActivity should always display the keypad.

Using the IDE’s Graphical Layout editor, Outline window, Properties window and
Android Manifest editor enabled you to build this app without manipulating the XML in
the project’s resource files and AndroidManifest.xml file.

In the next chapter, we introduce collections while building the Twitter® Searches
app. Many mobile apps display lists of items. You’ll do this by using a ListActivity con-
taining a ListView that’s bound to an ArrayList<String>. You’ll also store app data as
user preferences and learn how to launch the device’s web browser to display a web page.

M03_DEIT3397_02_SE_C03.fm Page 131 Monday, July 7, 2014 8:57 AM

132 Chapter 3 Tip Calculator App

Self-Review Exercises
3.1 Fill in the blanks in each of the following statements:

a) A can arrange views either horizontally or vertically and size its views pro-
portionally.

b) Use a(n) to arrange GUI components into cells in a rectangular grid.
c) When working with more complex layouts like GridLayouts, it’s difficult to see the

nested structure of the layout and to place components in the correct nested locations
using the Visual Layout Editor. The window makes these tasks easier be-
cause it shows the nested structure of the GUI. So, in a GridLayout, you can select the
appropriate row and add a GUI component to it.

d) Class of package android.app provides the basic lifecycle methods of an
app.

e) You implement interface of package android.text to respond to events
when the user interacts with an EditText component.

f) An activity is always visible and “has the focus.”
g) The method is called by the system when an Activity is starting—that is,

when its GUI is about to be displayed so that the user can interact with the Activity.
h) As you build your app’s GUI and add resources (such as strings in the strings.xml file

or GUI components in the activity_main.xml file) to your app, the IDE generates a
class named that contains nested static classes representing each type of
resource in your project’s res folder.

i) Class (nested in class R)—contains constants for any drawable items, such
as images, that you put in the various drawable folders in your app’s res folder.

j) Class (nested in class R)—contains constants for each String in the
strings.xml file.

k) Once the layout is inflated, you can get references to the individual widgets using Ac-
tivity’s method. This method takes an int constant for a specific view
(that is, a GUI component) and returns a reference to it.

3.2 State whether each of the following is true or false. If false, explain why.
a) Method onCreate typically initializes the Activity’s instance variables and GUI com-

ponents. This method should be as simple as possible so that the app loads quickly. In
fact, if the app takes longer than five seconds to load, the operating system will display
an ANR (Application Not Responding) dialog—giving the user the option to forcibly
terminate the app.

b) To center a TextView’s text, in the Properties window of TextView, set the layout Gravity
property to center.

c) As with all Java programs, Android apps have a main method.
d) Each Activity lifecycle method you override need not call the superclass’s version of

the same method.
e) A stopped activity is visible on the screen and is likely to be killed by the system when

its memory is needed.

Answers to Self-Review Exercises
3.1 a) LinearLayout. b) GridLayout. c) Outline. d) Activity. e) TextWatcher. f) active g) onCre-
ate. h) R. i) R.drawable. j) R.string. k) findViewById.

3.2 a) True. b) False. Layout Gravity is used for setting children views’ alignment within a parent
LinearLayout. c) False. Android apps don’t have a main method. d) False. Each Activity lifecycle
method you override must call the superclass’s version; otherwise, an exception will occur. e) False. A

M03_DEIT3397_02_SE_C03.fm Page 132 Friday, June 20, 2014 12:12 PM

 Exercises 133

stopped activity is not visible on the screen and is likely to be killed by the system when its memory is
needed.

Exercises
3.3 Fill in the blanks in each of the following statements:

a) XML Layout files should be placed in the folder of the project.
b) The widgets and layouts that are used in Android GUIs are found in Package

.
c) The TextView’s property specifies how a view aligns with respect to the lay-

out.
d) Interface of package android.text allows you to change the content and

markup of text in a GUI.
e) You implement interface of package android.widget to respond to the

user moving the SeekBar’s thumb.
f) Android apps have four types of components—activities, services, content providers

and .
g) A activity is visible on the screen but does not have the focus—such as

when an alert dialog is displayed.
h) Class (nested in class R)—contains constants for the GUI components in

your XML layout files.
i) The device’s height is greater than its width in orientation. In

 orientation, the device’s width is greater than its height.

3.4 State whether each of the following is true or false. If false, explain why.
a) The NumberFormat class is used to create locale-specific currency and percentage strings.
b) A GUI component can span multiple columns in a GridLayout.
c) Every Activity subclass must override the onCreate method.
d) A paused activity is visible on the screen and has the focus.
e) A GridLayout can specify within a given row that the horizontal space should be allo-

cated proportionally between multiple views.
f) You override the onStart method to initialize the app when it’s launched.

3.5 (Enhanced Tip Calculator App) Make the following enhancements to the Tip Calculator app:
a) Add an option to calculate the tip based on either the price before tax or after tax.
b) Allow the user to enter the number of people in the party. Calculate and display the

amount owed by each person if the bill were to be split evenly among the party mem-
bers.

3.6 (EMI Calculator App) Create an EMI calculator app that allows the user to enter a loan
amount, an interest rate and the number of years. Based on these values, the app should calculate
the amount to be paid every month and display the monthly payment for the number of years en-
tered. Allow the user to select a custom loan duration (in years) by using a SeekBar and display the
monthly payment for that custom loan duration.

3.7 (Housing Loan Interest Calculator App) A bank offers housing loans that can be repaid in 7,
14 or 21 years. Write an app that allows the user to enter the amount of the loan and the annual
interest rate. Based on these values, the app should display a Seekbar to select the loan lengths in
years, monthly payment and amount paid towards interest every year.

3.8 (Car Payment Calculator App) Typically, banks offer car loans for periods ranging from two
to five years (24 to 60 months). Borrowers repay the loans in monthly installments. The amount of

M03_DEIT3397_02_SE_C03.fm Page 133 Friday, June 20, 2014 12:12 PM

134 Chapter 3 Tip Calculator App

each monthly payment is based on the length of the loan, the amount borrowed and the interest
rate. Create an app that allows the customer to enter the price of a car, the down-payment amount
and the loan’s annual interest rate. The app should display the loan’s duration in months and the
monthly payments for two-, three-, four- and five-year loans. The variety of options allows the user
to easily compare repayment plans and choose the most appropriate.

3.9 (Miles-Per-Gallon Calculator App) Drivers often want to know the miles per gallon their cars
get so they can estimate gasoline costs. Develop an app that allows the user to input the number of
miles driven and the number of gallons used and calculates and displays the corresponding miles per
gallon.

3.10 (Body Mass Index Calculator App) The formulas for calculating the BMI are

or

Create a BMI calculator app that allows users to enter their weight and height and whether they are
entering these values in English or Metric units, then calculates and displays the user’s body mass
index. The app should also display the following information from the Department of Health and
Human Services/National Institutes of Health so the user can evaluate his/her BMI:

BMI VALUES
Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

3.11 (Target-Heart-Rate Calculator App) While exercising, you can use a heart-rate monitor to see
that your heart rate stays within a safe range suggested by your trainers and doctors. According to
the American Heart Association (AHA), the formula for calculating your maximum heart rate in
beats per minute is 220 minus your age in years (http://bit.ly/AHATargetHeartRates). Your target
heart rate is a range that is 50–85% of your maximum heart rate. [Note: These formulas are estimates
provided by the AHA. Maximum and target heart rates may vary based on the health, fitness and
gender of the individual. Always consult a physician or qualified health care professional before be-
ginning or modifying an exercise program.] Write an app that inputs the person’s age, then calcu-
lates and displays the person’s maximum heart rate and target-heart-rate range.

BMI weightInPounds 703×
heightInInches heightInInches×
---=

BMI weightInKi ramslog
heightInMeters heightInMeters×
--=

M03_DEIT3397_02_SE_C03.fm Page 134 Monday, July 7, 2014 8:57 AM

4Twitter® Searches App

O b j e c t i v e s
In this chapter you’ll:

■ Support both portrait and
landscape device
orientations.

■ Extend ListActivity to
create an Activity that
displays a list of items in a
ListView.

■ Enable users to interact with
an app via an
ImageButton.

■ Manipulate collections of
data.

■ Use SharedPreferences
to store key–value pairs of
data associated with an app.

■ Use a SharedPrefer-
ences.Editor to modify
key–value pairs of data
associated with an app.

■ Use an ArrayAdapter to
specify a ListView’s data.

■ Use an
AlertDialog.Builder
object to create dialogs that
display options as Buttons
or in a ListView.

■ Use an implicit Intent to
open a website in a browser.

■ Use an implicit Intent to
display an intent chooser
containing a list of apps that
can share text.

■ Programmatically hide the
soft keyboard.

M04_DEIT3397_02_SE_C04.fm Page 135 Tuesday, July 8, 2014 8:28 AM

136 Chapter 4 Twitter® Searches App

4.1 Introduction
Twitter’s search mechanism makes it easy to follow trending topics being discussed by
more than 500 million Twitter users. Searches can be fine tuned using Twitter’s search op-
erators (overviewed in Section 4.2), often resulting in lengthy search strings that are time
consuming and cumbersome to enter on a mobile device. The Twitter Searches app
(Fig. 4.1) allows you to save your favorite search queries with short tag names that are easy
to remember (Fig. 4.1(a)). You can then touch a tag name to quickly and easily follow
tweets on a given topic (Fig. 4.1(b)). As you’ll see, the app also allows you to share, edit
and delete saved searches.

The app supports both portrait and landscape device orientations. In some apps,
you’ll do this by providing separate layouts for each orientation. In this app, we support
both orientations by designing the GUI so that it can dynamically adjust GUI component
sizes based on the current orientation.

First, you’ll test-drive the app. Then we’ll overview the technologies used to build it.
Next, you’ll design the app’s GUI. Finally, we’ll present the app’s complete source code
and walk through the code, discussing the app’s new features in more detail.

4.1 Introduction
4.2 Test-Driving the App

4.2.1 Importing the App and Running It
4.2.2 Adding a Favorite Search
4.2.3 Viewing Twitter Search Results
4.2.4 Editing a Search
4.2.5 Sharing a Search
4.2.6 Deleting a Search
4.2.7 Scrolling Through Saved Searches

4.3 Technologies Overview
4.3.1 ListView
4.3.2 ListActivity
4.3.3 Customizing a ListActivity’s

Layout
4.3.4 ImageButton
4.3.5 SharedPreferences
4.3.6 Intents for Launching Other

Activities
4.3.7 AlertDialog
4.3.8 AndroidManifest.xml

4.4 Building the App’s GUI
4.4.1 Creating the Project
4.4.2 activity_main.xml Overview
4.4.3 Adding the GridLayout and

Components
4.4.4 Graphical Layout Editor Toolbar
4.4.5 ListView Item’s Layout:

list_item.xml

4.5 Building the MainActivity Class
4.5.1 package and import Statements
4.5.2 Extending ListActivity
4.5.3 Fields of Class MainActivity
4.5.4 Overriding Activity Method

onCreate
4.5.5 Anonymous Inner Class That

Implements the saveButton’s
OnClickListener to Save a New or
Updated Search

4.5.6 addTaggedSearch Method
4.5.7 Anonymous Inner Class That

Implements the ListView’s
OnItemClickListener to Display
Search Results

4.5.8 Anonymous Inner Class That
Implements the ListView’s
OnItemLongClickListener to
Share, Edit or Delete a Search

4.5.9 shareSearch Method
4.5.10 deleteSearch Method

4.6 AndroidManifest.xml
4.7 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

M04_DEIT3397_02_SE_C04.fm Page 136 Monday, July 7, 2014 8:59 AM

4.2 Test-Driving the App 137

4.2 Test-Driving the App
In this section, you’ll test-drive the Twitter Searches app. Open the Android Developer
Tools IDE and import the Twitter Searches app project. As you did in Chapter 3, launch
the Nexus 4 AVD—or connect your Android device to the computer—so that you can
test the app. The screen captures we show in this chapter were taken on a Nexus 4 phone.

4.2.1 Importing the App and Running It
Perform the following steps to import the app into the IDE:

1. Opening the Import dialog. Select File > Import….

2. Importing the Twitter Searches app’s project. Expand the General node and select
Existing Projects into Workspace. Click Next > to proceed to the Import Projects
step. Ensure that Select root directory is selected, then click Browse…. Locate the
TwitterSearches folder in the book’s examples folder, select it and click OK. En-
sure that Copy projects into workspace is not selected. Click Finish to import the
project so that it appears in the Package Explorer window.

3. Launching the Twitter Searches app. Right click the TwitterSearches project in
the Package Explorer window, then select Run As > Android Application to execute
Twitter Searches in the AVD or on your device. This builds the project and runs
the app (Fig. 4.2).

Fig. 4.1 | Twitter Searches app.

a) App with several saved searches b) App after user touches “Deitel”

Search query that
was submitted to

Twitter

Touch a tag to
perform the
corresponding
search query

Touch a tag and
hold your finger in
position (known as
a long press) to see
an AlertDialog
with options to
share, edit or delete
the search

M04_DEIT3397_02_SE_C04.fm Page 137 Monday, July 7, 2014 8:59 AM

138 Chapter 4 Twitter® Searches App

4.2.2 Adding a Favorite Search
Touch the top EditText, then enter from:deitel as the search query—the from: operator
locates tweets from a specified Twitter account. Figure 4.3 shows several Twitter search
operators—multiple operators can be used to construct more complex queries. A complete
list can be found at

Fig. 4.2 | Twitter Searches app when it first executes.

http://bit.ly/TwitterSearchOperators

Example Finds tweets containing

deitel iOS6 Implicit logical and operator—Finds tweets containing deitel and iOS6.

deitel OR iOS6 Logical OR operator—Finds tweets containing deitel or iOS6 or both.

"how to program" String in quotes("")—Finds tweets containing the exact phrase "how to
program".

deitel ? ? (question mark)—Finds tweets asking questions about deitel.

deitel -sue - (minus sign)—Finds tweets containing deitel but not sue.

deitel :) :) (happy face)—Finds positive attitude tweets containing deitel.

deitel :(:((sad face)—Finds negative attitude tweets containing deitel.

Fig. 4.3 | Some Twitter search operators. (Part 1 of 2.)

Tag your search here

Enter query
 expression here

Touch this ImageButton
to save a search

Saved searches will
be displayed here

M04_DEIT3397_02_SE_C04.fm Page 138 Monday, July 7, 2014 8:59 AM

4.2 Test-Driving the App 139

In the bottom EditText enter Deitel as the tag for the search query (Fig. 4.4(a)).
This will be the short name displayed in a list in the app’s Tagged Searches section. Touch
the save () button to save the search—the tag “Deitel” appears in the list under the
Tagged Searches heading (Fig. 4.4(b)). When you save a search, the soft keyboard is dis-
missed so that you can see your list of saved searches—you’ll learn how to programmati-
cally hide the soft keyboard in Section 4.5.5.

4.2.3 Viewing Twitter Search Results
To view the search results, touch the tag “Deitel.” This launches the device’s web browser
and passes a URL that represents the saved search to the Twitter website. Twitter obtains

since:2013-10-01 Finds tweets that occurred on or after the specified date, which must be in
the form YYYY-MM-DD.

near:"New York City" Finds tweets that were sent near "New York City".

from:deitel Finds tweets from the Twitter account @deitel.

to:deitel Finds tweets to the Twitter account @deitel.

Fig. 4.4 | Entering a Twitter search.

Example Finds tweets containing

Fig. 4.3 | Some Twitter search operators. (Part 2 of 2.)

a) Entering a Twitter search and search tag b) App after saving the search and search tag

M04_DEIT3397_02_SE_C04.fm Page 139 Monday, July 7, 2014 8:59 AM

140 Chapter 4 Twitter® Searches App

the search query from the URL, then returns the tweets that match the query (if any) as a
web page. The web browser then displays this results page (Fig. 4.5). When you’re done
viewing the results, touch the back button () to return to the Twitter Searches app
where you can save more searches, and edit, delete and share previously saved searches.

4.2.4 Editing a Search
You may also share, edit or delete a search. To see these options, long press the search’s tag—
that is, touch the tag and keep your finger on the screen. If you’re using an AVD, click and
hold the left mouse button on the search tag to perform a long press. When you long press
“Deitel,” the AlertDialog in Fig. 4.6(a) displays the Share, Edit and Delete options for the
search tagged as “Deitel.” If you don’t wish to perform any of these tasks, touch Cancel.

To edit the search tagged as “Deitel,” touch the dialog’s Edit option. The app then
loads the search’s query and tag into the EditTexts for editing. Let’s restrict our search to
tweets since October 1, 2013 by adding since:2013-10-01 to the end of the query
(Fig. 4.6(b)) in the top EditText. The since: operator restricts the search results to tweets
that occurred on or after the specified date (in the form yyyy-mm-dd). Touch the save ()
button to update the saved search, then view the updated results (Fig. 4.7) by touching
Deitel in the Tagged Searches section of the app. [Note: Changing the tag name will create
a new search—this is useful if you want to create a new query that’s based on a previously
saved query.]

Fig. 4.5 | Viewing search results.

M04_DEIT3397_02_SE_C04.fm Page 140 Monday, July 7, 2014 8:59 AM

4.2 Test-Driving the App 141

Fig. 4.6 | Editing a saved search.

Fig. 4.7 | Viewing the updated “Deitel” search results.

a) Selecting Edit to edit an existing search b) Editing the “Deitel” saved search

M04_DEIT3397_02_SE_C04.fm Page 141 Monday, July 7, 2014 8:59 AM

142 Chapter 4 Twitter® Searches App

4.2.5 Sharing a Search
Android makes it easy for you to share various types of information from an app via e-mail,
instant messaging (SMS), Facebook, Google+, Twitter and more. In this app, you can
share a favorite search by long pressing the search’s tag and selecting Share from the Alert-
Dialog that appears. This displays a so-called intent chooser (Fig. 4.8(a)), which can vary
based on the type of content you’re sharing and the apps that can handle that content. In
this app we’re sharing text, and the intent chooser on our phone (not the AVD) shows
apps capable of handling text, such as Facebook, Gmail, Google+, Messaging (instant mes-
saging) and Twitter. If no apps can handle the content, the intent chooser will display a
message saying so. If only one app can handle the content, that app will launch without
you having to select from the intent chooser which app to use. Figure 4.8(b) shows the
Gmail app’s Compose screen with the e-mail subject and body populated. Gmail also
shows your e-mail address above the To field (we deleted the e-mail address for privacy in
the screen capture).

4.2.6 Deleting a Search
To delete a search, long press the search’s tag and select Delete from the AlertDialog that
appears. The app prompts you to confirm that you’d like to delete the search
(Fig. 4.9)—touching Cancel returns you to the main screen without deleting the search.
Touching Delete deletes the search.

Fig. 4.8 | Sharing a search via e-mail.

a) Intent chooser showing share options b) Gmail app Compose screen for an e-mail containing the “Deitel” search

Your e-mail address
appears here

Specify receiver’s e-
mail address

E-mail message’s
subject and body
are populated with
the search info—
the URL contains
the search query to
perform

M04_DEIT3397_02_SE_C04.fm Page 142 Monday, July 7, 2014 8:59 AM

4.3 Technologies Overview 143

4.2.7 Scrolling Through Saved Searches
Figure 4.10 shows the app after we’ve saved 10 favorite searches—only five of which are
currently visible. The app allows you to scroll through your favorite searches if there are
more than can be displayed on the screen at once. The GUI component that displays the
list of searches is a ListView (discussed in Section 4.3.1). To scroll, drag or flick your finger
(or the mouse in an AVD) up or down in the list of Tagged Searches. Also, rotate the de-
vice to landscape orientation to see that the GUI dynamically adjusts.

4.3 Technologies Overview
This section introduces the features you’ll use to build the Twitter Searches app.

4.3.1 ListView
Many mobile apps display lists of information. For example, an e-mail app displays a list
of new e-mails, an address-book app displays a list of contacts, a news app displays a list of

Fig. 4.9 | AlertDialog confirming a delete.

Fig. 4.10 | App with more searches than can be displayed on the screen.

Drag or flick your
finger up or down

in the list of tags to
scroll through the

saved searches

M04_DEIT3397_02_SE_C04.fm Page 143 Monday, July 7, 2014 8:59 AM

144 Chapter 4 Twitter® Searches App

headlines, etc. In each case, the user touches an item in the list to see more information—
e.g., the content of the selected e-mail, the details of the selected contact or the text of the
selected news story. This app uses a ListView (package android.widget) to display a list
of tagged searches that is scrollable if the complete list cannot be displayed on the screen.
You can specify how to format each ListView item. For this app, we’ll display each
search’s tag as a String in a TextView. In later apps, you’ll completely customize the con-
tent that’s displayed for each ListView item—displaying images, text and Buttons.

4.3.2 ListActivity
When an Activity’s primary task is to display a scrollable list of items, you can extend class
ListActivity (package android.app), which uses a ListView that occupies the entire app
as its default layout. ListView is a subclass of AdapterView (package android.widget)—
a GUI component is bound to a data source via an Adapter object (package android.wid-
get). In this app, we use an ArrayAdapter (package android.widget) to create an object
that populates the ListView using data from an ArrayList collection object. This is
known as data binding. Several types of AdapterViews can be bound to data using an
Adapter. In Chapter 8, you’ll learn how to bind database data to a ListView. For more
details on data binding in Android and several tutorials, visit

4.3.3 Customizing a ListActivity’s Layout
A ListActivity’s default GUI contains only a ListView that fills the screen’s client area be-
tween Android’s top and bottom system bars (which were explained in Fig. 2.1). If a
ListActivity’s GUI requires only the default ListView, then you do not need to define a
separate layout for your ListActivity subclass.

The Twitter Searches app’s MainActivity displays several GUI components. For this
reason you’ll define a custom layout for MainActivity. When customizing a ListActivity
subclass’s GUI, the layout must contain a ListView with its Id attribute set to
"@android:id/list"—the name that class ListActivity uses to reference its ListView.

4.3.4 ImageButton
Users often touch buttons to initiate actions in a program. To save a search’s query–tag
pair in this app, you touch an ImageButton (package android.widget). ImageButton is a
subclass of ImageView which provides additional capabilities that enable an image to be
used like a Button object (package android.widget) to initiate an action.

4.3.5 SharedPreferences
You can have one or more files containing key–value pairs associated with each app—each
key enables you to quickly look up a corresponding value. We use this capability to manip-
ulate a file called searches in which we store the pairs of tags (the keys) and Twitter search
queries (the values) that the user creates. To read the key–value pairs from this file we’ll
use SharedPreferences objects (package android.content). To modify the file’s con-
tents, we’ll use SharedPreferences.Editor objects (package android.content). The
keys in the file must be Strings, and the values can be Strings or primitive-type values.

http://developer.android.com/guide/topics/ui/binding.html

M04_DEIT3397_02_SE_C04.fm Page 144 Monday, July 7, 2014 8:59 AM

4.3 Technologies Overview 145

This app reads the saved searches in the Activity’s onCreate method—this is accept-
able only because the amount of data being loaded is small. When an app is launched,
Android creates a main thread called the UI thread which handles all of the GUI interac-
tions. All GUI processing must be performed in this thread. Extensive input/output opera-
tions, such as loading data from files and databases should not be performed on the UI thread,
because such operations can affect your app’s responsiveness. We’ll show how to perform I/O
in separate threads in later chapters.

4.3.6 Intents for Launching Other Activities
Android uses a technique known as intent messaging to communicate information be-
tween activities within one app or activities in separate apps. Each Activity can specify
intent filters indicating actions the Activity is capable of handling. Intent filters are de-
fined in the AndroidManifest.xml file. In fact, in each app so far, the IDE created an in-
tent filter for the app’s only Activity indicating that it could respond to the predefined
action named android.intent.action.MAIN, which specifies that the Activity can be
used to launch the app to begin its execution.

An Intent is used to launch an Activity—it indicates an action to be performed and
the data on which to perform that action. In this app, when the user touches a search tag,
we create a URL that contains the Twitter search query. We load the URL into a web
browser by creating a new Intent for viewing a URL, then passing that Intent to the
startActivity method, which our app inherits indirectly from class Activity. To view
a URL, startActivity launches the device’s web browser to display the content—in this
app, the results of a Twitter search.

We also use an Intent and the startActivity method to display an intent
chooser—a GUI that shows a list of apps that can handle the specified Intent. We use
this when sharing a saved search to allow the user to choose how to share a search.

Implicit and Explicit Intents
The Intents used in this app are examples of implicit Intents—we will not specify a com-
ponent to display the web page but instead will allow Android to launch the most appropriate
Activity based on the type of data. If multiple activities can handle the action and data
passed to startActivity, the system will display a dialog in which the user can select
which activity to use. If the system cannot find an activity to handle the action, then meth-
od startActivity throws an ActivityNotFoundException. In general, it’s a good prac-
tice to handle this exception. We chose not to in this app, because Android devices on
which this app is likely to be installed will have a browser capable of displaying a web page.
In future apps, we’ll also use explicit Intents, which indicate the precise Activity to start.
For a more information on Intents, visit

4.3.7 AlertDialog
You can display messages, options and confirmations to app users via AlertDialogs.
While a dialog is displayed, the user cannot interact with the app—this is known as a mod-
al dialog. As you’ll see, you specify the settings for the dialog with an AlertDialog.Build-
er object, then use it to create the AlertDialog.

http://developer.android.com/guide/components/intents-filters.html

M04_DEIT3397_02_SE_C04.fm Page 145 Monday, July 7, 2014 8:59 AM

146 Chapter 4 Twitter® Searches App

AlertDialogs can display buttons, checkboxes, radio buttons and lists of items that
the user can touch to respond to the dialog’s message. A standard AlertDialog may have
up to three buttons that represent:

• A negative action—Cancels the dialog’s specified action, often labeled with Cancel
or No. This is the leftmost button when there are multiple buttons in the dialog.

• A positive action—Accepts the dialog’s specified action, often labeled with OK or
Yes. This is the rightmost button when there are multiple buttons in the dialog.

• A neutral action—This button indicates that the user does not want to cancel or
accept the action specified by the dialog. For example, an app that asks the user
to register to gain access to additional features might provide a Remind Me Later
neutral button.

We use AlertDialogs in this app for several purposes:

• To display a message to the user if either or both of the query and tag EditTexts
are empty. This dialog will contain only a positive button.

• To display the Share, Edit and Delete options for a search. This dialog will contain
a list of options and a negative button.

• To have the user confirm before deleting a search—in case the user accidentally
touched the Delete option for a search.

You can learn more about Android dialogs at:

4.3.8 AndroidManifest.xml
As you learned in Chapter 3, the AndroidManifest.xml file is created for you when you
create an app. For this app, we’ll show you how to add a setting to the manifest that pre-
vents the soft keyboard from displaying when the app first loads. For the complete details
of AndroidManifest.xml, visit:

We’ll cover various aspects of the AndroidManifest.xml file throughout the book.

4.4 Building the App’s GUI
In this section, we’ll build the GUI for the Twitter Searches app. We’ll also create a second
XML layout that the ListView will dynamically inflate and use to display each item.

4.4.1 Creating the Project
Recall that the Android Developer Tools IDE allows only one project with a given name
per workspace, so before you create the new project, delete the TwitterSearches project
that you test-drove in Section 4.2. To do so, right click it and select Delete. In the dialog
that appears, ensure that Delete project contents on disk is not selected, then click OK. This
removes the project from the workspace, but leaves the project’s folder and files on disk in
case you’d like to look at the original app again later.

http://developer.android.com/guide/topics/ui/dialogs.html

http://developer.android.com/guide/topics/manifest/
 manifest-intro.html

M04_DEIT3397_02_SE_C04.fm Page 146 Monday, July 7, 2014 8:59 AM

4.4 Building the App’s GUI 147

Creating a New Blank App Project
Next, create a new Android Application Project. Specify the following values in the New An-
droid Project dialog’s first New Android Application step, then press Next >:

• Application name: Twitter Searches

• Project name: TwitterSearches

• Package name: com.deitel.twittersearches

• Minimum Required SDK: API18: Android 4.3

• Target SDK: API19: Android 4.4

• Compile With: API19: Android 4.4

• Theme: Holo Light with Dark Action Bar

In the New Android Project dialog’s second New Android Application step, leave the default
settings, and press Next >. In the Configure Launcher Icon step, click the Browse… button,
and select an app icon image (provided in the images folder with the book’s examples), press
Open then Next >. In the Create Activity step, select Blank Activity, then press Next >. In the
Blank Activity step, leave the default settings and click Finish to create the project. Open
activity_main.xml in the Graphical Layout editor and select Nexus 4 from the screen-type
drop-down list (as in Fig. 2.12). Once again, we’ll use this device as the basis for our design.

4.4.2 activity_main.xml Overview
As in Chapter 3, this app’s activity_main.xml layout uses a GridLayout (Fig. 4.11). In
this app, the GridLayout contains three rows and one column. Figure 4.12 shows the
names of the app’s GUI components.

Fig. 4.11 | Rows and columns in the Twitter Searches app’s GridLayout.

row 1

row 2

row 0 This row is a horizontal
LinearLayout
containing an EditText
and an ImageButton

This row is a vertical
LinearLayout
containing a TextView
(Tagged Searches) and
a ListView

M04_DEIT3397_02_SE_C04.fm Page 147 Monday, July 7, 2014 8:59 AM

148 Chapter 4 Twitter® Searches App

4.4.3 Adding the GridLayout and Components
Using the techniques you learned in Chapter 3, you’ll build the GUI in Figs. 4.11–4.12.
All of the steps in the following subsections assume that you’re working with the layout in
the IDE’s Graphical Layout editor. As a reminder, it’s often easiest to select a particular
GUI component in the Outline window.

You’ll start with the basic layout and controls, then customize the controls’ properties
to complete the design. Use the Outline window to add components to the proper rows of
the GridLayout. As you add GUI components, set their Ids as shown in Fig. 4.12—there
are several components in this layout that do not require Ids, as they’re never referenced
from the app’s Java code. Also, remember to define all your literal strings values in the
strings.xml file (located in the app’s res/values folder).

Step 1: Changing to a GridLayout
Follow the steps in Section 3.4.3 to switch from a FrameLayout to a GridLayout.

Step 2: Configuring the GridLayout
In the Outline window, select the GridLayout and set the following properties—for each
property that’s nested in a node within the Properties window, we specify the node’s name
in parentheses following the property name:

• Id: @+id/gridLayout

Fig. 4.12 | Twitter Searches GUI’s components labeled with their Id property values.

tagEditText

@android:id/list
(this is the required name

for the ListView in a
ListActivity’s

custom layout)

queryEditText

saveButton

M04_DEIT3397_02_SE_C04.fm Page 148 Monday, July 7, 2014 8:59 AM

4.4 Building the App’s GUI 149

• Column Count (GridLayout node): 1—Each GUI component nested directly in
the GridLayout will be added as a new row.

The GridLayout fills the entire client area of the screen because the layout’s Width and
Height properties (in the Layout Parameters section of the Properties window) are each set
to match_parent by the IDE.

By default, the IDE sets the Padding Left and Padding Right properties to @dimen/
activity_horizontal_margin—a predefined dimension resource in the dimens.xml file
of the project’s res/values folder. This resource’s value is 16dp, so there will be a 16dp
space to the left and right of the GridLayout. The IDE created this resource when you cre-
ated the app’s project. Similarly, the IDE sets the Padding Top and Padding Bottom prop-
erties to @dimen/activity_vertical_margin—another predefined dimension resource
with the value 16dp. So there will be a 16dp space above and below the GridLayout.

Step 3: Creating the GridLayout’s First Row
This row contains only an EditText. Drag a Plain Text component from the Palette’s Text
Fields section onto the GridLayout in the Outline window, then set its Id property to @+id/
queryEditText. In the Properties window’s TextView node, delete the Ems property’s value,
which is not used in this app. Then use the Properties window to set the following properties:

• Width (Layout Parameters node): wrap_content

• Height (Layout Parameters node): wrap_content

• Gravity (Layout Parameters node): fill_horizontal—This ensures that when
the user rotates the device, the queryEditText will fill all available horizontal
space. We use similar Gravity settings for other GUI components to support both
portrait and landscape orientations for this app’s GUI.

• Hint: @string/queryPrompt—Create a String resource as you did in prior apps
and give it the value "Enter Twitter search query here". This attribute displays
in an empty EditText a hint that helps the user understand the EditText’s pur-
pose. This text is also spoken by Android TalkBack for users with visual impair-
ments, so providing hints in your EditTexts makes your app more accessible.

• IME Options (TextView node): actionNext—This value indicates that query-
EditText’s keyboard will contain a Next button that the user can touch to move
the input focus to the next input component (i.e., the tagEditText in this app).
This makes it easier for the user to fill in multiple input components in a form.
When the next component is another EditText, the appropriate keyboard is dis-
played without the user having to touch the EditText to give it the focus.

Look-and-Feel Observation 4.1
According to the Android design guidelines, 16dp is the recommended space between the
edges of a device’s touchable screen area and the app’s content; however, many apps (such
as games) use the full screen.

Look-and-Feel Observation 4.2
The Android design guidelines indicate that text displayed in your GUI should be brief,
simple and friendly with the important words first. For details on the recommended writ-
ing style, see http://developer.android.com/design/style/writing.html.

M04_DEIT3397_02_SE_C04.fm Page 149 Monday, July 7, 2014 8:59 AM

150 Chapter 4 Twitter® Searches App

Step 4: Creating the GridLayout’s Second Row
This row is a horizontal LinearLayout containing an EditText and an ImageButton. Per-
form the following tasks to build the row’s GUI:

1. Drag a LinearLayout (Horizontal) component from the Palette’s Layouts section
onto the GridLayout in the Outline window.

2. Drag a Plain Text component from the Palette’s Text Fields section onto the Lin-
earLayout, then set the Id property to @+id/tagEditText.

3. Drag an ImageButton component from the Palette’s Images & Media section onto
the LinearLayout. This displays the Resource Chooser dialog (Fig. 4.13), so that
you can choose the button’s image. By default, the dialog’s Project Resources ra-
dio button is selected so that you can choose images from the project’s resources
(such images would be stored in your project’s various res/drawable folders). In
this app, we used the standard Android save icon (shown at the right side of
Fig. 4.13). To do so, click the System Resources radio button, select
ic_menu_save and click OK. Next, set the Id property to @+id/saveButton.

With the tagEditText selected, remove the Ems property’s value from the TextView
node in the Properties window. Then set the following properties:

• Width (Layout Parameters node): 0dp—The IDE recommends this value when
you also set the Weight property, so that the IDE can lay out the components
more efficiently.

Fig. 4.13 | Resource Chooser dialog.

Preview of the icon
represented by the
selected resource

M04_DEIT3397_02_SE_C04.fm Page 150 Monday, July 7, 2014 8:59 AM

4.4 Building the App’s GUI 151

• Height (Layout Parameters node): wrap_content

• Gravity (Layout Parameters node): bottom|fill_horizontal—This aligns the
bottom of the tagEditText with the bottom of the saveButton and indicates
that tagEditText should fill the available horizontal space.

• Weight (Layout Parameters node): 1—This makes the tagEditText more impor-
tance than the saveButton in this row. When Android lays out the row, the
saveButton will occupy only the space it needs and the tagEditText will occupy
all remaining horizontal space.

• Hint: @string/tagPrompt—Create a String resource with the value "Tag your
query".

• IME Options (TextView node): actionDone—This value indicates that query-
EditText’s keyboard will contain a Done button that the user can touch to dis-
miss the keyboard from the screen.

With the saveButton selected, clear the value of the Weight property (Layout Param-
eters node) then set the following properties:

• Width (Layout Parameters node): wrap_content

• Height (Layout Parameters node): wrap_content

• Content Description: @string/saveDescription—Create a string resource with
the value "Touch this button to save your tagged search".

Step 5: Creating the GridLayout’s Third Row
This row is a vertical LinearLayout containing a TextView and a ListView. Perform the
following tasks to build the row’s GUI:

1. Drag a LinearLayout (Vertical) component from the Palette’s Layouts section onto
the GridLayout in the Outline window.

2. Drag a Medium Text component from the Palette’s Form Widgets section onto the
LinearLayout. This creates a TextView that’s preconfigured to display text in the
theme’s medium-sized text font.

3. Drag a ListView component from the Palette’s Composite section onto the Lin-
earLayout, then set the Id property to @android:id/list—recall that this is the
required Id for the ListView in a ListActivity’s custom layout.

With the vertical LinearLayout selected, set the following properties:

• Height (Layout Parameters node): 0dp—The actual height is determined by the
Gravity property.

• Gravity (Layout Parameters node): fill—This tells the LinearLayout to fill all
available horizontal and vertical space.

Look-and-Feel Observation 4.3
Recall that it’s considered a best practice in Android to ensure that every GUI component
can be used with TalkBack. For components that don’t have descriptive text, such as an
ImageButton, provide text for the component’s Content Description property.

M04_DEIT3397_02_SE_C04.fm Page 151 Monday, July 7, 2014 8:59 AM

152 Chapter 4 Twitter® Searches App

• Top (located in the Layout Parameters node’s Margins node): @dimen/

activity_vertical_margin—This separates the top of the vertical LinearLay-
out from the horizontal LinearLayout in the GUI’s second row.

• Background (View node): @android:color/holo_blue_bright—This is one of
the predefined color resources in the app’s Android theme.

• Padding Left/Right (View node): @dimen/activity_horizontal_margin—This
ensures that the components in the vertical LinearLayout are inset by 16dp from
the left and right edges of the layout.

• Padding Top (View node): @dimen/activity_vertical_margin—This ensures
that the top component within the vertical LinearLayout is inset by 16dp from the
top edge of the layout.

With the vertical TextView selected, set the following properties:

• Width (Layout Parameters node): match_parent

• Height (Layout Parameters node): wrap_content

• Gravity (Layout Parameters node): fill_horizontal—This makes the TextView
fill the width of the vertical LinearLayout (minus the padding in the layout).

• Gravity (TextView node): center_horizontal—This centers the TextView’s text.

• Text: @string/taggedSearches—Create a string resource with the value
"Tagged Searches".

• Padding Top (View node): @dimen/activity_vertical_margin—This ensures
that the top component within the vertical LinearLayout is inset by 16dp from the
top edge of the layout.

With the ListView selected, set the following properties:

• Width (Layout Parameters node): match_parent

• Height (Layout Parameters node): 0dp—The IDE recommends this value when
you also set the Weight property, so that the IDE can lay out the components
more efficiently.

• Weight (Layout Parameters node): 1

• Gravity (Layout Parameters node): fill—The ListView should fill all available
horizontal and vertical space.

• Padding Top (View node): @dimen/activity_vertical_margin—This ensures
that the top component within the vertical LinearLayout is inset by 16dp from the
top edge of the layout.

• Top and Bottom (located in the Layout Parameters node’s Margins node): @dimen/
tagged_searches_padding—Create a new tagged_searches_padding dimension
resource by clicking the ellipsis button to the right of the Top property. In the Re-
source Chooser dialog, click New Dimension… to create a new dimension resource.
Specify tagged_searches_padding for the Name and 8dp for the Value and click
OK, then select your new dimension resource and click OK. For the Bottom proper-
ty, simply select this new dimension resource. These properties ensure that there is

M04_DEIT3397_02_SE_C04.fm Page 152 Monday, July 7, 2014 8:59 AM

4.4 Building the App’s GUI 153

an 8dp margin between the TextView and the top of the ListView and between the
bottom of the ListView and the bottom of the vertical LinearLayout.

4.4.4 Graphical Layout Editor Toolbar
You’ve now completed the MainActivity’s GUI. The Graphical Layout editor’s toolbar
(Fig. 4.14) contains various buttons that enable you to preview the design for other screen
sizes and orientations. In particular, you can view thumbnail images of many screen sizes
and orientations by clicking the down arrow next to the button and selecting either
Preview Representative Sample or Preview All Screen Sizes. For each thumbnail, there are
+ and – buttons that you can click to zoom in and out. Figure 4.14 overviews some of the
buttons in the Graphical Layout editor’s toolbar.

Fig. 4.14 | Canvas configuration options.

Option Description

Render options View one design screen at a time or see your design on a variety of screen
sizes all at once.

Screen type Android runs on a wide variety of devices, so the Graphical Layout editor
comes with many device configurations that represent various screen
sizes and resolutions that you can use to design your GUI. In this book,
we use the predefined Nexus 4, Nexus 7 and Nexus 10 screens, depending
on the app. In Fig. 4.14, we selected Nexus 4.

Portrait/Landscape Toggles the design area between portrait and landscape orientations.

Theme Can be used to set the theme for the GUI.

Activity/Fragment
being designed

Shows the Activity or Fragment class that corresponds to the GUI being
designed.

Locale For internationalized apps (Section 2.8), allows you to select a specific
localization, so that you can see, for example, what your design looks like
with different language strings.

API level Specifies the target API level for the design. With each new API level,
there have typically been new GUI features. The Graphical Layout editor
window shows only features that are available in the selected API level.

Fig. 4.15 | Explanation of the canvas configuration options.

Zoom options

Render options Screen type
Portrait/

Landscape Theme
Activity/Fragment
being designed Locale API level

Options for configuring currently selected
item in the Grapical Layout editor

M04_DEIT3397_02_SE_C04.fm Page 153 Monday, July 7, 2014 8:59 AM

154 Chapter 4 Twitter® Searches App

4.4.5 ListView Item’s Layout: list_item.xml
When populating a ListView with data, you must specify the format that’s applied to each
list item. Each list item in this app displays the String tag name for one saved search. To
specify each list item’s formatting, you’ll create a new layout that contains only a TextView
with the appropriate formatting. Perform the following steps:

1. In the Package Explorer window, expand the project’s res folder, then right click
the layout folder and select New > Other… to display the New dialog.

2. In the Android node, select Android XML Layout File and click Next > to display
the dialog in Fig. 4.16, then configure the file as shown. The new layout’s file
name is list_item.xml and the root element in the layout is a TextView.

3. Click Finish to create the file.

The IDE opens the new layout in the Graphical Layout editor. Select the TextView in
the Outline window, then set the following properties:

• Id: @+id/textView—GUI component Ids begin with a lowercase first letter by
convention.

• Height (Layout Parameters node): ?android:attr/listPreferredItemHeight—
This value is a predefined Android resource that represents a list item’s preferred

i

Fig. 4.16 | Creating a new list_item.xml layout in the New Android Layout XML File dialog.

New layout
file name

Root element
 for this layout

M04_DEIT3397_02_SE_C04.fm Page 154 Monday, July 7, 2014 8:59 AM

4.5 Building the MainActivity Class 155

height for responding properly to user touches with a minimal chance of touch-
ing the wrong item.

• Gravity (Layout Parameters node): center_vertical—The TextView should be
centered vertically within the ListView item.

• Text Appearance (TextView node): ?android:attr/textAppearanceMedium—
This is the predefined theme resource that specifies the font size for medium-
sized text.

List Items That Display Multiple Pieces of Data
If a list item should display multiple pieces of data, you’ll need a list-item layout that con-
sists of multiple elements, and each element will need an android:id attribute.

Other Predefined Android Resources
There are many predefined Android resources like the ones used to set the Height and Text
Appearance for a list item. You can view the complete list at:

To use a value in your layouts, specify it in the format

4.5 Building the MainActivity Class
Figures 4.17–4.27 implement the Twitter Searches app’s logic in the class MainActivity,
which extends ListActivity. The default code for class MainActivity included an
onCreateOptionsMenu method, which we removed because it’s not used in this app—we’ll
discuss onCreateOptionsMenu in Chapter 5. Throughout this section, we assume that you
create the necessary String resources as you encounter them in the code descriptions.

4.5.1 package and import Statements
Figure 4.17 shows the app’s package and import statements. The package statement (in-
serted in line 4 by the IDE when you created the project) indicates that the class in this
file is part of the com.deitel.twittersearches package. Lines 6–26 import the classes
and interfaces the app uses.

Look-and-Feel Observation 4.4
The Android design guidelines specify that the minimum recommended size for a touch-
able item on the screen is 48dp-by-48dp. For more information on GUI sizing and spac-
ing, see http://developer.android.com/design/style/metrics-grids.html.

http://developer.android.com/reference/android/R.attr.html

?android:attr/resourceName

1 // MainActivity.java
2 // Manages your favorite Twitter searches for easy
3 // access and display in the device's web browser
4 package com.deitel.twittersearches;
5

Fig. 4.17 | MainActivity’s package and import statements. (Part 1 of 2.)

M04_DEIT3397_02_SE_C04.fm Page 155 Monday, July 7, 2014 8:59 AM

156 Chapter 4 Twitter® Searches App

Lines 6–7 import the ArrayList and Collections classes from the java.util
package. We use class ArrayList to maintain the list of tags for the saved searches, and
class Collections to sort the tags so they appear in alphabetical order. Of the remaining
import statements, we consider only those for the features introduced in this chapter:

• Class AlertDialog of package android.app (line 9) is used to display dialogs.

• Class ListActivity of package android.app (line 10) is MainActivity’s super-
class, which provides the app’s ListView and methods for manipulating it.

• Class Context of package android.content (line 11) provides access to informa-
tion about the environment in which the app is running and allows you to use
various Android services. We’ll be using a constant from this class when we pro-
grammatically hide the soft keyboard after the user saves a search.

• Class DialogInterface of package android.content (line 12) contains the nest-
ed interface OnClickListener. We implement this interface to handle the events
that occur when the user touches a button on an AlertDialog.

• Class Intent of package android.content (line 13) is used to create an object
that specifies an action to be performed and the data to be acted upon—Android
uses Intents to launch the appropriate activities. We’ll use this class to launch the
device’s web browser to display Twitter search results and to display an intent
chooser so the user can choose how to share a search.

• Class SharedPreferences of package android.content (line 14) is used to ma-
nipulate persistent key–value pairs that are stored in files associated with the app.

• Class Uri of package android.net (line 15) enables us to convert a URL into the
format required by an Intent that launches the device’s web browser.

6 import java.util.ArrayList;
7 import java.util.Collections;
8
9 import android.app.AlertDialog;

10 import android.app.ListActivity;
11 import android.content.Context;
12 import android.content.DialogInterface;
13 import android.content.Intent;
14 import android.content.SharedPreferences;
15 import android.net.Uri;
16 import android.os.Bundle;
17 import android.view.View;
18 import android.view.View.OnClickListener;
19 import android.view.inputmethod.InputMethodManager;
20 import android.widget.AdapterView;
21 import android.widget.AdapterView.OnItemClickListener;
22 import android.widget.AdapterView.OnItemLongClickListener;
23 import android.widget.ArrayAdapter;
24 import android.widget.EditText;
25 import android.widget.ImageButton;
26 import android.widget.TextView;
27

Fig. 4.17 | MainActivity’s package and import statements. (Part 2 of 2.)

M04_DEIT3397_02_SE_C04.fm Page 156 Monday, July 7, 2014 8:59 AM

4.5 Building the MainActivity Class 157

• Class View of package android.view (line 17) is used in various event-handling
methods to represent the GUI component that the user interacted with to initiate
an event.

• Class View contains the nested interface OnClickListener (line 18). We imple-
ment this interface to handle the event raised when the user touches the Image-
Button for saving a search.

• Class InputMethodManager of package android.view.inputmethod (line 19) en-
ables us to hide the soft keyboard when the user saves a search.

• Package android.widget (lines 20–26) contains the GUI components and lay-
outs that are used in Android GUIs. Class AdapterView (line 20) is the base class
of ListView and is used when setting up the ListView’s adapter (which supplies
the ListView’s items). You implement interface AdapterView.OnItemClickLis-
tener (line 21) to respond when the user touches an item in a ListView. You im-
plement interface AdapterView.OnItemLongClickListener (line 22) to respond
when the user long presses an item in a ListView. Class ArrayAdapter (line 23) is
used to bind items to a ListView. Class ImageButton (line 25) represents a button
that displays an image.

4.5.2 Extending ListActivity
MainActivity (Figs. 4.18–4.27) is the Twitter Searches app’s only Activity class. When
you created the TwitterSearches project, the IDE generated MainActivity as a subclass
of Activity and provided the shell of an overridden onCreate method, which every Ac-
tivity subclass must override. We changed the superclass to ListActivity (Fig. 4.18,
line 28). When you make this change, the IDE does not recognize class ListActivity, so
you must update your import statements. In the IDE, you can use Source > Organize Im-
ports to update the import statements. Eclipse underlines any class or interface name that
it does not recognize. In this case, if you hover the mouse over the class or interface name,
a list of quick fixes will be displayed. If the IDE recognizes the name, it will suggest the
missing import statement you need to add—simply click the name to add it.

4.5.3 Fields of Class MainActivity
Figure 4.19 contains class MainActivity’s static and instance variables. The String con-
stant SEARCHES (line 31) represents the name of the file that will store the searches on the
device. Lines 33–34 declare EditTexts that we’ll use to access the queries and tags that the
user enters. Line 35 declares the SharedPreferences instance variable savedSearches,
which will be used to manipulate the key–value pairs representing the user’s saved searches.
Line 36 declares the ArrayList<String> that will store the sorted tag names for the user’s
searches. Line 37 declares the ArrayAdapter<String> that uses the contents of the Array-
List<String> as the source of the items displayed in MainActivity’s ListView.

28 public class MainActivity extends ListActivity
29 {

Fig. 4.18 | Class MainActivity is a subclass of ListActivity.

M04_DEIT3397_02_SE_C04.fm Page 157 Monday, July 7, 2014 8:59 AM

158 Chapter 4 Twitter® Searches App

4.5.4 Overriding Activity Method onCreate
The onCreate method (Fig. 4.20) is called by the system:

• when the app loads

• if the app’s process was killed by the operating system while the app was in the
background, and the app is then restored

• each time the configuration changes, such as when the user rotates the device or
opens or closes a physical keyboard.

The method initializes the Activity’s instance variables and GUI components—we keep
it simple so the app loads quickly. Line 43 makes the required call to the superclass’s on-
Create method. As in the previous app, the call to setContentView (line 44) passes the
constant R.layout.activity_main to inflate the GUI from activity_main.xml.

Good Programming Practice 4.1
For readability and modifiability, use String constants to represent filenames (and other
String literals) that do not need to be localized, and thus are not defined in strings.xml.

30 // name of SharedPreferences XML file that stores the saved searches
31 private static final String SEARCHES = "searches";
32
33 private EditText queryEditText; // EditText where user enters a query
34 private EditText tagEditText; // EditText where user tags a query
35 private SharedPreferences savedSearches; // user's favorite searches
36 private ArrayList<String> tags; // list of tags for saved searches
37 private ArrayAdapter<String> adapter; // binds tags to ListView
38

Fig. 4.19 | Fields of class MainActivity.

39 // called when MainActivity is first created
40 @Override
41 protected void onCreate(Bundle savedInstanceState)
42 {
43 super.onCreate(savedInstanceState);
44 setContentView(R.layout.activity_main);
45
46 // get references to the EditTexts
47 queryEditText = (EditText) findViewById(R.id.queryEditText);
48 tagEditText = (EditText) findViewById(R.id.tagEditText);
49
50
51
52
53 // store the saved tags in an ArrayList then sort them
54 tags = new ArrayList<String>();
55 Collections.sort(tags, String.CASE_INSENSITIVE_ORDER);
56

Fig. 4.20 | Overriding Activity method onCreate. (Part 1 of 2.)

// get the SharedPreferences containing the user's saved searches
savedSearches = getSharedPreferences(SEARCHES, MODE_PRIVATE);

savedSearches.getAll().keySet()

M04_DEIT3397_02_SE_C04.fm Page 158 Monday, July 7, 2014 8:59 AM

4.5 Building the MainActivity Class 159

Getting References to the EditTexts
Lines 47–48 obtain references to the queryEditText and tagEditText to initialize the
corresponding instance variables.

Getting a SharedPreferences Object
Line 51 uses the method getSharedPreferences (inherited from class Context) to get a
SharedPreferences object that can read existing tag–query pairs (if any) from the SEARCHES
file. The first argument indicates the name of the file that contains the data. The second ar-
gument specifies the accessibility of the file and can be set to one of the following options:

• MODE_PRIVATE—The file is accessible only to this app. In most cases, you’ll use
this option.

• MODE_WORLD_READABLE—Any app on the device can read from the file.

• MODE_WORLD_WRITABLE—Any app on the device can write to the file.

These constants can be combined with the bitwise OR operator (|). We aren’t reading a
lot of data in this app, so it’s fast enough to load the searches in onCreate.

Getting the Keys Stored in the SharedPreferences Object
We’d like to display the search tags alphabetically so the user can easily find a search to
perform. First, line 54 gets the Strings representing the keys in the SharedPreferences
object and stores them in tags (an ArrayList<String>). SharedPreferences method
getAll returns all the saved searches as a Map (package java.util)—a collection of key–
value pairs. We then call method keySet on that object to get all the keys as a Set (package
java.util)—a collection of unique values. The result is used to initialize tags.

57
58
59
60
61 // register listener to save a new or edited search
62 ImageButton saveButton =
63 (ImageButton) findViewById(R.id.saveButton);
64 saveButton.setOnClickListener(saveButtonListener);
65
66 // register listener that searches Twitter when user touches a tag
67 getListView().setOnItemClickListener(itemClickListener);
68
69 // set listener that allows user to delete or edit a search
70 getListView().setOnItemLongClickListener(itemLongClickListener);
71 } // end method onCreate
72

Performance Tip 4.1
Lengthy data access should not be done in the UI thread; otherwise, the app will display
an Application Not Responding (ANR) dialog—typically after five seconds of preventing
the user from interacting with the app. For information on designing responsive apps, see
http://developer.android.com/guide/practices/design/responsiveness.html.

Fig. 4.20 | Overriding Activity method onCreate. (Part 2 of 2.)

// create ArrayAdapter and use it to bind tags to the ListView
adapter = new ArrayAdapter<String>(this, R.layout.list_item, tags);
setListAdapter(adapter);

M04_DEIT3397_02_SE_C04.fm Page 159 Monday, July 7, 2014 8:59 AM

160 Chapter 4 Twitter® Searches App

Sorting the ArrayList of Tags
Line 55 uses Collections.sort to sort tags. Since the user could enter tags using mix-
tures of uppercase and lowercase letters, we chose to perform a case-insensitive sort by pass-
ing the predefined Comparator<String> object String.CASE_INSENSITIVE_ORDER as the
second argument to Collections.sort.

Using an ArrayAdapter to Populate the ListView
To display the results in a ListView we create a new ArrayAdapter<String> object (line
58) which maps the contents tags to TextViews that are displayed in MainActivity’s
ListView. The ArrayAdapter<String>’s constructor receives:

• the Context (this) in which the ListView is displayed—this is the MainActivity

• the resource ID (R.layout.list_item) of the layout that’s used to display each
item in the ListView

• a List<String> containing the items to display—tags is an ArrayList<String>,
which implements interface List<String>, so tags is a List<String>.

Line 59 uses inherited ListActivity method setListAdapter to bind the ListView to
the ArrayAdapter, so that the ListView can display the data.

Registering Listeners for the saveButton and ListView
Lines 62–63 obtain a reference to the saveButton and line 64 registers its listener—in-
stance variable saveButtonListener refers to an anonymous-inner-class object that imple-
ments interface OnClickListener (Fig. 4.21). Line 67 uses inherited ListActivity
method getListView to get a reference to this activity’s ListView, then registers the List-
View’s OnItemClickListener—instance variable itemClickListener refers to an anony-
mous inner class object that implements this interface (Fig. 4.24). Similarly, line 70 registers
the ListView’s OnItemLongClickListener—instance variable itemLongClickListener
refers to an anonymous-inner-class object that implements this interface (Fig. 4.25).

4.5.5 Anonymous Inner Class That Implements the saveButton’s
OnClickListener to Save a New or Updated Search
Figure 4.21 declares and initializes instance variable saveButtonListener, which refers to
an anonymous inner class object that implements interface OnClickListener. Line 64
(Fig. 4.20) registered saveButtonListener as saveButtons’s event handler. Lines 76–109
override interface OnClickListener’s onClick method. If the user entered a query and a tag
(lines 80–81), lines 83–84 call method addTaggedSearch (Fig. 4.23) to store the tag–query
pair and lines 85–86 clear the two EditTexts. Lines 88–90 hide the soft keyboard.

73 // saveButtonListener saves a tag-query pair into SharedPreferences
74 public OnClickListener saveButtonListener = new OnClickListener()
75 {
76 @Override
77 public void onClick(View v)
78 {

Fig. 4.21 | Anonymous inner class that implements the saveButton’s OnClickListener to
save a new or updated search. (Part 1 of 2.)

M04_DEIT3397_02_SE_C04.fm Page 160 Monday, July 7, 2014 8:59 AM

4.5 Building the MainActivity Class 161

Configuring an AlertDialog
If the user did not enter a query and a tag, lines 92–108 display an AlertDialog indicating
that the user must enter both. An AlertDialog.Builder object (lines 95–96) helps you
configure and create an AlertDialog. The argument to the constructor is the Context in
which the dialog will be displayed—in this case, the MainActivity, which we refer to via
its this reference. To access this from an anonymous inner class, you must fully qualify
this with the outer class’s name. Line 99 sets the dialog’s message with the String re-
source R.string.missingMessage ("Enter both a Twitter search query and a tag").

79 // create tag if neither queryEditText nor tagEditText is empty
80 if (queryEditText.getText().length() > 0 &&
81 tagEditText.getText().length() > 0)
82 {
83 addTaggedSearch(queryEditText.getText().toString(),
84 tagEditText.getText().toString());
85 queryEditText.setText(""); // clear queryEditText
86 tagEditText.setText(""); // clear tagEditText
87
88
89
90
91 }
92 else // display message asking user to provide a query and a tag
93 {
94
95
96
97
98
99
100
101
102
103
104
105
106
107 }
108 } // end method onClick
109 }; // end OnClickListener anonymous inner class
110

Look-and-Feel Observation 4.5
You can set an AlertDialog’s title (which appears above the dialog’s message) with
AlertDialog.Builder method setTitle. According to the Android design guidelines for
dialogs (http://developer.android.com/design/building-blocks/dialogs.html),
most dialogs do not need titles. A dialog should display a title for “a high-risk operation
involving potential loss of data, connectivity, extra charges, and so on.” Also, dialogs that
display lists of options use the title to specify the dialog’s purpose.

Fig. 4.21 | Anonymous inner class that implements the saveButton’s OnClickListener to
save a new or updated search. (Part 2 of 2.)

((InputMethodManager) getSystemService(
 Context.INPUT_METHOD_SERVICE)).hideSoftInputFromWindow(
 tagEditText.getWindowToken(), 0);

// create a new AlertDialog Builder
AlertDialog.Builder builder =
 new AlertDialog.Builder(MainActivity.this);

// set dialog's title and message to display
builder.setMessage(R.string.missingMessage);

// provide an OK button that simply dismisses the dialog
builder.setPositiveButton(R.string.OK, null);

// create AlertDialog from the AlertDialog.Builder
AlertDialog errorDialog = builder.create();
errorDialog.show(); // display the modal dialog

M04_DEIT3397_02_SE_C04.fm Page 161 Monday, July 7, 2014 8:59 AM

162 Chapter 4 Twitter® Searches App

Adding String Resources to strings.xml
To create String resources like R.string.missingMessage, open the strings.xml file lo-
cated in the project’s res/values folder. The IDE shows this file in a resource editor that
has two tabs—Resources and strings.xml. In the Resources tab, you can click Add… to dis-
play the dialog in Fig. 4.22. Selecting String and clicking OK displays Name and Value text-
fields where you can enter a new String resource’s name (e.g., missingMessage) and
value. Save your strings.xml file after making changes. You can also use the resource ed-
itor’s Resource tab to select an existing String resource to change its name and value.

Specifying the AlertDialog’s Positive Button
In this AlertDialog, we need only one button that allows the user to acknowledge the
message. We specify this as the dialog’s positive button (Fig. 4.21, line 102)—touching
this button indicates that the user acknowledges the message displayed in the dialog.
Method setPositiveButton receives the button’s label (specified with the String re-
source R.string.OK) and a reference to the button’s event handler. For this dialog, we
don’t need to respond to the event, so we specify null for the event handler. When the
user touches the button, the dialog is simply dismissed from the screen.

Creating and Showing the AlertDialog
You create the AlertDialog by calling the AlertDialog.Builder’s create method (line
105) and display the modal dialog by calling AlertDialog’s show method (line 106).

4.5.6 addTaggedSearch Method
The event handler in Fig. 4.21 calls MainActivity method addTaggedSearch (Fig. 4.23)
to add a new search to savedSearches or to modify an existing search.

Fig. 4.22 | Adding a String resource.

M04_DEIT3397_02_SE_C04.fm Page 162 Monday, July 7, 2014 8:59 AM

4.5 Building the MainActivity Class 163

Editing a SharedPreferences Object’s Contents
To change a SharedPreferences object’s contents, you must first call its edit method to
obtain a SharedPreferences.Editor object (line 115), which can add key–value pairs to,
remove key–value pairs from, and modify the value associated with a particular key in a
SharedPreferences file. Line 116 calls SharedPreferences.Editor method putString to
save the search’s tag (the key) and query (the corresponding value)—if the tag already exists
in the SharedPreferences this updates the value. Line 117 commits the changes by calling
SharedPreferences.Editor method apply to make the changes to the file.

Notifying the ArrayAdapter That Its Data Has Changed
When the user adds a new search, the ListView should be updated to display it. Lines
120–125 determine whether a new tag was added. If so, lines 122–123 add the new
search’s tag to tags, then sort tags. Line 124 calls the ArrayAdapter’s notifyDataSet-
Changed method to indicate that the underlying data in tags has changed. The adapter
then notifies the ListView to update its list of displayed items.

4.5.7 Anonymous Inner Class That Implements the ListView’s
OnItemClickListener to Display Search Results
Figure 4.24 declares and initializes instance variable itemClickListener, which refers to
an anonymous inner-class object that implements interface OnItemClickListener. Line 67
(Fig. 4.20) registered itemClickListener as the ListView’s event handler that responds
when the user touches an item in the ListView. Lines 131–145 override interface OnItem-
ClickListener’s onItemClick method. The method’s arguments are:

• The AdapterView where the user touched an item. The ? in AdapterView<?> is
a wildcard in Java generics indicating method onItemClick can receive an
AdapterView that displays any type of data—in this case, a ListView<String>.

• The View that the user touched in the AdapterView—in this case, the TextView
that displays a search tag.

111 // add new search to the save file, then refresh all Buttons
112 private void addTaggedSearch(String query, String tag)
113 {
114
115
116
117
118
119 // if tag is new, add to and sort tags, then display updated list
120 if (!tags.contains(tag))
121 {
122 tags.add(tag); // add new tag
123 Collections.sort(tags, String.CASE_INSENSITIVE_ORDER);
124
125 }
126 }
127

Fig. 4.23 | addTaggedSearch method of class MainActivity.

// get a SharedPreferences.Editor to store new tag/query pair
SharedPreferences.Editor preferencesEditor = savedSearches.edit();
preferencesEditor.putString(tag, query); // store current search
preferencesEditor.apply(); // store the updated preferences

adapter.notifyDataSetChanged(); // rebind tags to ListView

M04_DEIT3397_02_SE_C04.fm Page 163 Monday, July 7, 2014 8:59 AM

164 Chapter 4 Twitter® Searches App

• The zero-based index number of the item the user touched.

• The row ID of the item that was touched—this is used primarily for data ob-
tained from a database (as you’ll do in Chapter 8).

Getting String Resources
Line 136 gets the text of the View that the user touched in the ListView. Lines 137–138
create a String containing the Twitter search URL and the query to perform. First, line
137 calls Activity’s inherited method getString with one argument to get the String
resource named searchURL, which contains the Twitter search page’s URL:

As with all the String resources in this app, you should add this resource to strings.xml.

Getting Strings from a SharedPreferences Object
We append the result of line 138 to the search URL to complete the urlString. Shared-
Preferences method getString returns the query associated with the tag. If the tag does
not already exist, the second argument ("" in this case) is returned. Line 138 passes the query
to Uri method encode, which escapes any special URL characters (such as ?, /, :, etc.) and
returns a so-called URL-encoded String. This is important to ensure that the Twitter web
server that receives the request can parse the URL properly to obtain the search query.

Creating an Intent to Launch the Device’s Web Browser
Lines 141–142 create a new Intent, which we’ll use to launch the device’s web browser and
display the search results. Intents can be used to launch other activities in the same app or
in other apps. The first argument of Intent’s constructor is a constant describing the action

128 // itemClickListener launches web browser to display search results
129 OnItemClickListener itemClickListener = new OnItemClickListener()
130 {
131 @Override
132 public void onItemClick(AdapterView<?> parent, View view,
133 int position, long id)
134 {
135 // get query string and create a URL representing the search
136 String tag = ((TextView) view).getText().toString();
137 String urlString = +
138 ;
139
140
141
142
143
144
145 }
146 }; // end itemClickListener declaration
147

Fig. 4.24 | Anonymous inner class that implements the ListView’s OnItemClickListener to
display search results.

http://mobile.twitter.com/search/

getString(R.string.searchURL)
Uri.encode(savedSearches.getString(tag, ""), "UTF-8")

// create an Intent to launch a web browser
Intent webIntent = new Intent(Intent.ACTION_VIEW,
 Uri.parse(urlString));

startActivity(webIntent); // launches web browser to view results

M04_DEIT3397_02_SE_C04.fm Page 164 Monday, July 7, 2014 8:59 AM

4.5 Building the MainActivity Class 165

to perform. Intent.ACTION_VIEW indicates that we’d like to display a representation of the
data. Many constants are defined in the Intent class describing actions such as searching,
choosing, sending and playing. The second argument (line 142) is a Uri (uniform resource
identifier) representing the data on which we want to perform the action. Class Uri’s parse
method converts a String representing a URL (uniform resource locator) to a Uri.

Starting an Activity for an Intent
Line 144 passes the Intent to the inherited Activity method startActivity, which
starts an Activity that can perform the specified action on the given data. In this case,
because we’ve specified to view a URI, the Intent launches the device’s web browser to
display the corresponding web page. This page shows the results of the supplied Twitter
search.

4.5.8 Anonymous Inner Class That Implements the ListView’s
OnItemLongClickListener to Share, Edit or Delete a Search
Figure 4.25 declares and initializes instance variable itemLongClickListener, which re-
fers to an anonymous inner-class object that implements interface OnItemLongClickListen-
er. Line 70 (Fig. 4.20) registered itemLongClickListener as the ListView’s event
handler that responds when the user long presses an item in the ListView. Lines 153–210
override interface OnItemLongClickListener’s onItemLongClick method.

148 // itemLongClickListener displays a dialog allowing the user to delete
149 // or edit a saved search
150 OnItemLongClickListener itemLongClickListener =
151 new OnItemLongClickListener()
152 {
153 @Override
154 public boolean onItemLongClick(AdapterView<?> parent, View view,
155 int position, long id)
156 {
157 // get the tag that the user long touched
158 final String tag = ((TextView) view).getText().toString();
159
160 // create a new AlertDialog
161 AlertDialog.Builder builder =
162 new AlertDialog.Builder(MainActivity.this);
163
164 // set the AlertDialog's title
165 builder.setTitle(
166);
167
168 // set list of items to display in dialog
169 builder. (R.array.dialog_items,
170 new DialogInterface.OnClickListener()
171 {
172 // responds to user touch by sharing, editing or
173 // deleting a saved search

Fig. 4.25 | Anonymous inner class that implements the ListView’s
OnItemLongClickListener to share, edit or delete. (Part 1 of 2.)

getString(R.string.shareEditDeleteTitle, tag)

setItems

M04_DEIT3397_02_SE_C04.fm Page 165 Monday, July 7, 2014 8:59 AM

166 Chapter 4 Twitter® Searches App

final Local Variables for Use in Anonymous Inner Classes
Line 158 gets the text of the item the user long pressed and assigns it to final local variable
tag. Any local variable or method parameter that will be used in an anonymous inner class
must be declared final.

AlertDialog That Displays a List of Items
Lines 161–166 create an AlertDialog.Builder and set the dialog’s title to a formatted
String in which tag replaces the format specifier in the resource R.string.shareEdit-
DeleteTitle (which represents "Share, Edit or Delete the search tagged as \"%s\"").

174 @Override
175 public void onClick(DialogInterface dialog, int which)
176 {
177 switch (which)
178 {
179 case 0: // share
180 shareSearch(tag);
181 break;
182 case 1: // edit
183 // set EditTexts to match chosen tag and query
184 tagEditText.setText(tag);
185 queryEditText.setText(
186 savedSearches.getString(tag, ""));
187 break;
188 case 2: // delete
189 deleteSearch(tag);
190 break;
191 }
192 }
193 } // end DialogInterface.OnClickListener
194); // end call to builder.setItems
195
196 // set the AlertDialog's negative Button
197 builder. (getString(R.string.cancel),
198 new DialogInterface.OnClickListener()
199 {
200 // called when the "Cancel" Button is clicked
201 public void onClick(DialogInterface dialog, int id)
202 {
203
204 }
205 }
206); // end call to setNegativeButton
207
208 builder.create().show(); // display the AlertDialog
209 return true;
210 } // end method onItemLongClick
211 }; // end OnItemLongClickListener declaration
212

Fig. 4.25 | Anonymous inner class that implements the ListView’s
OnItemLongClickListener to share, edit or delete. (Part 2 of 2.)

setNegativeButton

dialog.cancel(); // dismiss the AlertDialog

M04_DEIT3397_02_SE_C04.fm Page 166 Monday, July 7, 2014 8:59 AM

4.5 Building the MainActivity Class 167

Line 166 calls Activity’s inherited method getString that receives multiple arguments—
this first is a String resource ID representing a format String and the remaining argu-
ments are the values that should replace the format specifiers in the format String. In ad-
dition to buttons, an AlertDialog can display a list of items in a ListView. Lines 169–194
specify that the dialog should display the array of Strings R.array.dialog_items (which
represents the Strings "Share", "Edit" and "Delete") and define an anonymous inner
class to respond when the user touches an item in the list.

Adding a String Array Resource to strings.xml
The array of Strings is defined as a String array resource in the strings.xml file. To add
a String array resource to strings.xml:

1. Follow the steps in Section 4.5.5 to add a String resource, but select String Array
rather than String in the dialog of Fig. 4.22, then click OK.

2. Specify the array’s name (dialog_items) in the Name textfield.

3. Select the array in the list of resources at the left side of the resource editor.

4. Click Add… then click OK to add a new Item to the array.

5. Specify the new Item’s value in the Value textfield.

Perform these steps for the items Share, Edit and Delete (in that order), then save the
strings.xml file.

Event Handler for the Dialog’s List of Items
The anonymous inner class in lines 170–193 determines which item the user selected in
the dialog’s list and performs the appropriate action. If the user selects Share, shareSearch
is called (line 180). If the user selects Edit, lines 184–186 display the search’s query and tag
in the EditTexts. If the user selects Delete, deleteSearch is called (line 189).

Configuring the Negative Button and Displaying the Dialog
Lines 197–206 configure the dialog’s negative button to dismiss the dialog if the user de-
cides not to share, edit or delete the search. Line 208 creates and shows the dialog.

4.5.9 shareSearch Method
Method shareSearch (Fig. 4.26) is called by the event handler in Fig. 4.25 when the user
selects to share a search. Lines 217–218 create a String representing the search to share.
Lines 221–227 create and configure an Intent that allows the user to send the search URL
using an Activity that can handle the Intent.ACTION_SEND (line 222).

213 // allows user to choose an app for sharing a saved search's URL
214 private void shareSearch(String tag)
215 {
216 // create the URL representing the search
217 String urlString = getString(R.string.searchURL) +
218 Uri.encode(savedSearches.getString(tag, ""), "UTF-8");
219

Fig. 4.26 | shareSearch method of class MainActivity. (Part 1 of 2.)

M04_DEIT3397_02_SE_C04.fm Page 167 Monday, July 7, 2014 8:59 AM

168 Chapter 4 Twitter® Searches App

Adding Extras to an Intent
An Intent includes a Bundle of extras—additional information that’s passed to the Activ-
ity that handles the Intent. For example, an e-mail Activity can receive extras represent-
ing the e-mail’s subject, CC and BCC addresses, and the body text. Lines 223–226 use
Intent method putExtra to add an extra as a key–value pair to the Intent’s Bundle. The
method’s first argument is a String key representing the purpose of the extra and the sec-
ond argument is the corresponding extra data. Extras may be primitive type values, prim-
itive type arrays, entire Bundle objects and more—see class Intent’s documentation for a
complete list of the putExtra overloads.

The extra at lines 223–224 specifies an e-mail’s subject with the String resource
R.string.shareSubject ("Twitter search that might interest you"). For an Activity
that does not use a subject (such as sharing on a social network), this extra is ignored. The
extra at lines 225–226 represents the text to share—a formatted String in which the url-
String is substituted into the String resource R.string.shareMessage ("Check out the
results of this Twitter search: %s"). Line 227 sets the Intent’s MIME type to text/
plain—such data can be handled by any Activity capable of sending plain text messages.

Displaying an Intent Chooser
To display the intent chooser shown in Fig. 4.8(a), we pass the Intent and a String title
to Intent’s static createChooser method (line 230). The resource R.string.share-
Search ("Share Search to:") is used as the intent chooser’s title. It’s important to set this
title to remind the user to select an appropriate Activity. You cannot control the apps
installed on a user’s phone or the Intent filters that can launch those apps, so it’s possible
that incompatible activities could appear in the chooser. Method createChooser returns
an Intent that we pass to startActivity to display the intent chooser.

4.5.10 deleteSearch Method
The event handler in Fig. 4.25 calls method deleteSearch (Figure 4.27) when the user
long presses a search tag and selects Delete. Before deleting the search, the app displays an
AlertDialog to confirm the delete operation. Lines 241–242 set the dialog’s title to a for-
matted String in which tag replaces the format specifier in the String resource

220 // create Intent to share urlString
221 Intent shareIntent = new Intent();
222
223
224
225
226
227
228
229
230
231
232 }
233

Fig. 4.26 | shareSearch method of class MainActivity. (Part 2 of 2.)

shareIntent.setAction(Intent.ACTION_SEND);
shareIntent.putExtra(Intent.EXTRA_SUBJECT,
 getString(R.string.shareSubject));
shareIntent.putExtra(Intent.EXTRA_TEXT,
 getString(R.string.shareMessage, urlString));
shareIntent.setType("text/plain");

// display apps that can share text
startActivity(Intent.createChooser(shareIntent,
 getString(R.string.shareSearch)));

M04_DEIT3397_02_SE_C04.fm Page 168 Monday, July 7, 2014 8:59 AM

4.5 Building the MainActivity Class 169

R.string.confirmMessage ("Are you sure you want to delete the search \"%s\"?").
Lines 245–254 configure the dialog’s negative button to dismiss the dialog. The String
resource R.string.cancel represents "Cancel". Lines 257–275 configure the dialog’s
positive button to remove the search. The String resource R.string.delete represents
"Delete". Line 263 removes the tag from the tags collection, and lines 266–269 use a
SharedPreferences.Editor to remove the search from the app’s SharedPreferences.
Line 272 then notifies the ArrayAdapter that the underlying data has changed so that the
ListView can update its displayed list of items.

234 // deletes a search after the user confirms the delete operation
235 private void deleteSearch(String tag)
236 {
237 // create a new AlertDialog
238 AlertDialog.Builder confirmBuilder = new AlertDialog.Builder(this);
239
240 // set the AlertDialog's message
241 confirmBuilder.setMessage(
242 getString(R.string.confirmMessage, tag));
243
244 // set the AlertDialog's negative Button
245 confirmBuilder.setNegativeButton(getString(R.string.cancel),
246 new DialogInterface.OnClickListener()
247 {
248 // called when "Cancel" Button is clicked
249 public void onClick(DialogInterface dialog, int id)
250 {
251 dialog.cancel(); // dismiss dialog
252 }
253 }
254); // end call to setNegativeButton
255
256 // set the AlertDialog's positive Button
257 confirmBuilder.setPositiveButton(getString(R.string.delete),
258 new DialogInterface.OnClickListener()
259 {
260 // called when "Cancel" Button is clicked
261 public void onClick(DialogInterface dialog, int id)
262 {
263 tags.remove(tag); // remove tag from tags
264
265 // get SharedPreferences.Editor to remove saved search
266 SharedPreferences.Editor preferencesEditor =
267 savedSearches.edit();
268
269 preferencesEditor.apply(); // saves the changes
270
271 // rebind tags ArrayList to ListView to show updated list
272 adapter.notifyDataSetChanged();
273 }
274 } // end OnClickListener
275); // end call to setPositiveButton

Fig. 4.27 | deleteSearch method of class MainActivity. (Part 1 of 2.)

final

preferencesEditor.remove(tag); // remove search

M04_DEIT3397_02_SE_C04.fm Page 169 Monday, July 7, 2014 8:59 AM

170 Chapter 4 Twitter® Searches App

4.6 AndroidManifest.xml
In Section 3.6, you made two changes to the AndroidManifest.xml file:

• The first indicated that the Tip Calculator app supported only portrait orientation.

• The second forced the soft keyboard to be displayed when the app started execut-
ing so that the user could immediately enter a bill amount in the Tip Calculator
app.

This app supports both portrait and landscape orientations. No changes are required to
indicate this, because all apps support both orientations by default.

In this app, most users will launch this app so that they can perform one of their saved
searches. When the first GUI component in the GUI is an EditText, Android gives that
component the focus when the app loads. As you know, when an EditText receives the
focus, its corresponding soft keyboard is displayed (unless a hardware keyboard is present).
In this app, we want to prevent the soft keyboard from being displayed unless the user
touches one of the app’s EditTexts. To do so, follow the steps in Section 3.6 for setting
the Window soft input mode option, but set its value to stateAlwaysHidden.

4.7 Wrap-Up
In this chapter, you created the Twitter Searches app. First you designed the GUI. We in-
troduced the ListView component for displaying a scrollable list of items and used it to
display the arbitrarily large list of saved searches. Each search was associated with an item
in the ListView that the user could touch to pass the search to the device’s web browser.
You also learned how to create String resources for use in your Java code.

We stored the search tag–query pairs in a SharedPreferences file associated with the
app and showed how to programmatically hide the soft keyboard. We also used a Shared-
Preferences.Editor object to store values in, modify values in and remove values from a
SharedPreferences file. In response to the user touching a search tag, we loaded a Uri
into the device’s web browser by creating a new Intent and passing it to Context’s start-
Activity method. You also used an Intent to display an intent chooser allowing the user
to select an Activity for sharing a search.

You used AlertDialog.Builder objects to configure and create AlertDialogs for
displaying messages to the user. Finally, we discussed the AndroidManifest.xml file and
showed you how to configure the app so that the soft keyboard is not displayed when the
app is launched.

In Chapter 5, you’ll build the Flag Quiz app in which the user is shown a graphic of a
country’s flag and must guess the country from 3, 6 or 9 choices. You’ll use a menu and
checkboxes to customize the quiz, limiting the flags and countries chosen to specific
regions of the world.

276
277 confirmBuilder.create().show(); // display AlertDialog
278 } // end method deleteSearch
279 } // end class MainActivity

Fig. 4.27 | deleteSearch method of class MainActivity. (Part 2 of 2.)

M04_DEIT3397_02_SE_C04.fm Page 170 Monday, July 7, 2014 8:59 AM

 Self-Review Exercises 171

Self-Review Exercises
4.1 Fill in the blanks in each of the following statements:

a) are typically used to launch activities—they indicate an action to be per-
formed and the data on which that action is to be performed.

b) Class of package android.content is used to manipulate persistent key-
value pairs that are stored in files associated with the app.

c) Lengthy data access should never be done in the UI thread; otherwise, the app will dis-
play a(n) dialog—typically after five seconds of inactivity.

d) An Intent is a description of an action to be performed with associated .
e) Intents specify an exact Activity class to run in the same app.
f) When you create the project for each Android app in Eclipse, the ADT Plugin creates

and configures the file (also known as the app’s manifest), which describes
information about the app.

g) A standard AlertDialog may have up to three buttons that represent ,
 and actions.

h) A(n) creates an object that populates the ListView using data from an Ar-
rayList collection object.

i) is a subclass of ImageView which provides additional capabilities that en-
able an image to be used like a Button object.

4.2 State whether each of the following is true or false. If false, explain why.
a) Extensive input/output should be performed on the UI thread; otherwise, this will af-

fect your app’s responsiveness.
b) Class Context of package android.content gives access to information about the app’s

environment and lets you use various Android services.
c) When an Activity’s primary task is to display a scrollable list of items, you can extend

class ListActivity, which uses a ListView that occupies the entire app as its default lay-
out.

d) ListView is a subclass of Adapter—a GUI component is bound to a data source.
e) When customizing a ListActivity subclass’s GUI, the layout must contain a ListView

with its Id attribute set to "@android:id/list"—the name that class ListActivity uses
to reference its ListView.

Answers to Self-Review Exercises
4.1 a) Intents. b) SharedPreferences. c) Application Not Responding (ANR). d) data. e) Ex-
plicit. f) AndroidManifest.xml. g) positive, negative, neutral. h) ArrayAdapter. i) ImageButton.

4.2 a) False. Extensive input/output should not be performed on the UI thread, since that
would affect your app’s responsiveness. b) True. c) True. d) False. ListView is a subclass of Adapt-
erView—a GUI component is bound to a data source via an Adapter object. e) True.

Exercises
4.1 Fill in the blanks in each of the following statements:

a) A layout fills the entire client area of the screen if the layout’s Width and Height proper-
ties (in the Layout Parameters section of the Properties window) are each set to

.
b) is used to display a scrollable list of views/items.
c) To create an object that populates the ListView using data from an ArrayList collec-

tion object, we use of package android.widget.

M04_DEIT3397_02_SE_C04.fm Page 171 Friday, June 20, 2014 5:59 PM

172 Chapter 4 Twitter® Searches App

d) ImageButton is a subclass of which provides additional capabilities en-
abling an image to be used like a Button object.

e) If the Android system cannot find an activity to handle any intent action, then method
startActivity throws an Exception.

f) A(n) is a GUI that shows a list of apps that can handle a specified Intent.

4.2 State whether each of the following is true or false. If false, explain why.
a) Android uses the intent messaging technique to communicate information between ac-

tivities within one app or activities in separate apps.
b) You implement interface View.OnClickListener of package android.view to specify

the code that should execute when the user touches a Button.
c) SharedPreferences objects can store keys and values of non-primitive data types.
d) An explicit Intent allows the system to launch the most appropriate Activity based on

the type of data.

Project Exercises
4.3 (Favorite Celebrities App) Using the techniques you learned in this chapter, create a Favorite
Celebrities app that allows a user to create a list of favorite celebrities.

4.4 (Enhancements to the Favorite Celebrities App) Enhance the Favorite Celebrities App to allow
the user to search for celebrities based on filters like name, area of interest, location/country and
popularity.

4.5 (Flickr Searches App) Investigate Flickr’s photo search API (http://www.flickr.com/
services/api/flickr.photos.search.html), then reimplement this chapter’s Twitter Searches app
as a Flickr Searches app.

4.6 (Enhanced Flickr Searches App) Enhance the Flickr Searches app from Exercise 4.5 to allow
the user to add filters to searches (e.g., include only images containing a specific color, shape, object,
etc.).

4.7 (Word Scramble Game) Create an app that scrambles the letters of a word or phrase and asks
the user to enter the correct word or phrase. Keep track of the user’s high score in the app’s Shared-
Preferences. Include levels (three-, four-, five-, six- and seven-letter words). As a hint to the user,
provide a definition with each word. [Optional: Locate a free dictionary web service, then use it to
select the words and definitions.]

Advanced Project Exercises
4.8 (Blackjack App) Create a Blackjack card game app. Two cards each are dealt to the dealer
and the player. (We provide card images with the book’s examples.) The player’s cards are dealt face
up. Only the dealer’s first card is dealt face up. Each card has a value. A card numbered 2 through
10 is worth its face value. Jacks, queens and kings each count as 10. Aces can count as 1 or
11—whichever value is more beneficial to the player. If the sum of the player’s two initial cards is
21 (that is, the player was dealt a card valued at 10 and an ace, which counts as 11 in this situation),
the player has “blackjack” and the dealer’s face-down card is revealed. If the dealer does not have
blackjack, the player immediately wins the game; otherwise, the hand is a “push” (that is, a tie) and
no one wins the hand. If the player does not have blackjack, the player can begin taking additional
cards one at a time. These cards are dealt face up, and the player decides when to stop taking cards.
If the player “busts” (that is, the sum of the player’s cards exceeds 21), the game is over, and the player
loses. When the player stands (stops taking cards), the dealer’s hidden card is revealed. If the dealer’s
total is 16 or less, the dealer must take another card; otherwise, the dealer must stay. The dealer must
continue to take cards until the sum of the dealer’s cards is greater than or equal to 17. If the dealer
exceeds 21, the player wins. Otherwise, the hand with the higher point total wins. If the dealer and

M04_DEIT3397_02_SE_C04.fm Page 172 Friday, June 20, 2014 5:59 PM

 Exercises 173

the player have the same point total, the game is a “push,” and no one wins. The GUI for this app
can be built using ImageViews, TextViews and Buttons.

4.9 (Enhanced Blackjack App) Enhance the Blackjack app in Exercise 4.8 as follows:
a) Provide a betting mechanism that allows the player to start with $1000 and adds or sub-

tracts from that value based on whether the user wins or loses a hand. If the player wins
with a non-blackjack hand, the bet amount is added to the total. If the player wins with
blackjack, 1.5 times the bet amount is added to the total. If the player loses the hand,
the bet amount is subtracted from the total. The game ends when the user runs out of
money.

b) Locate images of casino chips and use them to represent the bet amount on the screen.
c) Investigate Blackjack rules online and provide capabilities for “doubling down,” “sur-

rendering” and other aspects of the game.
d) Some casinos use variations of the standard Blackjack rules. Provide options that allow

the user to choose the rules under which the game should be played.
e) Some casinos use different numbers of decks of cards. Allow the user to choose how

many decks should be used.
f) Allow the user to save the game’s state to continue at a later time.

4.10 (Other Card Game Apps) Investigate the rules for any card game of your choice online and
implement the game as an app.

4.11 (Solitaire Card Game) Search the web for the rules to various solitaire card games. Choose
the version of the game you like then implement it. (We provide card images with the book’s exam-
ples.)

M04_DEIT3397_02_SE_C04.fm Page 173 Monday, July 7, 2014 8:59 AM

5 Flag Quiz App

O b j e c t i v e s
In this chapter you’ll:

■ Use Fragments to make
better use of available screen
real estate in an Activity’s
GUI on phones and tablets.

■ Display an options menu on
the action bar to enable users
to configure the app’s
preferences.

■ Use a Preference-
Fragment to automatically
manage and persist an app’s
user preferences.

■ Use an app’s assets
subfolders to organize image
resources and manipulate
them with an
AssetManager.

■ Define an animation and
apply it to a View.

■ Use a Handler to schedule a
future task to perform on the
GUI thread.

■ Use Toasts to display
messages briefly to the user.

■ Launch a specific Activity
with an explicit Intent.

■ Use various collections from
the java.util package.

■ Define layouts for multiple
device orientations.

■ Use Android’s logging
mechanism to log error
messages.

M05_DEIT3397_02_SE_C05.fm Page 174 Tuesday, July 8, 2014 8:29 AM

5.1 Introduction 175

5.1 Introduction
The Flag Quiz app tests your ability to correctly identify 10 country flags (Fig. 5.1). Initially,
the app presents a flag image and three guess Buttons representing the possible country an-
swers—one matches the flag and the others are randomly selected, nonduplicated incorrect
answers. The app displays the user’s progress throughout the quiz, showing the question
number (out of 10) in a TextView above the current flag image. As you’ll see, the app also
allows you to control the quiz difficulty by specifying whether to display three, six or nine
guess Buttons, and by choosing the world regions that should be included in the quiz.
These options are displayed differently based on the device that’s running the app and the
orientation of the device—the app supports portrait orientation on any device, but land-
scape orientation only on tablets. In portrait orientation, the app displays on the action bar
an options menu containing a Settings menu item. When the user selects this item, the app

5.1 Introduction
5.2 Test-Driving the Flag Quiz App

5.2.1 Importing the App and Running It
5.2.2 Configuring the Quiz
5.2.3 Taking the Quiz

5.3 Technologies Overview
5.3.1 Menus
5.3.2 Fragments
5.3.3 Fragment Lifecycle Methods
5.3.4 Managing Fragments
5.3.5 Preferences
5.3.6 assets Folder
5.3.7 Resource Folders
5.3.8 Supporting Different Screen Sizes and

Resolutions
5.3.9 Determining the Screen Size

5.3.10 Toasts for Displaying Messages
5.3.11 Using a Handler to Execute a

Runnable in the Future
5.3.12 Applying an Animation to a View
5.3.13 Logging Exception Messages
5.3.14 Using an Explicit Intent to Launch

Another Activity in the Same App
5.3.15 Java Data Structures

5.4 Building the GUI and Resource Files
5.4.1 Creating the Project
5.4.2 strings.xml and Formatted

String Resources
5.4.3 arrays.xml
5.4.4 colors.xml
5.4.5 dimens.xml
5.4.6 activity_settings.xml Layout
5.4.7 activity_main.xml Layout for

Phone and Tablet Portrait Orientation
5.4.8 fragment_quiz.xml Layout
5.4.9 activity_main.xml Layout for

Tablet Landscape Orientation

5.4.10 preferences.xml for Specifying
the App’s Settings

5.4.11 Creating the Flag Shake Animation
5.5 MainActivity Class

5.5.1 package Statement, import
Statements and Fields

5.5.2 Overridden Activity Method
onCreate

5.5.3 Overridden Activity Method
onStart

5.5.4 Overridden Activity Method
onCreateOptionsMenu

5.5.5 Overridden Activity Method
onOptionsItemSelected

5.5.6 Anonymous Inner Class That
Implements OnShared-
PreferenceChangeListener

5.6 QuizFragment Class
5.6.1 package Statement and import

Statements
5.6.2 Fields
5.6.3 Overridden Fragment Method

onCreateView
5.6.4 Method updateGuessRows
5.6.5 Method updateRegions
5.6.6 Method resetQuiz
5.6.7 Method loadNextFlag
5.6.8 Method getCountryName
5.6.9 Anonymous Inner Class That

Implements OnClickListener
5.6.10 Method disableButtons

5.7 SettingsFragment Class
5.8 SettingsActivity Class
5.9 AndroidManifest.xml

5.10 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

M05_DEIT3397_02_SE_C05.fm Page 175 Monday, July 7, 2014 9:01 AM

176 Chapter 5 Flag Quiz App

displays an Activity for setting the number of guess Buttons and the world regions to use
in the quiz. On a tablet in landscape orientation (Fig. 5.2), the app uses a different layout
that displays the app’s settings at the left side of the screen and the quiz at the right side.

Fig. 5.1 | Flag Quiz app running on a smartphone in portrait orientation.

Fig. 5.2 | Flag Quiz app running on a tablet in landscape orientation.

Quiz progress

Guess Buttons

Current flag

Options menu displayed in
the action bar

M05_DEIT3397_02_SE_C05.fm Page 176 Monday, July 7, 2014 9:01 AM

5.2 Test-Driving the Flag Quiz App 177

First, you’ll test-drive the app. Then we’ll overview the technologies used to build it.
Next, you’ll design the app’s GUI. Finally, we’ll present the app’s complete source code
and walk through the code, discussing the app’s new features in more detail.

5.2 Test-Driving the Flag Quiz App
You’ll now test-drive the Flag Quiz app. Open the IDE and import the Flag Quiz app proj-
ect. You can test this app on a phone AVD, tablet AVD or actual device. The screen cap-
tures in this chapter were taken on a Nexus 4 phone and a Nexus 7 tablet.

5.2.1 Importing the App and Running It
Perform the following steps to import the app into the IDE:

1. Opening the Import dialog. Select File > Import….

2. Importing the Flag Quiz app’s project. Expand the General node and select Exist-
ing Projects into Workspace. Click Next > to proceed to the Import Projects step.
Ensure that Select root directory is selected, then click Browse…. Locate the
FlagQuiz folder in the book’s examples folder, select it and click OK. Ensure that
Copy projects into workspace is not selected. Click Finish to import the project so
that it appears in the Package Explorer window.

3. Launching the Flag Quiz app. Right click the FlagQuiz project and select Run As
> Android Application to execute the app in the AVD or on a device. This builds
the project and runs the app (Fig. 5.1 or Fig. 5.2).

5.2.2 Configuring the Quiz
When you first install and run the app, the quiz is configured to display three guess Buttons
and to select flags from all of the world’s regions. For this test-drive, you’ll change the app’s
options to select flags only from North America and you’ll keep the app’s default setting of
three guess Buttons per flag. On a phone, a tablet or AVD in portrait orientation, touch the
options menu icon (, Fig. 5.1) on the action bar to open the menu, then select Settings so
you can view the app’s options in the Flag Quiz Settings screen (Fig. 5.3(a)). On a tablet de-
vice or tablet AVD in landscape orientation, the app’s settings options appear at the left side
of the screen (Fig. 5.2). Touch Number of Choices to display the dialog (Fig. 5.3(b)) for se-
lecting the number of Buttons that should be displayed with each flag. (On a tablet device
or tablet AVD in landscape orientation, the entire app is grayed out and the dialog appears
in the center of the screen.) By default, 3 is selected. To make the quiz more challenging, you
can select 6 or 9 and touch OK; otherwise, touch Cancel to return to the Flag Quiz Settings
screen. We used the default setting of three guess Buttons for this test-drive.

Next, touch Regions (Fig. 5.4(a)) to display the checkboxes representing the world
regions (Fig. 5.4(b)). By default, all regions are enabled when the app is first executed, so
any of the world’s flags can be selected randomly for the quiz. Touch the checkboxes next
to Africa, Asia, Europe, Oceania and South America to uncheck them—this excludes those
regions’ countries from the quiz. Touch OK to reset the quiz with the updated settings. On
a phone, a tablet or AVD in portrait orientation, touch the back button () to return
to the quiz. On a tablet device or tablet AVD in landscape orientation, a quiz with the
updated settings is immediately displayed at the right side of the screen.

M05_DEIT3397_02_SE_C05.fm Page 177 Monday, July 7, 2014 9:01 AM

178 Chapter 5 Flag Quiz App

Fig. 5.3 | Flag Quiz settings screen and the Number of Choices dialog.

Fig. 5.4 | Flag Quiz settings screen and the Regions dialog.

Number of Choices
selected

3 is selected so
three guess

Buttons will be
displayed with

each flag

a) Menu with the user touching Number of Choices b) Dialog showing options for number of choices

Regions selected

Only flags from
North America will

be used in the quiz

a) Menu with the user touching Regions b) Dialog showing regions

M05_DEIT3397_02_SE_C05.fm Page 178 Monday, July 7, 2014 9:01 AM

5.2 Test-Driving the Flag Quiz App 179

5.2.3 Taking the Quiz
A new quiz starts with the number of answer choices you selected and flags from only the
North America region. Work through the quiz by touching the guess Button for the coun-
try that you think matches each flag.

Making a Correct Selection
If the choice is correct (Fig. 5.5(a)), the app disables all the answer Buttons and displays
the country name in green followed by an exclamation point at the bottom of the screen
(Fig. 5.5(b)). After a short delay, the app loads the next flag and displays a new set of an-
swer Buttons.

User Making an Incorrect Selection
If you select incorrectly (Fig. 5.6(a)), the app disables the corresponding country name
Button, uses an animation to shake the flag and displays Incorrect! in red at the bottom of
the screen (Fig. 5.6(b)). Keep guessing until you get the correct answer for that flag.

Completing the Quiz
After you select the 10 correct country names, a popup AlertDialog displays over the app
and shows your total number of guesses and the percentage of correct answers (Fig. 5.7).
When you touch the dialog’s Reset Quiz Button, a new quiz begins based on the current
quiz options.

Fig. 5.5 | User choosing the correct answer and the correct answer displayed.

User touching the
correct answer

Correct answer
displayed in green

All Buttons are
disabled when user

guesses correctly

a) Choosing the correct answer b) Correct answer displayed

M05_DEIT3397_02_SE_C05.fm Page 179 Monday, July 7, 2014 9:01 AM

180 Chapter 5 Flag Quiz App

Fig. 5.6 | Disabled incorrect answer in the Flag Quiz app.

Fig. 5.7 | Results displayed after quiz completion.

User touching an
incorrect answer

“Incorrect!”
displayed in red

Incorrect answer disabled

a) Choosing an incorrect answer b) Incorrect! displayed

Reset Quiz Button

AlertDialog

App is grayed out when the
AlertDialog is displayed

M05_DEIT3397_02_SE_C05.fm Page 180 Monday, July 7, 2014 9:01 AM

5.3 Technologies Overview 181

5.3 Technologies Overview
This section introduces the features you’ll use to build the Flag Quiz app.

5.3.1 Menus
When you create an app’s project in the IDE, the MainActivity is configured to display
an options menu () at the right side of the action bar. The menu contains a Settings
menu item that’s typically used to display an app’s settings to the user. In later apps, you’ll
learn how to create additional menu items and how to decide which items should be dis-
played directly on the action bar vs. in the options menu.

The options menu is an object of class Menu (package android.view). To specify Menu
options, you override Activity’s onCreateOptionsMenu method (Section 5.5.4) to add
the options to the method’s Menu argument. When the user selects a menu item, Activity
method onOptionsItemSelected (Section 5.5.5) responds to the selection.

5.3.2 Fragments
A fragment typically represents a reusable portion of an Activity’s user interface, but may
also represent reusable program logic. This app uses fragments to create and manage por-
tions of the app’s GUI. You can combine several fragments to create user interfaces that
take advantage of tablet screen sizes. You also can easily interchange fragments to make
your GUIs more dynamic—you’ll learn about this in Chapter 8.

Fragment (package android.app) is the base class of all fragments. The Flag Quiz app
defines the following direct and indirect Fragment subclasses:

• Class QuizFragment (Section 5.6)—a direct subclass of Fragment—displays the
quiz’s GUI and defines the quiz’s logic. Like an Activity, each Fragment has its
own layout that’s typically defined as a layout resource, but can be created dy-
namically. In Section 5.4.8, you’ll build QuizFragment’s GUI. You’ll use the
QuizFragment in MainActivity’s layouts—one for devices in portrait orientation
and one for tablet devices in landscape orientation.

• Class SettingsFragment (Section 5.7) is a subclass of PreferenceFragment
(package android.preference), which can automatically maintain an app’s user
preferences in a SharedPreferences file on the device. As you’ll see, you can cre-
ate an XML file that describes the user preferences and class PreferenceFragment
can use that XML file to build an appropriate preferences GUI (Figs. 5.3–5.4).

• When you finish a quiz, the QuizFragment creates an anonymous inner class that
extends DialogFragment (package android.app) and uses it to display an Alert-
Dialog containing the quiz results (Section 5.6.9).

Fragments must be hosted by an Activity—they cannot execute independently.
When this app runs in landscape orientation on a tablet, the MainActivity hosts all of the
Fragments. In portrait orientation (on any device), the SettingsActivity (Section 5.8)
hosts the SettingsFragment and the MainActivity hosts the others.

Though Fragments were introduced in Android 3.0, Fragments and other more recent
Android features can be used in earlier versions via the Android Support Library. For more
information, visit:

http://developer.android.com/tools/support-library/index.html

M05_DEIT3397_02_SE_C05.fm Page 181 Monday, July 7, 2014 9:01 AM

182 Chapter 5 Flag Quiz App

5.3.3 Fragment Lifecycle Methods
Like an Activity, each Fragment has a lifecycle and provides methods that you can over-
ride to respond to lifecycle events. In this app, you’ll override:

• onCreate—This method (which you’ll override in class SettingsFragment) is
called when a Fragment is created. The QuizFragment and SettingsFragment are
created when their parent activities’ layouts are inflated, and the DialogFragment
that displays the quiz results is created when you complete a quiz.

• onCreateView—This method (which you’ll override in class QuizFragment) is
called after onCreate to build and return a View containing the Fragment’s GUI.
As you’ll see, this method receives a LayoutInflater, which you’ll use to pro-
grammatically inflate a Fragment’s GUI from the components specified in a pre-
defined XML layout.

We’ll discuss other Fragment lifecycle methods as we encounter them throughout the
book. For the complete lifecycle details, visit:

5.3.4 Managing Fragments
A parent Activity manages its Fragments with a FragmentManager (package android.app)
that’s returned by the Activity’s getFragmentManager method. If the Activity needs to
interact with a Fragment that’s declared in the Activity’s layout and has an Id, the Activity
can call FragmentManager method findFragmentById to obtain a reference to the specified
Fragment. As you’ll see in Chapter 8, a FragmentManager can use FragmentTransactions
(package android.app) to dynamically add, remove and transition between Fragments.

5.3.5 Preferences
In Section 5.2.2, you changed the app’s settings to customize the quiz. A Preference-
Fragment uses Preference objects (package android.preference) to manage these set-
tings. This app uses Preference subclass ListPreference to manage the number of guess
Buttons displayed for each flag and Preference subclass MultiSelectListPreference to
manage the world regions to include in the quiz. A ListPreference’s items are mutually
exclusive, whereas any number of items can be selected in a MultiSelectListPreference.
You’ll use a PreferenceManager object (package android.preference) to access and in-
teract with the app’s preferences.

5.3.6 assets Folder
This app’s flag images1 are loaded into the app only when needed and are located in the
app’s assets folder. To add the images to the project, we dragged each region’s folder
from our file system onto the assets folder in the Package Explorer. The images are lo-
cated in the images/FlagQuizImages folder with the book’s examples.

Unlike an app’s drawable folders, which require their image contents to be at the root
level in each folder, the assets folder may contain files of any type and they can be orga-
nized in subfolders—we maintain the flag images for each region in a separate subfolder.

http://developer.android.com/guide/components/fragments.html

1. We obtained the images from www.free-country-flags.com.

M05_DEIT3397_02_SE_C05.fm Page 182 Monday, July 7, 2014 9:01 AM

5.3 Technologies Overview 183

Files in the assets subfolders are accessed via an AssetManager (package android.con-
tent.res), which can provide a list of all of the file names in a specified subfolder and can
be used to access each asset.

5.3.7 Resource Folders
In Section 2.4.4, you learned about the drawable, layout and values subfolders of an
app’s res folder. In this app, you’ll also use the menu, anim and xml resource folders.
Figure 5.8 overviews these subfolders as well as the animator, color and raw subfolders.

5.3.8 Supporting Different Screen Sizes and Resolutions
In Section 2.5.1 you learned that Android devices have various screen sizes, resolutions and
pixel densities (dots per inch or DPI). You also learned that you typically provide images
and other visual resources in multiple resolutions so Android can choose the best resource
for a device’s pixel density. Similarly, in Section 2.8, you learned how to provide string re-
sources for different languages and regions. Android uses resource folders with qualified
names to choose the appropriate images based on a device’s pixel density and the correct
language strings based on a device’s locale and region settings. This mechanism also can
be used to select resources from any of the resource folders discussed in Section 5.3.7.

Resource subfolder Description

anim Folder names that begin with anim contain XML files that define
tweened animations, which can change an object’s transparency, size,
position and rotation over time. We’ll define such an animation in
Section 5.4.11 then play it in Section 5.6.9 to create a shake effect for
visual feedback to the user.

animator Folder names that begin with animator contain XML files that define
property animations, which change the value of a property of an object
over time. In Java, a property is typically implemented in a class as an
instance variable with both set and get accessors.

color Folder names that begin with color contain XML files that define a
list of colors for various states, such as the states of a Button
(unpressed, pressed, enabled, etc.).

raw Folder names that begin with raw contain resource files (such as audio
clips) that are read into an app as streams of bytes. We’ll use such
resources in Chapter 6 to play sounds.

menu Folder names that begin with menu contain XML files that describe
the contents of menus. When you create a project, the IDE automat-
ically defines a menu with a Settings option.

xml Folder names that begin with xml contain XML files that do not fit
into the other resource categories. These are often raw XML data files
used by the app. In Section 5.4.10, you’ll create an XML file that rep-
resents the preferences displayed by this app’s SettingsFragment.

Fig. 5.8 | Other subfolders within a project’s res folder.

M05_DEIT3397_02_SE_C05.fm Page 183 Monday, July 7, 2014 9:01 AM

184 Chapter 5 Flag Quiz App

For this app’s MainActivity, you’ll use size and orientation qualifiers to determine
which layout to use—one for portrait orientation on phones and tablets and another for
landscape orientation only on tablets. To do this, you’ll define two MainActivity layouts:

• activity_main.xml in the project’s res/layout folder is the default layout.

• activity_main.xml in the project’s res/layout-large-land folder is used only
on large devices (i.e., tablets) when the app is in landscape (land) orientation.

Qualified resource folder names have the format:

where qualifiers consists of one or more qualifiers separated by dashes (-). There are 18
types of qualifiers that you can add to resource folder names. We’ll explain other qualifiers
as we use them throughout the book. For a complete description of all the res subfolder
qualifiers and the rules for the order in which they must be defined in a folder’s name, visit:

5.3.9 Determining the Screen Size
In this app, we display the Menu only when the app is running on a phone-sized device or
when it’s running on a tablet in portrait orientation (Section 5.5.4). To determine this,
we’ll use Android’s WindowManager (package android.view) to obtain a Display object
that contains the display’s current width and height. This changes with the device’s orien-
tation—in portrait orientation, the device’s width is less than its height.

5.3.10 Toasts for Displaying Messages
A Toast (package android.widget) briefly displays a message, then disappears from the
screen. Toasts are often used to display minor error messages or informational messages,
such as that the quiz will be reset after the user changes the app’s preferences. When the user
changes the preferences, we display a Toast to indicate that the quiz will start over. We also
display a Toast to indicate that at least one region must be selected if the user deselects all
regions—in this case, the app sets North America as the default region for the quiz.

5.3.11 Using a Handler to Execute a Runnable in the Future
When the user makes a correct guess, the app displays the correct answer for two seconds
before displaying the next flag. To do this, we use a Handler (package android.os).
Handler method postDelayed receives as arguments a Runnable to execute and a delay in
milliseconds. After the delay has passed, the Handler’s Runnable executes in the same
thread that created the Handler. Operations that interact with or modify the GUI must be
performed in the GUI thread, because GUI components are not thread safe.

5.3.12 Applying an Animation to a View
When the user makes an incorrect choice, the app shakes the flag by applying an Anima-
tion (package android.view.animation) to the ImageView. We use AnimationUtils
static method loadAnimation to load the animation from an XML file that specifies the
animation’s options. We also specify the number of times the animation should repeat

name-qualifiers

http://developer.android.com/guide/topics/resources/
 providing-resources.html#AlternativeResources

M05_DEIT3397_02_SE_C05.fm Page 184 Monday, July 7, 2014 9:01 AM

5.4 Building the GUI and Resource Files 185

with Animation method setRepeatCount and perform the animation by calling View
method startAnimation (with the Animation as an argument) on the ImageView.

5.3.13 Logging Exception Messages
When exceptions occur, you can log them for debugging purposes with Android’s built-in
logging mechanism. Android provides class Log (package android.util) with several
static methods that represent messages of varying detail. Logged messages can be viewed
in the LogCat tab at the bottom of the IDE as well as with the Android logcat tool. For
more details on logging messages, visit

5.3.14 Using an Explicit Intent to Launch Another Activity in the
Same App
When this app runs in portrait orientation, the app’s preferences are displayed in the Set-
tingsActivity (Section 5.8). In Chapter 4, we showed how to use an implicit Intent to
display a URL in the device’s web browser. Section 5.5.5 shows how to use an explicit
Intent to launch a specific Activity in the same app.

5.3.15 Java Data Structures
This app uses various data structures from the java.util package. The app dynamically
loads the image file names for the enabled regions and stores them in an Array-
List<String>. We use Collections method shuffle to randomize the order of the image
file names for each new game. We use a second ArrayList<String> to hold the image file
names of the countries in the current quiz. We also use a Set<String> to store the world
regions included in a quiz. We refer to the ArrayList<String> object with a variable of
interface type List<String>—this is a good Java programming practice that enables you
to change data structures easily without affecting the rest of your app’s code.

5.4 Building the GUI and Resource Files
In this section, you’ll create the project and configure the String, array, color, dimension,
layout and animation resources used by the Flag Quiz app.

5.4.1 Creating the Project
Before you create the new project, delete the FlagQuiz project that you test-drove in
Section 5.2 by right clicking it and selecting Delete. In the dialog that appears, ensure that
Delete project contents on disk is not selected, then click OK.

Creating a New Blank App Project
Next, create a new Android Application Project. Specify the following values in the New An-
droid Project dialog’s first New Android Application step, then press Next >:

• Application name: Flag Quiz

• Project name: FlagQuiz

• Package name: com.deitel.flagquiz

http://developer.android.com/reference/android/util/Log.html

M05_DEIT3397_02_SE_C05.fm Page 185 Monday, July 7, 2014 9:01 AM

186 Chapter 5 Flag Quiz App

• Minimum Required SDK: API18: Android 4.3

• Target SDK: API19: Android 4.4

• Compile With: API19: Android 4.4

• Theme: Holo Light with Dark Action Bar

In the New Android Project dialog’s second New Android Application step, leave the default
settings, and press Next >. In the Configure Launcher Icon step, click the Browse… button,
and select an app icon image (provided in the images folder with the book’s examples), press
Open then Next >. In the Create Activity step, select Blank Activity, then press Next >. In the
Blank Activity step, leave the default settings and click Finish to create the project. Open
activity_main.xml in the Graphical Layout editor and select Nexus 4 from the screen-type
drop-down list. Once again, we’ll use this device as the basis for our design.

5.4.2 strings.xml and Formatted String Resources
You created String resources in earlier chapters, so we show only a table (Fig. 5.9) of the
String resource names and corresponding values here. Double click strings.xml in the
res/values folder to display the resource editor for creating these String resources.

Format Strings as String Resources
The results and question resources are format Strings that are used with String meth-
od format. When a String resource contains multiple format specifiers you must number
the format specifiers for localization purposes. In the results resource, the notation 1$ in
%1$d indicates that String method format’s first argument after the format String should

Resource name Value

settings_activity Flag Quiz Settings
number_of_choices Number of Choices
number_of_choices_description Display 3, 6 or 9 guess buttons
world_regions Regions
world_regions_description Regions to include in the quiz
guess_country Guess the Country
results %1$d guesses, %2$.02f%% correct
incorrect_answer Incorrect!
default_region_message Setting North America as the default region.

One region must be selected.
restarting_quiz Quiz will restart with your new settings
ok OK
question Question %1$d of %2$d
reset_quiz Reset Quiz
image_description Image of the current flag in the quiz
default_region North_America

Fig. 5.9 | String resources used in the Flag Quiz app.

M05_DEIT3397_02_SE_C05.fm Page 186 Monday, July 7, 2014 9:01 AM

5.4 Building the GUI and Resource Files 187

replace the format specifier %1$d. Similarly, 2$ in %2$.02f indicates that the second argu-
ment after the format String should replace the format specifier %2$.02f. The d in the
first format specifier formats an integer and the f in the second one formats a floating-
point number. In localized versions of strings.xml, the format specifiers %1$d and
%2$.02f can be reordered as necessary to properly translate the String resource. The first
argument after the format String will replace %1$d—regardless of where it appears in the
format String—and the second argument will replace %2$.02f regardless of where they ap-
pear in the format String.

5.4.3 arrays.xml
In Section 4.5.8, you created a String array resource in the app’s strings.xml file. Tech-
nically, all of your app’s resources in the res/values folder can be defined in the same file.
However, to make it easier to manage different types of resources, separate files are typi-
cally used for each. For example, array resources are normally defined in arrays.xml, col-
ors in colors.xml, Strings in strings.xml and numeric values in values.xml. This app
uses three String array resources that are defined in arrays.xml:

• regions_list specifies the names of the world regions with their words separated
by underscores—these values are used to load image file names from the appro-
priate folders and as the selected values for the world regions the user selects in
the SettingsFragment.

• regions_list_for_settings specifies the names of the world regions with their
words separated by spaces—these values are used in the SettingsFragment to
display the region names to the user.

• guesses_list specifies the Strings 3, 6 and 9—these values are used in the Set-
tingsFragment to display the options for the number of guess Buttons to display.

Figure 5.10 shows the names and element values for these three array resources.

To create the file and configure the array resources, perform the following steps:

1. In the project’s res folder, right click the values folder, then select New > Android
XML File to display the New Android XML File dialog. Because you right clicked
the values folder, the dialog is preconfigured to add a Values resource file in the
values folder.

2. Specify arrays.xml in the File field and click Finish to create the file.

Array resource name Values

regions_list Africa, Asia, Europe, North_America,
Oceania, South_America

regions_list_for_settings Africa, Asia, Europe, North America,
Oceania, South America

guesses_list 3, 6, 9

Fig. 5.10 | String array resources defined in arrays.xml.

M05_DEIT3397_02_SE_C05.fm Page 187 Monday, July 7, 2014 9:01 AM

188 Chapter 5 Flag Quiz App

3. If the IDE opens the new file in XML view, click the Resources tab at the bottom
of the window to view the resource editor.

4. To create a String array resource, click Add…, select String Array and click OK.

5. In the Name field, enter regions_list, then save the file.

6. Select the new String array resource, then use the Add button to add items for
each of the values shown for the array in Fig. 5.10.

7. Repeat Steps 4–6 for the regions_list_for_settings and guesses_list arrays.
When you click Add… to create the additional String Array resources, you’ll need to
first select the radio button Create a new element at the top level in Resources.

5.4.4 colors.xml
This app displays correct answers in green and incorrect answers in red. As with any other
resource, color resources should be defined in XML so that you can easily change colors
without modifying your app’s Java source code. Typically, colors are defined in a file name
colors.xml, which you must create. As you learned in Section 3.4.5, colors are defined
using the RGB or ARGB color schemes.

To create the file and configure the two color resources, perform the following steps:

1. In the project’s res folder, right click the values folder, then select New > Android
XML File to display the New Android XML File dialog.

2. Specify colors.xml in the File field and click Finish to create the file.

3. If the IDE opens the new file in XML view, click the Resources tab at the bottom
of the window to view the resource editor.

4. To create a color resource, click Add…, select Color and click OK.

5. In the Name and Value fields that appear, enter correct_answer and #00CC00, re-
spectively, then save the file.

6. Repeat Steps 4 and 5, but enter incorrect_answer and #FF0000.

5.4.5 dimens.xml
You created dimension resources in earlier chapters, so we show only a table (Fig. 5.11) of
the dimension resource names and values here. Open dimens.xml in the res/values fold-
er to display the resource editor for creating these resources. The spacing resource is used
in the layouts as the spacing between various GUI components, and the answer_size re-
source specifies the font size for the answerTextView. Recall from Section 2.5.3 that font
sizes should be specified in scale-independent pixels (sp) so that fonts in your app can also
be scaled by the user’s preferred font size (as specified in the device’s settings).

Resource name Value

spacing 8dp
answer_size 40sp

Fig. 5.11 | Dimension resources used in the Flag Quiz app.

M05_DEIT3397_02_SE_C05.fm Page 188 Monday, July 7, 2014 9:01 AM

5.4 Building the GUI and Resource Files 189

5.4.6 activity_settings.xml Layout
In this section, you’ll create the layout for the SettingsActivity (Section 5.8) that will
display the SettingsFragment (Section 5.7). The SettingsActivity’s layout will consist
of only a LinearLayout containing the GUI for the SettingsFragment. As you’ll see,
when you add a Fragment to a layout, the IDE can create the Fragment’s class for you. To
create this layout, perform the following steps:

1. In the project’s res folder, right click layout and select New > Android XML File
to display the New Android XML File dialog. Because you right clicked the layout
folder, the dialog is preconfigured to add a Layout resource file.

2. In the File field, enter activity_settings.xml.

3. In the Root Element section, select LinearLayout and click Finish to create the file.

4. From the Palette’s Layouts section, drag a Fragment onto the design area or onto
the LinearLayout node in the Outline window.

5. The preceding step displays the Choose Fragment Class dialog. If you defined the
Fragment class before its layout, you’d be able to select the class here. Click Create
New… to display the New Java Class dialog.

6. Enter SettingsFragment in the dialog’s Name field, change the Superclass field’s
value to android.preference.PreferenceFragment and click Finish to create
the class. The IDE opens the Java file for the class, which you can close for now.

7. Save activity_settings.xml.

5.4.7 activity_main.xml Layout for Phone and Tablet Portrait
Orientation
In this section, you’ll create the layout for the MainActivity (Section 5.5) that will be used
in portrait orientation on all devices. You’ll define the landscape orientation layout for tab-
lets in Section 5.4.9. This layout will display only the QuizFragment (Section 5.6):

1. In the project’s res/layout folder, open activity_main.xml, then follow the
steps in Section 2.5.2 to switch from a FrameLayout to a RelativeLayout.

2. From the Palette’s Layouts section, drag a Fragment onto the RelativeLayout
node in the Outline window.

3. In the Choose Fragment Class dialog, click Create New… to display the New Java
Class dialog.

4. In the dialog’s Name field, enter QuizFragment, then click Finish to create the
class. The IDE opens the Java file for the class, which you can close for now.

5. In activity_main.xml, select the QuizFragment in the Outline window, then set
its Id to @+id/quizFragment and, in the Layout Parameters properties, set Width
and Height to match_parent.

6. Save activity_main.xml.

5.4.8 fragment_quiz.xml Layout
You’ll typically define a layout for each of your Fragments. For each Fragment layout,
you’ll add a layout XML file to your app’s res/layout folder(s) and specify which Frag-

M05_DEIT3397_02_SE_C05.fm Page 189 Monday, July 7, 2014 9:01 AM

190 Chapter 5 Flag Quiz App

ment class the layout is associated with. Note that you do not need to define a layout for
this app’s SettingsFragment because its GUI is auto-generated by the inherited capabili-
ties of class PreferenceFragment.

This section presents the QuizFragment’s layout (fragment_quiz.xml). You’ll define
its layout file once in the app’s res/layout folder, because we use the same layout for the
QuizFragment on all devices and device orientations. Figure 5.12 shows the QuizFrag-
ment’s GUI component names.

Creating fragment_quiz.xml
To create fragment_quiz.xml, perform the following steps:

1. In the project’s res folder, right click the layout folder, then select New > Android
XML File to display the New Android XML File dialog.

2. In the File field, enter fragment_quiz.xml.

3. In the Root Element section, select LinearLayout (Vertical) and click Finish to create
the layout file.

4. Use the Graphical Layout editor and the Outline window to form the layout struc-
ture shown in Fig. 5.13. As you create the GUI components, set their Id proper-
ties. For the questionNumberTextView and guessCountryTextView, we used
Medium Text components from the Palette’s Form Widgets section. For the But-
tons, we used Small Button components, which use a smaller font size so that they
can fit more text.

5. Once you’ve completed Step 4, configure the GUI component properties with
the values shown in Fig. 5.14. Setting flagImageView’s Height to 0dp and Weight

Fig. 5.12 | Flag Quiz GUI’s components labeled with their Id property values.

questionNumberTextView

flagImageView

guessCountryTextView

answerTextView

row1LinearLayout

row2LinearLayout

row3LinearLayout

The Ids for the Buttons in these
three LinearLayouts are not
used in this app, so they’re not
specified in this figure

M05_DEIT3397_02_SE_C05.fm Page 190 Monday, July 7, 2014 9:01 AM

5.4 Building the GUI and Resource Files 191

to 1 enables this component to resize vertically to occupy any remaining space not
used by the other GUI components. Similarly, setting each Button’s Width to 0dp
and Weight to 1 enables the Buttons in a given LinearLayout to divide the hori-
zontal space equally. The flagImageView’s Scale Type value fitCenter scales the
image to fill either the ImageView’s width or height while maintaining the origi-
nal image’s aspect ratio. Setting the ImageView’s Adjust View Bounds property to
true indicates that the ImageView maintains the aspect ratio of its Drawable.

Fig. 5.13 | Outline window for fragment_quiz.xml.

GUI component Property Value

questionNumberTextView Layout Parameters
 Width
 Height
 Gravity
Other Properties
 Text

wrap_content
wrap_content
center_horizontal

@string/question

flagImageView Layout Parameters
 Width
 Height
 Gravity
 Weight

 Margins
 Left/Right

 Top/Bottom

Other Properties
 Adjust View Bounds

 Content Desctiption

 Scale Type

wrap_content
0dp
center
1

@dimen/activity_horizontal_margin
@dimen/activity_vertical_margin

true
@string/image_description
fitCenter

Fig. 5.14 | Property values for the GUI components in fragment_quiz.xml. (Part 1 of 2.)

M05_DEIT3397_02_SE_C05.fm Page 191 Monday, July 7, 2014 9:01 AM

192 Chapter 5 Flag Quiz App

5.4.9 activity_main.xml Layout for Tablet Landscape Orientation
In Section 5.4.7, you defined MainActivity’s portrait-orientation layout, which con-
tained only the QuizFragment. You’ll now define MainActivity’s landscape-orientation
layout for tablets, which will contain both the SettingsFragment and the QuizFragment.
To create the layout, perform the following steps:

1. Right click the project’s res folder, then select New > Folder. In the Folder name
field enter layout-large-land and click Finish. The qualifiers large and land
ensure that any layouts defined in this folder will be used only on large devices on
which the app is running in landscape orientation.

2. Right click the layout-large-land folder, then select New > Android XML File to
display the New Android XML File dialog, then enter activity_main.xml in File
field. In the Root Element section, select LinearLayout (Horizontal) and click Finish
to create the layout file.

3. Select the LinearLayout and set its Base Aligned property to false.

4. From the Layouts section of the Graphical Layout editor, drag a Fragment onto
the LinearLayout node in the Outline window. In the Choose Fragment Class di-
alog, select SettingsFragment and click OK.

guessCountryTextView Layout Parameters
 Width
 Height
 Gravity
Other Properties
 Text

wrap_content
wrap_content
center_horizontal

@string/guess_country

LinearLayouts Layout Parameters
 Width
 Height
 Margins
 Bottom

match_parent
wrap_content

@dimen/spacing

Buttons Layout Parameters
 Width
 Height
 Weight

0dp
fill_parent
1

answerTextView Layout Parameters
 Width
 Height
 Gravity
Other Properties
 Gravity
 Text Size
 Text Style

wrap_content
wrap_content
center|bottom

center_horizontal
@dimen/answer_size
bold

GUI component Property Value

Fig. 5.14 | Property values for the GUI components in fragment_quiz.xml. (Part 2 of 2.)

M05_DEIT3397_02_SE_C05.fm Page 192 Monday, July 7, 2014 9:01 AM

5.4 Building the GUI and Resource Files 193

5. Repeat Step 5, but select QuizFragment and click OK.

6. Select the SettingsFragment node in the Outline window. In the Layout Param-
eters section set Width to 0dp, Height to match_parent and Weight to 1.

7. Select the QuizFragment node in the Outline window. In the Layout Parameters
section set Width to 0dp, Height to match_parent and Weight to 2.

Because the QuizFragment’s Weight is 2 and the SettingsFragment’s is 1, the QuizFrag-
ment will occupy two-thirds of the layout’s horizontal space.

5.4.10 preferences.xml for Specifying the App’s Settings
In this section, you’ll create the preferences.xml file that the SettingsFragment uses to
display the app’s preferences. To create the file:

1. Right click the project’s res folder, then select New > Folder, in the Folder name
field enter xml and click Finish.

2. Right click the xml folder, then select New > Android XML File to display the New
Android XML File dialog.

3. In the File text field, enter the name preferences.xml.

4. Ensure that the Resource Type is set to Preference and the Root Element is Pref-
erenceScreen, which represents a screen in which preferences are displayed.

5. Click Finish to create the file. If the IDE displays the raw XML, click the Structure
tab at the bottom of the window to configure the preferences.

6. At the left side of the window, select PreferenceScreen, then click Add….

7. In the dialog that appears, select ListPreference, then click OK. This preference
will display a list of mutually exclusive options.

8. At the left side of the window, select PreferenceScreen, then click Add….

9. In the dialog that appears, select MultiSelectListPreference, then click OK. This
preference will display a list of options in which multiple items can be selected.
All of the selected items are saved as the value of such a preference.

10. Select the ListPreference, then configure the properties in Fig. 5.15.

11. Select the MultiSelectListPreference, then configure the properties in Fig. 5.16.

12. Save and close preferences.xml.

Property Value Description

Entries @array/guesses_list An array of Strings that will be dis-
played in the list of options.

Entry values @array/guesses_list An array of the values associated with
the options in the Entries property. The
selected entry’s value will be stored in
the app’s SharedPreferences.

Fig. 5.15 | ListPreference property values. (Part 1 of 2.)

M05_DEIT3397_02_SE_C05.fm Page 193 Monday, July 7, 2014 9:01 AM

194 Chapter 5 Flag Quiz App

5.4.11 Creating the Flag Shake Animation
In this section, you’ll create the animation that shakes the flag when the user guesses in-
correctly. We’ll show how this animation is used by the app in Section 5.6.9. To create
the animation:

Key pref_numberOfChoices The name of the preference stored in
the app’s SharedPreferences.

Title @string/number_of_choices The title of the preference displayed in
the GUI.

Summary @string/

number_of_choices_description
A summary description of the prefer-
ence that’s displayed below its title.

Persistent true Whether the preference should persist
after the app terminates—if true, class
PreferenceFragment immediately per-
sists the preference value each time it
changes.

Default value 3 The item in the Entries property that’s
selected by default.

Property Value Description

Entries @array/regions_list_for_settings An array of Strings that will be dis-
played in the list of options.

Entry values @array/regions_list An array of the values associated with
the options in the Entries property. The
selected entries’ values will all be stored
in the app’s SharedPreferences.

Key pref_regionsToInclude The name of the preference stored in
the app’s SharedPreferences.

Title @string/world_regions The title of the preference displayed in
the GUI.

Summary @string/world_regions_description A summary description of the prefer-
ence that’s displayed below its title.

Persistent true Whether the preference should persist
after the app terminates.

Default value @array/regions_list An array of the default values for this
preference—in this case, all of the
regions will be selected by default.

Fig. 5.16 | MultiSelectListPreference property values.

Property Value Description

Fig. 5.15 | ListPreference property values. (Part 2 of 2.)

M05_DEIT3397_02_SE_C05.fm Page 194 Monday, July 7, 2014 9:01 AM

5.4 Building the GUI and Resource Files 195

1. Right click the project’s res folder, then select New > Folder, in the Folder name
field enter anim and click Finish.

2. Right click the anim folder, then select New > Android XML File to display the New
Android XML File dialog.

3. In the File text field, enter the name incorrect_shake.xml.

4. Ensure that the Resource Type is Tween Animation and the Root Element is set.

5. Click Finish to create the file. The file opens immediately in XML view.

6. Unfortunately, the IDE does not provide an editor for animations, so you must
modify the XML contents of the file as shown in Fig. 5.17.

In this example, we use View animations to create a shake effect that consists of three
animations in an animation set (lines 3–14)—a collection of animations that make up a
larger animation. Animation sets may contain any combination of tweened anima-
tions—alpha (transparency), scale (resize), translate (move) and rotate. Our shake
animation consists of a series of three translate animations. A translate animation
moves a View within its parent. Android also supports property animations in which you
can animate any property of any object.

The first translate animation (lines 6–7) moves a View from a starting location to
an ending position over a specified period of time. The android:fromXDelta attribute is
the View’s offset when the animation starts and the android:toXDelta attribute is the
View’s offset when the animation ends. These attributes can have

• absolute values (in pixels)

• a percentage of the animated View’s size

• a percentage of the animated View’s parent’s size.

For the android:fromXDelta attribute, we specified an absolute value of 0. For the
android:toXDelta attribute, we specified the value -5%p, which indicates that the View

1 <?xml version="1.0" encoding="utf-8"?>
2
3 <set xmlns:android="http://schemas.android.com/apk/res/android"
4 android:interpolator="@android:anim/decelerate_interpolator">
5
6 <translate android:fromXDelta="0" android:toXDelta="-5%p"
7 android:duration="100"/>
8
9 <translate android:fromXDelta="-5%p" android:toXDelta="5%p"

10 android:duration="100" android:startOffset="100"/>
11
12 <translate android:fromXDelta="5%p" android:toXDelta="-5%p"
13 android:duration="100" android:startOffset="200"/>
14 </set>

Fig. 5.17 | Shake animation (incorrect_shake.xml) that’s applied to the flag when the user
guesses incorrectly.

M05_DEIT3397_02_SE_C05.fm Page 195 Monday, July 7, 2014 9:01 AM

196 Chapter 5 Flag Quiz App

should move to the left (due to the minus sign) by 5% of the parent’s width (indicated by
the p). If we wanted to move by 5% of the View’s width, we would leave out the p. The
android:duration attribute specifies how long the animation lasts in milliseconds. So the
animation in lines 6–7 will move the View to the left by 5% of its parent’s width in 100
milliseconds.

The second animation (lines 9–10) continues from where the first finished, moving
the View from the -5%p offset to a %5p offset in 100 milliseconds. By default, animations
in an animation set are applied simultaneously (i.e., in parallel), but you can use the
android:startOffset attribute to specify the number of milliseconds into the future at
which an animation should begin. This can be used to sequence the animations in a set.
In this case, the second animation starts 100 milliseconds after the first. The third anima-
tion (lines 12–13) is the same as the second, but in the reverse direction, and it starts 200
milliseconds after the first animation.

5.5 MainActivity Class
Class MainActivity (Figs. 5.18–Fig. 5.23) hosts the app’s QuizFragment when the app is
running in portrait orientation, and hosts both the SettingsFragment and QuizFragment
when the app is running on a tablet in landscape orientation.

5.5.1 package Statement, import Statements and Fields
Figure 5.18 shows the MainActivity package statement, import statements and fields.
Lines 6–21 import the various Java and Android classes and interfaces that the app uses.
We’ve highlighted the new import statements, and we discuss the corresponding classes
and interfaces in Section 5.3 and as they’re encountered in Sections 5.5.2––5.5.6.

1 // MainActivity.java
2 // Hosts the QuizFragment on a phone and both the
3 // QuizFragment and SettingsFragment on a tablet
4 package com.deitel.flagquiz;
5
6
7
8 import android.app.Activity;
9 import android.content.Intent;

10 import android.content.SharedPreferences;
11
12
13
14
15 import android.os.Bundle;
16
17
18
19
20
21

Fig. 5.18 | MainActivity package statement, import statements and fields. (Part 1 of 2.)

import java.util.Set;

import android.content.SharedPreferences.OnSharedPreferenceChangeListener;
import android.content.pm.ActivityInfo;
import android.content.res.Configuration;
import android.graphics.Point;

import android.preference.PreferenceManager;
import android.view.Display;
import android.view.Menu;
import android.view.MenuItem;
import android.view.WindowManager;
import android.widget.Toast;

M05_DEIT3397_02_SE_C05.fm Page 196 Monday, July 7, 2014 9:01 AM

5.5 MainActivity Class 197

Lines 26–27 define constants for the preference keys you created in Section 5.4.10.
You’ll use these to access the corresponding preference values. The boolean variable
phoneDevice (line 29) specifies whether the app is running on a phone—if so, the app will
allow only portrait orientation. The boolean variable preferencesChanged (line 30) spec-
ifies whether the app’s preferences have changed—if so, the MainActivity’s onStart life-
cycle method (Section 5.5.3) will call the QuizFragment’s methods updateGuessRows
(Section 5.6.4) and updateRegions (Section 5.6.5) to reconfigure the quiz based on the
user’s new settings. We set this boolean to true initially so that when the app first executes
the quiz is configured using the default preferences.

5.5.2 Overridden Activity Method onCreate
Overridden Activity method onCreate (Fig. 5.19) calls setContentView (line 36) to set
MainActivity’s GUI. Android chooses the activity_main.xml file from the res/layout
folder if the app is running in portrait orientation or res/layout-large-land if the app
is running on a tablet in landscape orientation.

22
23 public class MainActivity extends Activity
24 {
25 // keys for reading data from SharedPreferences
26 public static final String CHOICES = "pref_numberOfChoices";
27 public static final String REGIONS = "pref_regionsToInclude";
28
29 private boolean phoneDevice = true; // used to force portrait mode
30 private boolean preferencesChanged = true; // did preferences change?
31

32 @Override
33 protected void onCreate(Bundle savedInstanceState)
34 {
35 super.onCreate(savedInstanceState);
36 setContentView(R.layout.activity_main);
37
38
39
40
41
42
43
44
45
46
47
48
49

Fig. 5.19 | MainActivity overridden Activity method onCreate. (Part 1 of 2.)

Fig. 5.18 | MainActivity package statement, import statements and fields. (Part 2 of 2.)

// set default values in the app's SharedPreferences
PreferenceManager.setDefaultValues(this, R.xml.preferences, false);

// register listener for SharedPreferences changes
PreferenceManager.getDefaultSharedPreferences(this).
 registerOnSharedPreferenceChangeListener(
 preferenceChangeListener);

// determine screen size
int screenSize = getResources().getConfiguration().screenLayout &
 Configuration.SCREENLAYOUT_SIZE_MASK;

M05_DEIT3397_02_SE_C05.fm Page 197 Monday, July 7, 2014 9:01 AM

198 Chapter 5 Flag Quiz App

Setting the Default Preference Values and Registering a Change Listener
When you install and launch the app for the first time, line 39 sets the app’s default pref-
erences by calling PreferenceManager method setDefaultValues—this creates and ini-
tializes the app’s SharedPreferences file using the default values that you specified in
preferences.xml. The method requires three arguments:

• the preferences’ Context—the Activity (this) for which you are setting the de-
fault preferences

• the resource ID for the preferences XML file (R.xml.preferences) that you cre-
ated in Section 5.4.10

• a boolean indicating whether the default values should be reset each time method
setDefaultValues is called—false indicates that the default preference values
should be set only the first time this method is called.

Each time the user changes the app’s preferences, MainActivity should call QuizFrag-
ment’s methods updateGuessRows or updateRegions (based on which preference changed)
to reconfigure the quiz. MainActivity registers an OnSharedPreferenceChangedListener
(lines 42–44) so that it will be notified each time a preference changes. PreferenceManager
method getDefaultSharedPreferences returns a reference to the SharedPreferences
object representing the app’s preferences, and SharedPreferences method registerOn-
SharedPreferenceChangeListener registers the listener, which is defined in Section 5.5.6.

Configuring a Phone Device for Portrait Orientation
Lines 47–53 determine whether the app is running on a tablet or a phone. Inherited meth-
od getResources returns the app’s Resources object (package android.content.res)
that can be used to access an app’s resources and determine information about the app’s
environment. Resources method getConfiguration returns a Configuration object
(package android.content.res) that contains public instance variable screenLayout,
which you can use to determine the device’s screen-size category. To do so, first you com-
bine the value of screenLayout with Configuration.SCREENLAYOUT_SIZE_MASK using the
bitwise AND (&) operator. Then, you compare the result to the Configuration constants
SCREENLAYOUT_SIZE_LARGE and SCREENLAYOUT_SIZE_XLARGE (lines 51–52). If either is a
match, the app is running on a tablet-sized device. Finally, if the device is a phone, lines
57–58 call inherited Activity method setRequestedOrientation to force the app to dis-
play MainActivity in only portrait orientation.

50 // if device is a tablet, set phoneDevice to false
51 if (screenSize == Configuration.SCREENLAYOUT_SIZE_LARGE ||
52 screenSize == Configuration.SCREENLAYOUT_SIZE_XLARGE)
53 phoneDevice = false; // not a phone-sized device
54
55 // if running on phone-sized device, allow only portrait orientation
56 if (phoneDevice)
57
58
59 } // end method onCreate
60

Fig. 5.19 | MainActivity overridden Activity method onCreate. (Part 2 of 2.)

setRequestedOrientation(
 ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

M05_DEIT3397_02_SE_C05.fm Page 198 Monday, July 7, 2014 9:01 AM

5.5 MainActivity Class 199

5.5.3 Overridden Activity Method onStart
Overridden Activity lifecycle method onStart (Fig. 5.20) is called in two scenarios:

• When the app first executes, onStart is called after onCreate. We use onStart
in this case to ensure that the quiz is configured correctly based on the app’s de-
fault preferences when the app is installed and executes for the first time or based
on the user’s updated preferences when the app is launched subsequently.

• When the app is running in portrait orientation and the user opens the
SettingsActivity, the MainActivity is paused while the SettingsActivity is
displayed. When the user returns to the MainActivity, onStart is called again.
We use onStart in this case to ensure that the quiz is reconfigured properly if the
user made any preference changes.

In both cases, if preferencesChanged is true, onStart calls QuizFragment’s update-
GuessRows (Section 5.6.4) and updateRegions (Section 5.6.5) methods to reconfigure the
quiz. To get a reference to the QuizFragment so we can call its methods, lines 71–72 use
inherited Activity method getFragmentManager to get the FragmentManager, then call
its findFragmentById method. Next, lines 73–76 call QuizFragment’s updateGuessRows
and updateRegions methods, passing the app’s SharedPreferences object as an argu-
ment so those methods can load the current preferences. Line 77 resets the quiz.

5.5.4 Overridden Activity Method onCreateOptionsMenu
We override Activity method onCreateOptionsMenu (Fig. 5.21) to initialize Activity’s
standard options menu. The system passes in the Menu object where the options will appear.
In this app, we want to show the menu only when the app is running in portrait orientation.
Lines 87–88 use the WindowManager to get a Display object that contains the screen’s cur-

61 // called after onCreate completes execution
62 @Override
63
64 {
65 super.onStart();
66
67 if (preferencesChanged)
68 {
69 // now that the default preferences have been set,
70 // initialize QuizFragment and start the quiz
71
72
73 quizFragment.updateGuessRows(
74);
75 quizFragment.updateRegions(
76);
77 quizFragment.resetQuiz();
78 preferencesChanged = false;
79 }
80 } // end method onStart
81

Fig. 5.20 | MainActivity overridden Activity method onStart.

protected void onStart()

QuizFragment quizFragment = (QuizFragment)
 getFragmentManager().findFragmentById(R.id.quizFragment);

PreferenceManager.getDefaultSharedPreferences(this)

PreferenceManager.getDefaultSharedPreferences(this)

M05_DEIT3397_02_SE_C05.fm Page 199 Monday, July 7, 2014 9:01 AM

200 Chapter 5 Flag Quiz App

rent width and height, which changes based on the device’s orientation. If the width is less
than the height, then the device is in portrait orientation. Line 89 creates a Point object to
store the current width and height, then line 90 calls Display method getRealSize, which
stores the screen’s width and height in the Point’s public instance variables x and y, respec-
tively. If the width is less than the height (line 93), line 95 creates the menu from
menu.xml—the default menu resource that the IDE configured when you created the proj-
ect. Inherited Activity method getMenuInflater returns a MenuInflater on which we
call inflate with two arguments—the resource ID of the menu resource that populates the
menu and the Menu object in which the menu items will be placed. Returning true from
onCreateOptionsMenu indicates that the menu should be displayed.

5.5.5 Overridden Activity Method onOptionsItemSelected
Method onOptionsItemSelected (Fig. 5.22) is called when a menu item is selected. In
this app, the default menu provided by the IDE when you created the project contains
only the Settings menu item, so if this method is called, the user selected Settings. Line
106 creates an explicit Intent for launching the SettingsActivity. The Intent con-
structor used here receives the Context from which the Activity will be launched and the
class representing the Activity to launch (SettingsActivity.class). We then pass this
Intent to the inherited Activity method startActivity to launch the Activity.

82 // show menu if app is running on a phone or a portrait-oriented tablet
83 @Override
84
85 {
86
87
88
89
90
91
92 // display the app's menu only in portrait orientation
93 if (screenSize.x < screenSize.y) // x is width, y is height
94 {
95 getMenuInflater().inflate(R.menu.main, menu); // inflate the menu
96 return true;
97 }
98 else
99 return false;
100 } // end method onCreateOptionsMenu
101

Fig. 5.21 | MainActivity overridden Activity method onCreateOptionsMenu.

102 // displays SettingsActivity when running on a phone
103 @Override
104
105 {

Fig. 5.22 | MainActivity overridden Activity method onOptionsItemSelected. (Part 1 of 2.)

public boolean onCreateOptionsMenu(Menu menu)

// get the default Display object representing the screen
Display display = ((WindowManager)
 getSystemService(WINDOW_SERVICE)).getDefaultDisplay();
Point screenSize = new Point(); // used to store screen size
display.getRealSize(screenSize); // store size in screenSize

public boolean onOptionsItemSelected(MenuItem item)

M05_DEIT3397_02_SE_C05.fm Page 200 Monday, July 7, 2014 9:01 AM

5.5 MainActivity Class 201

5.5.6 Anonymous Inner Class That Implements
OnSharedPreferenceChangeListener
The preferenceChangeListener (Fig. 5.23) is an anonymous-inner-class object that im-
plements the OnSharedPreferenceChangeListener interface. This object was registered
in method onCreate to listen for changes to the app’s SharedPreferences. When a
change occurs, method onSharedPreferenceChanged sets preferencesChanged to true
(line 120), then gets a reference to the QuizFragment (lines 122–123) so that the quiz can
be reset with the new preferences. If the CHOICES preference changed, lines 127–128 call
the QuizFragment’s updateGuessRows and resetQuiz methods.

106
107 startActivity(preferencesIntent);
108 return super.onOptionsItemSelected(item);
109 }
110

111 // listener for changes to the app's SharedPreferences
112 private OnSharedPreferenceChangeListener preferenceChangeListener =
113 new OnSharedPreferenceChangeListener()
114 {
115 // called when the user changes the app's preferences
116
117
118
119 {
120 preferencesChanged = true; // user changed app settings
121
122
123
124
125 if (key.equals(CHOICES)) // # of choices to display changed
126 {
127 quizFragment.updateGuessRows(sharedPreferences);
128 quizFragment.resetQuiz();
129 }
130 else if (key.equals(REGIONS)) // regions to include changed
131 {
132
133
134
135 if (regions != null && regions.size() > 0)
136 {
137 quizFragment.updateRegions(sharedPreferences);
138 quizFragment.resetQuiz();
139 }
140 else // must select one region--set North America as default
141 {

Fig. 5.23 | Anonymous Inner class that implements OnSharedPreferenceChangeListener.
(Part 1 of 2.)

Fig. 5.22 | MainActivity overridden Activity method onOptionsItemSelected. (Part 2 of 2.)

Intent preferencesIntent = new Intent(this, SettingsActivity.class);

@Override
public void onSharedPreferenceChanged(
 SharedPreferences sharedPreferences, String key)

QuizFragment quizFragment = (QuizFragment)
 getFragmentManager().findFragmentById(R.id.quizFragment);

Set<String> regions =
 sharedPreferences.getStringSet(REGIONS, null);

M05_DEIT3397_02_SE_C05.fm Page 201 Monday, July 7, 2014 9:01 AM

202 Chapter 5 Flag Quiz App

If the REGIONS preference changed, lines 132–133 get the Set<String> containing the
enabled regions. SharedPreferences method getStringSet returns a Set<String> for
the specified key. The quiz must have at least one region enabled, so if the Set<String> is
not empty, lines 137–138 call the QuizFragment’s updateRegions and resetQuiz
methods. Otherwise, lines 142–146 update the REGIONS preference with North America
set as the default region, and lines 147–149 use a Toast to indicate that the default region
was set. Toast method makeText receives as arguments the Context on which the Toast
is displayed, the message to display and the duration for which the Toast will be displayed.
Toast method show displays the Toast. Regardless of which preference changed, lines
153–154 display a Toast indicating that the quiz will be reset with the new preferences.
Figure 5.24 shows the Toast that appears after the user changes the app’s preferences.

5.6 QuizFragment Class
Class QuizFragment (Figs. 5.25–5.34) builds the Flag Quiz’s GUI and implements the
quiz’s logic.

5.6.1 package Statement and import Statements
Figure 5.25 shows the QuizFragment package statement and import statements. Lines 5–33
import the various Java and Android classes and interfaces that the app uses. We’ve highlight-
ed the new import statements, and we discuss the corresponding classes and interfaces in
Section 5.3 and as they’re encountered in Sections 5.6.2––5.6.10.

142 SharedPreferences.Editor editor = sharedPreferences.edit();
143 regions.add(
144 getResources().getString(R.string.default_region));
145
146 editor.commit();
147
148
149
150 }
151 }
152
153
154
155 } // end method onSharedPreferenceChanged
156 }; // end anonymous inner class
157 } // end class MainActivity

Fig. 5.24 | Toast displayed after a preference is changed.

Fig. 5.23 | Anonymous Inner class that implements OnSharedPreferenceChangeListener.
(Part 2 of 2.)

editor.putStringSet(REGIONS, regions);

Toast.makeText(MainActivity.this,
 R.string.default_region_message,
 Toast.LENGTH_SHORT).show();

Toast.makeText(MainActivity.this,
 R.string.restarting_quiz, Toast.LENGTH_SHORT).show();

M05_DEIT3397_02_SE_C05.fm Page 202 Monday, July 7, 2014 9:01 AM

5.6 QuizFragment Class 203

5.6.2 Fields
Figure 5.26 lists class QuizFragment’s static and instance variables. The constant TAG
(line 38) is used when we log error messages using class Log (Fig. 5.31) to distinguish this
Activity’s error messages from others that are being written to the device’s log. The con-
stant FLAGS_IN_QUIZ (line 40) represents the number of flags in the quiz.

1 // QuizFragment.java
2 // Contains the Flag Quiz logic
3 package com.deitel.flagquiz;
4
5 import java.io.IOException;
6 import java.io.InputStream;
7
8 import java.util.ArrayList;
9 import java.util.Collections;

10
11
12
13 import android.app.AlertDialog;
14
15
16
17 import android.content.DialogInterface;
18 import android.content.SharedPreferences;
19
20
21 import android.os.Bundle;
22
23
24
25 import android.view.View;
26 import android.view.View.OnClickListener;
27
28
29
30 import android.widget.Button;
31 import android.widget.ImageView;
32 import android.widget.LinearLayout;
33 import android.widget.TextView;
34

Fig. 5.25 | QuizFragment package statement, import statements.

35 public class QuizFragment extends Fragment
36 {
37 // String used when logging error messages
38 private static final String TAG = "FlagQuiz Activity";
39
40 private static final int FLAGS_IN_QUIZ = 10;
41

Fig. 5.26 | QuizFragment fields. (Part 1 of 2.)

import java.security.SecureRandom;

import java.util.List;
import java.util.Set;

import android.app.Dialog;
import android.app.DialogFragment;
import android.app.Fragment;

import android.content.res.AssetManager;
import android.graphics.drawable.Drawable;

import android.os.Handler;
import android.util.Log;
import android.view.LayoutInflater;

import android.view.ViewGroup;
import android.view.animation.Animation;
import android.view.animation.AnimationUtils;

M05_DEIT3397_02_SE_C05.fm Page 203 Monday, July 7, 2014 9:01 AM

204 Chapter 5 Flag Quiz App

Variable fileNameList (line 42) holds the flag image file names for the currently
enabled geographic regions. Variable quizCountriesList (line 43) holds the flag file
names for the countries used in the current quiz. Variable regionsSet (line 44) stores the
geographic regions that are enabled.

Variable correctAnswer (line 45) holds the flag file name for the current flag’s correct
answer. Variable totalGuesses (line 46) stores the total number of correct and incorrect
guesses the player has made so far. Variable correctAnswers (line 47) is the number of
correct guesses so far; this will eventually be equal to FLAGS_IN_QUIZ if the user completes
the quiz. Variable guessRows (line 48) is the number of three-Button LinearLayouts dis-
playing the flag answer choices.

Variable random (line 49) is the random-number generator used to randomly pick the
flags to include in the quiz and which Button in the three-Button LinearLayouts repre-
sents the correct answer. When the user selects a correct answer and the quiz is not over,
we use the Handler object handler (line 50) to load the next flag after a short delay.

The Animation shakeAnimation (line 51) holds the dynamically inflated shake ani-
mation that’s applied to the flag image when an incorrect guess is made. Lines 53–56 con-
tain variables that we use to manipulate various GUI components programmatically.

5.6.3 Overridden Fragment Method onCreateView
QuizFragment’s onCreateView method (Fig. 5.27) inflates the GUI and initializes most of
the QuizFragment’s instance variables—guessRows and regionsSet are initialized when
the MainActivity calls QuizFragment’s updateGuessRows and updateRegions methods.
After calling the superclass’s onCreateView method (line 63), we inflate the QuizFrag-
ment’s GUI (line 64–65) using the LayoutInflater that method onCreateView receives
as an argument. The LayoutInflater’s inflate method receives three arguments:

• the layout resource ID indicating the layout to inflate

• the ViewGroup (layout object) in which the Fragment will be displayed, which is
received as onCreateView’s second argument

42
43
44
45 private String correctAnswer; // correct country for the current flag
46 private int totalGuesses; // number of guesses made
47 private int correctAnswers; // number of correct guesses
48 private int guessRows; // number of rows displaying guess Buttons
49 private SecureRandom random; // used to randomize the quiz
50
51
52
53 private TextView questionNumberTextView; // shows current question #
54 private ImageView flagImageView; // displays a flag
55 private LinearLayout[] guessLinearLayouts; // rows of answer Buttons
56 private TextView answerTextView; // displays Correct! or Incorrect!
57

Fig. 5.26 | QuizFragment fields. (Part 2 of 2.)

private List<String> fileNameList; // flag file names
private List<String> quizCountriesList; // countries in current quiz
private Set<String> regionsSet; // world regions in current quiz

private Handler handler; // used to delay loading next flag
private Animation shakeAnimation; // animation for incorrect guess

M05_DEIT3397_02_SE_C05.fm Page 204 Monday, July 7, 2014 9:01 AM

5.6 QuizFragment Class 205

• a boolean indicating whether or not the inflated GUI needs to be attached to the
ViewGroup in the second argument—false means that the Fragment was de-
clared in the parent Activity’s layout and true indicates that you’re dynamically
creating the Fragment and its GUI should be attached.

Method inflate returns a reference to a View that contains the inflated GUI. We store
that in local variable view so that it can be returned by onCreateView after the QuizFrag-
ment’s other instance variables are initialized.

58 // configures the QuizFragment when its View is created
59
60
61
62 {
63 super.onCreateView(inflater, container, savedInstanceState);
64
65
66
67 fileNameList = new ArrayList<String>();
68 quizCountriesList = new ArrayList<String>();
69 random = new SecureRandom();
70 handler = new Handler();
71
72
73
74
75
76
77 // get references to GUI components
78 questionNumberTextView =
79 (TextView) view.findViewById(R.id.questionNumberTextView);
80 flagImageView = (ImageView) view.findViewById(R.id.flagImageView);
81 guessLinearLayouts = new LinearLayout[3];
82 guessLinearLayouts[0] =
83 (LinearLayout) view.findViewById(R.id.row1LinearLayout);
84 guessLinearLayouts[1] =
85 (LinearLayout) view.findViewById(R.id.row2LinearLayout);
86 guessLinearLayouts[2] =
87 (LinearLayout) view.findViewById(R.id.row3LinearLayout);
88 answerTextView = (TextView) view.findViewById(R.id.answerTextView);
89
90 // configure listeners for the guess Buttons
91 for (LinearLayout row : guessLinearLayouts)
92 {
93 for (int column = 0; column < row.getChildCount(); column++)
94 {
95 Button button = (Button) row.getChildAt(column);
96 button.setOnClickListener(guessButtonListener);
97 }
98 }
99

Fig. 5.27 | QuizFragment overridden Fragment method onCreateView. (Part 1 of 2.)

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState)

View view =
 inflater.inflate(R.layout.fragment_quiz, container, false);

// load the shake animation that's used for incorrect answers
shakeAnimation = AnimationUtils.loadAnimation(getActivity(),
 R.anim.incorrect_shake);
shakeAnimation.setRepeatCount(3); // animation repeats 3 times

M05_DEIT3397_02_SE_C05.fm Page 205 Monday, July 7, 2014 9:01 AM

206 Chapter 5 Flag Quiz App

Lines 67–68 create ArrayList<String> objects that will store the flag image file
names for the currently enabled geographical regions and the names of the countries in the
current quiz, respectively. Line 69 creates the SecureRandom object for randomizing the
quiz’s flags and guess Buttons. Line 70 creates the Handler object handler, which we’ll
use to delay by two seconds the appearance of the next flag after the user correctly guesses
the current flag.

Lines 73–74 dynamically load the shake animation that will be applied to the flag
when an incorrect guess is made. AnimationUtils static method loadAnimation loads
the animation from the XML file represented by the constant R.anim.incorrect_shake.
The first argument indicates the Context containing the resources that will be animated—
inherited Fragment method getActivity returns the Activity that hosts this Fragment.
Activity is an indirect subclass of Context. Line 75 specifies the number of times the ani-
mation should repeat with Animation method setRepeatCount.

Lines 78–88 get references to various GUI components that we’ll programmatically
manipulate. Lines 91–98 get each guess Button from the three guessLinearLayouts and
register guessButtonListener (Section 5.6.9) as the OnClickListener.

Lines 101–102 set the text in questionNumberTextView to the String returned by
String static method format. The first argument to format is the String resource
R.string.question, which is a format String containing placeholders for two integer
values (as described in Section 5.4.2). Inherited Fragment method getResources returns
a Resources object (package android.content.res) that can be used to load resources.
We then call that object’s getString method to load the R.string.question resource,
which represents the String

Line 103 returns the QuizFragment’s GUI.

5.6.4 Method updateGuessRows
Method updateGuessRows (Fig. 5.28) is called from the app’s MainActivity when the
app is launched and each time the user changes the number of guess Buttons to display
with each flag. Lines 110–111 use the method’s SharedPreferences argument to get the
String for the key MainActivity.CHOICES—a constant containing the name of the pref-
erence in which the SettingsFragment stores the number of guess Buttons to display.
Line 112 converts the preference’s value to an int and divides it by 3 to determine the
value for guessRows, which indicates how many of the guessLinearLayouts should be
displayed—each with three guess Buttons. Next, lines 115–116 hide all of the guessLin-
earLayouts, so that lines 119–120 can show the appropriate guessLinearLayouts based
on the value of guessRows.

100 // set questionNumberTextView's text
101 questionNumberTextView.setText(
102);
103 return view; // returns the fragment's view for display
104 } // end method onCreateView
105

Question %1$d of %2$d

Fig. 5.27 | QuizFragment overridden Fragment method onCreateView. (Part 2 of 2.)

getResources().getString(R.string.question, 1, FLAGS_IN_QUIZ)

M05_DEIT3397_02_SE_C05.fm Page 206 Monday, July 7, 2014 9:01 AM

5.6 QuizFragment Class 207

5.6.5 Method updateRegions
Method updateRegions (Fig. 5.29) is called from the app’s MainActivity when the app
is launched and each time the user changes the world regions that should be included in
the quiz. Lines 126–127 use the method’s SharedPreferences argument to get the names
of all of the enabled regions as a Set<String>. MainActivity.REGIONS is a constant con-
taining the name of the preference in which the SettingsFragment stores the enabled
world regions.

5.6.6 Method resetQuiz
Method resetQuiz (Fig. 5.30) sets up and starts a quiz. Recall that the images for the
game are stored in the app’s assets folder. To access this folder’s contents, the method
gets the app’s AssetManager (line 134) by calling the parent Activity’s getAssets meth-
od. Next, line 135 clears the fileNameList to prepare to load image file names for only
the enabled geographical regions. Lines 140–147 iterate through all the enabled world re-
gions. For each, we use the AssetManager’s list method (line 143) to get an array of the
flag image file names, which we store in the String array paths. Lines 145–146 remove
the .png extension from each file name and place the names in the fileNameList. Asset-
Manager’s list method throws IOExceptions, which are checked exceptions (so you must
catch or declare the exception). If an exception occurs because the app is unable to access

106 // update guessRows based on value in SharedPreferences
107 public void updateGuessRows(SharedPreferences sharedPreferences)
108 {
109
110
111
112 guessRows = Integer.parseInt(choices) / 3;
113
114 // hide all guess button LinearLayouts
115 for (LinearLayout layout : guessLinearLayouts)
116
117
118 // display appropriate guess button LinearLayouts
119 for (int row = 0; row < guessRows; row++)
120
121 }
122

Fig. 5.28 | QuizFragment method updateGuessRows.

123 // update world regions for quiz based on values in SharedPreferences
124 public void updateRegions(SharedPreferences sharedPreferences)
125 {
126
127
128 }
129

Fig. 5.29 | QuizFragment method updateRegions.

// get the number of guess buttons that should be displayed
String choices =
 sharedPreferences.getString(MainActivity.CHOICES, null);

layout.setVisibility(View.INVISIBLE);

guessLinearLayouts[row].setVisibility(View.VISIBLE);

regionsSet =
 sharedPreferences.getStringSet(MainActivity.REGIONS, null);

M05_DEIT3397_02_SE_C05.fm Page 207 Monday, July 7, 2014 9:01 AM

208 Chapter 5 Flag Quiz App

the assets folder, lines 149–152 catch the exception and log it for debugging purposes
with Android’s built-in logging mechanism. Log static method e is used to log error mes-
sages. You can see the complete list of Log methods at

http://developer.android.com/reference/android/util/Log.html

130 // set up and start the next quiz
131 public void resetQuiz()
132 {
133
134
135 fileNameList.clear(); // empty list of image file names
136
137 try
138 {
139 // loop through each region
140 for (String region : regionsSet)
141 {
142
143
144
145 for (String path : paths)
146 fileNameList.add(path.replace(".png", ""));
147 }
148 }
149 catch (IOException exception)
150 {
151
152 }
153
154 correctAnswers = 0; // reset the number of correct answers made
155 totalGuesses = 0; // reset the total number of guesses the user made
156 quizCountriesList.clear(); // clear prior list of quiz countries
157
158 int flagCounter = 1;
159 int numberOfFlags = fileNameList.size();
160
161 // add FLAGS_IN_QUIZ random file names to the quizCountriesList
162 while (flagCounter <= FLAGS_IN_QUIZ)
163 {
164 int randomIndex = random.nextInt(numberOfFlags);
165
166 // get the random file name
167 String fileName = fileNameList.get(randomIndex);
168
169 // if the region is enabled and it hasn't already been chosen
170 if (!quizCountriesList.contains(fileName))
171 {
172 quizCountriesList.add(fileName); // add the file to the list
173 ++flagCounter;
174 }
175 }

Fig. 5.30 | QuizFragment method resetQuiz. (Part 1 of 2.)

// use AssetManager to get image file names for enabled regions
AssetManager assets = getActivity().getAssets();

// get a list of all flag image files in this region
String[] paths = assets.list(region);

Log.e(TAG, "Error loading image file names", exception);

M05_DEIT3397_02_SE_C05.fm Page 208 Monday, July 7, 2014 9:01 AM

5.6 QuizFragment Class 209

Next, lines 154–156 reset the counters for the number of correct guesses the user has
made (correctAnswers) and the total number of guesses the user has made (total-
Guesses) to 0 and clear the quizCountriesList.

Lines 162–175 add FLAGS_IN_QUIZ (10) randomly selected file names to the quiz-
CountriesList. We get the total number of flags, then randomly generate the index in the
range 0 to one less than the number of flags. We use this index to select one image file
name from fileNamesList. If the quizCountriesList does not already contain that file
name, we add it to quizCountriesList and increment the flagCounter. We repeat this
process until FLAGS_IN_QUIZ unique file names have been selected. Then line 177 calls
loadNextFlag (Fig. 5.31) to load the quiz’s first flag.

5.6.7 Method loadNextFlag
Method loadNextFlag (Fig. 5.31) loads and displays the next flag and the corresponding
set of answer Buttons. The image file names in quizCountriesList have the format

without the .png extension. If a regionName or countryName contains multiple words,
they’re separated by underscores (_).

176
177 loadNextFlag(); // start the quiz by loading the first flag
178 } // end method resetQuiz
179

regionName-countryName

180 // after the user guesses a correct flag, load the next flag
181 private void loadNextFlag()
182 {
183 // get file name of the next flag and remove it from the list
184 String nextImage = quizCountriesList.remove(0);
185 correctAnswer = nextImage; // update the correct answer
186 answerTextView.setText(""); // clear answerTextView
187
188 // display current question number
189
190
191
192
193 // extract the region from the next image's name
194 String region = nextImage.substring(0, nextImage.indexOf('-'));
195
196
197
198
199 try
200 {

Fig. 5.31 | QuizFragment method loadNextFlag. (Part 1 of 2.)

Fig. 5.30 | QuizFragment method resetQuiz. (Part 2 of 2.)

questionNumberTextView.setText(
 getResources().getString(R.string.question,
 (correctAnswers + 1), FLAGS_IN_QUIZ));

// use AssetManager to load next image from assets folder
AssetManager assets = getActivity().getAssets();

M05_DEIT3397_02_SE_C05.fm Page 209 Monday, July 7, 2014 9:01 AM

210 Chapter 5 Flag Quiz App

Line 184 removes the first name from quizCountriesList and stores it in nextImage.
We also save this in correctAnswer so it can be used later to determine whether the user
made a correct guess. Next, we clear the answerTextView and display the current question
number in the questionNumberTextView (lines 189–191) using the formatted String
resource R.string.question.

201
202
203
204
205
206
207
208 }
209 catch (IOException exception)
210 {
211 Log.e(TAG, "Error loading " + nextImage, exception);
212 }
213
214 Collections.shuffle(fileNameList); // shuffle file names
215
216 // put the correct answer at the end of fileNameList
217 int correct = fileNameList.indexOf(correctAnswer);
218 fileNameList.add(fileNameList.remove(correct));
219
220 // add 3, 6, or 9 guess Buttons based on the value of guessRows
221 for (int row = 0; row < guessRows; row++)
222 {
223 // place Buttons in currentTableRow
224 for (int column = 0;
225 column < guessLinearLayouts[row].getChildCount(); column++)
226 {
227 // get reference to Button to configure
228 Button newGuessButton =
229 (Button) guessLinearLayouts[row].getChildAt(column);
230 newGuessButton.setEnabled(true);
231
232 // get country name and set it as newGuessButton's text
233 String fileName = fileNameList.get((row * 3) + column);
234 newGuessButton.setText(getCountryName(fileName));
235 }
236 }
237
238 // randomly replace one Button with the correct answer
239 int row = random.nextInt(guessRows); // pick random row
240 int column = random.nextInt(3); // pick random column
241 LinearLayout randomRow = guessLinearLayouts[row]; // get the row
242 String countryName = getCountryName(correctAnswer);
243 ((Button) randomRow.getChildAt(column)).setText(countryName);
244 } // end method loadNextFlag
245

Fig. 5.31 | QuizFragment method loadNextFlag. (Part 2 of 2.)

// get an InputStream to the asset representing the next flag
InputStream stream =
 assets.open(region + "/" + nextImage + ".png");

// load the asset as a Drawable and display on the flagImageView
Drawable flag = Drawable.createFromStream(stream, nextImage);
flagImageView.setImageDrawable(flag);

M05_DEIT3397_02_SE_C05.fm Page 210 Monday, July 7, 2014 9:01 AM

5.6 QuizFragment Class 211

Line 194 extracts from nextImage the region to be used as the assets subfolder name
from which we’ll load the image. Next we get the AssetManager, then use it in the try
statement to open an InputStream (package java.io) to read bytes from the flag image’s
file. We use that stream as an argument to class Drawable’s static method createFrom-
Stream, which creates a Drawable object (package android.graphics.drawable). The
Drawable is set as flagImageView’s item to display by calling its setImageDrawable
method. If an exception occurs, we log it for debugging purposes (line 211).

Next, line 214 shuffles the fileNameList, and lines 217–218 locate the correctAn-
swer and move it to the end of the fileNameList—later we’ll insert this answer randomly
into the one of the guess Buttons.

Lines 221–236 iterate through the Buttons in the guessLinearLayouts for the cur-
rent number of guessRows. For each Button:

• lines 228–229 get a reference to the next Button

• line 230 enables the Button

• line 233 gets the flag file name from the fileNameList

• line 234 sets Button’s text with the country name that’s returned by method get-
CountryName (Section 5.6.8)

Lines 239–243 pick a random row (based on the current number of guessRows) and
column, then set the text of the corresponding Button.

5.6.8 Method getCountryName
Method getCountryName (Fig. 5.32) parses the country name from the image file name.
First, we get a substring starting from the dash (-) that separates the region from the country
name. Then we call String method replace to replace the underscores (_) with spaces.

5.6.9 Anonymous Inner Class That Implements OnClickListener
Lines 91–98 (Fig. 5.27) registered guessButtonListener (Fig. 5.33) as the event-handling
object for each guess Button. Instance variable guessButtonListener refers to an anony-
mous inner class object that implements interface OnClickListener to respond to Button
events. The method receives the clicked Button as parameter v. We get the Button’s text
(line 259) and the parsed country name (line 260), then increment totalGuesses.

If the guess is correct (line 263), we increment correctAnswers. Next, we set the
answerTextView’s text to the country name and change its color to the color represented
by the constant R.color.correct_answer (green), and we call our utility method dis-
ableButtons (Section 5.6.10) to disable all the answer Buttons.

246 // parses the country flag file name and returns the country name
247 private String getCountryName(String name)
248 {
249 return name.substring(name.indexOf('-') + 1).replace('_', ' ');
250 }
251

Fig. 5.32 | QuizFragment method getCountryName.

M05_DEIT3397_02_SE_C05.fm Page 211 Monday, July 7, 2014 9:01 AM

212 Chapter 5 Flag Quiz App

252 // called when a guess Button is touched
253 private OnClickListener guessButtonListener = new OnClickListener()
254 {
255 @Override
256 public void onClick(View v)
257 {
258 Button guessButton = ((Button) v);
259 String guess = guessButton.getText().toString();
260 String answer = getCountryName(correctAnswer);
261 ++totalGuesses; // increment number of guesses the user has made
262
263 if (guess.equals(answer)) // if the guess is correct
264 {
265 ++correctAnswers; // increment the number of correct answers
266
267 // display correct answer in green text
268 answerTextView.setText(answer + "!");
269 answerTextView.setTextColor(
270 getResources().getColor(R.color.correct_answer));
271
272 disableButtons(); // disable all guess Buttons
273
274 // if the user has correctly identified FLAGS_IN_QUIZ flags
275 if (correctAnswers == FLAGS_IN_QUIZ)
276 {
277 // DialogFragment to display quiz stats and start new quiz
278 DialogFragment quizResults =
279
280 {
281 // create an AlertDialog and return it
282
283
284 {
285 AlertDialog.Builder builder =
286 new AlertDialog.Builder(getActivity());
287 builder.setCancelable(false);
288
289 builder.setMessage(
290 getResources().getString(R.string.results,
291 totalGuesses, (1000 / (double) totalGuesses)));
292
293 // "Reset Quiz" Button
294 builder.setPositiveButton(R.string.reset_quiz,
295 new DialogInterface.OnClickListener()
296 {
297 public void onClick(DialogInterface dialog,
298 int id)
299 {
300 resetQuiz();
301 }
302 } // end anonymous inner class
303); // end call to setPositiveButton

Fig. 5.33 | Anonymous inner class that implements OnClickListener. (Part 1 of 2.)

new DialogFragment()

@Override
public Dialog onCreateDialog(Bundle bundle)

M05_DEIT3397_02_SE_C05.fm Page 212 Monday, July 7, 2014 9:01 AM

5.6 QuizFragment Class 213

If correctAnswers is FLAGS_IN_QUIZ (line 275), the quiz is over. Lines 278–307
create a new anonymous inner class that extends DialogFragment and will be used to dis-
play the quiz results. The DialogFragment’s onCreateDialog method uses an Alert-
Dialog.Builder to configure and create an AlertDialog, then returns it. When the user
touches the dialog’s Reset Quiz Button, method resetQuiz is called to start a new game
(line 300). To display the DialogFragment, line 310 calls its show method, passing as argu-
ments the FragmentManager returned by getFragmentManager and a String. The second
argument can be used with FragmentManager method getFragmentByTag to get a refer-
ence to the DialogFragment at a later time—we don’t use this capability in this app.

If correctAnswers is less than FLAGS_IN_QUIZ, then lines 315–323 call the postDe-
layed method of Handler object handler. The first argument defines an anonymous inner
class that implements the Runnable interface—this represents the task to perform (load-
NextFlag) some number of milliseconds into the future. The second argument is the delay
in milliseconds (2000). If the guess is incorrect, line 328 invokes flagImageView’s start-

304
305
306 } // end method onCreateDialog
307 }; // end DialogFragment anonymous inner class
308
309
310
311 }
312 else // answer is correct but quiz is not over
313 {
314
315
316
317
318
319
320
321
322
323
324 }
325 }
326 else // guess was incorrect
327 {
328 flagImageView.startAnimation(shakeAnimation); // play shake
329
330 // display "Incorrect!" in red
331 answerTextView.setText(R.string.incorrect_answer);
332 answerTextView.setTextColor(
333);
334 guessButton.setEnabled(false); // disable incorrect answer
335 }
336 }
337 }; // end guessButtonListener
338

Fig. 5.33 | Anonymous inner class that implements OnClickListener. (Part 2 of 2.)

return builder.create(); // return the AlertDialog

// use FragmentManager to display the DialogFragment
quizResults.show(getFragmentManager(), "quiz results");

// load the next flag after a 1-second delay
handler.postDelayed(
 new Runnable()
 {
 @Override
 public void run()
 {
 loadNextFlag();
 }
 }, 2000); // 2000 milliseconds for 2-second delay

getResources().getColor(R.color.incorrect_answer)

M05_DEIT3397_02_SE_C05.fm Page 213 Monday, July 7, 2014 9:01 AM

214 Chapter 5 Flag Quiz App

Animation method to play the shakeAnimation that was loaded in method onCreateView.
We also set the text on answerTextView to display "Incorrect!" in red (lines 331–333),
then disable the guessButton that corresponds to the incorrect answer.

5.6.10 Method disableButtons
Method disableButtons (Fig. 5.34) iterates through the guess Buttons and disables them.

5.7 SettingsFragment Class
Class SettingsFragment (Fig. 5.35) extends PreferenceFragment, which provides capa-
bilities for managing the app’s settings. Overridden method onCreate (lines 11–16) is
called when the SettingsFragment is created—either by the SettingsActivity when the
app is running in portrait orientation or by the MainActivity when the app is running on
a tablet in landscape orientation. Line 15 uses inherited PreferenceFragment method
addPreferencesFromResource to build the preferences GUI. The argument is the re-
source ID for the preferences.xml file you created in Section 5.4.10.

339 // utility method that disables all answer Buttons
340 private void disableButtons()
341 {
342 for (int row = 0; row < guessRows; row++)
343 {
344 LinearLayout guessRow = guessLinearLayouts[row];
345 for (int i = 0; i < guessRow.getChildCount(); i++)
346 guessRow.getChildAt(i).setEnabled(false);
347 }
348 }
349 } // end class FlagQuiz

Fig. 5.34 | QuizFragment method disableButtons.

1 // SettingsFragment.java
2 // Subclass of PreferenceFragment for managing app settings
3 package com.deitel.flagquiz;
4
5 import android.os.Bundle;
6 import android.preference.PreferenceFragment;
7
8 public class SettingsFragment
9 {

10 // creates preferences GUI from preferences.xml file in res/xml
11 @Override
12 public void onCreate(Bundle savedInstanceState)
13 {
14 super.onCreate(savedInstanceState);
15
16 }
17 } // end class SettingsFragment

Fig. 5.35 | Subclass of PreferenceFragment for managing app settings.

extends PreferenceFragment

addPreferencesFromResource(R.xml.preferences); // load from XML

M05_DEIT3397_02_SE_C05.fm Page 214 Monday, July 7, 2014 9:01 AM

5.8 SettingsActivity Class 215

5.8 SettingsActivity Class
Class SettingsActivity (Fig. 5.36) hosts the SettingsFragment when the app is running
in portrait orientation. To create this class, right click the package (com.deitel.flagquiz)
and select New > Class to display the New Java Class dialog. Set the new class’s Name to
SettingsActivity, set its Superclass to android.app.Activity and click Finish.

Overridden method onCreate (lines 11–16) calls Activity method setContentView
to inflate the GUI defined by activity_settings.xml (Section 5.4.6)—represented by
the resource R.layout.activity_settings.

5.9 AndroidManifest.xml
Each Activity in an app must be declared in the app’s AndroidManifest.xml file; other-
wise, Android will not know that the Activity exists and will not be able to launch it.
When you created the app, the IDE declared its MainActivity in AndroidManifest.xml.
To declare the app’s SettingsActivity:

1. Open AndroidManifest.xml and click the Application tab at the bottom of the
manifest editor.

2. In the Application Nodes section, click Add…, select Activity from the dialog that
appears and click OK.

3. In the Application Nodes section, select the new Activity node to display its attri-
butes in the Attributes for Activity section.

4. In the Name field, enter .SettingsActivity. The dot (.) before SettingsActiv-
ity is shorthand notation for the app’s package name (com.deitel.flagquiz).

5. In the Label field, enter @string/settings_activity—this string resource is
displayed in the action bar when the SettingsActivity is running.

For complete manifest file details, visit http://developer.android.com/guide/topics/
manifest/manifest-intro.html.

1 // SettingsActivity.java
2 // Activity to display SettingsFragment on a phone
3 package com.deitel.flagquiz;
4
5 import android.app.Activity;
6 import android.os.Bundle;
7
8 public class SettingsActivity extends Activity
9 {

10 // use FragmentManager to display SettingsFragment
11 @Override
12 protected void onCreate(Bundle savedInstanceState)
13 {
14 super.onCreate(savedInstanceState);
15
16 }
17 } // end class SettingsActivity

Fig. 5.36 | Activity to display SettingsFragment on a phone.

setContentView(R.layout.activity_settings);

M05_DEIT3397_02_SE_C05.fm Page 215 Monday, July 7, 2014 9:01 AM

216 Chapter 5 Flag Quiz App

5.10 Wrap-Up
In this chapter, you built a Flag Quiz app that tests a user’s ability to correctly identify
country flags. A key feature of this chapter was using Fragments to create portions of an
Activity’s GUI. You used two activities to display the QuizFragment and the Settings-
Fragment when the app was running in portrait orientation, and one Activity to display
both Fragments when the app was running on a tablet in landscape orientation—thus,
making better use of the available screen real estate. You used a subclass of Preference-
Fragment to automatically maintain and persist the app’s settings and a subclass of Dia-
logFragment to display an AlertDialog to the user. We discussed portions of a
Fragment’s lifecycle and showed how to use the FragmentManager to obtain a reference to
a Fragment so that you could interact with it programmatically.

In portrait orientation, you used the app’s action menu to enable the user to display
the SettingsActivity containing the SettingsFragment. To launch the SettingsAc-
tivity, you used an explicit Intent.

We showed how to use Android’s WindowManager to obtain a Display object so that
you could determine whether the app was running on a tablet in landscape orientation. In
this case, you prevented the menu from displaying because the SettingsFragment was
already on the screen.

We demonstrated how to manage a large number of image resources using subfolders
in the app’s assets folder and how to access those resources via an AssetManager. You cre-
ated a Drawable from an image’s bytes by reading them from an InputStream, then dis-
played the Drawable in an ImageView.

You learned about additional subfolders of the app’s res folder—menu for storing
menu resource files, anim for storing animation resource files and xml for storing raw XML
data files. We also discussed how to use qualifiers to create a folder for storing a layout that
should be used only on large devices in landscape orientation.

You used Toasts to briefly display minor error or informational messages. To display
the next flag in the quiz after a short delay, you used a Handler, which executes a Runnable
after a specified number of milliseconds. You learned that a Handler’s Runnable executes in
the thread that created the Handler (the GUI thread in this app).

We defined an Animation in XML and applied it to the app’s ImageView when the
user guessed incorrectly to provide visual feedback to the user. You learned how to log
exceptions for debugging purposes with Android’s built-in logging mechanism and class
Log. You also used additional classes and interfaces from the java.util package, including
List, ArrayList, Collections and Set.

In Chapter 6, you’ll create a Cannon Game using multithreading and frame-by-frame
animation. You’ll handle touch gestures to fire a cannon. You’ll learn how to create a game
loop that updates the display as fast as possible to create smooth animations and to make
the game feel like it executes at the same speed regardless of a given device’s processor
speed. We’ll also show how to perform simple collision detection.

Self-Review Exercises
5.1 Fill in the blanks in each of the following statements:

a) FragmentManager can use class of package android.app to dynamically
add, remove and transition between fragments.

M05_DEIT3397_02_SE_C05.fm Page 216 Friday, June 20, 2014 3:18 PM

 Answers to Self-Review Exercises 217

b) Files in the assets folders are accessed via a(n) (package android.con-
tent.res), which can provide a list of all of the file names in a specified subfolder of
assets and can be used to access each asset.

c) method of PreferenceManager returns a reference to the SharedPreferences object.
d) By default, animations in an animation set are applied in parallel, but you can use the

 attribute to specify the number of milliseconds into the future at which an
animation should begin. This can be used to sequence the animations in a set.

5.2 State whether each of the following is true or false. If false, explain why.
a) We use AnimationUtils static method loadAnimation to load an animation from an

XML file that specifies the animation’s options.
b) Android does not provide a logging mechanism for debugging purposes.
c) ImageView’s Adjust View Bounds property specifies whether or not the ImageView main-

tains the aspect ratio of its Drawable.
d) You load color and String array resources from the colors.xml and strings.xml files

into memory by using the Activity’s Resources object.
e) Use activities to create reusable components and make better use of the screen real estate

in a tablet app.

Answers to Self-Review Exercises
5.1 a) FragmentTransaction. b) AssetManager. c) getDefaultSharedPreferences.
d) android:startOffset.

5.2 a) True. b) False. When exceptions occur, you can log them for debugging purposes with
the built-in Log class’s methods. c) True. d) True. e) False. Use Fragments to create reusable com-
ponents and make better use of the screen real estate in a tablet app.

Exercises
5.3 Fill in the blanks in each of the following statements:

a) To specify Menu options, you override Activity’s method to add the options
to the method’s Menu argument.

b) To delay an action, we use a(n) (package android.os) object to execute a
Runnable after a specified delay.

c) You can specify the number of times an animation should repeat with Animation meth-
od and perform the animation by calling View method startAnimation
(with the Animation as an argument) on the ImageView.

d) method of Fragment builds and returns a View containing the Fragment’s GUI.
e) Android supports animations which allow you to animate any property of

any object.
f) For the android:fromXDelta attribute, specifying the value -5%p indicates that the View

should move to the by 5% of the parent’s width (indicated by the p).
g) We use the attribute of the application element to apply a theme to the

application’s GUI.

5.4 State whether each of the following is true or false. If false, explain why.
a) Resource folder names that begin with anim contain XML files that define tweened animations.
b) One would use Android’s DisplayManager to obtain a Display object that contains the

screen size.
c) Fragments can be executed independently of a parent Activity.

M05_DEIT3397_02_SE_C05.fm Page 217 Friday, June 20, 2014 3:18 PM

218 Chapter 5 Flag Quiz App

Project Exercises
5.5 (Enhanced Flag Quiz App) Make the following enhancements to the Flag Quiz app:

a) Count the number of questions that were answered correctly on the first try. After all
the questions have been answered, display a message describes how well the user per-
formed on first guesses.

b) Keep track of the score as the user proceeds through the app. Give the user the most
points for answering correctly on the first guess, fewer points for answering correctly on
the next guess, etc.

c) Use a SharedPreferences file to save the top five high scores.
d) Add multiplayer functionality.
e) If the user guesses the correct flag, include a “bonus question” asking the user to name

the capital of the country. If the user answers correctly on the first guess, add 10 bonus
points to the score; otherwise, simply display the correct answer, then allow the user to
proceed to the next flag.

f) After the user answers the question correctly, include a link to the Wikipedia for that
country so the user can learn more about the country as they play the game. In this ver-
sion of the app, you may want to allow the user to decide when to move to the next flag.

5.6 (Favorite Celebrities App with Fragments) Reimplement the Favorite Celebrities App of Chap-
ter 4 using a Fragment. Rather than having the Activity extend ListActivity, create a subclass of
ListFragment, then host an object of your new subclass in the class’s MainActivity.

5.7 (Road Sign Quiz App) Create an app that tests the user’s knowledge of road signs. Display a
random sign image and ask the user to select the sign’s name. Visit http://mutcd.fhwa.dot.gov/
ser-shs_millennium.htm for traffic sign images and information.

5.8 (U.S. State Quiz App) Using the techniques you learned in this chapter, create an app that
displays an outline of a U.S. state and asks the user to identify the state. If the user guesses the correct
state, include a “bonus question” asking the user to name the state’s capital. If the user answers cor-
rectly, add 10 bonus points to the score; otherwise, simply display the correct answer, then allow
the user to proceed to the next state. Keep score as described in Exercise 5.5(c).

5.9 (Country Quiz App) Using the techniques you learned in this chapter, create an app that dis-
plays an outline of a country and asks the user to identify its name. If the user guesses the correct
country, include a “bonus question” asking the user to name the country’s capital. If the user an-
swers correctly, add 10 bonus points to the score; otherwise, simply display the correct answer, then
allow the user to proceed to the next country. Keep score as described in Exercise 5.5(c).

5.10 (Android Programming Quiz App) Using the Android knowledge you’ve gained thus far, cre-
ate a multiple-choice Android programming quiz using original questions that you create. Add multi-
player capabilities so you can compete against your classmates.

5.11 (Cricket Trivia Quiz App) Create a cricket trivia quiz app.

5.12 (Science Quiz App) Create a science quiz app.

5.13 (Custom Quiz App) Create an app that allows the user to create a customized true/false or
multiple-choice quiz. This is a great study aid. The user can input questions on any subject and in-
clude answers, then use it to study for a test or final exam.

5.14 (Lottery Number Picker App) Create an app that randomly picks lottery numbers. Ask the
user how many numbers to pick and the maximum valid number in the lottery (set a maximum
value of 99). Provide five possible lottery-number combinations to choose from. Include a feature
that allows the user to easily pick from a list of five popular lottery games. Find five of the most pop-
ular lottery games in your area and research how many numbers must be picked for a lottery ticket

M05_DEIT3397_02_SE_C05.fm Page 218 Monday, July 7, 2014 9:01 AM

 Exercises 219

and the highest valid number. Allow the user to tap the name of the lottery game to pick random
numbers for that game.

5.15 (Craps Game App) Create an app that simulates playing the dice game of craps. In this game,
a player rolls two dice. Each die has six faces—we’ve provided die images with the book’s examples.
Each face contains one, two, three, four, five or six spots. After the dice have come to rest, the sum
of the spots on the two top faces is calculated. If the sum is 7 or 11 on the first throw, the player
wins. If the sum is 2, 3 or 12 on the first throw (called “craps”), the player loses (the “house” wins).
If the sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes the player’s “point.” To win,
a player must continue rolling the dice until the point value is rolled. The player loses by rolling a
7 before rolling the point.

5.16 (Craps Game App Modification) Modify the craps app to allow wagering. Initialize the vari-
able balance to 1000 dollars. Prompt the player to enter a wager. Check that wager is less than or
equal to balance, and if it’s not, have the user reenter wager until a valid wager is entered. After a
correct wager is entered, run one game of craps. If the player wins, increase balance by wager and
display the new balance. If the player loses, decrease balance by wager, display the new balance,
check whether balance has become zero and, if so, display the message "Sorry. You busted!"

5.17 (Computer-Assisted Instruction App) Create an app that will help an elementary school stu-
dent learn multiplication. Select two positive one-digit integers. The app should then prompt the
user with a question, such as

How much is 6 times 7?

The student then inputs the answer. Next, the app checks the student’s answer. If it’s correct, dis-
play one of the following messages:

Very good!
Excellent!
Nice work!
Keep up the good work!

and ask another question. If the answer is wrong, display one of the following messages:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

and let the student try the same question repeatedly until the student gets it right. Enhance the app
to ask addition, subtraction and multiplication questions.

M05_DEIT3397_02_SE_C05.fm Page 219 Monday, July 7, 2014 9:01 AM

6 Cannon Game App

O b j e c t i v e s
In this chapter you’ll:

■ Create a simple game app
that’s easy to code and fun to
play.

■ Create a custom
SurfaceView subclass for
displaying the game’s
graphics from a separate
thread of execution.

■ Draw graphics using Paints
and a Canvas.

■ Override View’s
onTouchEvent method to
fire a cannonball when the
user touches the screen.

■ Perform simple collision
detection.

■ Add sound to your app using
a SoundPool and the
AudioManager.

■ Override Fragment lifecycle
methods onPause and
onDestroy.

M06_DEIT3397_02_SE_C06.fm Page 220 Tuesday, July 8, 2014 8:29 AM

6.1 Introduction 221

6.1 Introduction
The Cannon Game app challenges you to destroy a seven-piece target before a ten-second
time limit expires (Fig. 6.1). The game consists of four visual components—a cannon that
you control, a cannonball, the target and a blocker that defends the target. You aim and fire
the cannon by touching the screen—the cannon then aims at the touched point and fires
the cannonball in a straight line in that direction. At the end of the game, the app displays
an AlertDialog indicating whether you won or lost, and showing the number of shots
fired and the elapsed time (Fig. 6.2).

The game begins with a 10-second time limit. Each time you destroy a target section, a
three-second time bonus is added to your remaining time, and each time you hit the blocker,
a two-second time penalty is subtracted from your remaining time. You win by destroying all
seven target sections before you run out of time—if the timer reaches zero, you lose.

When you fire the cannon, the game plays a firing sound. When a cannonball hits a
target piece, a glass-breaking sound plays and that piece of the target disappears. When the
cannonball hits the blocker, a hit sound plays and the cannonball bounces back. The
blocker cannot be destroyed. The target and blocker move vertically at different speeds,
changing direction when they hit the top or bottom of the screen.

[Note: Due to performance issues with the Android Emulator, you should test this app
on an Android device.]

6.1 Introduction
6.2 Test-Driving the Cannon Game app
6.3 Technologies Overview

6.3.1 Attaching a Custom View to a Layout
6.3.2 Using the Resource Folder raw
6.3.3 Activity and Fragment Lifecycle

Methods
6.3.4 Overriding View Method

onTouchEvent
6.3.5 Adding Sound with SoundPool and

AudioManager
6.3.6 Frame-by-Frame Animation with

Threads, SurfaceView and
SurfaceHolder

6.3.7 Simple Collision Detection
6.3.8 Drawing Graphics Using Paint and

Canvas

6.4 Building the App’s GUI and Resource
Files

6.4.1 Creating the Project
6.4.2 strings.xml
6.4.3 fragment_game.xml
6.4.4 activity_main.xml
6.4.5 Adding the Sounds to the App

6.5 Class Line Maintains a Line’s
Endpoints

6.6 MainActivity Subclass of
Activity

6.7 CannonGameFragment Subclass of
Fragment

6.8 CannonView Subclass of View
6.8.1 package and import Statements
6.8.2 Instance Variables and Constants
6.8.3 Constructor
6.8.4 Overriding View Method

onSizeChanged
6.8.5 Method newGame
6.8.6 Method updatePositions
6.8.7 Method fireCannonball
6.8.8 Method alignCannon
6.8.9 Method drawGameElements

6.8.10 Method showGameOverDialog
6.8.11 Methods stopGame and

releaseResources
6.8.12 Implementing the

SurfaceHolder.Callback
Methods

6.8.13 Overriding View Method
onTouchEvent

6.8.14 CannonThread: Using a Thread to
Create a Game Loop

6.9 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

M06_DEIT3397_02_SE_C06.fm Page 221 Monday, July 7, 2014 9:02 AM

222 Chapter 6 Cannon Game App

Fig. 6.1 | Completed Cannon Game app.

Fig. 6.2 | Cannon Game app AlertDialogs showing a win and a loss.

Gap from previously
hit target section

Time remaining

Cannon

Cannonball in flight and
about to hit a target section

Blocker

Target

a) AlertDialog displayed after user
destroys all seven target sections

b) AlertDialog displayed when game ends
before user destroys all seven target sections

M06_DEIT3397_02_SE_C06.fm Page 222 Monday, July 7, 2014 9:02 AM

6.2 Test-Driving the Cannon Game App 223

6.2 Test-Driving the Cannon Game App
Opening and Running the App
Open Eclipse and import the Cannon Game app project. Perform the following steps:

1. Open the Import dialog. Select File > Import… to open the Import dialog.

2. Import the Cannon Game app’s project. In the Import dialog, expand the General
node and select Existing Projects into Workspace, then click Next > to proceed to
the Import Projects step. Ensure that Select root directory is selected, then click
the Browse… button. In the Browse for Folder dialog, locate the CannonGame fold-
er in the book’s examples folder, select it and click OK. Click Finish to import the
project into Eclipse. The project now appears in the Package Explorer window at
the left side of the Eclipse window.

3. Launch the Cannon Game app. In Eclipse, right click the CannonGame project in
the Package Explorer window, then select Run As > Android Application from the
menu that appears.

Playing the Game
Tap the screen to aim and fire the cannon. You can fire a cannonball only if there is not
another cannonball on the screen. If you’re running this in an AVD, the mouse is your
“finger.” Try to destroy the target as fast as you can—the game ends if the timer runs out
or you destroy all seven target pieces.

6.3 Technologies Overview
This section presents the new technologies that we use in the Cannon Game app in the or-
der they’re encountered in the chapter.

6.3.1 Attaching a Custom View to a Layout
You can create a custom view by extending class View or one of its subclasses, as we do with
class CannonView (Section 6.8), which extends SurfaceView (discussed shortly). To add a
custom component to a layout’s XML file, you must provide its fully qualified name (i.e., its
package and class name), so the custom View’s class must exist before you add it to the layout.
We demonstrate how to create the CannonView class and add it to a layout in Section 6.4.3.

6.3.2 Using the Resource Folder raw
Media files, such as the sounds used in the Cannon Game app, are placed in the app’s re-
source folder res/raw. Section 6.4.5 discusses how to create this folder. You’ll then drag
the app’s sound files into it.

6.3.3 Activity and Fragment Lifecycle Methods
When a Fragment is attached to an Activity as we did in Chapter 5 and will do in this
chapter, its lifecycle is tied to that of its parent Activity. There are six Activity lifecycle
methods that have corresponding Fragment lifecycle methods—onCreate, onStart, on-
Resume, onPause, onStop and onDestroy. When the system calls these methods on an Ac-
tivity, it will also call these corresponding methods (and potentially other Fragment
lifecycle methods) on all of the Activity’s attached Fragments.

M06_DEIT3397_02_SE_C06.fm Page 223 Monday, July 7, 2014 9:02 AM

224 Chapter 6 Cannon Game App

This app uses Fragment lifecycle methods onPause and onDestroy. An Activity’s
onPause method is called when another Activity receives the focus, which pauses the one
that loses the focus and sends it to the background. When an Activity hosts Fragments
and the Activity is paused, all of its Fragments’ onPause methods are called. In this app,
the CannonView is displayed in a CannonGameFragment (Section 6.7). We override onPause
to suspend game play in the CannonView so that the game does not continue executing
when the user cannot interact with it—this saves battery power. Many Activity lifecycle
methods have corresponding methods in a Fragment’s lifecycle.

When an Activity is shut down, its onDestroy method is called, which in turn calls
the onDestroy methods of all the Fragments hosted by the Activity. We use this method
in the CannonFragment to release the CannonView’s sound resources.

We discuss other Activity and Fragment lifecycle methods as we need them. For
more information on the complete Activity lifecycle, visit:

and for more information about the complete Fragment lifecycle, visit:

6.3.4 Overriding View Method onTouchEvent
Users interact with this app by touching the device’s screen. A touch aligns the cannon to
face the touch point on the screen, then fires the cannon. To process simple touch events
for the CannonView, you’ll override View method onTouchEvent (Section 6.8.13), then use
constants from class MotionEvent (package android.view) to test which type of event oc-
curred and process it accordingly.

6.3.5 Adding Sound with SoundPool and AudioManager
An app’s sound effects are managed with a SoundPool (package android.media), which
can be used to load, play and unload sounds. Sounds are played using one of Android’s au-
dio streams for alarms, music, notifications, phone rings, system sounds, phone calls and more.
The Android documentation recommends that games use the music audio stream to play
sounds. We use the Activity’s setVolumeControlStream method to specify that the
game’s volume can be controlled with the device’s volume keys. The method receives a
constant from class AudioManager (package android.media), which provides access to the
device’s volume and phone ringer controls.

6.3.6 Frame-by-Frame Animation with Threads, SurfaceView and
SurfaceHolder
This app performs its animations manually by updating the game elements from a separate
thread of execuion. To do this, we use a subclass of Thread with a run method that directs
our custom CannonView to update the positions of the game’s elements, then draws them.
The run method drives the frame-by-frame animations—this is known as the game loop.

Normally, all updates to an app’s user interface must be performed in the GUI thread
of execution. In Android, it’s important to minimize the amount of work you do in the
GUI thread to ensure that the GUI remains responsive and does not display ANR (Appli-

http://developer.android.com/reference/android/app/Activity.html
 #ActivityLifecycle

http://developer.android.com/guide/components/fragments.html
 #Lifecycle

M06_DEIT3397_02_SE_C06.fm Page 224 Monday, July 7, 2014 9:02 AM

6.4 Building the App’s GUI and Resource Files 225

cation Not Responding) dialogs. However, games often require complex logic that should
be performed in separate threads of execution and those threads often need to draw to the
screen. For such cases, Android provides class SurfaceView—a subclass of View to which
a thread can draw, then indicate that the results should be displayed in the GUI thread.
You manipulate a SurfaceView via an object of class SurfaceHolder, which enables you
to obtain a Canvas on which you can draw graphics. Class SurfaceHolder also provides
methods that give a thread exclusive access to the Canvas for drawing—only one thread at
a time can draw to a SurfaceView. Each SurfaceView subclass should implement the
interface SurfaceHolder.Callback, which contains methods that are called when the
SurfaceView is created, changed (e.g., its size or orientation changes) or destroyed.

6.3.7 Simple Collision Detection
The CannonView performs simple collision detection to determine whether the cannonball
has collided with any of the CannonView’s edges, with the blocker or with a section of the
target. These techniques are presented in Section 6.8. Game-development frameworks
typically provide more sophisticated “pixel-perfect” collision-detection capabilities. There
are many open-source game-development frameworks available.

6.3.8 Drawing Graphics Using Paint and Canvas
We use methods of class Canvas (package android.graphics) to draw text, lines and cir-
cles. Canvas methods draw on a View’s Bitmap. Each drawing method in class Canvas uses
an object of class Paint (package android.graphics) to specify drawing characteristics,
including color, line thickness, font size and more. These capabilities are presented with
the drawGameElements method in Section 6.8. For more details on the drawing character-
istics you can specify with a Paint object, visit

6.4 Building the App’s GUI and Resource Files
In this section, you’ll create the app’s resource files and main.xml layout file.

6.4.1 Creating the Project
Begin by creating a new Android project named CannonGame. Specify the following values
in the New Android Project dialog:

• Application Name: Cannon Game

• Project Name: CannonGame

• Package Name: com.deitel.cannongame

• Minimum Required SDK: API18: Android 4.3

• Target SDK: API19: Android 4.4

• Compile With: API19: Android 4.4

• Theme: Holo Light with Dark Action Bar

In the New Android Project dialog’s second New Android Application step, leave the default
settings, and press Next >. In the Configure Launcher Icon step, select an app icon image,

http://developer.android.com/reference/android/graphics/Paint.html

M06_DEIT3397_02_SE_C06.fm Page 225 Monday, July 7, 2014 9:02 AM

226 Chapter 6 Cannon Game App

then press Next >. In the Create Activity step, select Blank Activity, then press Next >. In the
Blank Activity step, leave the default settings and click Finish to create the project. Open
activity_main.xml in the Graphical Layout editor and select Nexus 4 from the screen-type
drop-down list. Once again, we’ll use this device as the basis for our design.

Configure the App for Portrait Orientation
The cannon game is designed to work best in portrait orientation. Follow the steps you
performed in Section 3.6 to set the app’s screen orientation to portrait.

6.4.2 strings.xml
You created String resources in earlier chapters, so we show only a table (Fig. 6.3) of the
String resource names and corresponding values here. Double click strings.xml in the
res/values folder to display the resource editor for creating these String resources.

6.4.3 fragment_game.xml
The fragment_game.xml layout for the CannonGameFragment contains a FrameLayout that
displays the CannonView. A FrameLayout is designed to display only one View—in this
case, the CannonView. In this section, you’ll create CannonGameFragment’s layout and the
CannonView class. To add the fragment_game.xml layout, perform the following steps:

1. Expand the project’s res/layout node in the Package Explorer.

2. Right click the layout folder and select New > Android XML File to display the
New Android XML File dialog.

3. In the dialog’s File field, enter fragment_game.xml

4. In the Root Element section, select FrameLayout, then click Finish.

5. From the Palette’s Advanced section, drag a view (with a lowercase v) onto the
design area.

6. The previous step displays the Choose Custom View Class dialog. In that dialog,
click Create New… to display the New Java Class dialog.

7. In the Name field, enter CannonView. In the Superclass field, change the super-
class from android.view.View to android.view.SurfaceView. Ensure that Con-
structors from superclass is checked, then click Finish. This creates and opens
CannonView.java. We’ll be using only the two-argument constructor, so delete
the other two. Save and close CannonView.java.

Resource name Value

results_format Shots fired: %1$d\nTotal time: %2$.1f

reset_game Reset Game

win You win!

lose You lose!

time_remaining_format Time remaining: %.1f seconds

Fig. 6.3 | String resources used in the Cannon Game app.

M06_DEIT3397_02_SE_C06.fm Page 226 Monday, July 7, 2014 9:02 AM

6.5 Class Line Maintains a Line’s Endpoints 227

8. In fragment_game.xml, select view1 in the Outline window. In the Properties
window’s Layout Parameters section, set Width and Height to match_parent.

9. In the Outline window, right click view1, select Edit ID…, rename view1 as can-
nonView and click OK.

10. Save fragment_game.xml.

6.4.4 activity_main.xml
The activity_main.xml layout for this app’s MainActivity contains only the Cannon-
GameFragment. To add this Fragment to the layout:

1. Open activity_main.xml in the Graphical Layout editor, then follow the steps
in Section 2.5.2 to switch from a FrameLayout to a RelativeLayout.

2. From the Palette’s Layouts section, drag a Fragment onto the design area or onto
the RelativeLayout node in the Outline window.

3. The preceding step displays the Choose Fragment Class dialog. Click Create
New… to display the New Java Class dialog.

4. Enter CannonGameFragment in the dialog’s Name field, change the Superclass
field’s value to android.app.Fragment and click Finish to create the class. The
IDE opens the Java file for the class, which you can close for now.

5. Save activity_main.xml.

6.4.5 Adding the Sounds to the App
As we mentioned previously, sound files are stored in the app’s res/raw folder. This app uses
three sound files—blocker_hit.wav, target_hit.wav and cannon_fire.wav—which are
located with the book’s examples in the sounds folder. To add these files to your project:

1. Right click the app’s res folder, then select New > Folder.
2. Specify the folder name raw and click Finish to create the folder.
3. Drag the sound files into the res/raw folder.

6.5 Class Line Maintains a Line’s Endpoints
This app consists of four classes:

• Line (Fig. 6.4)
• MainActivity (the Activity subclass; Section 6.6)
• CannonGameFragment (Section 6.7), and
• CannonView (Section 6.8)

In this section, we discuss class Line, which represents a line’s starting and ending Points.
Objects of this class define the game’s blocker and target. To add class Line to the project:

1. Expand the project’s src node in the Package Explorer.
2. Right click the package (com.deitel.cannongame) and select New > Class to dis-

play the New Java Class dialog.
3. In the dialog’s Name field, enter Line and click Finish.
4. Enter the code in Fig. 6.4 into the Line.java file. The default Point constructor

sets a Point’s public x and y instance variables to 0.

M06_DEIT3397_02_SE_C06.fm Page 227 Monday, July 7, 2014 9:02 AM

228 Chapter 6 Cannon Game App

6.6 MainActivity Subclass of Activity
Class MainActivity (Fig. 6.5) is host for the Cannon Game app’s CannonGameFragment.
In this app, we override only Activity method onCreate, which inflates the GUI.

6.7 CannonGameFragment Subclass of Fragment
Class CannonGameFragment (Fig. 6.6) overrides four Fragment methods:

• onCreateView (lines 17–28)—As you learned in Section 5.3.3, this method is
called after a Fragment’s onCreate method to build and return a View containing
the Fragment’s GUI. Lines 22–23 inflate the GUI. Line 26 gets a reference to the
CannonGameFragment’s CannonView so that we can call its methods.

• onActivityCreated (lines 31–38)—This method is called after the Fragment’s
host Activity is created. Line 37 calls the Activity’s setVolumeControlStream
method to allow the game’s audio volume to be controlled by the device’s volume
keys.

1 // Line.java
2 // Class Line represents a line with two endpoints.
3 package com.deitel.cannongame;
4
5
6
7 public class Line
8 {
9

10
11 } // end class Line

Fig. 6.4 | Class Line represents a line with two endpoints.

1 // MainActivity.java
2 // MainActivity displays the CannonGameFragment
3 package com.deitel.cannongame;
4
5 import android.app.Activity;
6 import android.os.Bundle;
7
8 public class MainActivity extends Activity
9 {

10 // called when the app first launches
11 @Override
12 public void onCreate(Bundle savedInstanceState)
13 {
14 super.onCreate(savedInstanceState); // call super's onCreate method
15 setContentView(R.layout.activity_main); // inflate the layout
16 }
17 } // end class MainActivity

Fig. 6.5 | MainActivity displays the CannonGameFragment.

import android.graphics.Point;

public Point start = new Point(); // start Point--(0,0) by default
public Point end = new Point(); // end Point--(0,0) by default

M06_DEIT3397_02_SE_C06.fm Page 228 Monday, July 7, 2014 9:02 AM

6.7 CannonGameFragment Subclass of Fragment 229

• onPause (lines 41–46)—When the MainActivity is sent to the background (and
thus, paused), the CannonGameFragment’s method onPause executes. Line 45 calls
the CannonView’s stopGame method (Section 6.8.11) to stop the game loop.

• onDestroy (lines 49–54)—When the MainActivity is destroyed, its onDestroy
method calls the CannonGameFragment’s onDestroy. Line 46 calls the Cannon-
View’s releaseResources method (Section 6.8.11) to release the sound resources.

1 // CannonGameFragment.java
2 // CannonGameFragment creates and manages a CannonView
3 package com.deitel.cannongame;
4
5 import android.app.Fragment;
6 import android.media.AudioManager;
7 import android.os.Bundle;
8 import android.view.LayoutInflater;
9 import android.view.View;

10 import android.view.ViewGroup;
11
12 public class CannonGameFragment extends Fragment
13 {
14 private CannonView cannonView; // custom view to display the game
15
16 // called when Fragment's view needs to be created
17 @Override
18 public View onCreateView(LayoutInflater inflater, ViewGroup container,
19 Bundle savedInstanceState)
20 {
21 super.onCreateView(inflater, container, savedInstanceState);
22 View view =
23 inflater.inflate(R.layout.fragment_game, container, false);
24
25 // get the CannonView
26
27 return view;
28 }
29
30 // set up volume control once Activity is created
31 @Override
32 public void onActivityCreated(Bundle savedInstanceState)
33 {
34 super.onActivityCreated(savedInstanceState);
35
36 // allow volume keys to set game volume
37
38 }
39
40 // when MainActivity is paused, CannonGameFragment terminates the game
41 @Override
42 public void onPause()
43 {

Fig. 6.6 | CannonGameFragment creates and manages a CannonView. (Part 1 of 2.)

cannonView = (CannonView) view.findViewById(R.id.cannonView);

getActivity().setVolumeControlStream(AudioManager.STREAM_MUSIC);

M06_DEIT3397_02_SE_C06.fm Page 229 Monday, July 7, 2014 9:02 AM

230 Chapter 6 Cannon Game App

6.8 CannonView Subclass of View
Class CannonView (Figs. 6.7–6.20) is a custom subclass of View that implements the Can-
non Game’s logic and draws game objects on the screen.

6.8.1 package and import Statements
Figure 6.7 lists the package statement and the import statements for class CannonView.
Section 6.3 discussed the key new classes and interfaces that class CannonView uses. We’ve
highlighted them in Fig. 6.7.

44 super.onPause();
45 cannonView.stopGame(); // terminates the game
46 }
47
48 // when MainActivity is paused, CannonGameFragment releases resources
49 @Override
50 public void onDestroy()
51 {
52 super.onDestroy();
53 cannonView.releaseResources();
54 }
55 } // end class CannonGameFragment

1 // CannonView.java
2 // Displays and controls the Cannon Game
3 package com.deitel.cannongame;
4
5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.app.DialogFragment;
9 import android.content.Context;

10 import android.content.DialogInterface;
11
12
13
14
15
16
17 import android.os.Bundle;
18 import android.util.AttributeSet;
19 import android.util.Log;
20
21
22
23
24

Fig. 6.7 | CannonView class’s package and import statements.

Fig. 6.6 | CannonGameFragment creates and manages a CannonView. (Part 2 of 2.)

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Point;
import android.media.AudioManager;
import android.media.SoundPool;

import android.util.SparseIntArray;
import android.view.MotionEvent;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

M06_DEIT3397_02_SE_C06.fm Page 230 Monday, July 7, 2014 9:02 AM

6.8 CannonView Subclass of View 231

6.8.2 Instance Variables and Constants
Figure 6.8 lists the large number of class CannonView’s constants and instance variables.
Most are self documenting, but we’ll explain each as we encounter it in the discussion.

25
26
27 {
28 private static final String TAG = "CannonView"; // for logging errors
29
30 private CannonThread cannonThread; // controls the game loop
31 private Activity activity; // to display Game Over dialog in GUI thread
32 private boolean dialogIsDisplayed = false;
33
34 // constants for game play
35 public static final int TARGET_PIECES = 7; // sections in the target
36 public static final int MISS_PENALTY = 2; // seconds deducted on a miss
37 public static final int HIT_REWARD = 3; // seconds added on a hit
38
39 // variables for the game loop and tracking statistics
40 private boolean gameOver; // is the game over?
41 private double timeLeft; // time remaining in seconds
42 private int shotsFired; // shots the user has fired
43 private double totalElapsedTime; // elapsed seconds
44
45 // variables for the blocker and target
46 private Line blocker; // start and end points of the blocker
47 private int blockerDistance; // blocker distance from left
48 private int blockerBeginning; // blocker top-edge distance from top
49 private int blockerEnd; // blocker bottom-edge distance from top
50 private int initialBlockerVelocity; // initial blocker speed multiplier
51 private float blockerVelocity; // blocker speed multiplier during game
52
53 private Line target; // start and end points of the target
54 private int targetDistance; // target distance from left
55 private int targetBeginning; // target distance from top
56 private double pieceLength; // length of a target piece
57 private int targetEnd; // target bottom's distance from top
58 private int initialTargetVelocity; // initial target speed multiplier
59 private float targetVelocity; // target speed multiplier
60
61 private int lineWidth; // width of the target and blocker
62 private boolean[] hitStates; // is each target piece hit?
63 private int targetPiecesHit; // number of target pieces hit (out of 7)
64
65 // variables for the cannon and cannonball
66 private Point cannonball; // cannonball image's upper-left corner
67 private int cannonballVelocityX; // cannonball's x velocity
68 private int cannonballVelocityY; // cannonball's y velocity
69 private boolean cannonballOnScreen; // whether cannonball on the screen
70 private int cannonballRadius; // cannonball's radius
71 private int cannonballSpeed; // cannonball's speed
72 private int cannonBaseRadius; // cannon base's radius

Fig. 6.8 | CannonView class’s fields. (Part 1 of 2.)

public class CannonView extends SurfaceView
 implements SurfaceHolder.Callback

M06_DEIT3397_02_SE_C06.fm Page 231 Monday, July 7, 2014 9:02 AM

232 Chapter 6 Cannon Game App

6.8.3 Constructor
Figure 6.9 shows class CannonView’s constructor. When a View is inflated, its constructor
is called with a Context and an AttributeSet as arguments. The Context is the Activity
that displays the CannonGameFragment containing the CannonView, and the AttributeSet
(package android.util) contains the CannonView attribute values that are set in the lay-
out’s XML document. These arguments are passed to the superclass constructor (line 96)
to ensure that the custom View is properly configured with the values of any standard View
attributes specified in the XML. Line 97 stores a reference to the MainActivity so we can
use it at the end of a game to display an AlertDialog from the Activity’s GUI thread.

73 private int cannonLength; // cannon barrel's length
74 private Point barrelEnd; // the endpoint of the cannon's barrel
75 private int screenWidth;
76 private int screenHeight;
77
78 // constants and variables for managing sounds
79 private static final int TARGET_SOUND_ID = 0;
80 private static final int CANNON_SOUND_ID = 1;
81 private static final int BLOCKER_SOUND_ID = 2;
82
83
84
85 // Paint variables used when drawing each item on the screen
86 private Paint textPaint; // Paint used to draw text
87 private Paint cannonballPaint; // Paint used to draw the cannonball
88 private Paint cannonPaint; // Paint used to draw the cannon
89 private Paint blockerPaint; // Paint used to draw the blocker
90 private Paint targetPaint; // Paint used to draw the target
91 private Paint backgroundPaint; // Paint used to clear the drawing area
92

93 // public constructor
94 public CannonView(Context context, AttributeSet attrs)
95 {
96 super(context, attrs); // call superclass constructor
97 activity = (Activity) context; // store reference to MainActivity
98
99
100
101
102 // initialize Lines and Point representing game items
103 blocker = new Line(); // create the blocker as a Line
104 target = new Line(); // create the target as a Line
105 cannonball = new Point(); // create the cannonball as a Point
106
107 // initialize hitStates as a boolean array
108 hitStates = new boolean[TARGET_PIECES];

Fig. 6.9 | CannonView constructor. (Part 1 of 2.)

Fig. 6.8 | CannonView class’s fields. (Part 2 of 2.)

private SoundPool soundPool; // plays sound effects
private SparseIntArray soundMap; // maps IDs to SoundPool

// register SurfaceHolder.Callback listener
getHolder().addCallback(this);

M06_DEIT3397_02_SE_C06.fm Page 232 Monday, July 7, 2014 9:02 AM

6.8 CannonView Subclass of View 233

Registering the SurfaceHolder.Callback Listener
Line 100 registers this (i.e., the CannonView) as the object that implements SurfaceHold-
er.Callback to receive the method calls that indicate when the SurfaceView is created,
updated and destroyed. Inherited SurfaceView method getHolder returns the Surface-
Holder object for managing the SurfaceView, and SurfaceHolder method addCallback
stores the object that implements interface SurfaceHolder.Callback.

Creating the blocker, target and cannonball
Lines 103–105 create the blocker and target as Lines and the cannonball as a Point.
Next, we create boolean array hitStates to keep track of which of the target’s seven pieces
have been hit (and thus should not be drawn).

Configuring the SoundPool and Loading the Sounds
Lines 111–120 configure the sounds that we use in the app. First, we create the SoundPool
that’s used to load and play the app’s sound effects. The constructor’s first argument rep-
resents the maximum number of simultaneous sound streams that can play at once. We
play only one sound at a time, so we pass 1. The second argument specifies which audio
stream will be used to play the sounds. There are seven sound streams identified by con-
stants in class AudioManager, but the documentation for class SoundPool recommends us-
ing the stream for playing music (AudioManager.STREAM_MUSIC) for sound in games. The
last argument represents the sound quality, but the documentation indicates that this val-
ue is not currently used and 0 should be specified as the default value.

Line 114 creates a SparseIntArray (soundMap), which maps integer keys to integer
values. SparseIntArray is similar to—but more efficient than—a HashMap<Integer,
Integer> for small numbers of key–value pairs. In this case, we map the sound keys (defined

109
110
111
112
113
114
115
116
117
118
119
120
121
122 // construct Paints for drawing text, cannonball, cannon,
123 // blocker and target; these are configured in method onSizeChanged
124 textPaint = new Paint();
125 cannonPaint = new Paint();
126 cannonballPaint = new Paint();
127 blockerPaint = new Paint();
128 targetPaint = new Paint();
129 backgroundPaint = new Paint();
130 } // end CannonView constructor
131

Fig. 6.9 | CannonView constructor. (Part 2 of 2.)

// initialize SoundPool to play the app's three sound effects
soundPool = new SoundPool(1, AudioManager.STREAM_MUSIC, 0);

// create Map of sounds and pre-load sounds
soundMap = new SparseIntArray(3); // create new SparseIntArray
soundMap.put(TARGET_SOUND_ID,
 soundPool.load(context, R.raw.target_hit, 1));
soundMap.put(CANNON_SOUND_ID,
 soundPool.load(context, R.raw.cannon_fire, 1));
soundMap.put(BLOCKER_SOUND_ID,
 soundPool.load(context, R.raw.blocker_hit, 1));

M06_DEIT3397_02_SE_C06.fm Page 233 Monday, July 7, 2014 9:02 AM

234 Chapter 6 Cannon Game App

in lines Fig. 6.8, 79–81) to the loaded sounds’ IDs, which are represented by the return
values of the SoundPool’s load method (called in Fig. 6.9, lines 116, 118 and 120). Each
sound ID can be used to play a sound (and later to return its resources to the system). Sound-
Pool method load receives three arguments—the application’s Context, a resource ID rep-
resenting the sound file to load and the sound’s priority. According to the documentation
for this method, the last argument is not currently used and should be specified as 1.

Creating the Paint Objects Used to Draw Game Elements
Lines 124–129 create the Paint objects that are used when drawing the game’s elements.
We configure these in method onSizeChanged (Section 6.8.4), because some of the Paint
settings depend on scaling the game elements based on the device’s screen size.

6.8.4 Overriding View Method onSizeChanged
Figure 6.10 overrides class View’s onSizeChanged method, which is called whenever the
View’s size changes, including when the View is first added to the View hierarchy as the layout
is inflated. This app always displays in portrait mode, so onSizeChanged is called only once
when the activity’s onCreate method inflates the GUI. The method receives the View’s new
width and height and its old width and height—when this method is called the first time,
the old width and height are 0. The calculations performed here scale the game’s on-screen
elements based on the device’s pixel width and height. We arrived at our scaling factors via
trial and error, choosing values that made the game elements look nice on the screen. Lines
170–175 configure the Paint objects that are used to specify drawing characteristics for the
game’s elements. After the calculations, line 177 calls method newGame (Fig. 6.11).

132 // called by surfaceChanged when the size of the SurfaceView changes,
133 // such as when it's first added to the View hierarchy
134 @Override
135 protected void onSizeChanged(int w, int h, int oldw, int oldh)
136 {
137 super.onSizeChanged(w, h, oldw, oldh);
138
139 screenWidth = w; // store CannonView's width
140 screenHeight = h; // store CannonView's height
141 cannonBaseRadius = h / 18; // cannon base radius 1/18 screen height
142 cannonLength = w / 8; // cannon length 1/8 screen width
143
144 cannonballRadius = w / 36; // cannonball radius 1/36 screen width
145 cannonballSpeed = w * 3 / 2; // cannonball speed multiplier
146
147 lineWidth = w / 24; // target and blocker 1/24 screen width
148
149 // configure instance variables related to the blocker
150 blockerDistance = w * 5 / 8; // blocker 5/8 screen width from left
151 blockerBeginning = h / 8; // distance from top 1/8 screen height
152 blockerEnd = h * 3 / 8; // distance from top 3/8 screen height
153 initialBlockerVelocity = h / 2; // initial blocker speed multiplier
154 blocker.start = new Point(blockerDistance, blockerBeginning);
155 blocker.end = new Point(blockerDistance, blockerEnd);

Fig. 6.10 | Overridden onSizeChanged method. (Part 1 of 2.)

M06_DEIT3397_02_SE_C06.fm Page 234 Monday, July 7, 2014 9:02 AM

6.8 CannonView Subclass of View 235

6.8.5 Method newGame
Method newGame (Fig. 6.11) resets the instance variables that are used to control the game.
If variable gameOver is true, which occurs only after the first game completes, line 203 re-
sets gameOver and lines 204–205 create a new CannonThread and start it to begin the game
loop that controls the game. You’ll learn more about this in Section 6.8.14.

156
157 // configure instance variables related to the target
158 targetDistance = w * 7 / 8; // target 7/8 screen width from left
159 targetBeginning = h / 8; // distance from top 1/8 screen height
160 targetEnd = h * 7 / 8; // distance from top 7/8 screen height
161 pieceLength = (targetEnd - targetBeginning) / TARGET_PIECES;
162 initialTargetVelocity = -h / 4; // initial target speed multiplier
163 target.start = new Point(targetDistance, targetBeginning);
164 target.end = new Point(targetDistance, targetEnd);
165
166 // endpoint of the cannon's barrel initially points horizontally
167 barrelEnd = new Point(cannonLength, h / 2);
168
169 // configure Paint objects for drawing game elements
170
171
172
173
174
175
176
177 newGame(); // set up and start a new game
178 } // end method onSizeChanged
179

180 // reset all the screen elements and start a new game
181 public void newGame()
182 {
183 // set every element of hitStates to false--restores target pieces
184 for (int i = 0; i < TARGET_PIECES; i++)
185 hitStates[i] = false;
186
187 targetPiecesHit = 0; // no target pieces have been hit
188 blockerVelocity = initialBlockerVelocity; // set initial velocity
189 targetVelocity = initialTargetVelocity; // set initial velocity
190 timeLeft = 10; // start the countdown at 10 seconds
191 cannonballOnScreen = false; // the cannonball is not on the screen
192 shotsFired = 0; // set the initial number of shots fired
193 totalElapsedTime = 0.0; // set the time elapsed to zero
194
195 // set the start and end Points of the blocker and target
196 blocker.start.set(blockerDistance, blockerBeginning);
197 blocker.end.set(blockerDistance, blockerEnd);

Fig. 6.11 | CannonView method newGame. (Part 1 of 2.)

Fig. 6.10 | Overridden onSizeChanged method. (Part 2 of 2.)

textPaint.setTextSize(w / 20); // text size 1/20 of screen width
textPaint.setAntiAlias(true); // smoothes the text
cannonPaint.setStrokeWidth(lineWidth * 1.5f); // set line thickness
blockerPaint.setStrokeWidth(lineWidth); // set line thickness
targetPaint.setStrokeWidth(lineWidth); // set line thickness
backgroundPaint.setColor(Color.WHITE); // set background color

M06_DEIT3397_02_SE_C06.fm Page 235 Monday, July 7, 2014 9:02 AM

236 Chapter 6 Cannon Game App

6.8.6 Method updatePositions
Method updatePositions (Fig. 6.12) is called by the CannonThread’s run method
(Section 6.8.14) to update the on-screen elements’ positions and to perform simple colli-
sion detection. The new locations of the game elements are calculated based on the elapsed
time in milliseconds between the previous and current animation frames. This enables the
game to update the amount by which each game element moves based on the device’s re-
fresh rate. We discuss this in more detail when we cover game loops in Section 6.8.14.

198 target.start.set(targetDistance, targetBeginning);
199 target.end.set(targetDistance, targetEnd);
200
201 if (gameOver) // starting a new game after the last game ended
202 {
203 gameOver = false; // the game is not over
204 cannonThread = new CannonThread(getHolder()); // create thread
205 cannonThread.start(); // start the game loop thread
206 } // end if
207 } // end method newGame
208

209 // called repeatedly by the CannonThread to update game elements
210 private void updatePositions(double elapsedTimeMS)
211 {
212 double interval = elapsedTimeMS / 1000.0; // convert to seconds
213
214 if (cannonballOnScreen) // if there is currently a shot fired
215 {
216 // update cannonball position
217 cannonball.x += interval * cannonballVelocityX;
218 cannonball.y += interval * cannonballVelocityY;
219
220 // check for collision with blocker
221 if (cannonball.x + cannonballRadius > blockerDistance &&
222 cannonball.x - cannonballRadius < blockerDistance &&
223 cannonball.y + cannonballRadius > blocker.start.y &&
224 cannonball.y - cannonballRadius < blocker.end.y)
225 {
226 cannonballVelocityX *= -1; // reverse cannonball's direction
227 timeLeft -= MISS_PENALTY; // penalize the user
228
229 // play blocker sound
230
231 }
232 // check for collisions with left and right walls
233 else if (cannonball.x + cannonballRadius > screenWidth ||
234 cannonball.x - cannonballRadius < 0)
235 {

Fig. 6.12 | CannonView method updatePositions. (Part 1 of 3.)

Fig. 6.11 | CannonView method newGame. (Part 2 of 2.)

soundPool.play(soundMap.get(BLOCKER_SOUND_ID), 1, 1, 1, 0, 1f);

M06_DEIT3397_02_SE_C06.fm Page 236 Monday, July 7, 2014 9:02 AM

6.8 CannonView Subclass of View 237

236 cannonballOnScreen = false; // remove cannonball from screen
237 }
238 // check for collisions with top and bottom walls
239 else if (cannonball.y + cannonballRadius > screenHeight ||
240 cannonball.y - cannonballRadius < 0)
241 {
242 cannonballOnScreen = false; // remove cannonball from screen
243 }
244 // check for cannonball collision with target
245 else if (cannonball.x + cannonballRadius > targetDistance &&
246 cannonball.x - cannonballRadius < targetDistance &&
247 cannonball.y + cannonballRadius > target.start.y &&
248 cannonball.y - cannonballRadius < target.end.y)
249 {
250 // determine target section number (0 is the top)
251 int section =
252 (int) ((cannonball.y - target.start.y) / pieceLength);
253
254 // check if the piece hasn't been hit yet
255 if ((section >= 0 && section < TARGET_PIECES) &&
256 !hitStates[section])
257 {
258 hitStates[section] = true; // section was hit
259 cannonballOnScreen = false; // remove cannonball
260 timeLeft += HIT_REWARD; // add reward to remaining time
261
262 // play target hit sound
263
264
265
266 // if all pieces have been hit
267 if (++targetPiecesHit == TARGET_PIECES)
268 {
269 cannonThread.setRunning(false); // terminate thread
270 showGameOverDialog(R.string.win); // show winning dialog
271 gameOver = true;
272 }
273 }
274 }
275 }
276
277 // update the blocker's position
278 double blockerUpdate = interval * blockerVelocity;
279 blocker.start.y += blockerUpdate;
280 blocker.end.y += blockerUpdate;
281
282 // update the target's position
283 double targetUpdate = interval * targetVelocity;
284 target.start.y += targetUpdate;
285 target.end.y += targetUpdate;
286

Fig. 6.12 | CannonView method updatePositions. (Part 2 of 3.)

soundPool.play(soundMap.get(TARGET_SOUND_ID), 1,
 1, 1, 0, 1f);

M06_DEIT3397_02_SE_C06.fm Page 237 Monday, July 7, 2014 9:02 AM

238 Chapter 6 Cannon Game App

Elapsed Time Since the Last Animation Frame
Line 212 converts the elapsed time since the last animation frame from milliseconds to sec-
onds. This value is used to modify the positions of various game elements.

Checking for Collisions with the Blocker
Line 214 checks whether the cannonball is on the screen. If it is, we update its position by
adding the distance it should have traveled since the last timer event. This is calculated by
multiplying its velocity by the amount of time that passed (lines 217–218). Lines 221–224
check whether the cannonball has collided with the blocker. We perform simple collision
detection, based on the rectangular boundary of the cannonball. There are four conditions
that must be met if the cannonball is in contact with the blocker:

• The cannonball’s x-coordinate plus the cannonball’s radius must be greater than
the blocker’s distance from the left edge of the screen (blockerDistance) (line
221). This means that the cannonball has reached the blocker’s distance from the
left edge of the screen.

• The cannonball’s x-coordinate minus the cannonball’s radius must also be less
than the blocker’s distance from the left edge of the screen (line 222). This en-
sures that the cannonball has not yet passed the blocker.

• Part of the cannonball must be lower than the top of the blocker (line 223).

• Part of the cannonball must be higher than the bottom of the blocker (line 224).

If all these conditions are met, we reverse the cannonball’s direction on the screen (line
226), penalize the user by subtracting MISS_PENALTY from timeLeft, then call soundPool’s
play method to play the blocker hit sound—BLOCKER_SOUND_ID is used as the soundMap
key to locate the sound’s ID in the SoundPool.

287 // if the blocker hit the top or bottom, reverse direction
288 if (blocker.start.y < 0 || blocker.end.y > screenHeight)
289 blockerVelocity *= -1;
290
291 // if the target hit the top or bottom, reverse direction
292 if (target.start.y < 0 || target.end.y > screenHeight)
293 targetVelocity *= -1;
294
295 timeLeft -= interval; // subtract from time left
296
297 // if the timer reached zero
298 if (timeLeft <= 0.0)
299 {
300 timeLeft = 0.0;
301 gameOver = true; // the game is over
302 cannonThread.setRunning(false); // terminate thread
303 showGameOverDialog(R.string.lose); // show the losing dialog
304 }
305 } // end method updatePositions
306

Fig. 6.12 | CannonView method updatePositions. (Part 3 of 3.)

M06_DEIT3397_02_SE_C06.fm Page 238 Monday, July 7, 2014 9:02 AM

6.8 CannonView Subclass of View 239

Checking Whether the Cannonball Left the Screen
We remove the cannonball if it reaches any of the screen’s edges. Lines 233–237 test
whether the cannonball has collided with the left or right wall and, if it has, remove the
cannonball from the screen. Lines 239–243 remove the cannonball if it collides with the
top or bottom of the screen.

Checking for Collisions with the Target
We then check whether the cannonball has hit the target (lines 245–248). These condi-
tions are similar to those used to determine whether the cannonball collided with the
blocker. If the cannonball hit the target, lines 251–252 determine which section has been
hit—dividing the distance between the cannonball and the bottom of the target by the
length of a piece. This expression evaluates to 0 for the topmost section and 6 for the
bottommost. We check whether that section was previously hit, using the hitStates array
(line 256). If it wasn’t, we set the corresponding hitStates element to true and remove
the cannonball from the screen. We then add HIT_REWARD to timeLeft, increasing the
game’s time remaining, and play the target hit sound (TARGET_SOUND_ID). We increment
targetPiecesHit, then determine whether it’s equal to TARGET_PIECES (line 267). If so,
the game is over, so we terminate the CannonThread by calling its setRunning method
with the argument false, invoke method showGameOverDialog with the String resource
ID representing the winning message and set gameOver to true.

Updating the Blocker and Target Positions
Now that all possible cannonball collisions have been checked, the blocker and target po-
sitions must be updated. Lines 278–280 change the blocker’s position by multiplying
blockerVelocity by the amount of time that has passed since the last update, and adding
that value to the current x- and y-coordinates. Lines 283–285 do the same for the target. If
the blocker has collided with the top or bottom wall, its direction is reversed by multiplying
its velocity by -1 (lines 288–289). Lines 292–293 perform the same check and adjustment
for the full length of the target, including any sections that have already been destroyed.

Updating the Time Left and Determining Whether Time Ran Out
We decrease timeLeft by the time that has passed since the prior animation frame (line
295). If timeLeft has reached zero, the game is over—we set timeLeft to 0.0 just in case
it was negative; otherwise, sometimes a negative final time would display on the screen).
Then we set gameOver to true, terminate the CannonThread by calling its setRunning
method with the argument false and call method showGameOverDialog with the String
resource ID representing the losing message.

6.8.7 Method fireCannonball
When the user touches the screen, method onTouchEvent (Section 6.8.13) calls fireCan-
nonball (Fig. 6.13). If there’s already a cannonball on the screen, the method returns im-
mediately. Line 313 calls alignCannon to aim the cannon at the touch point and get the
cannon’s angle. Lines 316–317 “load the cannon” (that is, position the cannonball inside
the cannon). Then, lines 320 and 323 calculate the horizontal and vertical components of
the cannonball’s velocity. Next, we set cannonballOnScreen to true so that the cannon-
ball will be drawn by method drawGameElements (Fig. 6.15) and increment shotsFired.
Finally, we play the cannon’s firing sound (represented by the CANNON_SOUND_ID).

M06_DEIT3397_02_SE_C06.fm Page 239 Monday, July 7, 2014 9:02 AM

240 Chapter 6 Cannon Game App

6.8.8 Method alignCannon
Method alignCannon (Fig. 6.14) aims the cannon at the point where the user touched the
screen. Line 335 gets the x- and y-coordinates of the touch from the MotionEvent argu-
ment. We compute the vertical distance of the touch from the center of the screen. If this
is not zero, we calculate cannon barrel’s angle from the horizontal (line 345). If the touch
is on the lower-half of the screen we adjust the angle by Math.PI (line 349). We then use
the cannonLength and the angle to determine the x- and y-coordinate values for the end-
point of the cannon’s barrel—this is used to draw a line from the cannon base’s center at
the left edge of the screen to the cannon’s barrel endpoint.

307 // fires a cannonball
308 public void fireCannonball(MotionEvent event)
309 {
310 if (cannonballOnScreen) // if a cannonball is already on the screen
311 return; // do nothing
312
313 double angle = alignCannon(event); // get the cannon barrel's angle
314
315 // move the cannonball to be inside the cannon
316 cannonball.x = cannonballRadius; // align x-coordinate with cannon
317 cannonball.y = screenHeight / 2; // centers ball vertically
318
319 // get the x component of the total velocity
320 cannonballVelocityX = (int) (cannonballSpeed * Math.sin(angle));
321
322 // get the y component of the total velocity
323 cannonballVelocityY = (int) (-cannonballSpeed * Math.cos(angle));
324 cannonballOnScreen = true; // the cannonball is on the screen
325 ++shotsFired; // increment shotsFired
326
327 // play cannon fired sound
328
329 } // end method fireCannonball
330

Fig. 6.13 | CannonView method fireCannonball.

331 // aligns the cannon in response to a user touch
332 public double alignCannon(MotionEvent event)
333 {
334 // get the location of the touch in this view
335 Point touchPoint = new Point((int) event.getX(), (int) event.getY());
336
337 // compute the touch's distance from center of the screen
338 // on the y-axis
339 double centerMinusY = (screenHeight / 2 - touchPoint.y);
340
341 double angle = 0; // initialize angle to 0
342

Fig. 6.14 | CannonView method alignCannon. (Part 1 of 2.)

soundPool.play(soundMap.get(CANNON_SOUND_ID), 1, 1, 1, 0, 1f);

M06_DEIT3397_02_SE_C06.fm Page 240 Monday, July 7, 2014 9:02 AM

6.8 CannonView Subclass of View 241

6.8.9 Method drawGameElements
The method drawGameElements (Fig. 6.15) draws the cannon, cannonball, blocker and tar-
get on the SurfaceView using the Canvas that the CannonThread (Section 6.8.14) obtains
from the SurfaceView’s SurfaceHolder.

343 // calculate the angle the barrel makes with the horizontal
344 if (centerMinusY != 0) // prevent division by 0
345 angle = Math.atan((double) touchPoint.x / centerMinusY);
346
347 // if the touch is on the lower half of the screen
348 if (touchPoint.y > screenHeight / 2)
349 angle += Math.PI; // adjust the angle
350
351 // calculate the endpoint of the cannon barrel
352 barrelEnd.x = (int) (cannonLength * Math.sin(angle));
353 barrelEnd.y =
354 (int) (-cannonLength * Math.cos(angle) + screenHeight / 2);
355
356 return angle; // return the computed angle
357 } // end method alignCannon
358

359 // draws the game to the given Canvas
360 public void drawGameElements()
361 {
362 // clear the background
363
364
365
366 // display time remaining
367
368
369
370 // if a cannonball is currently on the screen, draw it
371 if (cannonballOnScreen)
372
373
374
375 // draw the cannon barrel
376
377
378
379 // draw the cannon base
380
381
382
383 // draw the blocker
384
385

Fig. 6.15 | CannonView method drawGameElements. (Part 1 of 2.)

Fig. 6.14 | CannonView method alignCannon. (Part 2 of 2.)

Canvas canvas

canvas.drawRect(0, 0, canvas.getWidth(), canvas.getHeight(),
 backgroundPaint);

canvas.drawText(getResources().getString(
 R.string.time_remaining_format, timeLeft), 30, 50, textPaint);

canvas.drawCircle(cannonball.x, cannonball.y, cannonballRadius,
 cannonballPaint);

canvas.drawLine(0, screenHeight / 2, barrelEnd.x, barrelEnd.y,
 cannonPaint);

canvas.drawCircle(0, (int) screenHeight / 2,
 (int) cannonBaseRadius, cannonPaint);

canvas.drawLine(blocker.start.x, blocker.start.y, blocker.end.x,
 blocker.end.y, blockerPaint);

M06_DEIT3397_02_SE_C06.fm Page 241 Monday, July 7, 2014 9:02 AM

242 Chapter 6 Cannon Game App

Clearing the Canvas with Method drawRect
First, we call Canvas’s drawRect method (lines 363–364) to clear the Canvas so that all
the game elements can be displayed in their new positions. The method receives as argu-
ments the rectangle’s upper-left x-y coordinates, the rectangle’s width and height, and the
Paint object that specifies the drawing characteristics—recall that backgroundPaint sets
the drawing color to white.

Displaying the Time Remaining with Canvas Method drawText
Next, we call Canvas’s drawText method (lines 367–368) to display the time remaining
in the game. We pass as arguments the String to be displayed, the x- and y-coordinates at
which to display it and the textPaint (configured in lines 170–171) to describe how the
text should be rendered (that is, the text’s font size, color and other attributes).

Drawing the Cannonball with Canvas Method drawCircle
If the cannonball is on the screen, lines 372–373 use Canvas’s drawCircle method to
draw the cannonball in its current position. The first two arguments represent the coordi-
nates of the circle’s center. The third argument is the circle’s radius. The last argument is
the Paint object specifying the circle’s drawing characteristics.

386
387 Point currentPoint = new Point(); // start of current target section
388
389 // initialize currentPoint to the starting point of the target
390 currentPoint.x = target.start.x;
391 currentPoint.y = target.start.y;
392
393 // draw the target
394 for (int i = 0; i < TARGET_PIECES; i++)
395 {
396 // if this target piece is not hit, draw it
397 if (!hitStates[i])
398 {
399 // alternate coloring the pieces
400 if (i % 2 != 0)
401
402 else
403
404
405
406
407 }
408
409 // move currentPoint to the start of the next piece
410 currentPoint.y += pieceLength;
411 }
412 } // end method drawGameElements
413

Fig. 6.15 | CannonView method drawGameElements. (Part 2 of 2.)

targetPaint.setColor(Color.BLUE);

targetPaint.setColor(Color.YELLOW);

canvas.drawLine(currentPoint.x, currentPoint.y, target.end.x,
 (int) (currentPoint.y + pieceLength), targetPaint);

M06_DEIT3397_02_SE_C06.fm Page 242 Monday, July 7, 2014 9:02 AM

6.8 CannonView Subclass of View 243

Drawing the Cannon Barrel, Blocker and Target with Canvas Method drawLine
We use Canvas’s drawLine method to display the cannon barrel (lines 376–377), the
blocker (lines 384–385) and the target pieces (lines 405–406). This method receives five pa-
rameters—the first four represent the x-y coordinates of the line’s start and end, and the
last is the Paint object specifying the line’s characteristics, such as its thickness.

Drawing the Cannon Base with Canvas Method drawCircle
Lines 380–381 use Canvas’s drawCircle method to draw the cannon’s half-circle base by
drawing a circle that’s centered at the left edge of the screen—because a circle is displayed
based on its center point, half of this circle is drawn off the left side of the SurfaceView.

Drawing the Target Sections with Canvas Method drawLine
Lines 390–411 draw the target sections. We iterate through the sections, drawing each in
the correct color—blue for the odd-numbered pieces and yellow for the others. Only those
sections that haven’t been hit are displayed.

6.8.10 Method showGameOverDialog
When the game ends, the showGameOverDialog method (Fig. 6.16) displays a Dialog-
Fragment (using the techniques you learned in Section 5.6.9) containing an AlertDialog
that indicates whether the player won or lost, the number of shots fired and the total time
elapsed. The call to method setPositiveButton (lines 433–444) creates a reset button for
starting a new game.

414 // display an AlertDialog when the game ends
415 private void showGameOverDialog(final int messageId)
416 {
417 // DialogFragment to display quiz stats and start new quiz
418 final DialogFragment gameResult =
419
420 {
421 // create an AlertDialog and return it
422 @Override
423
424 {
425 // create dialog displaying String resource for messageId
426 AlertDialog.Builder builder =
427 new AlertDialog.Builder(getActivity());
428 builder.setTitle(getResources().getString(messageId));
429
430 // display number of shots fired and total time elapsed
431 builder.setMessage(getResources().getString(
432 R.string.results_format, shotsFired, totalElapsedTime));
433 builder.setPositiveButton(R.string.reset_game,
434 new DialogInterface.OnClickListener()
435 {
436 // called when "Reset Game" Button is pressed
437 @Override
438 public void onClick(DialogInterface dialog, int which)
439 {

Fig. 6.16 | CannonView method showGameOverDialog. (Part 1 of 2.)

new DialogFragment()

public Dialog onCreateDialog(Bundle bundle)

M06_DEIT3397_02_SE_C06.fm Page 243 Monday, July 7, 2014 9:02 AM

244 Chapter 6 Cannon Game App

The onClick method of the button’s listener indicates that the dialog is no longer dis-
played and calls newGame to set up and start a new game. A dialog must be displayed from
the GUI thread, so lines 451–460 call Activity method runOnUiThread to specify a Run-
nable that should execute in the GUI thread as soon as possible. The argument is an object
of an anonymous inner class that implements Runnable. The Runnable’s run method indi-
cates that the dialog is displayed and then displays it.

6.8.11 Methods stopGame and releaseResources
Class CannonGameFragment’s onPause and onDestroy methods (Section 6.7) call class
CannonView’s stopGame and releaseResources methods (Fig. 6.17), respectively. Meth-
od stopGame (lines 464–468) is called from the main Activity to stop the game when the
Activity’s onPause method is called—for simplicity, we don’t store the game’s state in
this example. Method releaseResources (lines 471–475) calls the SoundPool’s release
method to release the resources associated with the SoundPool.

440 dialogIsDisplayed = false;
441 newGame(); // set up and start a new game
442 }
443 } // end anonymous inner class
444); // end call to setPositiveButton
445
446 return builder.create(); // return the AlertDialog
447 } // end method onCreateDialog
448 }; // end DialogFragment anonymous inner class
449
450 // in GUI thread, use FragmentManager to display the DialogFragment
451 activity. (
452 new Runnable() {
453 public void run()
454 {
455 dialogIsDisplayed = true;
456
457
458 }
459 } // end Runnable
460); // end call to runOnUiThread
461 } // end method showGameOverDialog
462

463 // stops the game; called by CannonGameFragment's onPause method
464 public void stopGame()
465 {
466 if (cannonThread != null)
467 cannonThread.setRunning(false); // tell thread to terminate
468 }
469

Fig. 6.17 | CannonView methods stopGame and releaseResources. (Part 1 of 2.)

Fig. 6.16 | CannonView method showGameOverDialog. (Part 2 of 2.)

runOnUiThread

gameResult.setCancelable(false); // modal dialog
gameResult.show(activity.getFragmentManager(), "results");

M06_DEIT3397_02_SE_C06.fm Page 244 Monday, July 7, 2014 9:02 AM

6.8 CannonView Subclass of View 245

6.8.12 Implementing the SurfaceHolder.Callback Methods
Figure 6.18 implements the surfaceChanged, surfaceCreated and surfaceDestroyed
methods of interface SurfaceHolder.Callback. Method surfaceChanged has an empty
body in this app because the app is always displayed in portrait orientation. This method is
called when the SurfaceView’s size or orientation changes, and would typically be used to
redisplay graphics based on those changes. Method surfaceCreated (lines 485–494) is
called when the SurfaceView is created—e.g., when the app first loads or when it resumes
from the background. We use surfaceCreated to create and start the CannonThread to
begin the game loop. Method surfaceDestroyed (lines 497–515) is called when the
SurfaceView is destroyed—e.g., when the app terminates. We use the method to ensure
that the CannonThread terminates properly. First, line 502 calls CannonThread’s setRun-
ning method with false as an argument to indicate that the thread should stop, then lines
504–515 wait for the thead to terminate. This ensures that no attempt is made to draw to
the SurfaceView once surfaceDestroyed completes execution.

470 // releases resources; called by CannonGame's onDestroy method
471 public void releaseResources()
472 {
473
474 soundPool = null;
475 }
476

477 // called when surface changes size
478 @Override
479 public void (SurfaceHolder holder, int format,
480 int width, int height)
481 {
482 }
483
484 // called when surface is first created
485 @Override
486 public void (SurfaceHolder holder)
487 {
488 if (!dialogIsDisplayed)
489 {
490
491
492
493 }
494 }
495
496 // called when the surface is destroyed
497 @Override
498 public void (SurfaceHolder holder)
499 {

Fig. 6.18 | Implementing the SurfaceHolder.Callback methods. (Part 1 of 2.)

Fig. 6.17 | CannonView methods stopGame and releaseResources. (Part 2 of 2.)

soundPool.release(); // release all resources used by the SoundPool

surfaceChanged

surfaceCreated

cannonThread = new CannonThread(holder); // create thread
cannonThread.setRunning(true); // start game running
cannonThread.start(); // start the game loop thread

surfaceDestroyed

M06_DEIT3397_02_SE_C06.fm Page 245 Monday, July 7, 2014 9:02 AM

246 Chapter 6 Cannon Game App

6.8.13 Overriding View Method onTouchEvent
In this example, we override View method onTouchEvent (Fig. 6.19) to determine when
the user touches the screen. The MotionEvent parameter contains information about the
event that occurred. Line 523 uses the MotionEvent’s getAction method to determine
which type of touch event occurred. Then, lines 526–527 determine whether the user
touched the screen (MotionEvent.ACTION_DOWN) or dragged a finger across the screen (Mo-
tionEvent.ACTION_MOVE). In either case, line 529 calls the cannonView’s fireCannonball
method to aim and fire the cannon toward that touch point. Line 532 then returns true
to indicate that the touch event was handled.

500 // ensure that thread terminates properly
501 boolean retry = true;
502 cannonThread.setRunning(false); // terminate cannonThread
503
504 while (retry)
505 {
506 try
507 {
508
509 retry = false;
510 }
511 catch (InterruptedException e)
512 {
513 Log.e(TAG, "Thread interrupted", e);
514 }
515 }
516 } // end method surfaceDestroyed
517

518 // called when the user touches the screen in this Activity
519 @Override
520
521 {
522 // get int representing the type of action which caused this event
523 int action = ;
524
525 // the user user touched the screen or dragged along the screen
526 if (action == ||
527 action ==)
528 {
529 fireCannonball(e); // fire the cannonball toward the touch point
530 }
531
532 return true;
533 } // end method onTouchEvent
534

Fig. 6.19 | Overriding View method onTouchEvent. .

Fig. 6.18 | Implementing the SurfaceHolder.Callback methods. (Part 2 of 2.)

cannonThread.join(); // wait for cannonThread to finish

public boolean onTouchEvent(MotionEvent e)

e.getAction()

MotionEvent.ACTION_DOWN
MotionEvent.ACTION_MOVE

M06_DEIT3397_02_SE_C06.fm Page 246 Monday, July 7, 2014 9:02 AM

6.8 CannonView Subclass of View 247

6.8.14 CannonThread: Using a Thread to Create a Game Loop
Figure 6.20 defines a subclass of Thread which updates the game. The thread maintains a
reference to the SurfaceView’s SurfaceHolder (line 538) and a boolean indicating
whether the thread is running. The class’s run method (lines 556–587) drives the frame-
by-frame animations—this is known as the game loop. Each update of the game elements
on the screen is performed based on the number of milliseconds that have passed since the
last update. Line 559 gets the system’s current time in milliseconds when the thread begins
running. Lines 561–586 loop until threadIsRunning is false.

535 // Thread subclass to control the game loop
536 private class CannonThread extends Thread
537 {
538 private SurfaceHolder surfaceHolder; // for manipulating canvas
539 private boolean threadIsRunning = true; // running by default
540
541 // initializes the surface holder
542 public CannonThread()
543 {
544 surfaceHolder = holder;
545 setName("CannonThread");
546 }
547
548 // changes running state
549 public void setRunning(boolean running)
550 {
551 threadIsRunning = running;
552 }
553
554 // controls the game loop
555 @Override
556 public void run()
557 {
558 Canvas canvas = null; // used for drawing
559 long previousFrameTime = System.currentTimeMillis();
560
561 while (threadIsRunning)
562 {
563 try
564 {
565 // get Canvas for exclusive drawing from this thread
566 canvas = surfaceHolder.lockCanvas(null);
567
568
569
570 {
571 long currentTime = System.currentTimeMillis();
572 double elapsedTimeMS = currentTime - previousFrameTime;
573 totalElapsedTime += elapsedTimeMS / 1000.0;
574
575

Fig. 6.20 | Runnable that updates the game every TIME_INTERVAL milliseconds. (Part 1 of 2.)

SurfaceHolder holder

// lock the surfaceHolder for drawing
synchronized(surfaceHolder)

updatePositions(elapsedTimeMS); // update game state
drawGameElements(canvas); // draw using the canvas

M06_DEIT3397_02_SE_C06.fm Page 247 Monday, July 7, 2014 9:02 AM

248 Chapter 6 Cannon Game App

First we obtain the Canvas for drawing on the SurfaceView by calling SurfaceHolder
method lockCanvas (line 566). Only one thread at a time can draw to a SurfaceView. To
ensure this, you must first lock the SurfaceHolder by specifying it as the expression in the
parentheses of a synchronized block (line 569). Next, we get the current time in millisec-
onds, then calculate the elapsed time and add that to the total time so far—this will be
used to help display the amount of time left in the game. Line 574 calls method update-
Positions to move all the game elements, passing the elapsed time in milliseconds as an
argument. This ensures that the game operates at the same speed regardless of how fast the
device is. If the time between frames is larger (i.e, the device is slower), the game elements
will move further when each frame of the animation is displayed. If the time between
frames is smaller (i.e, the device is faster), the game elements will move less when each
frame of the animation is displayed. Finally, line 575 draws the game elements using the
SurfaceView’s Canvas and line 576 stores the currentTime as the previousFrameTime to
prepare to calculate the elapsed time between this animation frame and the next.

6.9 Wrap-Up
In this chapter, you created the Cannon Game app, which challenges the player to destroy
a seven-piece target before a 10-second time limit expires. The user aims and fires the can-
non by touching the screen. To draw on the screen from a separate thread, you created a
custom view by extending class SurfaceView. You learned that custom component class
names must be fully qualified in the XML layout element that represents the component.
We presented additional Fragment lifecycle methods. You learned that method onPause
is called when a Fragment is paused and method onDestroy is called when the Fragment
is destroyed. You handled touches by overriding View’s onTouchEvent method. You added
sound effects to the app’s res/raw folder and managed them with a SoundPool. You also
used the system’s AudioManager service to obtain the device’s current music volume and
use it as the playback volume.

This app manually performs its animations by updating the game elements on a Sur-
faceView from a separate thread of execution. To do this, you extended class Thread and
created a run method that displays graphics by calling methods of class Canvas. You used

576 previousFrameTime = currentTime; // update previous time
577 }
578 }
579 finally
580 {
581
582
583
584
585 }
586 } // end while
587 } // end method run
588 } // end nested class CannonThread
589 } // end class CannonView

Fig. 6.20 | Runnable that updates the game every TIME_INTERVAL milliseconds. (Part 2 of 2.)

// display canvas's contents on the CannonView
// and enable other threads to use the Canvas
if (canvas != null)
 surfaceHolder.unlockCanvasAndPost(canvas);

M06_DEIT3397_02_SE_C06.fm Page 248 Monday, July 7, 2014 9:02 AM

6.9 Wrap-Up 249

the SurfaceView’s SurfaceHolder to obtain the appropriate Canvas. You also learned
how to build a game loop that controls a game based on the amount of time that has
elapsed between animation frames, so that the game will operate at the same overall speed
on all devices, regardless of their processor speeds.

In Chapter 7, we present the Doodlz app, which uses Android’s graphics capabilities
to turn a device’s screen into a virtual canvas. You’ll also learn about Android 4.4’s new
immersive mode and printing capabilities.

Self-Review Exercises
6.1 Fill in the blanks in each of the following statements:

a) An Activity’s method is called when it is about to be killed.
b) To process simple touch events for an Activity, you can override class Activity’s on-

TouchEvent method then use constants from class (package android.view)
to test which type of event occurred and process it accordingly.

c) Each SurfaceView subclass should implement the interface , which con-
tains methods that are called when the SurfaceView is created, changed (e.g., its size or
orientation changes) or destroyed.

d) Each drawing method in class Canvas uses an object of class to specify
drawing characteristics like color and line thickness.

e) An Android app’s sound effects are managed with a class.

6.2 State whether each of the following is true or false. If false, explain why.
a) The Android documentation recommends that games use the music audio stream to

play sounds.
b) In Android, it’s important to maximize the amount of work you do in the GUI thread

to ensure that the GUI remains responsive and does not display ANR (Application Not
Responding) dialogs.

c) A Canvas draws on a View’s Bitmap.
d) Format Strings that contain multiple format specifiers must number the format speci-

fiers for localization purposes.
e) There are seven sound streams identified by constants in class AudioManager, but the

documentation for class SoundPool recommends using the stream for playing music
(AudioManager.STREAM_MUSIC) for sound in games.

f) Custom component class names must be fully qualified in the XML layout element that
represents the component.

Answers to Self-Review Exercises
6.1 a) onDestroy. b) MotionEvent. c) SurfaceHolder.Callback. d) Paint. e) SoundPool.

6.2 a) True. b) False. In Android, it’s important to minimize the amount of work you do in the
GUI thread to ensure that the GUI remains responsive and does not display ANR (Application Not
Responding) dialogs. c) True. d) True. e) True. f) True.

M06_DEIT3397_02_SE_C06.fm Page 249 Friday, June 20, 2014 12:26 PM

250 Chapter 6 Cannon Game App

Exercises
6.3 Fill in the blanks in each of the following statements:

a) An application’s sound effects are managed with a of package android.me-
dia, which can be used to load, play and unload sounds.

b) We use methods of class to draw text, lines and circles.
c) A(n) allows an app to react to more sophisticated user interactions such as

flings, double-taps, long presses and scrolls.
d) Activity’s method specifies that an app’s volume can be controlled with

the device’s volume keys and should be the same as the device’s music playback volume.
The method receives a constant from class AudioManager (package android.media).

e) Games often require complex logic that should be performed in separate threads of ex-
ecution and those threads often need to draw to the screen. For such cases, Android pro-
vides class —a subclass of View to which any thread can draw.

f) Media files, such as the sounds used in an app, are placed in the resource folder
.

6.4 State whether each of the following is true or false. If false, explain why.
a) When the system calls lifecycle methods on an Activity, it will also call the correspond-

ing lifecycle methods on all of the Activity’s attached Fragments.
b) A MotionEvent.ACTION_TOUCH indicates that the user touched the screen and indicates

that the user moved a finger across the screen (MotionEvent.ACTION_MOVE).
c) When a View is inflated, its constructor is called and passed a Context and an Attribute-

Set as arguments.
d) To add a custom component to a layout’s XML file, you need not provide its fully qual-

ified name (i.e., its package and class name).
e) When a game loop controls a game based on the amount of time that has elapsed between

animation frames, the game will operate at different speeds as appropriate for each device.

6.5 (Enhanced Cannon Game App) Modify the Cannon Game app as follows:
a) Use images for the cannon base and cannonball.
b) Display a dashed line showing the cannonball’s path.
c) Play a sound when the blocker hits the top or bottom of the screen.
d) Play a sound when the target hits the top or bottom of the screen.
e) Enhance the app to have nine levels. In each level, the target should have the same num-

ber of target pieces as the level.
f) Keep score. Increase the user’s score for each target piece hit by 10 times the current

level. Decrease the score by 15 times the current level each time the user hits the blocker.
Display the highest score on the screen in the upper-left corner.

g) Save the top five high scores in a SharedPreferences file. When the game ends display
an AlertDialog with the scores shown in descending order. If the user’s score is one of
the top five, highlight that score by displaying an asterisk (*) next to it.

h) Add an explosion animation each time the cannonball hits one of the target pieces.
i) Add an explosion animation each time the cannonball hits the blocker.
j) When the cannonball hits the blocker, increase the blocker’s length by 5%.
k) Make the game more difficult as it progresses by increasing the speed of the target and

the blocker.
l) Add multiplayer functionality allowing two users to play on the same device.
m) Increase the number of obstacles between the cannon and the target.
n) Add a bonus round that lasts for four seconds. Change the color of the target and add

music to indicate that it is a bonus round. If the user hits a piece of the target during
those four seconds, give the user 1000 bonus points.

M06_DEIT3397_02_SE_C06.fm Page 250 Friday, June 20, 2014 12:26 PM

 Exercises 251

6.6 (Brick Game App) Create a game similar to the cannon game that shoots pellets at a station-
ary brick wall. The goal is to destroy enough of the wall to shoot the moving target behind it. The
faster you break through the wall and get the target, the higher your score. Vary the color of the
bricks and the number of shots required to destroy each—for example, red bricks can be destroyed
in three shots, yellow bricks can be destroyed in six shots, etc. Include multiple layers to the wall
and a small moving target (e.g., an icon, animal, etc.). Keep score. Increase difficulty with each
round by adding more layers to the wall and increasing the speed of the moving target.

6.7 (Tablet App: Multiplayer Horse Race with Cannon Game) One of the most popular carnival
or arcade games is the horse race. Each player is assigned a horse. To move the horse, the players
must perform a skill—such as shooting a stream of water at a target. Each time a player hits a target,
that player’s horse moves forward. The goal is to hit the target as many times as possible and as
quickly as possible to move the horse toward the finish line and win the race.

Create a multiplayer tablet app that simulates the Horse Race game with two players. Instead
of a stream of water, use the Cannon Game as the skill that will move each horse. Each time a player
hits a target piece with the cannonball, move that player’s horse one position to the right.

Set the orientation of the screen to landscape and target API level 11 (Android 3.0) or higher so
the game runs on tablets. Split the screen into three sections. The first section should run across the
entire width of the top of the screen; this will be the race track. Below the race track, include two sec-
tions side-by-side. In each of these sections, include separate Cannon Games. The two players will
need to be sitting side-by-side to play this version of the game.

In the race track, include two horses that start on the left and move right toward a finish line
at the right-side of the screen. Number the horses “1” and “2.”

Include the many sounds of a traditional horse race. You can find free audios online at web-
sites such as www.audiomicro.com/ or create your own. Before the race, play an audio of the tradi-
tional bugle call—the “Call to Post”—that signifies to the horses to take their mark. Include the
sound of the shot to start the race, followed by the announcer saying “And they’re off!”

6.8 (Bouncing Ball Game App) Create a game app in which the user’s goal is to prevent a bounc-
ing ball from falling off the bottom of the screen. When the user presses the start button, a ball
bounces off the top, left and right sides (the “walls”) of the screen. A horizontal bar on the bottom
of the screen serves as a paddle to prevent the ball from hitting the bottom of the screen. (The ball
can bounce off the paddle, but not the bottom of the screen.) Allow the user to drag the paddle left
and right. If the ball hits the paddle, it bounces up, and the game continues. If the ball hits the bot-
tom, the game ends. Decrease the paddle’s width every 20 seconds and increase the speed of the ball
to make the game more challenging. Consider adding obstacles at random locations.

6.9 (Stopwatch App) Create an app that displays a stopwatch on the screen. Include countdown
timer functionality.

6.10 (Lunar Rotation App) Create an app that displays an earth object at the center of a circle, and
a moon object that rotates around the earth object at a constant speed and radius.

6.11 (Fireworks Designer App) Create an app that enables the user to create a customized fire-
works display. Create a variety of fireworks demonstrations. Then orchestrate the firing of the fire-
works for maximum effect. You might synchronize your fireworks with audios or videos. You could
overlay the fireworks on a picture.

6.12 (Animated Towers of Hanoi App) Every budding computer scientist must grapple with certain
classic problems, and the Towers of Hanoi (see Fig. 6.21) is one of the most famous. Legend has it that
in a temple in the Far East, priests are attempting to move a stack of disks from one peg to another.
The initial stack has 64 disks threaded onto one peg and arranged from bottom to top by decreasing
size. The priests are attempting to move the stack from this peg to a second peg under the constraints
that exactly one disk is moved at a time and at no time may a larger disk be placed above a smaller disk.

M06_DEIT3397_02_SE_C06.fm Page 251 Monday, July 7, 2014 9:02 AM

252 Chapter 6 Cannon Game App

A third peg is available for temporarily holding disks. Supposedly, the world will end when the priests
complete their task, so there’s little incentive for us to facilitate their efforts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that will display the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional methods, we would rapidly find our-
selves hopelessly knotted up in managing the disks. Instead, if we attack the problem with recur-
sion in mind, it immediately becomes tractable. Moving n disks can be viewed in terms of moving
only n – 1 disks (hence the recursion) as follows:

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case). This task
is accomplished by simply moving the disk, without the need for a temporary holding area.

Write an app to solve the Towers of Hanoi problem. Allow the user to enter the number of
disks. Use a recursive Tower method with four parameters:

a) the number of disks to be moved,
b) the peg on which these disks are initially threaded,
c) the peg to which this stack of disks is to be moved, and
d) the peg to be used as a temporary holding area.

Your app should display the precise instructions it will take to move the disks from the start-
ing peg to the destination peg and should show animations of the disks moving from peg to peg.
For example, to move a stack of three disks from peg 1 to peg 3, your app should display the fol-
lowing series of moves and the corresponding animations:

1 --> 3 (This notation means “Move one disk from peg 1 to peg 3.”)
1 --> 2
3 --> 2
1 --> 3
2 --> 1
2 --> 3
1 --> 3

Fig. 6.21 | The Towers of Hanoi for the case with four disks.

peg 1 peg 2 peg 3

M06_DEIT3397_02_SE_C06.fm Page 252 Monday, July 7, 2014 9:02 AM

7Doodlz App

O b j e c t i v e s
In this chapter you’ll:

■ Detect when the user touches
the screen, moves a finger
across the screen and
removes a finger from the
screen.

■ Process multiple touches so
the user can draw with
multiple fingers at once.

■ Use a SensorManager and
the accelerometer to detect
motion events.

■ Use an AtomicBoolean
object to allow multiple
threads to access a boolean
value in a thread-safe
manner.

■ Use a Paint object to specify
the color and width of a line.

■ Use Path objects to store
each line’s data and use a
Canvas to draw each line
into a BitMap.

■ Create a menu and display
menu items on the action bar.

■ Use Android 4.4’s immersive
mode to enable the user to
draw on the entire screen.

■ Use Android 4.4’s printing
framework and the Android
Support Library class
PrintHelper to enable the
user to print a drawing.

M07_DEIT3397_02_SE_C07.fm Page 253 Tuesday, July 8, 2014 8:30 AM

254 Chapter 7 Doodlz App

7.1 Introduction
The Doodlz app (Fig. 7.1) enables you to paint by dragging one or more fingers across the
screen. The app uses Android 4.4’s immersive mode so that you can draw on the entire
screen—the device’s system bars and action bar toggle between displayed and hidden when
you tap the screen.

7.1 Introduction
7.2 Technologies Overview

7.2.1 Using SensorManager to Listen for
Accelerometer Events

7.2.2 Custom DialogFragments
7.2.3 Drawing with Canvas and Bitmap
7.2.4 Processing Multiple Touch Events and

Storing Lines in Paths
7.2.5 Android 4.4 Immersive Mode
7.2.6 GestureDetector and

SimpleOnGestureListener
7.2.7 Saving the Drawing to the Device’s

Gallery
7.2.8 Android 4.4 Printing and the Android

Support Library’s PrintHelper Class
7.3 Building the App’s GUI and Resource

Files
7.3.1 Creating the Project
7.3.2 strings.xml
7.3.3 dimens.xml
7.3.4 Menu for the DoodleFragment

7.3.5 activity_main.xml Layout for
MainActivity

7.3.6 fragment_doodle.xml Layout for
DoodleFragment

7.3.7 fragment_color.xml Layout for
ColorDialogFragment

7.3.8 fragment_line_width.xml
Layout for LineWidthDialog-
Fragment

7.3.9 Adding Class EraseImageDialog-
Fragment

7.4 MainActivity Class
7.5 DoodleFragment Class
7.6 DoodleView Class
7.7 ColorDialogFragment Class
7.8 LineWidthDialogFragment

Class
7.9 EraseImageDialogFragment

Class
7.10 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Fig. 7.1 | Doodlz app with a finished drawing.

M07_DEIT3397_02_SE_C07.fm Page 254 Monday, July 7, 2014 9:04 AM

7.1 Introduction 255

The app’s options enable you to set the drawing color and line width. The Choose Color
dialog (Fig. 7.2(a)) provides alpha (transparency), red, green and blue SeekBars (i.e., sliders)
that allow you to select the ARGB color (introduced in Section 1.9). As you move each
SeekBar’s thumb, the updated color is displayed below the SeekBars. The Choose Line Width
dialog (Fig. 7.2(b)) provides a single SeekBar that controls the thickness of the line that
you’ll draw. Additional menu items (Fig. 7.3) in the app’s options menu allow you to turn
your finger into an eraser (Eraser), to clear the screen (Clear), to save the current drawing into
your device’s Gallery (Save) and, on Android 4.4 devices, to print the current drawing.
Depending on your device’s screen size, some or all of the app’s menu items are displayed
directly on the action bar—any that do not fit are displayed in the options menu. At any
point, you can shake the device to clear the entire drawing from the screen. You test-drove
this app in Section 1.9, so we do not present a test drive in this chapter. Though this app
works in AVDs, the capabilities are more fluid on actual devices. [Note: Due to a Gallery app
bug at the time of this writing, on some devices you might need to take a picture with the
device’s camera app before you’ll be able to save properly from the Doodlz app.]

Fig. 7.2 | Choose Color and Choose Line Width dialogs for the Doodlz app.

Fig. 7.3 | Doodlz app additional menu options as displayed on an Android 4.4 phone.

a) Choose Color dialog b) Choose Line Width dialog

M07_DEIT3397_02_SE_C07.fm Page 255 Monday, July 7, 2014 9:04 AM

256 Chapter 7 Doodlz App

7.2 Technologies Overview
This section presents the new technologies that we use in the Doodlz app.

7.2.1 Using SensorManager to Listen for Accelerometer Events
In this app, you can shake the device to erase the current drawing. Most devices have an
accelerometer that allows apps to detect movement. Other sensors currently supported by
Android include gravity, gyroscope, light, linear acceleration, magnetic field, orientation,
pressure, proximity, rotation vector and temperature. The list of Sensor constants repre-
senting these sensor types can be found at:

We’ll discuss in Section 7.5 the accelerometer and sensor event handling. For a complete
discussion of Android’s other sensors, see the Sensors Overview at

7.2.2 Custom DialogFragments
Several previous apps have used AlertDialogs in DialogFragments to display information
to the user or to ask questions and receive responses from the user in the form of Button
clicks. The AlertDialogs you’ve used so far were created using anonymous inner classes
that extended DialogFragment and displayed only text and buttons. AlertDialogs may
also contain custom Views. In this app, you’ll define three subclasses of DialogFragment:

• ColorDialogFragment (Section 7.7) displays an AlertDialog with a custom
View containing GUI components for previewing and selecting a new ARGB
drawing color.

• LineWidthDialogFragment (Section 7.8) displays an AlertDialog with a custom
View containing GUI components for previewing and selecting the line thickness.

• EraseImageDialogFragment (Section 7.9) displays a standard AlertDialog ask-
ing the user to confirm whether the entire image should be erased.

For the ColorDialogFragment and EraseImageDialogFragment, you’ll inflate the custom
View from a layout resource file. In each of the three DialogFragment subclasses, you’ll
also override the following Fragment lifecycle methods:

• onAttach—The first Fragment lifecycle method called when a Fragment is at-
tached to a parent Activity.

• onDetach—The last Fragment lifecycle method called when a Fragment is about
to be detached from a parent Activity.

Preventing Multiple Dialogs from Appearing at the Same Time
It’s possible that the event handler for the shake event could try to display the confirmation
dialog for erasing an image when another dialog is already on the screen. To prevent this,
you’ll use onAttach and onDetach to set the value of a boolean that indicates whether a
dialog is on the screen. When the boolean’s value is true, we will not allow the event han-
dler for the shake event to display a dialog.

http://developer.android.com/reference/android/hardware/Sensor.html

http://developer.android.com/guide/topics/sensors/
 sensors_overview.html

M07_DEIT3397_02_SE_C07.fm Page 256 Monday, July 7, 2014 9:04 AM

7.2 Technologies Overview 257

7.2.3 Drawing with Canvas and Bitmap
This app draws lines onto Bitmaps (package android.graphics). You can associate a Can-
vas with a Bitmap, then use the Canvas to draw on the Bitmap, which can then be dis-
played on the screen (Section 7.6). A Bitmap can also be saved into a file—we’ll use this
capability to store drawings in the device’s gallery when you touch the Save option.

7.2.4 Processing Multiple Touch Events and Storing Lines in Paths
You can drag one or more fingers across the screen to draw. The app stores the information
for each individual finger as a Path object (package android.graphics) that represents
line segments and curves. You process touch events by overriding the View method on-
TouchEvent (Section 7.6). This method receives a MotionEvent (package android.view)
that contains the type of touch event that occurred and the ID of the finger (i.e., pointer)
that generated the event. We use the IDs to distinguish the different fingers and add in-
formation to the corresponding Path objects. We use the type of the touch event to deter-
mine whether the user has touched the screen, dragged across the screen or lifted a finger
from the screen.

7.2.5 Android 4.4 Immersive Mode
Android 4.4 introduces a new full-screen immersive mode (Section 7.6) that enables an
app to take advantage of the entire screen, but still allows the user to access the system bars
when necessary. In this app, you’ll use this mode when the app is running on an Android
4.4 or higher device.

7.2.6 GestureDetector and SimpleOnGestureListener
This app uses a GestureDetector (package android.view) to hide or show the device’s sys-
tem bars and the app’s action bar. A GestureDetector allows an app to react to user inter-
actions such as flings, single taps, double taps, long presses and scrolls by implementing the
methods of interfaces GestureDetector.OnGestureListener and GestureDetector.On-
DoubleTapListener interfaces. Class GestureDetector.SimpleOnGestureListener is an
adapter class that implements all the methods of these two interfaces, so you can extend this
class and override just the method(s) you need from these interfaces. In Section 7.6, you’ll
initialize a GestureDetector with a SimpleOnGestureListener, which will handle the sin-
gle-tap event that hides or shows the system bars and action bar.

7.2.7 Saving the Drawing to the Device’s Gallery
The app provides a Save option that allows the user to save a drawing into the device’s gal-
lery—the default location in which photos taken with the device are stored. A Content-
Resolver (package android.content) enables the app to read data from and store data on
a device. You’ll use a ContentResolver (Section 7.6) and the method insertImage of class
MediaStore.Images.Media to save an image into the device’s Gallery. The MediaStore
manages media files (images, audio and video) stored on a device.

M07_DEIT3397_02_SE_C07.fm Page 257 Monday, July 7, 2014 9:04 AM

258 Chapter 7 Doodlz App

7.2.8 Android 4.4 Printing and the Android Support Library’s
PrintHelper Class
Android 4.4 now includes a printing framework. In this app, we use class PrintHelper
(Section 7.6) to print the current drawing. Class PrintHelper provides a user interface for
selecting a printer, has a method for determining whether a given device supports printing
and provides a method for printing a Bitmap. PrintHelper is part of the Android Support
Library—a set of libraries that are commonly used to provide new Android features for use
in older Android versions. The libraries also include additional convenience features, like
class PrintHelper, that support specific Android versions.

7.3 Building the App’s GUI and Resource Files
In this section, you’ll create the Doodlz app’s resource files, GUI layout files and classes.

7.3.1 Creating the Project
Begin by creating a new Android project named Doodlz. Specify the following values in
the New Android Project dialog, then press Finish:

• Application Name: Doodlz

• Project Name: Doodlz

• Package Name: com.deitel.doodlz

• Minimum Required SDK: API18: Android 4.3

• Target SDK: API19: Android 4.4

• Compile With: API19: Android 4.4

• Theme: Holo Light with Dark Action Bar

In the New Android Project dialog’s second New Android Application step, leave the default
settings, and press Next >. In the Configure Launcher Icon step, select an app icon image,
then press Next >. In the Create Activity step, select Blank Activity, then press Next >. In the
Blank Activity step, leave the default settings and click Finish to create the project. Open
activity_main.xml in the Graphical Layout editor and select Nexus 4 from the screen-type
drop-down list. Once again, we’ll use this device as the basis for our design.

The new project will automatically be configured to use the current version of the
Android Support Library. If you’re updating an existing project, you can add the latest ver-
sion of the Android Support Library to your project. For details, visit:

7.3.2 strings.xml
You created String resources in earlier chapters, so we show only a table of the String
resource names and corresponding values here (Fig. 7.4). Double click strings.xml in the
res/values folder to display the resource editor for creating these String resources.

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/setup.html

M07_DEIT3397_02_SE_C07.fm Page 258 Monday, July 7, 2014 9:04 AM

7.3 Building the App’s GUI and Resource Files 259

7.3.3 dimens.xml
Figure 7.5 shows a table of the dimension resource names and values that we added to
dimens.xml. Open dimens.xml in the res/values folder to display the resource editor for
creating these resources. The line_imageview_height resource specifies the height of the
ImageView that previews the line width in the LineWidthDialogFragment, and the
color_view_height resource specifies height of the View that previews the drawing color
in the ColorDialogFragment.

Resource name Value

app_name Doodlz

button_erase Erase Image

button_cancel Cancel

button_set_color Set Color

button_set_line_width Set Line Width

line_imageview_description This displays the line thickness

label_alpha Alpha

label_red Red

label_green Green

label_blue Blue

menuitem_clear Clear

menuitem_color Color

menuitem_eraser Eraser

menuitem_line_width Line Width

menuitem_save Save

menuitem_print Print

message_erase Erase the drawing?

message_error_saving There was an error saving the image

message_saved Your painting has been saved to the Gallery

message_error_printing Your device does not support printing

title_color_dialog Choose Color

title_line_width_dialog Choose Line Width

Fig. 7.4 | String resources used in the Doodlz app.

Resource name Value

line_imageview_height 50dp

color_view_height 80dp

Fig. 7.5 | Dimension resources used in the Doodlz app.

M07_DEIT3397_02_SE_C07.fm Page 259 Monday, July 7, 2014 9:04 AM

260 Chapter 7 Doodlz App

7.3.4 Menu for the DoodleFragment
In Chapter 5, you used the default menu provided by the IDE to display the Flag Quiz
app’s Settings menu item. You will not use the default menu in this app, so you can delete
the main.xml file in your project’s res/menu folder. In this app, you’ll define your own
menu for the DoodleFragment.

Menus for Different Android Versions
You’ll provide two versions of the DoodleFragment’s menu—one for Android 4.3 and earlier
devices and one for Android 4.4 and higher devices. Printing is available only in Android 4.4
and higher, so only the menu for such devices will include a Print option. To support separate
menus, you’ll define one menu resource in the res/menu folder and a separate menu resource
in the res/menu-v19 folder—19 is the Android API version that corresponds to Android
4.4. Android will choose the menu resource in the res/menu-v19 folder when the app is run-
ning on Android 4.4 and higher devices. To create the res/menu-v19 folder, right click the
res folder, select New > Folder, specify the Folder name menu-v19 and click Finish.

Menu for Android 4.3 and Earlier Versions
To create the menu resource for Android 4.3 and earlier versions:

1. Right click the res/menu folder and select New > Android XML File.

2. In the dialog that appears, name the file doodle_fragment_menu.xml and click
Finish. The IDE opens the file in the editor for menu resources.

3. Click Add…, click the editor’s Layout tab in the dialog that appears, select Item and
click OK. The IDE highlights the new item and displays its attributes to the right.

4. Change its Id to @+id/color, its Title to @string/menuitem_color and its Show
as action to ifRoom. The value ifRoom indicates that Android should display the
menu item on the action bar if there’s room available; otherwise, the menu item
will appear in the options menu at the right side of the action bar. Other Show as
action values can be found at http://developer.android.com/guide/topics/
resources/menu-resource.html.

5. Repeat Steps 3 and 4 for the lineWidth, eraser, clear and save items in Fig. 7.6.
Note that when you click Add… for each additional menu item, you’ll need to select
Create a new element at the top level in Menu in the dialog that appears.

6. Save and close doodle_fragment_menu.xml.

Id Title

@+id/lineWidth @string/menuitem_line_width

@+id/eraser @string/menuitem_eraser

@+id/clear @string/menuitem_clear

@+id/save @string/menuitem_save

Fig. 7.6 | Additional menu items for the DoodleFragment.

M07_DEIT3397_02_SE_C07.fm Page 260 Monday, July 7, 2014 9:04 AM

7.3 Building the App’s GUI and Resource Files 261

Menu for Android 4.4 and Higher Versions
To create the menu resource for Android 4.4 and higher devices:

1. Copy doodle_fragment_menu.xml from res/menu, paste it into res/menu-v19
and open the file.

2. Click Add…, select Create a new element at the top level in Menu in the dialog that
appears, then select Item and click OK.

3. Change the new item’s Id to @+id/print, its Title to @string/menuitem_print
and its Show as action to ifRoom.

7.3.5 activity_main.xml Layout for MainActivity
The activity_main.xml layout for this app’s MainActivity contains only the Doodle-
Fragment. To add this Fragment to the layout:

1. Open activity_main.xml in the Graphical Layout editor, then follow the steps
in Section 2.5.2 to switch from a FrameLayout to a RelativeLayout.

2. From the Palette’s Layouts section, drag a Fragment onto the design area or onto
the RelativeLayout node in the Outline window.

3. The preceding step displays the Choose Fragment Class dialog. Click Create
New… to display the New Java Class dialog.

4. Enter DoodleFragment in the dialog’s Name field, change the Superclass field’s
value to android.app.Fragment and click Finish to create the class. The IDE
opens the Java file for the class, which you can close for now.

5. Change the new Fragment’s Id to @+id/doodleFragment, then save the layout.

7.3.6 fragment_doodle.xml Layout for DoodleFragment
The fragment_doodle.xml layout for the DoodleFragment contains a FrameLayout that
displays the DoodleView. In this section, you’ll create DoodleFragment’s layout and the
DoodleView class. To add the fragment_doodle.xml layout:

1. Expand the project’s res/layout node in the Package Explorer.

2. Right click the layout folder and select New > Android XML File to display the
New Android XML File dialog.

3. In the dialog’s File field, enter fragment_doodle.xml

4. In the Root Element section, select FrameLayout, then click Finish.

5. From the Palette’s Advanced section, drag a view (with a lowercase v) onto the GUI.

6. The previous step displays the Choose Custom View Class dialog. In that dialog,
click Create New… to display the New Java Class dialog.

7. In the Name field, enter DoodleView. Ensure that Constructors from superclass is
checked, then click Finish. This creates and opens DoodleView.java. We’ll be us-
ing only the two-argument constructor, so delete the other two. Save and close
DoodleView.java.

8. In fragment_doodle.xml, select view1 in the Outline window. In the Properties
window’s Layout Parameters section, set Width and Height to match_parent.

M07_DEIT3397_02_SE_C07.fm Page 261 Monday, July 7, 2014 9:04 AM

262 Chapter 7 Doodlz App

9. In the Outline window, right click view1, select Edit ID…, rename view1 as
doodleView and click OK.

10. Save and close fragment_doodle.xml.

7.3.7 fragment_color.xml Layout for ColorDialogFragment
The fragment_color.xml layout for the ColorDialogFragment contains a GridLayout
that displays a GUI for selecting and previewing a new drawing color. In this section,
you’ll create ColorDialogFragment’s layout and the ColorDialogFragment class. To add
the fragment_color.xml layout:

1. Expand the project’s res/layout node in the Package Explorer.

2. Right click the layout folder and select New > Android XML File to display the
New Android XML File dialog.

3. In the dialog’s File field, enter fragment_color.xml

4. In the Root Element section, select GridLayout, then click Finish.

5. In the Outline window, select the GridLayout and change its Id value to @+id/
colorDialogGridLayout.

6. Using the Graphical Layout editor’s Palette, drag TextViews, SeekBars and a View
onto the colorDialogGridLayout node in the Outline window. Drag the items in
the order they’re listed in Fig. 7.7 and set each item’s Id as shown in the figure.

7. After completing Step 6, configure the GUI component properties with the val-
ues shown in Fig. 7.8, then save and close fragment_color.xml.

Fig. 7.7 | Outline view for fragment_color.xml.

GUI component Property Value

colorDialogGridLayout Column Count
Orientation
Use Default Margins

2
vertical
true

Fig. 7.8 | Property values for the GUI components in fragment_color.xml. (Part 1 of 3.)

M07_DEIT3397_02_SE_C07.fm Page 262 Monday, July 7, 2014 9:04 AM

7.3 Building the App’s GUI and Resource Files 263

alphaTextView Layout Parameters
 Column
 Gravity
 Row
Other Properties
 Text

0
right|center_vertical
0

@string/label_alpha

alphaSeekBar Layout Parameters
 Column
 Gravity
 Row
Other Properties
 Max

1
fill_horizontal
0

255

redTextView Layout Parameters
 Column
 Gravity
 Row
Other Properties
 Text

0
right|center_vertical
1

@string/label_red

redSeekBar Layout Parameters
 Column
 Gravity
 Row
Other Properties
 Max

1
fill_horizontal
1

255

greenTextView Layout Parameters
 Column
 Gravity
 Row
Other Properties
 Text

0
right|center_vertical
2

@string/label_green

greenSeekBar Layout Parameters
 Column
 Gravity
 Row
Other Properties
 Max

1
fill_horizontal
2

255

blueTextView Layout Parameters
 Column
 Gravity
 Row
Other Properties
 Text

0
right|center_vertical
3

@string/label_blue

GUI component Property Value

Fig. 7.8 | Property values for the GUI components in fragment_color.xml. (Part 2 of 3.)

M07_DEIT3397_02_SE_C07.fm Page 263 Monday, July 7, 2014 9:04 AM

264 Chapter 7 Doodlz App

Adding Class ColorDialogFragment to the Project
To add class ColorDialogFragment to the project:

1. Right click the package com.deitel.doodlz in the project’s src folder and select
New > Class to display the New Java Class dialog.

2. In the Name field, enter ColorDialogFragment.

3. In the Superclass field, change the superclass to android.app.DialogFragment.

4. Click Finish to create the class.

7.3.8 fragment_line_width.xml Layout for
LineWidthDialogFragment
The fragment_line_width.xml layout for the LineWidthDialogFragment contains a
GridLayout that displays a GUI for selecting and previewing a new line thickness. In this
section, you’ll create LineWidthDialogFragment’s layout and the LineWidthDialogFrag-
ment class. To add the fragment_line_width.xml layout:

1. Expand the project’s res/layout node in the Package Explorer.

2. Right click the layout folder and select New > Android XML File to display the
New Android XML File dialog.

3. In the dialog’s File field, enter fragment_line_width.xml

4. In the Root Element section, select GridLayout, then click Finish.

5. In the Outline window, select the GridLayout and change its Id value to @+id/
lineWidthDialogGridLayout.

6. Using the Graphical Layout editor’s Palette, drag an ImageView and a SeekBar
onto the lineWidthDialogGridLayout node in the Outline window so that the
window appears as shown in Fig. 7.9. Set each item’s Id as shown in the figure.

7. After completing Step 6, configure the GUI component properties with the val-
ues shown in Fig. 7.10, then save and close fragment_line_width.xml.

blueSeekBar Layout Parameters
 Column
 Gravity
 Row
Other Properties
 Max

1
fill_horizontal
3

255

colorView Layout Parameters
 Height
 Column
 Column Span
 Gravity

@dimen/color_view_height
0
2
fill_horizontal

GUI component Property Value

Fig. 7.8 | Property values for the GUI components in fragment_color.xml. (Part 3 of 3.)

M07_DEIT3397_02_SE_C07.fm Page 264 Monday, July 7, 2014 9:04 AM

7.3 Building the App’s GUI and Resource Files 265

Adding Class LineWidthDialogFragment to the Project
To add class LineWidthDialogFragment to the project:

1. Right click the package com.deitel.doodlz in the project’s src folder and select
New > Class to display the New Java Class dialog.

2. In the Name field, enter LineWidthDialogFragment.

3. In the Superclass field, change the superclass to android.app.DialogFragment.

4. Click Finish to create the class.

7.3.9 Adding Class EraseImageDialogFragment
The EraseImageDialogFragment does not require a layout resource as it will display a sim-
ple AlertDialog containing text. To add class EraseImageDialogFragment to the project:

1. Right click the package com.deitel.doodlz in the project’s src folder and select
New > Class to display the New Java Class dialog.

2. In the Name field, enter EraseImageDialogFragment.

3. In the Superclass field, change the superclass to android.app.DialogFragment.

4. Click Finish to create the class.

Fig. 7.9 | Outline view for fragment_line_width.xml.

GUI component Property Value

lineWidthDialog-

GridLayout
Column Count
Orientation
Use Default Margins

1
vertical
true

widthImageView Layout Parameters
 Height
 Gravity
Other Properties
 Content Description

@dimen/line_imageview_height
fill_horizontal

@string/line_imageview_description

widthSeekBar Layout Parameters
 Gravity
Other Properties
 Max

fill_horizontal

50

Fig. 7.10 | Property values for the GUI components in fragment_line_width.xml.

M07_DEIT3397_02_SE_C07.fm Page 265 Monday, July 7, 2014 9:04 AM

266 Chapter 7 Doodlz App

7.4 MainActivity Class
This app consists of six classes:

• MainActivity (Fig. 7.11)—Serves as the parent Activity for this app’s Frag-
ments.

• DoodleFragment (Section 7.5)—Manages the DoodleView and accelerometer
event handling.

• DoodleView (Section 7.6)—Provides the drawing, saving and printing capabili-
ties.

• ColorDialogFragment (Section 7.7)—A DialogFragment that’s displayed when
the user taps COLOR to set the drawing color.

• LineWidthDialogFragment (Section 7.8)—A DialogFragment that’s displayed
when the user taps LINE WIDTH to set the line width.

• EraseImageDialogFragment (Section 7.9)—A DialogFragment that’s displayed
when the user taps CLEAR or shakes the device to erase the current drawing.

Class MainActivity’s onCreate method (Fig. 7.11) inflates the GUI (line 16), then
uses the techniques you learned in Section 5.2.2 to determine the device’s size and set
MainActivity’s orientation. If this app is running on an extra large device (line 24), we set
the orientation to landscape (lines 25–26); otherwise, we set it to portrait (lines 28–29).

1 // MainActivity.java
2 // Sets MainActivity's layout
3 package com.deitel.doodlz;
4
5 import android.app.Activity;
6 import android.content.pm.ActivityInfo;
7 import android.content.res.Configuration;
8 import android.os.Bundle;
9

10 public class MainActivity extends Activity
11 {
12 @Override
13 protected void onCreate(Bundle savedInstanceState)
14 {
15 super.onCreate(savedInstanceState);
16 setContentView(R.layout.activity_main);
17
18 // determine screen size
19 int screenSize =
20 getResources().getConfiguration().screenLayout &
21 Configuration.SCREENLAYOUT_SIZE_MASK;
22
23 // use landscape for extra large tablets; otherwise, use portrait
24 if (screenSize == Configuration.SCREENLAYOUT_SIZE_XLARGE)
25 setRequestedOrientation(
26 ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

Fig. 7.11 | MainActivity class. (Part 1 of 2.)

M07_DEIT3397_02_SE_C07.fm Page 266 Monday, July 7, 2014 9:04 AM

7.5 DoodleFragment Class 267

7.5 DoodleFragment Class
Class DoodleFragment (Figs. 7.12–7.19) displays the DoodleView (Section 7.6), manages
the menu options displayed on the action bar and in the options menu and manages the
sensor event handling for the app’s shake-to-erase feature.

package Statement, import Statements and Fields
Section 7.2 discussed the key new classes and interfaces that class DoodleFragment uses.
We’ve highlighted these classes and interfaces in Fig. 7.12. DoodleView variable doo-
dleView (line 22) represents the drawing area. The float variables declared in lines 23–25
are used to calculate changes in the device’s acceleration to determine when a shake event
occurs (so we can ask whether the user would like to erase the drawing), and the constant
in line 29 is used to ensure that small movements are not interpreted as shakes—we picked
this constant via trial and error by shaking the app on several devices. Line 26 defines a
boolean variable with the default value false that will be used throughout this class to
specify when there’s a dialog displayed on the screen. We use this to prevent multiple di-
alogs from being displayed at the same time—for example, if the Choose Color dialog is
displayed and the user accidentally shakes the device, the dialog for erasing the image
should not be displayed.

27 else
28 setRequestedOrientation(
29 ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
30 }
31 } // end class MainActivity

1 // DoodleFragment.java
2 // Fragment in which the DoodleView is displayed
3 package com.deitel.doodlz;
4
5 import android.app.Fragment;
6 import android.content.Context;
7
8
9

10
11
12 import android.os.Bundle;
13 import android.view.LayoutInflater;
14 import android.view.Menu;
15 import android.view.MenuInflater;
16 import android.view.MenuItem;
17 import android.view.View;

Fig. 7.12 | DoodleFragment class package statement, import statements and fields. (Part 1
of 2.)

Fig. 7.11 | MainActivity class. (Part 2 of 2.)

import android.graphics.Color;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

M07_DEIT3397_02_SE_C07.fm Page 267 Monday, July 7, 2014 9:04 AM

268 Chapter 7 Doodlz App

Overriding Fragment Method onCreateView
Method onCreateView (Fig. 7.13) inflates the DoodleFragment’s GUI and initializes the
instance variables. Like an Activity, a Fragment can place items in the app’s action bar
and options menu. To do so, the Fragment must call its setHasOptionsMenu method with
the argument true. If the parent Activity also has options menu items, then both the Ac-
tivity’s and the Fragment’s items will be placed on the action bar and in the options
menu (based on their settings).

Line 43 gets a reference to the DoodleView, then lines 46–48 initialize the instance
variables that help calculate acceleration changes to determine whether the user shook the

18 import android.view.ViewGroup;
19
20 public class DoodleFragment extends Fragment
21 {
22
23 private float acceleration;
24 private float currentAcceleration;
25 private float lastAcceleration;
26 private boolean dialogOnScreen = false;
27
28 // value used to determine whether user shook the device to erase
29 private static final int ACCELERATION_THRESHOLD = 100000;
30

31 // called when Fragment's view needs to be created
32 @Override
33 public View onCreateView(LayoutInflater inflater, ViewGroup container,
34 Bundle savedInstanceState)
35 {
36 super.onCreateView(inflater, container, savedInstanceState);
37 View view =
38 inflater.inflate(R.layout.fragment_doodle, container, false);
39
40
41
42 // get reference to the DoodleView
43 doodleView = (DoodleView) view.findViewById(R.id.doodleView);
44
45 // initialize acceleration values
46 acceleration = 0.00f;
47 currentAcceleration = SensorManager.GRAVITY_EARTH;
48 lastAcceleration = SensorManager.GRAVITY_EARTH;
49 return view;
50 }
51

Fig. 7.13 | Overriding Fragment method onCreateView.

Fig. 7.12 | DoodleFragment class package statement, import statements and fields. (Part 2
of 2.)

private DoodleView doodleView; // handles touch events and draws

setHasOptionsMenu(true); // this fragment has menu items to display

M07_DEIT3397_02_SE_C07.fm Page 268 Monday, July 7, 2014 9:04 AM

7.5 DoodleFragment Class 269

device. We initially set variables currentAcceleration and lastAcceleration to Sen-
sorManager’s GRAVITY_EARTH constant, which represents the acceleration due to gravity
on earth. SensorManager also provides constants for other planets in the solar system, for
the moon and for several other entertaining values, which you can see at:

Methods onStart and enableAccelerometerListening
Accelerometer listening should be enabled only when the DoodleFragment is on the screen.
For this reason, we override Fragment lifecycle method onStart (Fig. 7.14, lines 53–58),
which calls method enableAccelerometerListening (lines 61–72) to begin listening for ac-
celerometer events. A SensorManager is used to register listeners for accelerometer events.

Method enableAccelerometerListening first uses Activity’s getSystemService
method to retrieve the system’s SensorManager service, which enables the app to interact
with the device’s sensors. Lines 69–71 then register to receive accelerometer events using
SensorManager’s registerListener method, which receives three arguments:

• The SensorEventListener that responds to the events (defined in Fig. 7.16)

• A Sensor object representing the type of sensor data the app wishes to receive—
this is retrieved by calling SensorManager’s getDefaultSensor method and pass-
ing a Sensor-type constant (Sensor.TYPE_ACCELEROMETER in this app).

• A rate at which sensor events should be delivered to the app. We chose
SENSOR_DELAY_NORMAL to receive sensor events at the default rate—a faster rate can
be used to get more accurate data, but this is also more CPU and battery intensive.

http://developer.android.com/reference/android/hardware/
 SensorManager.html

52 // start listening for sensor events
53 @Override
54
55 {
56 super.onStart();
57 enableAccelerometerListening(); // listen for shake
58 }
59
60 // enable listening for accelerometer events
61 public void enableAccelerometerListening()
62 {
63
64
65
66
67
68
69
70
71
72 }
73

Fig. 7.14 | Methods onStart and enableAccelerometerListening.

public void onStart()

// get the SensorManager
SensorManager sensorManager =
 (SensorManager) getActivity().getSystemService(
 Context.SENSOR_SERVICE);

// register to listen for accelerometer events
sensorManager.registerListener(sensorEventListener,
 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 SensorManager.SENSOR_DELAY_NORMAL);

M07_DEIT3397_02_SE_C07.fm Page 269 Monday, July 7, 2014 9:04 AM

270 Chapter 7 Doodlz App

Methods onPause and disableAccelerometerListening
To ensure that accelerometer listening is disabled when the DoodleFragment is not on the
screen, we override Fragment lifecycle method onPause (Fig. 7.15, lines 75–80), which
calls method disableAccelerometerListening (lines 83–93). Method disableAcceler-
ometerListening uses class SensorManager’s unregisterListener method to stop listen-
ing for accelerometer events.

Anonymous Inner Class That Implements Interface SensorEventListener to Process
Accelerometer Events
Figure 7.16 overrides SensorEventListener method onSensorChanged (lines 100–125)
to process accelerometer events. If the user moves the device, this method determines
whether the movement was enough to be considered a shake. If so, line 123 calls method
confirmErase (Fig. 7.17) to display an EraseImageDialogFragment (Section 7.9) and
confirm whether the user really wants to erase the image. Interface SensorEventListener
also contains method onAccuracyChanged (lines 128–131)—we don’t use this method in
this app, so we provide an empty body because the method is required by the interface.

74 // stop listening for sensor events
75 @Override
76 public void onPause()
77 {
78 super.onPause();
79 disableAccelerometerListening(); // stop listening for shake
80 }
81
82 // disable listening for accelerometer events
83 public void disableAccelerometerListening()
84 {
85 // get the SensorManager
86 SensorManager sensorManager =
87 (SensorManager) getActivity().getSystemService(
88 Context.SENSOR_SERVICE);
89
90
91
92
93 }
94

Fig. 7.15 | Methods onPause and disableAccelerometerListening.

95 // event handler for accelerometer events
96 private SensorEventListener sensorEventListener =
97 new SensorEventListener()
98 {

Fig. 7.16 | Anonymous inner class that implements interface SensorEventListener to pro-
cess accelerometer events. (Part 1 of 2.)

// stop listening for accelerometer events
sensorManager.unregisterListener(sensorEventListener,
 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER));

M07_DEIT3397_02_SE_C07.fm Page 270 Monday, July 7, 2014 9:04 AM

7.5 DoodleFragment Class 271

The user can shake the device even when dialogs are already displayed on the screen. For
this reason, onSensorChanged first checks whether a dialog is displayed (line 104). This test
ensures that no other dialogs are displayed; otherwise, onSensorChanged simply returns.
This is important because the sensor events occur in a different thread of execution. Without
this test, we’d be able to display the confirmation dialog for erasing the image when another
dialog is on the screen.

The SensorEvent parameter contains information about the sensor change that
occurred. For accelerometer events, this parameter’s values array contains three elements
representing the acceleration (in meter/second2) in the x (left/right), y (up/down) and z
(forward/backward) directions. A description and diagram of the coordinate system used
by the SensorEvent API is available at:

99 // use accelerometer to determine whether user shook device
100 @Override
101 public void onSensorChanged(SensorEvent event)
102 {
103 // ensure that other dialogs are not displayed
104 if (!dialogOnScreen)
105 {
106 // get x, y, and z values for the SensorEvent
107
108
109
110
111 // save previous acceleration value
112 lastAcceleration = currentAcceleration;
113
114 // calculate the current acceleration
115 currentAcceleration = x * x + y * y + z * z;
116
117 // calculate the change in acceleration
118 acceleration = currentAcceleration *
119 (currentAcceleration - lastAcceleration);
120
121 // if the acceleration is above a certain threshold
122 if (acceleration > ACCELERATION_THRESHOLD)
123 confirmErase();
124 }
125 } // end method onSensorChanged
126
127 // required method of interface SensorEventListener
128 @Override
129 public void onAccuracyChanged(Sensor sensor, int accuracy)
130 {
131 }
132 }; // end anonymous inner class
133

developer.android.com/reference/android/hardware/SensorEvent.html

Fig. 7.16 | Anonymous inner class that implements interface SensorEventListener to pro-
cess accelerometer events. (Part 2 of 2.)

float x = event.values[0];
float y = event.values[1];
float z = event.values[2];

M07_DEIT3397_02_SE_C07.fm Page 271 Monday, July 7, 2014 9:04 AM

272 Chapter 7 Doodlz App

This link also describes the real-world meanings for a SensorEvent’s x, y and z values for
each different Sensor.

Lines 107–109 store the acceleration values. It’s important to handle sensor events
quickly or to copy the event data (as we did here) because the array of sensor values is reused
for each sensor event. Line 112 stores the last value of currentAcceleration. Line 115
sums the squares of the x, y and z acceleration values and stores them in currentAccel-
eration. Then, using the currentAcceleration and lastAcceleration values, we cal-
culate a value (acceleration) that can be compared to our ACCELERATION_THRESHOLD
constant. If the value is greater than the constant, the user moved the device enough for
this app to consider the movement a shake. In this case, we call method confirmErase.

Method confirmErase
Method confirmErase (Fig. 7.17) simply creates an EraseImageDialogFragment

(Section 7.9) and uses the DialogFragment method show to display it.

Overridden Fragment Methods onCreateOptionsMenu and onOptionsItemSe-
lected
Figure 7.18 overrides Fragment’s onCreateOptionsMenu method (lines 142–147) to add
the options to the method’s Menu argument using the method’s MenuInflater argument.
When the user selects a menu item, Fragment method onOptionsItemSelected (lines
150–180) responds to the selection.

134 // confirm whether image should be erased
135 private void confirmErase()
136 {
137 EraseImageDialogFragment fragment = new EraseImageDialogFragment();
138 fragment.show(getFragmentManager(), "erase dialog");
139 }
140

Fig. 7.17 | Method confirmErase displays an EraseImageDialogFragment.

141 // display this fragment's menu items
142 @Override
143 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater)
144 {
145 super.onCreateOptionsMenu(menu, inflater);
146 inflater.inflate(R.menu.doodle_fragment_menu, menu);
147 }
148
149 // handle choice from options menu
150 @Override
151 public boolean onOptionsItemSelected(MenuItem item)
152 {

Fig. 7.18 | Overridden Fragment methods onCreateOptionsMenu and onOptionsItemSe-
lected. (Part 1 of 2.)

M07_DEIT3397_02_SE_C07.fm Page 272 Monday, July 7, 2014 9:04 AM

7.5 DoodleFragment Class 273

We use the MenuItem argument’s getItemID method (line 154) to get the resource ID
of the selected menu item, then take different actions based on the selection. The actions
are as follows:

• For R.id.color, lines 157–158 create and show a ColorDialogFragment
(Section 7.7) to allow the user to select a new drawing color.

• For R.id.lineWidth, lines 161–163 create and show a LineWidthDialogFrag-
ment (Section 7.8) to allow the user to select a new drawing color.

• For R.id.eraser, line 166 sets the doodleView’s drawing color to white, which
effectively turns the user’s fingers into erasers.

• For R.id.clear, line 169 calls method confirmErase (Fig. 7.17) to display an
EraseImageDialogFragment (Section 7.9) and confirm whether the user really
wants to erase the image.

• For R.id.save, line 172 calls doodleView’s saveImage method to save the paint-
ing as an image stored in the device’s Gallery.

• For R.id.print, line 175 calls doodleView’s printImage method to allow the
user to save the image as a PDF or to print the image.

153 // switch based on the MenuItem id
154 switch ()
155 {
156 case R.id.color:
157 ColorDialogFragment colorDialog = new ColorDialogFragment();
158 colorDialog.show(getFragmentManager(), "color dialog");
159 return true; // consume the menu event
160 case R.id.lineWidth:
161 LineWidthDialogFragment widthdialog =
162 new LineWidthDialogFragment();
163 widthdialog.show(getFragmentManager(), "line width dialog");
164 return true; // consume the menu event
165 case R.id.eraser:
166 doodleView.setDrawingColor(Color.WHITE); // line color white
167 return true; // consume the menu event
168 case R.id.clear:
169 confirmErase(); // confirm before erasing image
170 return true; // consume the menu event
171 case R.id.save:
172 doodleView.saveImage(); // save the current image
173 return true; // consume the menu event
174 case R.id.print:
175 doodleView.printImage(); // print the current images
176 return true; // consume the menu event
177 } // end switch
178
179 return super.onOptionsItemSelected(item); // call super's method
180 } // end method onOptionsItemSelected
181

Fig. 7.18 | Overridden Fragment methods onCreateOptionsMenu and onOptionsItemSe-
lected. (Part 2 of 2.)

item.getItemId()

M07_DEIT3397_02_SE_C07.fm Page 273 Monday, July 7, 2014 9:04 AM

274 Chapter 7 Doodlz App

Methods getDoodleView and setDialogOnScreen
Methods getDoodleView and setDialogOnScreen (Fig. 7.19) are called by methods of the
app’s DialogFragment subclasses. Method getDoodleView returns a reference to this
Fragment’s DoodleView so that a DialogFragment can set the drawing color, set the line
width or clear the image. Method setDialogOnScreen is called by Fragment lifecycle
methods of the app’s DialogFragment subclasses to indicate when a dialog is on the screen.

7.6 DoodleView Class
The DoodleView class (Figs. 7.20–7.33) processes the user’s touches and draws the corre-
sponding lines.

DooldleView package Statement and import Statements
Figure 7.20 lists class DoodleView’s package statement, import statements and fields. The
new classes and interfaces are highlighted here. Many of these were discussed in
Section 7.2 and the rest are discussed as we use them throughout class DoodleView.

182 // returns the DoodleView
183 public DoodleView getDoodleView()
184 {
185 return doodleView;
186 }
187
188 // indicates whether a dialog is displayed
189 public void setDialogOnScreen(boolean visible)
190 {
191 dialogOnScreen = visible;
192 }
193 }

Fig. 7.19 | Methods getDoodleView and setDialogOnScreen.

1 // DoodleView.java
2 // Main View for the Doodlz app.
3 package com.deitel.doodlz;
4
5
6
7
8 import android.content.Context;
9

10
11
12
13
14
15
16
17

Fig. 7.20 | DooldleView package statement and import statements. (Part 1 of 2.)

import java.util.HashMap;
import java.util.Map;

import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.Point;
import android.os.Build;
import android.provider.MediaStore;
import android.support.v4.print.PrintHelper;

M07_DEIT3397_02_SE_C07.fm Page 274 Monday, July 7, 2014 9:04 AM

7.6 DoodleView Class 275

DoodleView static and Instance Variables
Class DoodleView’s static and instance variables (Fig. 7.21, lines 30–43) are used to
manage the data for the set of lines that the user is currently drawing and to draw those
lines. Line 38 creates the pathMap, which maps each finger ID (known as a pointer) to a
corresponding Path object for the lines currently being drawn. Lines 39–40 create the
previousPointMap, which maintains the last point for each finger—as each finger moves,
we draw a line from its current point to its previous point. We discuss the other fields as
we use them in class DoodleView.

DoodleView Constructor
The constructor (Fig. 7.22) initializes several of the class’s instance variables—the two
Maps are initialized in their declarations in Fig. 7.21. Line 49 creates the Paint object
paintScreen that will be used to display the user’s drawing on the screen and line 52 cre-
ates the Paint object paintLine that specifies the settings for the line(s) the user is cur-
rently drawing. Lines 53–57 specify the settings for the paintLine object. We pass true
to Paint’s setAntiAlias method to enable anti-aliasing which smooths the edges of the
lines. Next, we set the Paint’s style to Paint.Style.STROKE with Paint’s setStyle meth-

18 import android.util.AttributeSet;
19
20
21
22 import android.view.MotionEvent;
23 import android.view.View;
24 import android.widget.Toast;
25

26 // the main screen that is painted
27 public class DoodleView extends View
28 {
29 // used to determine whether user moved a finger enough to draw again
30 private static final float TOUCH_TOLERANCE = 10;
31
32
33
34
35
36
37 // Maps of current Paths being drawn and Points in those Paths
38
39
40
41
42 // used to hide/show system bars
43
44

Fig. 7.21 | DoodleView static and instance variables.

Fig. 7.20 | DooldleView package statement and import statements. (Part 2 of 2.)

import android.view.GestureDetector;
import android.view.GestureDetector.SimpleOnGestureListener;
import android.view.Gravity;

private Bitmap bitmap; // drawing area for display or saving
private Canvas bitmapCanvas; // used to draw on bitmap
private final Paint paintScreen; // used to draw bitmap onto screen
private final Paint paintLine; // used to draw lines onto bitmap

private final Map<Integer, Path> pathMap = new HashMap<Integer, Path>();
private final Map<Integer, Point> previousPointMap =
 new HashMap<Integer, Point>();

private GestureDetector singleTapDetector;

M07_DEIT3397_02_SE_C07.fm Page 275 Monday, July 7, 2014 9:04 AM

276 Chapter 7 Doodlz App

od. The style can be STROKE, FILL or FILL_AND_STROKE for a line, a filled shape without a
border and a filled shape with a border, respectively. The default option is
Paint.Style.FILL. We set the line’s width using Paint’s setStrokeWidth method. This
sets the app’s default line width to five pixels. We also use Paint’s setStrokeCap method
to round the ends of the lines with Paint.Cap.ROUND. Lines 60–61 create a GestureDe-
tector that uses the singleTapListener to check for single-tap events.

Overridden View Method onSizeChanged
The DoodleView’s size is not determined until it’s inflated and added to the MainActivi-
ty’s View hierarchy; therefore, we can’t determine the size of the drawing Bitmap in on-
Create. So, we override View method onSizeChanged (Fig. 7.23), which is called when
the DoodleView’s size changes—e.g., when it’s added to an Activity’s View hierarchy or
when the user rotates the device. In this app, onSizeChanged is called only when the Doo-
dleView is added to the Doodlz Activity’s View hierarchy, because the app always displays
in portrait on phones and small tablets, and in landscape on large tablets.

45 // DoodleView constructor initializes the DoodleView
46 public DoodleView(Context context, AttributeSet attrs)
47 {
48 super(context, attrs); // pass context to View's constructor
49
50
51
52
53
54
55
56
57
58
59
60
61
62 }
63

Fig. 7.22 | DoodleView constructor.

64 // Method onSizeChanged creates Bitmap and Canvas after app displays
65 @Override
66 public void onSizeChanged(int w, int h, int oldW, int oldH)
67 {
68
69
70
71
72 }
73

Fig. 7.23 | Overridden View method onSizeChanged.

paintScreen = new Paint(); // used to display bitmap onto screen

// set the initial display settings for the painted line
paintLine = new Paint();
paintLine.setAntiAlias(true); // smooth edges of drawn line
paintLine.setColor(Color.BLACK); // default color is black
paintLine.setStyle(Paint.Style.STROKE); // solid line
paintLine.setStrokeWidth(5); // set the default line width
paintLine.setStrokeCap(Paint.Cap.ROUND); // rounded line ends

// GestureDetector for single taps
singleTapDetector =
 new GestureDetector(getContext(), singleTapListener);

bitmap = Bitmap.createBitmap(getWidth(), getHeight(),
 Bitmap.Config.ARGB_8888);
bitmapCanvas = new Canvas(bitmap);
bitmap.eraseColor(Color.WHITE); // erase the Bitmap with white

M07_DEIT3397_02_SE_C07.fm Page 276 Friday, June 20, 2014 3:34 PM

7.6 DoodleView Class 277

Bitmap’s static createBitmap method creates a Bitmap of the specified width and
height—here we use the DoodleView’s width and height as the Bitmap’s dimensions. The
last argument to createBitmap is the Bitmap’s encoding, which specifies how each pixel
in the Bitmap is stored. The constant Bitmap.Config.ARGB_8888 indicates that each
pixel’s color is stored in four bytes (one byte each for the alpha, red, green and blue values)
of the pixel’s color. Next, we create a new Canvas that’s used to draw shapes directly to the
Bitmap. Finally, we use Bitmap’s eraseColor method to fill the Bitmap with white
pixels—the default Bitmap background is black.

DoodleView Methods clear, setDrawingColor, getDrawingColor, setLine-
Width and getLineWidth
Figure 7.24 defines methods clear (lines 75–81), setDrawingColor (lines 84–87), get-
DrawingColor (lines 90–93), setLineWidth (lines 96–99) and getLineWidth (lines
102–105), which are called from the DoodleFragment. Method clear, which we use in
the EraseImageDialogFragment, empties the pathMap and previousPointMap, erases the
Bitmap by setting all of its pixels to white, then calls the inherited View method invali-
date to indicate that the View needs to be redrawn. Then, the system automatically deter-
mines when the View’s onDraw method should be called. Method setDrawingColor
changes the current drawing color by setting the color of the Paint object paintLine.
Paint’s setColor method receives an int that represents the new color in ARGB format.
Method getDrawingColor returns the current color, which we use in the ColorDialog-
Fragment. Method setLineWidth sets paintLine’s stroke width to the specified number
of pixels. Method getLineWidth returns the current stroke width, which we use in the
LineWidthDialogFragment.

74 // clear the painting
75 public void clear()
76 {
77
78
79
80
81 }
82
83 // set the painted line's color
84 public void setDrawingColor(int color)
85 {
86
87 }
88
89 // return the painted line's color
90 public int getDrawingColor()
91 {
92 return ;
93 }
94

Fig. 7.24 | DoodleView methods clear, setDrawingColor, getDrawingColor, setLine-
Width and getLineWidth. (Part 1 of 2.)

pathMap.clear(); // remove all paths
previousPointMap.clear(); // remove all previous points
bitmap.eraseColor(Color.WHITE); // clear the bitmap
invalidate(); // refresh the screen

paintLine.setColor(color);

paintLine.getColor()

M07_DEIT3397_02_SE_C07.fm Page 277 Monday, July 7, 2014 9:04 AM

278 Chapter 7 Doodlz App

Overridden View Method onDraw
When a View needs to be redrawn, its onDraw method is called. Figure 7.25 overrides
onDraw to display bitmap (the Bitmap that contains the drawing) on the DoodleView by
calling the Canvas argument’s drawBitmap method. The first argument is the Bitmap to
draw, the next two arguments are the x-y coordinates where the upper-left corner of the
Bitmap should be placed on the View and the last argument is the Paint object that spec-
ifies the drawing characteristics. Lines 115–116 then loop through and display the Paths
that are currently being drawn. For each Integer key in the pathMap, we pass the corre-
sponding Path to Canvas’s drawPath method to draw the Path using the paintLine ob-
ject, which defines the line width and color.

DoodleView Methods hideSystemBars and showSystemBars
This app uses Android 4.4’s new immersive mode to allow users to draw on the entire
screen. When the user taps the screen, a GestureDetector’s SimplyOnGestureListener
(Fig. 7.27) determines whether the system bars and action bar are displayed. If so, method
hideSystemBars (Fig. 7.26, lines 120–130) is called; otherwise, method showSystemBars
(Fig. 7.26, lines 133–140) is called. For this app, we enable immersive mode only for An-
droid 4.4. So, both methods first check whether the version of Android running on the
device—Build.VERSION_SDK_INT—is greater than or equal to the constant for Android

95 // set the painted line's width
96 public void setLineWidth(int width)
97 {
98
99 }
100
101 // return the painted line's width
102 public int getLineWidth()
103 {
104 return (int) ;
105 }
106

107 // called each time this View is drawn
108 @Override
109
110 {
111 // draw the background screen
112
113
114 // for each path currently being drawn
115 for (Integer key : pathMap.keySet())
116
117 }
118

Fig. 7.25 | Overridden View method onDraw.

Fig. 7.24 | DoodleView methods clear, setDrawingColor, getDrawingColor, setLine-
Width and getLineWidth. (Part 2 of 2.)

paintLine.setStrokeWidth(width);

paintLine.getStrokeWidth()

protected void onDraw(Canvas canvas)

canvas.drawBitmap(bitmap, 0, 0, paintScreen);

canvas.drawPath(pathMap.get(key), paintLine); // draw line

M07_DEIT3397_02_SE_C07.fm Page 278 Monday, July 7, 2014 9:04 AM

7.6 DoodleView Class 279

4.4 (API level 19)—Build.VERSION_CODES_KITKAT. If so, both methods use View method
setSystemUiVisibility to configure the system bars and action bar. To hide the system
bars and action bar and place the UI into immersive mode, you pass to setSystemUi-
Visibility the constants that are combined via the bitwise OR (|) operator in lines
124–129. To show the system bars and action bar, you pass to setSystemUiVisibility
the constants that are combined in lines 137–139. These combinations of View constants
ensure that the DoodleView is not resized each time the system bars and action bar are hid-
den and redisplayed. Instead, the system bars and action bar overlay the DoodleView—that
is, part of the DoodleView is temporarily hidden when the system bars and action bar are
on the screen. The constant View.SYSTEM_UI_FLAG_IMMERSIVE is new in Android 4.4. For
more information on immersive mode, visit:

Anonymous Inner Class that Implements Interface SimpleOnGestureListener
Figure 7.27 creates the SimpleOnGestureListener named singleTapListener, which
was registered at lines 60–61(Fig. 7.22) with the GestureDetector. Recall that SimpleOn-
GestureListener is an adapter class that implements interfaces OnGestureListener and
OnDoubleTapListener. The methods simply return false—indicating that the events
were not handled. We override only the onSingleTap method (lines 146–155), which is
called when the user taps the screen. We determine whether the system bars and app bar
are displayed (lines 149–150) by calling method View method getSystemUiVisibilty
and combining its result with the constant View.SYSTEM_UI_FLAG_HIDE_NAVIGATION. If
the result is 0, the system bars and app bar are currently displayed, so we call method hide-

http://developer.android.com/training/system-ui/immersive.html

119 // hide system bars and action bar
120 public void hideSystemBars()
121 {
122 if ()
123
124
125
126
127
128
129
130 }
131
132 // show system bars and action bar
133 public void showSystemBars()
134 {
135 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT)
136
137
138
139
140 }
141

Fig. 7.26 | DoodleView methods hideSystemBars and showSystemBars.

Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT
setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE |
 View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION |
 View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN |
 View.SYSTEM_UI_FLAG_HIDE_NAVIGATION |
 View.SYSTEM_UI_FLAG_FULLSCREEN |
 View.SYSTEM_UI_FLAG_IMMERSIVE);

setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE |
 View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION |
 View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN);

M07_DEIT3397_02_SE_C07.fm Page 279 Monday, July 7, 2014 9:04 AM

280 Chapter 7 Doodlz App

SystemBars; otherwise, we call showSystemBars. Returning true indicates that the single-
tap event has been handled.

Overridden View Method onTouchEvent
Method onTouchEvent (Fig. 7.28) is called when the View receives a touch event. Android
supports multitouch—that is, having multiple fingers touching the screen. At any time,
the user can touch the screen with more fingers or remove fingers from the screen. For this
reason, each finger—known as a pointer—has a unique ID that identifies it across touch
events. We’ll use that ID to locate the corresponding Path objects that represent each line
currently being drawn. These Paths are stored in pathMap.

142 // create SimpleOnGestureListener for single tap events
143 private SimpleOnGestureListener singleTapListener =
144 new SimpleOnGestureListener()
145 {
146 @Override
147
148 {
149
150
151 hideSystemBars();
152 else
153 showSystemBars();
154 return true;
155 }
156 };
157

Fig. 7.27 | Anonymous inner class that implements interface SimpleOnGestureListener.

158 // handle touch event
159 @Override
160 public boolean onTouchEvent(MotionEvent event)
161 {
162 // get the event type and the ID of the pointer that caused the event
163 // if a single tap event occurred on KitKat or higher device
164 if ()
165 return true;
166
167
168
169
170 // determine whether touch started, ended or is moving
171
172
173 {
174 touchStarted(, ,
175);
176 }

Fig. 7.28 | Overridden View method onTouchEvent. (Part 1 of 2.)

public boolean onSingleTapUp(MotionEvent e)

if ((getSystemUiVisibility() &
 View.SYSTEM_UI_FLAG_HIDE_NAVIGATION) == 0)

singleTapDetector.onTouchEvent(event)

int action = event.getActionMasked(); // event type
int actionIndex = event.getActionIndex(); // pointer (i.e., finger)

if (action == MotionEvent.ACTION_DOWN ||
 action == MotionEvent.ACTION_POINTER_DOWN)

event.getX(actionIndex) event.getY(actionIndex)
event.getPointerId(actionIndex)

M07_DEIT3397_02_SE_C07.fm Page 280 Monday, July 7, 2014 9:04 AM

7.6 DoodleView Class 281

When a touch event occurs, line 164 calls the GestureDetector (singleTapDe-
tector) method onTouchEvent to first determine if the touch event was a tap to hide or
show the system bars and app bar. If the motion event was a tap, the method returns
immediately.

MotionEvent’s getActionMasked method (line 167) returns an int representing the
MotionEvent type, which you can use with constants from class MotionEvent to determine
how to handle each event. MotionEvent’s getActionIndex method (line 168) returns an
integer index representing which finger caused the event. This index is not the finger’s
unique ID—it’s simply the index at which that finger’s information is located in this
MotionEvent object. To get the finger’s unique ID that persists across MotionEvents until
the user removes that finger from the screen, we’ll use MotionEvent’s getPointerID
method (lines 175 and 180), passing the finger index as an argument.

If the action is MotionEvent.ACTION_DOWN or MotionEvent.ACTION_POINTER_DOWN
(lines 171–172), the user touched the screen with a new finger. The first finger to touch the
screen generates a MotionEvent.ACTION_DOWN event, and all other fingers generate
MotionEvent.ACTION_POINTER_DOWN events. For these cases, we call the touchStarted
method (Fig. 7.29) to store the initial coordinates of the touch. If the action is Motion-
Event.ACTION_UP or MotionEvent.ACTION_POINTER_UP, the user removed a finger from the
screen, so we call method touchEnded (Fig. 7.31) to draw the completed Path to the
bitmap so that we have a permanent record of that Path. For all other touch events, we
call method touchMoved (Fig. 7.30) to draw the lines. After the event is processed, line 187
calls the inherited View method invalidate to redraw the screen, and line 188 returns
true to indicate that the event has been processed.

touchStarted Method of Class DoodleView
The touchStarted method (Fig. 7.29) is called when a finger first touches the screen. The
coordinates of the touch and its ID are supplied as arguments. If a Path already exists for
the given ID (line 198), we call Path’s reset method to clear any existing points so we can
reuse the Path for a new stroke. Otherwise, we create a new Path, add it to pathMap, then
add a new Point to the previousPointMap. Lines 213–215 call Path’s moveTo method to
set the Path’s starting coordinates and specify the new Point’s x and y values.

177
178
179 {
180 touchEnded();
181 }
182 else
183 {
184 touchMoved(event);
185 }
186
187
188 return true;
189 } // end method onTouchEvent
190

Fig. 7.28 | Overridden View method onTouchEvent. (Part 2 of 2.)

else if (action == MotionEvent.ACTION_UP ||
 action == MotionEvent.ACTION_POINTER_UP)

event.getPointerId(actionIndex)

invalidate(); // redraw

M07_DEIT3397_02_SE_C07.fm Page 281 Monday, July 7, 2014 9:04 AM

282 Chapter 7 Doodlz App

touchMoved Method of Class DoodleView
The touchMoved method (Fig. 7.30) is called when the user moves one or more fingers
across the screen. The system MotionEvent passed from onTouchEvent contains touch in-
formation for multiple moves on the screen if they occur at the same time. MotionEvent
method getPointerCount (line 222) returns the number of touches this MotionEvent de-
scribes. For each, we store the finger’s ID (line 225) in pointerID, and store the finger’s
corresponding index in this MotionEvent (line 226) in pointerIndex. Then we check
whether there’s a corresponding Path in the pathMap HashMap (line 229). If so, we use
MotionEvent’s getX and getY methods to get the last coordinates for this drag event for
the specified pointerIndex. We get the corresponding Path and last Point for the poin-
terID from each respective HashMap, then calculate the difference between the last point
and the current point—we want to update the Path only if the user has moved a distance
that’s greater than our TOUCH_TOLERANCE constant. We do this because many devices are
sensitive enough to generate MotionEvents indicating small movements when the user is
attempting to hold a finger motionless on the screen. If the user moved a finger further
than the TOUCH_TOLERANCE, we use Path’s quadTo method (lines 248–249) to add a geo-
metric curve (specifically a quadratic Bezier curve) from the previous Point to the new
Point. We then update the most recent Point for that finger.

191 // called when the user touches the screen
192 private void touchStarted(float x, float y, int lineID)
193 {
194 Path path; // used to store the path for the given touch id
195 Point point; // used to store the last point in path
196
197 // if there is already a path for lineID
198 if ()
199 {
200
201
202
203 }
204 else
205 {
206
207
208
209
210 }
211
212 // move to the coordinates of the touch
213
214
215
216 } // end method touchStarted
217

Fig. 7.29 | touchStarted method of class DoodleView.

pathMap.containsKey(lineID)

path = pathMap.get(lineID); // get the Path
path.reset(); // reset the Path because a new touch has started
point = previousPointMap.get(lineID); // get Path's last point

path = new Path();
pathMap.put(lineID, path); // add the Path to Map
point = new Point(); // create a new Point
previousPointMap.put(lineID, point); // add the Point to the Map

path.moveTo(x, y);
point.x = (int) x;
point.y = (int) y;

M07_DEIT3397_02_SE_C07.fm Page 282 Monday, July 7, 2014 9:04 AM

7.6 DoodleView Class 283

touchEnded Method of Class DoodleView
The touchEnded method (Fig. 7.31) is called when the user lifts a finger from the screen.
The method receives the ID of the finger (lineID) for which the touch just ended as an
argument. Line 262 gets the corresponding Path. Line 263 calls the bitmapCanvas’s draw-
Path method to draw the Path on the Bitmap object named bitmap before we call Path’s
reset method to clear the Path. Resetting the Path does not erase its corresponding paint-
ed line from the screen, because those lines have already been drawn to the bitmap that’s
displayed to the screen. The lines that are currently being drawn by the user are displayed
on top of that bitmap.

218 // called when the user drags along the screen
219 private void touchMoved(MotionEvent event)
220 {
221 // for each of the pointers in the given MotionEvent
222 for (int i = 0; i < ; i++)
223 {
224 // get the pointer ID and pointer index
225 int pointerID = ;
226 int pointerIndex = ;
227
228 // if there is a path associated with the pointer
229 if ()
230 {
231 // get the new coordinates for the pointer
232 float newX = ;
233 float newY = ;
234
235 // get the Path and previous Point associated with
236 // this pointer
237 Path path = ;
238 Point point = ;
239
240 // calculate how far the user moved from the last update
241 float deltaX = Math.abs(newX - point.x);
242 float deltaY = Math.abs(newY - point.y);
243
244 // if the distance is significant enough to matter
245 if (deltaX >= TOUCH_TOLERANCE || deltaY >= TOUCH_TOLERANCE)
246 {
247 // move the path to the new location
248
249
250
251 // store the new coordinates
252 point.x = (int) newX;
253 point.y = (int) newY;
254 }
255 }
256 }
257 } // end method touchMoved
258

Fig. 7.30 | touchMoved method of class DoodleView.

event.getPointerCount()

event.getPointerId(i)
event.findPointerIndex(pointerID)

pathMap.containsKey(pointerID)

event.getX(pointerIndex)
event.getY(pointerIndex)

pathMap.get(pointerID)
previousPointMap.get(pointerID)

path.quadTo(point.x, point.y, (newX + point.x) / 2,
 (newY + point.y) / 2);

M07_DEIT3397_02_SE_C07.fm Page 283 Monday, July 7, 2014 9:04 AM

284 Chapter 7 Doodlz App

DoodleView Method saveImage
Method saveImage (Fig. 7.32) saves the current drawing to a file in the device’s gallery.
Line 271 creates a filename for the image, then lines 274–276 store the image in the de-
vice’s Gallery by calling class MediaStore.Images.Media’s insertImage method. The
method receives four arguments:

• a ContentResolver that the method uses to locate where the image should be
stored on the device

• the Bitmap to store

• the name of the image

• a description of the image

Method insertImage returns a String representing the image’s location on the device, or
null if the image could not be saved. Lines 278–295 check whether the image was saved
and display an appropriate Toast.

259 // called when the user finishes a touch
260 private void touchEnded(int lineID)
261 {
262
263
264
265 }
266

Fig. 7.31 | touchEnded method of class DoodleView.

267 // save the current image to the Gallery
268 public void saveImage()
269 {
270 // use "Doodlz" followed by current time as the image name
271 String name = "Doodlz" + System.currentTimeMillis() + ".jpg";
272
273 // insert the image in the device's gallery
274
275
276
277
278 if (location != null) // image was saved
279 {
280 // display a message indicating that the image was saved
281 Toast message = Toast.makeText(getContext(),
282 R.string.message_saved, Toast.LENGTH_SHORT);
283 message.setGravity(Gravity.CENTER, message.getXOffset() / 2,
284 message.getYOffset() / 2);
285 message.show();
286 }
287 else
288 {

Fig. 7.32 | DoodleView method saveImage. (Part 1 of 2.)

Path path = pathMap.get(lineID); // get the corresponding Path
bitmapCanvas.drawPath(path, paintLine); // draw to bitmapCanvas
path.reset(); // reset the Path

String location = MediaStore.Images.Media.insertImage(
 getContext().getContentResolver(), bitmap, name,
 "Doodlz Drawing");

M07_DEIT3397_02_SE_C07.fm Page 284 Monday, July 7, 2014 9:04 AM

7.6 DoodleView Class 285

DoodleView Method printImage
On Android 4.4 and higher devices, method printImage (Fig. 7.33) uses the Android
Support Library’s PrintHelper class to print the current drawing. Line 301 first confirms
that printing support is available on the device. If so, line 304 creates a PrintHelper ob-
ject. Next, line 307 specifies the image’s scale mode—PrintHelper.SCALE_MODE_FIT indi-
cates that the image should fit within the printable area of the paper. There’s also the scale
mode PrintHelper.SCALE_MODE_FILL, which causes the image to fill the paper, possibly
cutting off a portion of the image. Finally, line 308 calls PrintHelper method printBit-
map, passing as arguments the print job name (used by the printer to identify the print)
and the Bitmap containing the image to print. This displays Android’s print dialog, which
allows the user to choose whether to save the image as a PDF document on the device or
to print the image to an available printer.

289 // display a message indicating that the image was saved
290 Toast message = Toast.makeText(getContext(),
291 R.string.message_error_saving, Toast.LENGTH_SHORT);
292 message.setGravity(Gravity.CENTER, message.getXOffset() / 2,
293 message.getYOffset() / 2);
294 message.show();
295 }
296 } // end method saveImage
297

298 // print the current image
299 public void printImage()
300 {
301 if ()
302 {
303 // use Android Support Library's PrintHelper to print image
304
305
306 // fit image in page bounds and print the image
307
308
309 }
310 else
311 {
312 // display message indicating that system does not allow printing
313 Toast message = Toast.makeText(getContext(),
314 R.string.message_error_printing, Toast.LENGTH_SHORT);
315 message.setGravity(Gravity.CENTER, message.getXOffset() / 2,
316 message.getYOffset() / 2);
317 message.show();
318 }
319 }
320 } // end class DoodleView

Fig. 7.33 | DoodleView method printImage.

Fig. 7.32 | DoodleView method saveImage. (Part 2 of 2.)

PrintHelper.systemSupportsPrint()

PrintHelper printHelper = new PrintHelper(getContext());

printHelper.setScaleMode(PrintHelper.SCALE_MODE_FIT);
printHelper.printBitmap("Doodlz Image", bitmap);

M07_DEIT3397_02_SE_C07.fm Page 285 Monday, July 7, 2014 9:04 AM

286 Chapter 7 Doodlz App

7.7 ColorDialogFragment Class
Class ColorDialogFragment (Figs. 7.34–7.38) extends DialogFragment to create an
AlertDialog for setting the drawing color. The class’s instance variables (lines 19–24) are
used to reference the GUI controls for selecting the new color, displaying a preview of it
and storing the color as a 32-bit int value that represents the color’s ARGB values.

Overridden DialogFragment Method onCreateDialog
Method onCreateDialog (Fig. 7.35) inflates the custom View (lines 32–34) defined by
fragment_color.xml containing the GUI for selecting a color, then attaches that View to
the AlertDialog by calling AlertDialog.Builder’s setView method (line 35). Lines 42–
50 get references to the dialog’s SeekBars and colorView. Next, lines 53–56 register col-
orChangedListener (Fig. 7.38) as the listener for the SeekBars’ events.

1 // ColorDialogFragment.java
2 // Allows user to set the drawing color on the DoodleView
3 package com.deitel.doodlz;
4
5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.app.DialogFragment;
9 import android.content.DialogInterface;

10 import android.graphics.Color;
11 import android.os.Bundle;
12 import android.view.View;
13 import android.widget.SeekBar;
14 import android.widget.SeekBar.OnSeekBarChangeListener;
15
16 // class for the Select Color dialog
17 public class ColorDialogFragment extends DialogFragment
18 {
19 private SeekBar alphaSeekBar;
20 private SeekBar redSeekBar;
21 private SeekBar greenSeekBar;
22 private SeekBar blueSeekBar;
23 private View colorView;
24 private int color;
25

Fig. 7.34 | ColorDialogFragment’s package statement, import statements and instance
variables.

26 // create an AlertDialog and return it
27 @Override
28 public Dialog onCreateDialog(Bundle bundle)
29 {
30 AlertDialog.Builder builder =
31 new AlertDialog.Builder(getActivity());

Fig. 7.35 | Overridden DialogFragment method onCreateDialog. (Part 1 of 2.)

M07_DEIT3397_02_SE_C07.fm Page 286 Monday, July 7, 2014 9:04 AM

7.7 ColorDialogFragment Class 287

Line 59 calls method getDoodleFragment (Fig. 7.36) to get a reference to the Doo-
dleFragment, then calls the DoodleFragment’s getDoodleView method to get the Doo-
dleView. Lines 60–64 get the DoodleView’s current drawing color, then use it to set each

32
33
34
35
36
37 // set the AlertDialog's message
38 builder.setTitle(R.string.title_color_dialog);
39 builder.setCancelable(true);
40
41 // get the color SeekBars and set their onChange listeners
42 alphaSeekBar = (SeekBar) colorDialogView.findViewById(
43 R.id.alphaSeekBar);
44 redSeekBar = (SeekBar) colorDialogView.findViewById(
45 R.id.redSeekBar);
46 greenSeekBar = (SeekBar) colorDialogView.findViewById(
47 R.id.greenSeekBar);
48 blueSeekBar = (SeekBar) colorDialogView.findViewById(
49 R.id.blueSeekBar);
50 colorView = colorDialogView.findViewById(R.id.colorView);
51
52 // register SeekBar event listeners
53 alphaSeekBar.setOnSeekBarChangeListener(colorChangedListener);
54 redSeekBar.setOnSeekBarChangeListener(colorChangedListener);
55 greenSeekBar.setOnSeekBarChangeListener(colorChangedListener);
56 blueSeekBar.setOnSeekBarChangeListener(colorChangedListener);
57
58 // use current drawing color to set SeekBar values
59 final DoodleView doodleView = getDoodleFragment().getDoodleView();
60 color = doodleView.getDrawingColor();
61 alphaSeekBar.setProgress(Color.alpha(color));
62 redSeekBar.setProgress(Color.red(color));
63 greenSeekBar.setProgress(Color.green(color));
64 blueSeekBar.setProgress(Color.blue(color));
65
66 // add Set Color Button
67 builder.setPositiveButton(R.string.button_set_color,
68 new DialogInterface.OnClickListener()
69 {
70 public void onClick(DialogInterface dialog, int id)
71 {
72
73 }
74 }
75); // end call to setPositiveButton
76
77 return builder.create(); // return dialog
78 } // end method onCreateDialog
79

Fig. 7.35 | Overridden DialogFragment method onCreateDialog. (Part 2 of 2.)

View colorDialogView =
 getActivity().getLayoutInflater().inflate(
 R.layout.fragment_color, null);
builder.setView(colorDialogView); // add GUI to dialog

doodleView.setDrawingColor(color);

M07_DEIT3397_02_SE_C07.fm Page 287 Monday, July 7, 2014 9:04 AM

288 Chapter 7 Doodlz App

SeekBar’s value. Color’s static methods alpha, red, green and blue extract the ARGB
values from the color, and SeekBar’s setProgress method positions the thumbs. Lines
67–75 configure the AlertDialog’s positive button to set the DoodleView’s new drawing
color. Line 77 returns the AlertDialog.

Method getDoodleFragment
Method getDoodleFragment (Fig. 7.36) simply uses the FragmentManager to get a refer-
ence to the DoodleFragment.

Overridden Fragment Lifecycle Methods onAttach and onDetach
When the ColorDialogFragment is added to a parent Activity, method onAttach
(Fig. 7.37, lines 88–96) is called. Line 92 gets a reference to the DoodleFragment. If that
reference is not null, line 95 calls DoodleFragment’s setDialogOnScreen method to indi-
cate that the Choose Color dialog is now displayed. When the ColorDialogFragment is re-
moved from a parent Activity, method onDetach (lines 99–107) is called. Line 106 calls
DoodleFragment’s setDialogOnScreen method to indicate that the Choose Color dialog is
no longer on the screen.

80 // gets a reference to the DoodleFragment
81 private DoodleFragment getDoodleFragment()
82 {
83 return (DoodleFragment) getFragmentManager().findFragmentById(
84 R.id.doodleFragment);
85 }
86

Fig. 7.36 | Method getDoodleFragment.

87 // tell DoodleFragment that dialog is now displayed
88 @Override
89
90 {
91 super.onAttach(activity);
92 DoodleFragment fragment = getDoodleFragment();
93
94 if (fragment != null)
95 fragment.setDialogOnScreen(true);
96 }
97
98 // tell DoodleFragment that dialog is no longer displayed
99 @Override
100
101 {
102 super.onDetach();
103 DoodleFragment fragment = getDoodleFragment();
104
105 if (fragment != null)
106 fragment.setDialogOnScreen(false);
107 }
108

Fig. 7.37 | Overridden Fragment lifecycle methods onAttach and onDetach.

public void onAttach(Activity activity)

public void onDetach()

M07_DEIT3397_02_SE_C07.fm Page 288 Monday, July 7, 2014 9:04 AM

7.8 LineWidthDialogFragment Class 289

Anonymous Inner Class That Implements Interface OnSeekBarChangeListener to
Respond to the Events of the Alpha, Red, Green and Blue SeekBars
Figure 7.38 defines an anonymous inner class that implements interface OnSeekBar-
ChangeListener to respond to events when the user adjusts the SeekBars in the Choose
Color Dialog. This was registered as the SeekBars’ event handler in Fig. 7.35 (lines
53–56). Method onProgressChanged (lines 115–123) is called when the position of a
SeekBar’s thumb changes. If the user moved a SeekBar’s thumb (line 118), lines 119–121
store the new color. Class Color’s static method argb combines the SeekBars’ values into
a Color and returns the appropriate color as an int. We then use class View’s setBack-
groundColor method to update the colorView with a color that matches the current state
of the SeekBars.

7.8 LineWidthDialogFragment Class
Class LineWidthDialogFragment (Fig. 7.39) extends DialogFragment to create an Alert-
Dialog for setting the line width. The class is similar to class ColorDialogFragment, so we
discuss only the key differences here. The class’s only instance variable is an ImageView
(line 22) in which we draw a line showing the current line-width setting.

109 // OnSeekBarChangeListener for the SeekBars in the color dialog
110 private OnSeekBarChangeListener colorChangedListener =
111 new OnSeekBarChangeListener()
112 {
113 // display the updated color
114 @Override
115 public void onProgressChanged(SeekBar seekBar, int progress,
116 boolean fromUser)
117 {
118
119
120
121
122
123 }
124
125 @Override
126 public void onStartTrackingTouch(SeekBar seekBar) // required
127 {
128 }
129
130 @Override
131 public void onStopTrackingTouch(SeekBar seekBar) // required
132 {
133 }
134 }; // end colorChanged
135 } // end class ColorDialogFragment

Fig. 7.38 | Anonymous inner class that implements interface OnSeekBarChangeListener to
respond to the events of the alpha, red, green and blue SeekBars.

if (fromUser) // user, not program, changed SeekBar progress
 color = Color.argb(alphaSeekBar.getProgress(),
 redSeekBar.getProgress(), greenSeekBar.getProgress(),
 blueSeekBar.getProgress());
colorView.setBackgroundColor(color);

M07_DEIT3397_02_SE_C07.fm Page 289 Monday, July 7, 2014 9:04 AM

290 Chapter 7 Doodlz App

1 // LineWidthDialogFragment.java
2 // Allows user to set the drawing color on the DoodleView
3 package com.deitel.doodlz;
4
5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.app.DialogFragment;
9 import android.content.DialogInterface;

10 import android.graphics.Bitmap;
11 import android.graphics.Canvas;
12 import android.graphics.Paint;
13 import android.os.Bundle;
14 import android.view.View;
15 import android.widget.ImageView;
16 import android.widget.SeekBar;
17 import android.widget.SeekBar.OnSeekBarChangeListener;
18
19 // class for the Select Color dialog
20 public class LineWidthDialogFragment extends DialogFragment
21 {
22 private ImageView widthImageView;
23
24 // create an AlertDialog and return it
25 @Override
26 public Dialog onCreateDialog(Bundle bundle)
27 {
28 AlertDialog.Builder builder =
29 new AlertDialog.Builder(getActivity());
30 View lineWidthDialogView = getActivity().getLayoutInflater().inflate(
31 R.layout.fragment_line_width, null);
32 builder.setView(lineWidthDialogView); // add GUI to dialog
33
34 // set the AlertDialog's message
35 builder.setTitle(R.string.title_line_width_dialog);
36 builder.setCancelable(true);
37
38 // get the ImageView
39 widthImageView = (ImageView) lineWidthDialogView.findViewById(
40 R.id.widthImageView);
41
42 // configure widthSeekBar
43 final DoodleView doodleView = getDoodleFragment().getDoodleView();
44 final SeekBar widthSeekBar = (SeekBar)
45 lineWidthDialogView.findViewById(R.id.widthSeekBar);
46 widthSeekBar.setOnSeekBarChangeListener(lineWidthChanged);
47 widthSeekBar.setProgress(doodleView.getLineWidth());
48
49 // add Set Line Width Button
50 builder.setPositiveButton(R.string.button_set_line_width,
51 new DialogInterface.OnClickListener()
52 {

Fig. 7.39 | Class LineWidthDialogFragment. (Part 1 of 3.)

M07_DEIT3397_02_SE_C07.fm Page 290 Monday, July 7, 2014 9:04 AM

7.8 LineWidthDialogFragment Class 291

53 public void onClick(DialogInterface dialog, int id)
54 {
55
56 }
57 }
58); // end call to setPositiveButton
59
60 return builder.create(); // return dialog
61 } // end method onCreateDialog
62
63 // gets a reference to the DoodleFragment
64 private DoodleFragment getDoodleFragment()
65 {
66 return (DoodleFragment) getFragmentManager().findFragmentById(
67 R.id.doodleFragment);
68 }
69
70 // tell DoodleFragment that dialog is now displayed
71 @Override
72 public void onAttach(Activity activity)
73 {
74 super.onAttach(activity);
75 DoodleFragment fragment = getDoodleFragment();
76
77 if (fragment != null)
78 fragment.setDialogOnScreen(true);
79 }
80
81 // tell DoodleFragment that dialog is no longer displayed
82 @Override
83 public void onDetach()
84 {
85 super.onDetach();
86 DoodleFragment fragment = getDoodleFragment();
87
88 if (fragment != null)
89 fragment.setDialogOnScreen(false);
90 }
91
92 // OnSeekBarChangeListener for the SeekBar in the width dialog
93 private OnSeekBarChangeListener lineWidthChanged =
94 new OnSeekBarChangeListener()
95 {
96 Bitmap bitmap = Bitmap.createBitmap(
97 400, 100, Bitmap.Config.ARGB_8888);
98 Canvas canvas = new Canvas(bitmap); // associate with Canvas
99
100 @Override
101 public void onProgressChanged(SeekBar seekBar, int progress,
102 boolean fromUser)
103 {

Fig. 7.39 | Class LineWidthDialogFragment. (Part 2 of 3.)

doodleView.setLineWidth(widthSeekBar.getProgress());

M07_DEIT3397_02_SE_C07.fm Page 291 Monday, July 7, 2014 9:04 AM

292 Chapter 7 Doodlz App

Method onCreateDialog
Method onCreateDialog (lines 25–61) inflates the custom View (lines 30–31) defined by
fragment_line_width.xml that displays the GUI for selecting the line width, then attach-
es that View to the AlertDialog by calling AlertDialog.Builder’s setView method (line
32). Lines 39–40 get a reference to the ImageView in which the sample line will be drawn.
Next, lines 43–47 get a reference to the widthSeekBar, register lineWidthChanged (lines
93–127) as the SeekBar’s listener and set the SeekBar’s current value to the current line
width. Lines 50–58 define the dialog’s positive button to call the DoodleView’s setLine-
Width method when the user touches the Set Line Width button. Line 60 returns the
AlertDialog for display.

Anonymous Inner Class That Implements Interface OnSeekBarChangeListener to
Respond to the Events of the widthSeekBar
Lines 93–127 define the lineWidthChanged OnSeekBarChangeListener that responds to
events when the user adjusts the SeekBar in the Choose Line Width dialog. Lines 96–97
create a Bitmap on which to display a sample line representing the selected line thickness.
Line 98 creates a Canvas for drawing on the Bitmap. Method onProgressChanged (lines
100–116) draws the sample line based on the current drawing color and the SeekBar’s val-
ue. First, lines 105–109 configure a Paint object for drawing the sample line. Class
Paint’s setStrokeCap method (line 108) specifies the appearance of the line ends—in this
case, they’re rounded (Paint.Cap.ROUND). Lines 112–113 clear bitmap’s background to
the predefined Android color android.R.color.transparent with Bitmap method

104
105
106
107
108
109
110
111
112
113
114
115
116 }
117
118 @Override
119 public void onStartTrackingTouch(SeekBar seekBar) // required
120 {
121 }
122
123 @Override
124 public void onStopTrackingTouch(SeekBar seekBar) // required
125 {
126 }
127 }; // end lineWidthChanged
128 }

Fig. 7.39 | Class LineWidthDialogFragment. (Part 3 of 3.)

// configure a Paint object for the current SeekBar value
Paint p = new Paint();
p.setColor(
 getDoodleFragment().getDoodleView().getDrawingColor());
p.setStrokeCap(Paint.Cap.ROUND);
p.setStrokeWidth(progress);

// erase the bitmap and redraw the line
bitmap.eraseColor(
 getResources().getColor(android.R.color.transparent));
canvas.drawLine(30, 50, 370, 50, p);
widthImageView.setImageBitmap(bitmap);

M07_DEIT3397_02_SE_C07.fm Page 292 Monday, July 7, 2014 9:04 AM

7.9 EraseImageDialogFragment Class 293

eraseColor. We use canvas to draw the sample line. Finally, line 115 displays bitmap in
the widthImageView by passing it to ImageView’s setImageBitmap method.

7.9 EraseImageDialogFragment Class
Class EraseImageDialogFragment (Fig. 7.40) extends DialogFragment to create an
AlertDialog that confirms whether the user really wants to erase the entire image. The
class is similar to class ColorDialogFragment and LineWidthDialogFragment, so we dis-
cuss only method onCreateDialog (lines 16–41) here. The method creates an AlertDia-
log with Erase Image and Cancel button. Lines 27–35 configure the Erase Image button
as the positive button—when the user touches this, line 32 in the button’s listener calls the
DoodleView’s clear method to erase the image. Line 38 configures Cancel as the negative
button—when the user touches this, the dialog is dismissed. Line 40 returns the Alert-
Dialog.

1 // EraseImageDialogFragment.java
2 // Allows user to erase image
3 package com.deitel.doodlz;
4
5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.app.DialogFragment;
9 import android.content.DialogInterface;

10 import android.os.Bundle;
11
12 //class for the Select Color dialog
13 public class EraseImageDialogFragment extends DialogFragment
14 {
15 // create an AlertDialog and return it
16 @Override
17 public Dialog onCreateDialog(Bundle bundle)
18 {
19 AlertDialog.Builder builder =
20 new AlertDialog.Builder(getActivity());
21
22 // set the AlertDialog's message
23 builder.setMessage(R.string.message_erase);
24 builder.setCancelable(false);
25
26 // add Erase Button
27 builder.setPositiveButton(R.string.button_erase,
28 new DialogInterface.OnClickListener()
29 {
30 public void onClick(DialogInterface dialog, int id)
31 {
32 getDoodleFragment().getDoodleView().clear(); // clear image
33 }
34 }
35); // end call to setPositiveButton

Fig. 7.40 | Class EraseImageDialogFragment. (Part 1 of 2.)

M07_DEIT3397_02_SE_C07.fm Page 293 Monday, July 7, 2014 9:04 AM

294 Chapter 7 Doodlz App

7.10 Wrap-Up
In this chapter, you built the Doodlz app which enables users to paint by dragging one or
more fingers across the screen. You implemented a shake-to-erase feature by using An-
droid’s SensorManager to register a SensorEventListener that responds to accelerometer
events, and you learned that Android supports many other sensors.

You created subclasses of DialogFragment that displayed custom Views in AlertDia-
logs. You also overrode the Fragment lifecycle methods onAttach and onDetach, which
are called when a Fragment is attached to or detached from a parent Activity, respec-
tively.

We showed how to associate a Canvas with a Bitmap, then use the Canvas to draw on
the Bitmap. We demonstrated how to handle multitouch events so the user can draw with
multiple fingers at the same time. You stored the information for each individual finger as

36
37 // add Cancel Button
38 builder.setNegativeButton(R.string.button_cancel, null);
39
40 return builder.create(); // return dialog
41 } // end method onCreateDialog
42
43 // gets a reference to the DoodleFragment
44 private DoodleFragment getDoodleFragment()
45 {
46 return (DoodleFragment) getFragmentManager().findFragmentById(
47 R.id.doodleFragment);
48 }
49
50 // tell DoodleFragment that dialog is now displayed
51 @Override
52 public void onAttach(Activity activity)
53 {
54 super.onAttach(activity);
55 DoodleFragment fragment = getDoodleFragment();
56
57 if (fragment != null)
58 fragment.setDialogOnScreen(true);
59 }
60
61 // tell DoodleFragment that dialog is no longer displayed
62 @Override
63 public void onDetach()
64 {
65 super.onDetach();
66 DoodleFragment fragment = getDoodleFragment();
67
68 if (fragment != null)
69 fragment.setDialogOnScreen(false);
70 }
71 } // end class EraseImageDialogFragment

Fig. 7.40 | Class EraseImageDialogFragment. (Part 2 of 2.)

M07_DEIT3397_02_SE_C07.fm Page 294 Monday, July 7, 2014 9:04 AM

7.10 Wrap-Up 295

a Path. You processed the touch events by overriding the View method onTouchEvent,
which receives a MotionEvent containing the event type and the ID of the pointer that
generated the event. We used the IDs to distinguish among the fingers and add informa-
tion to the corresponding Path objects.

You used Android 4.4’s new full-screen immersive mode that enables an app to take
advantage of the entire screen, but still allows the user to access the system bars and action
bar when necessary. To toggle immersive mode, you used a GestureDetector to deter-
mine when the user single-tapped the screen.

You used a ContentResolver and the MediaStore.Images.Media.insertImage
method to save an image into the device’s Gallery. Finally, we showed how to use the new
Android 4.4 printing framework to allow users to print their drawings. You used the
Android Support Library’s PrintHelper class to print a BitmapBitmap. The PrintHelper
displayed a user interface for selecting a printer or saving the image into a PDF document.

In Chapter 8, we build the database-driven Address Book app, which provides quick
and easy access to stored contact information and the ability to add contacts, delete con-
tacts and edit existing contacts. You’ll learn how to dynamically swap Fragments in a GUI
and once again provide layouts that optimize screen real estate on phones and tablets.

Self-Review Exercises
7.1 Fill in the blanks in each of the following statements:

a) You use the SensorManager to register the sensor changes that your app should receive
and to specify the that will handle those sensor-change events.

b) A Path object (package android.graphics) represents a geometric path consisting of
line segments and .

c) You use the type of the touch event to determine whether the user has touched the
screen, or lifted a finger from the screen.

d) Use class SensorManager’s method to stop listening for accelerometer events.
e) Override SensorEventListener method to process accelerometer events.
f) Override Fragment method to respond to the event when a Fragment is at-

tached to a parent Activity.
g) When a View needs to be redrawn, its method is called.
h) MotionEvent’s method returns an int representing the MotionEvent type,

which you can use with constants from class MotionEvent to determine how to handle
each event.

i) Android 4.4’s enables an app to take advantage of the entire screen.

7.2 State whether each of the following is true or false. If false, explain why.
a) You unregister the accelerometer event handler when the app is sent to the foreground.
b) Call the inherited View method validate to indicate that the View needs to be redrawn.
c) If the action is MotionEvent.ACTION_DOWN or MotionEvent.ACTION_POINTER_DOWN, the

user touched the screen with the same finger.
d) Resetting the Path erases its corresponding painted line from the screen, because those

lines have already been drawn to the bitmap that’s displayed to the screen.
e) Method MediaStore.Images.Media.saveImage saves a Bitmap into the device’s Gallery.

M07_DEIT3397_02_SE_C07.fm Page 295 Friday, June 20, 2014 3:34 PM

296 Chapter 7 Doodlz App

Answers to Self-Review Exercises
7.1 a) SensorEventListener. b) curves. c) dragged across the screen. d) unregisterListener.
e) onSensorChanged. f) onAttach. g) onDraw. h) getActionMasked. i) immersive mode.

7.2 a) False. You unregister the accelerometer event handler when the app is sent to the back-
ground. b) False. Call the inherited View method invalidate to indicate that the View needs to be
redrawn. c) False. If the action is MotionEvent.ACTION_DOWN or MotionEvent.ACTION_POINTER_DOWN,
the user touched the screen with a new finger. d) False. Resetting the Path does not erase its corre-
sponding painted line from the screen, because those lines have already been drawn to the bitmap
that’s displayed to the screen. e) False. The method MediaStore.Images.Media.insertImage saves
a Bitmap into the device’s Gallery.

Exercises
7.3 Fill in the blanks in each of the following statements:

a) Most Android devices have a(n) that allows apps to detect movement.
b) A displays an AlertDialog with a custom View containing GUI components

for previewing and selecting a new ARGB drawing color.
c) The monitors the accelerometer to detect device movement.
d) SensorManager’s constant represents the acceleration due to gravity on earth.
e) You register to receive accelerometer events using SensorManager’s registerListener

method, which receives three arguments: the SensorEventListener object that will re-
spond to the events, a Sensor representing the type of sensor data the app wishes to re-
ceive and .

f) _____________ is the last Fragment lifecycle method called when a Fragment is about
to be detached from a parent Activity.

g) Paint method sets the stroke width to the specified number of pixels.
h) Android supports —that is, having multiple fingers touching the screen.
i) A class of package android.content enables the app to read data from and

store data on a device.

7.4 State whether each of the following is true or false. If false, explain why.
a) In Android, sensor events are handled in the GUI thread.
b) EraseImageDialogFragment displays a standard AlertDialog asking the user to confirm

whether the entire image should be erased.
c) For accelerometer events, the SensorEvent parameter values array contains three ele-

ments representing the acceleration (in meters/second2) in the x (left/right), y (up/down)
and z (forward/backward) directions.

d) Method onProgressChanged is called once when the user drags a SeekBar’s thumb.
e) An accelerometer allows an app to react to user interactions such as flings, single taps,

double taps, long presses and scrolls.
f) The system MotionEvent passed from onTouchEvent contains touch information for

multiple moves on the screen if they occur at the same time.

7.5 (Enhanced Doodlz App) Make the following enhancements to the Doodlz app:
a) Allow the user to select a background color. The erase capability should use the selected

background color. Clearing the entire image should return the background to the de-
fault white background.

b) Allow the user to select a background image on which to draw. Clearing the entire im-
age should return the background to the default white background. The erase capability
should use the default white background color.

M07_DEIT3397_02_SE_C07.fm Page 296 Friday, June 20, 2014 3:34 PM

 Exercises 297

c) Use pressure to determine transparency of color or thickness of line. Class MotionEvent
has methods that allow you to get the pressure of the touch.

d) Add the ability to draw rectangles and ovals. Options should include whether the shape
is filled or hollow. The user should be able to specify the line thickness for each shape’s
border and the shape’s fill color.

e) (Advanced) When the user selects a background image on which to draw, the erase ca-
pability should reveal the original background image pixels in the erased location.

7.6 (Hangman Game App) Recreate the classic word game Hangman using the Android robot icon
rather than a stick figure. (For the Android logo terms of use, visit www.android.com/branding.html).
At the start of the game, display a dashed line with one dash representing each letter in the word. As a
hint to the user, provide either a category for the word (e.g., sport or landmark) or the word’s defini-
tion. Ask the user to enter a letter. If the letter is in the word, place it in the location of the correspond-
ing dash. If the letter is not part of the word, draw part of the Android robot on the screen (e.g., the
robot’s head). For each incorrect answer, draw another part of the Android robot. The game ends
when the user completes the word or the entire Android Robot is drawn to the screen.

7.7 (Fortune Teller App) The user “asks a question” then shakes the phone to find a fortune (e.g.,
“probably not,” “looks promising,” “ask me again later.” etc.

7.8 (Block Breaker Game) Display several columns of blocks in red, yellow, blue and green.
Each column should have blocks of each color randomly placed. Blocks can be removed from the
screen only if they are in groups of two or more. A group consists of blocks of the same color that
are vertically and/or horizontally adjacent. When the user taps a group of blocks, the group disap-
pears and the blocks above move down to fill the space. The goal is to clear all of the blocks from
the screen. More points should be awarded for larger groups of blocks.

7.9 (Enhanced Block Breaker Game) Modify the Block Breaker game in Exercise 7.8 as follows:
a) Provide a timer—the user wins by clearing the blocks in the alotted time. Add more

blocks to the screen the longer it takes the user to clear the screen.
b) Add multiple levels. In each level, the alotted time for clearing the screen decreases.
c) Provide a continous mode in which as the user clears blocks, a new row of blocks is add-

ed. If the space below a given block is empty, the block should drop into that space. In
this mode, the game ends when the user cannot remove any more blocks.

d) Keep track of the high scores in each game mode.

7.10 (Word Search App) Create a grid of letters that fills the screen. Hidden in the grid should be
at least ten words. The words may be horizontal, vertical or diagonal, and, in each case, forwards,
backwards, up or down. Allow the user to highlight the words by dragging a finger across the letters
on the screen or tapping each letter of the word. Include a timer. The less time it takes the user to
complete the game, the higher the score. Keep track of the high scores.

7.11 (Fractal App) Research how to draw fractals and develop an app that draws them. Provide
options that allow the user to control the number of levels of the fractal and its colors.

7.12 (Kaleidascope App) Create an app that simulates a kaleidascope. Allow the user to shake the
device to redraw the screen.

7.13 (Labyrinth Game App: Open Source) Check out the open-source Android app, Amazed, on the
Google Code site (http://apps-for-android.googlecode.com/svn/trunk/Amazed/). In this game,
the user maneuvers a marble through a maze by tilting the device in various directions. Possible mod-
ifications and enhancements include: adding a timer to keep track of how fast the user completes the
game, improving the graphics, adding sounds and adding more puzzles of varying difficulty.

7.14 (Game of Snake App) Research the Game of Snake online and develop an app that allows a
user to play the game.

M07_DEIT3397_02_SE_C07.fm Page 297 Monday, July 7, 2014 9:04 AM

8 Address Book App

O b j e c t i v e s
In this chapter you’ll:

■ Use a ListFragment to
display and manage a
ListView.

■ Use FragmentTrans-
actions and the back stack
to dynamically attach
Fragments to and detach
Fragments from the GUI.

■ Create and open SQLite
databases using a SQLite-
OpenHelper, and insert,
delete and query data in a
SQLite database using a
SQLiteDatabase object

■ Use a SimpleCursor-
Adapter to bind database
query results to a
ListView’s items.

■ Use a Cursor to manipulate
database query results.

■ Use multithreading and
AsyncTasks to perform
database operations outside
the GUI thread and maintain
application responsiveness.

■ Define styles containing
common GUI attributes and
values, then apply them to
multiple GUI components.

M08_DEIT3397_02_SE_C08.fm Page 298 Tuesday, July 8, 2014 8:31 AM

8.1 Introduction 299

8.1 Introduction
The Address Book app (Fig. 8.1) provides convenient access to contact information that’s
stored in a SQLite database on the device. You can scroll through an alphabetical contact
list and can view a contact’s details by touching the contact’s name.

8.1 Introduction
8.2 Test-Driving the Address Book App
8.3 Technologies Overview

8.3.1 Displaying Fragments with
FragmentTransactions

8.3.2 Communicating Data Between a
Fragment and a Host Activity

8.3.3 Method onSaveInstanceState
8.3.4 Defining Styles and Applying Them to

GUI Components
8.3.5 Specifying a Background for a

TextView
8.3.6 Extending Class ListFragment to

Create a Fragment That Contains a
ListView

8.3.7 Manipulating a SQLite Database
8.3.8 Performing Database Operations

Outside the GUI Thread with
AsyncTasks

8.4 Building the GUI and Resource Files

8.4.1 Creating the Project
8.4.2 Creating the App’s Classes
8.4.3 strings.xml
8.4.4 styles.xml
8.4.5 textview_border.xml
8.4.6 MainActivity’s Layout:

activity_main.xml
8.4.7 DetailsFragment’s Layout:

fragment_details.xml
8.4.8 AddEditFragment’s Layout:

fragment_add_edit.xml
8.4.9 Defining the Fragments’ Menus

8.5 MainActivity Class
8.6 ContactListFragment Class
8.7 AddEditFragment Class
8.8 DetailsFragment Class
8.9 DatabaseConnector Utility Class

8.10 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Fig. 8.1 | contact list and a selected contact’s details.

Touching a contact’s
name displays a
Fragment
containing the
contact’s details

a) Contact list with Paul selected b) Details for the contact Paul

M08_DEIT3397_02_SE_C08.fm Page 299 Monday, July 7, 2014 9:05 AM

300 Chapter 8 Address Book App

When a contact’s details are displayed, touching edit () displays a Fragment con-
taining prepopulated EditTexts for editing the contact’s data (Fig. 8.2), and touching delete
() displays a DialogFragment asking the user to confirm the deletion (Fig. 8.3).

Fig. 8.2 | Editing a contact’s data.

Fig. 8.3 | Deleting a contact from the database.

Touching the edit
icon on the action
bar displays a
Fragment for
editing that
contact’s data

a) Touch the edit icon to edit current contact b) Fragment for editing the contact

Touching the
delete icon on the
action bar displays
a dialog asking the
user to confirm the
deletion

a) Touch the delete icon to delete current contact b) Confirmation dialog for deleting contact

M08_DEIT3397_02_SE_C08.fm Page 300 Monday, July 7, 2014 9:05 AM

8.1 Introduction 301

When viewing the contact list, touching add () displays a Fragment containing
EditTexts that you can use to add the new contact’s data (Fig. 8.4). When editing an
existing contact or adding a new one, you touch the Save Contact Button to save the con-
tact’s data. Figure 8.5 shows the app running on a tablet in landscape orientation. On tab-
lets, the contact list is always displayed at the app’s left side.

Fig. 8.4 | Adding a contact to the database.

Fig. 8.5 | Address Book running in landscape on a tablet.

Touching the add
icon on the action
bar displays a
Fragment for
entering a new
contact

a) Touch the add icon to add a new contact b) Fragment for adding the contact

a) In landscape
orientation on a
phone or tablet,

the action bar
icons are displayed

with their text

M08_DEIT3397_02_SE_C08.fm Page 301 Monday, July 7, 2014 9:05 AM

302 Chapter 8 Address Book App

8.2 Test-Driving the Address Book App
Opening and Running the App
Open Eclipse and import the Address Book app project. Perform the following steps:

1. Open the Import Dialog. Select File > Import… to open the Import dialog.

2. Import the Address Book app’s project. In the Import dialog, expand the General
node and select Existing Projects into Workspace, then click Next > to proceed to
the Import Projects step. Ensure that Select root directory is selected, then click
the Browse… button. In the Browse for Folder dialog, locate the AddressBook
folder in the book’s examples folder, select it and click OK. Click Finish to import
the project into Eclipse. The project now appears in the Package Explorer win-
dow at the left side of the Eclipse window.

3. Launch the Address Book app. In Eclipse, right click the AddressBook project in
the Package Explorer window, then select Run As > Android Application from the
menu that appears.

Adding a Contact
The first time you run the app, the contact list will be empty and will display No Contacts
in the center of the screen. Touch on the action bar to display the screen for adding a
new entry. After adding the contact’s information, touch the Save Contact Button to store
the contact in the database and return to the app’s main screen. If you choose not to add
the contact, you can simply touch the device’s back button to return to the main screen.
Add more contacts if you wish. On a tablet, after adding a contact, the new contact’s de-
tails will be displayed to the right of the contact list, as in Fig. 8.5.

Viewing a Contact
Touch the name of the contact you just added in the contacts list to view that contact’s
details. On a tablet, the details are displayed to the right of the contact list.

Editing a Contact
While viewing the contact’s details, touch on the action bar to display a screen of Edit-
Texts that are prepopulated with the contact’s data. Edit the data as necessary, then touch
the Save Contact Button to store the updated contact information in the database and re-
turn to the app’s main screen. On a tablet, after editing a contact, the new contact’s details
will be displayed to the right of the contact list.

Deleting a Contact
While viewing the contact’s details, touch on the action bar to delete the contact. A
dialog will be displayed asking you to confirm this action. If you do, the contact will be
removed from the database and the app will display the updated contact list.

8.3 Technologies Overview
This section presents the new technologies that we use in the Address Book app in the or-
der in which they’re encountered throughout the chapter.

M08_DEIT3397_02_SE_C08.fm Page 302 Monday, July 7, 2014 9:05 AM

8.3 Technologies Overview 303

8.3.1 Displaying Fragments with FragmentTransactions
In earlier apps that used Fragments, you declared each Fragment in an Activity’s layout
or, for a DialogFragment, called its show method to create it. The Flag Quiz app demon-
strated how to use multiple activities to host each of the app’s Fragments on a phone device.
In this app, you’ll use only one Activity to host all of the app’s Fragments. On a phone-
sized device, you’ll display one Fragment at a time. On a tablet, you’ll always display the
Fragment containing the list of contacts and display the Fragments for viewing, adding and
editing contacts as necessary at the app’s right side. You’ll use the FragmentManager and
FragmentTransactions to dynamically display Fragments. In addition, you’ll use Android’s
Fragment back stack—a data structure that stores Fragments in last-in-first-out (LIFO)
order—to provide automatic support for the Android system bar’s back button and to allow
the app to remove Fragments in the reverse order from which they were added.

8.3.2 Communicating Data Between a Fragment and a Host Activity
To communicate data between Fragments and a host Activity or the Activity’s other
Fragments, it’s considered best practice to do so through the host Activity—this makes
the Fragments more reusable, because they do not refer to one another directly. Typically,
each Fragment defines an interface of callback methods that are implemented in the host
Activity. We’ll use this technique to enable this app’s MainActivity to be notified when
the user selects a contact to display, touches an action bar item (, or), or finishes
editing an existing contact or adding a new one.

8.3.3 Method onSaveInstanceState
onSaveInstanceState is called by the system when the configuration of the device changes
during the app’s execution—for example, when the user rotates the device or slides out a key-
board on a device with a hard keyboard. This method can be used to save state information
that you’d like to restore when the app’s onCreate method is called as part of the configura-
tion change. When an app is simply placed into the background, perhaps so the user can an-
swer a phone call or when the user starts another app, the app’s GUI components will
automatically save their contents for when the app is brought back to the foreground (pro-
vided that the system does not kill the app). We use onSaveInstanceState in Fig. 8.47.

8.3.4 Defining Styles and Applying Them to GUI Components
You can define common GUI component attribute–value pairs as style resources
(Section 8.4.4). You can then apply the styles to all components that share those values
(Section 8.4.7) by using the style attribute. Any subsequent changes you make to a style
are automatically applied to all GUI components that use the style. We use this to style
the TextViews that display a contact’s information.

8.3.5 Specifying a Background for a TextView
By default TextViews do not have a border. To define one, you can specify a Drawable as
the value for the TextView’s android:background attribute. The Drawable could be an
image, but in this app you’ll define a Drawable as a shape in a resource file (Section 8.4.5).
The resource file for such a Drawable is defined in one or more of the app’s drawable fold-
ers—in this app, textview_border.xml is defined in the drawable-mdpi folder.

M08_DEIT3397_02_SE_C08.fm Page 303 Monday, July 7, 2014 9:05 AM

304 Chapter 8 Address Book App

8.3.6 Extending Class ListFragment to Create a Fragment That
Contains a ListView
When a Fragment’s primary task is to display a scrollable list of items, you can extend class
ListFragment (package android.app, Section 8.6)—this is nearly identical to extending
ListActivity, as you did in Chapter 4. A ListFragment uses a ListView as its default lay-
out. In this app, rather than an ArrayAdapter, we’ll use a CursorAdapter (package
android.widget) to display the results of a database query in the ListView.

8.3.7 Manipulating a SQLite Database
The contact information is stored in a SQLite database. According to www.sqlite.org,
SQLite is one of the world’s most widely deployed database engines. Each Fragment in this
app interacts with a SQLite database via utility class DatabaseConnector (Section 8.9). That
class uses a nested subclass of SQLiteOpenHelper (package android.database.sqlite),
which simplifies creating the database and enables you to obtain a SQLiteDatabase object
(package android.database.sqlite) for manipulating a database’s contents. Database que-
ries are performed with Structured Query Language (SQL) and query results are managed
via a Cursor (package android.database).

8.3.8 Performing Database Operations Outside the GUI Thread with
AsyncTasks
You should perform long-running operations or operations that block execution until they
complete (e.g., file and database access) outside the GUI thread. This helps maintain ap-
plication responsiveness and avoid Activity Not Responding (ANR) dialogs that appear when
Android thinks the GUI is not responsive. When we need a database operation’s results in
the GUI thread, we’ll use a subclass of AsyncTask (package android.os) to perform the
operation in one thread and receive the results in the GUI thread. The details of creating
and manipulating threads are handled for you by class AsyncTask, as are communicating
the results from the AsyncTask to the GUI thread.

8.4 Building the GUI and Resource Files
In this section, you’ll create the Address Book app’s additional Java source-code files, re-
source files and GUI layout files.

8.4.1 Creating the Project
Begin by creating a new Android project. Specify the following values in the New Android
Project dialog, then press Finish:

• Application Name: Address Book

• Project Name: AddressBook

• Package Name: com.deitel.addressbook

• Minimum Required SDK: API18: Android 4.3

• Target SDK: API19: Android 4.4

• Compile With: API19: Android 4.4

• Theme: Holo Light with Dark Action Bar

M08_DEIT3397_02_SE_C08.fm Page 304 Monday, July 7, 2014 9:05 AM

8.4 Building the GUI and Resource Files 305

In the New Android Project dialog’s second New Android Application step, leave the default
settings, and press Next >. In the Configure Launcher Icon step, select an app icon image,
then press Next >. In the Create Activity step, select Blank Activity, then press Next >. In the
Blank Activity step, leave the default settings and click Finish to create the project. Open
activity_main.xml in the Graphical Layout editor and select Nexus 4 from the screen-type
drop-down list. Once again, we’ll use this device as the basis for our design.

8.4.2 Creating the App’s Classes
This app consists of five classes:

• Class MainActivity (Section 8.5) manages the app’s fragments and coordinates
the interactions between them.

• Class ContactListFragment (Section 8.6) is a subclass of ListFragment that dis-
plays the contacts’ names and provides a menu item for adding a new contact.

• Class AddEditFragment (Section 8.7) is a subclass of Fragment that provides a
GUI for adding a new contact or editing an existing one.

• Class DetailsFragment (Section 8.8) is a subclass of Fragment that displays one
contact’s data and provides menu items for editing and deleting that contact.

• Class DatabaseConnector (Section 8.9) is a subclass of Object that manages this
app’s interactions with a SQLite database.

Class MainActivity is created by the IDE when you create your project. As you’ve done
in prior projects, you must add the other classes to the project’s com.deitel.addressbook
package in the src folder. To do so for each class, right click the package and select New >
Class, then specify the class’s name and superclass.

8.4.3 strings.xml
Figure 8.6 shows this app’s String resource names and corresponding values. Double
click strings.xml in the res/values folder to display the resource editor for creating
these String resources.

Resource name Value

no_contacts No Contacts
menuitem_add Add
menuitem_edit Edit
menuitem_delete Delete
button_save_contact Save Contact
hint_name Name (Required)
hint_email E-Mail
hint_phone Phone
hint_street Street
hint_city City

Fig. 8.6 | String resources used in the Address Book app. (Part 1 of 2.)

M08_DEIT3397_02_SE_C08.fm Page 305 Monday, July 7, 2014 9:05 AM

306 Chapter 8 Address Book App

8.4.4 styles.xml
In this section, you’ll define the styles for the DetailsFragment’s TextViews that display
a contact’s information (Section 8.4.7). Like other resources, style resources are placed in
the app’s res/values folder. When you create a project, the IDE creates a styles.xml file
containing predefined styles. Each new style you create specifies a name that’s used to ap-
ply that style to GUI components and one or more items specifying property values to ap-
ply. To create the new styles:

1. In the app’s res/values folder, open the styles.xml file and ensure that the Re-
sources tab is selected at the bottom of the editor window.

2. Click Add…, then select Style/Theme and click OK to create a new style.

3. Set the style’s Name to ContactLabelTextView and save the file.

4. With the ContactLabelTextView style selected, click Add…, then click OK to add
an Item to the style. Set the Name and Value attributes for the new Item and save
the file. Repeat this step for each Name and Value in Fig. 8.7.

hint_state State
hint_zip Zip
label_name Name:
label_email E-Mail:
label_phone Phone:
label_street Street:
label_city City:
label_state State:
label_zip Zip:
confirm_title Are You Sure?
confirm_message This will permanently delete the contact
ok OK
error_message You must enter a contact name
button_cancel Cancel
button_delete Delete

Name Value

android:layout_width wrap_content

android:layout_height wrap_content
android:layout_gravity right|center_vertical

Fig. 8.7 | ContactLabelTextView style attributes.

Resource name Value

Fig. 8.6 | String resources used in the Address Book app. (Part 2 of 2.)

M08_DEIT3397_02_SE_C08.fm Page 306 Monday, July 7, 2014 9:05 AM

8.4 Building the GUI and Resource Files 307

5. Repeat Steps 2 and 3 to create a style named ContactTextView—when you click
Add…, you’ll need to select Create a new element at the top level in Resources.
Then repeat Step 4 for each Name and Value in Fig. 8.8. When you’re done, save
and close styles.xml.

8.4.5 textview_border.xml
The style ContactTextView that you created in the preceding section defines the appear-
ance of the TextViews that are used to display a contact’s details. You specified a Drawable
(i.e., an image or graphic) named @drawable/textview_border as the value for the Text-
View’s android:background attribute. In this section, you’ll define that Drawable in the
app’s res/drawable-mdpi folder. If a Drawable is defined in only one of the project’s
drawable folders, Android will use that Drawable on all device sizes and resolutions. To
define the Drawable:

1. Right click the res/drawable-mdpi folder and select New > Android XML File.

2. Specify textview_border.xml as the File name and select shape as the root ele-
ment, then click Finish.

3. At the time of this writing, the IDE does not provide an editor for creating Draw-
ables, so enter the XML code in Fig. 8.9 into the file.

The shape element’s element’s android:shape attribute (line 3) can have the value
"rectangle" (used in this example), "oval", "line" or "ring". The corners element
(line 4) specifies the rectangle’s corner radius, which rounds the corners. The stroke ele-
ment (line 5) defines the rectangle’s line width and line color. The padding element (lines
6–7) specifies the spacing around the content in the element to which this Drawable is

Name Value

android:layout_width wrap_content

android:layout_height wrap_content

android:layout_gravity fill_horizontal

android:textSize 16sp

android:background @drawable/textview_border

Fig. 8.8 | ContactTextView style attributes.

1 <?xml version="1.0" encoding="utf-8"?>
2 <shape xmlns:android="http://schemas.android.com/apk/res/android"
3 android:shape="rectangle" >
4 <corners android:radius="5dp"/>
5 <stroke android:width="1dp" android:color="#555"/>
6 <padding android:top="10dp" android:left="10dp" android:bottom="10dp"
7 android:right="10dp"/>
8 </shape>

Fig. 8.9 | XML representation of a Drawable that’s used to place a border on a TextView.

M08_DEIT3397_02_SE_C08.fm Page 307 Monday, July 7, 2014 9:05 AM

308 Chapter 8 Address Book App

applied. You must specify the top, left, right and bottom padding amounts separately. The
complete details of defining shapes can be viewed at:

8.4.6 MainActivity’s Layout: activity_main.xml
You’ll provide two layouts for MainActivity—one for phone-sized devices in the res/
layout folder and one for tablet-sized devices in the res/layout-large folder. You’ll need
to add the layout-large folder.

Phone Layout: activity_main.xml in res/layout
For the phone layout, open activity_main.xml in the res/layout folder. Set the Frame-
Layout’s Id to @id/fragmentContainer. This FrameLayout will be used on phones to dis-
play the app’s Fragments. Set the Padding Left, Padding Right, Padding Top and Padding
Bottom properties for the FrameLayout as you did for other layouts in earlier chapters.

Tablet Layout: activity_main.xml in res/layout-large
For the tablet layout, create a new activity_main.xml layout in the res/layout-large
folder. This layout should use a horizontal LinearLayout containing a ContactListFrag-
ment and an empty FrameLayout. Use the techniques you learned in Section 5.4.9 to add
the ContactListFragment to the layout, then add the FrameLayout. Set the following
properties:

• For the LinearLayout set Weight Sum to 3—this will help allocate the horizontal
space to the ContactListFragment and FrameLayout.

• For the Fragment, set the Id to @+id/contactListFragment, the Width to 0, the
Height to match_parent, the Weight to 1 and the Right margin to @dimen/
activity_horizontal_margin.

• For the FrameLayout set the Id to @+id/rightPaneContainer, the Width to 0, the
Height to match_parent and the Weight to 2.

Setting the LinearLayout’s Weight Sum to 3, then setting the ContactListFragment’s and
FrameLayout’s Weights to 1 and 2, respectively, indicates that the ContactListFragment
should occupy one-third of the LinearLayout’s width and the FrameLayout should occu-
py the remaining two-thirds.

8.4.7 DetailsFragment’s Layout: fragment_details.xml
When the user touches a contact in the MainActivity, the app displays the DetailsFrag-
ment (Fig. 8.10). This Fragment’s layout (fragment_details.xml) consists of a Scroll-
View containing a vertical GridLayout with two columns of TextViews. A ScrollView is
a ViewGroup that can contain other Views (like a layout) and that lets users scroll through
content too large to display on the screen. We use a ScrollView here to ensure that the
user can scroll through a contact’s details if a device does not have enough vertical space
to show all the TextViews in Fig. 8.10. Follow the steps in Section 5.4.8 to create the
fragment_details.xml file, but use a ScrollView as the Root Element. After creating the
file, set the ScrollView’s Id to @+id/detailsScrollView and add a GridLayout to the
ScrollView.

http://developer.android.com/guide/topics/resources/
 drawable-resource.html#Shape

M08_DEIT3397_02_SE_C08.fm Page 308 Monday, July 7, 2014 9:05 AM

8.4 Building the GUI and Resource Files 309

GridLayout Settings
For the GridLayout, we set the Width to match_parent, Height to wrap_content, Column
Count to 2 and Use Default Margins to true. The Height value enables the parent Scroll-
View to determine the GridLayout’s actual height and decide whether to provide scrolling.
Add TextViews to the GridLayout as shown in Fig. 8.10.

Left Column TextView Settings
For each TextView in the left column set the TextView’s Id property as specified in
Fig. 8.10 and set:

• Row to a value from 0–6 depending on the row.

• Column to 0.

• Text to the appropriate String resource from strings.xml.

• Style (located in the View category) to @style/ContactLabelTextView—style re-
sources are specified using the syntax @style/styleName.

Right Column TextView Settings
For each TextView in the right column set the TextView’s Id property as specified in
Fig. 8.10 and set:

• Row to a value from 0–6 depending on the row.

• Column to 1.

• Style (located in the View category) to @style/ContactTextView.

Fig. 8.10 | DetailsFragment’s GUI components labeled with their id property values.

phoneLabelTextView

emailLabelTextView

nameLabelTextView

streetLabelTextView

cityLabelTextView

nameTextView

phoneTextView

emailTextView

streetTextView

cityTextView

stateLabelTextView

zipLabelTextView

stateTextView

zipTextView

M08_DEIT3397_02_SE_C08.fm Page 309 Monday, July 7, 2014 9:05 AM

310 Chapter 8 Address Book App

8.4.8 AddEditFragment’s Layout: fragment_add_edit.xml
When the user touches the action bar items or , the MainActivity displays the Add-
EditFragment (Fig. 8.11) with a layout (fragment_add_edit.xml) that uses a ScrollView
containing a one-column vertical GridLayout. Be sure to set the ScrollView’s Id to @+id/
addEditScrollView. If the AddEditFragment is displayed to add a new contact, the Edit-
Texts will be empty and will display hints (Fig. 8.4). Otherwise, they’ll display the contact’s
data that was passed to the AddEditFragment by the MainActivity. Each EditText specifies
the Input Type and IME Options properties. For devices that display a soft keyboard, the Input
Type specifies which keyboard to display when the user touches the corresponding EditText.
This enables us to customize the keyboard to the specific type of data the user must enter in a
given EditText. We use the IME Options property to display a Next button on the soft key-
boards for the nameEditText, emailEditText, phoneEditText, streetEditText, city-
EditText and stateEditText. When one of these has the focus, touching this Button
transfers the focus to the next EditText. If the zipEditText has the focus, you can hide the
soft keyboard by touching the keyboard’s Done Button.

GridLayout Settings
For the GridLayout, we set the Width to match_parent, Height to wrap_content, Column
Count to 1 and Use Default Margins to true. Add the components shown in Fig. 8.11.

EditText Settings
For each EditText, set the TextView’s Id property as specified in Fig. 8.11 and set:

• Width to match_parent.

• Height to wrap_content.

Fig. 8.11 | AddEditFragment’s GUI components labeled with their id property values. This
GUI’s root component is a ScrollView that contains a vertical GridLayout.

phoneEditText

emailEditText

nameEditText

cityEditText

zipEditText

saveContactButton

streetEditText

stateEditText

M08_DEIT3397_02_SE_C08.fm Page 310 Monday, July 7, 2014 9:05 AM

8.4 Building the GUI and Resource Files 311

• Hint to the appropriate String resource from strings.xml.

• IME Options to actionNext for all EditTexts except zipEditText, which should
have the value actionDone.

• Style (located in the View category) to @style/ContactLabelTextView—style re-
sources are specified using the syntax @style/styleName.

Set the EditTexts’ Input Type properties to display appropriate keyboards as follows:

• nameEditText: textPersonName|textCapWords—for entering names and starts
each word with a capital letter.

• phoneEditText: phone—for entering phone numbers.

• emailEditText: textEmailAddress—for entering an e-mail address.

• streetEditText: textPostalAddress|textCapWords—for entering an address
and starts each word with a capital letter.

• cityEditText: textPostalAddress|textCapWords.

• stateEditText: textPostalAddress|textCapCharacters—ensures that state
abbreviations are displayed in capital letters.

• zipEditText: number—for entering numbers.

8.4.9 Defining the Fragments’ Menus
You’ll now use the techniques you learned in Section 7.3.4 to create two menu resource
files in the app’s res/menu folder:

• fragment_contact_list_menu.xml defines the menu item for adding a contact.

• fragment_details_menu.xml defines the menu items for editing an existing con-
tact and deleting a contact.

When both the ContactListFragment and the DetailsFragment are displayed on a tablet
at the same time, all of the menu items are displayed.

Figures 8.12–8.13 show the settings for the menu items in the two menu resource
files. Each menu item’s Order in category values determines the order in which the menu
items appear on the action bar. For each menu item’s Icon value, we specified a standard
Android icon. You can see the complete set of standard icons in the Android SDK’s plat-
forms folder under each platform version’s data/res/drawable-hdpi folder. To refer to
these icons in your menus or layouts, prefix them with @android:drawable/icon_name.

Name Value

Id @id/action_add

Order in category 0

Title @string/menuitem_add

Icon @android:drawable/ic_menu_add

Show as action ifRoom|withText

Fig. 8.12 | Menu item for fragment_contact_list_menu.xml.

M08_DEIT3397_02_SE_C08.fm Page 311 Monday, July 7, 2014 9:05 AM

312 Chapter 8 Address Book App

8.5 MainActivity Class
Class MainActivity (Figs. 8.14–8.23) manages the app’s fragments and coordinates the
interactions between them. On phones, MainActivity displays one Fragment at a time,
starting with the ContactListFragment. On tablets, MainActivity always displays the
ContactListFragment at the left of the layout and, depending on the context, displays ei-
ther the DetailsFragment or the AddEditFragment in the right two-thirds of the layout.

MainActivity package Statement, import statements and Fields
Class MainActivity (Fig. 8.14) uses class FragmentTransaction (imported at line 6) to
add and remove the app’s Fragments. MainActivity implements three interfaces:

• ContactListFragment.ContactListFragmentListener contains callback meth-
ods that the ContactListFragment uses to tell the MainActivity when the user
selects a contact in the contact list or adds a new contact.

• DetailsFragment.DetailsFragmentListener contains callback methods that
the DetailsFragment uses to tell the MainActivity when the user deletes a con-
tact or wishes to edit an existing contact.

• AddEditFragment.AddEditFragmentListener contains callback methods that
the AddEditFragment uses to tell the MainActivity when the user finishes adding
a new contact or editing an existing one.

The constant ROW_ID (line 15) is used as a key in a key–value pair that’s passed between
the MainActivity and its Fragments. The instance variable contactListFragment (line
17) is used to tell the ContactListFragment to update the displayed list of contacts after
a contact is added or deleted.

Name Value

Edit menu item

Id @id/action_edit

Order in category 1

Title @string/menuitem_edit

Icon @android:drawable/ic_menu_edit

Show as action ifRoom|withText

Delete menu item

Id @id/action_delete

Order in category 2

Title @string/menuitem_delete

Icon @android:drawable/ic_delete

Show as action ifRoom|withText

Fig. 8.13 | Menu item for fragment_details_menu.xml.

M08_DEIT3397_02_SE_C08.fm Page 312 Monday, July 7, 2014 9:05 AM

8.5 MainActivity Class 313

MainActivity Overridden onCreate Method
Method onCreate (Fig. 8.15) inflates MainActivity’s GUI and, if the app is running on
a phone-sized device, displays a ContactListFragment. As you’ll see in Section 8.6, you
can configure a Fragment to be retained across configuration changes, such as when the
user rotates the device. If the Activity is being restored after being shut down or recreated
from a configuration change, savedInstanceState will not be null. In this case, we sim-
ply return (line 28) because the ContactListFragment already exists—on a phone, it
would have been retained and on a tablet, it’s part of the MainActivity’s layout that was
inflated in line 24.

1 // MainActivity.java
2 // Hosts Address Book app's fragments
3 package com.deitel.addressbook;
4
5 import android.app.Activity;
6
7 import android.os.Bundle;
8
9 public class MainActivity extends Activity

10
11
12
13 {
14 // keys for storing row ID in Bundle passed to a fragment
15 public static final String ROW_ID = "row_id";
16
17 ContactListFragment contactListFragment; // displays contact list
18

Fig. 8.14 | MainActivity package statement, import statements and fields.

19 // display ContactListFragment when MainActivity first loads
20 @Override
21 protected void onCreate(Bundle savedInstanceState)
22 {
23 super.onCreate(savedInstanceState);
24 setContentView(R.layout.activity_main);
25
26 // return if Activity is being restored, no need to recreate GUI
27 if (savedInstanceState != null)
28 return;
29
30 // check whether layout contains fragmentContainer (phone layout);
31 // ContactListFragment is always displayed
32 if (findViewById(R.id.fragmentContainer) != null)
33 {
34 // create ContactListFragment
35 contactListFragment = new ContactListFragment();
36

Fig. 8.15 | MainActivity overridden onCreate method. (Part 1 of 2.)

import android.app.FragmentTransaction;

implements ContactListFragment.ContactListFragmentListener,
 DetailsFragment.DetailsFragmentListener,
 AddEditFragment.AddEditFragmentListener

M08_DEIT3397_02_SE_C08.fm Page 313 Monday, July 7, 2014 9:05 AM

314 Chapter 8 Address Book App

If the R.id.fragmentContainer exists in MainActivity’s layout (line 32), then the
app is running on a phone. In this case, line 35 creates the ContactListFragment, then
lines 38–41 use a FragmentTransaction to add the ContactListFragment to the user
interface. Lines 38–39 call FragmentManager’s beginTransaction method to obtain a
FragmentTransaction. Next, line 40 uses FragmentTransaction method add to specify
that, when the FragmentTransaction completes, the ContactListFragment should be
attached to the View with the ID specified as the first argument. Finally, line 41 uses Frag-
mentTransaction method commit to finalize the transaction and display the Con-
tactListFragment.

MainActivity Overridden onResume Method
Method onResume (Fig. 8.16) determines whether contactListFragment is null—if so,
the app is running on a tablet, so lines 55–57 use the FragmentManager to get a reference
to the existing ContactListFragment in MainActivity’s layout.

MainActivity Method onContactSelected
Method onContactSelected (Fig. 8.17) from the ContactListFragment.ContactList-
FragmentListener interface is called by the ContactListFragment to notify the MainAc-
tivity when the user selects a contact to display. If the app is running on a phone (line 65),
line 66 calls method displayContact (Fig. 8.18), which replaces the ContactListFragment

37
38
39
40
41
42 }
43 }
44

45 // called when MainActivity resumes
46 @Override
47 protected void onResume()
48 {
49 super.onResume();
50
51 // if contactListFragment is null, activity running on tablet,
52 // so get reference from FragmentManager
53 if (contactListFragment == null)
54 {
55 contactListFragment =
56 (ContactListFragment) getFragmentManager().findFragmentById(
57 R.id.contactListFragment);
58 }
59 }
60

Fig. 8.16 | MainActivity overridden onResume method.

Fig. 8.15 | MainActivity overridden onCreate method. (Part 2 of 2.)

// add the fragment to the FrameLayout
FragmentTransaction transaction =
 getFragmentManager().beginTransaction();
transaction.add(R.id.fragmentContainer, contactListFragment);
transaction.commit(); // causes ContactListFragment to display

M08_DEIT3397_02_SE_C08.fm Page 314 Monday, July 7, 2014 9:05 AM

8.5 MainActivity Class 315

in the fragmentContainer (defined in Section 8.4.6) with the DetailsFragment that shows
the contact’s information. On a tablet, line 69 calls the FragmentManager’s popBackStack
method to pop (remove) the top Fragment on the back stack, then line 70 calls displayCon-
tact, which replaces the contents of the rightPaneContainer (defined in Section 8.4.6)
with the DetailsFragment that shows the contact’s information.

MainActivity Method displayContact
Method displayContact (Fig. 8.18) creates the DetailsFragment that displays the selected
contact and uses a FragmentTransaction to attach it to the GUI. You can pass arguments
to a Fragment by placing them in a Bundle of key–value pairs—we do this to pass the selected
contact’s rowID so that the DetailsFragment knows which contact to get from the database.
Line 80 creates the Bundle. Line 81 calls its putLong method to store a key–value pair con-
taining the ROW_ID (a String) as the key and the rowID (a long) as the value. Line 82 passes
the Bundle to the Fragment’s setArguments method—the Fragment can then extract the in-
formation from the Bundle (as you’ll see in Section 8.8). Lines 85–86 get a FragmentTrans-
action, then line 87 calls FragmentTransaction method replace to specify that, when the
FragmentTransaction completes, the DetailsFragment should replace the contents of the
View with the ID specified as the first argument. Line 88 calls FragmentTransaction meth-
od addToBackStack to push (add) the DetailsFragment onto the back stack. This allows the
user to touch the back button to pop the Fragment from the back stack and allows MainAc-
tivity to programmatically pop the Fragment from the back stack.

61 // display DetailsFragment for selected contact
62 @Override
63 public void onContactSelected(long rowID)
64 {
65 if (findViewById(R.id.fragmentContainer) != null) // phone
66 displayContact(rowID, R.id.fragmentContainer);
67 else // tablet
68 {
69
70 displayContact(rowID, R.id.rightPaneContainer);
71 }
72 }
73

Fig. 8.17 | MainActivity method onContactSelected.

74 // display a contact
75 private void displayContact(long rowID, int viewID)
76 {
77 DetailsFragment detailsFragment = new DetailsFragment();
78
79
80
81
82

Fig. 8.18 | MainActivity method displayContact. (Part 1 of 2.)

getFragmentManager().popBackStack(); // removes top of back stack

// specify rowID as an argument to the DetailsFragment
Bundle arguments = new Bundle();
arguments.putLong(ROW_ID, rowID);
detailsFragment.setArguments(arguments);

M08_DEIT3397_02_SE_C08.fm Page 315 Monday, July 7, 2014 9:05 AM

316 Chapter 8 Address Book App

MainActivity Method onAddContact
Method onAddContact (Fig. 8.19) from the ContactListFragment.ContactListFrag-
mentListener interface is called by the ContactListFragment to notify the MainActivity
when the user chooses to add a new contact. If the layout contains the fragmentContainer,
line 97 calls displayAddEditFragment (Fig. 8.20) to display the AddEditFragment in the
fragmentContainer; otherwise, line 99 calls displayAddEditFragment to display the
Fragment in the rightPaneContainer. The second argument is a Bundle. Specifying null
indicates that a new contact is being added.

MainActivity Method displayAddEditFragment
Method displayAddEditFragment (Fig. 8.20) receives a View’s resource ID specifying
where to attach the AddEditFragment and a Bundle of key–value pairs. If the second argu-
ment is null, a new contact is being added; otherwise, the Bundle contains the data to dis-
play in the AddEditFragment for editing. Line 105 creates the AddEditFragment. If the
Bundle argument is not null, line 108 uses it to set the Fragment’s arguments. Lines 111–
115 then create the FragmentTransaction, replace the contents of the View with the spec-
ified resource ID, add the Fragment to the back stack and commit the transaction.

83
84 // use a FragmentTransaction to display the DetailsFragment
85 FragmentTransaction transaction =
86 getFragmentManager().beginTransaction();
87
88
89 transaction.commit(); // causes DetailsFragment to display
90 }
91

92 // display the AddEditFragment to add a new contact
93 @Override
94 public void onAddContact()
95 {
96 if (findViewById(R.id.fragmentContainer) != null) // phone
97 displayAddEditFragment(R.id.fragmentContainer, null);
98 else // tablet
99 displayAddEditFragment(R.id.rightPaneContainer, null);
100 }
101

Fig. 8.19 | MainActivity method onAddContact.

102 // display fragment for adding a new or editing an existing contact
103 private void displayAddEditFragment(int viewID, Bundle arguments)
104 {
105 AddEditFragment addEditFragment = new AddEditFragment();

Fig. 8.20 | MainActivity Method displayAddEditFragment. (Part 1 of 2.)

Fig. 8.18 | MainActivity method displayContact. (Part 2 of 2.)

transaction.replace(viewID, detailsFragment);
transaction.addToBackStack(null);

M08_DEIT3397_02_SE_C08.fm Page 316 Monday, July 7, 2014 9:05 AM

8.5 MainActivity Class 317

MainActivity Method onContactDeleted
Method onContactDeleted (Fig. 8.21) from the DetailsFragment.DetailsFragmentLis-
tener interface is called by the DetailsFragment to notify the MainActivity when the user
deletes a contact. In this case, line 122 pops the DetailsFragment from the back stack. If the
app is running on a tablet, line 125 calls the contactListFragment’s updateContactList
method to reload the contacts.

MainActivity Method onEditContact
Method onEditContact (Fig. 8.22) from the DetailsFragment.DetailsFragmentListen-
er interface is called by the DetailsFragment to notify the MainActivity when the user
touches the menu item to edit a contact. The DetailsFragment passes a Bundle containing
the contact’s data so that it can be displayed in the AddEditFragment’s EditTexts for edit-
ing. If the layout contains the fragmentContainer, line 133 calls displayAddEditFragment
to display the AddEditFragment in the fragmentContainer; otherwise, line 135 calls dis-
playAddEditFragment to display the AddEditFragment in the rightPaneContainer.

106
107 if (arguments != null) // editing existing contact
108
109
110 // use a FragmentTransaction to display the AddEditFragment
111 FragmentTransaction transaction =
112 getFragmentManager().beginTransaction();
113 transaction.replace(viewID, addEditFragment);
114 transaction.addToBackStack(null);
115 transaction.commit(); // causes AddEditFragment to display
116 }
117

118 // return to contact list when displayed contact deleted
119 @Override
120 public void onContactDeleted()
121 {
122 getFragmentManager().popBackStack(); // removes top of back stack
123
124 if (findViewById(R.id.fragmentContainer) == null) // tablet
125
126 }
127

Fig. 8.21 | MainActivity method onContactDeleted.

128 // display the AddEditFragment to edit an existing contact
129 @Override
130 public void onEditContact(Bundle arguments)
131 {

Fig. 8.22 | MainActivity method onEditContact. (Part 1 of 2.)

Fig. 8.20 | MainActivity Method displayAddEditFragment. (Part 2 of 2.)

addEditFragment.setArguments(arguments);

contactListFragment.updateContactList();

M08_DEIT3397_02_SE_C08.fm Page 317 Monday, July 7, 2014 9:05 AM

318 Chapter 8 Address Book App

MainActivity Method onAddEditCompleted
Method onAddEditCompleted (Fig. 8.23) from the AddEditFragment.AddEditFragment-
Listener interface is called by the AddEditFragment to notify the MainActivity when the
user saves a new contact or saves changes to an existing one. Line 142 pops the AddEditFrag-
ment from the back stack. If the app is running on a tablet (line 144), line 146 pops the back
stack again to remove the DetailsFragment (if there is one). Then line 147 updates the con-
tact list in the ContactListFragment and line 150 displays the new or updated contact’s de-
tails in the rightPaneContainer.

8.6 ContactListFragment Class
Class ContactListFragment (Figs. 8.24–8.33) extends ListFragment to display the con-
tact list in a ListView and provides a menu item for adding a new contact.

ContactListFragment package Statement and import Statements
Figure 8.24 lists ContactListFragment’s package statement and import statements.
We’ve highlighted the imports for the new classes and interfaces.

132 if (findViewById(R.id.fragmentContainer) != null) // phone
133 displayAddEditFragment(R.id.fragmentContainer, arguments);
134 else // tablet
135 displayAddEditFragment(R.id.rightPaneContainer, arguments);
136 }
137

138 // update GUI after new contact or updated contact saved
139 @Override
140 public void onAddEditCompleted(long rowID)
141 {
142 getFragmentManager().popBackStack(); // removes top of back stack
143
144 if (findViewById(R.id.fragmentContainer) == null) // tablet
145 {
146 getFragmentManager().popBackStack(); // removes top of back stack
147
148
149 // on tablet, display contact that was just added or edited
150 displayContact(rowID, R.id.rightPaneContainer);
151 }
152 }
153 }

Fig. 8.23 | MainActivity method onAddEditCompleted.

Fig. 8.22 | MainActivity method onEditContact. (Part 2 of 2.)

contactListFragment.updateContactList(); // refresh contacts

M08_DEIT3397_02_SE_C08.fm Page 318 Monday, July 7, 2014 9:05 AM

8.6 ContactListFragment Class 319

ContactListFragmentListener Interface and ContactListFragment Instance
Variables
Figure 8.25 begins class ContactListFragment’s declaration. Lines 23–30 declare the nest-
ed interface ContactListFragmentListener, which contains the callback methods that
MainActivity implements to be notified when the user selects a contact (line 26) and when
the user touches the menu item to add a new contact (line 29). Line 32 declares instance vari-
able listener which will refer to the object (MainActivity) that implements the interface.
Instance variable contactListView (line 34) will refer to the ContactListFragment’s built-
in ListView, so we can interact with it programmatically. Instance variable contactAdapter
will refer to the CursorAdapter that populates the AddressBook’s ListView.

1 // ContactListFragment.java
2 // Displays the list of contact names
3 package com.deitel.addressbook;
4
5 import android.app.Activity;
6
7
8
9 import android.os.Bundle;

10 import android.view.Menu;
11 import android.view.MenuInflater;
12 import android.view.MenuItem;
13 import android.view.View;
14 import android.widget.AdapterView;
15 import android.widget.AdapterView.OnItemClickListener;
16
17 import android.widget.ListView;
18
19

Fig. 8.24 | ContactListFragment package statement and import statements.

20 public class ContactListFragment extends ListFragment
21 {
22 // callback methods implemented by MainActivity
23
24 {
25 // called when user selects a contact
26 public void onContactSelected(long rowID);
27
28 // called when user decides to add a contact
29 public void onAddContact();
30 }
31
32 private ContactListFragmentListener listener;
33

Fig. 8.25 | ContactListFragmentListener interface and ContactListFragment instance
variables. (Part 1 of 2.)

import android.app.ListFragment;
import android.database.Cursor;
import android.os.AsyncTask;

import android.widget.CursorAdapter;

import android.widget.SimpleCursorAdapter;

public interface ContactListFragmentListener

M08_DEIT3397_02_SE_C08.fm Page 319 Monday, July 7, 2014 9:05 AM

320 Chapter 8 Address Book App

ContactListFragment Overridden Methods onAttach and onDetach
Class ContactListFragment overrides Fragment lifecycle methods onAttach and onDe-
tach (Fig. 8.26) to set instance variable listener. In this app, listener refers to the host
Activity (line 42) when the ContactListFragment is attached and is set to null (line 50)
when the ContactListFragment is detached.

ContactListFragment Overridden Method onViewCreated
Recall that class ListFragment already contains a ListView, so we don’t need to inflate
the GUI as in previous app’s Fragments. However, class ContactListFragment has tasks
that should be performed after its default layout is inflated. For this reason, ContactList-
Fragment overrides Fragment lifecycle method onViewCreated (Fig. 8.27), which is called
after onCreateView.

34 private ListView contactListView; // the ListActivity's ListView
35
36

37 // set ContactListFragmentListener when fragment attached
38 @Override
39 public void onAttach(Activity activity)
40 {
41 super.onAttach(activity);
42
43 }
44
45 // remove ContactListFragmentListener when Fragment detached
46 @Override
47 public void onDetach()
48 {
49 super.onDetach();
50
51 }
52

Fig. 8.26 | ContactListFragment overridden methods onAttach and onDetach.

53 // called after View is created
54 @Override
55
56 {
57 super.onViewCreated(view, savedInstanceState);
58
59 setHasOptionsMenu(true); // this fragment has menu items to display
60

Fig. 8.27 | ContactListFragment overridden method onViewCreated. (Part 1 of 2.)

Fig. 8.25 | ContactListFragmentListener interface and ContactListFragment instance
variables. (Part 2 of 2.)

private CursorAdapter contactAdapter; // adapter for ListView

listener = (ContactListFragmentListener) activity;

listener = null;

public void onViewCreated(View view, Bundle savedInstanceState)

setRetainInstance(true); // save fragment across config changes

M08_DEIT3397_02_SE_C08.fm Page 320 Monday, July 7, 2014 9:05 AM

8.6 ContactListFragment Class 321

Line 58 calls Fragment method setRetainInstance with the argument true to indi-
cate that the ContactListFragment should be retained rather than recreated when the host
Activity is re-created on a configuration change (e.g., when the user rotates the device).
Line 59 indicates that the ContactListFragment has menu items that should be displayed
on the Activity’s action bar (or in its options menu). ListFragment method setEmpty-
Text (line 62) specifies the text to display ("No Contacts") when there are no items in the
ListView’s adapter.

Line 65 uses the inherited ListActivity method getListView to obtain a reference
to the built-in ListView. Line 66 sets the ListView’s OnItemClickListener to viewCon-
tactListener (Fig. 8.28), which responds when the user touches a contact in the List-
View. Line 67 calls ListView method setChoiceMode to indicate that only one item can
be selected at a time.

Configuring the CursorAdapter That Binds Database Data to the ListView
To display the Cursor’s results in a ListView we create a new CursorAdapter object (lines
70–73) which exposes the Cursor’s data in a manner that can be used by a ListView. Sim-
pleCursorAdapter is a subclass of CursorAdapter that’s designed to simplify mapping
Cursor columns directly to TextViews or ImagesViews defined in your XML layouts. To
create a SimpleCursorAdapter, you first define arrays containing the column names to
map to GUI components and the resource IDs of the GUI components that will display
the data from the named columns. Line 70 creates a String array indicating that only the
"name" column will be displayed, and line 71 creates a parallel int array containing corre-
sponding GUI components’ resource IDs. Chapter 4 showed that you can create your own
layout resources for ListView items. In this app we used a predefined Android layout re-
source named android.R.layout.simple_list_item_1—a layout that contains one
TextView with the ID android.R.id.text1. Lines 72–73 create the SimpleCursorAdapt-
er. Its constructor receives:

• the Context in which the ListView is running (i.e., MainActivity).

• the resource ID of the layout that’s used to display each item in the ListView.

61 // set text to display when there are no contacts
62
63
64 // get ListView reference and configure ListView
65 contactListView = ;
66 contactListView.setOnItemClickListener(viewContactListener);
67
68
69
70
71
72
73
74
75 }
76

Fig. 8.27 | ContactListFragment overridden method onViewCreated. (Part 2 of 2.)

setEmptyText(getResources().getString(R.string.no_contacts));

getListView()

contactListView.setChoiceMode(ListView.CHOICE_MODE_SINGLE);

// map each contact's name to a TextView in the ListView layout
String[] from = new String[] { "name" };
int[] to = new int[] { android.R.id.text1 };
contactAdapter = new SimpleCursorAdapter(getActivity(),
 android.R.layout.simple_list_item_1, null, from, to, 0);
setListAdapter(contactAdapter); // set adapter that supplies data

M08_DEIT3397_02_SE_C08.fm Page 321 Monday, July 7, 2014 9:05 AM

322 Chapter 8 Address Book App

• the Cursor that provides access to the data—we supply null for this argument
because we’ll specify the Cursor later.

• the String array containing the column names to display.

• the int array containing the corresponding GUI resource IDs.

• the last argument is typically 0.

Line 74 uses inherited ListActivity method setListAdapter to bind the ListView to
the CursorAdapter, so that the ListView can display the data.

viewContactListener That Processes ListView Item Selection Events
The viewContactListener (Fig. 8.28) notifies MainActivity when the user touches a
contact to display. Line 84 passes the argument id—the row ID of the selected con-
tact—to the listener’s onContactSelected method (Fig. 8.17).

ContactListFragment Overridden Method onResume
Fragment lifecycle method onResume (Fig. 8.29) creates and executes an AsyncTask (line
93) of type GetContactsTask (defined in Fig. 8.30) that gets the complete list of contacts
from the database and sets the contactAdapter’s Cursor for populating the ContactList-
Fragment’s ListView. AsyncTask method execute performs the task in a separate thread.
Method execute’s argument in this case indicates that the task does not receive any argu-
ments—this method can receive a variable number of arguments that are, in turn, passed
as arguments to the task’s doInBackground method. Every time line 93 executes, it creates
a new GetContactsTask object—this is required because each AsyncTask can be executed
only once.

77 // responds to the user touching a contact's name in the ListView
78 OnItemClickListener viewContactListener = new OnItemClickListener()
79 {
80 @Override
81 public void onItemClick(AdapterView<?> parent, View view,
82 int position, long id)
83 {
84
85 }
86 }; // end viewContactListener
87

Fig. 8.28 | viewContactListener that processes ListView item selection events.

88 // when fragment resumes, use a GetContactsTask to load contacts
89 @Override
90 public void onResume()
91 {
92 super.onResume();
93
94 }
95

Fig. 8.29 | ContactListFragment overridden method onResume.

listener.onContactSelected(id); // pass selection to MainActivity

new GetContactsTask().execute((Object[]) null);

M08_DEIT3397_02_SE_C08.fm Page 322 Monday, July 7, 2014 9:05 AM

8.6 ContactListFragment Class 323

GetContactsTask Subclass of AsyncTask
Nested class GetContactsTask (Fig. 8.30) extends class AsyncTask. The class defines how
to interact with the DatabaseConnector (Section 8.9) to get the names of all the contacts
and return the results to this Activity’s GUI thread for display in the ListView.
AsyncTask is a generic type that requires three type parameters:

• The variable-length parameter-list type for AsyncTask’s doInBackground method
(lines 103–108)—When you call the task’s execute method, doInBackground
performs the task in a separate thread. We specify Object as the type parameter
and pass null as the argument to the AsyncTask’s execute method, because
GetContactsTask does not require additional data to perform its task.

• The variable-length parameter-list type for the AsyncTask’s onProgressUpdate
method—This method executes in the GUI thread and is used to receive inter-
mediate updates of the specified type from a long-running task. We don’t use this
feature in this example, so we specify type Object here and ignore this type pa-
rameter.

• The type of the task’s result, which is passed to the AsyncTask’s onPostExecute
method (lines 111–116)—This method executes in the GUI thread and enables
the ContactListFragment to use the AsyncTask’s results.

A key benefit of using an AsyncTask is that it handles the details of creating threads
and executing its methods on the appropriate threads for you, so that you do not have to
interact with the threading mechanism directly.

96 // performs database query outside GUI thread
97
98 {
99 DatabaseConnector databaseConnector =
100 new DatabaseConnector(getActivity());
101
102 // open database and return Cursor for all contacts
103 @Override
104
105 {
106
107
108 }
109
110 // use the Cursor returned from the doInBackground method
111 @Override
112
113 {
114
115
116 }
117 } // end class GetContactsTask
118

Fig. 8.30 | GetContactsTask subclass of AsyncTask.

private class GetContactsTask extends AsyncTask<Object, Object, Cursor>

protected Cursor doInBackground(Object... params)

databaseConnector.open();
return databaseConnector.getAllContacts();

protected void onPostExecute(Cursor result)

contactAdapter.changeCursor(result); // set the adapter's Cursor
databaseConnector.close();

M08_DEIT3397_02_SE_C08.fm Page 323 Monday, July 7, 2014 9:05 AM

324 Chapter 8 Address Book App

Lines 99–100 create a new object of our utility class DatabaseConnector, passing the
Context (the ContactListFragment’s host Activity) as an argument to the class’s con-
structor. Method doInBackground uses databaseConnector to open the database connec-
tion and get all the contacts from the database. The Cursor returned by getAllContacts
is passed to method onPostExecute, which receives the Cursor containing the results and
passes it to the contactAdapter’s changeCursor method. This enables the ContactList-
Fragment’s ListView to populate itself with the contacts’ names.

ContactListFragment Overridden Method onStop
Fragment lifecycle method onStop (Fig. 8.31) is called after onPause when the Fragment
is no longer visible to the user. In this case, the Cursor that allows us to populate the List-
View is not needed, so line 123 calls CursorAdapter method getCursor to get the current
Cursor from the contactAdapter. Line 124 calls CursorAdapter method changeCursor
with the argument null to remove the Cursor from the CursorAdapter. Then line 127
calls Cursor method close to release resources used by the Cursor.

ContactListFragment Overridden Methods onCreateOptionsMenu and
onOptionsItemSelected
Method onCreateOptionsMenu (Fig. 8.32, lines 133–138) uses its MenuInflater argu-
ment to create the menu from fragment_contact_list_menu.xml, which contains the
definition of the add () menu item. If the user touches that MenuItem, method onOp-
tionsItemSelected (lines 141–152) calls listener’s onAddContact method to notify the
MainActivity that the user wants to add a new contact. MainActivity then displays the
AddEditFragment (Section 8.7).

119 // when fragment stops, close Cursor and remove from contactAdapter
120 @Override
121 public void onStop()
122 {
123
124
125
126 if (cursor != null)
127 // release the Cursor's resources
128
129 super.onStop();
130 }
131

Fig. 8.31 | ContactListFragment overridden method onStop.

132 // display this fragment's menu items
133 @Override
134 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater)
135 {

Fig. 8.32 | ContactListFragment overridden methods onCreateOptionsMenu and onOp-
tionsItemSelected. (Part 1 of 2.)

Cursor cursor = contactAdapter.getCursor(); // get current Cursor
contactAdapter.changeCursor(null); // adapter now has no Cursor

cursor.close();

M08_DEIT3397_02_SE_C08.fm Page 324 Monday, July 7, 2014 9:05 AM

8.7 AddEditFragment Class 325

ContactListFragment Method updateContactList
Method updateContactList (Fig. 8.33) creates and executes a GetContactsTask to up-
date the contact list.

8.7 AddEditFragment Class
The AddEditFragment (Figs. 8.34–8.40) provides the interface for adding new contacts or
editing existing ones.

AddEditFragment package Statement and import Statements
Figure 8.34 lists the package statement and import statements for class AddEditFragment.
No new classes are used in this Fragment.

136 super.onCreateOptionsMenu(menu, inflater);
137 inflater.inflate(R.menu.fragment_contact_list_menu, menu);
138 }
139
140 // handle choice from options menu
141 @Override
142 public boolean onOptionsItemSelected(MenuItem item)
143 {
144 switch (item.getItemId())
145 {
146 case R.id.action_add:
147
148 return true;
149 }
150
151 return super.onOptionsItemSelected(item); // call super's method
152 }
153

154 // update data set
155 public void updateContactList()
156 {
157 new GetContactsTask().execute((Object[]) null);
158 }
159 } // end class ContactListFragment

Fig. 8.33 | ContactListFragment method updateContactList.

1 // AddEditFragment.java
2 // Allows user to add a new contact or edit an existing one
3 package com.deitel.addressbook;
4

Fig. 8.34 | AddEditFragment package statement and import statements. (Part 1 of 2.)

Fig. 8.32 | ContactListFragment overridden methods onCreateOptionsMenu and onOp-
tionsItemSelected. (Part 2 of 2.)

listener.onAddContact();

M08_DEIT3397_02_SE_C08.fm Page 325 Monday, July 7, 2014 9:05 AM

326 Chapter 8 Address Book App

AddEditFragmentListener Interface
Figure 8.35 declares the nested interface AddEditFragmentListener containing the call-
back method onAddEditCompleted that MainActivity implements to be notified when the
user saves a new contact or saves changes to an existing one.

AddEditFragment Instance Variables
Figure 8.36 lists the class’s instance variables:

• Variable listener refers to the AddEditFragmentListener that’s notified when
the user clicks the Save Contact button.

• Variable rowID represents the current contact being manipulated if this Fragment
was displayed to allow the user to edit an existing contact.

• Variable contactInfoBundle will be null if a new contact is being added or will
refer to a Bundle of contact information if an existing contact is being edited.

• The instance variables at lines 36–42 will refer to the Fragment’s EditTexts.

5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.app.DialogFragment;
9 import android.app.Fragment;

10 import android.content.Context;
11 import android.os.AsyncTask;
12 import android.os.Bundle;
13 import android.view.LayoutInflater;
14 import android.view.View;
15 import android.view.View.OnClickListener;
16 import android.view.ViewGroup;
17 import android.view.inputmethod.InputMethodManager;
18 import android.widget.Button;
19 import android.widget.EditText;
20
21 public class AddEditFragment extends Fragment
22 {

23 // callback method implemented by MainActivity
24 public interface AddEditFragmentListener
25 {
26 // called after edit completed so contact can be redisplayed
27 public void onAddEditCompleted(long rowID);
28 }
29

Fig. 8.35 | AddEditFragmentListener interface.

Fig. 8.34 | AddEditFragment package statement and import statements. (Part 2 of 2.)

M08_DEIT3397_02_SE_C08.fm Page 326 Monday, July 7, 2014 9:05 AM

8.7 AddEditFragment Class 327

AddEditFragment Overridden Methods onAttach and onDetach
Class AddEditFragment overrides Fragment lifecycle methods onAttach and onDetach
(Fig. 8.37) to set instance variable listener to refer to the host Activity (line 49) when
the AddEditFragment is attached and to set listener to null (line 57) when the AddEdit-
Fragment is detached.

AddEditFragment Overridden Method onCreateView
In method onCreateView (Fig. 8.38), lines 70–78 inflate the GUI and get the Fragment’s
EditTexts. Next, we use Fragment method getArguments to get the Bundle of arguments
(if any). When we launch the AddEditFragment from the MainActivity, we don’t pass a
Bundle, because the user is adding a new contact’s information. In this case, getArguments
will return null. If it returns a Bundle (line 82), then the AddEditFragment was launched
from the DetailsFragment and the user chose to edit an existing contact. Lines 84–91
read the arguments out of the Bundle by calling methods getLong (line 84) and get-

30 private AddEditFragmentListener listener;
31
32 private long rowID; // database row ID of the contact
33 private Bundle contactInfoBundle; // arguments for editing a contact
34
35 // EditTexts for contact information
36 private EditText nameEditText;
37 private EditText phoneEditText;
38 private EditText emailEditText;
39 private EditText streetEditText;
40 private EditText cityEditText;
41 private EditText stateEditText;
42 private EditText zipEditText;
43

Fig. 8.36 | AddEditFragment instance variables.

44 // set AddEditFragmentListener when Fragment attached
45 @Override
46 public void onAttach(Activity activity)
47 {
48 super.onAttach(activity);
49 listener = (AddEditFragmentListener) activity;
50 }
51
52 // remove AddEditFragmentListener when Fragment detached
53 @Override
54 public void onDetach()
55 {
56 super.onDetach();
57 listener = null;
58 }
59

Fig. 8.37 | AddEditFragment overridden methods onAttach and onDetach.

M08_DEIT3397_02_SE_C08.fm Page 327 Monday, July 7, 2014 9:05 AM

328 Chapter 8 Address Book App

String, and the String data is displayed in the EditTexts for editing. Lines 95–97 register
a listener (Fig. 8.39) for the Save Contact Button.

OnClickListener to Process Save Contact Button Events
When the user touches the Save Contact Button, the saveContactButtonClicked listener
(Fig. 8.39) executes. To save a contact, the user must enter at least the contact’s name.
Method onClick ensures that the length of the name is greater than 0 characters (line 107)
and, if so, creates and executes an AsyncTask (to perform the save operation). Method
doInBackground (lines 113–118) calls saveContact (Fig. 8.40) to save the contact into

60 // called when Fragment's view needs to be created
61 @Override
62 public View onCreateView(LayoutInflater inflater, ViewGroup container,
63 Bundle savedInstanceState)
64 {
65 super.onCreateView(inflater, container, savedInstanceState);
66 setRetainInstance(true); // save fragment across config changes
67 setHasOptionsMenu(true); // fragment has menu items to display
68
69 // inflate GUI and get references to EditTexts
70 View view =
71 inflater.inflate(R.layout.fragment_add_edit, container, false);
72 nameEditText = (EditText) view.findViewById(R.id.nameEditText);
73 phoneEditText = (EditText) view.findViewById(R.id.phoneEditText);
74 emailEditText = (EditText) view.findViewById(R.id.emailEditText);
75 streetEditText = (EditText) view.findViewById(R.id.streetEditText);
76 cityEditText = (EditText) view.findViewById(R.id.cityEditText);
77 stateEditText = (EditText) view.findViewById(R.id.stateEditText);
78 zipEditText = (EditText) view.findViewById(R.id.zipEditText);
79
80
81
82 if (contactInfoBundle != null)
83 {
84 rowID = contactInfoBundle.getLong(MainActivity.ROW_ID);
85 nameEditText.setText(contactInfoBundle.getString("name"));
86 phoneEditText.setText(contactInfoBundle.getString("phone"));
87 emailEditText.setText(contactInfoBundle.getString("email"));
88 streetEditText.setText(contactInfoBundle.getString("street"));
89 cityEditText.setText(contactInfoBundle.getString("city"));
90 stateEditText.setText(contactInfoBundle.getString("state"));
91 zipEditText.setText(contactInfoBundle.getString("zip"));
92 }
93
94 // set Save Contact Button's event listener
95 Button saveContactButton =
96 (Button) view.findViewById(R.id.saveContactButton);
97 saveContactButton.setOnClickListener(saveContactButtonClicked);
98 return view;
99 }
100

Fig. 8.38 | AddEditFragment overridden method onCreateView.

contactInfoBundle = getArguments(); // null if creating new contact

M08_DEIT3397_02_SE_C08.fm Page 328 Monday, July 7, 2014 9:05 AM

8.7 AddEditFragment Class 329

the database. Method onPostExecute (lines 120–131) programmatically hides the key-
board (lines 124–128), then notifies MainActivity that a contact was saved (line 130). If
the nameEditText is empty, lines 139–153 display a DialogFragment telling the user that
a contact name must be provided to save the contact.

101 // responds to event generated when user saves a contact
102 OnClickListener saveContactButtonClicked = new OnClickListener()
103 {
104 @Override
105 public void onClick(View v)
106 {
107 if ()
108 {
109 // AsyncTask to save contact, then notify listener
110 AsyncTask<Object, Object, Object> saveContactTask =
111 new AsyncTask<Object, Object, Object>()
112 {
113 @Override
114 protected Object doInBackground(Object... params)
115 {
116
117 return null;
118 }
119
120 @Override
121 protected void onPostExecute(Object result)
122 {
123 // hide soft keyboard
124 InputMethodManager imm = (InputMethodManager)
125 getActivity().getSystemService(
126 Context.INPUT_METHOD_SERVICE);
127 imm.hideSoftInputFromWindow(
128 getView().getWindowToken(), 0);
129
130
131 }
132 }; // end AsyncTask
133
134 // save the contact to the database using a separate thread
135 saveContactTask.execute((Object[]) null);
136 }
137 else // required contact name is blank, so display error dialog
138 {
139 DialogFragment errorSaving =
140 new DialogFragment()
141 {
142 @Override
143 public Dialog onCreateDialog(Bundle savedInstanceState)
144 {
145 AlertDialog.Builder builder =
146 new AlertDialog.Builder(getActivity());
147 builder.setMessage(R.string.error_message);

Fig. 8.39 | OnClickListener to process Save Contact Button events. (Part 1 of 2.)

nameEditText.getText().toString().trim().length() != 0

saveContact(); // save contact to the database

listener.onAddEditCompleted(rowID);

M08_DEIT3397_02_SE_C08.fm Page 329 Monday, July 7, 2014 9:05 AM

330 Chapter 8 Address Book App

AddEditFragment Method saveContact
The saveContact method (Fig. 8.40) saves the information in this Fragment’s EditTexts.
First, lines 162–163 create the DatabaseConnector object, then we check whether the
contactInfoBundle is null. If so, this is a new contact and lines 168–175 get the Strings
from the EditTexts and pass them to the DatabaseConnector object’s insertContact
method to create the new contact. If the Bundle is not null, an existing contact is being
updated. In this case, we get the Strings from the EditTexts and pass them to the
DatabaseConnector object’s updateContact method, using the existing rowID to indicate
which record to update. DatabaseConnector methods insertContact and updateCon-
tact each handle opening and closing the database.

148 builder.setPositiveButton(R.string.ok, null);
149 return builder.create();
150 }
151 };
152
153 errorSaving.show(getFragmentManager(), "error saving contact");
154 }
155 } // end method onClick
156 }; // end OnClickListener saveContactButtonClicked
157

158 // saves contact information to the database
159 private void saveContact()
160 {
161 // get DatabaseConnector to interact with the SQLite database
162 DatabaseConnector databaseConnector =
163 new DatabaseConnector(getActivity());
164
165 if (contactInfoBundle == null)
166 {
167 // insert the contact information into the database
168 rowID = databaseConnector. (
169 nameEditText.getText().toString(),
170 phoneEditText.getText().toString(),
171 emailEditText.getText().toString(),
172 streetEditText.getText().toString(),
173 cityEditText.getText().toString(),
174 stateEditText.getText().toString(),
175 zipEditText.getText().toString());
176 }
177 else
178 {
179 databaseConnector. (rowID,
180 nameEditText.getText().toString(),
181 phoneEditText.getText().toString(),
182 emailEditText.getText().toString(),

Fig. 8.40 | AddEditFragment method saveContact. (Part 1 of 2.)

Fig. 8.39 | OnClickListener to process Save Contact Button events. (Part 2 of 2.)

insertContact

updateContact

M08_DEIT3397_02_SE_C08.fm Page 330 Monday, July 7, 2014 9:05 AM

8.8 DetailsFragment Class 331

8.8 DetailsFragment Class
The DetailsFragment (Figs. 8.41–8.50) displays one contact’s information and provides
menu items that enable the user to edit or delete that contact.

DetailsFragment package Statement and import Statements
Figure 8.41 lists the package statement, the import statements and the beginning of class
ContactListFragment’s declaration. There are no new classes and interfaces used in this
class.

DetailsFragmentListener Interface
Figure 8.42 declares the nested interface DetailsFragmentListener containing the call-
back methods that MainActivity implements to be notified when the user deletes a contact
(line 28) and when the user touches the edit menu item to edit a contact (line 31).

183 streetEditText.getText().toString(),
184 cityEditText.getText().toString(),
185 stateEditText.getText().toString(),
186 zipEditText.getText().toString());
187 }
188 } // end method saveContact
189 } // end class AddEditFragment

1 // DetailsFragment.java
2 // Displays one contact's details
3 package com.deitel.addressbook;
4
5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.app.DialogFragment;
9 import android.app.Fragment;

10 import android.content.DialogInterface;
11 import android.database.Cursor;
12 import android.os.AsyncTask;
13 import android.os.Bundle;
14 import android.view.LayoutInflater;
15 import android.view.Menu;
16 import android.view.MenuInflater;
17 import android.view.MenuItem;
18 import android.view.View;
19 import android.view.ViewGroup;
20 import android.widget.TextView;
21
22 public class DetailsFragment extends Fragment
23 {

Fig. 8.41 | DetailsFragment package statement and import statements.

Fig. 8.40 | AddEditFragment method saveContact. (Part 2 of 2.)

M08_DEIT3397_02_SE_C08.fm Page 331 Monday, July 7, 2014 9:05 AM

332 Chapter 8 Address Book App

DetailsFragment Instance Variables
Figure 8.43 shows the class’s instance variables. Line 34 declares variable listener which
will refer to the object (MainActivity) that implements the DetailsFragmentListener in-
terface. Variable rowID represents the current contact’s unique row ID in the database. The
TextView instance variables (lines 37–43) are used to display the contact’s data on the
screen.

DetailsFragment Overridden Methods onAttach and onDetach
Class DetailsFragment overrides Fragment lifecycle methods onAttach and onDetach
(Fig. 8.44) to set instance variable listener when the DetailsFragment is attached and
detached, respectively.

24 // callback methods implemented by MainActivity
25 public interface DetailsFragmentListener
26 {
27 // called when a contact is deleted
28 public void onContactDeleted();
29
30 // called to pass Bundle of contact's info for editing
31 public void onEditContact(Bundle arguments);
32 }
33

Fig. 8.42 | DetailsFragmentListener interface.

34 private DetailsFragmentListener listener;
35
36 private long rowID = -1; // selected contact's rowID
37 private TextView nameTextView; // displays contact's name
38 private TextView phoneTextView; // displays contact's phone
39 private TextView emailTextView; // displays contact's email
40 private TextView streetTextView; // displays contact's street
41 private TextView cityTextView; // displays contact's city
42 private TextView stateTextView; // displays contact's state
43 private TextView zipTextView; // displays contact's zip
44

Fig. 8.43 | DetailsFragment instance variables.

45 // set DetailsFragmentListener when fragment attached
46 @Override
47 public void onAttach(Activity activity)
48 {
49 super.onAttach(activity);
50 listener = (DetailsFragmentListener) activity;
51 }
52

Fig. 8.44 | DetailsFragment overridden methods onAttach and onDetach. (Part 1 of 2.)

M08_DEIT3397_02_SE_C08.fm Page 332 Monday, July 7, 2014 9:05 AM

8.8 DetailsFragment Class 333

DetailsFragment Overridden Method onCreateView
The onCreateView method (Fig. 8.45) obtains the selected contact’s row ID (lines
70–79). If the Fragment is being restored, we load the rowID from the savedInstanceS-
tate bundle; otherwise, we get it from the Fragment’s Bundle of arguments. Lines 82–93
inflate the GUI and get references to the TextViews.

53 // remove DetailsFragmentListener when fragment detached
54 @Override
55 public void onDetach()
56 {
57 super.onDetach();
58 listener = null;
59 }
60

61 // called when DetailsFragmentListener's view needs to be created
62 @Override
63 public View onCreateView(LayoutInflater inflater, ViewGroup container,
64 Bundle savedInstanceState)
65 {
66 super.onCreateView(inflater, container, savedInstanceState);
67 setRetainInstance(true); // save fragment across config changes
68
69 // if DetailsFragment is being restored, get saved row ID
70 if (savedInstanceState != null)
71 rowID = savedInstanceState.getLong(MainActivity.ROW_ID);
72 else
73 {
74 // get Bundle of arguments then extract the contact's row ID
75 Bundle arguments = getArguments();
76
77 if (arguments != null)
78 rowID = arguments.getLong(MainActivity.ROW_ID);
79 }
80
81 // inflate DetailsFragment's layout
82 View view =
83 inflater.inflate(R.layout.fragment_details, container, false);
84 setHasOptionsMenu(true); // this fragment has menu items to display
85
86 // get the EditTexts
87 nameTextView = (TextView) view.findViewById(R.id.nameTextView);
88 phoneTextView = (TextView) view.findViewById(R.id.phoneTextView);
89 emailTextView = (TextView) view.findViewById(R.id.emailTextView);
90 streetTextView = (TextView) view.findViewById(R.id.streetTextView);
91 cityTextView = (TextView) view.findViewById(R.id.cityTextView);
92 stateTextView = (TextView) view.findViewById(R.id.stateTextView);
93 zipTextView = (TextView) view.findViewById(R.id.zipTextView);

Fig. 8.45 | DetailsFragment overridden method onCreateView. (Part 1 of 2.)

Fig. 8.44 | DetailsFragment overridden methods onAttach and onDetach. (Part 2 of 2.)

M08_DEIT3397_02_SE_C08.fm Page 333 Monday, July 7, 2014 9:05 AM

334 Chapter 8 Address Book App

DetailsFragment Overridden Method onResume
Fragment lifecycle method onResume (Fig. 8.46) creates and executes an AsyncTask (line
102) of type LoadContactTask (defined in Fig. 8.49) that gets the specified contact from
the database and displays its data. Method execute’s argument in this case is the rowID of
the contact to load. Every time line 102 executes, it creates a new LoadContactTask ob-
ject—again, this is required because each AsyncTask can be executed only once.

DetailsFragment Overridden Method onSaveInstanceState
Fragment method onSaveInstanceState (Fig. 8.47) saves the selected contact’s rowID
when the configuration of the device changes during the app’s execution—for example,
when the user rotates the device or slides out a keyboard on a device with a hard keyboard.
The state of the GUI components is saved for you automatically, but any other items that
you wish to restore during a configuration change should be stored in the Bundle that on-
SaveInstanceState receives.

DetailsFragment Overridden Methods onCreateOptionsMenu and
onOptionsItemSelected
The DetailsFragment’s menu provides options for editing the current contact and for de-
leting it. Method onCreateOptionsMenu (Fig. 8.48, lines 114–119) inflates the menu re-
source file fragment_details_menu.xml. Method onOptionsItemSelected (lines 122–

94 return view;
95 }
96

97 // called when the DetailsFragment resumes
98 @Override
99 public void onResume()
100 {
101 super.onResume();
102
103 }
104

Fig. 8.46 | DetailsFragment overridden method onResume.

105 // save currently displayed contact's row ID
106 @Override
107
108 {
109 super.onSaveInstanceState(outState);
110 outState.putLong(MainActivity.ROW_ID, rowID);
111 }
112

Fig. 8.47 | DetailsFragment overridden method onSaveInstanceState.

Fig. 8.45 | DetailsFragment overridden method onCreateView. (Part 2 of 2.)

new LoadContactTask().execute(rowID); // load contact at rowID

public void onSaveInstanceState(Bundle outState)

M08_DEIT3397_02_SE_C08.fm Page 334 Monday, July 7, 2014 9:05 AM

8.8 DetailsFragment Class 335

146) uses the selected MenuItem’s resource ID to determine which one was selected. If the
user selected the menu item with ID R.id.action_edit, lines 129–137 create a Bundle
containing the contact’s data, then line 138 passes the Bundle to the DetailsFragment-
Listener for use in the AddEditFragment. If the user selected the menu item with ID
R.id.action_delete, line 141 calls method deleteContact (Fig. 8.50).

LoadContactTask Subclass of AsyncTask
Nested class LoadContactTask (Fig. 8.49) extends class AsyncTask and defines how to in-
teract with the database to get one contact’s information for display. In this case the three
generic type parameters are:

• Long for the variable-length argument list passed to AsyncTask’s doInBackground
method. This will contain the row ID needed to locate one contact.

113 // display this fragment's menu items
114 @Override
115 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater)
116 {
117 super.onCreateOptionsMenu(menu, inflater);
118 inflater.inflate(R.menu.fragment_details_menu, menu);
119 }
120
121 // handle menu item selections
122 @Override
123 public boolean onOptionsItemSelected(MenuItem item)
124 {
125 switch (item.getItemId())
126 {
127 case R.id.action_edit:
128 // create Bundle containing contact data to edit
129 Bundle arguments = new Bundle();
130 arguments.putLong(MainActivity.ROW_ID, rowID);
131 arguments.putCharSequence("name", nameTextView.getText());
132 arguments.putCharSequence("phone", phoneTextView.getText());
133 arguments.putCharSequence("email", emailTextView.getText());
134 arguments.putCharSequence("street", streetTextView.getText());
135 arguments.putCharSequence("city", cityTextView.getText());
136 arguments.putCharSequence("state", stateTextView.getText());
137 arguments.putCharSequence("zip", zipTextView.getText());
138
139 return true;
140 case R.id.action_delete:
141
142 return true;
143 }
144
145 return super.onOptionsItemSelected(item);
146 }
147

Fig. 8.48 | DetailsFragment overridden methods onCreateOptionsMenu and
onOptionsItemSelected.

listener.onEditContact(arguments); // pass Bundle to listener

deleteContact();

M08_DEIT3397_02_SE_C08.fm Page 335 Monday, July 7, 2014 9:05 AM

336 Chapter 8 Address Book App

• Object for the variable-length argument list passed to AsyncTask’s onProgress-
Update method, which we don’t use in this example.

• Cursor for the type of the task’s result, which is passed to the AsyncTask’s on-
PostExecute method.

148 // performs database query outside GUI thread
149 private class LoadContactTask extends AsyncTask<Long, Object, Cursor>
150 {
151 DatabaseConnector databaseConnector =
152 new DatabaseConnector(getActivity());
153
154 // open database & get Cursor representing specified contact's data
155 @Override
156 protected Cursor doInBackground(Long... params)
157 {
158
159 return databaseConnector.getOneContact(params[0]);
160 }
161
162 // use the Cursor returned from the doInBackground method
163 @Override
164 protected void onPostExecute(Cursor result)
165 {
166 super.onPostExecute(result);
167
168
169 // get the column index for each data item
170 int nameIndex = ;
171 int phoneIndex = result.getColumnIndex("phone");
172 int emailIndex = result.getColumnIndex("email");
173 int streetIndex = result.getColumnIndex("street");
174 int cityIndex = result.getColumnIndex("city");
175 int stateIndex = result.getColumnIndex("state");
176 int zipIndex = result.getColumnIndex("zip");
177
178 // fill TextViews with the retrieved data
179 nameTextView.setText();
180 phoneTextView.setText(result.getString(phoneIndex));
181 emailTextView.setText(result.getString(emailIndex));
182 streetTextView.setText(result.getString(streetIndex));
183 cityTextView.setText(result.getString(cityIndex));
184 stateTextView.setText(result.getString(stateIndex));
185 zipTextView.setText(result.getString(zipIndex));
186
187
188
189 } // end method onPostExecute
190 } // end class LoadContactTask
191

Fig. 8.49 | LoadContactTask subclass of AsyncTask.

databaseConnector.open();

result.moveToFirst(); // move to the first item

result.getColumnIndex("name")

result.getString(nameIndex)

result.close(); // close the result cursor
databaseConnector.close(); // close database connection

M08_DEIT3397_02_SE_C08.fm Page 336 Monday, July 7, 2014 9:05 AM

8.8 DetailsFragment Class 337

Lines 151–152 create a new object of our DatabaseConnector class (Section 8.9).
Method doInBackground (lines 155–160) opens the connection to the database and calls
the DatabaseConnector’s getOneContact method, which queries the database to get the
contact with the specified rowID that was passed as the only argument to this AsyncTask’s
execute method. In doInBackground, the rowID is stored in params[0].

The resulting Cursor is passed to method onPostExecute (lines 163–189). The
Cursor is positioned before the first row of the result set. In this case, the result set will con-
tain only one record, so Cursor method moveToFirst (line 167) can be used to move the
Cursor to the first row in the result set. [Note: It’s considered good practice to ensure that
Cursor method moveToFirst returns true before attempting to get data from the Cursor.
In this app, there will always be a row in the Cursor.]

We use Cursor’s getColumnIndex method (lines 170–176) to get the column indices
for the columns in the database’s contacts table. (We hard coded the column names in
this app, but these could be implemented as String constants as we did for ROW_ID in class
MainActivity in Fig. 8.14.) This method returns -1 if the column is not in the query
result. Class Cursor also provides method getColumnIndexOrThrow if you prefer to get an
exception when the specified column name does not exist. Lines 179–185 use Cursor’s
getString method to retrieve the String values from the Cursor’s columns, then display
these values in the corresponding TextViews. Lines 187–188 close the Cursor and the con-
nection to the database, as they’re no longer needed. It’s good practice to release resources
like database connections when they are not being used so that other activities can use the
resources.

Method deleteContact and DialogFragment confirmDelete
Method deleteContact (Fig. 8.50, lines 193–197) displays a DialogFragment (lines
200–252) asking the user to confirm that the currently displayed contact should be delet-
ed. If so, the DialogFragment uses an AsyncTask to delete the contact from the database.
If the user clicks the Delete Button in the dialog, lines 222–223 create a new Database-
Connector. Lines 226–241 create an AsyncTask that, when executed (line 244), passes a
Long value representing the contact’s row ID to the doInBackground, which then deletes
the contact. Line 232 calls the DatabaseConnector’s deleteContact method to perform
the actual deletion. When the doInBackground completes execution, line 239 calls the
listener’s onContactDeleted method so that MainActivity can remove the Details-
Fragment from the screen.

192 // delete a contact
193 private void deleteContact()
194 {
195 // use FragmentManager to display the confirmDelete DialogFragment
196 confirmDelete.show(getFragmentManager(), "confirm delete");
197 }
198
199 // DialogFragment to confirm deletion of contact
200 private DialogFragment confirmDelete =
201 new DialogFragment()
202 {

Fig. 8.50 | Method deleteContact and DialogFragment confirmDelete. (Part 1 of 2.)

M08_DEIT3397_02_SE_C08.fm Page 337 Monday, July 7, 2014 9:05 AM

338 Chapter 8 Address Book App

203 // create an AlertDialog and return it
204 @Override
205 public Dialog onCreateDialog(Bundle bundle)
206 {
207 // create a new AlertDialog Builder
208 AlertDialog.Builder builder =
209 new AlertDialog.Builder(getActivity());
210
211 builder.setTitle(R.string.confirm_title);
212 builder.setMessage(R.string.confirm_message);
213
214 // provide an OK button that simply dismisses the dialog
215 builder.setPositiveButton(R.string.button_delete,
216 new DialogInterface.OnClickListener()
217 {
218 @Override
219 public void onClick(
220 DialogInterface dialog, int button)
221 {
222 final DatabaseConnector databaseConnector =
223 new DatabaseConnector(getActivity());
224
225 // AsyncTask deletes contact and notifies listener
226 AsyncTask<Long, Object, Object> deleteTask =
227 new AsyncTask<Long, Object, Object>()
228 {
229 @Override
230 protected Object doInBackground(Long... params)
231 {
232
233 return null;
234 }
235
236 @Override
237 protected void onPostExecute(Object result)
238 {
239
240 }
241 }; // end new AsyncTask
242
243 // execute the AsyncTask to delete contact at rowID
244
245 } // end method onClick
246 } // end anonymous inner class
247); // end call to method setPositiveButton
248
249 builder.setNegativeButton(R.string.button_cancel, null);
250 return builder.create(); // return the AlertDialog
251 }
252 }; // end DialogFragment anonymous inner class
253 } // end class DetailsFragment

Fig. 8.50 | Method deleteContact and DialogFragment confirmDelete. (Part 2 of 2.)

databaseConnector.deleteContact(params[0]);

listener.onContactDeleted();

deleteTask.execute(new Long[] { rowID });

M08_DEIT3397_02_SE_C08.fm Page 338 Monday, July 7, 2014 9:05 AM

8.9 DatabaseConnector Utility Class 339

8.9 DatabaseConnector Utility Class
The DatabaseConnector utility class (Figs. 8.51–8.58) manages this app’s interactions
with SQLite for creating and manipulating the UserContacts database, which contains
one table named contacts.

package Statement, import Statements and Fields
Figure 8.51 lists class DatabaseConnector’s package statement, import statements and
fields. We’ve highlighted the import statements for the new classes and interfaces dis-
cussed in Section 8.3. The String constant DATABASE_NAME (line 16) specifies the name of
the database that will be created or opened. Database names must be unique within a specific
app but need not be unique across apps. A SQLiteDatabase object (line 18) provides read/
write access to a SQLite database. The DatabaseOpenHelper (line 19) is a private nested
class that extends abstract class SQLiteOpenHelper—such a class is used to manage creat-
ing, opening and upgrading databases (perhaps to modify a database’s structure). We dis-
cuss SQLiteOpenHelper in more detail in Fig. 8.58.

DatabaseConnector Constructor and Methods open and close
DatabaseConnection’s constructor (Fig. 8.52, lines 22–27) creates a new object of class
DatabaseOpenHelper (Fig. 8.58), which will be used to open or create the database. We
discuss the details of the DatabaseOpenHelper constructor in Fig. 8.58. The open method
(lines 30–34) attempts to establish a connection to the database and throws a SQLExcep-
tion if the connection attempt fails. Method getWritableDatabase (line 33), which is in-
herited from SQLiteOpenHelper, returns a SQLiteDatabase object. If the database has not
yet been created, this method will create it; otherwise, the method will open it. Once the
database is opened successfully, it will be cached by the operating system to improve the

1 // DatabaseConnector.java
2 // Provides easy connection and creation of UserContacts database.
3 package com.deitel.addressbook;
4
5
6 import android.content.Context;
7
8
9

10
11
12
13 public class DatabaseConnector
14 {
15 // database name
16 private static final String DATABASE_NAME = "UserContacts";
17
18
19 private DatabaseOpenHelper databaseOpenHelper; // creates the database
20

Fig. 8.51 | DatabaseConnector class’s package statement, import statements and instance
variables.

import android.content.ContentValues;

import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase.CursorFactory;

private SQLiteDatabase database; // for interacting with the database

M08_DEIT3397_02_SE_C08.fm Page 339 Monday, July 7, 2014 9:05 AM

340 Chapter 8 Address Book App

performance of future database interactions. The close method (lines 37–41) closes the
database connection by calling the inherited SQLiteOpenHelper method close.

DatabaseConnector Method insertContact
Method insertContact (Fig. 8.53) inserts a new contact with the given information into
the database. We first put each piece of contact information into a new ContentValues
object (lines 47–54), which maintains a map of key–value pairs—the database’s column
names are the keys. Lines 56–58 open the database, insert the new contact and close the
database. SQLiteDatabase’s insert method (line 57) inserts the values from the given
ContentValues into the table specified as the first argument—the "contacts" table in this
case. The second parameter of this method, which is not used in this app, is named null-
ColumnHack and is needed because SQLite does not support inserting a completely empty row
into a table—this would be the equivalent of passing an empty ContentValues object to
insert. Instead of making it illegal to pass an empty ContentValues to the method, the
nullColumnHack parameter is used to identify a column that accepts NULL values.

21 // public constructor for DatabaseConnector
22 public DatabaseConnector(Context context)
23 {
24 // create a new DatabaseOpenHelper
25
26
27 }
28
29 // open the database connection
30 public void open() throws SQLException
31 {
32 // create or open a database for reading/writing
33 database = databaseOpenHelper.getWritableDatabase();
34 }
35
36 // close the database connection
37 public void close()
38 {
39 if (database != null)
40
41 }
42

Fig. 8.52 | DatabaseConnector constructor and methods open and close.

43 // inserts a new contact in the database
44 public long insertContact(String name, String phone, String email,
45 String street, String city, String state, String zip)
46 {
47
48
49 newContact.put("phone", phone);

Fig. 8.53 | DatabaseConnector method insertContact. (Part 1 of 2.)

databaseOpenHelper =
 new DatabaseOpenHelper(context, DATABASE_NAME, null, 1);

database.close(); // close the database connection

ContentValues newContact = new ContentValues();
newContact.put("name", name);

M08_DEIT3397_02_SE_C08.fm Page 340 Monday, July 7, 2014 9:05 AM

8.9 DatabaseConnector Utility Class 341

DatabaseConnector Method updateContact
Method updateContact (Fig. 8.54) is similar to method insertContact, except that it
calls SQLiteDatabase’s update method (line 76) to update an existing contact. The up-
date method’s third argument represents a SQL WHERE clause (without the keyword
WHERE) that specifies which record(s) to update. In this case, we use the record’s row ID to
update a specific contact.

Method getAllContacts
Method getAllContacts (Fig. 8.55) uses SqLiteDatabase’s query method (lines 83–84)
to retrieve a Cursor that provides access to the IDs and names of all the contacts in the
database. The arguments are:

• the name of the table to query.

• a String array of the column names to return (the _id and name columns here)—
null returns all columns in the table, which is generally a poor programming

50 newContact.put("email", email);
51 newContact.put("street", street);
52 newContact.put("city", city);
53 newContact.put("state", state);
54 newContact.put("zip", zip);
55
56 open(); // open the database
57
58 close(); // close the database
59 return rowID;
60 } // end method insertContact
61

62 // updates an existing contact in the database
63 public void updateContact(long id, String name, String phone,
64 String email, String street, String city, String state, String zip)
65 {
66 ContentValues editContact = new ContentValues();
67 editContact.put("name", name);
68 editContact.put("phone", phone);
69 editContact.put("email", email);
70 editContact.put("street", street);
71 editContact.put("city", city);
72 editContact.put("state", state);
73 editContact.put("zip", zip);
74
75 open(); // open the database
76
77 close(); // close the database
78 }
79

Fig. 8.54 | DatabaseConnector method updateContact.

Fig. 8.53 | DatabaseConnector method insertContact. (Part 2 of 2.)

long rowID = database.insert("contacts", null, newContact);

database.update("contacts", editContact, "_id=" + id, null);

M08_DEIT3397_02_SE_C08.fm Page 341 Monday, July 7, 2014 9:05 AM

342 Chapter 8 Address Book App

practice, because to conserve memory, processor time and battery power, you
should obtain only the data you need.

• a SQL WHERE clause (without the keyword WHERE), or null to return all rows.

• a String array of arguments to be substituted into the WHERE clause wherever ? is
used as a placeholder for an argument value, or null if there are no arguments in
the WHERE clause.

• a SQL GROUP BY clause (without the keywords GROUP BY), or null if you don’t
want to group the results.

• a SQL HAVING clause (without the keyword HAVING) to specify which groups from
the GROUP BY clause to include in the results—null is required if the GROUP BY
clause is null.

• a SQL ORDER BY clause (without the keywords ORDER BY) to specify the order of
the results, or null if you don’t wish to specify the order.

The Cursor returned by method query contains all the table rows that match the method’s
arguments—the so-called result set. The Cursor is positioned before the first row of the re-
sult set—Cursor’s various move methods can be used to move the Cursor through the re-
sult set for processing.

Method getOneContact
Method getOneContact (Fig. 8.56) also uses SqLiteDatabase’s query method to query
the database. In this case, we retrieve all the columns in the database for the contact with
the specified ID.

Method deleteContact
Method deleteContact (Fig. 8.57) uses SqLiteDatabase’s delete method (line 98) to
delete a contact from the database. In this case, we retrieve all the columns in the database

80 // return a Cursor with all contact names in the database
81 public Cursor getAllContacts()
82 {
83
84
85 }
86

Fig. 8.55 | DatabaseConnector method getAllContacts.

87 // return a Cursor containing specified contact's information
88 public Cursor getOneContact(long id)
89 {
90
91
92 }
93

Fig. 8.56 | DatabaseConnector method getOneContact.

return database.query("contacts", new String[] {"_id",
 null, null, null, null, "name");

return database.query(
 "contacts", null, "_id=" + id, null, null, null, null);

M08_DEIT3397_02_SE_C08.fm Page 342 Monday, July 7, 2014 9:05 AM

8.9 DatabaseConnector Utility Class 343

for the contact with the specified ID. The three arguments are the database table from
which to delete the record, the WHERE clause (without the keyword WHERE) and, if the WHERE
clause has arguments, a String array of values to substitute into the WHERE clause (null in
our case).

private Nested Class DatabaseOpenHelper That Extends SQLiteOpenHelper
The private nested class DatabaseOpenHelper (Fig. 8.58) extends abstract class SQLite-
OpenHelper, which helps apps create databases and manage version changes. The con-
structor (lines 105–109) simply calls the superclass constructor, which requires four
arguments:

• the Context in which the database is being created or opened,

• the database name—this can be null if you wish to use an in-memory database,

• the CursorFactory to use—null indicates that you wish to use the default
SQLite CursorFactory (typically for most apps) and

• the database version number (starting from 1).

You must override this class’s abstract methods onCreate and onUpgrade. If the data-
base does not yet exist, the DatabaseOpenHelper’s onCreate method will be called to
create it. If you supply a newer version number than the database version currently stored
on the device, the DatabaseOpenHelper’s onUpgrade method will be called to upgrade the
database to the new version (perhaps to add tables or to add columns to an existing table).

94 // delete the contact specified by the given String name
95 public void deleteContact(long id)
96 {
97 open(); // open the database
98
99 close(); // close the database
100 }
101

Fig. 8.57 | DatabaseConnector method deleteContact.

102 private class DatabaseOpenHelper extends SQLiteOpenHelper
103 {
104 // constructor
105 public DatabaseOpenHelper(Context context, String name,
106 CursorFactory factory, int version)
107 {
108
109 }
110
111 // creates the contacts table when the database is created
112 @Override
113
114 {

Fig. 8.58 | SQLiteOpenHelper class DatabaseOpenHelper. (Part 1 of 2.)

database.delete("contacts", "_id=" + id, null);

super(context, name, factory, version);

public void onCreate(SQLiteDatabase db)

M08_DEIT3397_02_SE_C08.fm Page 343 Monday, July 7, 2014 9:05 AM

344 Chapter 8 Address Book App

The onCreate method (lines 112–122) specifies the table to create with the SQL
CREATE TABLE command, which is defined as a String (lines 116–119). In this case, the
contacts table contains an integer primary key field (_id) that’s auto-incremented, and text
fields for all the other columns. Line 121 uses SQLiteDatabase’s execSQL method to exe-
cute the CREATE TABLE command. Since we don’t need to upgrade the database, we simply
override method onUpgrade with an empty body. Class SQLiteOpenHelper also provides
the onDowngrade method that can be used to downgrade a database when the currently
stored version has a higher version number than the one requested in the call to class
SQLiteOpenHelper’s constructor. Downgrading might be used to revert the database back
to a prior version with fewer columns in a table or fewer tables in the database—perhaps
to fix a bug in the app.

All the SQLiteDatabase methods we used in class DatabaseConnector have corre-
sponding methods which perform the same operations but throw exceptions on failure, as
opposed to simply returning -1 (e.g., insertOrThrow vs. insert). These methods are
interchangeable, allowing you to decide how to deal with database read and write errors.

8.10 Wrap-Up
In this chapter, you created an Address Book app that enables users to add, view, edit and
delete contact information that’s stored in a SQLite database. You defined common GUI
component attribute–value pairs as XML style resources, then applied the styles to all
components that share those values by using the components’ style attribute. You added
a border to a TextView by specifying a Drawable as the value for the TextView’s an-
droid:background attribute and you created a custom Drawable using an XML represen-
tation of a shape. You also used Android standard icons to enhance the visual appearance
of the app’s menu items.

When an Fragment’s primary task is to display a scrollable list of items, you learned that
you can extend class ListFragment to create a Fragment that displays a ListView in its
default layout. You used this to display the contacts stored in the app’s database. You bound
data to the ListView via a CursorAdapter that displayed the results of a database query.

115 // query to create a new table named contacts
116 String createQuery = "CREATE TABLE contacts" +
117 "(_id integer primary key autoincrement," +
118 "name TEXT, phone TEXT, email TEXT, " +
119 "street TEXT, city TEXT, state TEXT, zip TEXT);";
120
121
122 }
123
124 @Override
125
126
127 {
128 }
129 } // end class DatabaseOpenHelper
130 } // end class DatabaseConnector

Fig. 8.58 | SQLiteOpenHelper class DatabaseOpenHelper. (Part 2 of 2.)

db.execSQL(createQuery); // execute query to create the database

public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion)

M08_DEIT3397_02_SE_C08.fm Page 344 Monday, July 7, 2014 9:05 AM

8.10 Wrap-Up 345

In this app’s Activity, you used FragmentTransactions to add Fragments to and
replace Fragments in the GUI dynamically. You also used the Fragment back stack to sup-
port the back button for returning to a previously displayed Fragment and to allow the
app’s Activity to programmatically return to previous Fragments.

We demonstrated how to communicate data between Fragments and a host Activity
or the Activity’s other Fragments via interfaces of callback methods that are implemented
by the host Activity. You also used Bundles to pass arguments to Fragments.

You used a subclass of SQLiteOpenHelper to simplify creating the database and to
obtain a SQLiteDatabase object for manipulating a database’s contents. You processed
query results via a Cursor. You used subclasses of AsyncTask to perform database tasks
outside the GUI thread and return results to the GUI thread. This allowed you to take
advantage of Android’s threading capabilities without directly creating and manipulating
threads.

In Chapter 9, we discuss the business side of Android app development. You’ll see
how to prepare your app for submission to Google Play, including making icons. We’ll
discuss how to test your apps on devices and publish them on Google Play. We discuss the
characteristics of great apps and the Android design guidelines to follow. We provide tips
for pricing and marketing your app. We also review the benefits of offering your app for
free to drive sales of other products, such as a more feature-rich version of the app or pre-
mium content. We show how to use Google Play to track app sales, payments and more.

Self-Review Exercises
8.1 Fill in the blanks in each of the following statements:

a) method is called by the system when the configuration of the device changes
during the app’s execution.

b) To get a database operation’s results in the GUI thread, you use a(n) (pack-
age android.os) to perform the operation in one thread and receive the results in the
GUI thread.

c) Fragment method returns the Bundle of arguments to the Fragment.
d) The Cursor returned by method query contains all the table rows that match the meth-

od’s arguments—the so-called .

8.2 State whether each of the following is true or false. If false, explain why.
a) It’s good practice to release resources like database connections when they are not being

used so that other activities can use the resources.
b) It’s considered good practice to ensure that Cursor method moveToFirst returns false

before attempting to get data from the Cursor.
c) It’s good practice to perform long-running operations or operations that block execu-

tion until they complete (e.g., file and database access) in the GUI thread.
d) SimpleCursorAdapter is a subclass of CursorAdapter that’s designed to simplify mapping

Cursor columns directly to TextViews or ImagesViews defined in your XML layouts.
e) A key benefit of using an SyncTask is that it handles the details of creating threads and

executing its methods on the appropriate threads for you, so that you do not have to
interact with the threading mechanism directly.

M08_DEIT3397_02_SE_C08.fm Page 345 Friday, June 20, 2014 4:00 PM

346 Chapter 8 Address Book App

Answers to Self-Review Exercises
8.1 a) onSaveInstanceState. b) AsynkTask. c) getArguments. d) result set

8.2 a) True. b) False. It’s considered good practice to ensure that Cursor method moveToFirst
returns true before attempting to get data from the Cursor. c) False. It’s good practice to perform
long-running operations or operations that block execution until they complete (e.g., file and data-
base access) outside the GUI thread. d) True. e) False. A key benefit of using an AsyncTask is that it
handles the details of creating threads and executing its methods on the appropriate threads for you,
so that you do not have to interact with the threading mechanism directly.

Exercises
8.3 (Flag Quiz App Modification) Revise the Flag Quiz app to use one Activity, dynamic Frag-
ments and FragmentTransactions as you did in the Address Book app.

8.4 (Coin Collection App) Using the techniques you learned in this chapter, create an app that
allows you to enter information about your coin collection. Provide fields for the currency value,
country, year, and any other fields you’d like to track. The app should provide similar activities to
the Address Book app for viewing the list of coins (in alphabetical order of their country), adding
and/or updating the information for a coin and viewing the details of a coin.

8.5 (Recipe App) Using the techniques you learned in this chapter, create a cooking recipe app.
Provide fields for the recipe name, category (e.g., appetizer, entree, desert, salad, side dish), a list of
the ingredients and instructions for preparing the dish. The app should provide similar activities to
the Address Book app for viewing the list of recipes (in alphabetical order), adding and/or updating
a recipe and viewing the details of a recipe.

8.6 (Favorite Twitter Searches App Enhancement) Using the techniques you learned in this chap-
ter, modify the Favorite Twitter Searches app so that it loads and saves the SharedPreferences in a
separate thread of execution.

8.7 (Grocery Shop App) Create an app that allows the user to enter, edit and save a list of gro-
ceries. Include a favorites feature that allows the user to easily add additional groceries. Include an
optional feature to input a price for each grocery item and a quantity so that the user can track the
total cost of all items on the list.

8.8 (Expense Tracker App) Create an app that allows the user to keep track of personal expenses.
Provide categories for classifying each expense (e.g., monthly expenses, travel, entertainment, necessi-
ties). Provide an option for tagging recurring expenses that automatically adds the expense to a calen-
dar at the proper frequency (daily, weekly, monthly or yearly). Optional: Investigate Android’s status-
bar notifications mechanism at developer.android.com/guide/topics/ui/notifiers/index.html.
Provide notifications to remind the user when a bill is due.

8.9 (Cooking with Healthier Ingredients App) Obesity in the United States is increasing at an
alarming rate. Check the map from the Centers for Disease Control and Prevention (CDC) at
www.cdc.gov/obesity/data/adult.html, which shows obesity trends in the United States over the
last 20 years. As obesity increases, so do occurrences of related problems (e.g., heart disease, high
blood pressure, high cholesterol, type 2 diabetes). Create an app that helps users choose healthier
ingredients when cooking, and helps those allergic to certain foods (e.g., nuts, gluten) find substi-
tutes. The app should allow the user to enter a recipe, then should suggest healthier replacements
for some of the ingredients. For simplicity, your app should assume the recipe has no abbreviations
for measures such as teaspoons, cups, and tablespoons, and uses numerical digits for quantities (e.g.,
1 egg, 2 cups) rather than spelling them out (one egg, two cups). Some common substitutions are
shown in Fig. 8.59. Your app should display a warning such as, “Always consult your physician be-
fore making significant changes to your diet.”

M08_DEIT3397_02_SE_C08.fm Page 346 Monday, July 7, 2014 9:05 AM

 Exercises 347

The app should take into consideration that replacements are not always one-for-one. For
example, if a cake recipe calls for three eggs, it might reasonably use six egg whites instead. Conver-
sion data for measurements and substitutes can be obtained at websites such as:

http://chinesefood.about.com/od/recipeconversionfaqs/f/usmetricrecipes.htm
http://www.pioneerthinking.com/eggsub.html
http://www.gourmetsleuth.com/conversions.htm

Your app should consider the user’s health concerns, such as high cholesterol, high blood pressure,
weight loss, gluten allergy, and so on. For high cholesterol, the app should suggest substitutes for
eggs and dairy products; if the user wishes to lose weight, low-calorie substitutes for ingredients
such as sugar should be suggested.

8.10 (Crossword Puzzle Generator App) Most people have worked a crossword puzzle, but few
have ever attempted to generate one. Create a personal crossword generator app that allows the user
to enter words and corresponding hints. Once the user completes this task, generate a crossword
puzzle using the supplied words. Display the corresponding hints when the user touches the first
square in a word. If the square represents the beginning of both a horizontal and vertical word, show
both hints.

Ingredient Substitution

1 cup sour cream 1 cup yogurt

1 cup milk 1/2 cup evaporated milk and 1/2 cup water

1 teaspoon lemon juice 1/2 teaspoon vinegar

1 cup sugar 1/2 cup honey, 1 cup molasses
or 1/4 cup agave nectar

1 cup butter 1 cup margarine or yogurt

1 cup flour 1 cup rye or rice flour

1 cup mayonnaise 1 cup cottage cheese
or 1/8 cup mayonnaise and 7/8 cup yogurt

1 egg 2 tablespoons cornstarch, arrowroot flour
or potato starch or 2 egg whites
or 1/2 large banana (mashed)

1 cup milk 1 cup soy milk
1/4 cup oil 1/4 cup applesauce

white bread whole-grain bread

1 cup sour cream 1 cup yogurt

Fig. 8.59 | Common ingredient substitutions.

M08_DEIT3397_02_SE_C08.fm Page 347 Monday, July 7, 2014 9:05 AM

9 Google Play and App
Business Issues

O b j e c t i v e s
In this chapter you’ll be

introduced to:

■ Preparing your apps for
publication.

■ Pricing your apps and the
benefits of free vs. paid apps.

■ Monetizing your apps with
in-app advertising.

■ Selling virtual goods using in-
app billing.

■ Registering for Google Play.

■ Setting up a Google Wallet
merchant account.

■ Uploading your apps to
Google Play.

■ Launching the Play Store
from within an app.

■ Other Android app
marketplaces.

■ Other popular mobile app
platforms to which you can
port your apps to broaden
your market.

■ Marketing your apps.

M09_DEIT3397_02_SE_C09.fm Page 348 Tuesday, July 8, 2014 8:31 AM

9.1 Introduction 349

9.1 Introduction
In Chapters 2–8, we developed a variety of complete working Android apps. Once you’ve
developed and tested your own apps, both in the emulator and on Android devices, the next
step is to submit them to Google Play—and/or other app marketplaces—for distribution to
a worldwide audience. In this chapter, you’ll learn how to register for Google Play and set up
a Google Wallet account so that you can sell your apps. You’ll learn how to prepare your apps
for publication and how to upload them to Google Play. In a few cases, we’ll refer you to
Android documentation instead of showing the steps in the book, because the steps are likely
to change. We’ll tell you about additional Android app marketplaces where you can distrib-
ute your apps. We’ll discuss whether you should offer your apps for free or for a fee, and men-
tion key resources for monetizing apps such as in-app advertising and selling virtual goods.
We’ll provide resources for marketing your apps, and mention other app platforms to which
you may port your Android apps to broaden your marketplace.

9.2 Preparing Your Apps for Publication
The Preparing for Release section in the Dev Guide (http://developer.android.com/
tools/publishing/preparing.html) lists items to consider before publishing your app
on Google Play, including:

• Testing your app on Android devices

• Including an End User License Agreement with your app (optional)

• Adding an icon and label to the app’s manifest

• Versioning your app (e.g., 1.0, 1.1, 2.0, 2.3, 3.0)

• Getting a cryptographic key for digitally signing your app

• Compiling your app

9.1 Introduction
9.2 Preparing Your Apps for Publication

9.2.1 Testing Your App
9.2.2 End User License Agreement
9.2.3 Icons and Labels
9.2.4 Versioning Your App
9.2.5 Licensing to Control Access to Paid

Apps
9.2.6 Obfuscating Your Code
9.2.7 Getting a Private Key for Digitally

Signing Your App
9.2.8 Screenshots
9.2.9 Promotional App Video

9.3 Pricing Your App: Free or Fee
9.3.1 Paid Apps
9.3.2 Free Apps

9.4 Monetizing Apps with In-App
Advertising

9.5 Monetizing Apps: Using In-App
Billing to Sell Virtual Goods

9.6 Registering at Google Play
9.7 Setting Up a Google Wallet Merchant

Account
9.8 Uploading Your Apps to Google Play
9.9 Launching the Play Store from

Within Your App
9.10 Managing Your Apps in Google Play
9.11 Other Android App Marketplaces
9.12 Other Popular Mobile App Platforms
9.13 Marketing Your Apps
9.14 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

M09_DEIT3397_02_SE_C09.fm Page 349 Monday, July 7, 2014 9:06 AM

350 Chapter 9 Google Play and App Business Issues

You should also read the Launch Checklist (http://developer.android.com/distribute/
googleplay/publish/preparing.html) and the Tablet App Quality Checklist (http://
developer.android.com/distribute/googleplay/quality/tablet.html) before pub-
lishing your app.

9.2.1 Testing Your App
Before submitting your app to Google Play, test it thoroughly on a variety of devices. Al-
though the app might work perfectly using the emulator on your computer, problems
could arise when running it on particular Android devices. The Google Play Developer
Console now provides support for alpha and beta testing apps with groups of people
through Google+. For more information, visit:

9.2.2 End User License Agreement
You have the option to include an End User License Agreement (EULA) with your app.
An EULA is an agreement through which you license your software to the user. It typically
stipulates terms of use, limitations on redistribution and reverse engineering, product lia-
bility, compliance with applicable laws and more. You might want to consult an attorney
when drafting an EULA for your app. To view a sample EULA, see

9.2.3 Icons and Labels
Design an icon for your app and provide a text label (a name) that will appear in Google
Play and on the user’s device. The icon could be your company logo, an image from the
app or a custom image. The Android Asset Studio provides a tool for creating app icons:

Create a version of your icon for each of these screen densities:

• xx-high (XXHDPI): 144 x 144 pixels

• x-high (XHDPI): 96 x 96 pixels

• high (HDPI): 72 x 72 pixels

• medium (MDPI): 48 x 48 pixels

You’ll also need a high-resolution icon for use in Google Play. This icon should be:

• 512 x 512 pixels

• 32-bit PNG

• 1 MB maximum

Since the icon is the most important brand asset, having one that’s high quality is
important. Consider hiring an experienced graphic designer to help you create a compel-
ling, professional icon. Figure 9.1 lists several design firms that offer free, professionally
designed icons and paid custom icon design services. Once you’ve created the icon and

https://play.google.com/apps/publish/

http://www.rocketlawyer.com/document/end-user-license-agreement.rl

http://android-ui-utils.googlecode.com/hg/asset-studio/dist/
index.html

M09_DEIT3397_02_SE_C09.fm Page 350 Monday, July 7, 2014 9:06 AM

9.2 Preparing Your Apps for Publication 351

label, you’ll need to specify them in the app’s AndroidManifest.xml file by setting the
android:icon and android:label attributes of the application element.

9.2.4 Versioning Your App
It’s important to include a version name (shown to the users) and a version code (an integer
version number used internally by Google Play) for your app, and to consider your strategy
for numbering updates. For example, the first version name of your app might be 1.0, mi-
nor updates might be 1.1 and 1.2, and the next major update might be 2.0. The version
code is an integer that typically starts at 1 and is incremented by 1 for each new version of
your app that you post. For additional guidelines, see Versioning Your Applications at

9.2.5 Licensing to Control Access to Paid Apps
The Google Play licensing service allows you to create licensing policies to control access
to your paid apps. For example, you might use a licensing policy to limit how many simul-
taneous device installs are allowed. To learn more about the licensing service, visit

9.2.6 Obfuscating Your Code
You should “obfuscate” any apps you upload to Google Play to discourage reverse engi-
neering of your code and further protect your apps. The free ProGuard tool—which runs
when you build your app in release mode—shrinks the size of your .apk file (the Android
app package file that contains your app for installation) and optimizes and obfuscates the
code “by removing unused code and renaming classes, fields, and methods with semanti-
cally obscure names.”1 To learn how to set up and use the ProGuard tool, go to

Company URL Services

glyphlab http://www.glyphlab.com/

icon_design/
Custom icon design and some free
downloadable icons.

Androidicons http://www.androidicons.com Designs custom icons, sells a set of
200 icons for a flat fee and has
some free downloadable icons.

Iconiza http://www.iconiza.com Designs custom icons for a flat fee
and sells stock icons.

Aha-Soft http://www.aha-soft.com/

icon-design.htm
Designs custom icons for a flat fee.

Rosetta® http://icondesign.rosetta.com/ Designs custom icons for a fee.

Elance® http://www.elance.com Search for freelance icon designers.

Fig. 9.1 | Custom app icon design firms.

http://developer.android.com/tools/publishing/versioning.html

http://developer.android.com/google/play/licensing/index.html

http://developer.android.com/tools/help/proguard.html

1. http://developer.android.com/tools/help/proguard.html#enabling.

M09_DEIT3397_02_SE_C09.fm Page 351 Monday, July 7, 2014 9:06 AM

352 Chapter 9 Google Play and App Business Issues

For additional information about protecting your apps from piracy using code obfus-
cation, visit

9.2.7 Getting a Private Key for Digitally Signing Your App
Before uploading your app to a device, Google Play or other app marketplaces, you must
digitally sign the .apk file using a digital certificate that identifies you as the author of the
app. A digital certificate includes your name or company name, contact information, etc.
It can be self-signed using a private key (i.e., a secure password used to encrypt the certifi-
cate); you do not need to purchase a certificate from a third-party certificate authority
(though it’s an option). Eclipse automatically digitally signs your app when you execute it
in an emulator or on a device for debugging purposes. That digital certificate is not valid
for use with Google Play, and it expires 365 days after it’s created. For detailed instructions
on digitally signing your apps, see Signing Your Applications at:

9.2.8 Screenshots
Take at least two screenshots of your app (you may upload a maximum of eight screenshots
each for a smartphone, a 7" tablet and a 10" tablet) that will be included with your app
description in Google Play (Fig. 9.2). These provide a preview of your app, since users
can’t test the app before downloading it (although they may return an app for a refund
within 15 minutes after purchasing and downloading it). Choose attractive screenshots
that show the app’s functionality.

The Dalvik Debug Monitor Service (DDMS), which is installed with the ADT
Plugin for Eclipse and helps you debug your apps running on actual devices, also enables
you to capture screenshots on your device. To do so, perform the following steps:

1. Run the app on your device as described at the end of Section 1.9.

2. In Eclipse, select Window > Open Perspective > DDMS, which allows you to use
the DDMS tools.

3. In the Devices window (Fig. 9.3), select the device from which you’d like to ob-
tain a screen capture.

http://www.techrepublic.com/blog/app-builder/
 protect-your-android-apps-with-obfuscation/1724

http://developer.android.com/tools/publishing/app-signing.html

Specification Description

Size Minimum dimension of 320 pixels and maximum dimension of
3840 pixels (the maximum dimension may not be more than twice
the length of the minimum).

Format 24-bit PNG or JPEG format with no alpha (transparency) effects.

Image Full bleed to the edge with no borders.

Fig. 9.2 | Screenshot specifications.

M09_DEIT3397_02_SE_C09.fm Page 352 Monday, July 7, 2014 9:06 AM

9.2 Preparing Your Apps for Publication 353

4. Click the Screen Capture button to display the Device Screen Capture window
(Fig. 9.4).

5. After you’ve ensured that the screen is showing what you’d like to capture, click
the Save button to save the image.

6. If you wish to change what’s on your device’s screen before saving the image,
make the change on the device, then press the Refresh button in the Device
Screen Capture window to recapture the device’s screen.

9.2.9 Promotional App Video
When you upload your app to Google Play, you’ll have the option to include a URL for a
short promotional video on YouTube. Figure 9.5 lists several examples. Some videos show
a person holding a device and interacting with the app. Other videos use screen captures.
Figure 9.6 lists several video creation tools and services (some free, some paid).

Fig. 9.3 | Devices window in the DDMS perspective.

Fig. 9.4 | Device Screen Capture window showing a capture of the Tip Calculator app
from Chapter 3.

Screen Capture button

M09_DEIT3397_02_SE_C09.fm Page 353 Monday, July 7, 2014 9:06 AM

354 Chapter 9 Google Play and App Business Issues

To upload your video, create an account or sign into your existing YouTube account.
Click Upload at the top-right of the page. Click Select files to upload to choose a video
from your computer or simply drag and drop the video file onto the web page.

9.3 Pricing Your App: Free or Fee
You set the prices for your apps that are distributed through Google Play. Many developers
offer their apps for free as a marketing, publicity and branding tool, earning revenue
through increased sales of products and services, sales of more feature-rich versions of the
same apps and sales of additional content through the apps using in-app purchase or in-app
advertising. Figure 9.7 lists ways to monetize your apps.

App URL

Temple Run®: Oz http://www.youtube.com/watch?v=QM9sT1ydtj0

GT Racing: Motor Academy http://www.youtube.com/watch?v=2Z9OPICdgoA

Beach Buggy Blitz™ http://www.youtube.com/watch?v=YqDczawTsYw

Real Estate and Homes by Trulia® http://www.youtube.com/watch?v=rLn697AszGs

Zappos.com® http://www.youtube.com/watch?v=U-oNyK9kl_Q

Megopolis International http://www.youtube.com/watch?v=JrqeEJ1xzCY

Fig. 9.5 | Examples of promotional videos for apps in Google Play.

Tools and services URL

Animoto http://animoto.com

Apptamin http://www.apptamin.com

Movie Maker for
Microsoft Windows

http://windows.microsoft.com/en-us/windows-live/

movie-maker

CamStudio™ http://camstudio.org

Jing http://www.techsmith.com/jing.html

Camtasia Studio® http://www.techsmith.com/camtasia.html

TurboDemo™ http://www.turbodemo.com/eng/index.php

Fig. 9.6 | Tools and services for creating promotional videos.

Ways to monetize an app

• Sell the app in Google Play.

• Sell the app in other Android app marketplaces.

Fig. 9.7 | Ways to monetize an app. (Part 1 of 2.)

M09_DEIT3397_02_SE_C09.fm Page 354 Monday, July 7, 2014 9:06 AM

9.3 Pricing Your App: Free or Fee 355

9.3.1 Paid Apps
The average price for apps varies widely by category. For example, according to the app
discovery site AppBrain (http://www.appbrain.com), the average price for puzzle game
apps is $1.54 and for business apps is $6.47.2 Although these prices may seem low, keep
in mind that successful apps could sell tens of thousands, hundreds of thousands or even
millions of copies.

When setting a price for your app, start by researching your competition. How much
do they charge? Do their apps have similar functionality? Is yours more feature-rich? Will
offering your app at a lower price than the competition attract users? Is your goal to recoup
development costs and generate additional revenue?

If you change your strategy, you can eventually offer your paid app for free perman-
tently. However it’s not currently possible to change your free apps to paid.

Financial transactions for paid apps in Google Play are handled by Google Wallet
(http://google.com/wallet), though customers of some mobile carriers (such as AT&T,
Sprint and T-Mobile) can opt to use carrier billing to charge paid apps to their wireless
bill. Earnings are paid to Google Wallet merchants monthly.3 You’re responsible for
paying taxes on the revenue you earn through Google Play.

9.3.2 Free Apps
Approximately 80% of apps on Google Play are free, and they comprise the vast majority
of downloads.4 Given that users are more likely to download an app if it’s free, consider
offering a free “lite” version of your app to encourage users to try it. For example, if your
app is a game, you might offer a free lite version with just the first few levels. When the
user has finished playing the free levels, the app would offer an option to buy through
Google Play your more robust app with numerous game levels. Or, your app would dis-
play a message that the user can purchase additional levels from within the app for a more
seamless upgrade (see Section 9.5). According to a recent study by AdMob, upgrading from
the “lite” version is the number-one reason why users purchase a paid app.5

• Sell paid upgrades.
• Sell virtual goods (Section 9.5).
• Sell an app to a company that brands it as their own.
• Use mobile advertising services for in-app ads (Section 9.4).
• Sell in-app advertising space directly to your customers.
• Use it to drive sales of a more feature-rich version of the app.

2. http://www.appbrain.com/stats/android-market-app-categories.
3. http://support.google.com/googleplay/android-developer/answer/

137997?hl=en&ref_topic=15867.
4. http://www.gartner.com/newsroom/id/2592315.
5. http://metrics.admob.com/wp-content/uploads/2009/08/AdMob-Mobile-Metrics-July-

09.pdf.

Ways to monetize an app

Fig. 9.7 | Ways to monetize an app. (Part 2 of 2.)

M09_DEIT3397_02_SE_C09.fm Page 355 Monday, July 7, 2014 9:06 AM

356 Chapter 9 Google Play and App Business Issues

Many companies use free apps to build brand awareness and drive sales of other prod-
ucts and services (Fig. 9.8).

9.4 Monetizing Apps with In-App Advertising
Many developers offer free apps monetized with in-app advertising—often banner ads
similar to those you find on websites. Mobile advertising networks such as AdMob
(http://www.admob.com/) and Google AdSense for Mobile (http://www.google.com/
mobileads/publisher_home.html) aggregate advertisers for you and serve relevant ads to
your app (see Section 9.13). You earn advertising revenue based on the number of click-
throughs. The top 100 free apps might earn a few hundred dollars to a few thousand dol-
lars per day. In-app advertising does not generate significant revenue for most apps, so if
your goal is to recoup development costs and generate profits, you should consider charg-
ing a fee for your app.

Free app Functionality

Amazon® Mobile Browse and purchase items on Amazon.

Bank of America Locate ATMs and bank branches in your area, check balances
and pay bills.

Best Buy® Browse and purchase items.

CNN Get the latest world news, receive breaking news alerts and
watch live video.

Epicurious Recipe View thousands of recipes from several Condé Nast magazines,
including Gourmet and Bon Appetit.

ESPN® ScoreCenter Set up personalized scoreboards to track your favorite college
and professional sports teams.

NFL Mobile Get the latest NFL news and updates, live programming, NFL
Replay and more.

UPS® Mobile Track shipments, find drop-off locations, get estimated ship-
ping costs and more.

NYTimes Read articles from the New York Times, free of charge.

Pocket Agent™ State Farm Insurance’s app enables you contact an agent, file
claims, find local repair centers, check your State Farm bank
and mutual fund accounts and more.

Progressive® Insurance Report a claim and submit photos from the scene of a car acci-
dent, find a local agent, get car safety information when you’re
shopping for a new car and more.

USA Today® Read articles from USA Today and get the latest sports scores.

Wells Fargo® Mobile Locate ATMs and bank branches in your area, check balances,
make transfers and pay bills.

Women’s Health
Workouts Lite

View numerous workouts from one of the leading women’s
magazines.

Fig. 9.8 | Companies using free Android apps to build brand awareness.

M09_DEIT3397_02_SE_C09.fm Page 356 Monday, July 7, 2014 9:06 AM

9.5 Monetizing Apps: Using In-App Billing to Sell Virtual Goods 357

9.5 Monetizing Apps: Using In-App Billing to Sell
Virtual Goods
Google Play’s in-app billing service (http://developer.android.com/google/play/
billing/index.html) enables you to sell virtual goods (e.g., digital content) through apps
on devices running Android 2.3 or higher (Fig. 9.9). According to Google, apps that use
in-app billing earn profoundly more revenue than paid apps alone. Of the 24 top-grossing
apps on Google Play, 23 use in-app billing.6 The in-app billing service is available only for
apps purchased through Google Play; it may not be used in apps sold through third-party
app stores. To use in-app billing, you’ll need a Google Play publisher account (see
Section 9.6) and a Google Wallet merchant account (see Section 9.7). Google pays you
70% of the revenue for all in-app purchases made through your apps.

Selling virtual goods can generate higher revenue per user than in-app advertising.7 A
few apps that have been particularly successful selling virtual goods include Angry Birds,
DragonVale, Zynga Poker, Bejeweled Blitz, NYTimes and Candy Crush Saga. Virtual
goods are particularly popular in mobile games.

To implement in-app billing, follow the steps at

For additional information about in-app billing, including subscriptions, sample
apps, security best practices, testing and more, visit http://developer.android.com/
google/play/billing/billing_overview.html. You can also take the free Selling In-app
Products training class at

In-App Purchase for Apps Sold Through Other App Marketplaces
If you choose to sell your apps through other marketplaces (see Section 9.11), several third-
party mobile payment providers can enable you to build in-app purchase into your apps using

6. http://android-developers.blogspot.com/2012/05/in-app-subscriptions-in-google-
play.html.

Virtual goods

Magazine e-subscriptions Localized guides Avatars

Virtual apparel Additional game levels Game scenery

Add-on features Ringtones Icons

E-cards E-gifts Virtual currency

Wallpapers Images Virtual pets

Audios Videos E-books and more.

Fig. 9.9 | Virtual goods.

7. http://www.businessinsider.com/its-morning-in-venture-capital-2012-
5?utm_source=readme&utm_medium=rightrail&utm_term=&utm_content=6&utm_campaign=
recirc.

http://developer.android.com/google/play/billing/
billing_integrate.html

http://developer.android.com/training/in-app-billing/index.html

M09_DEIT3397_02_SE_C09.fm Page 357 Monday, July 7, 2014 9:06 AM

358 Chapter 9 Google Play and App Business Issues

APIs from mobile payment providers (Fig. 9.10)—you cannot use Google Play’s in-app bill-
ing. Start by building the additional locked functionality (e.g., game levels, avatars) into your
app. When the user opts to make a purchase, the in-app purchasing tool handles the financial
transaction and returns a message to the app verifying payment. The app then unlocks the
additional functionality. Mobile carriers collect between 25% and 45% of the price.

9.6 Registering at Google Play
To publish your apps on Google Play, you must register for an account at

There’s a one-time $25 registration fee. Unlike other popular mobile platforms, Google Play
has no approval process for uploading apps. You must, however, adhere to the Google Play De-
veloper Program Policies. If your app is in violation of these policies, it can be removed at any
time; serious or repeated violations may result in account termination (Fig. 9.11).

Provider URL Description

PayPal Mobile
Payments
Library

http://developer.paypal.com/

webapps/developer/docs/

classic/mobile/gs_MPL/

Users click the Pay with PayPal button,
log into their PayPal account, then
click Pay.

Amazon In-App
Purchasing

http://developer.amazon.com/sdk/

in-app-purchasing.html
In-app purchase for apps sold through
the Amazon App Store for Android.

Zong http://www.zong.com/android Provides Buy button for one-click pay-
ment. Payments appear on the user’s
phone bill.

Samsung In-App
Purchase

http://developer.samsung.com/

android/tools-sdks/

In-App-Purchase-Library

In-app purchase for apps designed
specifically for Samsung devices.

Boku http://www.boku.com Users click Pay by Mobile, enter their
mobile phone number, then complete
the transaction by replying to a text
message sent to their phone.

Fig. 9.10 | Mobile payment providers for in-app purchase.

http://play.google.com/apps/publish

Violations of the Google Play Content Policy for Developers

• Infringing on others’ intellectual property
rights (e.g., trademarks, patents and copy-
rights).

• Illegal activities.

• Invading personal privacy.

• Interfering with the services of other parties.

• Harming the user’s device or personal data.

• Gambling.

Fig. 9.11 | Some violations of the Google Play Content Policy for Developers (http://
play.google.com/about/developer-content-policy.html#showlanguages). (Part 1 of 2.)

M09_DEIT3397_02_SE_C09.fm Page 358 Friday, June 20, 2014 12:37 PM

9.7 Setting Up a Google Wallet Merchant Account 359

9.7 Setting Up a Google Wallet Merchant Account
To sell your apps on Google Play, you’ll need a Google Wallet merchant account, avail-
able to Google Play developers in 32 countries (Fig. 9.12).8 Google Wallet is used as a pay-
ment service for online transactions. Once you’ve registered and logged into Google Play
at http://play.google.com/apps/publish/, click the Financial Reports link, then click
Set up a merchant account. You’ll need to

• provide private information by which Google can contact you

• provide customer-support contact information where users can contact you

• provide financial information so that Google may perform a credit check

• agree to the Terms of Service, which describe the features of the service, permis-
sible transactions, prohibited actions, service fees, payment terms and more.

Google Wallet processes payments and helps protect you from fraudulent purchases.
The standard payment processing rates are waived for your Google Play sales.9 Google
pays you 70% of the app price. Once you set up a Google Wallet account, you’ll be able

• Creating a “spammy” user experience (e.g.,
misleading the user about the app’s purpose).

• Adversely impacting a user’s service charges or
a wireless carrier’s network.

• Impersonation or deception.

• Promoting hate or violence.

• Providing pornographic or obscene content, or
anything unsuitable for children under age 18.

• Ads in system-level notifications and widgets.

8. http://support.google.com/googleplay/android-developer/answer/
150324?hl=en&ref_topic=15867.

Countries

Argentina Denmark Italy Russia
Australia France Mexico Spain
Austria Germany Netherlands South Korea
Belgium Hong Kong New Zealand Sweden
Brazil India Norway Switzerland
Canada Ireland Poland Taiwan
Czech Republic Israel Portugal United Kingdom
Finland Japan Singapore United States

Fig. 9.12 | Countries in which Google Wallet merchant accounts are available.

9. http://checkout.google.com/termsOfService?type=SELLER.

Violations of the Google Play Content Policy for Developers

Fig. 9.11 | Some violations of the Google Play Content Policy for Developers (http://
play.google.com/about/developer-content-policy.html#showlanguages). (Part 2 of 2.)

M09_DEIT3397_02_SE_C09.fm Page 359 Monday, July 7, 2014 9:06 AM

360 Chapter 9 Google Play and App Business Issues

to use it for more activities than just selling your apps, such as making purchases at partic-
ipating stores.

9.8 Uploading Your Apps to Google Play
Once you’ve prepared your files and you’re ready to upload your app, review the steps in
the Launch Checklist at:

Then log into Google Play at http://play.google.com/apps/publish (Section 9.6) and
click the Publish an Android App on Google Play button to begin the upload process. You
will be asked to upload the following assets:

1. App .apk file that includes the app's code files, assets, resources and the manifest file.

2. At least two screenshots of your app to be included in Google Play. You may in-
clude screenshots for an Android phone, 7" tablet and 10" tablet.

3. High-resolution app icon (512 x 512 pixels) to be included in Google Play.

4. Promotional graphic (optional) for Google Play to be used by Google if they de-
cide to promote your app (for examples, check out some of the graphics for fea-
tured apps on Google Play). The graphic must be 180 pixels wide by 120 pixels
tall in 24-bit PNG or JPEG format with no alpha transparency effects. It must also
have a full bleed (i.e., go to the edge of the screen with no border in the graphic).

5. Promotional video (optional) to be included in Google Play. You may include a
URL for a promotional video for your app (e.g., a YouTube link to a video that
demonstrates how your app works).

In addition to app assets, you will be asked to provide the following additional listing
details for Google Play:

1. Language. By default, your app will be listed in English. If you’d like to list it in
additional languages, select them from the list provided (Fig. 9.13).

http://developer.android.com/distribute/googleplay/publish/
 preparing.html

Language

Afrikaans Amharic Arabic Belarusian Catalan
Chinese (simplified or traditional) Croatian Czech Danish
Dutch English (UK or United States) Estonian Filipino
Finnish French German Greek Hebrew
Hindi Hungarian Indonesian Italian Japanese
Korean Latvian Lithuanian Malay Norwegian
Persian Polish Portuguese (Brazil or Portugal) Romanian
Romansh Russian Serbian Slovak Slovenian
Spanish (Latin America, Spain or United States) Swahili Swedish
Thai Turkish Ukrainian Vietnamese Zulu

Fig. 9.13 | Languages for listing apps in Google Play.

M09_DEIT3397_02_SE_C09.fm Page 360 Monday, July 7, 2014 9:06 AM

9.9 Launching the Play Store from Within Your App 361

2. Title. The title of your app as it will appear in Google Play (30 characters maxi-
mum). It does not need to be unique among all Android apps.

3. Description. A description of your app and its features (4,000 characters maxi-
mum). It’s recommended that you use the last portion of the description to ex-
plain why each permission is required and how it’s used.

4. Recent changes. A walkthrough of any changes specific to the latest version of
your app (500 characters maximum).

5. Promo text. The promotional text for marketing your app (80 characters max).

6. App type. Choose Applications or Games.

7. Category. Select the category (see Fig. 1.8) that best suits your game or app.

8. Price. The default setting is Free. To sell your app for a fee, you’ll need to set up
a merchant account at Google Wallet.

9. Content rating. You may select High Maturity, Medium Maturity, Low Maturity or Ev-
eryone. For more information, see Rating your application content for Google Play at
http://support.google.com/googleplay/android-developer/answer/188189.

10. Locations. By default, the app will be listed in all current and future Google Play
countries. If you do not want your app to be available in all these countries, you
may pick and choose specific ones where you’d like your app to be listed.

11. Website. A Visit Developer’s Website link will be included in your app’s listing in
Google Play. Provide a direct link to the page on your website where users inter-
ested in downloading your app can find more information, including marketing
copy, feature listings, additional screenshots, instructions, etc.

12. E-mail. Your e-mail address will also be included in Google Play, so that custom-
ers can contact you with questions, report errors, etc.

13. Phone number. Sometimes your phone number is included in Google Play. There-
fore it’s recommended that you leave this field blank unless you provide phone sup-
port. You may want to provide a customer service phone number on your website.

9.9 Launching the Play Store from Within Your App
To drive additional sales of your apps, you can launch the Play Store app (Google Play)
from within your app (typically by including a button) so that the user can download other
apps you’ve published or purchase a related app with functionality beyond that of the pre-
viously downloaded “lite” version. You can also launch the Play Store app to enable users
to download the latest updates.

There are two ways to launch the Play Store app. First, you can bring up Google Play
search results for apps with a specific developer name, package name or string of charac-
ters. For example, if you want to encourage users to download other apps you’ve pub-
lished, you could include a button in your app that, when touched, launches the Play Store
app and initiates a search for apps containing your name or company name. The second
option is to bring the user to the details page in the Play Store app for a specific app.

To learn about launching Play Store from within an app, see Linking Your Products at
http://developer.android.com/distribute/googleplay/promote/linking.html.

M09_DEIT3397_02_SE_C09.fm Page 361 Monday, July 7, 2014 9:06 AM

362 Chapter 9 Google Play and App Business Issues

9.10 Managing Your Apps in Google Play
The Google Play Developer Console allows you to manage your account and your apps,
check users’ star ratings for your apps (0 to 5 stars), respond to users’ comments, track the
overall number of installs of each app and the number of active installs (installs minus un-
installs). You can view installation trends and the distribution of app downloads across An-
droid versions, devices, and more. Crash reports list any crash and freeze information from
users. If you’ve made upgrades to your app, you can easily publish the new version. You
can remove the app from Google Play, but users who downloaded it previously may keep
it on their devices. Users who uninstalled the app will be able to reinstall it even after it’s
been removed (it will remain on Google’s servers unless it’s removed for violating the
Terms of Service).

9.11 Other Android App Marketplaces
In addition to Google Play, you may choose to make your apps available through other
Android app marketplaces (Fig. 9.14), or through your own website using services such as
AndroidLicenser (http://www.androidlicenser.com). To learn more about releasing
your app through a website see

9.12 Other Popular Mobile App Platforms
According to ABI Research, 56 billion smartphone apps and 14 billion tablet apps will be
downloaded in 2013.10 By porting your Android apps to other mobile app platforms, es-
pecially to iOS (for iPhone, iPad and iPod Touch devices), you could reach an even bigger
audience (Fig. 9.15). Android can be developed on Windows, Linux or Mac computers

http://developer.android.com/tools/publishing/
publishing_overview.html

Marketplace URL

Amazon Appstore http://developer.amazon.com/welcome.html

Opera Mobile Store http://apps.opera.com/en_us/index.php

Moborobo http://www.moborobo.com

Appitalism® http://www.appitalism.com/index.html

Samsung Apps http://apps.samsung.com/mars/main/getMain.as

GetJar http://www.getjar.com

SlideMe http://www.slideme.org

Handango http://www.handango.com

Mplayit™ http://www.mplayit.com

AndroidPIT http://www.androidpit.com

Fig. 9.14 | Other Android app marketplaces.

10. http://www.abiresearch.com/press/android-will-account-for-58-of-smartphone-app-down.

M09_DEIT3397_02_SE_C09.fm Page 362 Monday, July 7, 2014 9:06 AM

9.13 Marketing Your Apps 363

with Java—one of the world’s most widely used programming languages. However, iOS
apps must be developed on Macs, which can be costly, and with the Objective-C program-
ming language, which only a small percentage of developers know. Google has created the
open-source J2ObjC tool to help you translate your Java app code to Objective-C for iOS
apps. To learn more, see http://code.google.com/p/j2objc/.

9.13 Marketing Your Apps
Once your app has been published, you’ll want to market it to your audience.11 Viral mar-
keting through social media sites such as Facebook, Twitter, Google+ and YouTube can
help you get your message out. These sites have tremendous visibility. According to a Pew
Research Center study, 72% of adults on the Internet use social networks—and 67% of
those are on Facebook.12 Figure 9.16 lists some of the most popular social media sites. Al-
so, e-mail and electronic newsletters are still effective and often inexpensive marketing
tools.

Platform URL

Worldwide app
downloads market
share

Android http://developer.android.com 58% smartphone apps
17% tablet apps

iOS (Apple) http://developer.apple.com/ios 33% smartphone apps
75% tablet apps

Windows Phone 8 http://developer.windowsphone.com 4% smartphone apps
2% tablet apps

BlackBerry (RIM) http://developer.blackberry.com 3% smartphone apps

Amazon Kindle http://developer.amazon.com 4% tablet apps

Fig. 9.15 | Popular mobile app platforms. (http://www.abiresearch.com/press/
android-will-account-for-58-of-smartphone-app-down).

11. To learn more about marketing your Android apps, check out the book Android Apps Marketing: Se-
crets to Selling Your Android App by Jeffrey Hughes.

12. http://pewinternet.org/Commentary/2012/March/Pew-Internet-Social-Networking-full-
detail.aspx.

 Name URL Description

Facebook http://www.facebook.com Social networking

Twitter http://www.twitter.com Microblogging, social networking

Google+ http://plus.google.com Social networking

Groupon http://www.groupon.com Daily deals

Fig. 9.16 | Popular social media sites. (Part 1 of 2.)

M09_DEIT3397_02_SE_C09.fm Page 363 Monday, July 7, 2014 9:06 AM

364 Chapter 9 Google Play and App Business Issues

Facebook
Facebook, the premier social networking site, has more than one billion active users13 and
over 150 billion friend connections.14 It’s an excellent resource for viral marketing. Start
by setting up an official Facebook page for your app or business. Use the page to post app
information, news, updates, reviews, tips, videos, screenshots, high scores for games, user
feedback and links to Google Play where users can download your app. For example, we
post news and updates about Deitel publications on our Facebook page at http://
www.facebook.com/DeitelFan.

Next, you need to spread the word. Encourage your co-workers and friends to “like”
your Facebook page and ask their friends to do so as well. As people interact with your
page, stories will appear in their friends’ news feeds, building awareness to a growing audi-
ence.

Twitter
Twitter is a microblogging, social networking site with over 554 million active registered
users.15 You post tweets—messages of 140 characters or less. Twitter then distributes your
tweets to all of your followers (at the time of this writing, one famous pop star had over
40 million followers). Many people use Twitter to track news and trends. Tweet about
your app—include announcements about new releases, tips, facts, comments from users,
etc. Also, encourage your colleagues and friends to tweet about your app. Use a hashtag (#)
to reference your app. For example, when tweeting about Android How to Program, 2/e on
our @deitel Twitter feed, we use the hashtag #AndroidHTP2. Others may use this hashtag
as well to write comments about the book. This enables you to easily search tweets for mes-
sages related to the book.

Viral Video
Viral video—shared on video sites (e.g., YouTube, Bing Videos, Yahoo! Video), on social
networking sites (e.g., Facebook, Twitter and Google+), through e-mail, etc.—is another
great way to spread the word about your app. If you create a compelling video, perhaps
one that’s humorous or even outrageous, it may quickly rise in popularity and may be
tagged by users across multiple social networks.

Foursquare http://www.foursquare.com Check-in

Pinterest http://www.pinterest.com Online pinboard

YouTube http://www.youtube.com Video sharing

LinkedIn http://www.linkedin.com Social networking for business

Flickr http://www.flickr.com Photo sharing

13. http://investor.fb.com/releasedetail.cfm?ReleaseID=761090.
14. http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/.
15. http://www.statisticbrain.com/twitter-statistics/.

 Name URL Description

Fig. 9.16 | Popular social media sites. (Part 2 of 2.)

M09_DEIT3397_02_SE_C09.fm Page 364 Monday, July 7, 2014 9:06 AM

9.13 Marketing Your Apps 365

E-Mail Newsletters
If you have an e-mail newsletter, use it to promote your app. Include links to Google Play,
where users can download the app. Also include links to your social networking pages,
where users can stay up-to-date with the latest news about your app.

App Reviews
Contact influential bloggers and app review sites (Fig. 9.17) and tell them about your app.
Provide them with a promotional code to download your app for free (see Section 9.3).
Influential bloggers and reviewers receive many requests, so keep yours concise and infor-
mative without too much marketing hype. Many app reviewers post video app reviews on
YouTube and other sites (Fig. 9.18).

Internet Public Relations
The public relations industry uses media outlets to help companies get their message out
to consumers. With the phenomenon known as Web 2.0, public relations practitioners are

Android app review site URL

Android Tapp™ http://www.androidtapp.com

Appolicious™ http://www.androidapps.com

AppBrain http://www.appbrain.com

AndroidZoom http://www.androidzoom.com

Appstorm http://android.appstorm.net
Best Android Apps Review http://www.bestandroidappsreview.com

Android App Review Source http://www.androidappreviewsource.com

Androinica http://www.androinica.com

AndroidLib http://www.androlib.com

Android and Me http://www.androidandme.com

AndroidGuys http://www.androidguys.com/category/reviews

Android Police http://www.androidpolice.com

AndroidPIT http://www.androidpit.com
Phandroid http://www.phandroid.com

Fig. 9.17 | Android app review sites.

Android app review
video site URL

Daily App Show http://dailyappshow.com

Crazy Mike’s Apps http://crazymikesapps.com

Appolicious™ http://www.appvee.com/?device_filter=android

Life of Android™ http://www.lifeofandroid.com/video/

Android Video Review http://www.androidvideoreview.net/

Fig. 9.18 | Android app review video sites.

M09_DEIT3397_02_SE_C09.fm Page 365 Monday, July 7, 2014 9:06 AM

366 Chapter 9 Google Play and App Business Issues

incorporating blogs, tweets, podcasts, RSS feeds and social media into their PR campaigns.
Figure 9.19 lists some free and fee-based Internet public relations resources, including
press-release distribution sites, press-release writing services and more.

Mobile Advertising Networks
Purchasing advertising spots (e.g., in other apps, online, in newspapers and magazines or
on radio and television) is another way to market your app. Mobile advertising networks
(Fig. 9.20) specialize in advertising Android (and other) mobile apps on mobile platforms.
Many of these networks can target audiences by location, wireless carrier, platform (e.g.,
Android, iOS, Windows, BlackBerry) and more. Most apps don’t make much money, so
be careful how much you spend on advertising.

Internet public
relations resource URL Description

Free Services
PRWeb® http://www.prweb.com Online press-release distribution

service with free and fee-based
services.

ClickPress™ http://www.clickpress.com Submit news stories for approval
(free of charge). If approved, they’ll
be available on the ClickPress site
and to news search engines. For a
fee, ClickPress will distribute your
press releases globally to top finan-
cial newswires.

PRLog http://www.prlog.org/pub/ Free press-release submission and
distribution.

i-Newswire http://www.i-newswire.com Free and fee-based press-release sub-
mission and distribution.

openPR® http://www.openpr.com Free press-release publication.

Fee-Based Services
PR Leap http://www.prleap.com Online press-release distribution

service.

Marketwire http://www.marketwire.com Press-release distribution service
allows you to target your audience
by geography, industry, etc.

Mobility PR http://www.mobilitypr.com Public relations services for compa-
nies in the mobile industry.

Press Release
Writing

http://www.press-release-

writing.com
Press-release distribution and ser-
vices including press-release writing,
proofreading and editing. Check
out the tips for writing effective
press releases.

Fig. 9.19 | Internet public relations resources.

M09_DEIT3397_02_SE_C09.fm Page 366 Monday, July 7, 2014 9:06 AM

9.14 Wrap-Up 367

You can also use mobile advertising networks to monetize your free apps by including
ads (e.g., banners, videos) in your apps. The average eCPM (effective cost per 1,000
impressions) for ads in Android apps is $0.88, according to Opera’s State of Mobile Adver-
tising report16 (though the average may vary by network, device, etc.). Most ads on
Android pay based on click-through rate (CTR) of the ads rather than the number of
impressions generated. According to a report by Jumptap, CTRs average 0.65% on mobile
in-app ads,17 though this varies based on the app, the device, targeting of the ads by the
ad network and more. If your app has a lot of users and the CTRs of the ads in your apps
are high, you may earn substantial advertising revenue. Also, your ad network may serve
you higher-paying ads, thus increasing your earnings.

9.14 Wrap-Up
In this chapter, we walked through the process of registering for Google Play and setting
up a Google Wallet account so you can sell your apps. We showed how to prepare apps
for submission to Google Play, including testing them on the emulator and on Android
devices, creating icons and labels, and editing the AndroidManifest.xml file. We walked
through the steps for uploading your apps to Google Play. We showed you alternative An-
droid app marketplaces where you can sell your apps. We provided tips for pricing your
apps, and resources for monetizing them with in-app advertising and in-app sales of virtual
goods. And we included resources for marketing your apps, once they’re available through
Google Play.

Staying in Contact with Deitel & Associates, Inc.
We hope you enjoyed reading Android How to Program, 2/e as much as we enjoyed writing
it. We’d appreciate your feedback. Please send your questions, comments, suggestions and

Mobile ad networks URL

AdMob (by Google) http://www.admob.com/

Medialets http://www.medialets.com

Tapjoy® http://www.tapjoy.com

Nexage™ http://www.nexage.com

Jumptap® http://www.jumptap.com

Smaato® http://www.smaato.com

mMedia™ http://mmedia.com

InMobi™ http://www.inmobi.com

Flurry™ http://www.flurry.com

Fig. 9.20 | Mobile advertising networks.

16. http://www.insidemobileapps.com/2012/12/14/ios-leads-the-pack-in-ecpm-traffic-
and-revenue-on-operas-mobile-ad-platform-ipad-average-ecpm-of-4-42/.

17. http://paidcontent.org/2012/01/05/419-jumptap-android-the-most-popular-but-ios-
still-more-interactive-for-ads/.

M09_DEIT3397_02_SE_C09.fm Page 367 Monday, July 7, 2014 9:06 AM

368 Chapter 9 Google Play and App Business Issues

corrections to deitel@deitel.com. Check out our growing list of Android-related Re-
source Centers at http://www.deitel.com/ResourceCenters.html. To stay up to date
with the latest news about Deitel publications and corporate training sign up for the free
weekly Deitel® Buzz Online e-mail newsletter at

and follow us on

• Facebook—http://www.facebook.com/DeitelFan

• Twitter—@deitel

• Google+—http://google.com/+DeitelFan

• YouTube—http://youtube.com/DeitelTV

• LinkedIn—http://linkedin.com/company/deitel-&-associates

http://www.deitel.com/newsletter/subscribe.html

Self-Review Exercises
9.1 Fill in the blanks in each of the following statements:

a) To sell your apps on Google Play, you’ll need a(n) merchant account.
b) Before uploading your app to a device, to Google Play or to other app marketplaces, you

must digitally sign the .apk file (Android app package file) using a(n) that
identifies you as the author of the app.

c) Installed with the ADT Plugin for Eclipse, the Service helps you debug
your apps running on actual devices and also enables you to capture screenshots on your
device or emulator.

9.2 State whether each of the following is true or false. If false, explain why.
a) When an app works perfectly using the emulator on your computer, it will run on your

Android device.
b) You might use a licensing policy to limit how often the app checks in with the server,

how many simultaneous device installs are allowed, and what happens when an unli-
censed app is identified.

c) The title of your app as it will appear in Google Play must be unique among all Android
apps.

d) According to a study by app store analytics firm Distimo (www.distimo.com/), the av-
erage price of paid Android game apps is around $36.20.

e) According to Google, apps that use in-app billing earn profoundly more revenue than
paid apps alone.

f) If you choose to sell your apps through other app marketplaces, several third-party mo-
bile payment providers can enable you to build in-app purchase into your apps using
APIs from mobile payment providers.

Answers to Self-Review Exercises
9.1 a) Google Wallet. b) digital certificate. c) Dalvik Debug Monitor.

9.2 a) False. Although the app might work perfectly using the emulator on your computer,
problems could arise when running it on a particular Android device. b) True. c) False. The title of
your app as it will appear in Google Play does not need to be unique among all Android apps.

M09_DEIT3397_02_SE_C09.fm Page 368 Friday, June 20, 2014 12:37 PM

 Exercises 369

d) False. According to the study, the the average price of game apps is around $3.27 (the median is
around $2.72). e) True. f) True.

Exercises
9.3 Fill in the blanks in each of the following statements:

a) The Google Play allows you to create licensing policies to control access to
your paid apps.

b) A(n) is an agreement through which you license your software to the user.
It typically stipulates terms of use, limitations on redistribution and reverse engineering,
product liability, compliance with applicable laws and more.

c) Google Play’s service enables you to sell virtual goods (e.g., digital content)
through apps on devices running Android 2.3 or higher.

d) According to a recent study by AdMob, is the number one reason why
users purchase a paid app.

e) The Google Play allows you to limit how many simultaneous device in-
stalls are allowed.

9.4 State whether each of the following is true or false. If false, explain why.
a) You should “obfuscate” any apps you upload to Google Play to encourage reverse engi-

neering of your code.
b) There are more paid apps than free apps on Google Play, and they comprise the vast

majority of downloads.
c) Your app’s version name is shown to the users, and the version code is an integer version

number used internally by Google Play.
d) Free apps need not be digitally signed before uploading them to Google Play.
e) Financial transactions for paid apps in Google Play are handled by Google Wallet.

M09_DEIT3397_02_SE_C09.fm Page 369 Friday, June 20, 2014 12:37 PM

A Introduction to Java
Applications

O b j e c t i v e s
In this appendix you’ll learn:

■ To write simple Java
applications.

■ To use input and output
statements.

■ Java’s primitive types.

■ Basic memory concepts.

■ To use arithmetic operators.

■ The precedence of arithmetic
operators.

■ To write decision-making
statements.

■ To use relational and equality
operators.

Z01_DEIT3397_02_SE_APPA.FM Page 370 Tuesday, July 8, 2014 8:32 AM

A.1 Introduction 371

A.1 Introduction
This appendix introduces Java application programming. You’ll use tools from the JDK
to compile and run programs. We’ve posted a Dive Into® video at www.deitel.com/
books/AndroidHTP2/ to help you get started with the popular Eclipse integrated develop-
ment environment (IDE)—the most widely used Java IDE and the one that’s typically
used for Android app development.

A.2 Your First Program in Java: Printing a Line of Text
A Java application is a computer program that executes when you use the java command to
launch the Java Virtual Machine (JVM).First we consider a simple application that displays
a line of text. Figure A.1 shows the program followed by a box that displays its output.

Commenting Your Programs
We insert comments to document programs and improve their readability. The Java com-
piler ignores comments, so they do not cause the computer to perform any action when
the program is run.

The comment in line 1

A.1 Introduction
A.2 Your First Program in Java: Printing a

Line of Text
A.3 Modifying Your First Java Program
A.4 Displaying Text with printf
A.5 Another Application: Adding

Integers

A.6 Memory Concepts
A.7 Arithmetic
A.8 Decision Making: Equality and

Relational Operators
A.9 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1 // Fig. A.1: Welcome1.java
2 // Text-printing program.
3
4 public class Welcome1
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9 System.out.println("Welcome to Java Programming!");

10 } // end method main
11 } // end class Welcome1

Welcome to Java Programming!

Fig. A.1 | Text-printing program.

// Fig. A.1: Welcome1.java

Z01_DEIT3397_02_SE_APPA.FM Page 371 Monday, July 7, 2014 9:07 AM

372 Appendix A Introduction to Java Applications

begins with //, indicating that it is an end-of-line comment—it terminates at the end of
the line on which the // appears. Line 2 is a comment that describes the purpose of the
program.

Java also has traditional comments, which can be spread over several lines as in

These begin and end with delimiters, /* and */. The compiler ignores all text between the
delimiters.

Using Blank Lines
Line 3 is a blank line. Blank lines, space characters and tabs make programs easier to read.
Together, they’re known as white space (or whitespace). The compiler ignores white
space.

Declaring a Class
Line 4 begins a class declaration for class Welcome1. Every Java program consists of at least
one class that you (the programmer) define. The class keyword introduces a class decla-
ration and is immediately followed by the class name (Welcome1). Keywords are reserved
for use by Java and are always spelled with all lowercase letters. The complete list of key-
words can be viewed at:

Class Names and Identifiers
By convention, class names begin with a capital letter and capitalize the first letter of each
word they include (e.g., SampleClassName). A class name is an identifier—a series of char-
acters consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin
with a digit and does not contain spaces. The name 7button is not a valid identifier be-
cause it begins with a digit, and the name input field is not a valid identifier because it
contains a space. Java is case sensitive—uppercase and lowercase letters are distinct—so
value and Value are different identifiers.

In Appendices A–E, every class we define begins with the keyword public. For our
application, the file name is Welcome1.java.

A left brace (as in line 5), {, begins the body of every class declaration. A corre-
sponding right brace, }, must end each class declaration.

/* This is a traditional comment. It
 can be split over multiple lines */

Common Programming Error A.1
A syntax error occurs when the compiler encounters code that violates Java’s language
rules (i.e., its syntax). Syntax errors are also called compilation errors, because the com-
piler detects them during the compilation phase. The compiler responds by issuing an error
message and preventing your program from compiling.

http://bit.ly/JavaKeywords

Common Programming Error A.2
A public class must be placed in a file that has the same name as the class (in terms of
both spelling and capitalization) plus the .java extension; otherwise, a compilation error
occurs. For example, public class Welcome must be placed in a file named Welcome.java.

Z01_DEIT3397_02_SE_APPA.FM Page 372 Monday, July 7, 2014 9:07 AM

A.2 Your First Program in Java: Printing a Line of Text 373

Declaring a Method
Line 6 is an end-of-line comment indicating the purpose of lines 7–10 of the program.
Line 7 is the starting point of every Java application. The parentheses after the identifier
main indicate that it’s a program building block called a method. For a Java application,
one of the methods must be called main and must be defined as shown in line 7. Methods
perform tasks and can return information when they complete their tasks. Keyword void
indicates that this method will not return any information. In line 7, the String[] args
in parentheses is a required part of the method main’s declaration—we discuss this in
Appendix E.

The left brace in line 8 begins the body of the method declaration. A corresponding
right brace must end it (line 10).

Performing Output with System.out.println
Line 9 instructs the computer to perform an action—namely, to print the string of char-
acters contained between the double quotation marks (but not the quotation marks them-
selves). A string is sometimes called a character string or a string literal. White-space
characters in strings are not ignored by the compiler. Strings cannot span multiple lines of
code.

The System.out object is known as the standard output object. It allows a Java appli-
cations to display information in the command window from which it executes. In recent
versions of Microsoft Windows, the command window is the Command Prompt. In
UNIX/Linux/Mac OS X, the command window is called a terminal window or a shell.
Many programmers call it simply the command line.

Method System.out.println displays (or prints) a line of text in the command
window. The string in the parentheses in line 9 is the argument to the method. When
System.out.println completes its task, it positions the cursor (the location where the
next character will be displayed) at the beginning of the next line in the command
window.

The entire line 9, including System.out.println, the argument "Welcome to Java
Programming!" in the parentheses and the semicolon (;), is called a statement. Most state-
ments end with a semicolon. When the statement in line 9 executes, it displays Welcome
to Java Programming! in the command window.

Using End-of-Line Comments on Right Braces for Readability
We include an end-of-line comment after a closing brace that ends a method declaration
and after a closing brace that ends a class declaration. For example, line 10 indicates the
closing brace of method main, and line 11 indicates the closing brace of class Welcome1.

Compiling and Executing Your First Java Application
We assume you’re using the Java Development Kit’s command-line tools, not an IDE.
Our Java Resource Centers at www.deitel.com/ResourceCenters.html provide links to

Good Programming Practice A.1
Indent the entire body of each class declaration one “level” between the left brace and the
right brace that delimit the body of the class. We recommend using three spaces to form a
level of indent. This format emphasizes the class declaration’s structure and makes it easier
to read.

Z01_DEIT3397_02_SE_APPA.FM Page 373 Monday, July 7, 2014 9:07 AM

374 Appendix A Introduction to Java Applications

tutorials that help you get started with several popular Java development tools, including
NetBeans™, Eclipse™ and others. We’ve also posted an Eclipse video at www.deit-
el.com/books/AndroidHTP2/ to help you get started using this popular IDE.

To prepare to compile the program, open a command window and change to the
directory where the program is stored. Many operating systems use the command cd to
change directories. On Windows, for example,

changes to the figA_01 directory. On UNIX/Linux/Max OS X, the command

changes to the figA_01 directory.
To compile the program, type

If the program contains no syntax errors, this command creates a new file called
Welcome1.class (known as the class file for Welcome1) containing the platform-indepen-
dent Java bytecodes that represent our application. When we use the java command to
execute the application on a given platform, the JVM will translate these bytecodes into
instructions that are understood by the underlying operating system and hardware.

Figure A.2 shows the program of Fig. A.1 executing in a Microsoft® Windows® 7
Command Prompt window. To execute the program, type java Welcome1. This command
launches the JVM, which loads the .class file for class Welcome1. The command omits
the .class file-name extension; otherwise, the JVM will not execute the program. The
JVM calls method main. Next, the statement at line 9 of main displays "Welcome to Java
Programming!"

cd c:\examples\appA\figA_01

cd ~/examples/appA/figA_01

javac Welcome1.java

Error-Prevention Tip A.1
When attempting to compile a program, if you receive a message such as “bad command or
filename,” “javac: command not found” or “'javac' is not recognized as an inter-
nal or external command, operable program or batch file,” then your Java software
installation was not completed properly. If you’re using the JDK, this indicates that the
system’s PATH environment variable was not set properly. Please carefully review the in-
stallation instructions in the Before You Begin section of this book. On some systems, after
correcting the PATH, you may need to reboot your computer or open a new command win-
dow for these settings to take effect.

Fig. A.2 | Executing Welcome1 from the Command Prompt.

You type this
command to execute
the application

The program outputs to the screen
Welcome to Java Programming!

Z01_DEIT3397_02_SE_APPA.FM Page 374 Monday, July 7, 2014 9:07 AM

A.3 Modifying Your First Java Program 375

A.3 Modifying Your First Java Program
Welcome to Java Programming! can be displayed several ways. Class Welcome2, shown in
Fig. A.3, uses two statements (lines 9–10) to produce the output shown in Fig. A.1.

The program is similar to Fig. A.1, so we discuss only the changes here. Line 2 is a
comment stating the purpose of the program. Line 4 begins the Welcome2 class declara-
tion. Lines 9–10 of method main display one line of text. The first statement uses
System.out’s method print to display a string. Each print or println statement resumes
displaying characters from where the last print or println statement stopped displaying
characters. Unlike println, after displaying its argument, print does not position the
output cursor at the beginning of the next line in the command window—the next char-
acter the program displays will appear immediately after the last character that print dis-
plays. Thus, line 10 positions the first character in its argument (the letter “J”)
immediately after the last character that line 9 displays (the space character before the
string’s closing double-quote character).

Displaying Multiple Lines of Text with a Single Statement
A single statement can display multiple lines by using newline characters, which indicate
to System.out’s print and println methods when to position the output cursor at the
beginning of the next line in the command window. Like blank lines, space characters and
tab characters, newline characters are white-space characters. The program in Fig. A.4 out-
puts four lines of text, using newline characters to determine when to begin each new line.

Error-Prevention Tip A.2
When attempting to run a Java program, if you receive a message such as “Exception in
thread "main" java.lang.NoClassDefFoundError: Welcome1,” your CLASSPATH envi-
ronment variable has not been set properly. Please carefully review the installation in-
structions in the Before You Begin section of this book. On some systems, you may need to
reboot your computer or open a new command window after configuring the CLASSPATH.

1 // Fig. A.3: Welcome2.java
2 // Printing a line of text with multiple statements.
3
4 public class Welcome2
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9

10
11 } // end method main
12 } // end class Welcome2

Welcome to Java Programming!

Fig. A.3 | Printing a line of text with multiple statements.

System.out.print("Welcome to ");
System.out.println("Java Programming!");

Z01_DEIT3397_02_SE_APPA.FM Page 375 Friday, June 20, 2014 4:02 PM

376 Appendix A Introduction to Java Applications

Line 2 is a comment stating the program’s purpose. Line 4 begins the Welcome3 class
declaration. Line 9 displays four separate lines of text in the command window. Normally,
the characters in a string are displayed exactly as they appear in the double quotes. Note,
however, that the paired characters \ and n (repeated three times in the statement) do not
appear on the screen. The backslash (\) is an escape character. which has special meaning
to System.out’s print and println methods. When a backslash appears in a string, Java
combines it with the next character to form an escape sequence. The escape sequence \n
represents the newline character. When a newline character appears in a string being
output with System.out, the newline character causes the screen’s output cursor to move
to the beginning of the next line in the command window.

Figure A.5 lists several common escape sequences and describes how they affect the
display of characters in the command window.

1 // Fig. A.4: Welcome3.java
2 // Printing multiple lines of text with a single statement.
3
4 public class Welcome3
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9 System.out.println("Welcome to Java Programming!");

10 } // end method main
11 } // end class Welcome3

Welcome
to
Java
Programming!

Fig. A.4 | Printing multiple lines of text with a single statement.

Escape
sequence Description

\n Newline. Position the screen cursor at the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor at the beginning of the current
line—do not advance to the next line. Any characters output after the car-
riage return overwrite the characters previously output on that line.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double-quote character. For example,
 System.out.println("\"in quotes\"");

displays "in quotes".

Fig. A.5 | Some common escape sequences.

\n \n \n

Z01_DEIT3397_02_SE_APPA.FM Page 376 Monday, July 7, 2014 9:07 AM

A.4 Displaying Text with printf 377

A.4 Displaying Text with printf
The System.out.printf method displays formatted data. Figure A.6 uses this method to
output the strings "Welcome to" and "Java Programming!". Lines 9–10 call method Sys-
tem.out.printf to display the program’s output. The method call specifies three argu-
ments—they’re placed in a comma-separated list.

Lines 9–10 represent only one statement. Java allows large statements to be split over
many lines. We indent line 10 to indicate that it’s a continuation of line 9.

Method printf’s first argument is a format string that may consist of fixed text and
format specifiers. Fixed text is output by printf just as it would be by print or println.
Each format specifier is a placeholder for a value and specifies the type of data to output.
Format specifiers also may include optional formatting information.

Format specifiers begin with a percent sign (%) followed by a character that represents
the data type. For example, the format specifier %s is a placeholder for a string. The format
string in line 9 specifies that printf should output two strings, each followed by a newline
character. At the first format specifier’s position, printf substitutes the value of the first
argument after the format string. At each subsequent format specifier’s position, printf
substitutes the value of the next argument. So this example substitutes "Welcome to" for
the first %s and "Java Programming!" for the second %s. The output shows that two lines
of text are displayed.

A.5 Another Application: Adding Integers
Our next application reads (or inputs) two integers (whole numbers, such as –22, 7, 0 and
1024) typed by a user at the keyboard, computes their sum and displays it. Programs re-
member numbers and other data in the computer’s memory and access that data through
program elements called variables. The program of Fig. A.7 demonstrates these concepts.
In the sample output, we use bold text to identify the user’s input (i.e., 45 and 72).

1 // Fig. A.6: Welcome4.java
2 // Displaying multiple lines with method System.out.printf.
3
4 public class Welcome4
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9

10
11 } // end method main
12 } // end class Welcome4

Welcome to
Java Programming!

Fig. A.6 | Displaying multiple lines with method System.out.printf.

System.out.printf("%s\n%s\n",
 "Welcome to", "Java Programming!");

Z01_DEIT3397_02_SE_APPA.FM Page 377 Monday, July 7, 2014 9:07 AM

378 Appendix A Introduction to Java Applications

Import Declarations
Lines 1–2 state the figure number, file name and purpose of the program. A great strength
of Java is its rich set of predefined classes that you can reuse rather than “reinventing the
wheel.” These classes are grouped into packages—named groups of related classes—and
are collectively referred to as the Java class library, or the Java Application Programming
Interface (Java API). Line 3 is an import declaration that helps the compiler locate a class
that’s used in this program. It indicates that this example uses Java’s predefined Scanner
class (discussed shortly) from package java.util.

Declaring Class Addition
Line 5 begins the declaration of class Addition. The file name for this public class must
be Addition.java. Remember that the body of each class declaration starts with an open-
ing left brace (line 6) and ends with a closing right brace (line 27).

The application begins execution with the main method (lines 8–26). The left brace
(line 9) marks the beginning of method main’s body, and the corresponding right brace
(line 26) marks its end. Method main is indented one level in the body of class Addition,
and the code in the body of main is indented another level for readability.

1 // Fig. A.7: Addition.java
2 // Addition program that displays the sum of two numbers.
3
4
5 public class Addition
6 {
7 // main method begins execution of Java application
8 public static void main(String[] args)
9 {

10
11
12
13
14
15
16
17 System.out.print("Enter first integer: "); // prompt
18
19
20 System.out.print("Enter second integer: "); // prompt
21
22
23
24
25
26 } // end method main
27 } // end class Addition

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. A.7 | Addition program that displays the sum of two numbers.

import java.util.Scanner; // program uses class Scanner

// create a Scanner to obtain input from the command window
Scanner input = new Scanner(System.in);

int number1; // first number to add
int number2; // second number to add
int sum; // sum of number1 and number2

number1 = input.nextInt(); // read first number from user

number2 = input.nextInt(); // read second number from user

sum = number1 + number2; // add numbers, then store total in sum

System.out.printf("Sum is %d\n", sum); // display sum

Z01_DEIT3397_02_SE_APPA.FM Page 378 Monday, July 7, 2014 9:07 AM

A.5 Another Application: Adding Integers 379

Declaring and Creating a Scanner to Obtain User Input from the Keyboard
A variable is a location in the computer’s memory where a value can be stored for use later
in a program. All Java variables must be declared with a name and a type before they can
be used. A variable’s name enables the program to access the value of the variable in mem-
ory. A variable’s name can be any valid identifier. A variable’s type specifies what kind of
information is stored at that location in memory. Like other statements, declaration state-
ments end with a semicolon (;).

Line 11 is a variable declaration statement that specifies the name (input) and type
(Scanner) of a variable that’s used in this program. A Scanner enables a program to read
data (e.g., numbers and strings) for use in a program. The data can come from many
sources, such as the user at the keyboard or a file on disk. Before using a Scanner, you must
create it and specify the source of the data.

The = in line 11 indicates that Scanner variable input should be initialized (i.e., pre-
pared for use in the program) in its declaration with the result of the expression to the right
of the equals sign—new Scanner(System.in). This expression uses the new keyword to
create a Scanner object that reads characters typed by the user at the keyboard. The standard
input object, System.in, enables applications to read bytes of information typed by the user.
The Scanner translates these bytes into types (like ints) that can be used in a program.

Declaring Variables to Store Integers
The variable declaration statements in lines 13–15 declare that variables number1, number2
and sum hold data of type int—that is, integer values (whole numbers such as 72, –1127 and
0). These variables are not yet initialized. The range of values for an int is –2,147,483,648
to +2,147,483,647. [Note: Actual int values may not contain commas.]

Other data types include float and double, for holding real numbers (such as 3.4, 0.0
and –11.19), and char, for holding character data. Variables of type char represent indi-
vidual characters, such as an uppercase letter (e.g., A), a digit (e.g., 7), a special character (e.g.,
* or %) or an escape sequence (e.g., the newline character, \n). The types int, float, double
and char are called primitive types. Primitive-type names are keywords and must appear in
all lowercase letters. Appendix L summarizes the characteristics of the eight primitive types
(boolean, byte, char, short, int, long, float and double).

Prompting the User for Input
Line 17 uses System.out.print to display the message "Enter first integer: ". This
message is called a prompt because it directs the user to take a specific action. We use
method print here rather than println so that the user’s input appears on the same line
as the prompt. Recall from Section A.2 that identifiers starting with capital letters typically
represent class names. So, System is a class. Class System is part of package java.lang.
Class System is not imported with an import declaration at the beginning of the program.

Good Programming Practice A.2
By convention, variable-name identifiers begin with a lowercase letter, and every word in
the name after the first word begins with a capital letter.

Software Engineering Observation A.1
By default, package java.lang is imported in every Java program; thus, classes in
java.lang are the only ones in the Java API that do not require an import declaration.

Z01_DEIT3397_02_SE_APPA.FM Page 379 Monday, July 7, 2014 9:07 AM

380 Appendix A Introduction to Java Applications

Obtaining an int as Input from the User
Line 18 uses Scanner object input’s nextInt method to obtain an integer from the user
at the keyboard. At this point the program waits for the user to type the number and press
the Enter key to submit the number to the program.

Our program assumes that the user enters a valid integer value. If not, a runtime logic
error will occur and the program will terminate. Appendix H discusses how to make your
programs more robust by enabling them to handle such errors—this makes your program
more fault tolerant.

In line 18, we place the result of the call to method nextInt (an int value) in variable
number1 by using the assignment operator, =. The statement is read as “number1 gets the
value of input.nextInt().” Operator = is called a binary operator, because it has two
operands—number1 and the result of the method call input.nextInt(). This statement
is called an assignment statement, because it assigns a value to a variable. Everything to the
right of the assignment operator, =, is always evaluated before the assignment is performed.

Prompting for and Inputting a Second int
Line 20 prompts the user to input the second integer. Line 21 reads the second integer and
assigns it to variable number2.

Using Variables in a Calculation
Line 23 is an assignment statement that calculates the sum of the variables number1 and
number2 then assigns the result to variable sum by using the assignment operator, =. The
statement is read as “sum gets the value of number1 + number2.” In general, calculations are
performed in assignment statements. When the program encounters the addition operation,
it performs the calculation using the values stored in the variables number1 and number2. In
the preceding statement, the addition operator is a binary operator—its two operands are the
variables number1 and number2. Portions of statements that contain calculations are called
expressions. In fact, an expression is any portion of a statement that has a value associated
with it. For example, the value of the expression number1 + number2 is the sum of the num-
bers. Similarly, the value of the expression input.nextInt() is the integer typed by the user.

Displaying the Result of the Calculation
After the calculation has been performed, line 25 uses method System.out.printf to dis-
play the sum. The format specifier %d is a placeholder for an int value (in this case the value
of sum)—the letter d stands for “decimal integer.” The remaining characters in the format
string are all fixed text. So, method printf displays "Sum is ", followed by the value of
sum (in the position of the %d format specifier) and a newline.

Calculations can also be performed inside printf statements. We could have com-
bined the statements at lines 23 and 25 into the statement

The parentheses around the expression number1 + number2 are not required—they’re in-
cluded to emphasize that the value of the entire expression is output in the position of the
%d format specifier.

Good Programming Practice A.3
Placing spaces on either side of a binary operator makes the program more readable.

System.out.printf("Sum is %d\n", (number1 + number2));

Z01_DEIT3397_02_SE_APPA.FM Page 380 Monday, July 7, 2014 9:07 AM

A.6 Memory Concepts 381

Java API Documentation
For each new Java API class we use, we indicate the package in which it’s located. This
information helps you locate descriptions of each package and class in the Java API docu-
mentation. A web-based version of this documentation can be found at

You can download it from

A.6 Memory Concepts
Variable names such as number1, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type, a size (in bytes) and a value.

In the addition program of Fig. A.7, when the following statement (line 18) executes:

the number typed by the user is placed into a memory location corresponding to the name
number1. Suppose that the user enters 45. The computer places that integer value into
number1 (Fig. A.8), replacing the previous value (if any) in that location. The previous val-
ue is lost.

When the statement (line 21)

executes, suppose that the user enters 72. The computer places that integer value into lo-
cation number2. The memory now appears as shown in Fig. A.9.

After the program of Fig. A.7 obtains values for number1 and number2, it adds the
values and places the total into variable sum. The statement (line 23)

performs the addition, then replaces any previous value in sum. After sum has been calcu-
lated, memory appears as in Fig. A.10. number1 and number2 contain the values that were

docs.oracle.com/javase/6/docs/api/

www.oracle.com/technetwork/java/javase/downloads/index.html

number1 = input.nextInt(); // read first number from user

Fig. A.8 | Memory location showing the name and value of variable number1.

number2 = input.nextInt(); // read second number from user

Fig. A.9 | Memory locations after storing values for number1 and number2.

sum = number1 + number2; // add numbers, then store total in sum

45number1

45

72

number1

number2

Z01_DEIT3397_02_SE_APPA.FM Page 381 Monday, July 7, 2014 9:07 AM

382 Appendix A Introduction to Java Applications

used in the calculation of sum. These values were used, but not destroyed, as the calculation
was performed. When a value is read from a memory location, the process is nondestruc-
tive.

A.7 Arithmetic
Most programs perform arithmetic calculations. The arithmetic operators are summa-
rized in Fig. A.11. Note the use of various special symbols not used in algebra. The asterisk
(*) indicates multiplication, and the percent sign (%) is the remainder operator, which
we’ll discuss shortly. The arithmetic operators in Fig. A.11 are binary operators, because
each operates on two operands. For example, the expression f + 7 contains the binary op-
erator + and the two operands f and 7.

Integer division yields an integer quotient. For example, the expression 7 / 4 evaluates
to 1, and the expression 17 / 5 evaluates to 3. Any fractional part in integer division is
simply discarded (i.e., truncated)—no rounding occurs. Java provides the remainder oper-
ator, %, which yields the remainder after division. The expression x % y yields the remainder
after x is divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator is most com-
monly used with integer operands but can also be used with other arithmetic types.

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in Java must be written in straight-line form to facilitate entering
programs into the computer. Thus, expressions such as “a divided by b” must be written

Fig. A.10 | Memory locations after storing the sum of number1 and number2.

Java operation Operator Algebraic expression Java expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division / x /y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. A.11 | Arithmetic operators.

45

72

117

number1

number2

sum

x
y--

Z01_DEIT3397_02_SE_APPA.FM Page 382 Monday, July 7, 2014 9:07 AM

A.7 Arithmetic 383

as a / b, so that all constants, variables and operators appear in a straight line. The follow-
ing algebraic notation is generally not acceptable to compilers:

Parentheses for Grouping Subexpressions
Parentheses are used to group terms in Java expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + c, we write

If an expression contains nested parentheses, such as

the expression in the innermost set of parentheses (a + b in this case) is evaluated first.

Rules of Operator Precedence
Java applies the operators in arithmetic expressions in a precise sequence determined by the
rules of operator precedence, which are generally the same as those followed in algebra:

1. Multiplication, division and remainder operations are applied first. If an expres-
sion contains several such operations, they’re applied from left to right. Multipli-
cation, division and remainder operators have the same level of precedence.

2. Addition and subtraction operations are applied next. If an expression contains
several such operations, the operators are applied from left to right. Addition and
subtraction operators have the same level of precedence.

These rules enable Java to apply operators in the correct order.1 When we say that
operators are applied from left to right, we’re referring to their associativity. Some opera-
tors associate from right to left. Figure A.12 summarizes these rules of operator prece-
dence. A complete precedence chart is included in Appendix K.

a * (b + c)

((a + b) * c)

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in the
more complex expressions you’ll encounter. For more information on order of evaluation, see Chap-
ter 15 of The Java™ Language Specification (java.sun.com/docs/books/jls/).

Operator(s) Operation(s) Order of evaluation (precedence)

*
/
%

Multiplication
Division
Remainder

Evaluated first. If there are several operators of this
type, they’re evaluated from left to right.

+
-

Addition
Subtraction

Evaluated next. If there are several operators of this
type, they’re evaluated from left to right.

= Assignment Evaluated last.

Fig. A.12 | Precedence of arithmetic operators.

a
b
--

Z01_DEIT3397_02_SE_APPA.FM Page 383 Monday, July 7, 2014 9:07 AM

384 Appendix A Introduction to Java Applications

Sample Algebraic and Java Expressions
Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its Java equivalent. The following is an example
of an arithmetic mean (average) of five terms:

The parentheses are required because division has higher precedence than addition. The
entire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are erroneously
omitted, we obtain a + b + c + d + e / 5, which evaluates as

Here’s an example of the equation of a straight line:

No parentheses are required. The multiplication operator is applied first because multipli-
cation has a higher precedence than addition. The assignment occurs last because it has a
lower precedence than multiplication or addition.

The following example contains remainder (%), multiplication, division, addition and
subtraction operations:

The circled numbers under the statement indicate the order in which Java applies the op-
erators. The *, % and / operations are evaluated first in left-to-right order (i.e., they asso-
ciate from left to right), because they have higher precedence than + and -. The + and -
operations are evaluated next. These operations are also applied from left to right. The as-
signment (=) operation is evaluated last.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of an assignment expression that includes a second-degree polynomial ax2 + bx + c:

The multiplication operations are evaluated first in left-to-right order (i.e., they associate
from left to right), because they have higher precedence than addition. (Java has no arith-
metic operator for exponentiation in Java, so x2 is represented as x * x. Section C.16 shows
an alternative for performing exponentiation.) The addition operations are evaluated next
from left to right. Suppose that a, b, c and x are initialized (given values) as follows: a = 2,
b = 3, c = 7 and x = 5. Figure A.13 illustrates the order in which the operators are applied.

Algebra:

Java: m = (a + b + c + d + e) / 5;

Algebra:
Java: y = m * x + b;

m a b c d e+ + + +
5

-------------------------------------=

a b c d e
5

+ + + +

y mx b+=

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:
Java:

6 1 2 4 3 5

y = a * x * x + b * x + c;

Z01_DEIT3397_02_SE_APPA.FM Page 384 Monday, July 7, 2014 9:07 AM

–

A.8 Decision Making: Equality and Relational Operators 385

A.8 Decision Making: Equality and Relational Operators
A condition is an expression that can be true or false. This section introduces Java’s if
selection statement, which allows a program to make a decision based on a condition’s
value. For example, the condition “grade is greater than or equal to 60” determines wheth-
er a student passed a test. If the condition in an if statement is true, the body of the if
statement executes. If the condition is false, the body does not execute. We’ll see an exam-
ple shortly.

Conditions in if statements can be formed by using the equality operators (== and
!=) and relational operators (>, <, >= and <=) summarized in Fig. A.14. Both equality
operators have the same level of precedence, which is lower than that of the relational oper-
ators. The equality operators associate from left to right. The relational operators all have
the same level of precedence and also associate from left to right.

Fig. A.13 | Order in which a second-degree polynomial is evaluated.

Standard algebraic
equality or relational
operator

Java equality
or relational
operator

Sample
Java
condition

Meaning of
Java condition

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Fig. A.14 | Equality and relational operators. (Part 1 of 2.)

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

 3 * 5 is 15

Step 4. y = 50 + 15 + 7;

 50 + 15 is 65

Step 5. y = 65 + 7;

 65 + 7 is 72

Step 6. y = 72

Z01_DEIT3397_02_SE_APPA.FM Page 385 Monday, July 7, 2014 9:07 AM

386 Appendix A Introduction to Java Applications

Figure A.15 uses six if statements to compare two integers input by the user. If the
condition in any of these if statements is true, the statement associated with that if state-
ment executes; otherwise, the statement is skipped. We use a Scanner to input the integers
from the user and store them in variables number1 and number2. The program compares
the numbers and displays the results of the comparisons that are true.

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

1 // Fig. A.15: Comparison.java
2 // Compare integers using if statements, relational operators
3 // and equality operators.
4 import java.util.Scanner; // program uses class Scanner
5
6 public class Comparison
7 {
8 // main method begins execution of Java application
9 public static void main(String[] args)

10 {
11 // create Scanner to obtain input from command line
12 Scanner input = new Scanner(System.in);
13
14 int number1; // first number to compare
15 int number2; // second number to compare
16
17 System.out.print("Enter first integer: "); // prompt
18 number1 = input.nextInt(); // read first number from user
19
20 System.out.print("Enter second integer: "); // prompt
21 number2 = input.nextInt(); // read second number from user
22
23
24
25
26
27
28

Fig. A.15 | Compare integers using if statements, relational operators and equality operators.
(Part 1 of 2.)

Standard algebraic
equality or relational
operator

Java equality
or relational
operator

Sample
Java
condition

Meaning of
Java condition

Fig. A.14 | Equality and relational operators. (Part 2 of 2.)

if (number1 == number2)
 System.out.printf("%d == %d\n", number1, number2);

if (number1 != number2)
 System.out.printf("%d != %d\n", number1, number2);

Z01_DEIT3397_02_SE_APPA.FM Page 386 Monday, July 7, 2014 9:07 AM

A.8 Decision Making: Equality and Relational Operators 387

The declaration of class Comparison begins at line 6. The class’s main method (lines
9–40) begins the execution of the program. Line 12 declares Scanner variable input and
assigns it a Scanner that inputs data from the standard input (i.e., the keyboard).

Lines 14–15 declare the int variables used to store the values input from the user.
Lines 17–18 prompt the user to enter the first integer and input the value, respec-

tively. The input value is stored in variable number1.
Lines 20–21 prompt the user to enter the second integer and input the value, respec-

tively. The input value is stored in variable number2.
Lines 23–24 compare the values of number1 and number2 to determine whether

they’re equal. An if statement always begins with keyword if, followed by a condition in
parentheses. An if statement expects one statement in its body, but may contain multiple
statements if they’re enclosed in a set of braces ({}). The indentation of the body statement
shown here is not required, but it improves the program’s readability by emphasizing that

29
30
31
32
33
34
35
36
37
38
39
40 } // end method main
41 } // end class Comparison

Enter first integer: 777
Enter second integer: 777
777 == 777
777 <= 777
777 >= 777

Enter first integer: 1000
Enter second integer: 2000
1000 != 2000
1000 < 2000
1000 <= 2000

Enter first integer: 2000
Enter second integer: 1000
2000 != 1000
2000 > 1000
2000 >= 1000

Fig. A.15 | Compare integers using if statements, relational operators and equality operators.
(Part 2 of 2.)

if (number1 < number2)
 System.out.printf("%d < %d\n", number1, number2);

if (number1 > number2)
 System.out.printf("%d > %d\n", number1, number2);

if (number1 <= number2)
 System.out.printf("%d <= %d\n", number1, number2);

if (number1 >= number2)
 System.out.printf("%d >= %d\n", number1, number2);

Z01_DEIT3397_02_SE_APPA.FM Page 387 Monday, July 7, 2014 9:07 AM

388 Appendix A Introduction to Java Applications

the statement in line 24 is part of the if statement that begins at line 23. Line 24 executes
only if the numbers stored in variables number1 and number2 are equal (i.e., the condition
is true). The if statements in lines 26–27, 29–30, 32–33, 35–36 and 38–39 compare
number1 and number2 using the operators !=, <, >, <= and >=, respectively. If the condition
in one or more of the if statements is true, the corresponding body statement executes.

There’s no semicolon (;) at the end of the first line of each if statement. Such a semi-
colon would result in a logic error at execution time. For example,

would actually be interpreted by Java as

where the semicolon on the line by itself—called the empty statement—is the statement
to execute if the condition in the if statement is true. When the empty statement executes,
no task is performed. The program then continues with the output statement, which al-
ways executes, regardless of whether the condition is true or false, because the output state-
ment is not part of the if statement.

Note the use of white space in Fig. A.15. Recall that the compiler normally ignores
white space. So, statements may be split over several lines and may be spaced according to
your preferences without affecting a program’s meaning. It’s incorrect to split identifiers
and strings. Ideally, statements should be kept small, but this is not always possible.

Figure A.16 shows the operators discussed so far in decreasing order of precedence. All
but the assignment operator, =, associate from left to right. The assignment operator, =, asso-
ciates from right to left, so an expression like x = y = 0 is evaluated as if it had been written
as x = (y = 0), which first assigns the value 0 to variable y, then assigns the result of that
assignment, 0, to x.

Common Programming Error A.3
Confusing the equality operator, ==, with the assignment operator, =, can cause a logic er-
ror or a syntax error. The equality operator should be read as “is equal to” and the assign-
ment operator as “gets” or “gets the value of.” To avoid confusion, some people read the
equality operator as “double equals” or “equals equals.”

if (number1 == number2); // logic error
 System.out.printf("%d == %d\n", number1, number2);

if (number1 == number2)
 ; // empty statement

System.out.printf("%d == %d\n", number1, number2);

Operators Associativity Type

* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
= right to left assignment

Fig. A.16 | Precedence and associativity of operators discussed.

Z01_DEIT3397_02_SE_APPA.FM Page 388 Monday, July 7, 2014 9:07 AM

A.9 Wrap-Up 389

A.9 Wrap-Up
In this appendix, you learned many important features of Java, including displaying data
on the screen in a Command Prompt, inputting data from the keyboard, performing calcu-
lations and making decisions. The applications presented here introduced you to basic
programming concepts. As you’ll see in Appendix B, Java applications typically contain
just a few lines of code in method main—these statements normally create the objects that
perform the work of the application. In Appendix B, you’ll learn how to implement your
own classes and use objects of those classes in applications.

Self-Review Exercises
A.1 Fill in the blanks in each of the following statements:

a) A(n) begins the body of every method, and a(n) ends the body of
every method.

b) The statement is used to make decisions.
c) begins an end-of-line comment.
d) The object is known as the standard output object.
e) are reserved for use by Java.
f) Java applications begin execution at method .
g) The after the identifier main indicate that it’s a program building block called

a method.

A.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to print the text after the // on the screen when the pro-

gram executes.
b) All variables must be given a type when they’re declared.
c) Java considers the variables number and NuMbEr to be identical.
d) The remainder operator (%) can be used only with integer operands.
e) The arithmetic operators *, /, %, + and - all have the same level of precedence.

A.3 Write statements to accomplish each of the following tasks:
a) Declare variables c, thisIsAVariable, q76354 and number to be of type int.
b) Prompt the user to enter an integer.
c) Input an integer and assign the result to int variable value. Assume Scanner variable

input can be used to read a value from the keyboard.
d) Print "This is a Java program" on one line in the command window. Use method

System.out.println.
e) Print "This is a Java program" on two lines in the command window. The first line

should end with Java. Use method System.out.println.
f) Print "This is a Java program" on two lines in the command window. The first line

should end with Java. Use method System.out.printf and two %s format specifiers.
g) If the variable number is not equal to 7, display "The variable number is not equal to 7".

A.4 Identify and correct the errors in each of the following statements:
a) if (c >= 10);

 System.out.println("c is greater than or equal to 10");
b) if (c =! 7)

 System.out.println("c is not equal to 7");

A.5 Write declarations, statements or comments that accomplish each of the following tasks:
a) State that a program will calculate the average of three numbers.

Z01_DEIT3397_02_SE_APPA.FM Page 389 Friday, June 20, 2014 4:02 PM

390 Appendix A Introduction to Java Applications

b) Create a Scanner called input that reads values from the standard input.
c) Declare the variables x, y, z and result to be of type int.
d) Prompt the user to enter the first number.
e) Read the first number from the user and store it in the variable x.
f) Prompt the user to enter the second number.
g) Read the second number from the user and store it in the variable y.
h) Prompt the user to enter the third number.
i) Read the third number from the user and store it in the variable z.
j) Compute the average of the three numbers contained in variables x, y and z, and assign

the result to the variable result.
k) Display the message “Average is” followed by the value of the variable result.

A.6 Using the statements you wrote in Exercise A.5, write a complete program that calculates
and prints the average of three numbers.

Answers to Self-Review Exercises
A.1 a) left brace ({), right brace (}). b) if. c) //. d) System.out. e) Keywords. f) main.
g) parenthesis.

A.2 a) False. Comments do not cause any action to be performed when the program executes.
They’re used to document programs and improve their readability. b) True. c) False. Java is case
sensitive, so these variables are distinct. d) False. The remainder operator can also be used with non-
integer operands in Java. e) False. The operators *, / and % are higher precedence than operators +
and -.

A.3 a) int c, thisIsAVariable, q76354, number;
or
int c;

int thisIsAVariable;

int q76354;

int number;
b) System.out.print("Enter an integer: ");
c) value = input.nextInt();

d) System.out.println("This is a Java program");
e) System.out.println("This is a Java\nprogram");
f) System.out.printf("%s\n%s\n", "This is a Java", "program");
g) if (number != 7)

 System.out.println("The variable number is not equal to 7");

A.4 a) Error: Semicolon after the right parenthesis of the condition (c >= 10) in the if.
Correction: Remove the semicolon after the right parenthesis. [Note: As a result, the
output statement will execute regardless of whether the condition in the if is true.]

b) Error: The relational operator =! is incorrect.
Correction: Change =! to !=.

A.5 a) // Calculate the average of three numbers
b) Scanner input = new Scanner(System.in);
c) float x, y, z, result;

or
float x;

float y;

float z;

float result;

Z01_DEIT3397_02_SE_APPA.FM Page 390 Monday, July 7, 2014 9:07 AM

 Exercises 391

d) System.out.print("Enter first number: ");
e) x = input.nextFloat();
f) System.out.print("Enter second number: ");
g) y = input.nextFloat();
h) System.out.print("Enter third number: ");
i) z = input.nextFloat();
j) result = (x * y * z)/3;
k) System.out.printf("Average is %f\n", result);

A.6 The solution to Self-Review Exercise A.6 is as follows:

Exercises
A.7 Fill in the blanks in each of the following statements:

a) In Java, blank lines, space characters and tabs together are known as .
b) A decision can be made in a Java program with a(n) .
c) The is an escape character, which has special meaning to print and println methods.
d) The arithmetic operators with the same precedence as multiplication are and

.
e) When parentheses in an arithmetic expression are nested, the set of paren-

theses is evaluated first.

1 // Ex. 2.6: Average.java
2 // Calculate the average of three numbers.
3 import java.util.Scanner; // program uses Scanner
4
5 public class Average
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12 float x; // first number input by user
13 float y; // second number input by user
14 float z; // third number input by user
15 float result; // average of numbers
16
17 System.out.print("Enter first number: "); // prompt for input
18 x = input.nextFloat(); // read first number
19
20 System.out.print("Enter second number: "); // prompt for input
21 y = input.nextFloat(); // read second number
22
23 System.out.print("Enter third number: "); // prompt for input
24 z = input.nextFloat(); // read third number
25
26 result = (x + y + z)/3; // calculate average of numbers
27
28 System.out.printf("Average is %f\n", result);
29 } // end method main
30 } // end class Average

Enter first number: 15.5
Enter second number: 25.5
Enter third number: 20.0
Average is 30.5

Z01_DEIT3397_02_SE_APPA.FM Page 391 Monday, July 7, 2014 9:07 AM

392 Appendix A Introduction to Java Applications

f) A location in the computer’s memory that may contain different values at various times
throughout the execution of a program is called a(n) .

A.8 Write Java statements that accomplish each of the following tasks:
a) Display the message "Enter a real number: ", leaving the cursor on the next line.
b) Assign the sum of variables a and b to variable c.
c) Use conditional operator to find maximum value of any 3 integers.

A.9 State whether each of the following is true or false. If false, explain why.
a) In Java, \r is used as new line escape sequence.
b) In an arithmetic expression, Addition and Subtraction operations are evaluated first.

If there are several operators of this type, they’re evaluated from left to right.
c) A valid Java arithmetic expression with no parentheses is evaluated from left to right.
d) The following are all invalid variable names: 3g, 87, 67h2, h22 and 2h.

A.10 Assuming that a = 5 and b = 6, what does each of the following statements display?
a) System.out.printf("a = %f\n", a);
b) System.out.printf("Product of %d and %d is %d\n", a, b, (a * b));
c) System.out.printf("Among %d & %d, %d is greater", a, b,(a > b ? a : b);
d) System.out.printf("%d = %d \n", (a * b), (b * a));

A.11 (Arithmetic, Smallest and Largest) Write an application that inputs three integers from the
user and displays the sum, average, product, smallest and largest of the numbers. Use the techniques
shown in Fig. A.15. [Note: The calculation of the average in this exercise should result in an integer
representation of the average. So, if the sum of the values is 7, the average should be 2, not 2.3333….]

A.12 What does the following code print?

System.out.printf("%s\n%s\n%s\n", "*", "***", "*****");

A.13 (Largest and Smallest Integers) Write an application that reads five integers and determines
and prints the largest and smallest integers in the group. Use only the programming techniques you
learned in this appendix.

A.14 (Odd or Even) Write an application that reads an integer and determines and prints wheth-
er it’s odd or even. [Hint: Use the remainder operator. An even number is a multiple of 2. Any mul-
tiple of 2 leaves a remainder of 0 when divided by 2.]

A.15 (Multiples) Write an application that reads two integers, determines whether the first is a
multiple of the second and prints the result. [Hint: Use the remainder operator.]

A.16 (Diameter, Circumference and Area of a Circle) Here’s a peek ahead. In this appendix, you
learned about integers and the type int. Java can also represent floating-point numbers that contain
decimal points, such as 3.14159. Write an application that inputs from the user the radius of a circle
as an integer and prints the circle’s diameter, circumference and area using the floating-point value
3.14159 for π. Use the techniques shown in Fig. A.7. [Note: You may also use the predefined con-
stant Math.PI for the value of π. This constant is more precise than the value 3.14159. Class Math
is defined in package java.lang. Classes in that package are imported automatically, so you do not
need to import class Math to use it.] Use the following formulas (r is the radius):

diameter = 2r
circumference = 2πr
area = πr2

Do not store the results of each calculation in a variable. Rather, specify each calculation as the
value that will be output in a System.out.printf statement. The values produced by the circum-
ference and area calculations are floating-point numbers. Such values can be output with the for-
mat specifier %f in a System.out.printf statement. You’ll learn more about floating-point
numbers in Appendix B.

Z01_DEIT3397_02_SE_APPA.FM Page 392 Monday, July 7, 2014 9:07 AM

 Exercises 393

A.17 (Separating the Digits in an Integer) Write an application that inputs one number consist-
ing of five digits from the user, separates the number into its individual digits and prints the digits
separated from one another by three spaces each. For example, if the user types in the number 42339,
the program should print

Assume that the user enters the correct number of digits. What happens when you execute the
program and type a number with more than five digits? What happens when you execute the pro-
gram and type a number with fewer than five digits? [Hint: It’s possible to do this exercise with the
techniques you learned in this appendix. You’ll need to use both division and remainder operations
to “pick off ” each digit.]

A.18 (Table of Squares and Cubes) Using only the programming techniques you learned in this
appendix, write an application that calculates the squares and cubes of the numbers from 0 to 10
and prints the resulting values in table format, as shown below. [Note: This program does not require
any input from the user.]

4 2 3 3 9

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Z01_DEIT3397_02_SE_APPA.FM Page 393 Monday, July 7, 2014 9:07 AM

B Introduction to Classes,
Objects, Methods and
Strings

O b j e c t i v e s
In this appendix you’ll learn:

■ How to declare a class and
use it to create an object.

■ How to implement a class’s
behaviors as methods.

■ How to implement a class’s
attributes as instance
variables and properties.

■ How to call an object’s
methods to make them
perform their tasks.

■ What instance variables of a
class and local variables of a
method are.

■ How to use a constructor to
initialize an object’s data.

■ The differences between
primitive and reference types.

Z02_DEIT3397_02_SE_APPB.fm Page 394 Tuesday, July 8, 2014 8:33 AM

B.1 Introduction 395

B.1 Introduction
In this appendix, we introduce some key concepts of object-oriented programming in Ja-
va, including classes, objects, methods, instance variables and constructors. We explore the
differences between primitive types and reference types, and we present a simple frame-
work for organizing object-oriented applications.

B.2 Declaring a Class with a Method and Instantiating an
Object of a Class
In this section, you’ll create a new class, then use it to create an object. We begin by del-
caring classes GradeBook (Fig. B.1) and GradeBookTest (Fig. B.2). Class GradeBook (de-
clared in the file GradeBook.java) will be used to display a message on the screen
(Fig. B.2) welcoming the instructor to the grade book application. Class GradeBookTest
(declared in the file GradeBookTest.java) is an application class in which the main meth-
od will create and use an object of class GradeBook. Each class declaration that begins with
keyword public must be stored in a file having the same name as the class and ending with the
.java file-name extension. Thus, classes GradeBook and GradeBookTest must be declared
in separate files, because each class is declared public.

Class GradeBook
The GradeBook class declaration (Fig. B.1) contains a displayMessage method (lines
7–10) that displays a message on the screen. We’ll need to make an object of this class and
call its method to execute line 9 and display the message.

B.1 Introduction
B.2 Declaring a Class with a Method and

Instantiating an Object of a Class
B.3 Declaring a Method with a Parameter
B.4 Instance Variables, set Methods and

get Methods

B.5 Primitive Types vs. Reference Types
B.6 Initializing Objects with

Constructors
B.7 Floating-Point Numbers and Type

double
B.8 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1 // Fig. B.1: GradeBook.java
2 // Class declaration with one method.
3
4 public class GradeBook
5 {
6 // display a welcome message to the GradeBook user
7 public void displayMessage()
8 {
9

10 } // end method displayMessage
11 } // end class GradeBook

Fig. B.1 | Class declaration with one method.

System.out.println("Welcome to the Grade Book!");

Z02_DEIT3397_02_SE_APPB.fm Page 395 Monday, July 7, 2014 9:09 AM

396 Appendix B Introduction to Classes, Objects, Methods and Strings

The class declaration begins in line 4. The keyword public is an access modifier. For
now, we’ll simply declare every class public. Every class declaration contains keyword
class followed immediately by the class’s name. Every class’s body is enclosed in a pair of
left and right braces, as in lines 5 and 11 of class GradeBook.

In Appendix A, each class we declared had one method named main. Class GradeBook
also has one method—displayMessage (lines 7–10). Recall that main is a special method
that’s always called automatically by the Java Virtual Machine (JVM) when you execute
an application. Most methods do not get called automatically. As you’ll soon see, you must
call method displayMessage explicitly to tell it to perform its task.

The method declaration begins with keyword public to indicate that the method is
“available to the public”—it can be called from methods of other classes. Next is the
method’s return type, which specifies the type of data the method returns to its caller after
performing its task. The return type void indicates that this method will perform a task
but will not return (i.e., give back) any information to its calling method. You’ve used
methods that return information—for example, in Appendix A you used Scanner method
nextInt to input an integer typed by the user at the keyboard. When nextInt reads a value
from the user, it returns that value for use in the program.

The name of the method, displayMessage, follows the return type. By convention,
method names begin with a lowercase first letter and subsequent words in the name begin
with a capital letter. The parentheses after the method name indicate that this is a method.
Empty parentheses, as in line 7, indicate that this method does not require additional
information to perform its task. Line 7 is commonly referred to as the method header.
Every method’s body is delimited by left and right braces, as in lines 8 and 10.

The body of a method contains one or more statements that perform the method’s
task. In this case, the method contains one statement (line 9) that displays the message
"Welcome to the Grade Book!" followed by a newline (because of println) in the com-
mand window. After this statement executes, the method has completed its task.

Class GradeBookTest
Next, we’ll use class GradeBook in an application. As you learned in Appendix A, method
main begins the execution of every application. A class that contains method main begins
the execution of a Java application. Class GradeBook is not an application because it does
not contain main. Therefore, if you try to execute GradeBook by typing java GradeBook in
the command window, an error will occur. To fix this problem, we must either declare a
separate class that contains a main method or place a main method in class GradeBook. To
help you prepare for the larger programs you’ll encounter later in this book and in indus-
try, we use a separate class (GradeBookTest in this example) containing method main to
test each new class we create. Some programmers refer to such a class as a driver class. The
GradeBookTest class declaration (Fig. B.2) contains the main method that will control our
application’s execution.

Lines 7–14 declare method main. A key part of enabling the JVM to locate and call
method main to begin the application’s execution is the static keyword (line 7), which
indicates that main is a static method. A static method is special, because you can call it
without first creating an object of the class in which the method is declared. We discuss static
methods in Appendix D.

Z02_DEIT3397_02_SE_APPB.fm Page 396 Monday, July 7, 2014 9:09 AM

B.2 Declaring a Class with a Method and Instantiating an Object of a Class 397

In this application, we’d like to call class GradeBook’s displayMessage method to dis-
play the welcome message in the command window. Typically, you cannot call a method
that belongs to another class until you create an object of that class, as shown in line 10.
We begin by declaring variable myGradeBook. The variable’s type is GradeBook—the class
we declared in Fig. B.1. Each new class you create becomes a new type that can be used to
declare variables and create objects.

Variable myGradeBook is initialized (line 10) with the result of the class instance cre-
ation expression new GradeBook(). Keyword new creates a new object of the class specified
to the right of the keyword (i.e., GradeBook). The parentheses to the right of GradeBook
are required. As you’ll learn in Section B.6, those parentheses in combination with a class
name represent a call to a constructor, which is similar to a method but is used only at the
time an object is created to initialize the object’s data. You’ll see that data can be placed in
the parentheses to specify initial values for the object’s data. For now, we simply leave the
parentheses empty.

Just as we can use object System.out to call its methods print, printf and println,
we can use object myGradeBook to call its method displayMessage. Line 13 calls the method
displayMessage (lines 7–10 of Fig. B.1) using myGradeBook followed by a dot separator (.),
the method name displayMessage and an empty set of parentheses. This call causes the
displayMessage method to perform its task. This method call differs from those in
Appendix A that displayed information in a command window—each of those method calls
provided arguments that specified the data to display. At the beginning of line 13, “myGrade-
Book.” indicates that main should use the myGradeBook object that was created in line 10.
Line 7 of Fig. B.1 indicates that method displayMessage has an empty parameter list—that
is, displayMessage does not require additional information to perform its task. For this
reason, the method call (line 13 of Fig. B.2) specifies an empty set of parentheses after the
method name to indicate that no arguments are being passed to method displayMessage.
When method displayMessage completes its task, method main continues executing at line
14. This is the end of method main, so the program terminates.

1 // Fig. B.2: GradeBookTest.java
2 // Creating a GradeBook object and calling its displayMessage method.
3
4 public class GradeBookTest
5 {
6 // main method begins program execution
7 public static void main(String[] args)
8 {
9 // create a GradeBook object and assign it to myGradeBook

10
11
12 // call myGradeBook's displayMessage method
13
14 } // end main
15 } // end class GradeBookTest

Welcome to the Grade Book!

Fig. B.2 | Creating a GradeBook object and calling its displayMessage method.

GradeBook myGradeBook = new GradeBook();

myGradeBook.displayMessage();

Z02_DEIT3397_02_SE_APPB.fm Page 397 Monday, July 7, 2014 9:09 AM

398 Appendix B Introduction to Classes, Objects, Methods and Strings

Any class can contain a main method. The JVM invokes the main method only in the
class used to execute the application. If an application has multiple classes that contain
main, the one that’s invoked is the one in the class named in the java command.

Compiling an Application with Multiple Classes
You must compile the classes in Fig. B.1 and Fig. B.2 before you can execute the applica-
tion. First, change to the directory that contains the application’s source-code files. Next,
type the command

to compile both classes at once. If the directory containing the application includes only
this application’s files, you can compile all the classes in the directory with the command

The asterisk (*) in *.java indicates that all files in the current directory that end with the
file-name extension “.java” should be compiled.

B.3 Declaring a Method with a Parameter
In our car analogy from Section 1.8, we discussed the fact that pressing a car’s gas pedal
sends a message to the car to perform a task—to go faster. But how fast should the car accel-
erate? As you know, the farther down you press the pedal, the faster the car accelerates. So
the message to the car actually includes the task to perform and additional information that
helps the car perform the task. This additional information is known as a parameter—the
value of the parameter helps the car determine how fast to accelerate. Similarly, a method
can require one or more parameters that represent additional information it needs to per-
form its task. Parameters are defined in a comma-separated parameter list, which is located
inside the parentheses that follow the method name. Each parameter must specify a type
and a variable name. The parameter list may contain any number of parameters, including
none at all. Empty parentheses following the method name (as in Fig. B.1, line 7) indicate
that a method does not require any parameters.

Arguments to a Method
A method call supplies values—called arguments—for each of the method’s parameters.
For example, the method System.out.println requires an argument that specifies the
data to output in a command window. Similarly, to make a deposit into a bank account,
a deposit method specifies a parameter that represents the deposit amount. When the de-
posit method is called, an argument value representing the deposit amount is assigned to
the method’s parameter. The method then makes a deposit of that amount.

Class Declaration with a Method That Has One Parameter
We now declare class GradeBook (Fig. B.3) with a displayMessage method that displays
the course name as part of the welcome message. (See the sample execution in Fig. B.4.)
The new method requires a parameter that represents the course name to output.

Before discussing the new features of class GradeBook, let’s see how the new class is
used from the main method of class GradeBookTest (Fig. B.4). Line 12 creates a Scanner
named input for reading the course name from the user. Line 15 creates the GradeBook

javac GradeBook.java GradeBookTest.java

javac *.java

Z02_DEIT3397_02_SE_APPB.fm Page 398 Monday, July 7, 2014 9:09 AM

B.3 Declaring a Method with a Parameter 399

object myGradeBook. Line 18 prompts the user to enter a course name. Line 19 reads the
name from the user and assigns it to the nameOfCourse variable, using Scanner method
nextLine to perform the input. The user types the course name and presses Enter to
submit the course name to the program. Pressing Enter inserts a newline character at the
end of the characters typed by the user. Method nextLine reads characters typed by the
user until it encounters the newline character, then returns a String containing the char-
acters up to, but not including, the newline. The newline character is discarded.

1 // Fig. B.3: GradeBook.java
2 // Class declaration with one method that has a parameter.
3
4 public class GradeBook
5 {
6 // display a welcome message to the GradeBook user
7 public void displayMessage()
8 {
9

10
11 } // end method displayMessage
12 } // end class GradeBook

Fig. B.3 | Class declaration with one method that has a parameter.

1 // Fig. B.4: GradeBookTest.java
2 // Create a GradeBook object and pass a String to
3 // its displayMessage method.
4 import java.util.Scanner; // program uses Scanner
5
6 public class GradeBookTest
7 {
8 // main method begins program execution
9 public static void main(String[] args)

10 {
11 // create Scanner to obtain input from command window
12 Scanner input = new Scanner(System.in);
13
14 // create a GradeBook object and assign it to myGradeBook
15 GradeBook myGradeBook = new GradeBook();
16
17 // prompt for and input course name
18 System.out.println("Please enter the course name:");
19
20 System.out.println(); // outputs a blank line
21
22 // call myGradeBook's displayMessage method
23 // and pass nameOfCourse as an argument
24
25 } // end main
26 } // end class GradeBookTest

Fig. B.4 | Create a GradeBook object and pass a String to its displayMessage method. (Part
1 of 2.)

String courseName

System.out.printf("Welcome to the grade book for\n%s!\n",
 courseName);

String nameOfCourse = input.nextLine(); // read a line of text

myGradeBook.displayMessage(nameOfCourse);

Z02_DEIT3397_02_SE_APPB.fm Page 399 Monday, July 7, 2014 9:09 AM

400 Appendix B Introduction to Classes, Objects, Methods and Strings

Class Scanner also provides method next that reads individual words. When the user
presses Enter after typing input, method next reads characters until it encounters a white-
space character (such as a space, tab or newline), then returns a String containing the char-
acters up to, but not including, the white-space character (which is discarded). All infor-
mation after the first white-space character is not lost—it can be read by other statements
that call the Scanner’s methods later in the program. Line 20 outputs a blank line.

Line 24 calls myGradeBooks’s displayMessage method. The variable nameOfCourse
in parentheses is the argument that’s passed to method displayMessage so that the method
can perform its task. The value of variable nameOfCourse in main becomes the value of
method displayMessage’s parameter courseName in line 7 of Fig. B.3. When you execute
this application, notice that method displayMessage outputs the name you type as part
of the welcome message (Fig. B.4).

More on Arguments and Parameters
In Fig. B.3, displayMessage’s parameter list (line 7) declares one parameter indicating that
the method requires a String to perform its task. When the method is called, the argument
value in the call is assigned to the corresponding parameter (courseName) in the method
header. Then, the method body uses the value of the courseName parameter. Lines 9–10 of
Fig. B.3 display parameter courseName’s value, using the %s format specifier in printf’s for-
mat string. The parameter variable’s name (courseName in Fig. B.3, line 7) can be the same
or different from the argument variable’s name (nameOfCourse in Fig. B.4, line 24).

The number of arguments in a method call must match the number of parameters in
the parameter list of the method’s declaration. Also, the argument types in the method call
must be “consistent with” the types of the corresponding parameters in the method’s dec-
laration. (As you’ll learn in Appendix D, an argument’s type and its corresponding param-
eter’s type are not always required to be identical.) In our example, the method call passes
one argument of type String (nameOfCourse is declared as a String in line 19 of Fig. B.4)
and the method declaration specifies one parameter of type String (courseName is
declared as a String in line 7 of Fig. B.3). So in this example the type of the argument in
the method call exactly matches the type of the parameter in the method header.

Notes on import Declarations
Notice the import declaration in Fig. B.4 (line 4). This indicates to the compiler that the
program uses class Scanner. Why do we need to import class Scanner, but not classes
System, String or GradeBook? Classes System and String are in package java.lang,
which is implicitly imported into every Java program, so all programs can use that pack-
age’s classes without explicitly importing them. Most other classes you’ll use in Java pro-
grams must be imported explicitly.

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Fig. B.4 | Create a GradeBook object and pass a String to its displayMessage method. (Part
2 of 2.)

Z02_DEIT3397_02_SE_APPB.fm Page 400 Monday, July 7, 2014 9:09 AM

B.4 Instance Variables, set Methods and get Methods 401

There’s a special relationship between classes that are compiled in the same directory
on disk, like classes GradeBook and GradeBookTest. By default, such classes are considered
to be in the same package—known as the default package. Classes in the same package are
implicitly imported into the source-code files of other classes in the same package. Thus, an
import declaration is not required when one class in a package uses another in the same
package—such as when class GradeBookTest uses class GradeBook.

The import declaration in line 4 is not required if we always refer to class Scanner as
java.util.Scanner, which includes the full package name and class name. This is known
as the class’s fully qualified class name. For example, line 12 could be written as

B.4 Instance Variables, set Methods and get Methods
In Appendix A, we declared all of an application’s variables in the application’s main meth-
od. Variables declared in the body of a particular method are known as local variables and
can be used only in that method. When that method terminates, the values of its local vari-
ables are lost. Recall from Section 1.8 that an object has attributes that are carried with it
as it’s used in a program. Such attributes exist before a method is called on an object, while
the method is executing and after the method completes execution.

A class normally consists of one or more methods that manipulate the attributes that
belong to a particular object of the class. Attributes are represented as variables in a class
declaration. Such variables are called fields and are declared inside a class declaration but
outside the bodies of the class’s method declarations. When each object of a class maintains
its own copy of an attribute, the field that represents the attribute is also known as an
instance variable—each object (instance) of the class has a separate instance of the variable
in memory. The example in this section demonstrates a GradeBook class that contains a
courseName instance variable to represent a particular GradeBook object’s course name.

GradeBook Class with an Instance Variable, a set Method and a get Method
In our next application (Figs. B.5–B.6), class GradeBook (Fig. B.5) maintains the course
name as an instance variable so that it can be used or modified at any time during an ap-
plication’s execution. The class contains three methods—setCourseName, getCourseName
and displayMessage. Method setCourseName stores a course name in a GradeBook.
Method getCourseName obtains a GradeBook’s course name. Method displayMessage,
which now specifies no parameters, still displays a welcome message that includes the
course name; as you’ll see, the method now obtains the course name by calling a method
in the same class—getCourseName.

java.util.Scanner input = new java.util.Scanner(System.in);

1 // Fig. B.5: GradeBook.java
2 // GradeBook class that contains a courseName instance variable
3 // and methods to set and get its value.
4
5 public class GradeBook
6 {

Fig. B.5 | GradeBook class that contains a courseName instance variable and methods to set
and get its value. (Part 1 of 2.)

Z02_DEIT3397_02_SE_APPB.fm Page 401 Monday, July 7, 2014 9:09 AM

402 Appendix B Introduction to Classes, Objects, Methods and Strings

A typical instructor teaches more than one course, each with its own course name.
Line 7 declares courseName as a variable of type String. Because the variable is declared
in the body of the class but outside the bodies of the class’s methods (lines 10–13, 16–19
and 22–28), line 7 is a declaration for an instance variable. Every instance (i.e., object) of
class GradeBook contains one copy of each instance variable. For example, if there are two
GradeBook objects, each object has its own copy of courseName. A benefit of making
courseName an instance variable is that all the methods of the class (in this case, Grade-
Book) can manipulate any instance variables that appear in the class (in this case, course-
Name).

Access Modifiers public and private
Most instance-variable declarations are preceded with the keyword private (as in line 7).
Like public, keyword private is an access modifier. Variables or methods declared with ac-
cess modifier private are accessible only to methods of the class in which they’re declared. Thus,
variable courseName can be used only in methods setCourseName, getCourseName and
displayMessage of (every object of) class GradeBook.

Declaring instance variables with access modifier private is known as data hiding or
information hiding. When a program creates (instantiates) an object of class GradeBook,
variable courseName is encapsulated (hidden) in the object and can be accessed only by
methods of the object’s class. This prevents courseName from being modified accidentally
by a class in another part of the program. In class GradeBook, methods setCourseName and
getCourseName manipulate the instance variable courseName.

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21 // display a welcome message to the GradeBook user
22 public void displayMessage
23 {
24 // calls getCourseName to get the name of
25 // the course this GradeBook represents
26 System.out.printf("Welcome to the grade book for\n%s!\n",
27);
28 } // end method displayMessage
29 } // end class GradeBook

Fig. B.5 | GradeBook class that contains a courseName instance variable and methods to set
and get its value. (Part 2 of 2.)

private String courseName; // course name for this GradeBook

// method to set the course name
public void setCourseName(String name)
{
 courseName = name; // store the course name
} // end method setCourseName

// method to retrieve the course name
public String getCourseName()
{
 return courseName;
} // end method getCourseName

()

getCourseName()

Z02_DEIT3397_02_SE_APPB.fm Page 402 Monday, July 7, 2014 9:09 AM

B.4 Instance Variables, set Methods and get Methods 403

Methods setCourseName and getCourseName
Method setCourseName (lines 10–13) does not return any data when it completes its task,
so its return type is void. The method receives one parameter—name—which represents
the course name that will be passed to the method as an argument. Line 12 assigns name
to instance variable courseName.

Method getCourseName (lines 16–19) returns a particular GradeBook object’s
courseName. The method has an empty parameter list, so it does not require additional
information to perform its task. The method specifies that it returns a String—this is the
method’s return type. When a method that specifies a return type other than void is called
and completes its task, the method returns a result to its calling method. For example,
when you go to an automated teller machine (ATM) and request your account balance,
you expect the ATM to give you back a value that represents your balance. Similarly, when
a statement calls method getCourseName on a GradeBook object, the statement expects to
receive the GradeBook’s course name (in this case, a String, as specified in the method dec-
laration’s return type).

The return statement in line 18 passes the value of instance variable courseName back
to the statement that calls method getCourseName. Consider, method displayMessage’s
line 27, which calls method getCourseName. When the value is returned, the statement in
lines 26–27 uses that value to output the course name. Similarly, if you have a method
square that returns the square of its argument, you’d expect the statement

to return 4 from method square and assign 4 to the variable result. If you have a method
maximum that returns the largest of three integer arguments, you’d expect the statement

to return 114 from method maximum and assign 114 to variable biggest.
The statements in lines 12 and 18 each use courseName even though it was not declared

in any of the methods. We can use courseName in GradeBook’s methods because course-
Name is an instance variable of the class.

Method displayMessage
Method displayMessage (lines 22–28) does not return any data when it completes its
task, so its return type is void. The method does not receive parameters, so the parameter
list is empty. Lines 26–27 output a welcome message that includes the value of instance
variable courseName, which is returned by the call to method getCourseName in line 27.
Notice that one method of a class (displayMessage in this case) can call another method
of the same class by using just the method name (getCourseName in this case).

GradeBookTest Class That Demonstrates Class GradeBook
Class GradeBookTest (Fig. B.6) creates one object of class GradeBook and demonstrates its
methods. Line 14 creates a GradeBook object and assigns it to local variable myGradeBook of

Software Engineering Observation B.1
Precede each field and method declaration with an access modifier. Generally, instance
variables should be declared private and methods public. (It’s appropriate to declare
certain methods private, if they’ll be accessed only by other methods of the class.)

int result = square(2);

int biggest = maximum(27, 114, 51);

Z02_DEIT3397_02_SE_APPB.fm Page 403 Monday, July 7, 2014 9:09 AM

404 Appendix B Introduction to Classes, Objects, Methods and Strings

type GradeBook. Lines 17–18 display the initial course name calling the object’s getCourse-
Name method. The first line of the output shows the name “null.” Unlike local variables,
which are not automatically initialized, every field has a default initial value—a value provided
by Java when you do not specify the field’s initial value. Thus, fields are not required to be ex-
plicitly initialized before they’re used in a program—unless they must be initialized to values
other than their default values. The default value for a field of type String (like courseName
in this example) is null, which we say more about in Section B.5.

Line 21 prompts the user to enter a course name. Local String variable theName
(declared in line 22) is initialized with the course name entered by the user, which is
returned by the call to the nextLine method of the Scanner object input. Line 23 calls
object myGradeBook’s setCourseName method and supplies theName as the method’s argu-
ment. When the method is called, the argument’s value is assigned to parameter name (line

1 // Fig. B.6: GradeBookTest.java
2 // Creating and manipulating a GradeBook object.
3 import java.util.Scanner; // program uses Scanner
4
5 public class GradeBookTest
6 {
7 // main method begins program execution
8 public static void main(String[] args)
9 {

10 // create Scanner to obtain input from command window
11 Scanner input = new Scanner(System.in);
12
13 // create a GradeBook object and assign it to myGradeBook
14 GradeBook myGradeBook = new GradeBook();
15
16 // display initial value of courseName
17 System.out.printf("Initial course name is: %s\n\n",
18);
19
20 // prompt for and read course name
21 System.out.println("Please enter the course name:");
22 String theName = input.nextLine(); // read a line of text
23
24 System.out.println(); // outputs a blank line
25
26 // display welcome message after specifying course name
27
28 } // end main
29 } // end class GradeBookTest

Initial course name is: null

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Fig. B.6 | Creating and manipulating a GradeBook object.

myGradeBook.getCourseName()

myGradeBook.setCourseName(theName); // set the course name

myGradeBook.displayMessage();

Z02_DEIT3397_02_SE_APPB.fm Page 404 Monday, July 7, 2014 9:09 AM

B.5 Primitive Types vs. Reference Types 405

10, Fig. B.5) of method setCourseName (lines 10–13, Fig. B.5). Then the parameter’s
value is assigned to instance variable courseName (line 12, Fig. B.5). Line 24 (Fig. B.6)
skips a line in the output, then line 27 calls object myGradeBook’s displayMessage method
to display the welcome message containing the course name.

set and get Methods
A class’s private fields can be manipulated only by the class’s methods. So a client of an
object—that is, any class that calls the object’s methods—calls the class’s public methods
to manipulate the private fields of an object of the class. This is why the statements in
method main (Fig. B.6) call the setCourseName, getCourseName and displayMessage
methods on a GradeBook object. Classes often provide public methods to allow clients to
set (i.e., assign values to) or get (i.e., obtain the values of) private instance variables. The
names of these methods need not begin with set or get, but this naming convention is rec-
ommended and is convention for special Java software components called JavaBeans,
which can simplify programming in many Java integrated development environments
(IDEs). The method that sets instance variable courseName in this example is called set-
CourseName, and the method that gets its value is called getCourseName.

B.5 Primitive Types vs. Reference Types
Java’s types are divided into primitive types and reference types. The primitive types are
boolean, byte, char, short, int, long, float and double. All nonprimitive types are ref-
erence types, so classes, which specify the types of objects, are reference types.

A primitive-type variable can store exactly one value of its declared type at a time. For
example, an int variable can store one whole number (such as 7) at a time. When another
value is assigned to that variable, its initial value is replaced. Primitive-type instance vari-
ables are initialized by default—variables of types byte, char, short, int, long, float and
double are initialized to 0, and variables of type boolean are initialized to false. You can
specify your own initial value for a primitive-type variable by assigning the variable a value
in its declaration, as in

Recall that local variables are not initialized by default.

Programs use variables of reference types (normally called references) to store the loca-
tions of objects in the computer’s memory. Such a variable is said to refer to an object in
the program. Objects that are referenced may each contain many instance variables. Line
14 of Fig. B.6 creates an object of class GradeBook, and the variable myGradeBook contains
a reference to that GradeBook object. Reference-type instance variables are initialized by
default to the value null—a reserved word that represents a “reference to nothing.” This is
why the first call to getCourseName in line 18 of Fig. B.6 returned null—the value of
courseName had not been set, so the default initial value null was returned.

When you use an object of another class, a reference to the object is required to invoke
(i.e., call) its methods. In the application of Fig. B.6, the statements in method main use

private int numberOfStudents = 10;

Error-Prevention Tip B.1
An attempt to use an uninitialized local variable causes a compilation error.

Z02_DEIT3397_02_SE_APPB.fm Page 405 Monday, July 7, 2014 9:09 AM

406 Appendix B Introduction to Classes, Objects, Methods and Strings

the variable myGradeBook to send messages to the GradeBook object. These messages are
calls to methods (like setCourseName and getCourseName) that enable the program to
interact with the GradeBook object. For example, the statement in line 23 uses myGrade-
Book to send the setCourseName message to the GradeBook object. The message includes
the argument that setCourseName requires to perform its task. The GradeBook object uses
this information to set the courseName instance variable. Primitive-type variables do not
refer to objects, so such variables cannot be used to invoke methods.

B.6 Initializing Objects with Constructors
As mentioned in Section B.4, when an object of class GradeBook (Fig. B.5) is created, its
instance variable courseName is initialized to null by default. What if you want to provide
a course name when you create a GradeBook object? Each class you declare can provide a
special method called a constructor that can be used to initialize an object of a class when
the object is created. In fact, Java requires a constructor call for every object that’s created.
Keyword new requests memory from the system to store an object, then calls the corre-
sponding class’s constructor to initialize the object. The call is indicated by the parentheses
after the class name. A constructor must have the same name as the class. For example, line
14 of Fig. B.6 first uses new to create a GradeBook object. The empty parentheses after “new
GradeBook” indicate a call to the class’s constructor without arguments. By default, the
compiler provides a default constructor with no parameters in any class that does not ex-
plicitly include a constructor. When a class has only the default constructor, its instance
variables are initialized to their default values.

When you declare a class, you can provide your own constructor to specify custom
initialization for objects of your class. For example, you might want to specify a course
name for a GradeBook object when the object is created, as in

In this case, the argument "CS101 Introduction to Java Programming" is passed to the
GradeBook object’s constructor and used to initialize the courseName. The preceding state-
ment requires that the class provide a constructor with a String parameter. Figure B.7
contains a modified GradeBook class with such a constructor.

Software Engineering Observation B.2
A variable’s declared type (e.g., int, double or GradeBook) indicates whether the variable
is of a primitive or a reference type. If a variable is not of one of the eight primitive types,
then it’s of a reference type.

GradeBook myGradeBook =
 new GradeBook("CS101 Introduction to Java Programming");

1 // Fig. B.7: GradeBook.java
2 // GradeBook class with a constructor to initialize the course name.
3
4 public class GradeBook
5 {
6 private String courseName; // course name for this GradeBook
7

Fig. B.7 | GradeBook class with a constructor to initialize the course name. (Part 1 of 2.)

Z02_DEIT3397_02_SE_APPB.fm Page 406 Monday, July 7, 2014 9:09 AM

B.6 Initializing Objects with Constructors 407

Lines 9–12 declare GradeBook’s constructor. Like a method, a constructor’s parameter
list specifies the data it requires to perform its task. When you create a new object (as we’ll
do in Fig. B.8), this data is placed in the parentheses that follow the class name. Line 9 of
Fig. B.7 indicates that the constructor has a String parameter called name. The name
passed to the constructor is assigned to instance variable courseName in line 11.

Figure B.8 initializes GradeBook objects using the constructor. Lines 11–12 create and
initialize the GradeBook object gradeBook1. The GradeBook constructor is called with the
argument "CS101 Introduction to Java Programming" to initialize the course name. The
class instance creation expression in lines 11–12 returns a reference to the new object,
which is assigned to the variable gradeBook1. Lines 13–14 repeat this process, this time
passing the argument "CS102 Data Structures in Java" to initialize the course name for
gradeBook2. Lines 17–20 use each object’s getCourseName method to obtain the course
names and show that they were initialized when the objects were created. The output con-
firms that each GradeBook maintains its own copy of instance variable courseName.

An important difference between constructors and methods is that constructors
cannot return values, so they cannot specify a return type (not even void). Normally, con-
structors are declared public. If a class does not include a constructor, the class’s instance
variables are initialized to their default values. If you declare any constructors for a class, the
Java compiler will not create a default constructor for that class. Thus, we can no longer create
a GradeBook object with new GradeBook() as we did in the earlier examples.

8
9

10
11
12
13
14 // method to set the course name
15 public void setCourseName(String name)
16 {
17 courseName = name; // store the course name
18 } // end method setCourseName
19
20 // method to retrieve the course name
21 public String getCourseName()
22 {
23 return courseName;
24 } // end method getCourseName
25
26 // display a welcome message to the GradeBook user
27 public void displayMessage()
28 {
29 // this statement calls getCourseName to get the
30 // name of the course this GradeBook represents
31 System.out.printf("Welcome to the grade book for\n%s!\n",
32 getCourseName());
33 } // end method displayMessage
34 } // end class GradeBook

Fig. B.7 | GradeBook class with a constructor to initialize the course name. (Part 2 of 2.)

// constructor initializes courseName with String argument
public GradeBook(String name) // constructor name is class name
{
 courseName = name; // initializes courseName
} // end constructor

Z02_DEIT3397_02_SE_APPB.fm Page 407 Monday, July 7, 2014 9:09 AM

408 Appendix B Introduction to Classes, Objects, Methods and Strings

Constructors with Multiple Parameters
Sometimes you’ll want to initialize objects with multiple data items. In Exercise B.11, we
ask you to store the course name and the instructor’s name in a GradeBook object. In this
case, the GradeBook’s constructor would be modified to receive two Strings, as in

and you’d call the GradeBook constructor as follows:

B.7 Floating-Point Numbers and Type double
We now depart temporarily from our GradeBook case study to declare an Account class
that maintains the balance of a bank account. Most account balances are not whole num-
bers (such as 0, –22 and 1024). For this reason, class Account represents the account bal-
ance as a floating-point number (i.e., a number with a decimal point, such as 7.33, 0.0975
or 1000.12345). Java provides two primitive types for storing floating-point numbers in
memory—float and double. They differ primarily in that double variables can store
numbers with larger magnitude and finer detail (i.e., more digits to the right of the decimal
point—also known as the number’s precision) than float variables.

1 // Fig. B.8: GradeBookTest.java
2 // GradeBook constructor used to specify the course name at the
3 // time each GradeBook object is created.
4
5 public class GradeBookTest
6 {
7 // main method begins program execution
8 public static void main(String[] args)
9 {

10 // create GradeBook object
11
12
13
14
15
16 // display initial value of courseName for each GradeBook
17 System.out.printf("gradeBook1 course name is: %s\n",
18 gradeBook1.getCourseName());
19 System.out.printf("gradeBook2 course name is: %s\n",
20 gradeBook2.getCourseName());
21 } // end main
22 } // end class GradeBookTest

gradeBook1 course name is: CS101 Introduction to Java Programming
gradeBook2 course name is: CS102 Data Structures in Java

Fig. B.8 | GradeBook constructor used to specify the course name at the time each GradeBook
object is created.

public GradeBook(String courseName, String instructorName)

GradeBook gradeBook = new GradeBook(
 "CS101 Introduction to Java Programming", "Sue Green");

GradeBook gradeBook1 = new GradeBook(
 "CS101 Introduction to Java Programming");
GradeBook gradeBook2 = new GradeBook(
 "CS102 Data Structures in Java");

Z02_DEIT3397_02_SE_APPB.fm Page 408 Monday, July 7, 2014 9:09 AM

B.7 Floating-Point Numbers and Type double 409

Floating-Point Number Precision and Memory Requirements
Variables of type float represent single-precision floating-point numbers and can repre-
sent up to seven significant digits. Variables of type double represent double-precision
floating-point numbers. These require twice as much memory as float variables and pro-
vide 15 significant digits—approximately double the precision of float variables. For the
range of values required by most programs, variables of type float should suffice, but you
can use double to “play it safe.” In some applications, even double variables will be inad-
equate. Most programmers represent floating-point numbers with type double. In fact,
Java treats all floating-point numbers you type in a program’s source code (such as 7.33
and 0.0975) as double values by default. Such values in the source code are known as float-
ing-point literals. See Appendix L for the ranges of values for floats and doubles.

Although floating-point numbers are not always 100% precise, they have numerous
applications. For example, when we speak of a “normal” body temperature of 98.6, we do
not need to be precise to a large number of digits. When we read the temperature on a
thermometer as 98.6, it may actually be 98.5999473210643. Calling this number simply
98.6 is fine for most applications involving body temperatures. Owing to the imprecise
nature of floating-point numbers, type double is preferred over type float, because
double variables can represent floating-point numbers more accurately. For this reason,
we primarily use type double throughout the book. For precise floating-point numbers,
Java provides class BigDecimal (package java.math).

Floating-point numbers also arise as a result of division. In conventional arithmetic,
when we divide 10 by 3, the result is 3.3333333…, with the sequence of 3s repeating infi-
nitely. The computer allocates only a fixed amount of space to hold such a value, so clearly
the stored floating-point value can be only an approximation.

Account Class with an Instance Variable of Type double
Our next application (Figs. B.9–B.10) contains a class named Account (Fig. B.9) that
maintains the balance of a bank account. A typical bank services many accounts, each with
its own balance, so line 7 declares an instance variable named balance of type double. It’s
an instance variable because it’s declared in the body of the class but outside the class’s
method declarations (lines 10–16, 19–22 and 25–28). Every instance (i.e., object) of class
Account contains its own copy of balance.

The class has a constructor and two methods. It’s common for someone opening an
account to deposit money immediately, so the constructor (lines 10–16) receives a param-
eter initialBalance of type double that represents the starting balance. Lines 14–15
ensure that initialBalance is greater than 0.0. If so, initialBalance’s value is assigned
to instance variable balance. Otherwise, balance remains at 0.0—its default initial value.

1 // Fig. B.9: Account.java
2 // Account class with a constructor to validate and
3 // initialize instance variable balance of type double.
4
5 public class Account
6 {

Fig. B.9 | Account class with a constructor to validate and initialize instance variable balance
of type double. (Part 1 of 2.)

Z02_DEIT3397_02_SE_APPB.fm Page 409 Monday, July 7, 2014 9:09 AM

410 Appendix B Introduction to Classes, Objects, Methods and Strings

Method credit (lines 19–22) does not return any data when it completes its task, so
its return type is void. The method receives one parameter named amount—a double
value that will be added to the balance. Line 21 adds amount to the current value of bal-
ance, then assigns the result to balance (thus replacing the prior balance amount).

Method getBalance (lines 25–28) allows clients of the class (i.e., other classes that use
this class) to obtain the value of a particular Account object’s balance. The method spec-
ifies return type double and an empty parameter list.

Once again, the statements in lines 15, 21 and 27 use instance variable balance even
though it was not declared in any of the methods. We can use balance in these methods
because it’s an instance variable of the class.

AccountTest Class to Use Class Account
Class AccountTest (Fig. B.10) creates two Account objects (lines 10–11) and initializes
them with 50.00 and -7.53, respectively. Lines 14–17 output the balance in each Account
by calling the Account’s getBalance method. When method getBalance is called for
account1 from line 15, the value of account1’s balance is returned from line 27 of Fig. B.9
and displayed by the System.out.printf statement (Fig. B.10, lines 14–15). Similarly,
when method getBalance is called for account2 from line 17, the value of the account2’s
balance is returned from line 27 of Fig. B.9 and displayed by the System.out.printf state-
ment (Fig. B.10, lines 16–17). The balance of account2 is 0.00, because the constructor
ensured that the account could not begin with a negative balance. The value is output by
printf with the format specifier %.2f. The format specifier %f is used to output values of
type float or double. The .2 between % and f represents the number of decimal places (2)

7
8
9 // constructor

10 public Account()
11 {
12 // validate that initialBalance is greater than 0.0;
13 // if it is not, balance is initialized to the default value 0.0
14 if (initialBalance > 0.0)
15 balance = initialBalance;
16 } // end Account constructor
17
18 // credit (add) an amount to the account
19 public void credit()
20 {
21 balance = balance + amount; // add amount to balance
22 } // end method credit
23
24 // return the account balance
25 public getBalance()
26 {
27 return balance; // gives the value of balance to the calling method
28 } // end method getBalance
29 } // end class Account

Fig. B.9 | Account class with a constructor to validate and initialize instance variable balance
of type double. (Part 2 of 2.)

private double balance; // instance variable that stores the balance

double initialBalance

double amount

double

Z02_DEIT3397_02_SE_APPB.fm Page 410 Monday, July 7, 2014 9:09 AM

B.7 Floating-Point Numbers and Type double 411

that should be output to the right of the decimal point in the floating-point number—also
known as the number’s precision. Any floating-point value output with %.2f will be round-
ed to the hundredths position—for example, 123.457 would be rounded to 123.46, 27.333
would be rounded to 27.33 and 123.455 would be rounded to 123.46.

1 // Fig. B.10: AccountTest.java
2 // Inputting and outputting floating-point numbers with Account objects.
3 import java.util.Scanner;
4
5 public class AccountTest
6 {
7 // main method begins execution of Java application
8 public static void main(String[] args)
9 {

10 Account account1 = new Account(50.00); // create Account object
11 Account account2 = new Account(-7.53); // create Account object
12
13 // display initial balance of each object
14 System.out.printf("account1 balance: $ \n",
15 account1.getBalance());
16 System.out.printf("account2 balance: $ \n\n",
17 account2.getBalance());
18
19 // create Scanner to obtain input from command window
20 Scanner input = new Scanner(System.in);
21
22
23 System.out.print("Enter deposit amount for account1: "); // prompt
24
25 System.out.printf("\nadding to account1 balance\n\n",
26 depositAmount);
27 account1.credit(depositAmount); // add to account1 balance
28
29 // display balances
30 System.out.printf("account1 balance: $ \n",
31 account1.getBalance());
32 System.out.printf("account2 balance: $ \n\n",
33 account2.getBalance());
34
35 System.out.print("Enter deposit amount for account2: "); // prompt
36
37 System.out.printf("\nadding to account2 balance\n\n",
38 depositAmount);
39 account2.credit(depositAmount); // add to account2 balance
40
41 // display balances
42 System.out.printf("account1 balance: $ \n",
43 account1.getBalance());
44 System.out.printf("account2 balance: $ \n",
45 account2.getBalance());
46 } // end main
47 } // end class AccountTest

Fig. B.10 | Inputting and outputting floating-point numbers with Account objects. (Part 1 of 2.)

%.2f

%.2f

double depositAmount; // deposit amount read from user

depositAmount = input.nextDouble(); // obtain user input
%.2f

%.2f

%.2f

depositAmount = input.nextDouble(); // obtain user input
%.2f

%.2f

%.2f

Z02_DEIT3397_02_SE_APPB.fm Page 411 Monday, July 7, 2014 9:09 AM

412 Appendix B Introduction to Classes, Objects, Methods and Strings

Line 21 declares local variable depositAmount to store each deposit amount entered
by the user. Unlike the instance variable balance in class Account, local variable deposit-
Amount in main is not initialized to 0.0 by default. However, this variable does not need to
be initialized here, because its value will be determined by the user’s input.

Line 23 prompts the user to enter a deposit amount for account1. Line 24 obtains the
input from the user by calling Scanner object input’s nextDouble method, which returns
a double value entered by the user. Lines 25–26 display the deposit amount. Line 27 calls
object account1’s credit method and supplies depositAmount as the method’s argument.
When the method is called, the argument’s value is assigned to parameter amount (line 19
of Fig. B.9) of method credit (lines 19–22 of Fig. B.9); then method credit adds that
value to the balance (line 21 of Fig. B.9). Lines 30–33 (Fig. B.10) output the balances of
both Accounts again to show that only account1’s balance changed.

Line 35 prompts the user to enter a deposit amount for account2. Line 36 obtains the
input from the user by calling Scanner object input’s nextDouble method. Lines 37–38
display the deposit amount. Line 39 calls object account2’s credit method and supplies
depositAmount as the method’s argument; then method credit adds that value to the bal-
ance. Finally, lines 42–45 output the balances of both Accounts again to show that only
account2’s balance changed.

B.8 Wrap-Up
In this appendix, you learned how to declare instance variables of a class to maintain data
for each object of the class, and how to declare methods that operate on that data. You
learned how to call a method to tell it to perform its task and how to pass information to
methods as arguments. You learned the difference between a local variable of a method
and an instance variable of a class and that only instance variables are initialized automat-
ically. You also learned how to use a class’s constructor to specify the initial values for an
object’s instance variables. Finally, you learned about floating-point numbers—how to
store them with variables of primitive type double, how to input them with a Scanner ob-
ject and how to format them with printf and format specifier %f for display purposes. In
the next appendix we begin our introduction to control statements, which specify the or-
der in which a program’s actions are performed. You’ll use these in your methods to spec-
ify how they should perform their tasks.

account1 balance: $50.00
account2 balance: $0.00

Enter deposit amount for account1: 25.53

adding 25.53 to account1 balance

account1 balance: $75.53
account2 balance: $0.00

Enter deposit amount for account2: 123.45

adding 123.45 to account2 balance

account1 balance: $75.53
account2 balance: $123.45

Fig. B.10 | Inputting and outputting floating-point numbers with Account objects. (Part 2 of 2.)

Z02_DEIT3397_02_SE_APPB.fm Page 412 Monday, July 7, 2014 9:09 AM

 Self-Review Exercises 413

Self-Review Exercises
B.1 Fill in the blanks in each of the following:

a) A method is a special method that you can call without first creating an ob-
ject of the class in which it is declared.

b) Keyword in a class declaration is followed immediately by the class’s name.
c) Keyword requests memory from the system to store an object, then calls the

corresponding class’s constructor to initialize the object.
d) Each parameter must specify both a(n) and a(n) .
e) By default, classes that are compiled in the same directory are considered to be in the

same package, known as the .
f) When each object of a class maintains its own copy of an attribute, the field that repre-

sents the attribute is also known as a(n) .
g) Java provides two primitive types for storing floating-point numbers in memory:

 and .
h) Variables of type double represent floating-point numbers.
i) Scanner method returns a double value.
j) Keyword public is an access .
k) Return type indicates that a method will not return a value.
l) Scanner method reads characters until it encounters a newline character,

then returns those characters as a String.
m) Class String is in package .
n) A(n) is not required if you always refer to a class with its fully qualified class

name.
o) A(n) is a number with a decimal point, such as 7.33, 0.0975 or 1000.12345.
p) Variables of type float represent floating-point numbers.
q) The format specifier is used to output values of type float or double.
r) Types in Java are divided into two categories— types and types.

B.2 State whether each of the following is true or false. If false, explain why.
a) By convention, method names begin with an uppercase first letter, and all subsequent

words in the name begin with a capital first letter.
b) An import declaration is not required when one class in a package uses another in the

same package.
c) Empty parentheses following a method name in a method declaration indicate that the

method does not require any parameters to perform its task.
d) Variables or methods declared with access modifier private are accessible only to meth-

ods of the class in which they’re declared.
e) A primitive-type variable can be used to invoke a method.
f) The compiler provides a default constructor with no parameters in any class that does

not explicitly include a constructor.
g) Every method’s body is delimited by left and right braces ({ and }).
h) Primitive-type local variables are initialized by default.
i) Reference-type instance variables are initialized by default to the value null.
j) Any class that contains public static void main(String[] args) can be used to exe-

cute an application.
k) The argument types in the method call need not be consistent with the types of corre-

sponding parameters in the method’s declaration.
l) Floating-point values that appear in source code are known as floating-point literals and

are type float by default.

B.3 Explain the public and private access modifiers in brief.

Z02_DEIT3397_02_SE_APPB.fm Page 413 Friday, June 20, 2014 6:23 PM

414 Appendix B Introduction to Classes, Objects, Methods and Strings

B.4 Explain the purpose of a method parameter. What is the difference between a parameter
and an argument?

Answers to Self-Review Exercises
B.1 a) static. b) class. c) new. d) type, name. e) default package. f) instance variable. g) float,
double. h) double-precision. i) nextDouble. j) modifier. k) void. l) nextLine. m) java.lang.
n) import declaration. o) floating-point number. p) single-precision. q) %f. r) primitive, reference.

B.2 a) False. By convention, method names begin with a lowercase first letter and all subse-
quent words in the name begin with a capital first letter. b) True. c) True. d) True. e) False. A prim-
itive-type variable cannot be used to invoke a method—a reference to an object is required to invoke
the object’s methods. f) True. g) True. h) False. Primitive-type instance variables are initialized by
default. Each local variable must explicitly be assigned a value. i) True. j) True. k) False. The argu-
ment types in the method call must be consistent with the types of corresponding parameters in the
method’s declaration. l) False. Such literals are of type double by default.

B.3 As the names suggest, variables or methods declared with access modifier private are acces-
sible only to methods of the class in which they’re declared, whereas the variables or methods de-
clared with access modifier public are “accessible to the public”—they can be accessed from
methods of other classes.

B.4 A parameter represents additional information that a method requires to perform its task.
Each parameter required by a method is specified in the method’s declaration. An argument is the
actual value for a method parameter. When a method is called, the argument values are passed to
the corresponding parameters of the method so that it can perform its task.

Exercises
B.5 (Class Scanner) What’s the purpose of class Scanner? Explain how to make use of its var-
ious features.

B.6 (Primitive and Reference Types) What are primitive and reference data types in Java? Ex-
plain the differences between them.

B.7 (Static Variables) Explain the purpose of a static variable.

B.8 (Using Classes Without Importing Them) Most classes need to be imported before they can
be used in an application. Why is every application allowed to use classes System and String without
first importing them?

B.9 (App Compilation) Briefly explain how to compile an application with multiple classes us-
ing an example.

B.10 (Imports Declarations) What is an import declaration? Explain its usage in java program-
ming with an example.

B.11 (Modified GradeBook Class) Modify class GradeBook (Fig. B.7) as follows:
a) Include a String instance variable that represents the name of the course’s instructor.
b) Provide a set method to change the instructor’s name and a get method to retrieve it.
c) Modify the constructor to specify two parameters—one for the course name and one

for the instructor’s name.
d) Modify method displayMessage to output the welcome message and course name, fol-

lowed by "This course is presented by: " and the instructor’s name.

Use your modified class in a test application that demonstrates the class’s new capabilities.

B.12 (Modified Account Class) Modify class Account (Fig. B.9) to provide a method called debit
that withdraws money from an Account. Ensure that the debit amount does not exceed the

Z02_DEIT3397_02_SE_APPB.fm Page 414 Monday, July 7, 2014 9:09 AM

 Exercises 415

Account’s balance. If it does, the balance should be left unchanged and the method should print a
message indicating "Debit amount exceeded account balance." Modify class AccountTest

(Fig. B.10) to test method debit.

B.13 (Invoice Class) Create a class called Invoice that a hardware store might use to represent
an invoice for an item sold at the store. An Invoice should include four pieces of information as
instance variables—a part number (type String), a part description (type String), a quantity of the
item being purchased (type int) and a price per item (double). Your class should have a constructor
that initializes the four instance variables. Provide a set and a get method for each instance variable.
In addition, provide a method named getInvoiceAmount that calculates the invoice amount (i.e.,
multiplies the quantity by the price per item), then returns the amount as a double value. If the
quantity is not positive, it should be set to 0. If the price per item is not positive, it should be set to
0.0. Write a test application named InvoiceTest that demonstrates class Invoice’s capabilities.

B.14 (Employee Class) Create a class called Employee that includes three instance variables—a
first name (type String), a last name (type String) and a monthly salary (double). Provide a con-
structor that initializes the three instance variables. Provide a set and a get method for each instance
variable. If the monthly salary is not positive, do not set its value. Write a test application named
EmployeeTest that demonstrates class Employee’s capabilities. Create two Employee objects and dis-
play each object’s yearly salary. Then give each Employee a 10% raise and display each Employee’s
yearly salary again.

B.15 (Date Class) Create a class called Date that includes three instance variables—a month (type
int), a day (type int) and a year (type int). Provide a constructor that initializes the three instance
variables and assumes that the values provided are correct. Provide a set and a get method for each
instance variable. Provide a method displayDate that displays the month, day and year separated
by forward slashes (/). Write a test application named DateTest that demonstrates class Date’s ca-
pabilities.

Z02_DEIT3397_02_SE_APPB.fm Page 415 Monday, July 7, 2014 9:09 AM

C Control Statements

O b j e c t i v e s
In this appendix you’ll:

■ Learn basic problem-solving
techniques.

■ Develop algorithms through
the process of top-down,
stepwise refinement.

■ Use the if and if…else
selection statements to
choose among alternative
actions.

■ Use the while repetition
statement to execute
statements in a program
repeatedly.

■ Use counter-controlled
repetition and sentinel-
controlled repetition.

■ Use the compound
assignment, increment and
decrement operators.

■ Learn the essentials of
counter-controlled repetition.

■ Use the for and do…while
repetition statements to
execute statements in a
program repeatedly.

■ Implement multiple selection
using the switch statement.

■ Use the break and
continue statements .

■ Use the logical operators in
conditional expressions.

Z03_DEIT3397_02_SE_APPC.fm Page 416 Tuesday, July 8, 2014 8:33 AM

C.1 Introduction 417

C.1 Introduction
In this appendix, we discuss the theory and principles of structured programming. The
concepts presented here are crucial in building classes and manipulating objects. We in-
troduce Java’s compound assignment, increment and decrement operators, and we discuss
the portability of Java’s primitive types. We demonstrate Java’s for, do…while and
switch statements. Through a series of short examples using while and for, we explore
the essentials of counter-controlled repetition. We create a version of class GradeBook that
uses a switch statement to count the number of A, B, C, D and F grade equivalents in a
set of numeric grades entered by the user. We introduce the break and continue program-
control statements. We discuss Java’s logical operators, which enable you to use more com-
plex conditional expressions in control statements.

C.2 Algorithms
Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to execute and

2. the order in which these actions execute

is called an algorithm. Correctly specifying the order in which the actions execute is im-
portant.

Consider the “rise-and-shine algorithm” followed by one executive for getting out of
bed and going to work: (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get
dressed; (5) eat breakfast; (6) carpool to work. This routine gets the executive to work well
prepared to make critical decisions. Suppose that the same steps are performed in a slightly

C.1 Introduction
C.2 Algorithms
C.3 Pseudocode
C.4 Control Structures
C.5 if Single-Selection Statement
C.6 if…else Double-Selection

Statement
C.7 while Repetition Statement
C.8 Case Study: Counter-Controlled

Repetition
C.9 Case Study: Sentinel-Controlled

Repetition
C.10 Case Study: Nested Control

Statements
C.11 Compound Assignment Operators

C.12 Increment and Decrement Operators
C.13 Primitive Types
C.14 Essentials of Counter-Controlled

Repetition
C.15 for Repetition Statement
C.16 Examples Using the for Statement
C.17 do…while Repetition Statement
C.18 switch Multiple-Selection Statement
C.19 break and continue Statements
C.20 Logical Operators
C.21 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Z03_DEIT3397_02_SE_APPC.fm Page 417 Monday, July 7, 2014 9:08 AM

418 Appendix C Control Statements

different order: (1) Get out of bed; (2) take off pajamas; (3) get dressed; (4) take a shower;
(5) eat breakfast; (6) carpool to work. In this case, our executive shows up for work soaking
wet. Specifying the order in which statements (actions) execute in a program is called pro-
gram control. This appendix investigates program control using Java’s control statements.

C.3 Pseudocode
Pseudocode is an informal language that helps you develop algorithms without having to
worry about the strict details of Java language syntax. The pseudocode we present is par-
ticularly useful for developing algorithms that will be converted to structured portions of
Java programs. Pseudocode is similar to everyday English—it’s convenient and user
friendly, but it’s not an actual computer programming language.

Pseudocode does not execute on computers. Rather, it helps you “think out” a pro-
gram before attempting to write it in a programming language, such as Java. Pseudocode
normally describes only statements representing the actions that occur after you convert a
program from pseudocode to Java and the program is run on a computer. Such actions
might include input, output or calculations.

C.4 Control Structures
Normally, statements in a program are executed one after the other in the order in which
they’re written. This process is called sequential execution. Various Java statements,
which we’ll soon discuss, enable you to specify that the next statement to execute is not
necessarily the next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The blame
was pointed at the goto statement (used in most programming languages of the time),
which allows you to specify a transfer of control to one of a wide range of destinations in
a program. The term structured programming became almost synonymous with “goto
elimination.” [Note: Java does not have a goto statement; however, the word goto is
reserved by Java and should not be used as an identifier in programs.]

Research had demonstrated that programs could be written without any goto state-
ments. The challenge of the era for programmers was to shift their styles to “goto-less pro-
gramming.” Not until the 1970s did most programmers start taking structured
programming seriously. The results were impressive. The key to these successes was that
structured programs were clearer, easier to debug and modify, and more likely to be bug
free in the first place.

Researchers demonstrated that all programs could be written in terms of only three
control structures—the sequence structure, the selection structure and the repetition
structure. When we introduce Java’s control structure implementations, we’ll refer to
them in the terminology of the Java Language Specification as “control statements.”

Sequence Structure in Java
The sequence structure is built into Java. Unless directed otherwise, the computer executes
Java statements one after the other in the order in which they’re written—that is, in se-
quence. Java lets you have as many actions as you want in a sequence structure. As we’ll
soon see, anywhere a single action may be placed, we may place several actions in sequence.

Z03_DEIT3397_02_SE_APPC.fm Page 418 Monday, July 7, 2014 9:08 AM

C.5 if Single-Selection Statement 419

Selection Statements in Java
Java has three types of selection statements. The if statement either performs (selects) an
action, if a condition is true, or skips it, if the condition is false. The if…else statement
performs an action if a condition is true and performs a different action if the condition is
false. The switch statement performs one of many different actions, depending on the val-
ue of an expression.

The if statement is a single-selection statement because it selects or ignores a single
action (or, as we’ll soon see, a single group of actions). The if…else statement is called a
double-selection statement because it selects between two different actions (or groups of
actions). The switch statement is called a multiple-selection statement because it selects
among many different actions (or groups of actions).

Repetition Statements in Java
Java provides three repetition statements (also called looping statements) that enable pro-
grams to perform statements repeatedly as long as a condition (called the loop-continua-
tion condition) remains true. The repetition statements are the while, do…while and for
statements. The while and for statements perform the action (or group of actions) in their
bodies zero or more times—if the loop-continuation condition is initially false, the action
(or group of actions) will not execute. The do…while statement performs the action (or
group of actions) in its body one or more times. The words if, else, switch, while, do and
for are Java keywords.

C.5 if Single-Selection Statement
Programs use selection statements to choose among alternative courses of action. For ex-
ample, suppose that the passing grade on an exam is 60. The pseudocode statement

determines whether the condition “student’s grade is greater than or equal to 60” is true.
If so, “Passed” is printed, and the next pseudocode statement in order is “performed.” If
the condition is false, the Print statement is ignored, and the next pseudocode statement
in order is performed.

The preceding pseudocode If statement easily may be converted to the Java statement

C.6 if…else Double-Selection Statement
The if single-selection statement performs an indicated action only when the condition
is true; otherwise, the action is skipped. The if…else double-selection statement allows
you to specify an action to perform when the condition is true and a different action when
the condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

if (studentGrade >= 60)
 System.out.println("Passed");

If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

Z03_DEIT3397_02_SE_APPC.fm Page 419 Monday, July 7, 2014 9:08 AM

420 Appendix C Control Statements

prints “Passed” if the student’s grade is greater than or equal to 60, but prints “Failed” if
it’s less than 60. In either case, after printing occurs, the next pseudocode statement in se-
quence is “performed.”

The preceding If…Else pseudocode statement can be written in Java as

Conditional Operator (?:)
Java provides the conditional operator (?:) that can be used in place of an if…else

statement. This is Java’s only ternary operator (operator that takes three operands). To-
gether, the operands and the ?: symbol form a conditional expression. The first operand
(to the left of the ?) is a boolean expression (i.e., a condition that evaluates to a boolean
value—true or false), the second operand (between the ? and :) is the value of the con-
ditional expression if the boolean expression is true and the third operand (to the right of
the :) is the value of the conditional expression if the boolean expression evaluates to
false. For example, the statement

prints the value of println’s conditional-expression argument. The conditional expres-
sion in this statement evaluates to the string "Passed" if the boolean expression student-
Grade >= 60 is true and to the string "Failed" if it’s false. Thus, this statement with the
conditional operator performs essentially the same function as the if…else statement
shown earlier in this section. The precedence of the conditional operator is low, so the en-
tire conditional expression is normally placed in parentheses.

Nested if…else Statements
A program can test multiple cases by placing if…else statements inside other if…else

statements to create nested if…else statements. For example, the following pseudocode
represents a nested if…else that prints A for exam grades greater than or equal to 90, B
for grades 80 to 89, C for grades 70 to 79, D for grades 60 to 69 and F for all other grades:

if (grade >= 60)
 System.out.println("Passed");
else
 System.out.println("Failed");

System.out.println(studentGrade >= 60 ? "Passed" : "Failed");

If student’s grade is greater than or equal to 90
Print “A”

else
If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

Z03_DEIT3397_02_SE_APPC.fm Page 420 Monday, July 7, 2014 9:08 AM

C.6 if…else Double-Selection Statement 421

This pseudocode may be written in Java as

If variable studentGrade is greater than or equal to 90, the first four conditions in the nest-
ed if…else statement will be true, but only the statement in the if part of the first
if…else statement will execute. After that statement executes, the else part of the
“outermost” if…else statement is skipped. Many programmers prefer to write the pre-
ceding nested if…else statement as

The two forms are identical except for the spacing and indentation, which the compiler
ignores. The latter form avoids deep indentation of the code to the right.

Blocks
The if statement normally expects only one statement in its body. To include several
statements in the body of an if (or the body of an else for an if…else statement), en-
close the statements in braces. Statements contained in a pair of braces form a block. A
block can be placed anywhere in a program that a single statement can be placed. The fol-
lowing example includes a block in the else part of an if…else statement:

In this case, if grade is less than 60, the program executes both statements in the body of
the else and prints

if (studentGrade >= 90)
 System.out.println("A");
else
 if (studentGrade >= 80)
 System.out.println("B");
 else
 if (studentGrade >= 70)
 System.out.println("C");
 else
 if (studentGrade >= 60)
 System.out.println("D");
 else
 System.out.println("F");

if (studentGrade >= 90)
 System.out.println("A");
else if (studentGrade >= 80)
 System.out.println("B");
else if (studentGrade >= 70)
 System.out.println("C");
else if (studentGrade >= 60)
 System.out.println("D");
else
 System.out.println("F");

if (grade >= 60)
 System.out.println("Passed");
else
{
 System.out.println("Failed");
 System.out.println("You must take this course again.");
}

Failed
You must take this course again.

Z03_DEIT3397_02_SE_APPC.fm Page 421 Monday, July 7, 2014 9:08 AM

422 Appendix C Control Statements

Note the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

would be outside the body of the else part of the if…else statement and would execute
regardless of whether the grade was less than 60.

Syntax errors (e.g., when one brace in a block is left out of the program) are caught
by the compiler. A logic error (e.g., when both braces in a block are left out of the pro-
gram) has its effect at execution time. A fatal logic error causes a program to fail and ter-
minate prematurely. A nonfatal logic error allows a program to continue executing but
causes it to produce incorrect results.

C.7 while Repetition Statement
As an example of Java’s while repetition statement, consider a program segment that finds
the first power of 3 larger than 100. Suppose that the int variable product is initialized to
3. After the following while statement executes, product contains the result:

When this while statement begins execution, the value of variable product is 3. Each it-
eration of the while statement multiplies product by 3, so product takes on the values 9,
27, 81 and 243 successively. When variable product becomes 243, the while-statement
condition—product <= 100—becomes false. This terminates the repetition, so the final
value of product is 243. At this point, program execution continues with the next state-
ment after the while statement .

C.8 Case Study: Counter-Controlled Repetition
To illustrate how algorithms are developed, we modify the GradeBook class of Appendix B
to solve two variations of a problem that averages student grades. Consider the following
problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each grade, keep track of the
total of all grades input, perform the averaging calculation and print the result.

Pseudocode Algorithm with Counter-Controlled Repetition
Let’s use pseudocode to list the actions to execute and specify the order in which they
should execute. We use counter-controlled repetition to input the grades one at a time.
This technique uses a variable called a counter (or control variable) to control the number

System.out.println("You must take this course again.");

while (product <= 100)
 product = 3 * product;

Common Programming Error C.1
Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false normally results in a logic error called an infinite loop
(the loop never terminates).

Z03_DEIT3397_02_SE_APPC.fm Page 422 Monday, July 7, 2014 9:08 AM

C.8 Case Study: Counter-Controlled Repetition 423

of times a set of statements will execute. In this example, repetition terminates when the
counter exceeds 10. This section presents a fully developed pseudocode algorithm
(Fig. C.1) and a version of class GradeBook (Fig. C.2) that implements the algorithm in a
Java method. We then present an application (Fig. C.3) that demonstrates the algorithm
in action.

Note the references in the algorithm of Fig. C.1 to a total and a counter. A total is a
variable used to accumulate the sum of several values. A counter is a variable used to
count—in this case, the grade counter indicates which of the 10 grades is about to be
entered by the user. Variables used to store totals are normally initialized to zero before
being used in a program.

Implementing Counter-Controlled Repetition in Class GradeBook
Class GradeBook (Fig. C.2) contains a constructor (lines 11–14) that assigns a value to the
class’s instance variable courseName (declared in line 8). Lines 17–20, 23–26 and 29–34
declare methods setCourseName, getCourseName and displayMessage, respectively.
Lines 37–66 declare method determineClassAverage, which implements the class-aver-
aging algorithm described by the pseudocode in Fig. C.1.

Line 40 declares and initializes Scanner variable input, which is used to read values
entered by the user. Lines 42–45 declare local variables total, gradeCounter, grade and
average to be of type int. Variable grade stores the user input.

1 Set total to zero
2 Set grade counter to one
3
4 While grade counter is less than or equal to ten
5 Prompt the user to enter the next grade
6 Input the next grade
7 Add the grade into the total
8 Add one to the grade counter
9

10 Set the class average to the total divided by ten
11 Print the class average

Fig. C.1 | Pseudocode algorithm that uses counter-controlled repetition to solve the class-
average problem.

1 // Fig. C.2: GradeBook.java
2 // GradeBook class that solves the class-average problem using
3 // counter-controlled repetition.
4 import java.util.Scanner; // program uses class Scanner
5
6 public class GradeBook
7 {
8 private String courseName; // name of course this GradeBook represents

Fig. C.2 | GradeBook class that solves the class-average problem using counter-controlled
repetition. (Part 1 of 3.)

Z03_DEIT3397_02_SE_APPC.fm Page 423 Monday, July 7, 2014 9:08 AM

424 Appendix C Control Statements

9
10 // constructor initializes courseName
11 public GradeBook(String name)
12 {
13 courseName = name; // initializes courseName
14 } // end constructor
15
16 // method to set the course name
17 public void setCourseName(String name)
18 {
19 courseName = name; // store the course name
20 } // end method setCourseName
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 } // end method getCourseName
27
28 // display a welcome message to the GradeBook user
29 public void displayMessage()
30 {
31 // getCourseName gets the name of the course
32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());
34 } // end method displayMessage
35
36 // determine class average based on 10 grades entered by user
37
38 {
39 // create Scanner to obtain input from command window
40 Scanner input = new Scanner(System.in);
41
42 int total; // sum of grades entered by user
43
44 int grade; // grade value entered by user
45 int average; // average of grades
46
47 // initialization phase
48 total = 0; // initialize total
49
50
51 // processing phase uses counter-controlled repetition
52 while () // loop 10 times
53 {
54 System.out.print("Enter grade: "); // prompt
55 grade = input.nextInt(); // input next grade
56 total = total + grade; // add grade to total
57
58 } // end while
59

Fig. C.2 | GradeBook class that solves the class-average problem using counter-controlled
repetition. (Part 2 of 3.)

public void determineClassAverage()

int gradeCounter; // number of the grade to be entered next

gradeCounter = 1; // initialize loop counter

gradeCounter <= 10

gradeCounter = gradeCounter + 1; // increment counter by 1

Z03_DEIT3397_02_SE_APPC.fm Page 424 Monday, July 7, 2014 9:08 AM

C.8 Case Study: Counter-Controlled Repetition 425

The declarations (in lines 42–45) appear in the body of method determine-
ClassAverage. A local variable’s declaration must appear before the variable is used in that
method. A local variable cannot be accessed outside the method in which it’s declared.

The assignments (in lines 48–49) initialize total to 0 and gradeCounter to 1. Line
52 indicates that the while statement should continue looping (also called iterating) as
long as gradeCounter’s value is less than or equal to 10. While this condition remains true,
the while statement repeatedly executes the statements between the braces that delimit its
body (lines 54–57).

Line 54 displays the prompt "Enter grade: ". Line 55 reads the grade entered by the
user and assigns it to variable grade. Then line 56 adds the new grade entered by the user
to the total and assigns the result to total, which replaces its previous value.

Line 57 adds 1 to gradeCounter to indicate that the program has processed a grade and
is ready to input the next grade from the user. Incrementing gradeCounter eventually causes
it to exceed 10. Then the loop terminates, because its condition (line 52) becomes false.

When the loop terminates, line 61 performs the averaging calculation and assigns its
result to the variable average. Line 64 uses System.out’s printf method to display the
text "Total of all 10 grades is " followed by variable total’s value. Line 65 then uses
printf to display the text "Class average is " followed by variable average’s value.
After reaching line 66, method determineClassAverage returns control to the calling
method (i.e., main in GradeBookTest of Fig. C.3).

Class GradeBookTest
Class GradeBookTest (Fig. C.3) creates an object of class GradeBook (Fig. C.2) and dem-
onstrates its capabilities. Lines 10–11 of Fig. C.3 create a new GradeBook object and assign
it to variable myGradeBook. The String in line 11 is passed to the GradeBook constructor
(lines 11–14 of Fig. C.2). Line 13 calls myGradeBook’s displayMessage method to display
a welcome message to the user. Line 14 then calls myGradeBook’s determineClassAverage
method to allow the user to enter 10 grades, for which the method then calculates and
prints the average—the method performs the algorithm shown in Fig. C.1.

60 // termination phase
61
62
63 // display total and average of grades
64 System.out.printf("\nTotal of all 10 grades is %d\n", total);
65 System.out.printf("Class average is %d\n", average);
66 } // end method determineClassAverage
67 } // end class GradeBook

1 // Fig. C.3: GradeBookTest.java
2 // Create GradeBook object and invoke its determineClassAverage method.
3

Fig. C.3 | GradeBookTest class creates an object of class GradeBook (Fig. C.2) and invokes its
determineClassAverage method. (Part 1 of 2.)

Fig. C.2 | GradeBook class that solves the class-average problem using counter-controlled
repetition. (Part 3 of 3.)

average = total / 10; // integer division yields integer result

Z03_DEIT3397_02_SE_APPC.fm Page 425 Monday, July 7, 2014 9:08 AM

426 Appendix C Control Statements

Notes on Integer Division and Truncation
The averaging calculation performed by method determineClassAverage in response to
the method call at line 14 in Fig. C.3 produces an integer result. The program’s output
indicates that the sum of the grade values in the sample execution is 846, which, when di-
vided by 10, should yield the floating-point number 84.6. However, the result of the cal-
culation total / 10 (line 61 of Fig. C.2) is the integer 84, because total and 10 are both
integers. Dividing two integers results in integer division—any fractional part of the cal-
culation is lost (i.e., truncated).

C.9 Case Study: Sentinel-Controlled Repetition
Let’s generalize Section C.8’s class-average problem. Consider the following problem:

Develop a class-averaging program that processes grades for an arbitrary number of
students each time it’s run.

In the previous class-average example, the problem statement specified the number of stu-
dents, so the number of grades (10) was known in advance. In this example, no indication

4 public class GradeBookTest
5 {
6 public static void main(String[] args)
7 {
8 // create GradeBook object myGradeBook and
9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(
11 "CS101 Introduction to Java Programming");
12
13 myGradeBook.displayMessage(); // display welcome message
14
15 } // end main
16 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846
Class average is 84

Fig. C.3 | GradeBookTest class creates an object of class GradeBook (Fig. C.2) and invokes its
determineClassAverage method. (Part 2 of 2.)

myGradeBook.determineClassAverage(); // find average of 10 grades

Z03_DEIT3397_02_SE_APPC.fm Page 426 Monday, July 7, 2014 9:08 AM

C.9 Case Study: Sentinel-Controlled Repetition 427

is given of how many grades the user will enter during the program’s execution. The pro-
gram must process an arbitrary number of grades. How can it determine when to stop
reading grades from the user? How will it know when to calculate and print the class
average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate “end of data entry.” The
user enters grades until all legitimate grades have been entered. The user then types the
sentinel value to indicate that no more grades will be entered. Sentinel-controlled repeti-
tion is often called indefinite repetition because the number of repetitions is not known
before the loop begins executing.

Clearly, a sentinel value must be chosen that cannot be confused with an acceptable
input value. Grades on a quiz are nonnegative integers, so –1 is an acceptable sentinel value
for this problem. Thus, a run of the class-average program might process a stream of inputs
such as 95, 96, 75, 74, 89 and –1. The program would then compute and print the class
average for the grades 95, 96, 75, 74 and 89; since –1 is the sentinel value, it should not
enter into the averaging calculation. The complete pseudocode for the class-average
problem is shown in Fig. C.4.

Implementing Sentinel-Controlled Repetition in Class GradeBook
Figure C.5 shows the Java class GradeBook containing method determineClassAverage
that implements the pseudocode algorithm of Fig. C.4. Although each grade is an integer,
the averaging calculation is likely to produce a number with a decimal point—in other
words, a real (i.e., floating-point) number. The type int cannot represent such a number,
so this class uses type double to do so.

1 Initialize total to zero
2 Initialize counter to zero
3
4 Prompt the user to enter the first grade
5 Input the first grade (possibly the sentinel)
6
7 While the user has not yet entered the sentinel
8 Add this grade into the running total
9 Add one to the grade counter

10 Prompt the user to enter the next grade
11 Input the next grade (possibly the sentinel)
12
13 If the counter is not equal to zero
14 Set the average to the total divided by the counter
15 Print the average
16 else
17 Print “No grades were entered”

Fig. C.4 | Class-average problem pseudocode algorithm with sentinel-controlled repetition.

Z03_DEIT3397_02_SE_APPC.fm Page 427 Monday, July 7, 2014 9:08 AM

428 Appendix C Control Statements

1 // Fig. C.5: GradeBook.java
2 // GradeBook class that solves the class-average problem using
3 // sentinel-controlled repetition.
4 import java.util.Scanner; // program uses class Scanner
5
6 public class GradeBook
7 {
8 private String courseName; // name of course this GradeBook represents
9

10 // constructor initializes courseName
11 public GradeBook(String name)
12 {
13 courseName = name; // initializes courseName
14 } // end constructor
15
16 // method to set the course name
17 public void setCourseName(String name)
18 {
19 courseName = name; // store the course name
20 } // end method setCourseName
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 } // end method getCourseName
27
28 // display a welcome message to the GradeBook user
29 public void displayMessage()
30 {
31 // getCourseName gets the name of the course
32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());
34 } // end method displayMessage
35
36 // determine the average of an arbitrary number of grades
37
38 {
39 // create Scanner to obtain input from command window
40 Scanner input = new Scanner(System.in);
41
42 int total; // sum of grades
43 int gradeCounter; // number of grades entered
44 int grade; // grade value
45
46
47 // initialization phase
48 total = 0; // initialize total
49
50

Fig. C.5 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part 1 of 2.)

public void determineClassAverage()

double average; // number with decimal point for average

gradeCounter = 0; // initialize loop counter

Z03_DEIT3397_02_SE_APPC.fm Page 428 Monday, July 7, 2014 9:08 AM

C.9 Case Study: Sentinel-Controlled Repetition 429

In this example, we see that control statements may be stacked on top of one another
(in sequence). The while statement (lines 57–65) is followed in sequence by an if…else

statement (lines 69–80). Much of the code in this program is identical to that in Fig. C.2,
so we concentrate on the new concepts.

Line 45 declares double variable average, which allows us to store the class average
as a floating-point number. Line 49 initializes gradeCounter to 0, because no grades have
been entered yet. To keep an accurate record of the number of grades entered, the program
increments gradeCounter only when the user enters a valid grade.

Program Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition
Compare the program logic for sentinel-controlled repetition in this application with that
for counter-controlled repetition in Fig. C.2. In counter-controlled repetition, each itera-
tion of the while statement (e.g., lines 52–58 of Fig. C.2) reads a value from the user, for
the specified number of iterations. In sentinel-controlled repetition, the program reads the
first value (lines 53–54 of Fig. C.5) before reaching the while. This value determines

51 // processing phase
52
53
54
55
56
57 while (grade != -1)
58 {
59 total = total + grade; // add grade to total
60 gradeCounter = gradeCounter + 1; // increment counter
61
62
63
64
65 } // end while
66
67 // termination phase
68 // if user entered at least one grade...
69 if ()
70 {
71
72
73
74 // display total and average (with two digits of precision)
75 System.out.printf("\nTotal of the %d grades entered is %d\n",
76 gradeCounter, total);
77 System.out.printf("Class average is %.2f\n", average);
78 } // end if
79 else // no grades were entered, so output appropriate message
80 System.out.println("No grades were entered");
81 } // end method determineClassAverage
82 } // end class GradeBook

Fig. C.5 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part 2 of 2.)

// prompt for input and read grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

// loop until sentinel value read from user

// prompt for input and read next grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

gradeCounter != 0

// calculate average of all grades entered
average = (double) total / gradeCounter;

Z03_DEIT3397_02_SE_APPC.fm Page 429 Monday, July 7, 2014 9:08 AM

430 Appendix C Control Statements

whether the program’s flow of control should enter the body of the while. If the condition
of the while is false, the user entered the sentinel value, so the body of the while does not
execute (i.e., no grades were entered). If, on the other hand, the condition is true, the body
begins execution, and the loop adds the grade value to the total (line 59). Then lines
63–64 in the loop body input the next value from the user. Next, program control reaches
the closing right brace of the loop body at line 65, so execution continues with the test of
the while’s condition (line 57). The condition uses the most recent grade input by the
user to determine whether the loop body should execute again. The value of variable grade
is always input from the user immediately before the program tests the while condition.
This allows the program to determine whether the value just input is the sentinel value
before the program processes that value (i.e., adds it to the total). If the sentinel value is
input, the loop terminates, and the program does not add –1 to the total.

After the loop terminates, the if…else statement at lines 69–80 executes. The con-
dition at line 69 determines whether any grades were input. If none were input, the else
part (lines 79–80) of the if…else statement executes and displays the message "No
grades were entered" and the method returns control to the calling method.

Explicitly and Implicitly Converting Between Primitive Types
If at least one grade was entered, line 72 of Fig. C.5 calculates the average of the grades.
Recall from Fig. C.2 that integer division yields an integer result. Even though variable av-
erage is declared as a double (line 45), the calculation

loses the fractional part of the quotient before the result of the division is assigned to av-
erage. This occurs because total and gradeCounter are both integers, and integer divi-
sion yields an integer result. To perform a floating-point calculation with integer values,
we must temporarily treat these values as floating-point numbers for use in the calculation.
Java provides the unary cast operator to accomplish this task. Line 72 uses the (double)
cast operator—a unary operator—to create a temporary floating-point copy of its operand
total (which appears to the right of the operator). Using a cast operator in this manner is
called explicit conversion or type casting. The value stored in total is still an integer.

The calculation now consists of a floating-point value (the temporary double version
of total) divided by the integer gradeCounter. Java knows how to evaluate only arith-
metic expressions in which the operands’ types are identical. To ensure that the operands
are of the same type, Java performs an operation called promotion (or implicit conver-
sion) on selected operands. For example, in an expression containing values of the types
int and double, the int values are promoted to double values for use in the expression.
In this example, the value of gradeCounter is promoted to type double, then the floating-
point division is performed and the result of the calculation is assigned to average. As long
as the (double) cast operator is applied to any variable in the calculation, the calculation
will yield a double result.

A cast operator is formed by placing parentheses around any type’s name. The oper-
ator is a unary operator (i.e., an operator that takes only one operand). Java also supports
unary versions of the plus (+) and minus (–) operators, so you can write expressions like -
7 or +5. Cast operators associate from right to left and have the same precedence as other
unary operators, such as unary + and unary -. (See the operator precedence chart in
Appendix K.)

average = total / gradeCounter;

Z03_DEIT3397_02_SE_APPC.fm Page 430 Monday, July 7, 2014 9:08 AM

C.10 Case Study: Nested Control Statements 431

Line 77 displays the class average. In this example, we display the class average
rounded to the nearest hundredth. The format specifier %.2f in printf’s format control
string indicates that variable average’s value should be displayed with two digits of preci-
sion to the right of the decimal point—indicated by.2 in the format specifier. The three
grades entered during the sample execution of class GradeBookTest (Fig. C.6) total 257,
which yields the average 85.666666…. Method printf uses the precision in the format
specifier to round the value to the specified number of digits. In this program, the average
is rounded to the hundredths position and is displayed as 85.67.

C.10 Case Study: Nested Control Statements
We’ve seen that control statements can be stacked on top of one another (in sequence). In
this case study, we examine the only other structured way control statements can be con-
nected— nesting one control statement within another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real
estate brokers. Last year, ten of the students who completed this course took the exam.

1 // Fig. C.6: GradeBookTest.java
2 // Create GradeBook object and invoke its determineClassAverage method.
3
4 public class GradeBookTest
5 {
6 public static void main(String[] args)
7 {
8 // create GradeBook object myGradeBook and
9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(
11 "CS101 Introduction to Java Programming");
12
13 myGradeBook.displayMessage(); // display welcome message
14 myGradeBook.determineClassAverage(); // find average of grades
15 } // end main
16 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of the 3 grades entered is 257
Class average is 85.67

Fig. C.6 | GradeBookTest class creates an object of class GradeBook (Fig. C.5) and invokes its
determineClassAverage method.

Z03_DEIT3397_02_SE_APPC.fm Page 431 Monday, July 7, 2014 9:08 AM

432 Appendix C Control Statements

The college wants to know how well its students did on the exam. You’ve been asked to
write a program to summarize the results. You’ve been given a list of these 10 students.
Next to each name is written a 1 if the student passed the exam or a 2 if the student
failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the screen
each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results, indicating the number of students who passed and
the number who failed.

4. If more than eight students passed the exam, print the message “Bonus to instructor!”

The complete pseudocode appears in Fig. C.7. The Java class that implements the
pseudocode algorithm and two sample executions are shown in Fig. C.8. Lines 13–16 of
main declare the variables that method processExamResults of class Analysis uses to pro-
cess the examination results. Several of these declarations use Java’s ability to incorporate
variable initialization into declarations (passes is assigned 0, failures 0 and student-
Counter 1). Looping programs may require initialization at the beginning of each repeti-
tion—normally performed by assignment statements rather than in declarations. Java
requires that local variables be initialized before their values are used in an expression.

The while statement (lines 19–33) loops 10 times. During each iteration, the loop
inputs and processes one exam result. Notice that the if…else statement (lines 26–29)

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student counter to one
4
5 While student counter is less than or equal to 10
6 Prompt the user to enter the next exam result
7 Input the next exam result
8
9 If the student passed

10 Add one to passes
11 Else
12 Add one to failures
13
14 Add one to student counter
15
16 Print the number of passes
17 Print the number of failures
18
19 If more than eight students passed
20 Print “Bonus to instructor!”

Fig. C.7 | Pseudocode for examination-results problem.

Z03_DEIT3397_02_SE_APPC.fm Page 432 Monday, July 7, 2014 9:08 AM

C.10 Case Study: Nested Control Statements 433

for processing each result is nested in the while statement. If the result is 1, the
if…else statement increments passes; otherwise, it assumes the result is 2 and incre-
ments failures. Line 32 increments studentCounter before the loop condition is tested
again at line 19. After 10 values have been input, the loop terminates and line 36 displays
the number of passes and failures. The if statement at lines 39–40 determines
whether more than eight students passed the exam and, if so, outputs the message "Bonus
to instructor!".

1 // Fig. C.8: Analysis.java
2 // Analysis of examination results using nested control statements.
3 import java.util.Scanner; // class uses class Scanner
4
5 public class Analysis
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12
13
14
15
16 int result; // one exam result (obtains value from user)
17
18 // process 10 students using counter-controlled loop
19 while (studentCounter <= 10)
20 {
21 // prompt user for input and obtain value from user
22 System.out.print("Enter result (1 = pass, 2 = fail): ");
23 result = input.nextInt();
24
25
26
27
28
29
30
31 // increment studentCounter so loop eventually terminates
32 studentCounter = studentCounter + 1;
33 } // end while
34
35 // termination phase; prepare and display results
36
37
38
39
40
41 } // end main
42 } // end class Analysis

Fig. C.8 | Analysis of examination results using nested control statements. (Part 1 of 2.)

// initializing variables in declarations
int passes = 0; // number of passes
int failures = 0; // number of failures
int studentCounter = 1; // student counter

// if...else is nested in the while statement
if (result == 1) // if result 1,
 passes = passes + 1; // increment passes;
else // else result is not 1, so
 failures = failures + 1; // increment failures

System.out.printf("Passed: %d\nFailed: %d\n", passes, failures);

// determine whether more than 8 students passed
if (passes > 8)
 System.out.println("Bonus to instructor!");

Z03_DEIT3397_02_SE_APPC.fm Page 433 Monday, July 7, 2014 9:08 AM

434 Appendix C Control Statements

During the sample execution, the condition at line 39 of method main is true—more
than eight students passed the exam, so the program outputs a message to bonus the
instructor.

This example contains only one class, with method main performing all the class’s
work. Occasionally, when it does not make sense to try to create a reusable class to dem-
onstrate a concept, we’ll place the program’s statements entirely within the main method
of a single class.

C.11 Compound Assignment Operators
The compound assignment operators abbreviate assignment expressions. Statements like

where operator is one of the binary operators +, -, *, / or % (or others we discuss later in
the text) can be written in the form

For example, you can abbreviate the statement

with the addition compound assignment operator, +=, as

The += operator adds the value of the expression on its right to the value of the variable on
its left and stores the result in the variable on the left of the operator. Thus, the assignment
expression c += 3 adds 3 to c. Figure C.9 shows the arithmetic compound assignment op-
erators, sample expressions using the operators and explanations of what the operators do.

C.12 Increment and Decrement Operators
Java provides two unary operators (summarized in Fig. C.10) for adding 1 to or subtract-
ing 1 from the value of a numeric variable. These are the unary increment operator, ++,
and the unary decrement operator, --. A program can increment by 1 the value of a vari-

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 9
Failed: 1
Bonus to instructor!

variable = variable operator expression;

variable operator= expression;

c = c + 3;

c += 3;

Fig. C.8 | Analysis of examination results using nested control statements. (Part 2 of 2.)

Z03_DEIT3397_02_SE_APPC.fm Page 434 Monday, July 7, 2014 9:08 AM

C.12 Increment and Decrement Operators 435

able called c using the increment operator, ++, rather than the expression c = c + 1 or
c += 1. An increment or decrement operator that’s prefixed to (placed before) a variable is
referred to as the prefix increment or prefix decrement operator, respectively. An incre-
ment or decrement operator that’s postfixed to (placed after) a variable is referred to as the
postfix increment or postfix decrement operator, respectively.

Using the prefix increment (or decrement) operator to add 1 to (or subtract 1 from)
a variable is known as preincrementing (or predecrementing). This causes the variable to
be incremented (decremented) by 1; then the new value of the variable is used in the
expression in which it appears. Using the postfix increment (or decrement) operator to add
1 to (or subtract 1 from) a variable is known as postincrementing (or postdecrementing).
This causes the current value of the variable to be used in the expression in which it
appears; then the variable’s value is incremented (decremented) by 1.

Figure C.11 demonstrates the difference between the prefix increment and postfix
increment versions of the ++ increment operator. The decrement operator (--) works sim-
ilarly. Line 11 initializes the variable c to 5, and line 12 outputs c’s initial value. Line 13
outputs the value of the expression c++. This expression postincrements the variable c, so
c’s original value (5) is output, then c’s value is incremented (to 6). Thus, line 13 outputs
c’s initial value (5) again. Line 14 outputs c’s new value (6) to prove that the variable’s
value was indeed incremented in line 13.

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Fig. C.9 | Arithmetic compound assignment operators.

Operator
Operator
name

Sample
expression Explanation

++ prefix
increment

++a Increment a by 1, then use the new value
of a in the expression in which a resides.

++ postfix
increment

a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- prefix
decrement

--b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postfix
decrement

b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. C.10 | Increment and decrement operators.

Z03_DEIT3397_02_SE_APPC.fm Page 435 Monday, July 7, 2014 9:08 AM

436 Appendix C Control Statements

Line 19 resets c’s value to 5, and line 20 outputs c’s value. Line 21 outputs the value
of the expression ++c. This expression preincrements c, so its value is incremented; then
the new value (6) is output. Line 22 outputs c’s value again to show that the value of c is
still 6 after line 21 executes.

When incrementing or decrementing a variable in a statement by itself, the prefix
increment and postfix increment forms have the same effect, and the prefix decrement and
postfix decrement forms have the same effect. It’s only when a variable appears in the con-
text of a larger expression that preincrementing and postincrementing the variable have
different effects (and similarly for predecrementing and postdecrementing).

C.13 Primitive Types
The table in Appendix L lists the eight primitive types in Java. Like its predecessor lan-
guages C and C++, Java requires all variables to have a type. For this reason, Java is referred
to as a strongly typed language.

1 // Fig. C.11: Increment.java
2 // Prefix increment and postfix increment operators.
3
4 public class Increment
5 {
6 public static void main(String[] args)
7 {
8 int c;
9

10 // demonstrate postfix increment operator
11 c = 5; // assign 5 to c
12 System.out.println(c); // prints 5
13
14
15
16 System.out.println(); // skip a line
17
18 // demonstrate prefix increment operator
19 c = 5; // assign 5 to c
20 System.out.println(c); // prints 5
21
22
23 } // end main
24 } // end class Increment

5
5
6

5
6
6

Fig. C.11 | Preincrementing and postincrementing.

System.out.println(c++); // prints 5 then postincrements
System.out.println(c); // prints 6

System.out.println(++c); // preincrements then prints 6
System.out.println(c); // prints 6

Z03_DEIT3397_02_SE_APPC.fm Page 436 Monday, July 7, 2014 9:08 AM

C.14 Essentials of Counter-Controlled Repetition 437

In C and C++, programmers frequently have to write separate versions of programs to
support different computer platforms, because the primitive types are not guaranteed to
be identical from computer to computer. For example, an int value on one machine
might be represented by 16 bits (2 bytes) of memory, on a second machine by 32 bits (4
bytes) of memory, and on another machine by 64 bits (8 bytes) of memory. In Java, int
values are always 32 bits (4 bytes).

Each type in Appendix L is listed with its size in bits (there are eight bits to a byte)
and its range of values. Because the designers of Java want to ensure portability, they use
internationally recognized standards for character formats (Unicode; for more informa-
tion, visit www.unicode.org) and floating-point numbers (IEEE 754; for more informa-
tion, visit grouper.ieee.org/groups/754/).

C.14 Essentials of Counter-Controlled Repetition
This section uses the while repetition statement introduced in Section C.7 to formalize
the elements required to perform counter-controlled repetition, which requires

1. a control variable (or loop counter)

2. the initial value of the control variable

3. the increment (or decrement) by which the control variable is modified each
time through the loop (also known as each iteration of the loop)

4. the loop-continuation condition that determines if looping should continue.

To see these elements of counter-controlled repetition, consider the application of
Fig. C.12, which uses a loop to display the numbers from 1 through 10.

Portability Tip C.1
The primitive types in Java are portable across all computer platforms that support Java.

1 // Fig. C.12: WhileCounter.java
2 // Counter-controlled repetition with the while repetition statement.
3
4 public class WhileCounter
5 {
6 public static void main(String[] args)
7 {
8
9

10 while () // loop-continuation condition
11 {
12 System.out.printf("%d ", counter);
13
14 } // end while
15
16 System.out.println(); // output a newline
17 } // end main
18 } // end class WhileCounter

Fig. C.12 | Counter-controlled repetition with the while repetition statement. (Part 1 of 2.)

int counter = 1; // declare and initialize control variable

counter <= 10

++counter; // increment control variable by 1

Z03_DEIT3397_02_SE_APPC.fm Page 437 Monday, July 7, 2014 9:08 AM

438 Appendix C Control Statements

In Fig. C.12, the elements of counter-controlled repetition are defined in lines 8, 10
and 13. Line 8 declares the control variable (counter) as an int, reserves space for it in
memory and sets its initial value to 1. Line 12 displays control variable counter’s value
during each iteration of the loop. Line 13 increments the control variable by 1 for each iter-
ation of the loop. The loop-continuation condition in the while (line 10) tests whether the
value of the control variable is less than or equal to 10 (the final value for which the condi-
tion is true). The program performs the body of this while even when the control variable
is 10. The loop terminates when the control variable exceeds 10 (i.e., counter becomes 11).

C.15 for Repetition Statement
Java also provides the for repetition statement, which specifies the counter-controlled-
repetition details in a single line of code. Figure C.13 reimplements the application of
Fig. C.12 using for.

When the for statement (lines 10–11) begins executing, the control variable counter
is declared and initialized to 1. Next, the program checks the loop-continuation condition,
counter <= 10, which is between the two required semicolons. Because the initial value of
counter is 1, the condition initially is true. Therefore, the body statement (line 11) dis-
plays control variable counter’s value, namely 1. After executing the loop’s body, the pro-
gram increments counter in the expression ++counter, which appears to the right of the
second semicolon. Then the loop-continuation test is performed again to determine
whether the program should continue with the next iteration of the loop. At this point,
the control variable’s value is 2, so the condition is still true (the final value is not

1 2 3 4 5 6 7 8 9 10

1 // Fig. C.13: ForCounter.java
2 // Counter-controlled repetition with the for repetition statement.
3
4 public class ForCounter
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13 System.out.println(); // output a newline
14 } // end main
15 } // end class ForCounter

1 2 3 4 5 6 7 8 9 10
s

Fig. C.13 | Counter-controlled repetition with the for repetition statement.

Fig. C.12 | Counter-controlled repetition with the while repetition statement. (Part 2 of 2.)

// for statement header includes initialization,
// loop-continuation condition and increment
for (int counter = 1; counter <= 10; ++counter)
 System.out.printf("%d ", counter);

Z03_DEIT3397_02_SE_APPC.fm Page 438 Monday, July 7, 2014 9:08 AM

C.15 for Repetition Statement 439

exceeded)—thus, the program performs the body statement again (i.e., the next iteration
of the loop). This process continues until the numbers 1 through 10 have been displayed
and the counter’s value becomes 11, causing the loop-continuation test to fail and repeti-
tion to terminate (after 10 repetitions of the loop body). Then the program performs the
first statement after the for—in this case, line 13.

Figure C.13 uses (in line 10) the loop-continuation condition counter <= 10. If you
incorrectly specified counter < 10 as the condition, the loop would iterate only nine times.
This is a common logic error called an off-by-one error.

A Closer Look at the for Statement’s Header
Figure C.14 takes a closer look at the for statement in Fig. C.13. The for’s first line (in-
cluding the keyword for and everything in parentheses after for)—line 10 in Fig. C.13—is
sometimes called the for statement header. The for header “does it all”—it specifies each
item needed for counter-controlled repetition with a control variable. If there’s more than
one statement in the body of the for, braces are required to define the body of the loop. If
the loop-continuation condition is initially false, the program does not execute the for
statement’s body—execution proceeds with the statement following the for.

Scope of a for Statement’s Control Variable
If the initialization expression in the for header declares the control variable (i.e., the con-
trol variable’s type is specified before the variable name, as in Fig. C.13), the control vari-
able can be used only in that for statement—it will not exist outside it. This restricted use
is known as the variable’s scope. The scope of a variable defines where it can be used in a
program. For example, a local variable can be used only in the method that declares it and
only from the point of declaration through the end of the method.

Expressions in a for Statement’s Header Are Optional
All three expressions in a for header are optional. If the loopContinuationCondition is
omitted, Java assumes that the loop-continuation condition is always true, thus creating
an infinite loop. You might omit the initialization expression if the program initializes the
control variable before the loop. You might omit the increment expression if the program
calculates the increment with statements in the loop’s body or if no increment is needed.
The increment expression in a for acts as if it were a standalone statement at the end of
the for’s body.

o

Fig. C.14 | for statement header components.

Initial value of
control variable Loop-continuation

condition

Increment of
control variable

for
keyword

Control
variable

Required
semicolon
separator

Required
semicolon
separator

for (int counter = 1; counter <= 10; counter++)

Z03_DEIT3397_02_SE_APPC.fm Page 439 Monday, July 7, 2014 9:08 AM

440 Appendix C Control Statements

C.16 Examples Using the for Statement
The following examples show techniques for varying the control variable in a for state-
ment. In each case, we write the appropriate for header. Note the change in the relational
operator for loops that decrement the control variable to count downward.

a) Vary the control variable from 1 to 100 in increments of 1.

b) Vary the control variable from 100 to 1 in decrements of 1.

c) Vary the control variable from 7 to 77 in increments of 7.

d) Vary the control variable from 20 to 2 in decrements of 2.

e) Vary the control variable over the values 2, 5, 8, 11, 14, 17, 20.

f) Vary the control variable over the values 99, 88, 77, 66, 55, 44, 33, 22, 11, 0.

Application: Compound-Interest Calculations
Let’s use the for statement to compute compound interest. Consider the following problem:

A person invests $1000 in a savings account yielding 5% interest. Assuming that all
the interest is left on deposit, calculate and print the amount of money in the account
at the end of each year for 10 years. Use the following formula to determine the
amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., use 0.05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

The solution to this problem (Fig. C.15) involves a loop that performs the indicated
calculation for each of the 10 years the money remains on deposit. Lines 8–10 in method
main declare double variables amount, principal and rate, and initialize principal to
1000.0 and rate to 0.05. Java treats floating-point constants like 1000.0 and 0.05 as type
double. Similarly, Java treats whole-number constants like 7 and -22 as type int.

for (int i = 1; i <= 100; ++i)

for (int i = 100; i >= 1; --i)

for (int i = 7; i <= 77; i += 7)

for (int i = 20; i >= 2; i -= 2)

for (int i = 2; i <= 20; i += 3)

for (int i = 99; i >= 0; i -= 11)

1 // Fig. C.15: Interest.java
2 // Compound-interest calculations with for.
3

Fig. C.15 | Compound-interest calculations with for. (Part 1 of 2.)

Z03_DEIT3397_02_SE_APPC.fm Page 440 Monday, July 7, 2014 9:08 AM

C.16 Examples Using the for Statement 441

Formatting Strings with Field Widths and Justification
Line 13 outputs two column headers. The first column displays the year and the second the
amount on deposit at the end of that year. We use the format specifier %20s to output the
String "Amount on Deposit". The integer 20 between the % and the conversion character s
indicates that the value should be displayed in a field width of 20—that is, printf displays
the value with at least 20 character positions. If the value requires fewer than 20 character
positions (17 in this example), the value is right justified in the field by default. If the year
value to be output were more than four character positions wide, the field width would be
extended to the right to accommodate the entire value—this would push the amount field to
the right, upsetting the neat columns of our tabular output. To output values left justified,
simply precede the field width with the minus sign (–) formatting flag (e.g., %-20s).

Performing the Interest Calculations
The for statement (lines 16–23) executes its body 10 times, varying control variable year
from 1 to 10 in increments of 1. This loop terminates when year becomes 11. (Variable
year represents n in the problem statement.)

4 public class Interest
5 {
6 public static void main(String[] args)
7 {
8 double amount; // amount on deposit at end of each year
9 double principal = 1000.0; // initial amount before interest

10 double rate = 0.05; // interest rate
11
12 // display headers
13 System.out.printf("%s \n", "Year", "Amount on deposit");
14
15
16 for (int year = 1; year <= 10; ++year)
17
18
19
20
21
22
23
24 } // end main
25 } // end class Interest

Year Amount on deposit
 1 1,050.00
 2 1,102.50
 3 1,157.63
 4 1,215.51
 5 1,276.28
 6 1,340.10
 7 1,407.10
 8 1,477.46
 9 1,551.33
 10 1,628.89

Fig. C.15 | Compound-interest calculations with for. (Part 2 of 2.)

%20s

// calculate amount on deposit for each of ten years

{
 // calculate new amount for specified year
 amount = principal * Math.pow(1.0 + rate, year);

 // display the year and the amount
 System.out.printf("%4d%,20.2f\n", year, amount);
} // end for

Z03_DEIT3397_02_SE_APPC.fm Page 441 Monday, July 7, 2014 9:08 AM

442 Appendix C Control Statements

Classes provide methods that perform common tasks on objects. In fact, most
methods must be called on a specific object. For example, to output text in Fig. C.15, line
13 calls method printf on the System.out object. Many classes also provide methods that
perform common tasks and do not require objects. These are called static methods. For
example, Java does not include an exponentiation operator, so the designers of Java’s Math
class defined static method pow for raising a value to a power. You can call a static
method by specifying the class name followed by a dot (.) and the method name, as in

In Appendix D, you’ll learn how to implement static methods in your own classes.
We use static method pow of class Math to perform the compound-interest calcula-

tion in Fig. C.15. Math.pow(x, y) calculates the value of x raised to the yth power. The
method receives two double arguments and returns a double value. Line 19 performs the
calculation a = p(1 + r)n, where a is amount, p is principal, r is rate and n is year. Class
Math is defined in package java.lang, so you do not need to import class Math to use it.

Formatting Floating-Point Numbers
After each calculation, line 22 outputs the year and the amount on deposit at the end of
that year. The year is output in a field width of four characters (as specified by %4d). The
amount is output as a floating-point number with the format specifier %,20.2f. The com-
ma (,) formatting flag indicates that the floating-point value should be output with a
grouping separator. The actual separator used is specific to the user’s locale (i.e., coun-
try). For example, in the United States, the number will be output using commas to sep-
arate every three digits and a decimal point to separate the fractional part of the number,
as in 1,234.45. The number 20 in the format specification indicates that the value should
be output right justified in a field width of 20 characters. The .2 specifies the formatted
number’s precision—in this case, the number is rounded to the nearest hundredth and
output with two digits to the right of the decimal point.

C.17 do…while Repetition Statement
The do…while repetition statement is similar to the while statement. In the while, the
program tests the loop-continuation condition at the beginning of the loop, before execut-
ing the loop’s body; if the condition is false, the body never executes. The do…while state-
ment tests the loop-continuation condition after executing the loop’s body; therefore, the
body always executes at least once. When a do…while statement terminates, execution con-
tinues with the next statement in sequence. Figure C.16 uses a do…while (lines 10–14)
to output the numbers 1–10.

ClassName.methodName(arguments)

1 // Fig. C.16: DoWhileTest.java
2 // do...while repetition statement.
3
4 public class DoWhileTest
5 {
6 public static void main(String[] args)
7 {

Fig. C.16 | do…while repetition statement. (Part 1 of 2.)

Z03_DEIT3397_02_SE_APPC.fm Page 442 Monday, July 7, 2014 9:08 AM

C.18 switch Multiple-Selection Statement 443

Line 8 declares and initializes control variable counter. Upon entering the do…while

statement, line 12 outputs counter’s value and line 13 increments counter. Then the pro-
gram evaluates the loop-continuation test at the bottom of the loop (line 14). If the condi-
tion is true, the loop continues from the first body statement (line 12). If the condition is
false, the loop terminates and the program continues with the next statement after the loop.

C.18 switch Multiple-Selection Statement
Sections C.5–C.6 discussed the if single-selection and the if…else double-selection
statements. The switch multiple-selection statement performs different actions based
on the possible values of a constant integral expression of type byte, short, int or char.

GradeBook Class with switch Statement to Count A, B, C, D and F Grades
Figure C.17 enhances the GradeBook case study that we began presenting in Appendix B.
The new version we now present not only calculates the average of a set of numeric grades
entered by the user, but uses a switch statement to determine whether each grade is the
equivalent of an A, B, C, D or F and to increment the appropriate grade counter. The class
also displays a summary of the number of students who received each grade. Refer to
Fig. C.18 for sample inputs and outputs of the GradeBookTest application that uses class
GradeBook to process a set of grades.

8
9

10
11
12
13
14
15
16 System.out.println(); // outputs a newline
17 } // end main
18 } // end class DoWhileTest

1 2 3 4 5 6 7 8 9 10

1 // Fig. C.17: GradeBook.java
2 // GradeBook class uses the switch statement to count letter grades.
3 import java.util.Scanner; // program uses class Scanner
4
5 public class GradeBook
6 {
7 private String courseName; // name of course this GradeBook represents
8
9

10

Fig. C.17 | GradeBook class uses the switch statement to count letter grades. (Part 1 of 4.)

Fig. C.16 | do…while repetition statement. (Part 2 of 2.)

int counter = 1; // initialize counter

do
{
 System.out.printf("%d ", counter);
 ++counter;
} while (counter <= 10); // end do...while

// int instance variables are initialized to 0 by default
private int total; // sum of grades
private int gradeCounter; // number of grades entered

Z03_DEIT3397_02_SE_APPC.fm Page 443 Friday, June 20, 2014 12:48 PM

444 Appendix C Control Statements

11
12
13
14
15
16
17 // constructor initializes courseName;
18 public GradeBook(String name)
19 {
20 courseName = name; // initializes courseName
21 } // end constructor
22
23 // method to set the course name
24 public void setCourseName(String name)
25 {
26 courseName = name; // store the course name
27 } // end method setCourseName
28
29 // method to retrieve the course name
30 public String getCourseName()
31 {
32 return courseName;
33 } // end method getCourseName
34
35 // display a welcome message to the GradeBook user
36 public void displayMessage()
37 {
38 // getCourseName gets the name of the course
39 System.out.printf("Welcome to the grade book for\n%s!\n\n",
40 getCourseName());
41 } // end method displayMessage
42
43 // input arbitrary number of grades from user
44 public void inputGrades()
45 {
46 Scanner input = new Scanner(System.in);
47
48 int grade; // grade entered by user
49
50 System.out.printf("%s\n%s\n %s\n %s\n",
51 "Enter the integer grades in the range 0-100.",
52 "Type the end-of-file indicator to terminate input:",
53 "On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter",
54 "On Windows type <Ctrl> z then press Enter");
55
56 // loop until user enters the end-of-file indicator
57 while ()
58 {
59 grade = input.nextInt(); // read grade
60 total += grade; // add grade to total
61 ++gradeCounter; // increment number of grades
62

Fig. C.17 | GradeBook class uses the switch statement to count letter grades. (Part 2 of 4.)

private int aCount; // count of A grades
private int bCount; // count of B grades
private int cCount; // count of C grades
private int dCount; // count of D grades
private int fCount; // count of F grades

input.hasNext()

Z03_DEIT3397_02_SE_APPC.fm Page 444 Monday, July 7, 2014 9:08 AM

C.18 switch Multiple-Selection Statement 445

63 // call method to increment appropriate counter
64 incrementLetterGradeCounter(grade);
65 } // end while
66 } // end method inputGrades
67
68 // add 1 to appropriate counter for specified grade
69 void incrementLetterGradeCounter(int grade)
70 {
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95 } // end method incrementLetterGradeCounter
96
97 // display a report based on the grades entered by the user
98 public void displayGradeReport()
99 {
100 System.out.println("\nGrade Report:");
101
102 // if user entered at least one grade...
103 if (gradeCounter != 0)
104 {
105 // calculate average of all grades entered
106 double average = (double) total / gradeCounter;
107
108 // output summary of results
109 System.out.printf("Total of the %d grades entered is %d\n",
110 gradeCounter, total);
111 System.out.printf("Class average is %.2f\n", average);
112 System.out.printf("%s\n%s%d\n%s%d\n%s%d\n%s%d\n%s%d\n",
113 "Number of students who received each grade:",
114 "A: ", aCount, // display number of A grades
115 "B: ", bCount, // display number of B grades

Fig. C.17 | GradeBook class uses the switch statement to count letter grades. (Part 3 of 4.)

private

// determine which grade was entered
switch (grade / 10)
{
 case 9: // grade was between 90
 case 10: // and 100, inclusive
 ++aCount; // increment aCount
 break; // necessary to exit switch

 case 8: // grade was between 80 and 89
 ++bCount; // increment bCount
 break; // exit switch

 case 7: // grade was between 70 and 79
 ++cCount; // increment cCount
 break; // exit switch

 case 6: // grade was between 60 and 69
 ++dCount; // increment dCount
 break; // exit switch

 default: // grade was less than 60
 ++fCount; // increment fCount
 break; // optional; will exit switch anyway
} // end switch

Z03_DEIT3397_02_SE_APPC.fm Page 445 Monday, July 7, 2014 9:08 AM

446 Appendix C Control Statements

Like earlier versions of the class, class GradeBook (Fig. C.17) declares instance variable
courseName (line 7) and contains methods setCourseName (lines 24–27), getCourseName
(lines 30–33) and displayMessage (lines 36–41), which set the course name, store the
course name and display a welcome message to the user, respectively. The class also con-
tains a constructor (lines 18–21) that initializes the course name.

Class GradeBook also declares instance variables total (line 9) and gradeCounter
(line 10), which keep track of the sum of the grades entered by the user and the number
of grades entered, respectively. Lines 11–15 declare counter variables for each grade cate-
gory. Class GradeBook maintains total, gradeCounter and the five letter-grade counters
as instance variables so that they can be used or modified in any of the class’s methods.
The class’s constructor (lines 18–21) sets only the course name, because the remaining
seven instance variables are ints and are initialized to 0 by default.

Class GradeBook contains three additional methods—inputGrades, incrementLet-
terGradeCounter and displayGradeReport. Method inputGrades (lines 44–66) reads an
arbitrary number of integer grades from the user using sentinel-controlled repetition and
updates instance variables total and gradeCounter. This method calls method incre-
mentLetterGradeCounter (lines 69–95) to update the appropriate letter-grade counter for
each grade entered. Method displayGradeReport (lines 98–122) outputs a report con-
taining the total of all grades entered, the average of the grades and the number of students
who received each letter grade. Let’s examine these methods in more detail.

Method inputGrades
Line 48 in method inputGrades declares variable grade, which will store the user’s input.
Lines 50–54 prompt the user to enter integer grades and to type the end-of-file indicator
to terminate the input. The end-of-file indicator is a system-dependent keystroke com-
bination which the user enters to indicate that there’s no more data to input.

On UNIX/Linux/Mac OS X systems, end-of-file is entered by typing the sequence

on a line by itself. This notation means to simultaneously press both the Ctrl key and the
d key. On Windows systems, end-of-file can be entered by typing

[Note: On some systems, you must press Enter after typing the end-of-file key sequence.
Also, Windows typically displays the characters ^Z on the screen when the end-of-file in-
dicator is typed, as shown in the output of Fig. C.18.]

116 "C: ", cCount, // display number of C grades
117 "D: ", dCount, // display number of D grades
118 "F: ", fCount); // display number of F grades
119 } // end if
120 else // no grades were entered, so output appropriate message
121 System.out.println("No grades were entered");
122 } // end method displayGradeReport
123 } // end class GradeBook

<Ctrl> d

<Ctrl> z

Fig. C.17 | GradeBook class uses the switch statement to count letter grades. (Part 4 of 4.)

Z03_DEIT3397_02_SE_APPC.fm Page 446 Monday, July 7, 2014 9:08 AM

C.18 switch Multiple-Selection Statement 447

The while statement (lines 57–65) obtains the user input. The condition at line 57
calls Scanner method hasNext to determine whether there’s more data to input. This
method returns the boolean value true if there’s more data; otherwise, it returns false.
The returned value is then used as the value of the condition in the while statement.
Method hasNext returns false once the user types the end-of-file indicator.

Line 59 inputs a grade value from the user. Line 60 adds grade to total. Line 61
increments gradeCounter. The class’s displayGradeReport method uses these variables
to compute the average of the grades. Line 64 calls the class’s incrementLetterGrade-
Counter method (declared in lines 69–95) to increment the appropriate letter-grade
counter based on the numeric grade entered.

Method incrementLetterGradeCounter
Method incrementLetterGradeCounter contains a switch statement (lines 72–94) that
determines which counter to increment. We assume that the user enters a valid grade in
the range 0–100. A grade in the range 90–100 represents A, 80–89 represents B, 70–79
represents C, 60–69 represents D and 0–59 represents F. The switch statement consists
of a block that contains a sequence of case labels and an optional default case. These are
used in this example to determine which counter to increment based on the grade.

When the flow of control reaches the switch, the program evaluates the expression in
the parentheses (grade / 10) following keyword switch. This is the switch’s controlling
expression. The program compares this expression’s value (which must evaluate to an
integral value of type byte, char, short or int) with each case label. The controlling
expression in line 72 performs integer division, which truncates the fractional part of the
result. Thus, when we divide a value from 0 to 100 by 10, the result is always a value from
0 to 10. We use several of these values in our case labels. For example, if the user enters
the integer 85, the controlling expression evaluates to 8. The switch compares 8 with each
case label. If a match occurs (case 8: at line 79), the program executes that case’s state-
ments. For the integer 8, line 80 increments bCount, because a grade in the 80s is a B. The
break statement (line 81) causes program control to proceed with the first statement after
the switch—in this program, we reach the end of method incrementLetterGrade-
Counter’s body, so the method terminates and control returns to line 65 in method
inputGrades (the first line after the call to incrementLetterGradeCounter). Line 65 is
the end of a while loop’s body, so control flows to the while’s condition (line 57) to deter-
mine whether the loop should continue executing.

The cases in our switch explicitly test for the values 10, 9, 8, 7 and 6. Note the cases at
lines 74–75 that test for the values 9 and 10 (both of which represent the grade A). Listing
cases consecutively in this manner with no statements between them enables the cases to per-
form the same set of statements—when the controlling expression evaluates to 9 or 10, the
statements in lines 76–77 will execute. The switch statement does not provide a mechanism
for testing ranges of values, so every value you need to test must be listed in a separate case
label. Each case can have multiple statements. The switch statement differs from other con-
trol statements in that it does not require braces around multiple statements in a case.

Without break statements, each time a match occurs in the switch, the statements
for that case and subsequent cases execute until a break statement or the end of the switch
is encountered. (This feature is helpful for writing a concise program that displays the iter-
ative song “The Twelve Days of Christmas”).

Z03_DEIT3397_02_SE_APPC.fm Page 447 Monday, July 7, 2014 9:08 AM

448 Appendix C Control Statements

If no match occurs between the controlling expression’s value and a case label, the
default case (lines 91–93) executes. We use the default case in this example to process
all controlling-expression values that are less than 6—that is, all failing grades. If no match
occurs and the switch does not contain a default case, program control simply continues
with the first statement after the switch.

GradeBookTest Class That Demonstrates Class GradeBook
Class GradeBookTest (Fig. C.18) creates a GradeBook object (lines 10–11). Line 13 in-
vokes the object’s displayMessage method to output a welcome message to the user. Line
14 invokes the object’s inputGrades method to read a set of grades from the user and keep
track of the sum of all the grades entered and the number of grades. Recall that method
inputGrades also calls method incrementLetterGradeCounter to keep track of the num-
ber of students who received each letter grade. Line 15 invokes method displayGradeRe-
port of class GradeBook, which outputs a report based on the grades entered (as in the
input/output window in Fig. C.18). Line 103 of class GradeBook (Fig. C.17) determines
whether the user entered at least one grade—this helps us avoid dividing by zero. If so, line
106 calculates the average of the grades. Lines 109–118 then output the total of all the
grades, the class average and the number of students who received each letter grade. If no
grades were entered, line 121 outputs an appropriate message. The output in Fig. C.18
shows a sample grade report based on 10 grades.

1 // Fig. C.18: GradeBookTest.java
2 // Create GradeBook object, input grades and display grade report.
3
4 public class GradeBookTest
5 {
6 public static void main(String[] args)
7 {
8 // create GradeBook object myGradeBook and
9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(
11 "CS101 Introduction to Java Programming");
12
13 myGradeBook.displayMessage(); // display welcome message
14
15
16 } // end main
17 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter the integer grades in the range 0-100.
Type the end-of-file indicator to terminate input:
 On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter
 On Windows type <Ctrl> z then press Enter
99
92

Fig. C.18 | Create GradeBook object, input grades and display grade report. (Part 1 of 2.)

myGradeBook.inputGrades(); // read grades from user
myGradeBook.displayGradeReport(); // display report based on grades

Z03_DEIT3397_02_SE_APPC.fm Page 448 Monday, July 7, 2014 9:08 AM

C.18 switch Multiple-Selection Statement 449

Class GradeBookTest (Fig. C.18) does not directly call GradeBook method incre-
mentLetterGradeCounter (lines 69–95 of Fig. C.17). This method is used exclusively by
method inputGrades of class GradeBook to update the appropriate letter-grade counter as
each new grade is entered by the user. Method incrementLetterGradeCounter exists
solely to support the operations of GradeBook’s other methods, so it’s declared private.

The break statement is not required for the switch’s last case (or the optional
default case, when it appears last), because execution continues with the next statement
after the switch.

Notes on the Expression in Each case of a switch
When using the switch statement, remember that each case must contain a constant in-
tegral expression—that is, any combination of integer constants that evaluates to a con-
stant integer value (e.g., –7, 0 or 221). An integer constant is simply an integer value. In
addition, you can use character constants—specific characters in single quotes, such as
'A', '7' or '$'—which represent the integer values of characters and enum constants (in-
troduced in Section D.10).

The expression in each case can also be a constant variable—a variable containing a
value which does not change for the entire program. Such a variable is declared with key-
word final (discussed in Appendix D). Java has a feature called enumerations, which we
also present in Appendix D. Enumeration constants can also be used in case labels.

Using Strings in switch Statements (New in Java SE 7)
As of Java SE 7, you can use Strings in a switch statement’s controlling expression and
in case labels. For example, you might want to use a city’s name to obtain the correspond-
ing ZIP code. Assuming that city and zipCode are String variables, the following switch
statement performs this task for three cities:

45
57
63
71
76
85
90
100
^Z

Grade Report:
Total of the 10 grades entered is 778
Class average is 77.80

Number of students who received each grade:
A: 4
B: 1
C: 2
D: 1
F: 2

Fig. C.18 | Create GradeBook object, input grades and display grade report. (Part 2 of 2.)

Z03_DEIT3397_02_SE_APPC.fm Page 449 Monday, July 7, 2014 9:08 AM

450 Appendix C Control Statements

C.19 break and continue Statements
In addition to selection and repetition statements, Java provides statements break and
continue to alter the flow of control. The preceding section showed how break can be
used to terminate a switch statement’s execution. This section discusses how to use break
in repetition statements.

break Statement
The break statement, when executed in a while, for, do…while or switch, causes imme-
diate exit from that statement. Execution continues with the first statement after the con-
trol statement. Common uses of the break statement are to escape early from a loop or to
skip the remainder of a switch.

continue Statement
The continue statement, when executed in a while, for or do…while, skips the remain-
ing statements in the loop body and proceeds with the next iteration of the loop. In while
and do…while statements, the program evaluates the loop-continuation test immediately
after the continue statement executes. In a for statement, the increment expression exe-
cutes, then the program evaluates the loop-continuation test.

C.20 Logical Operators
Java’s logical operators enable you to form more complex conditions by combining simple
conditions. The logical operators are && (conditional AND), || (conditional OR), & (bool-
ean logical AND), | (boolean logical inclusive OR), ^ (boolean logical exclusive OR) and
! (logical NOT). [Note: The &, | and ^ operators are also bitwise operators when they’re
applied to integral operands.]

Conditional AND (&&) Operator
Suppose we wish to ensure at some point in a program that two conditions are both true
before we choose a certain path of execution. In this case, we can use the && (conditional
AND) operator, as follows:

This if statement contains two simple conditions. The condition gender == FEMALE com-
pares variable gender to the constant FEMALE to determine whether a person is female. The

switch(city)
{
 case "Maynard":
 zipCode = "01754";
 break;
 case "Marlborough":
 zipCode = "01752";
 break;
 case "Framingham":
 zipCode = "01701";
 break;
} // end switch

if (gender == FEMALE && age >= 65)
 ++seniorFemales;

Z03_DEIT3397_02_SE_APPC.fm Page 450 Monday, July 7, 2014 9:08 AM

C.20 Logical Operators 451

condition age >= 65 might be evaluated to determine whether a person is a senior citizen.
The if statement considers the combined condition

which is true if and only if both simple conditions are true. In this case, the if statement’s
body increments seniorFemales by 1. If either or both of the simple conditions are false,
the program skips the increment. Some programmers find that the preceding combined
condition is more readable when redundant parentheses are added, as in:

The table in Fig. C.19 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
called truth tables. Java evaluates to false or true all expressions that include relational
operators, equality operators or logical operators.

Conditional OR (||) Operator
Now suppose we wish to ensure that either or both of two conditions are true before we
choose a certain path of execution. In this case, we use the || (conditional OR) operator,
as in the following program segment:

This statement also contains two simple conditions. The condition semesterAverage >=
90 evaluates to determine whether the student deserves an A in the course because of a sol-
id performance throughout the semester. The condition finalExam >= 90 evaluates to de-
termine whether the student deserves an A in the course because of an outstanding
performance on the final exam. The if statement then considers the combined condition

and awards the student an A if either or both of the simple conditions are true. The only
time the message "Student grade is A" is not printed is when both of the simple condi-
tions are false. Figure C.20 is a truth table for operator conditional OR (||). Operator &&
has a higher precedence than operator ||. Both operators associate from left to right.

Short-Circuit Evaluation of Complex Conditions
The parts of an expression containing && or || operators are evaluated only until it’s known
whether the condition is true or false. Thus, evaluation of the expression

gender == FEMALE && age >= 65

(gender == FEMALE) && (age >= 65)

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

Fig. C.19 | && (conditional AND) operator truth table.

if ((semesterAverage >= 90) || (finalExam >= 90))
 System.out.println ("Student grade is A");

(semesterAverage >= 90) || (finalExam >= 90)

(gender == FEMALE) && (age >= 65)

Z03_DEIT3397_02_SE_APPC.fm Page 451 Monday, July 7, 2014 9:08 AM

452 Appendix C Control Statements

stops immediately if gender is not equal to FEMALE (i.e., the entire expression is false) and
continues if gender is equal to FEMALE (i.e., the entire expression could still be true if the
condition age >= 65 is true). This feature of conditional AND and conditional OR ex-
pressions is called short-circuit evaluation.

Boolean Logical AND (&) and Boolean Logical Inclusive OR (|) Operators
The boolean logical AND (&) and boolean logical inclusive OR (|) operators are iden-
tical to the && and || operators, except that the & and | operators always evaluate both of
their operands (i.e., they do not perform short-circuit evaluation). So, the expression

evaluates age >= 65 regardless of whether gender is equal to 1. This is useful if the right
operand of the boolean logical AND or boolean logical inclusive OR operator has a re-
quired side effect—a modification of a variable’s value. For example, the expression

guarantees that the condition ++age >= 65 will be evaluated. Thus, the variable age is in-
cremented, regardless of whether the overall expression is true or false.

Boolean Logical Exclusive OR (^)
A simple condition containing the boolean logical exclusive OR (^) operator is true if
and only if one of its operands is true and the other is false. If both are true or both are
false, the entire condition is false. Figure C.21 is a truth table for the boolean logical
exclusive OR operator (^). This operator is guaranteed to evaluate both of its operands.

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

Fig. C.20 | || (conditional OR) operator truth table.

(gender == 1) & (age >= 65)

(birthday == true) | (++age >= 65)

Error-Prevention Tip C.1
For clarity, avoid expressions with side effects in conditions. The side effects may seem clev-
er, but they can make it harder to understand code and can lead to subtle logic errors.

expression1 expression2 expression1 ^ expression2

false false false

false true true

true false true

true true false

Fig. C.21 | ^ (boolean logical exclusive OR) operator truth table.

Z03_DEIT3397_02_SE_APPC.fm Page 452 Monday, July 7, 2014 9:08 AM

C.21 Wrap-Up 453

Logical Negation (!) Operator
The ! (logical NOT, also called logical negation or logical complement) operator “re-
verses” the meaning of a condition. Unlike the logical operators &&, ||, &, | and ^, which
are binary operators that combine two conditions, the logical negation operator is a unary
operator that has only a single condition as an operand. The operator is placed before a con-
dition to choose a path of execution if the original condition (without the logical negation
operator) is false, as in the program segment

which executes the printf call only if grade is not equal to sentinelValue. The paren-
theses around the condition grade == sentinelValue are needed because the logical ne-
gation operator has a higher precedence than the equality operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational or equality operator. For example, the previous
statement may also be written as follows:

This flexibility can help you express a condition in a more convenient manner.
Figure C.22 is a truth table for the logical negation operator.

C.21 Wrap-Up
This appendix presented basic problem solving for building classes and developing methods
for these classes. We demonstrated how to construct an algorithm (i.e., an approach to solv-
ing a problem), then how to refine the algorithm through several phases of pseudocode de-
velopment, resulting in Java code that can be executed as part of a method. The appendix
showed how to use top-down, stepwise refinement to plan out the specific actions that a
method must perform and the order in which the method must perform these actions.

Only three types of control structures—sequence, selection and repetition—are
needed to develop any problem-solving algorithm. Specifically, this appendix demon-
strated the if single-selection statement, the if…else double-selection statement and the
while repetition statement. These are some of the building blocks used to construct solu-
tions to many problems. We used control-statement stacking to total and compute the
average of a set of student grades with counter- and sentinel-controlled repetition, and we
used control-statement nesting to analyze and make decisions based on a set of exam
results. We introduced Java’s compound assignment operators and its increment and dec-
rement operators. We discussed Java’s primitive types.

if (! (grade == sentinelValue))
 System.out.printf("The next grade is %d\n", grade);

if (grade != sentinelValue)
 System.out.printf("The next grade is %d\n", grade);

expression !expression

false true

true false

Fig. C.22 | ! (logical negation,
or logical NOT) operator truth table.

Z03_DEIT3397_02_SE_APPC.fm Page 453 Monday, July 7, 2014 9:08 AM

454 Appendix C Control Statements

We demonstrated the for, do…while and switch statements. We showed that any
algorithm can be developed using combinations of the sequence structure (i.e., statements
listed in the order in which they should execute), the three types of selection state-
ments—if, if…else and switch—and the three types of repetition statements—while,
do…while and for. We discussed how you can combine these building blocks to utilize
proven program-construction and problem-solving techniques. We also introduced Java’s
logical operators, which enable you to use more complex conditional expressions in con-
trol statements. In Appendix D, we examine methods in greater depth.

Self-Review Exercises (Sections C.1–C.13)
C.1 Fill in the blanks in each of the following statements:

a) is an informal language that helps you develop algorithms without having to
worry about the strict details of Java language syntax.

b) The process of executing the statements in a program one after the other in the order in
which they’re written is called .

c) When it’s not known in advance how many times a set of statements will be repeated,
a(n) value can be used to terminate the repetition.

d) Java is a(n) language; it requires all variables to have a type.
e) enable programs to perform statements repeatedly as long as a condition re-

mains true.

C.2 State whether each of the following is true or false. If false, explain why.
a) The if statement is a double-selection statement.
b) Java provides the ternary operator (?:), which can be used in place of a do…while statement.
c) A nested control statement appears in the body of another control statement.
d) Specifying the order in which statements execute in a program is called program control.
e) A nonfatal logic error causes a program to fail and terminate prematurely.

C.3 Write Java statements to accomplish each of the following tasks:
a) Use one statement to assign the product of x and y to z, then decrement y by 1.
b) Test whether variable count is equal to 10. If it is, print “Count is equal to 10”.
c) Use the ternary operator to check if variable x is lesser than 20, and add 20 to x if it is

true; if not, subtract x by 20 and assign the result to variable y.
d) Use one statement to decrement the variable x by 5, then add it to the variable total

and store the result in variable total.

C.4 Write a Java statement to accomplish each of the following tasks:
a) Declare variables sum and x to be of type int.
b) Assign 1 to variable x.
c) Assign 0 to variable sum.
d) Add variable x to variable sum, and assign the result to variable sum.
e) Print "The sum is: ", followed by the value of variable sum.

C.5 Determine the value of the variables in the statement product *= x++; after the calculation
is performed. Assume that all variables are type int and initially have the value 5.

Z03_DEIT3397_02_SE_APPC.fm Page 454 Friday, June 20, 2014 12:48 PM

 Self-Review Exercises (Sections C.14–C.20) 455

C.6 Identify and correct the errors in each of the following sets of code:
a) while (c <= 5)

{

 product *= c;

 ++c;
b) if (gender == 1)

 System.out.println("Woman");

else;

 System.out.println("Man");

C.7 What is wrong with the following while statement?

while (z >= 0)
 sum += z;

Self-Review Exercises (Sections C.14–C.20)
C.8 Fill in the blanks in each of the following statements:

a) Typically, statements are used for counter-controlled repetition and
 statements for sentinel-controlled repetition.

b) The do…while statement tests the loop-continuation condition executing
the loop’s body; therefore, the body always executes at least once.

c) The statement selects among multiple actions based on the possible values
of an integer variable or expression.

d) The operator can be used to ensure that two conditions are both true before
choosing a certain path of execution.

e) If the loop-continuation condition in a for header is initially , the program
does not execute the for statement’s body.

C.9 State whether each of the following is true or false. If false, explain why.
a) The default case is required in the switch selection statement.
b) The break statement is required in the last case of a switch selection statement.
c) The expression ((x > y) && (a < b)) is true if either x > y is true or a < b is true.
d) An expression containing the || operator is true if either or both of its operands are true.
e) Listing cases consecutively with no statements between them enables the cases to per-

form the same set of statements.

C.10 Write a Java statement or a set of Java statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99, using a for statement. Assume that the integer

variables sum and count have been declared.
b) Calculate the value of 2.5 raised to the power of 3, using the pow method.
c) Print the integers from 1 to 20, using a while loop and the counter variable i. Assume

that the variable i has been declared, but not initialized. Print only five integers per line.
[Hint: Use the calculation i % 5. When the value of this expression is 0, print a newline
character; otherwise, print a tab character. Assume that this code is an application. Use
the System.out.println() method to output the newline character, and use the Sys-
tem.out.print('\t') method to output the tab character.]

d) Repeat part (c), using a for statement.

C.11 Find the error in each of the following code segments, and explain how to correct it:
a) K = 10;

while (K <= 1);

 --K;

}

Z03_DEIT3397_02_SE_APPC.fm Page 455 Monday, July 7, 2014 9:08 AM

456 Appendix C Control Statements

b) for (i = 1.0; i != 0.1; i += 0.1)

 System.out.println(i);
c) switch (m)

{

 case 10:

 System.out.println("The number is 10");
 case 20:

 System.out.println("The number is 20");

 break;

 default:

 System.out.println("The number is not 10 or 20");

 break;

}
d) The following code should print the values 1 to 20:

m = 1;

while (m < 20)

 System.out.println(m++);

Answers to Self-Review Exercises (Sections C.1–C.13)
C.1 a) Pseudocode. b) sequential execution. c) sentinel, signal, flag or dummy. d) strongly
typed. e) Repetition statements.

C.2 a) False. It is a single-selection statement because it selects or ignores a single action b) False.
Java’s ternary operator (?:) cannot be used in place of an do…while statement. c) True. d) True.
e) False. A nonfatal logic error allows a program to continue executing but causes it to produce in-
correct results.

C.3 a) z = x * y--;
b) if (count == 10)

 System.out.println("Count is equal to 10");
c) y = (x < 20) ? x + 20: x - 20;
d) total += x - 5;

C.4 a) int sum;

int x;
b) x = 1;
c) sum = 0;
d) sum += x; or sum = sum + x;
e) System.out.printf("The sum is: %d\n", sum);

C.5 product = 25, x = 6

C.6 a) Error: The closing right brace of the while statement’s body is missing.
Correction: Add a closing right brace after the statement ++c;.

b) Error: The semicolon after else results in a logic error. The second output statement
will always be executed.
Correction: Remove the semicolon after else.

C.7 The value of the variable z is never changed in the while statement. Therefore, if the loop-
continuation condition (z >= 0) is true, an infinite loop is created. To prevent an infinite loop from
occurring, z must be decremented so that it eventually becomes less than 0.

Z03_DEIT3397_02_SE_APPC.fm Page 456 Monday, July 7, 2014 9:08 AM

 Answers to Self-Review Exercises (Sections C.14–C.20) 457

Answers to Self-Review Exercises (Sections C.14–C.20)
C.8 a) for, while. b) after. c) switch. d) continue. e) && (conditional AND). f) false.

C.9 a) False. The default case is optional. If no default action is needed, then there’s no need
for a default case. b) False. The break statement is used to exit the switch statement. The break
statement is not required for the last case in a switch statement. c) False. Both of the relational ex-
pressions must be true for the entire expression to be true when using the && operator. d) True.
e) True.

C.10 a) sum = 0;

for (count = 1; count <= 99; count += 2)
 sum += count;

b) double result = Math.pow(2.5, 3);
c) i = 1;

while (i <= 20)
{

 System.out.print(i);

 if (i % 5 == 0)
 System.out.println();

 else

 System.out.print('\t');

 ++i;

}
d) for (i = 1; i <= 20; ++i)

{

 System.out.print(i);

 if (i % 5 == 0)

 System.out.println();

 else

 System.out.print('\t');
}

C.11 a) Error: The semicolon after the while header causes an infinite loop, and there’s a miss-
ing left brace.
Correction: Replace the semicolon by a {, or remove both the ; and the }.

b) Error: Using a floating-point number to control a for statement may not work, because
floating-point numbers are represented only approximately by most computers.
Correction: Use an integer, and perform the proper calculation in order to get the values
you desire:

for (i = 1; i != 10; ++i)
 System.out.println((double) i / 10);

c) Error: The missing code is the break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first case. This
omission is not necessarily an error if you want the statement of case 2: to execute every
time the case 1: statement executes.

d) Error: An improper relational operator is used in the while’s continuation condition.
Correction: Use <= rather than <, or change 20 to 21.

Z03_DEIT3397_02_SE_APPC.fm Page 457 Monday, July 7, 2014 9:08 AM

458 Appendix C Control Statements

Exercises (Sections C.1–C.13)
C.12 Explain what happens when a Java program attempts to divide one integer by another.
What happens to the fractional part of the calculation? How can you avoid that outcome?

C.13 Describe the two ways in which control statements can be combined.

C.14 What type of repetition would be appropriate for calculating the sum of the first 100 posi-
tive integers? What type would be appropriate for calculating the sum of an arbitrary number of pos-
itive integers? Briefly describe how each of these tasks could be performed.

C.15 What is the difference between preincrementing and postincrementing a variable?

C.16 Identify and correct the errors in each of the following pieces of code. [Note: There may be
more than one error in each piece of code.]

a) if (age >= 65);

 System.out.println("Age is greater than or equal to 65");

else

 System.out.println("Age is less than 65)";
b) int x = 1, total;

while (x <= 10)

{

 total += x;

 ++x;

}
c) while (x <= 100)

 total += x;

 ++x;
d) while (y > 0)

{

 System.out.println(y);

 ++y;

For Exercise C.17 and Exercise C.18, perform each of the following steps:
a) Read the problem statement.
b) Write a Java program.
c) Test, debug and execute the Java program.
d) Process three complete sets of data.

C.17 (Gas Mileage) Drivers are concerned with the mileage their automobiles get. One driver has
kept track of several trips by recording the miles driven and gallons used for each tankful. Develop
a Java application that will input the miles driven and gallons used (both as integers) for each trip.
The program should calculate and display the miles per gallon obtained for each trip and print the
combined miles per gallon obtained for all trips up to this point. All averaging calculations should
produce floating-point results. Use class Scanner and sentinel-controlled repetition to obtain the
data from the user.

C.18 (Credit Limit Calculator) Develop a Java application that determines whether any of several
department-store customers has exceeded the credit limit on a charge account. For each customer,
the following facts are available:

a) account number
b) balance at the beginning of the month
c) total of all items charged by the customer this month
d) total of all credits applied to the customer’s account this month
e) allowed credit limit

Z03_DEIT3397_02_SE_APPC.fm Page 458 Monday, July 7, 2014 9:08 AM

 Exercises (Sections C.14–C.20) 459

The program should input all these facts as integers, calculate the new balance (= beginning balance
+ charges – credits), display the new balance and determine whether the new balance exceeds the
customer’s credit limit. For those customers whose credit limit is exceeded, the program should dis-
play the message "Credit limit exceeded".

C.19 (Find the Largest Number) The process of finding the largest value is used frequently in
computer applications. For example, a program that determines the winner of a sales contest would
input the number of units sold by each salesperson. The salesperson who sells the most units wins
the contest. Write a pseudocode program, then a Java application that inputs a series of 10 integers
and determines and prints the largest integer. Your program should use at least the following three
variables:

a) counter: A counter to count to 10 (i.e., to keep track of how many numbers have been
input and to determine when all 10 numbers have been processed).

b) number: The integer most recently input by the user.
c) largest: The largest number found so far.

C.20 (Tabular Output) Write a Java application that uses looping to print the following table of
values:

C.21 (Multiples of 2 with an Infinite Loop) Write an application that keeps displaying in the
command window the multiples of the integer 2—namely, 2, 4, 8, 16, 32, 64, and so on. Your loop
should not terminate (i.e., it should create an infinite loop). What happens when you run this pro-
gram?

Exercises (Sections C.14–C.20)
C.22 Describe briefly the selection statements available in Java.

C.23 (Find the Largest Value) Write an application that finds the largest even number in several
integers. Assume that the first value read specifies the number of values to input from the user.

C.24 Assume that i = 3, j = 4, k = 3 and m = 2. What does each of the following statements print?
a) System.out.println(i == 1);
b) System.out.println(j == 4);
c) System.out.println((i >= 1) && (j == 4));
d) System.out.println((m != 99) & (k <= m));
e) System.out.println((j >= i) || (k == m));
f) System.out.println((k + m < j) | (3 - j >= k));
g) System.out.println(!(k > m));

C.25 (Calculating the Value of π) Calculate the value of π from the infinite series

Print a table that shows the value of π approximated by computing the first 200,000 terms of this
series. How many terms do you have to use before you first get a value that begins with 3.14159?

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

π 4 4
3

– 4
5

4
7

– 4
9

4
11

– …+ + +=

Z03_DEIT3397_02_SE_APPC.fm Page 459 Monday, July 7, 2014 9:08 AM

– – – – ––

460 Appendix C Control Statements

C.26 What does the following program segment do?

for (i = 0; i < 10; ++i)
{
 for (j = 0; j < 5; ++j)
 {
 for (k = 0; k < 3; ++k)
 System.out.print('#');

 System.out.println();
 } // end inner for

 System.out.println();
} // end outer for

C.27 (“The Twelve Days of Christmas” Song) Write (as concisely as possible) an application that
uses repetition and one or more switch statements to print the song “The Twelve Days of Christ-
mas.”

Z03_DEIT3397_02_SE_APPC.fm Page 460 Monday, July 7, 2014 9:08 AM

DMethods: A Deeper Look

O b j e c t i v e s
In this appendix you’ll learn:

■ How static methods and
fields are associated with
classes rather than objects.

■ How the method call/return
mechanism is supported by
the method-call stack.

■ How packages group related
classes.

■ To use random-number
generation to implement
game-playing applications.

■ How the visibility of
declarations is limited to
specific regions of programs.

■ What method overloading is
and how to create overloaded
methods.

Z04_DEIT3397_02_SE_APPD.fm Page 461 Tuesday, July 8, 2014 8:34 AM

462 Appendix D Methods: A Deeper Look

D.1 Introduction
In this appendix, we study methods in more depth. You’ll see that it’s possible to call certain
methods, called static methods, without the need for an object of the class to exist. You’ll
learn how to declare a method with more than one parameter. You’ll also learn how Java
keeps track of which method is currently executing, how local variables of methods are main-
tained in memory and how a method knows where to return after it completes execution.

We’ll take a brief diversion into simulation techniques with random-number genera-
tion and develop a version of the casino dice game called craps that uses most of the pro-
gramming techniques you’ve used to this point in the book. In addition, you’ll learn how
to declare values that cannot change (i.e., constants) in your programs.

Many of the classes you’ll use or create while developing applications will have more
than one method of the same name. This technique, called overloading, is used to imple-
ment methods that perform similar tasks for arguments of different types or for different
numbers of arguments.

D.2 Program Modules in Java
You write Java programs by combining new methods and classes with predefined ones avail-
able in the Java Application Programming Interface (also referred to as the Java API or Java
class library) and in various other class libraries. Related classes are typically grouped into
packages so that they can be imported into programs and reused. You’ll learn how to group
your own classes into packages in Appendix F. The Java API provides a rich collection of pre-
defined classes that contain methods for performing common mathematical calculations,
string manipulations, character manipulations, input/output operations, database opera-
tions, networking operations, file processing, error checking and many other useful tasks.

D.1 Introduction
D.2 Program Modules in Java
D.3 static Methods, static Fields

and Class Math
D.4 Declaring Methods with Multiple

Parameters
D.5 Notes on Declaring and Using

Methods
D.6 Method-Call Stack and Activation

Records
D.7 Argument Promotion and Casting

D.8 Java API Packages
D.9 Introduction to Random-Number

Generation
D.9.1 Scaling and Shifting of Random

Numbers
D.9.2 Random-Number Repeatability for

Testing and Debugging
D.10 Case Study: A Game of Chance;

Introducing Enumerations
D.11 Scope of Declarations
D.12 Method Overloading
D.13 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation D.1
Familiarize yourself with the rich collection of classes and methods provided by the Java
API (docs.oracle.com/javase/6/docs/api/) and reuse them when possible. This
reduces program development time and avoids introducing programming errors.

Z04_DEIT3397_02_SE_APPD.fm Page 462 Monday, July 7, 2014 9:09 AM

D.3 static Methods, static Fields and Class Math 463

Methods (called functions or procedures in some languages) help you modularize a
program by separating its tasks into self-contained units. You’ve declared methods in every
program you’ve written. The statements in the method bodies are written only once, are
hidden from other methods and can be reused from several locations in a program.

One motivation for modularizing a program into methods is the divide-and-conquer
approach, which makes program development more manageable by constructing programs
from small, simple pieces. Another is software reusability—using existing methods as
building blocks to create new programs. Often, you can create programs mostly from
standardized methods rather than by building customized code. For example, in earlier pro-
grams, we did not define how to read data from the keyboard—Java provides these capabil-
ities in the methods of class Scanner. A third motivation is to avoid repeating code. Dividing
a program into meaningful methods makes the program easier to debug and maintain.

D.3 static Methods, static Fields and Class Math
Although most methods execute in response to method calls on specific objects, this is not al-
ways the case. Sometimes a method performs a task that does not depend on the contents of
any object. Such a method applies to the class in which it’s declared as a whole and is known
as a static method or a class method. It’s common for classes to contain convenient static
methods to perform common tasks. For example, recall that we used static method pow of
class Math to raise a value to a power in Fig. C.15. To declare a method as static, place the
keyword static before the return type in the method’s declaration. For any class imported
into your program, you can call the class’s static methods by specifying the name of the
class in which the method is declared, followed by a dot (.) and the method name, as in

We use various Math class methods here to present the concept of static methods.
Class Math provides a collection of methods that enable you to perform common mathe-
matical calculations. For example, you can calculate the square root of 900.0 with the
static method call

The preceding expression evaluates to 30.0. Method sqrt takes an argument of type dou-
ble and returns a result of type double. To output the value of the preceding method call
in the command window, you might write the statement

In this statement, the value that sqrt returns becomes the argument to method println.
There was no need to create a Math object before calling method sqrt. Also all Math class
methods are static—therefore, each is called by preceding its name with the class name
Math and the dot (.) separator.

Method arguments may be constants, variables or expressions. Figure D.1 summa-
rizes several Math class methods. In the figure, x and y are of type double.

ClassName.methodName(arguments)

Math.sqrt(900.0)

System.out.println(Math.sqrt(900.0));

Software Engineering Observation D.2
Class Math is part of the java.lang package, which is implicitly imported by the compiler,
so it’s not necessary to import class Math to use its methods.

Z04_DEIT3397_02_SE_APPD.fm Page 463 Monday, July 7, 2014 9:09 AM

464 Appendix D Methods: A Deeper Look

Math Class Constants PI and E
Class Math declares two fields that represent commonly used mathematical constants—
Math.PI and Math.E. Math.PI (3.141592653589793) is the ratio of a circle’s circumfer-
ence to its diameter. Math.E (2.718281828459045) is the base value for natural logarithms
(calculated with static Math method log). These fields are declared in class Math with the
modifiers public, final and static. Making them public allows you to use these fields
in your own classes. Any field declared with keyword final is constant—its value cannot
change after the field is initialized. PI and E are declared final because their values never
change. Making these fields static allows them to be accessed via the class name Math and
a dot (.) separator, just like class Math’s methods. Recall from Section B.4 that when each
object of a class maintains its own copy of an attribute, the field that represents the attri-
bute is also known as an instance variable—each object (instance) of the class has a separate
instance of the variable in memory. There are fields for which each object of a class does
not have a separate instance of the field. That’s the case with static fields, which are also
known as class variables. When objects of a class containing static fields are created, all
the objects of that class share one copy of the class’s static fields. Together the class vari-
ables (i.e., static variables) and instance variables represent the fields of a class. You’ll
learn more about static fields in Section F.10.

Method Description Example

abs(x) absolute value of x abs(23.7) is 23.7
abs(0.0) is 0.0
abs(-23.7) is 23.7

ceil(x) rounds x to the smallest integer not
less than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x (x in radians) cos(0.0) is 1.0

exp(x) exponential method ex exp(1.0) is 2.71828
exp(2.0) is 7.38906

floor(x) rounds x to the largest integer not
greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

log(x) natural logarithm of x (base e) log(Math.E) is 1.0
log(Math.E * Math.E) is 2.0

max(x, y) larger value of x and y max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3

min(x, y) smaller value of x and y min(2.3, 12.7) is 2.3
min(-2.3, -12.7) is -12.7

pow(x, y) x raised to the power y (i.e., xy) pow(2.0, 7.0) is 128.0
pow(9.0, 0.5) is 3.0

sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0.0

sqrt(x) square root of x sqrt(900.0) is 30.0

tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

Fig. D.1 | Math class methods.

Z04_DEIT3397_02_SE_APPD.fm Page 464 Monday, July 7, 2014 9:09 AM

D.4 Declaring Methods with Multiple Parameters 465

Why Is Method main Declared static?
When you execute the Java Virtual Machine (JVM) with the java command, the JVM
attempts to invoke the main method of the class you specify—when no objects of the class
have been created. Declaring main as static allows the JVM to invoke main without cre-
ating an instance of the class. When you execute your application, you specify its class
name as an argument to the command java, as in

The JVM loads the class specified by ClassName and uses that class name to invoke method
main. In the preceding command, ClassName is a command-line argument to the JVM
that tells it which class to execute. Following the ClassName, you can also specify a list of
Strings (separated by spaces) as command-line arguments that the JVM will pass to your
application. Such arguments might be used to specify options (e.g., a file name) to run the
application. As you’ll learn in Appendix E, your application can access those command-
line arguments and use them to customize the application.

D.4 Declaring Methods with Multiple Parameters
We now consider how to write your own methods with multiple parameters. Figure D.2 uses
a method called maximum to determine and return the largest of three double values. In main,
lines 14–18 prompt the user to enter three double values, then read them from the user. Line
21 calls method maximum (declared in lines 28–41) to determine the largest of the three values
it receives as arguments. When method maximum returns the result to line 21, the program
assigns maximum’s return value to local variable result. Then line 24 outputs the maximum
value. At the end of this section, we’ll discuss the use of operator + in line 24.

java ClassName argument1 argument2 …

1 // Fig. D.2: MaximumFinder.java
2 // Programmer-declared method maximum with three double parameters.
3 import java.util.Scanner;
4
5 public class MaximumFinder
6 {
7 // obtain three floating-point values and locate the maximum value
8 public static void main(String[] args)
9 {

10 // create Scanner for input from command window
11 Scanner input = new Scanner(System.in);
12
13 // prompt for and input three floating-point values
14 System.out.print(
15 "Enter three floating-point values separated by spaces: ");
16 double number1 = input.nextDouble(); // read first double
17 double number2 = input.nextDouble(); // read second double
18 double number3 = input.nextDouble(); // read third double
19
20 // determine the maximum value
21
22

Fig. D.2 | Programmer-declared method maximum with three double parameters. (Part 1 of 2.)

double result = maximum(number1, number2, number3);

Z04_DEIT3397_02_SE_APPD.fm Page 465 Monday, July 7, 2014 9:09 AM

466 Appendix D Methods: A Deeper Look

The public and static Keywords
Method maximum’s declaration begins with keyword public to indicate that the method is
“available to the public”—it can be called from methods of other classes. The keyword
static enables the main method (another static method) to call maximum as shown in
line 21 without qualifying the method name with the class name MaximumFinder—static

methods in the same class can call each other directly. Any other class that uses maximum
must fully qualify the method name with the class name.

Method maximum
In maximum’s declaration (lines 28–41), line 28 indicates that it returns a double value, that
the its name is maximum and that it requires three double parameters (x, y and z) to accom-
plish its task. Multiple parameters are specified as a comma-separated list. When maximum
is called (line 21), the parameters x, y and z are initialized with the values of arguments
number1, number2 and number3, respectively. There must be one argument in the method
call for each parameter in the method declaration. Also, each argument must be consistent
with the type of the corresponding parameter. For example, a double parameter can re-
ceive values like 7.35, 22 or –0.03456, but not Strings like "hello" nor the boolean val-
ues true or false.

23 // display maximum value
24 System.out.println();
25 } // end main
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 } // end class MaximumFinder

Enter three floating-point values separated by spaces: 9.35 2.74 5.1
Maximum is: 9.35

Enter three floating-point values separated by spaces: 5.8 12.45 8.32
Maximum is: 12.45

Enter three floating-point values separated by spaces: 6.46 4.12 10.54
Maximum is: 10.54

Fig. D.2 | Programmer-declared method maximum with three double parameters. (Part 2 of 2.)

"Maximum is: " + result

// returns the maximum of its three double parameters
public static double maximum(double x, double y, double z)
{
 double maximumValue = x; // assume x is the largest to start

 // determine whether y is greater than maximumValue
 if (y > maximumValue)
 maximumValue = y;

 // determine whether z is greater than maximumValue
 if (z > maximumValue)
 maximumValue = z;

 return maximumValue;
} // end method maximum

Z04_DEIT3397_02_SE_APPD.fm Page 466 Monday, July 7, 2014 9:09 AM

D.4 Declaring Methods with Multiple Parameters 467

To determine the maximum value, we begin with the assumption that parameter x
contains the largest value, so line 30 declares local variable maximumValue and initializes it
with the value of parameter x. Of course, it’s possible that parameter y or z contains the
actual largest value, so we must compare each of these values with maximumValue. The if
statement at lines 33–34 determines whether y is greater than maximumValue. If so, line 34
assigns y to maximumValue. The if statement at lines 37–38 determines whether z is
greater than maximumValue. If so, line 38 assigns z to maximumValue. At this point the
largest of the three values resides in maximumValue, so line 40 returns that value to line 21.
When program control returns to the point in the program where maximum was called,
maximum’s parameters x, y and z no longer exist in memory.

Implementing Method maximum by Reusing Method Math.max
The entire body of our maximum method could also be implemented with two calls to
Math.max, as follows:

The first call to Math.max specifies arguments x and Math.max(y, z). Before any method
can be called, its arguments must be evaluated to determine their values. If an argument is
a method call, the method call must be performed to determine its return value. So, in the
preceding statement, Math.max(y, z) is evaluated to determine the maximum of y and
z. Then the result is passed as the second argument to the other call to Math.max, which
returns the larger of its two arguments.

Assembling Strings with String Concatenation
Java allows you to assemble String objects into larger strings by using operators + or +=.
This is known as string concatenation. When both operands of operator + are String ob-
jects, operator + creates a new String object in which the characters of the right operand
are placed at the end of those in the left operand—e.g., the expression "hello " + "there"

creates the String "hello there".
In line 24 of Fig. D.2, the expression "Maximum is: " + result uses operator + with

operands of types String and double. Every primitive value and object in Java has a String
representation. When one of the + operator’s operands is a String, the other is converted
to a String, then the two are concatenated. In line 24, the double value is converted to its
String representation and placed at the end of the String "Maximum is: ". If there are any
trailing zeros in a double value, these will be discarded when the number is converted to a
String—for example 9.3500 would be represented as 9.35.

Primitive values used in String concatenation are converted to Strings. A boolean
concatenated with a String is converted to the String "true" or "false". All objects
have a toString method that returns a String representation of the object. When an
object is concatenated with a String, the object’s toString method is implicitly called to
obtain the String representation of the object. ToString can be called explicitly.

Software Engineering Observation D.3
Variables should be declared as fields only if they’re required for use in more than one
method of the class or if the program should save their values between calls to the class’s
methods.

return Math.max(x, Math.max(y, z));

Z04_DEIT3397_02_SE_APPD.fm Page 467 Monday, July 7, 2014 9:09 AM

468 Appendix D Methods: A Deeper Look

D.5 Notes on Declaring and Using Methods
There are three ways to call a method:

1. Using a method name by itself to call another method of the same class—such as
maximum(number1, number2, number3) in line 21 of Fig. D.2.

2. Using a variable that contains a reference to an object, followed by a dot (.) and
the method name to call a non-static method of the referenced object—such as
the method call in line 13 of Fig. C.3, myGradeBook.displayMessage(), which
calls a method of class GradeBook from the main method of GradeBookTest.

3. Using the class name and a dot (.) to call a static method of a class—such as
Math.sqrt(900.0) in Section D.3.

A static method can call only other static methods of the same class directly (i.e.,
using the method name by itself) and can manipulate only static variables in the same
class directly. To access the class’s non-static members, a static method must use a ref-
erence to an object of the class. Many objects of a class, each with its own copies of the
instance variables, may exist at the same time. Suppose a static method were to invoke a
non-static method directly. How would the method know which object’s instance vari-
ables to manipulate? What would happen if no objects of the class existed at the time the
non-static method was invoked? Thus, Java does not allow a static method to access
non-static members of the same class directly.

There are three ways to return control to the statement that calls a method. If the
method does not return a result, control returns when the program flow reaches the
method-ending right brace or when the statement

is executed. If the method returns a result, the statement

evaluates the expression, then returns the result to the caller.

Common Programming Error D.1
It’s a syntax error to break a String literal across lines. If necessary, you can split a String
into several smaller Strings and use concatenation to form the desired String.

Common Programming Error D.2\
Confusing the + operator used for string concatenation with the + operator used for addi-
tion can lead to strange results. Java evaluates the operands of an operator from left to
right. For example, if integer variable y has the value 5, the expression "y + 2 = " + y + 2

results in the string "y + 2 = 52", not "y + 2 = 7", because first the value of y (5) is con-
catenated to the string "y + 2 = ", then the value 2 is concatenated to the new larger string
"y + 2 = 5". The expression "y + 2 = " + (y + 2) produces the desired result "y + 2 = 7".

return;

return expression;

Common Programming Error D.3
Declaring a method outside the body of a class declaration or inside the body of another
method is a syntax error.

Z04_DEIT3397_02_SE_APPD.fm Page 468 Monday, July 7, 2014 9:09 AM

D.6 Method-Call Stack and Activation Records 469

D.6 Method-Call Stack and Activation Records
To understand how Java performs method calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. You can think of a stack as analo-
gous to a pile of dishes. When a dish is placed on the pile, it’s normally placed at the top
(referred to as pushing the dish onto the stack). Similarly, when a dish is removed from
the pile, it’s always removed from the top (referred to as popping the dish off the stack).
Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed (in-
serted) on the stack is the first item popped (removed) from the stack.

When a program calls a method, the called method must know how to return to its
caller, so the return address of the calling method is pushed onto the program-execution
stack (sometimes referred to as the method-call stack). If a series of method calls occurs,
the successive return addresses are pushed onto the stack in last-in, first-out order so that
each method can return to its caller.

The program-execution stack also contains the memory for the local variables used in
each invocation of a method during a program’s execution. This data, stored as a portion
of the program-execution stack, is known as the activation record or stack frame of the
method call. When a method call is made, the activation record for that method call is
pushed onto the program-execution stack. When the method returns to its caller, the acti-
vation record for this method call is popped off the stack and those local variables are no
longer known to the program. If a local variable holding a reference to an object is the only
variable in the program with a reference to that object, then, when the activation record
containing that local variable is popped off the stack, the object can no longer be accessed
by the program and will eventually be deleted from memory by the JVM during “garbage
collection.” We discuss garbage collection in Section F.9.

Of course, a computer’s memory is finite, so only a certain amount can be used to
store activation records on the program-execution stack. If more method calls occur than
can have their activation records stored, an error known as a stack overflow occurs.

D.7 Argument Promotion and Casting
Another important feature of method calls is argument promotion—converting an argu-
ment’s value, if possible, to the type that the method expects to receive in its corresponding
parameter. For example, a program can call Math method sqrt with an int argument even
though a double argument is expected. The statement

correctly evaluates Math.sqrt(4) and prints the value 2.0. The method declaration’s pa-
rameter list causes Java to convert the int value 4 to the double value 4.0 before passing
the value to method sqrt. Such conversions may lead to compilation errors if Java’s pro-
motion rules are not satisfied. These rules specify which conversions are allowed—that is,
which ones can be performed without losing data. In the sqrt example above, an int is
converted to a double without changing its value. However, converting a double to an int

Common Programming Error D.4
Redeclaring a parameter as a local variable in the method’s body is a compilation error.

System.out.println(Math.sqrt(4));

Z04_DEIT3397_02_SE_APPD.fm Page 469 Monday, July 7, 2014 9:09 AM

470 Appendix D Methods: A Deeper Look

truncates the fractional part of the double value—thus, part of the value is lost. Convert-
ing large integer types to small integer types (e.g., long to int, or int to short) may also
result in changed values.

The promotion rules apply to expressions containing values of two or more primitive
types and to primitive-type values passed as arguments to methods. Each value is pro-
moted to the “highest” type in the expression. Actually, the expression uses a temporary
copy of each value—the types of the original values remain unchanged. Figure D.3 lists
the primitive types and the types to which each can be promoted. The valid promotions
for a given type are always to a type higher in the table. For example, an int can be pro-
moted to the higher types long, float and double.

Converting values to types lower in the table of Fig. D.3 will result in different values
if the lower type cannot represent the value of the higher type (e.g., the int value 2000000
cannot be represented as a short, and any floating-point number with digits after its
decimal point cannot be represented in an integer type such as long, int or short). There-
fore, in cases where information may be lost due to conversion, the Java compiler requires
you to use a cast operator (introduced in Section C.9) to explicitly force the conversion to
occur—otherwise a compilation error occurs. This enables you to “take control” from the
compiler. You essentially say, “I know this conversion might cause loss of information, but
for my purposes here, that’s fine.” Suppose method square calculates the square of an
integer and thus requires an int argument. To call square with a double argument named
doubleValue, we would be required to write the method call as

This method call explicitly casts (converts) a copy of variable doubleValue’s value to an in-
teger for use in method square. Thus, if doubleValue’s value is 4.5, the method receives
the value 4 and returns 16, not 20.25.

D.8 Java API Packages
As you’ve seen, Java contains many predefined classes that are grouped into categories of
related classes called packages. Together, these are known as the Java Application Pro-
gramming Interface (Java API), or the Java class library. A great strength of Java is the Java

Type Valid promotions

double None

float double

long float or double

int long, float or double

char int, long, float or double

short int, long, float or double (but not char)

byte short, int, long, float or double (but not char)

boolean None (boolean values are not considered to be numbers in Java)

Fig. D.3 | Promotions allowed for primitive types.

square((int) doubleValue)

Z04_DEIT3397_02_SE_APPD.fm Page 470 Monday, July 7, 2014 9:09 AM

D.9 Introduction to Random-Number Generation 471

API’s thousands of classes. Some key Java API packages used in this book’s appendices are
described in Fig. D.4, which represents only a small portion of the reusable components
in the Java API.

The set of packages available in Java is quite large. In addition to those summarized
in Fig. D.4, Java includes packages for complex graphics, advanced graphical user inter-
faces, printing, advanced networking, security, database processing, multimedia, accessi-
bility (for people with disabilities), concurrent programming, cryptography, XML
processing and many other capabilities. Many other packages are also available for down-
load at java.sun.com.

You can locate additional information about a predefined Java class’s methods in the
Java API documentation at docs.oracle.com/javase/6/docs/api/. When you visit this
site, click the Index link to see an alphabetical listing of all the classes and methods in the
Java API. Locate the class name and click its link to see the online description of the class.
Click the METHOD link to see a table of the class’s methods. Each static method will be
listed with the word “static” preceding its return type.

D.9 Introduction to Random-Number Generation
We now take a brief diversion into a popular type of programming application—simula-
tion and game playing. In this and the next section, we develop a nicely structured game-
playing program with multiple methods. The program uses most of the control statements
presented thus far in the appendices and introduces several new programming concepts.

Package Description

java.awt.event The Java Abstract Window Toolkit Event Package contains classes
and interfaces that enable event handling for GUI components in
both the java.awt and javax.swing packages.

java.io The Java Input/Output Package contains classes and interfaces that
enable programs to input and output data.

java.lang The Java Language Package contains classes and interfaces (discussed
bookwide) that are required by many Java programs. This package is
imported by the compiler into all programs.

java.util The Java Utilities Package contains utility classes and interfaces that
enable such actions as date and time manipulations, random-number
processing (class Random) and the storing and processing of large
amounts of data.

java.util.

 concurrent

The Java Concurrency Package contains utility classes and interfaces
for implementing programs that can perform multiple tasks in paral-
lel.

javax.swing The Java Swing GUI Components Package contains classes and
interfaces for Java’s Swing GUI components that provide support for
portable GUIs.

Fig. D.4 | Java API packages (a subset).

Z04_DEIT3397_02_SE_APPD.fm Page 471 Monday, July 7, 2014 9:09 AM

472 Appendix D Methods: A Deeper Look

Random numbers can be introduced in a program via an object of class Random
(package java.util) or via the static method random of class Math. A Random object can
produce random boolean, byte, float, double, int, long and Gaussian values, whereas
Math method random can produce only double values in the range 0.0 ≤ x < 1.0, where
x is the value returned by method random. In the next several examples, we use objects of
class Random to produce random values. We discuss only random int values here. For
more information on the Random class, see docs.oracle.com/javase/6/docs/api/java/
util/Random.html.

A new random-number generator object can be created as follows:

Consider the following statement:

Random method nextInt generates a random int value in the range –2,147,483,648 to
+2,147,483,647, inclusive. If it truly produces values at random, then every value in the
range should have an equal chance (or probability) of being chosen each time nextInt is
called. The numbers are actually pseudorandom numbers—a sequence of values pro-
duced by a complex mathematical calculation. The calculation uses the current time of day
(which, of course, changes constantly) to seed the random-number generator such that
each execution of a program yields a different sequence of random values.

The range of values produced directly by method nextInt generally differs from the
range of values required in a particular Java application. For example, a program that sim-
ulates coin tossing might require only 0 for “heads” and 1 for “tails.” A program that sim-
ulates the rolling of a six-sided die might require random integers in the range 1–6. A
program that randomly predicts the next type of spaceship (out of four possibilities) that
will fly across the horizon in a video game might require random integers in the range 1–
4. For cases like these, class Random provides another version of method nextInt that
receives an int argument and returns a value from 0 up to, but not including, the argu-
ment’s value. For example, for coin tossing, the following statement returns 0 or 1.

D.9.1 Scaling and Shifting of Random Numbers
To demonstrate random numbers, let’s show to simulate rolling a six-sided die. We begin
by using nextInt to produce random values in the range 0–5, as follows:

The argument 6—called the scaling factor—represents the number of unique values that
nextInt should produce (in this case six—0, 1, 2, 3, 4 and 5). This manipulation is called
scaling the range of values produced by Random method nextInt.

A six-sided die has the numbers 1–6 on its faces, not 0–5. So we shift the range of
numbers produced by adding a shifting value—in this case 1—to our previous result, as in

The shifting value (1) specifies the first value in the desired range of random integers. The
preceding statement assigns face a random integer in the range 1–6. The numbers pro-
duced by nextInt occur with approximately equal likelihood.

Random randomNumbers = new Random();

int randomValue = randomNumbers.nextInt();

int randomValue = randomNumbers.nextInt(2);

face = randomNumbers.nextInt(6);

face = 1 + randomNumbers.nextInt(6);

Z04_DEIT3397_02_SE_APPD.fm Page 472 Monday, July 7, 2014 9:09 AM

D.9 Introduction to Random-Number Generation 473

Generalizing the Random Number Calculations
The preceding statement always assigns to variable face an integer in the range 1 ≤ face ≤
6. The width of this range (i.e., the number of consecutive integers in the range) is 6, and
the starting number in the range is 1. The width of the range is determined by the number
6 that’s passed as an argument to Random method nextInt, and the starting number of the
range is the number 1 that’s added to the result of calling nextInt. We can generalize this
result as

where shiftingValue specifies the first number in the desired range of consecutive integers
and scalingFactor specifies how many numbers are in the range.

It’s also possible to choose integers at random from sets of values other than ranges of
consecutive integers. For example, to obtain a random value from the sequence 2, 5, 8, 11
and 14, you could use the statement

In this case, randomNumbers.nextInt(5) produces values in the range 0–4. Each value
produced is multiplied by 3 to produce a number in the sequence 0, 3, 6, 9 and 12. We
add 2 to that value to shift the range of values and obtain a value from the sequence 2, 5,
8, 11 and 14. We can generalize this result as

where shiftingValue specifies the first number in the desired range of values, difference-
BetweenValues represents the constant difference between consecutive numbers in the se-
quence and scalingFactor specifies how many numbers are in the range.

D.9.2 Random-Number Repeatability for Testing and Debugging
Class Random’s methods actually generate pseudorandom numbers based on complex
mathematical calculations—the sequence of numbers appears to be random. The calcula-
tion that produces the numbers uses the time of day as a seed value to change the se-
quence’s starting point. Each new Random object seeds itself with a value based on the
computer system’s clock at the time the object is created, enabling each execution of a pro-
gram to produce a different sequence of random numbers.

When debugging an application, it’s often useful to repeat the exact same sequence of
pseudorandom numbers during each execution of the program. This repeatability enables
you to prove that your application is working for a specific sequence of random numbers
before you test it with different sequences of random numbers. When repeatability is
important, you can create a Random object as follows:

The seedValue argument (of type long) seeds the random-number calculation. If the
same seedValue is used every time, the Random object produces the same sequence of num-
bers. You can set a Random object’s seed at any time during program execution by calling
the object’s set method, as in

number = shiftingValue + randomNumbers.nextInt(scalingFactor);

number = 2 + 3 * randomNumbers.nextInt(5);

number = shiftingValue +
 differenceBetweenValues * randomNumbers.nextInt(scalingFactor);

Random randomNumbers = new Random(seedValue);

randomNumbers.set(seedValue);

Z04_DEIT3397_02_SE_APPD.fm Page 473 Monday, July 7, 2014 9:09 AM

474 Appendix D Methods: A Deeper Look

D.10 Case Study: A Game of Chance; Introducing
Enumerations
A popular game of chance is a dice game known as craps, which is played in casinos and
back alleys throughout the world. The rules of the game are straightforward:

You roll two dice. Each die has six faces, which contain one, two, three, four, five and
six spots, respectively. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, you win. If the sum
is 2, 3 or 12 on the first throw (called “craps”), you lose (i.e., the “house” wins). If the
sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes your “point.” To win,
you must continue rolling the dice until you “make your point” (i.e., roll that same
point value). You lose by rolling a 7 before making your point.

Figure D.5 simulates the game of craps, using methods to implement the game’s logic.
The main method (lines 21–65) calls the rollDice method (lines 68–81) as necessary to
roll the dice and compute their sum. The sample outputs show winning and losing on the
first roll, and winning and losing on a subsequent roll.

Error-Prevention Tip D.1
While developing a program, create the Random object with a specific seed value to produce
a repeatable sequence of numbers each time the program executes. If a logic error occurs,
fix the error and test the program again with the same seed value—this allows you to re-
construct the same sequence of numbers that caused the error. Once the logic errors have
been removed, create the Random object without using a seed value, causing the Random
object to generate a new sequence of random numbers each time the program executes.

1 // Fig. D.5: Craps.java
2 // Craps class simulates the dice game craps.
3 import java.util.Random;
4
5 public class Craps
6 {
7 // create random number generator for use in method rollDice
8 private static final Random randomNumbers = new Random();
9

10
11
12
13 // constants that represent common rolls of the dice
14
15
16
17
18
19
20 // plays one game of craps
21 public static void main(String[] args)
22 {
23 int myPoint = 0; // point if no win or loss on first roll

Fig. D.5 | Craps class simulates the dice game craps. (Part 1 of 3.)

// enumeration with constants that represent the game status
private enum Status { CONTINUE, WON, LOST };

private static final int SNAKE_EYES = 2;
private static final int TREY = 3;
private static final int SEVEN = 7;
private static final int YO_LEVEN = 11;
private static final int BOX_CARS = 12;

Z04_DEIT3397_02_SE_APPD.fm Page 474 Monday, July 7, 2014 9:09 AM

D.10 Case Study: A Game of Chance; Introducing Enumerations 475

24
25
26
27
28 // determine game status and point based on first roll
29 switch (sumOfDice)
30 {
31
32
33
34 break;
35
36
37
38
39 break;
40
41
42
43 System.out.printf("Point is %d\n", myPoint);
44 break; // optional at end of switch
45 } // end switch
46
47 // while game is not complete
48 while () // not WON or LOST
49 {
50
51
52 // determine game status
53 if (sumOfDice == myPoint) // win by making point
54 ;
55 else
56 if (sumOfDice == SEVEN) // lose by rolling 7 before point
57
58 } // end while
59
60 // display won or lost message
61 if ()
62 System.out.println("Player wins");
63 else
64 System.out.println("Player loses");
65 } // end main
66
67 // roll dice, calculate sum and display results
68
69 {
70 // pick random die values
71 int die1 = 1 + randomNumbers.nextInt(6); // first die roll
72 int die2 = 1 + randomNumbers.nextInt(6); // second die roll
73
74 int sum = die1 + die2; // sum of die values
75

Fig. D.5 | Craps class simulates the dice game craps. (Part 2 of 3.)

Status gameStatus; // can contain CONTINUE, WON or LOST

int sumOfDice = rollDice(); // first roll of the dice

case SEVEN: // win with 7 on first roll
case YO_LEVEN: // win with 11 on first roll

gameStatus = Status.WON;

case SNAKE_EYES: // lose with 2 on first roll
case TREY: // lose with 3 on first roll
case BOX_CARS: // lose with 12 on first roll

gameStatus = Status.LOST;

default: // did not win or lose, so remember point
gameStatus = Status.CONTINUE; // game is not over
myPoint = sumOfDice; // remember the point

gameStatus == Status.CONTINUE

sumOfDice = rollDice(); // roll dice again

gameStatus = Status.WON

gameStatus = Status.LOST;

gameStatus == Status.WON

public static int rollDice()

Z04_DEIT3397_02_SE_APPD.fm Page 475 Monday, July 7, 2014 9:09 AM

476 Appendix D Methods: A Deeper Look

Method rollDice
In the rules of the game, the player must roll two dice on the first roll and must do the
same on all subsequent rolls. We declare method rollDice (Fig. D.5, lines 68–81) to roll
the dice and compute and print their sum. Method rollDice is declared once, but it’s
called from two places (lines 26 and 50) in main, which contains the logic for one complete
game of craps. Method rollDice takes no arguments, so it has an empty parameter list.
Each time it’s called, rollDice returns the sum of the dice, so the return type int is indi-
cated in the method header (line 68). Although lines 71 and 72 look the same (except for
the die names), they do not necessarily produce the same result. Each of these statements
produces a random value in the range 1–6. Variable randomNumbers (used in lines 71–72)
is not declared in the method. Instead it’s declared as a private static final variable of
the class and initialized in line 8. This enables us to create one Random object that’s reused
in each call to rollDice. If there were a program that contained multiple instances of class
Craps, they’d all share this one Random object.

Method main’s Local Variables
The game is reasonably involved. The player may win or lose on the first roll, or may win
or lose on any subsequent roll. Method main (lines 21–65) uses local variable myPoint (line
23) to store the “point” if the player does not win or lose on the first roll, local variable

76 // display results of this roll
77 System.out.printf("Player rolled %d + %d = %d\n",
78 die1, die2, sum);
79
80
81 } // end method rollDice
82 } // end class Craps

Player rolled 5 + 6 = 11
Player wins

Player rolled 5 + 4 = 9
Point is 9
Player rolled 4 + 2 = 6
Player rolled 3 + 6 = 9
Player wins

Player rolled 1 + 2 = 3
Player loses

Player rolled 2 + 6 = 8
Point is 8
Player rolled 5 + 1 = 6
Player rolled 2 + 1 = 3
Player rolled 1 + 6 = 7
Player loses

Fig. D.5 | Craps class simulates the dice game craps. (Part 3 of 3.)

return sum; // return sum of dice

Z04_DEIT3397_02_SE_APPD.fm Page 476 Monday, July 7, 2014 9:09 AM

D.10 Case Study: A Game of Chance; Introducing Enumerations 477

gameStatus (line 24) to keep track of the overall game status and local variable sumOfDice
(line 26) to hold the sum of the dice for the most recent roll. Variable myPoint is initialized
to 0 to ensure that the application will compile. If you do not initialize myPoint, the com-
piler issues an error, because myPoint is not assigned a value in every case of the switch
statement, and thus the program could try to use myPoint before it’s assigned a value. By
contrast, gameStatus is assigned a value in every case of the switch statement—thus, it’s
guaranteed to be initialized before it’s used and does not need to be initialized.

enum Type Status
Local variable gameStatus (line 24) is declared to be of a new type called Status (declared
at line 11). Type Status is a private member of class Craps, because Status will be used
only in that class. Status is a type called an enumeration, which, in its simplest form, de-
clares a set of constants represented by identifiers. An enumeration is a special kind of class
that’s introduced by the keyword enum and a type name (in this case, Status). As with
classes, braces delimit an enum declaration’s body. Inside the braces is a comma-separated
list of enumeration constants, each representing a unique value. The identifiers in an enum
must be unique. You’ll learn more about enumerations in Appendix F.

Variables of type Status can be assigned only the three constants declared in the enu-
meration (line 11) or a compilation error will occur. When the game is won, the program
sets local variable gameStatus to Status.WON (lines 33 and 54). When the game is lost, the
program sets local variable gameStatus to Status.LOST (lines 38 and 57). Otherwise, the
program sets local variable gameStatus to Status.CONTINUE (line 41) to indicate that the
game is not over and the dice must be rolled again.

Logic of the main Method
Line 26 in main calls rollDice, which picks two random values from 1 to 6, displays the
values of the first die, the second die and their sum, and returns the sum. Method main
next enters the switch statement (lines 29–45), which uses the sumOfDice value from line
26 to determine whether the game has been won or lost, or should continue with another
roll. The values that result in a win or loss on the first roll are declared as public static
final int constants in lines 14–18. The identifier names use casino parlance for these
sums. These constants, like enum constants, are declared by convention with all capital let-
ters, to make them stand out in the program. Lines 31–34 determine whether the player
won on the first roll with SEVEN (7) or YO_LEVEN (11). Lines 35–39 determine whether the
player lost on the first roll with SNAKE_EYES (2), TREY (3), or BOX_CARS (12). After the first
roll, if the game is not over, the default case (lines 40–44) sets gameStatus to Sta-
tus.CONTINUE, saves sumOfDice in myPoint and displays the point.

If we’re still trying to “make our point” (i.e., the game is continuing from a prior roll),
lines 48–58 execute. Line 50 rolls the dice again. If sumOfDice matches myPoint (line 53),

Good Programming Practice D.1
It’s a convention to use only uppercase letters in the names of enumeration constants. This
makes them stand out and reminds you that they are not variables.

Good Programming Practice D.2
Using enumeration constants (like Status.WON, Status.LOST and Status.CONTINUE)
rather than literal values (such as 0, 1 and 2) makes programs easier to read and maintain.

Z04_DEIT3397_02_SE_APPD.fm Page 477 Monday, July 7, 2014 9:09 AM

478 Appendix D Methods: A Deeper Look

line 54 sets gameStatus to Status.WON, then the loop terminates because the game is com-
plete. If sumOfDice is SEVEN (line 56), line 57 sets gameStatus to Status.LOST, and the
loop terminates because the game is complete. When the game completes, lines 61–64 dis-
play a message indicating whether the player won or lost, and the program terminates.

The program uses the various program-control mechanisms we’ve discussed. The
Craps class uses two methods—main and rollDice (called twice from main)—and the
switch, while, if…else and nested if control statements. Note also the use of multiple
case labels in the switch statement to execute the same statements for sums of SEVEN and
YO_LEVEN (lines 31–32) and for sums of SNAKE_EYES, TREY and BOX_CARS (lines 35–37).

Why Some Constants Are Not Defined as enum Constants
You might be wondering why we declared the sums of the dice as public final static int
constants rather than as enum constants. The reason is that the program must compare the
int variable sumOfDice (line 26) to these constants to determine the outcome of each roll.
Suppose we declared enum Sum containing constants (e.g., Sum.SNAKE_EYES) representing the
five sums used in the game, then used these constants in the switch statement (lines 29–45).
Doing so would prevent us from using sumOfDice as the switch statement’s controlling ex-
pression, because Java does not allow an int to be compared to an enumeration constant. To
achieve the same functionality as the current program, we would have to use a variable cur-
rentSum of type Sum as the switch’s controlling expression. Unfortunately, Java does not
provide an easy way to convert an int value to a particular enum constant. This could be done
with a separate switch statement. Clearly this would be cumbersome and not improve the
program’s readability (thus defeating the purpose of using an enum).

D.11 Scope of Declarations
You’ve seen declarations of various Java entities, such as classes, methods, variables and pa-
rameters. Declarations introduce names that can be used to refer to such Java entities. The
scope of a declaration is the portion of the program that can refer to the declared entity by
its name. Such an entity is said to be “in scope” for that portion of the program. This sec-
tion introduces several important scope issues.

The basic scope rules are as follows:

1. The scope of a parameter declaration is the body of the method in which the dec-
laration appears.

2. The scope of a local-variable declaration is from the point at which the declara-
tion appears to the end of that block.

3. The scope of a local-variable declaration that appears in the initialization section
of a for statement’s header is the body of the for statement and the other expres-
sions in the header.

4. A method or field’s scope is the entire body of the class. This enables non-static
methods of a class to use the fields and other methods of the class.

Any block may contain variable declarations. If a local variable or parameter in a
method has the same name as a field of the class, the field is “hidden” until the block ter-
minates execution—this is called shadowing. In Appendix F, we discuss how to access
shadowed fields.

Z04_DEIT3397_02_SE_APPD.fm Page 478 Monday, July 7, 2014 9:09 AM

D.11 Scope of Declarations 479

Figure D.6 demonstrates scoping issues with fields and local variables. Line 7 declares
and initializes the field x to 1. This field is shadowed (hidden) in any block (or method)
that declares a local variable named x. Method main (lines 11–23) declares a local variable
x (line 13) and initializes it to 5. This local variable’s value is output to show that the field
x (whose value is 1) is shadowed in main. The program declares two other methods—use-

LocalVariable (lines 26–35) and useField (lines 38–45)—that each take no arguments
and return no results. Method main calls each method twice (lines 17–20). Method use-
LocalVariable declares local variable x (line 28). When useLocalVariable is first called
(line 17), it creates local variable x and initializes it to 25 (line 28), outputs the value of x
(lines 30–31), increments x (line 32) and outputs the value of x again (lines 33–34). When
uselLocalVariable is called a second time (line 19), it recreates local variable x and re-
initializes it to 25, so the output of each useLocalVariable call is identical.

Error-Prevention Tip D.2
Use different names for fields and local variables to help prevent subtle logic errors that occur
when a method is called and a local variable of the method shadows a field in the class.

1 // Fig. D.6: Scope.java
2 // Scope class demonstrates field and local variable scopes.
3
4 public class Scope
5 {
6
7
8
9 // method main creates and initializes local variable x

10 // and calls methods useLocalVariable and useField
11 public static void main(String[] args)
12 {
13
14
15 System.out.printf("local x in main is %d\n", x);
16
17 useLocalVariable(); // useLocalVariable has local x
18 useField(); // useField uses class Scope's field x
19 useLocalVariable(); // useLocalVariable reinitializes local x
20 useField(); // class Scope's field x retains its value
21
22 System.out.printf("\nlocal x in main is %d\n", x);
23 } // end main
24
25 // create and initialize local variable x during each call
26 public static void useLocalVariable()
27 {
28
29
30 System.out.printf(
31 "\nlocal x on entering method useLocalVariable is %d\n", x);
32

Fig. D.6 | Scope class demonstrates field and local variable scopes. (Part 1 of 2.)

// field that is accessible to all methods of this class
private static int x = 1;

int x = 5; // method's local variable x shadows field x

int x = 25; // initialized each time useLocalVariable is called

++x; // modifies this method's local variable x

Z04_DEIT3397_02_SE_APPD.fm Page 479 Monday, July 7, 2014 9:09 AM

480 Appendix D Methods: A Deeper Look

Method useField does not declare any local variables. Therefore, when it refers to x,
field x (line 7) of the class is used. When method useField is first called (line 18), it out-
puts the value (1) of field x (lines 40–41), multiplies the field x by 10 (line 42) and outputs
the value (10) of field x again (lines 43–44) before returning. The next time method use-
Field is called (line 20), the field has its modified value (10), so the method outputs 10,
then 100. Finally, in method main, the program outputs the value of local variable x again
(line 22) to show that none of the method calls modified main’s local variable x, because
the methods all referred to variables named x in other scopes.

D.12 Method Overloading
Methods of the same name can be declared in the same class, as long as they have different
sets of parameters (determined by the number, types and order of the parameters)—this
is called method overloading. When an overloaded method is called, the compiler selects
the appropriate method by examining the number, types and order of the arguments in
the call. Method overloading is commonly used to create several methods with the same
name that perform the same or similar tasks, but on different types or different numbers
of arguments. For example, Math methods abs, min and max (summarized in Section D.3)
are overloaded with four versions each:

33 System.out.printf(
34 "local x before exiting method useLocalVariable is %d\n", x);
35 } // end method useLocalVariable
36
37 // modify class Scope's field x during each call
38 public static void useField()
39 {
40 System.out.printf(
41 "\nfield x on entering method useField is %d\n", x);
42
43 System.out.printf(
44 "field x before exiting method useField is %d\n", x);
45 } // end method useField
46 } // end class Scope

local x in main is 5

local x on entering method useLocalVariable is 25
local x before exiting method useLocalVariable is 26

field x on entering method useField is 1
field x before exiting method useField is 10

local x on entering method useLocalVariable is 25
local x before exiting method useLocalVariable is 26

field x on entering method useField is 10
field x before exiting method useField is 100

local x in main is 5

Fig. D.6 | Scope class demonstrates field and local variable scopes. (Part 2 of 2.)

x *= 10; // modifies class Scope's field x

Z04_DEIT3397_02_SE_APPD.fm Page 480 Monday, July 7, 2014 9:09 AM

D.12 Method Overloading 481

1. One with two double parameters.

2. One with two float parameters.

3. One with two int parameters.

4. One with two long parameters.

Our next example demonstrates declaring and invoking overloaded methods. We demon-
strate overloaded constructors in Appendix F.

Declaring Overloaded Methods
Class MethodOverload (Fig. D.7) includes two overloaded versions of method square—one
that calculates the square of an int (and returns an int) and one that calculates the square
of a double (and returns a double). Although these methods have the same name and similar
parameter lists and bodies, think of them simply as different methods. It may help to think
of the method names as “square of int” and “square of double,” respectively.

1 // Fig. D.7: MethodOverload.java
2 // Overloaded method declarations.
3
4 public class MethodOverload
5 {
6 // test overloaded square methods
7 public static void main(String[] args)
8 {
9 System.out.printf("Square of integer 7 is %d\n",);

10 System.out.printf("Square of double 7.5 is %f\n",);
11 } // end main
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 } // end class MethodOverload

Called square with int argument: 7
Square of integer 7 is 49

Called square with double argument: 7.500000
Square of double 7.5 is 56.250000

Fig. D.7 | Overloaded method declarations.

square(7)
square(7.5)

// square method with int argument
public static int square(int intValue)
{
 System.out.printf("\nCalled square with int argument: %d\n",
 intValue);
 return intValue * intValue;
} // end method square with int argument

// square method with double argument
public static double square(double doubleValue)
{
 System.out.printf("\nCalled square with double argument: %f\n",
 doubleValue);
 return doubleValue * doubleValue;
} // end method square with double argument

Z04_DEIT3397_02_SE_APPD.fm Page 481 Monday, July 7, 2014 9:09 AM

482 Appendix D Methods: A Deeper Look

Line 9 invokes method square with the argument 7. Literal integer values are treated
as type int, so the method call in line 9 invokes the version of square at lines 14–19 that
specifies an int parameter. Similarly, line 10 invokes method square with the argument
7.5. Literal floating-point values are treated as type double, so the method call in line 10
invokes the version of square at lines 22–27 that specifies a double parameter. Each
method first outputs a line of text to prove that the proper method was called in each case.
The values in lines 10 and 24 are displayed with the format specifier %f. We did not specify
a precision in either case. By default, floating-point values are displayed with six digits of
precision if the precision is not specified in the format specifier.

Distinguishing Between Overloaded Methods
The compiler distinguishes overloaded methods by their signature—a combination of the
method’s name and the number, types and order of its parameters. If the compiler looked
only at method names during compilation, the code in Fig. D.7 would be ambigu-
ous—the compiler would not know how to distinguish between the two square methods
(lines 14–19 and 22–27). Internally, the compiler uses longer method names that include
the original method name, the types of each parameter and the exact order of the param-
eters to determine whether the methods in a class are unique in that class.

For example, in Fig. D.7, the compiler might use the logical name “square of int”
for the square method that specifies an int parameter and “square of double” for the
square method that specifies a double parameter (the actual names the compiler uses are
messier). If method1’s declaration begins as

then the compiler might use the logical name “method1 of int and float.” If the param-
eters are specified as

then the compiler might use the logical name “method1 of float and int.” The order of
the parameter types is important—the compiler considers the preceding two method1
headers to be distinct.

Return Types of Overloaded Methods
In discussing the logical names of methods used by the compiler, we did not mention the
return types of the methods. Method calls cannot be distinguished by return type. If you had
overloaded methods that differed only by their return types and you called one of the
methods in a standalone statement as in:

the compiler would not be able to determine the version of the method to call, because the
return value is ignored. When two methods have the same signature and different return
types, the compiler issues an error message indicating that the method is already defined in
the class. Overloaded methods can have different return types if the methods have different
parameter lists. Also, overloaded methods need not have the same number of parameters.

void method1(int a, float b)

void method1(float a, int b)

square(2);

Common Programming Error D.5
Declaring overloaded methods with identical parameter lists is a compilation error re-
gardless of whether the return types are different.

Z04_DEIT3397_02_SE_APPD.fm Page 482 Monday, July 7, 2014 9:09 AM

D.13 Wrap-Up 483

Self-Review Exercises
D.1 Fill in the blanks in each of the following statements:

a) A method is invoked with a(n) .
b) A variable known only within the method in which it’s declared is called a(n) .
c) class provides a collection of methods that enable you to perform common

mathematical calculations.
d) variables do not have separate instances for each object of a class.
e) Data can be added or removed only from the of a stack.
f) Stacks are known as data structures; the last item pushed (inserted) on the

stack is the first item popped (removed) from the stack.
g) The three ways to return control from a called method to a caller are ,

 and .
h) An object of class produces random numbers.
i) The program-execution stack contains the memory for local variables on each invoca-

tion of a method during a program’s execution. This data, stored as a portion of the pro-
gram-execution stack, is known as the or of the method call.

j) If there are more method calls than can be stored on the program-execution stack, an
error known as a(n) occurs.

k) The of a declaration is the portion of a program that can refer to the entity in
the declaration by name.

l) It’s possible to have several methods with the same name that each operate on different
types or numbers of arguments. This feature is called method .

m) The program-execution stack is also referred to as the stack.

D.13 Wrap-Up
In this appendix, you learned more about method declarations. You also learned the dif-
ference between non-static and static methods and how to call static methods by pre-
ceding the method name with the name of the class in which it appears and the dot (.)
separator. You learned how to use operators + and += to perform string concatenations.
We discussed how the method-call stack and activation records keep track of the methods
that have been called and where each method must return to when it completes its task.
We also discussed Java’s promotion rules for converting implicitly between primitive types
and how to perform explicit conversions with cast operators. Next, you learned about
some of the commonly used packages in the Java API.

You saw how to declare named constants using both enum types and public static
final variables. You used class Random to generate random numbers for simulations. You
also learned about the scope of fields and local variables in a class. Finally, you learned that
multiple methods in one class can be overloaded by providing methods with the same
name and different signatures. Such methods can be used to perform the same or similar
tasks using different types or different numbers of parameters.

In Appendix E, you’ll learn how to maintain lists and tables of data in arrays. You’ll
see a more elegant implementation of the application that rolls a die 6,000,000 times and
two enhanced versions of our GradeBook case study that you studied in Appendices B–C.
You’ll also learn how to access an application’s command-line arguments that are passed
to method main when an application begins execution.

Z04_DEIT3397_02_SE_APPD.fm Page 483 Friday, June 20, 2014 6:28 PM

484 Appendix D Methods: A Deeper Look

D.2 For the class Craps in Fig. D.5, state the scope of each of the following entities:
a) the variable randomNumbers.
b) the variable die1.
c) the method rollDice.
d) the method main.
e) the variable sumOfDice.

D.3 Write an application that tests whether the examples of the Math class method calls shown
in Fig. D.1 actually produce the indicated results.

D.4 Give the method header for each of the following methods:
a) Method hypotenuse, which takes two double-precision, floating-point arguments

side1 and side2 and returns a double-precision, floating-point result.
b) Method smallest, which takes three integers x, y and z and returns an integer.
c) Method instructions, which does not take any arguments and does not return a value.

[Note: Such methods are commonly used to display instructions to a user.]
d) Method intToFloat, which takes integer argument number and returns a float.

D.5 Find the error in each of the following program segments. Explain how to correct the error.
a) void g()

{

 System.out.println("Inside method g");

 void h()

 {

 System.out.println("Inside method h");

 }

}
b) int sum(int x, int y)

{

 int result;

 result = x + y;

}
c) void f(float a);

{

 float a;

 System.out.println(a);

}

D.6 Write a complete Java application to prompt the user for the double radius of a circle, and
call method circleArea to calculate and display the area of the circle. Use the following statement
to calculate the area:

double area = Math.PI * Math.pow(radius, 2)

Answers to Self-Review Exercises
D.1 a) method call. b) local variable. c) Math. d) Class. e) top. f) last-in, first-out (LIFO).
g) return; or return expression; or encountering the closing right brace of a method. h) Random.
i) activation record, stack frame. j) stack overflow. k) scope. l) method overloading. m) method call.

D.2 a) class body. b) block that defines method rollDice’s body. c) class body. d) class body.
e) block that defines method main’s body.

D.3 The following solution demonstrates the Math class methods in Fig. D.1:

Z04_DEIT3397_02_SE_APPD.fm Page 484 Monday, July 7, 2014 9:09 AM

 Answers to Self-Review Exercises 485

1 // Exercise D.3: MathTest.java
2 // Testing the Math class methods.
3
4 public class MathTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf("Math.abs(23.7) = %f\n", Math.abs(23.7));
9 System.out.printf("Math.abs(0.0) = %f\n", Math.abs(0.0));

10 System.out.printf("Math.abs(-23.7) = %f\n", Math.abs(-23.7));
11 System.out.printf("Math.ceil(9.2) = %f\n", Math.ceil(9.2));
12 System.out.printf("Math.ceil(-9.8) = %f\n", Math.ceil(-9.8));
13 System.out.printf("Math.cos(0.0) = %f\n", Math.cos(0.0));
14 System.out.printf("Math.exp(1.0) = %f\n", Math.exp(1.0));
15 System.out.printf("Math.exp(2.0) = %f\n", Math.exp(2.0));
16 System.out.printf("Math.floor(9.2) = %f\n", Math.floor(9.2));
17 System.out.printf("Math.floor(-9.8) = %f\n",
18 Math.floor(-9.8));
19 System.out.printf("Math.log(Math.E) = %f\n",
20 Math.log(Math.E));
21 System.out.printf("Math.log(Math.E * Math.E) = %f\n",
22 Math.log(Math.E * Math.E));
23 System.out.printf("Math.max(2.3, 12.7) = %f\n",
24 Math.max(2.3, 12.7));
25 System.out.printf("Math.max(-2.3, -12.7) = %f\n",
26 Math.max(-2.3, -12.7));
27 System.out.printf("Math.min(2.3, 12.7) = %f\n",
28 Math.min(2.3, 12.7));
29 System.out.printf("Math.min(-2.3, -12.7) = %f\n",
30 Math.min(-2.3, -12.7));
31 System.out.printf("Math.pow(2.0, 7.0) = %f\n",
32 Math.pow(2.0, 7.0));
33 System.out.printf("Math.pow(9.0, 0.5) = %f\n",
34 Math.pow(9.0, 0.5));
35 System.out.printf("Math.sin(0.0) = %f\n", Math.sin(0.0));
36 System.out.printf("Math.sqrt(900.0) = %f\n",
37 Math.sqrt(900.0));
38 System.out.printf("Math.tan(0.0) = %f\n", Math.tan(0.0));
39 } // end main
40 } // end class MathTest

Math.abs(23.7) = 23.700000
Math.abs(0.0) = 0.000000
Math.abs(-23.7) = 23.700000
Math.ceil(9.2) = 10.000000
Math.ceil(-9.8) = -9.000000
Math.cos(0.0) = 1.000000
Math.exp(1.0) = 2.718282
Math.exp(2.0) = 7.389056
Math.floor(9.2) = 9.000000
Math.floor(-9.8) = -10.000000
Math.log(Math.E) = 1.000000
Math.log(Math.E * Math.E) = 2.000000
Math.max(2.3, 12.7) = 12.700000
Math.max(-2.3, -12.7) = -2.300000
Math.min(2.3, 12.7) = 2.300000
Math.min(-2.3, -12.7) = -12.700000
Math.pow(2.0, 7.0) = 128.000000
Math.pow(9.0, 0.5) = 3.000000
Math.sin(0.0) = 0.000000
Math.sqrt(900.0) = 30.000000
Math.tan(0.0) = 0.000000

Z04_DEIT3397_02_SE_APPD.fm Page 485 Monday, July 7, 2014 9:09 AM

486 Appendix D Methods: A Deeper Look

D.4 a) double hypotenuse(double side1, double side2)
b) int smallest(int x, int y, int z)
c) void instructions()
d) float intToFloat(int number)

D.5 a) Error: Method h is declared within method g.
Correction: Move the declaration of h outside the declaration of g.

b) Error: The method is supposed to return an integer, but does not.
Correction: Delete the variable result, and place the statement
 return x + y;

to the method, or add the following statement at the end of the method body:
 return result;

c) Error: The semicolon after the right parenthesis of the parameter list is incorrect, and
the parameter a should not be redeclared in the method.
Correction: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float a;.

D.6 The following solution calculates the area of a circle, using the radius entered by the user:

Exercises
D.7 What is the value of x after each of the following statements is executed?

a) x = Math.abs(7.5);
b) x = Math.floor(7.5);
c) x = Math.abs(0.0);
d) x = Math.ceil(0.0);
e) x = Math.abs(-6.4);
f) x = Math.ceil(-6.4);
g) x = Math.ceil(-Math.abs(-8 + Math.floor(-5.5)));

1 // Exercise D.6: Radius.java
2 // Calculate the area of a circle.
3 import java.util.Scanner;
4
5 public class Circle
6 {
7 // obtain radius from user and display area of circle
8 public static void main(String[] args)
9 {

10 Scanner input = new Scanner(System.in);
11 System.out.print("Enter radius of circle: ");
12 double radius = input.nextDouble();
13 System.out.printf("Area is %f\n", circleArea(radius));
14 } // end method determineCircleArea
15
16 // calculate and return circle area
17 public static double circleArea(double radius)
18 {
19 double area = Math.PI * Math.pow(radius, 2);
20 return area;
21 } // end method circleArea
22 } // end class Circle

Enter radius of circle: 5
Area is 78.571428

Z04_DEIT3397_02_SE_APPD.fm Page 486 Monday, July 7, 2014 9:09 AM

 Exercises 487

D.8 (Parking Charges) A parking garage charges a $2.00 minimum fee to park for up to three
hours. The garage charges an additional $0.50 per hour for each hour or part thereof in excess of three
hours. The maximum charge for any given 24-hour period is $10.00. Assume that no car parks for
longer than 24 hours at a time. Write an application that calculates and displays the parking charges
for each customer who parked in the garage yesterday. You should enter the hours parked for each
customer. The program should display the charge for the current customer and should calculate and
display the running total of yesterday’s receipts. It should use the method calculateCharges to de-
termine the charge for each customer.

D.9 (Rounding Numbers) Math.floor can be used to round values to the nearest integer—e.g.,

y = Math.floor(x + 0.5);

will round the number x to the nearest integer and assign the result to y. Write an application that
reads double values and uses the preceding statement to round each of the numbers to the nearest
integer. For each number processed, display both the original number and the rounded number.

D.10 (Rounding Numbers) To round numbers to specific decimal places, use a statement like

y = Math.floor(x * 10 + 0.5) / 10;

which rounds x to the tenths position (i.e., the first position to the right of the decimal point), or

y = Math.floor(x * 100 + 0.5) / 100;

which rounds x to the hundredths position (i.e., the second position to the right of the decimal
point). Write an application that defines four methods for rounding a number x in various ways:

a) roundToInteger(number)
b) roundToTenths(number)
c) roundToHundredths(number)
d) roundToThousandths(number)

For each value read, your program should display the original value, the number rounded to the
nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest hun-
dredth and the number rounded to the nearest thousandth.

D.11 Answer each of the following questions:
a) What is the difference between random and pseudorandom numbers?
b) Why is the nextInt method of class Random useful for simulating games of chance?
c) What are scaling factor and shifting values in random-number generation?
d) Why is computerized simulation of real-world situations a useful technique?

D.12 Write statements that assign random integers to the variable n in the following ranges:
a) 1 ≤ n ≤ 2.
b) 1 ≤ n ≤ 100.
c) 0 ≤ n ≤ 9.
d) 1000 ≤ n ≤ 1112.
e) –1 ≤ n ≤ 1.
f) –3 ≤ n ≤ 11.

D.13 Write statements that will display a random number from each of the following sets:
a) 8, 10, 12, 14, 16.

b) 3, 5, 7, 9, 11.

c) 5, 10, 15, 20, 25.

D.14 (Exponentiation) Write a method integerPower(base, exponent) that returns the value of

base exponent

For example, integerPower(3, 4) calculates 34 (or 3 * 3 * 3 * 3). Assume that exponent is a posi-
tive, nonzero integer and that base is an integer. Use a for or while statement to control the calcu-

Z04_DEIT3397_02_SE_APPD.fm Page 487 Monday, July 7, 2014 9:09 AM

488 Appendix D Methods: A Deeper Look

lation. Do not use any Math class methods. Incorporate this method into an application that reads
integer values for base and exponent and performs the calculation with the integerPower method.

D.15 (Multiples) Write a method isMultiple that determines, for a pair of integers, whether the
second integer is a multiple of the first. The method should take two integer arguments and return
true if the second is a multiple of the first and false otherwise. [Hint: Use the remainder operator.]
Incorporate this method into an application that inputs a series of pairs of integers (one pair at a
time) and determines whether the second value in each pair is a multiple of the first.

D.16 (Even or Odd) Write a method isEven that uses the remainder operator (%) to determine
whether an integer is even. The method should take an integer argument and return true if the in-
teger is even and false otherwise. Incorporate this method into an application that inputs a se-
quence of integers (one at a time) and determines whether each is even or odd.

D.17 (Circle Circumference) Write an application that prompts the user for the radius of a circle
and uses a method called circleCircumference to calculate the circumference of the circle.

D.18 (Temperature Conversions) Implement the following integer methods:
a) Method celsius returns the Celsius equivalent of a Fahrenheit temperature, using the

calculation

celsius = 5.0 / 9.0 * (fahrenheit - 32);

b) Method fahrenheit returns the Fahrenheit equivalent of a Celsius temperature, using
the calculation

fahrenheit = 9.0 / 5.0 * celsius + 32;

c) Use the methods from parts (a) and (b) to write an application that enables the user ei-
ther to enter a Fahrenheit temperature and display the Celsius equivalent or to enter a
Celsius temperature and display the Fahrenheit equivalent.

D.19 (Find the Maximum) Write a method maximum3 that returns the largest of three floating-
point numbers. Use the Math.max method to implement maximum3. Incorporate the method into an
application that reads three values from the user, determines the largest value and displays the result.

D.20 (Greatest Common Divisor) The greatest common divisor (GCD) of two integers is the largest
integer that evenly divides each of the two numbers. Write a method gcd that returns the greatest
common divisor of two integers. [Hint: You might want to use Euclid’s algorithm. You can find
information about it at en.wikipedia.org/wiki/Euclidean_algorithm.] Incorporate the method
into an application that reads two values from the user and displays the result.

D.21 (Quality Points) Write a method qualityPoints that inputs a student’s average and returns
4 if it’s 90–100, 3 if 80–89, 2 if 70–79, 1 if 60–69 and 0 if lower than 60. Incorporate the method
into an application that reads a value from the user and displays the result.

D.22 (Coin Tossing) Write an application that simulates coin tossing. Let the program toss a coin
each time the user chooses the “Toss Coin” menu option. Count the number of times each side of
the coin appears. Display the results. The program should call a separate method flip that takes no
arguments and returns a value from a Coin enum (HEADS and TAILS). [Note: If the program realistically
simulates coin tossing, each side of the coin should appear approximately half the time.]

D.23 (Guess the Number) Write an application that plays “guess the number” as follows: Your
program chooses the number to be guessed by selecting a random integer in the range 1 to 1000.
The application displays the prompt Guess a number between 1 and 1000. The player inputs a first
guess. If the player's guess is incorrect, your program should display "Too high. Try again." or "Too
low. Try again." to help the player “zero in” on the correct answer. The program should prompt
the user for the next guess. When the user enters the correct answer, display "Congratulations. You

Z04_DEIT3397_02_SE_APPD.fm Page 488 Monday, July 7, 2014 9:09 AM

 Exercises 489

guessed the number!", and allow the user to choose whether to play again. The guessing technique
employed in this problem is similar to a binary search.

D.24 (Craps Game Modification) Modify the craps program of Fig. D.5 to allow wagering. Ini-
tialize variable bankBalance to 1000 dollars. Prompt the player to enter a wager. Check that wager
is less than or equal to bankBalance, and if it’s not, have the user reenter wager until a valid wager
is entered. Then, run one game of craps. If the player wins, increase bankBalance by wager and dis-
play the new bankBalance. If the player loses, decrease bankBalance by wager, display the new bank-
Balance, check whether bankBalance has become zero and, if so, display the message "Sorry. You
busted!" As the game progresses, display various messages to create some “chatter,” such as "Oh,
you're going for broke, huh?" or "Aw c'mon, take a chance!" or "You're up big. Now's the time
to cash in your chips!". Implement the “chatter” as a separate method that randomly chooses the
string to display.

D.25 (Computer-Assisted Instruction) The use of computers in education is referred to as com-
puter-assisted instruction (CAI). Write a program that will help an elementary school student learn
multiplication. Use a Random object to produce two positive one-digit integers. The program should
then prompt the user with a question, such as

How much is 6 times 7?

The student then inputs the answer. Next, the program checks the student’s answer. If it’s correct,
display the message "Very good!" and ask another multiplication question. If the answer is wrong,
display the message "No. Please try again." and let the student try the same question repeatedly
until the student finally gets it right. A separate method should be used to generate each new ques-
tion. This method should be called once when the application begins execution and each time the
user answers the question correctly.

D.26 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in CAI environ-
ments is student fatigue. This can be reduced by varying the computer’s responses to hold the stu-
dent’s attention. Modify the program of Exercise D.25 so that various comments are displayed for
each answer as follows:

Possible responses to a correct answer:

Very good!
Excellent!
Nice work!
Keep up the good work!

Possible responses to an incorrect answer:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

Use random-number generation to choose a number from 1 to 4 that will be used to select
one of the four appropriate responses to each correct or incorrect answer. Use a switch statement to
issue the responses.

D.27 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the previous pro-
gram to allow the user to pick a type of arithmetic problem to study. An option of 1 means addition
problems only, 2 means subtraction problems only, 3 means multiplication problems only, 4 means
division problems only and 5 means a random mixture of all these types.

Z04_DEIT3397_02_SE_APPD.fm Page 489 Monday, July 7, 2014 9:09 AM

E Arrays and ArrayLists

O b j e c t i v e s
In this appendix you’ll learn:

■ What arrays are.
■ To use arrays to store data in

and retrieve data from lists
and tables of values.

■ To declare arrays, initialize
arrays and refer to individual
elements of arrays.

■ To iterate through arrays with
the enhanced for statement.

■ To pass arrays to methods.
■ To declare and manipulate

multidimensional arrays.
■ To perform common array

manipulations with the
methods of class Arrays.

■ To use class ArrayList to
manipulate a dynamically
resizable array-like data
structure.

Z05_DEIT3397_02_SE_APPE.fm Page 490 Tuesday, July 8, 2014 8:35 AM

E.1 Introduction 491

E.1 Introduction
This appendix introduces data structures—collections of related data items. Arrays are data
structures consisting of related data items of the same type. Arrays make it convenient to pro-
cess related groups of values. Arrays remain the same length once they’re created, although
an array variable may be reassigned such that it refers to a new array of a different length.

Although commonly used, arrays have limited capabilities. For instance, you must
specify an array’s size, and if at execution time you wish to modify it, you must do so man-
ually by creating a new array. At the end of this appendix, we introduce one of Java’s pre-
built data structures from the Java API’s collection classes. These offer greater capabilities
than traditional arrays. We focus on the ArrayList collection. ArrayLists are similar to
arrays but provide additional functionality, such as dynamic resizing—they automatically
increase their size at execution time to accommodate additional elements.

E.2 Arrays
An array is a group of variables (called elements or components) containing values that all
have the same type. Arrays are objects, so they’re considered reference types. As you’ll soon
see, what we typically think of as an array is actually a reference to an array object in mem-
ory. The elements of an array can be either primitive types or reference types (including
arrays, as we’ll see in Section E.9). To refer to a particular element in an array, we specify
the name of the reference to the array and the position number of the element in the array.
The position number of the element is called the element’s index or subscript.

Figure E.1 shows a logical representation of an integer array called c. This array con-
tains 12 elements. A program refers to any one of these elements with an array-access
expression that includes the name of the array followed by the index of the particular ele-
ment in square brackets ([]). The first element in every array has index zero and is some-
times called the zeroth element. Thus, the elements of array c are c[0], c[1], c[2] and so
on. The highest index in array c is 11, which is 1 less than 12—the number of elements
in the array. Array names follow the same conventions as other variable names.

E.1 Introduction
E.2 Arrays
E.3 Declaring and Creating Arrays
E.4 Examples Using Arrays
E.5 Case Study: Card Shuffling and

Dealing Simulation
E.6 Enhanced for Statement
E.7 Passing Arrays to Methods
E.8 Case Study: Class GradeBook Using

an Array to Store Grades

E.9 Multidimensional Arrays
E.10 Case Study: Class GradeBook Using

a Two-Dimensional Array
E.11 Class Arrays
E.12 Introduction to Collections and Class

ArrayList
E.13 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Z05_DEIT3397_02_SE_APPE.fm Page 491 Monday, July 7, 2014 9:12 AM

492 Appendix E Arrays and ArrayLists

An index must be a nonnegative integer. A program can use an expression as an index.
For example, if we assume that variable a is 5 and variable b is 6, then the statement

adds 2 to array element c[11]. An indexed array name is an array-access expression, which
can be used on the left side of an assignment to place a new value into an array element.

Let’s examine array c in Fig. E.1 more closely. The name of the array is c. Every array
object knows its own length and stores it in a length instance variable. The expression
c.length accesses array c’s length field to determine the length of the array. Even though
the length instance variable of an array is public, it cannot be changed because it’s a
final variable. This array’s 12 elements are referred to as c[0], c[1], c[2], …, c[11]. The
value of c[0] is -45, the value of c[1] is 6, the value of c[2] is 0, the value of c[7] is 62
and the value of c[11] is 78. To calculate the sum of the values contained in the first three
elements of array c and store the result in variable sum, we would write

To divide the value of c[6] by 2 and assign the result to the variable x, we would write

E.3 Declaring and Creating Arrays
Array objects occupy space in memory. Like other objects, arrays are created with keyword
new. To create an array object, you specify the type of the array elements and the number
of elements as part of an array-creation expression that uses keyword new. Such an expres-
sion returns a reference that can be stored in an array variable. The following declaration

Fig. E.1 | A 12-element array.

c[a + b] += 2;

Common Programming Error E.1
An index must be an int value or a value of a type that can be promoted to int—namely,
byte, short or char, but not long; otherwise, a compilation error occurs.

sum = c[0] + c[1] + c[2];

x = c[6] / 2;

-45

62

-3

1

6453

78

0

-89

1543

72

0

6

c[0]
Name of array (c)

Index (or subcript) of the

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

element in array c

Z05_DEIT3397_02_SE_APPE.fm Page 492 Monday, July 7, 2014 9:12 AM

E.4 Examples Using Arrays 493

and array-creation expression create an array object containing 12 int elements and store
the array’s reference in array variable c:

This expression can be used to create the array shown in Fig. E.1. When an array is created,
each element of the array receives a default value—zero for the numeric primitive-type el-
ements, false for boolean elements and null for references. As you’ll soon see, you can
provide nondefault initial element values when you create an array.

Creating the array in Fig. E.1 can also be performed in two steps as follows:

In the declaration, the square brackets following the type indicate that c is a variable that
will refer to an array (i.e., the variable will store an array reference). In the assignment state-
ment, the array variable c receives the reference to a new array of 12 int elements.

A program can create several arrays in a single declaration. The following declaration
reserves 100 elements for b and 27 elements for x:

When the type of the array and the square brackets are combined at the beginning of the
declaration, all the identifiers in the declaration are array variables. In this case, variables b
and x refer to String arrays. For readability, we prefer to declare only one variable per dec-
laration. The preceding declaration is equivalent to:

When only one variable is declared in each declaration, the square brackets can be
placed either after the type or after the array variable name, as in:

A program can declare arrays of any type. Every element of a primitive-type array con-
tains a value of the array’s declared element type. Similarly, in an array of a reference type,
every element is a reference to an object of the array’s declared element type. For example,
every element of an int array is an int value, and every element of a String array is a ref-
erence to a String object.

E.4 Examples Using Arrays
This section presents several examples that demonstrate declaring arrays, creating arrays,
initializing arrays and manipulating array elements.

int[] c = new int[12];

int[] c; // declare the array variable
c = new int[12]; // create the array; assign to array variable

String[] b = new String[100], x = new String[27];

String[] b = new String[100]; // create array b
String[] x = new String[27]; // create array x

String b[] = new String[100]; // create array b
String x[] = new String[27]; // create array x

Common Programming Error E.2
Declaring multiple array variables in a single declaration can lead to subtle errors. Consider
the declaration int[] a, b, c;. If a, b and c should be declared as array variables, then this
declaration is correct—placing square brackets directly following the type indicates that all
the identifiers in the declaration are array variables. However, if only a is intended to be an
array variable, and b and c are intended to be individual int variables, then this declara-
tion is incorrect—the declaration int a[], b, c; would achieve the desired result.

Z05_DEIT3397_02_SE_APPE.fm Page 493 Monday, July 7, 2014 9:12 AM

494 Appendix E Arrays and ArrayLists

Creating and Initializing an Array
The application of Fig. E.2 uses keyword new to create an array of 10 int elements, which
are initially zero (the default for int variables). Line 8 declares array—a reference capable
of referring to an array of int elements. Line 10 creates the array object and assigns its ref-
erence to variable array. Line 12 outputs the column headings. The first column contains
the index (0–9) of each array element, and the second column contains the default value
(0) of each array element.

The for statement in lines 15–16 outputs the index number (represented by counter)
and the value of each array element (represented by array[counter]). The loop-control
variable counter is initially 0—index values start at 0, so using zero-based counting allows
the loop to access every element of the array. The for’s loop-continuation condition uses
the expression array.length (line 15) to determine the length of the array. In this
example, the length of the array is 10, so the loop continues executing as long as the value
of control variable counter is less than 10. The highest index value of a 10-element array
is 9, so using the less-than operator in the loop-continuation condition guarantees that the
loop does not attempt to access an element beyond the end of the array (i.e., during the
final iteration of the loop, counter is 9). We’ll soon see what Java does when it encounters
such an out-of-range index at execution time.

1 // Fig. E.2: InitArray.java
2 // Initializing the elements of an array to default values of zero.
3
4 public class InitArray
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12 System.out.printf("%s%8s\n", "Index", "Value"); // column headings
13
14
15
16
17 } // end main
18 } // end class InitArray

Index Value
 0 0
 1 0
 2 0
 3 0
 4 0
 5 0
 6 0
 7 0
 8 0
 9 0

Fig. E.2 | Initializing the elements of an array to default values of zero.

int[] array; // declare array named array

array = new int[10]; // create the array object

// output each array element's value
for (int counter = 0; counter < array.length; counter++)
 System.out.printf("%5d%8d\n", counter, array[counter]);

Z05_DEIT3397_02_SE_APPE.fm Page 494 Monday, July 7, 2014 9:12 AM

E.4 Examples Using Arrays 495

Using an Array Initializer
You can create an array and initialize its elements with an array initializer—a comma-sep-
arated list of expressions (called an initializer list) enclosed in braces. In this case, the array
length is determined by the number of elements in the initializer list. For example,

creates a five-element array with index values 0–4. Element n[0] is initialized to 10, n[1]
is initialized to 20, and so on. When the compiler encounters an array declaration that in-
cludes an initializer list, it counts the number of initializers in the list to determine the size
of the array, then sets up the appropriate new operation “behind the scenes.”

The application in Fig. E.3 initializes an integer array with 10 values (line 9) and dis-
plays the array in tabular format. The code for displaying the array elements (lines 14–15)
is identical to that in Fig. E.2 (lines 15–16).

Calculating the Values to Store in an Array
The application in Fig. E.4 creates a 10-element array and assigns to each element one of
the even integers from 2 to 20 (2, 4, 6, …, 20). Then the application displays the array in
tabular format. The for statement at lines 12–13 calculates an array element’s value by
multiplying the current value of the control variable counter by 2, then adding 2.

int[] n = { 10, 20, 30, 40, 50 };

1 // Fig. E.3: InitArray.java
2 // Initializing the elements of an array with an array initializer.
3
4 public class InitArray
5 {
6 public static void main(String[] args)
7 {
8
9

10
11 System.out.printf("%s%8s\n", "Index", "Value"); // column headings
12
13 // output each array element's value
14 for (int counter = 0; counter < array.length; counter++)
15 System.out.printf("%5d%8d\n", counter, array[counter]);
16 } // end main
17 } // end class InitArray

Index Value
 0 32
 1 27
 2 64
 3 18
 4 95
 5 14
 6 90
 7 70
 8 60
 9 37

Fig. E.3 | Initializing the elements of an array with an array initializer.

// initializer list specifies the value for each element
int[] array = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

Z05_DEIT3397_02_SE_APPE.fm Page 495 Monday, July 7, 2014 9:12 AM

496 Appendix E Arrays and ArrayLists

Line 8 uses the modifier final to declare the constant variable ARRAY_LENGTH with the
value 10. Constant variables must be initialized before they’re used and cannot be modi-
fied thereafter. If you attempt to modify a final variable after it’s initialized in its declara-
tion, the compiler issues an error message like

If an attempt is made to access the value of a final variable before it’s initialized, the
compiler issues an error message like

1 // Fig. E.4: InitArray.java
2 // Calculating the values to be placed into the elements of an array.
3
4 public class InitArray
5 {
6 public static void main(String[] args)
7 {
8
9

10
11 // calculate value for each array element
12 for (int counter = 0; counter < array.length; counter++)
13
14
15 System.out.printf("%s%8s\n", "Index", "Value"); // column headings
16
17 // output each array element's value
18 for (int counter = 0; counter < array.length; counter++)
19 System.out.printf("%5d%8d\n", counter, array[counter]);
20 } // end main
21 } // end class InitArray

Index Value
 0 2
 1 4
 2 6
 3 8
 4 10
 5 12
 6 14
 7 16
 8 18
 9 20

Fig. E.4 | Calculating the values to be placed into the elements of an array.

cannot assign a value to final variable variableName

variable variableName might not have been initialized

Good Programming Practice E.1
Constant variables also are called named constants. They often make programs more
readable than programs that use literal values (e.g., 10)—a named constant such as
ARRAY_LENGTH clearly indicates its purpose, whereas a literal value could have different
meanings based on its context.

final int ARRAY_LENGTH = 10; // declare constant
int[] array = new int[ARRAY_LENGTH]; // create array

array[counter] = 2 + 2 * counter;

Z05_DEIT3397_02_SE_APPE.fm Page 496 Monday, July 7, 2014 9:12 AM

E.4 Examples Using Arrays 497

Using Bar Charts to Display Array Data Graphically
Many programs present data to users in a graphical manner. For example, numeric values
are often displayed as bars in a bar chart. In such a chart, longer bars represent proportion-
ally larger numeric values. One simple way to display numeric data graphically is with a
bar chart that shows each numeric value as a bar of asterisks (*).

Professors often like to examine the distribution of grades on an exam. A professor
might graph the number of grades in each of several categories to visualize the grade distri-
bution. Suppose the grades on an exam were 87, 68, 94, 100, 83, 78, 85, 91, 76 and 87.
They include one grade of 100, two grades in the 90s, four grades in the 80s, two grades in
the 70s, one grade in the 60s and no grades below 60. Our next application (Fig. E.5) stores
this grade distribution data in an array of 11 elements, each corresponding to a category of
grades. For example, array[0] indicates the number of grades in the range 0–9, array[7]
the number of grades in the range 70–79 and array[10] the number of 100 grades.

1 // Fig. E.5: BarChart.java
2 // Bar chart printing program.
3
4 public class BarChart
5 {
6 public static void main(String[] args)
7 {
8 int[] array = { 0, 0, 0, 0, 0, 0, 1, 2, 4, 2, 1 };
9

10 System.out.println("Grade distribution:");
11
12 // for each array element, output a bar of the chart
13 for (int counter = 0; counter < array.length; counter++)
14 {
15 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
16 if (counter == 10)
17 System.out.printf("%5d: ", 100);
18 else
19 System.out.printf("%02d-%02d: ",
20 counter * 10, counter * 10 + 9);
21
22
23
24
25
26 System.out.println(); // start a new line of output
27 } // end outer for
28 } // end main
29 } // end class BarChart

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:

Fig. E.5 | Bar chart printing program. (Part 1 of 2.)

// print bar of asterisks
for (int stars = 0; stars < array[counter]; stars++)
 System.out.print("*");

Z05_DEIT3397_02_SE_APPE.fm Page 497 Monday, July 7, 2014 9:12 AM

498 Appendix E Arrays and ArrayLists

The application reads the numbers from the array and graphs the information as a bar
chart. It displays each grade range followed by a bar of asterisks indicating the number of
grades in that range. To label each bar, lines 16–20 output a grade range (e.g., "70-79: ")
based on the current value of counter. When counter is 10, line 17 outputs 100 with a
field width of 5, followed by a colon and a space, to align the label "100: " with the other
bar labels. The nested for statement (lines 23–24) outputs the bars. Note the loop-con-
tinuation condition at line 23 (stars < array[counter]). Each time the program reaches
the inner for, the loop counts from 0 up to array[counter], thus using a value in array
to determine the number of asterisks to display. In this example, no students received a
grade below 60, so array[0]–array[5] contain zeroes, and no asterisks are displayed next
to the first six grade ranges. In line 19, the format specifier %02d indicates that an int value
should be formatted as a field of two digits. The 0 flag in the format specifier displays a
leading 0 for values with fewer digits than the field width (2).

Using the Elements of an Array as Counters
Sometimes, programs use counter variables to summarize data, such as the results of a survey.
Figure E.6 uses the array frequency (line 10) to count the occurrences of each side of the die
that’s rolled 6,000,000 times. Line 14 uses the random value to determine which frequency
element to increment during each iteration of the loop. The calculation in line 14 produces
random numbers from 1 to 6, so the array frequency must be large enough to store six coun-
ters. However, we use a seven-element array in which we ignore frequency[0]—it’s more
logical to have the face value 1 increment frequency[1] than frequency[0]. Thus, each face
value is used as an index for array frequency. In line 14, the calculation inside the square
brackets evaluates first to determine which element of the array to increment, then the ++
operator adds one to that element. Lines 19–20 loop through array frequency to output the
results.

50-59:
60-69: *
70-79: **
80-89: ****
90-99: **
 100: *

1 // Fig. E.7: RollDie.java
2 // Die-rolling program using arrays instead of switch.
3 import java.util.Random;
4
5 public class RollDie
6 {
7 public static void main(String[] args)
8 {
9 Random randomNumbers = new Random(); // random number generator

10 int[] frequency = new int[7]; // array of frequency counters
11

Fig. E.6 | Die-rolling program using arrays instead of switch. (Part 1 of 2.)

Fig. E.5 | Bar chart printing program. (Part 2 of 2.)

Z05_DEIT3397_02_SE_APPE.fm Page 498 Monday, July 7, 2014 9:12 AM

E.4 Examples Using Arrays 499

Using Arrays to Analyze Survey Results
Our next example uses arrays to summarize data collected in a survey. Consider the fol-
lowing problem statement:

Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the
student cafeteria, with 1 being “awful” and 5 being “excellent.” Place the 20 responses
in an integer array and determine the frequency of each rating.

This is a typical array-processing application (Fig. E.7). We wish to summarize the num-
ber of responses of each type (that is, 1–5). Array responses (lines 9–10) is a 20-element
integer array containing the students’ survey responses. The last value in the array is inten-
tionally an incorrect response (14). When a Java program executes, array element indices
are checked for validity—all indices must be greater than or equal to 0 and less than the
length of the array. Any attempt to access an element outside that range of indices results
in a runtime error that’s known as an ArrayIndexOutOfBoundsException. At the end of
this section, we’ll discuss the invalid response value, demonstrate array bounds checking
and introduce Java’s exception-handling mechanism, which can be used to detect and
handle an ArrayIndexOutOfBoundsException.

12 // roll die 6,000,000 times; use die value as frequency index
13 for (int roll = 1; roll <= 6000000; roll++)
14
15
16 System.out.printf("%s%10s\n", "Face", "Frequency");
17
18 // output each array element's value
19 for (int face = 1; face < frequency.length; face++)
20 System.out.printf("%4d%10d\n", face, frequency[face]);
21 } // end main
22 } // end class RollDie

Face Frequency
 1 999690
 2 999512
 3 1000575
 4 999815
 5 999781
 6 1000627

Fig. E.6 | Die-rolling program using arrays instead of switch. (Part 2 of 2.)

++frequency[1 + randomNumbers.nextInt(6)];

1 // Fig. E.7: StudentPoll.java
2 // Poll analysis program.
3
4 public class StudentPoll
5 {
6 public static void main(String[] args)
7 {
8 // student response array (more typically, input at runtime)
9 int[] responses = { 1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3,

10 2, 3, 3, 2, 14 };

Fig. E.7 | Poll analysis program. (Part 1 of 2.)

Z05_DEIT3397_02_SE_APPE.fm Page 499 Monday, July 7, 2014 9:12 AM

500 Appendix E Arrays and ArrayLists

The frequency Array
We use the six-element array frequency (line 11) to count the number of occurrences of
each response. Each element is used as a counter for one of the possible types of survey
responses—frequency[1] counts the number of students who rated the food as 1, fre-
quency[2] counts the number of students who rated the food as 2, and so on.

Summarizing the Results
The for statement (lines 15–27) reads the responses from the array responses one at a
time and increments one of the counters frequency[1] to frequency[5]; we ignore fre-
quency[0] because the survey responses are limited to the range 1–5. The key statement
in the loop appears in line 19. This statement increments the appropriate frequency coun-
ter as determined by the value of responses[answer].

Let’s step through the first few iterations of the for statement:

• When the counter answer is 0, responses[answer] is the value of responses[0]
(that is, 1—see line 9). In this case, frequency[responses[answer]] is interpret-

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 System.out.printf("%s%10s\n", "Rating", "Frequency");
30
31 // output each array element's value
32 for (int rating = 1; rating < frequency.length; rating++)
33 System.out.printf("%6d%10d\n", rating, frequency[rating]);
34 } // end main
35 } // end class StudentPoll

java.lang.ArrayIndexOutOfBoundsException: 14
 responses[19] = 14

Rating Frequency
 1 3
 2 4
 3 8
 4 2
 5 2

Fig. E.7 | Poll analysis program. (Part 2 of 2.)

int[] frequency = new int[6]; // array of frequency counters

// for each answer, select responses element and use that value
// as frequency index to determine element to increment
for (int answer = 0; answer < responses.length; answer++)
{
 try
 {
 ++frequency[responses[answer]];
 } // end try
 catch (ArrayIndexOutOfBoundsException e)
 {
 System.out.println(e);
 System.out.printf(" responses[%d] = %d\n\n",
 answer, responses[answer]);
 } // end catch
} // end for

Z05_DEIT3397_02_SE_APPE.fm Page 500 Monday, July 7, 2014 9:12 AM

E.4 Examples Using Arrays 501

ed as frequency[1], and the counter frequency[1] is incremented by one. To
evaluate the expression, we begin with the value in the innermost set of brackets
(answer, currently 0). The value of answer is plugged into the expression, and the
next set of brackets (responses[answer]) is evaluated. That value is used as the
index for the frequency array to determine which counter to increment (in this
case, frequency[1]).

• The next time through the loop answer is 1, responses[answer] is the value of
responses[1] (that is, 2—see line 9), so frequency[responses[answer]] is in-
terpreted as frequency[2], causing frequency[2] to be incremented.

• When answer is 2, responses[answer] is the value of responses[2] (that is, 5—
see line 9), so frequency[responses[answer]] is interpreted as frequency[5],
causing frequency[5] to be incremented, and so on.

Regardless of the number of responses processed in the survey, only a six-element array (in
which we ignore element zero) is required to summarize the results, because all the correct
response values are between 1 and 5, and the index values for a six-element array are 0–5.
In the program’s output, the Frequency column summarizes only 19 of the 20 values in
the responses array—the last element of the array responses contains an incorrect re-
sponse that was not counted.

Exception Handling: Processing the Incorrect Response
An exception indicates a problem that occurs while a program executes. The name “excep-
tion” suggests that the problem occurs infrequently—if the “rule” is that a statement nor-
mally executes correctly, then the problem represents the “exception to the rule.”
Exception handling enables you to create fault-tolerant programs that can resolve (or
handle) exceptions. In many cases, this allows a program to continue executing as if no
problems were encountered. For example, the StudentPoll application still displays re-
sults (Fig. E.7), even though one of the responses was out of range. More severe problems
might prevent a program from continuing normal execution, instead requiring the pro-
gram to notify the user of the problem, then terminate. When the JVM or a method de-
tects a problem, such as an invalid array index or an invalid method argument, it throws
an exception—that is, an exception occurs.

The try Statement
To handle an exception, place any code that might throw an exception in a try statement
(lines 17–26). The try block (lines 17–20) contains the code that might throw an excep-
tion, and the catch block (lines 21–26) contains the code that handles the exception if one
occurs. You can have many catch blocks to handle different types of exceptions that might
be thrown in the corresponding try block. When line 19 correctly increments an element
of the frequency array, lines 21–26 are ignored. The braces that delimit the bodies of the
try and catch blocks are required.

Executing the catch Block
When the program encounters the value 14 in the responses array, it attempts to add 1
to frequency[14], which is outside the bounds of the array—the frequency array has only
six elements. Because array bounds checking is performed at execution time, the JVM gen-
erates an exception—specifically line 19 throws an ArrayIndexOutOfBoundsException to

Z05_DEIT3397_02_SE_APPE.fm Page 501 Monday, July 7, 2014 9:12 AM

502 Appendix E Arrays and ArrayLists

notify the program of this problem. At this point the try block terminates and the catch
block begins executing—if you declared any variables in the try block, they’re now out of
scope and are not accessible in the catch block.

The catch block declares a type (IndexOutOfRangeException) and an exception
parameter (e). The catch block can handle exceptions of the specified type. Inside the catch
block, you can use the parameter’s identifier to interact with a caught exception object.

toString Method of the Exception Parameter
When lines 21–26 catch the exception, the program displays a message indicating the
problem that occurred. Line 23 implicitly calls the exception object’s toString method to
get the error message that is stored in the exception object and display it. Once the message
is displayed in this example, the exception is considered handled and the program contin-
ues with the next statement after the catch block’s closing brace. In this example, the end
of the for statement is reached (line 27), so the program continues with the increment of
the control variable in line 15. We use exception handling again in Appendix F, and
Appendix H presents a deeper look at exception handling.

E.5 Case Study: Card Shuffling and Dealing Simulation
The examples in the appendix thus far have used arrays containing elements of primitive
types. Recall from Section E.2 that the elements of an array can be either primitive types
or reference types. This section uses random-number generation and an array of reference-
type elements, namely objects representing playing cards, to develop a class that simulates
card shuffling and dealing. This class can then be used to implement applications that play
specific card games.

We first develop class Card (Fig. E.8), which represents a playing card that has a face
(e.g., "Ace", "Deuce", "Three", …, "Jack", "Queen", "King") and a suit (e.g., "Hearts",
"Diamonds", "Clubs", "Spades"). Next, we develop the DeckOfCards class (Fig. E.9),
which creates a deck of 52 playing cards in which each element is a Card object. We then
build a test application (Fig. E.10) that demonstrates class DeckOfCards’s card-shuffling
and dealing capabilities.

Class Card
Class Card (Fig. E.8) contains two String instance variables—face and suit—that are
used to store references to the face name and suit name for a specific Card. The constructor
for the class (lines 10–14) receives two Strings that it uses to initialize face and suit.
Method toString (lines 17–20) creates a String consisting of the face of the card, the
String " of " and the suit of the card. Card’s toString method can be invoked explicitly
to obtain a string representation of a Card object (e.g., "Ace of Spades"). The toString
method of an object is called implicitly when the object is used where a String is expected
(e.g., when printf outputs the object as a String using the %s format specifier or when

Error-Prevention Tip E.1
When writing code to access an array element, ensure that the array index remains greater
than or equal to 0 and less than the length of the array. This helps prevent ArrayIndex-
OutOfBoundsException in your program.

Z05_DEIT3397_02_SE_APPE.fm Page 502 Monday, July 7, 2014 9:12 AM

E.5 Case Study: Card Shuffling and Dealing Simulation 503

the object is concatenated to a String using the + operator). For this behavior to occur,
toString must be declared with the header shown in Fig. E.8.

Class DeckOfCards
Class DeckOfCards (Fig. E.9) declares as an instance variable a Card array named deck
(line 7). An array of a reference type is declared like any other array. Class DeckOfCards
also declares an integer instance variable currentCard (line 8) representing the next Card
to be dealt from the deck array and a named constant NUMBER_OF_CARDS (line 9) indicating
the number of Cards in the deck (52).

1 // Fig. E.8: Card.java
2 // Card class represents a playing card.
3
4 public class Card
5 {
6 private String face; // face of card ("Ace", "Deuce", ...)
7 private String suit; // suit of card ("Hearts", "Diamonds", ...)
8
9 // two-argument constructor initializes card's face and suit

10 public Card(String cardFace, String cardSuit)
11 {
12 face = cardFace; // initialize face of card
13 suit = cardSuit; // initialize suit of card
14 } // end two-argument Card constructor
15
16
17
18
19
20
21 } // end class Card

Fig. E.8 | Card class represents a playing card.

1 // Fig. E.9: DeckOfCards.java
2 // DeckOfCards class represents a deck of playing cards.
3 import java.util.Random;
4
5 public class DeckOfCards
6 {
7
8 private int currentCard; // index of next Card to be dealt (0-51)
9 private static final int NUMBER_OF_CARDS = 52; // constant # of Cards

10 // random number generator
11 private static final Random randomNumbers = new Random();
12
13 // constructor fills deck of Cards
14 public DeckOfCards()
15 {

Fig. E.9 | DeckOfCards class represents a deck of playing cards. (Part 1 of 2.)

// return String representation of Card
public String toString()
{
 return face + " of " + suit;
} // end method toString

private Card[] deck; // array of Card objects

Z05_DEIT3397_02_SE_APPE.fm Page 503 Monday, July 7, 2014 9:12 AM

504 Appendix E Arrays and ArrayLists

DeckOfCards Constructor
The class’s constructor instantiates array deck (line 20) with NUMBER_OF_CARDS (52) ele-
ments that are all null by default. Lines 24–26 fill the deck with Cards. The loop initializes
control variable count to 0 and loops while count is less than deck.length, causing count
to take on each integer value from 0 to 51 (the indices of array deck). Each Card is instan-
tiated and initialized with a String from the faces array (which contains "Ace" through
"King") and a String from the suits array (which contains "Hearts", "Diamonds",
"Clubs" and "Spades"). The calculation count % 13 always results in a value from 0 to 12

16
17
18
19
20
21 currentCard = 0; // set currentCard so first Card dealt is deck[0]
22
23
24
25
26
27 } // end DeckOfCards constructor
28
29 // shuffle deck of Cards with one-pass algorithm
30 public void shuffle()
31 {
32 // after shuffling, dealing should start at deck[0] again
33 currentCard = 0; // reinitialize currentCard
34
35 // for each Card, pick another random Card (0-51) and swap them
36 for (int first = 0; first < deck.length; first++)
37 {
38 // select a random number between 0 and 51
39 int second = randomNumbers.nextInt(NUMBER_OF_CARDS);
40
41 // swap current Card with randomly selected Card
42
43
44
45 } // end for
46 } // end method shuffle
47
48 // deal one Card
49 public Card dealCard()
50 {
51 // determine whether Cards remain to be dealt
52 if ()
53 return deck[currentCard++]; // return current Card in array
54 else
55 return null; // return null to indicate that all Cards were dealt
56 } // end method dealCard
57 } // end class DeckOfCards

Fig. E.9 | DeckOfCards class represents a deck of playing cards. (Part 2 of 2.)

String[] faces = { "Ace", "Deuce", "Three", "Four", "Five", "Six",
 "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King" };
String[] suits = { "Hearts", "Diamonds", "Clubs", "Spades" };

deck = new Card[NUMBER_OF_CARDS]; // create array of Card objects

// populate deck with Card objects
for (int count = 0; count < deck.length; count++)
 deck[count] =
 new Card(faces[count % 13], suits[count / 13]);

Card temp = deck[first];
deck[first] = deck[second];
deck[second] = temp;

currentCard < deck.length

Z05_DEIT3397_02_SE_APPE.fm Page 504 Monday, July 7, 2014 9:12 AM

E.5 Case Study: Card Shuffling and Dealing Simulation 505

(the 13 indices of the faces array in lines 16–17), and the calculation count / 13 always
results in a value from 0 to 3 (the four indices of the suits array in line 18). When the
deck array is initialized, it contains the Cards with faces "Ace" through "King" in order for
each suit ("Hearts" then "Diamonds" then "Clubs" then "Spades").

DeckOfCards Method shuffle
Method shuffle (lines 30–46) shuffles the Cards in the deck. The method loops through
all 52 Cards. For each Card, a number between 0 and 51 is picked randomly to select an-
other Card, then the current Card and the randomly selected Card are swapped in the ar-
ray. This exchange is performed by the assignments in lines 42–44. The extra variable temp
temporarily stores one of the two Card objects being swapped. The swap cannot be per-
formed with only the two statements

If deck[first] is the "Ace" of "Spades" and deck[second] is the "Queen" of "Hearts",
after the first assignment, both array elements contain the "Queen" of "Hearts" and the
"Ace" of "Spades" is lost—hence, the extra variable temp is needed. After the for loop ter-
minates, the Card objects are randomly ordered. A total of only 52 swaps are made in a
single pass of the entire array, and the array of Card objects is shuffled!

[Note: It’s recommended that you use a so-called unbiased shuffling algorithm for real
card games. Such an algorithm ensures that all possible shuffled card sequences are equally
likely to occur. A popular unbiased shuffling algorithm is the Fisher-Yates algorithm.]

DeckOfCards Method dealCard
Method dealCard (lines 49–56) deals one Card in the array. Recall that currentCard in-
dicates the index of the next Card to be dealt (i.e., the Card at the top of the deck). Thus,
line 52 compares currentCard to the array’s length. If the deck is not empty (i.e., cur-
rentCard is less than 52), line 53 returns the “top” Card and postincrements currentCard
to prepare for the next call to dealCard—otherwise, null is returned.

Shuffling and Dealing Cards
Figure E.10 demonstrates class DeckOfCards (Fig. E.9). Line 9 creates a DeckOfCards ob-
ject named myDeckOfCards. The DeckOfCards constructor creates the deck with the 52
Card objects in order by suit and face. Line 10 invokes myDeckOfCards’s shuffle method
to rearrange the Card objects. Lines 13–20 deal all 52 Cards and print them in four col-
umns of 13 Cards each. Line 16 deals one Card object by invoking myDeckOfCards’s deal-
Card method, then displays the Card left justified in a field of 19 characters. When a Card
is output as a String, the Card’s toString method (lines 17–20 of Fig. E.8) is implicitly
invoked. Lines 18–19 (Fig. E.10) start a new line after every four Cards.

deck[first] = deck[second];
deck[second] = deck[first];

1 // Fig. E.10: DeckOfCardsTest.java
2 // Card shuffling and dealing.
3
4 public class DeckOfCardsTest
5 {

Fig. E.10 | Card shuffling and dealing. (Part 1 of 2.)

Z05_DEIT3397_02_SE_APPE.fm Page 505 Monday, July 7, 2014 9:12 AM

506 Appendix E Arrays and ArrayLists

E.6 Enhanced for Statement
The enhanced for statement iterates through the elements of an array without using a
counter, thus avoiding the possibility of “stepping outside” the array. We show how to use
the enhanced for statement with the Java API’s prebuilt data structures (called collections)
in Section E.12. The syntax of an enhanced for statement is:

where parameter has a type and an identifier (e.g., int number), and arrayName is the array
through which to iterate. The type of the parameter must be consistent with the type of
the elements in the array. As the next example illustrates, the identifier represents succes-
sive element values in the array on successive iterations of the loop.

Figure E.11 uses the enhanced for statement (lines 12–13) to sum the integers in an
array of student grades. The enhanced for’s parameter is of type int, because array con-
tains int values—the loop selects one int value from the array during each iteration. The
enhanced for statement iterates through successive values in the array one by one. The
statement’s header can be read as “for each iteration, assign the next element of array to

6 // execute application
7 public static void main(String[] args)
8 {
9 DeckOfCards myDeckOfCards = new DeckOfCards();

10 myDeckOfCards.shuffle(); // place Cards in random order
11
12 // print all 52 Cards in the order in which they are dealt
13 for (int i = 1; i <= 52; i++)
14 {
15 // deal and display a Card
16 System.out.printf("%-19s", myDeckOfCards.dealCard());
17
18 if (i % 4 == 0) // output a newline after every fourth card
19 System.out.println();
20 } // end for
21 } // end main
22 } // end class DeckOfCardsTest

Six of Spades Eight of Spades Six of Clubs Nine of Hearts
Queen of Hearts Seven of Clubs Nine of Spades King of Hearts
Three of Diamonds Deuce of Clubs Ace of Hearts Ten of Spades
Four of Spades Ace of Clubs Seven of Diamonds Four of Hearts
Three of Clubs Deuce of Hearts Five of Spades Jack of Diamonds
King of Clubs Ten of Hearts Three of Hearts Six of Diamonds
Queen of Clubs Eight of Diamonds Deuce of Diamonds Ten of Diamonds
Three of Spades King of Diamonds Nine of Clubs Six of Hearts
Ace of Spades Four of Diamonds Seven of Hearts Eight of Clubs
Deuce of Spades Eight of Hearts Five of Hearts Queen of Spades
Jack of Hearts Seven of Spades Four of Clubs Nine of Diamonds
Ace of Diamonds Queen of Diamonds Five of Clubs King of Spades
Five of Diamonds Ten of Clubs Jack of Spades Jack of Clubs

for (parameter : arrayName)
 statement

Fig. E.10 | Card shuffling and dealing. (Part 2 of 2.)

Z05_DEIT3397_02_SE_APPE.fm Page 506 Monday, July 7, 2014 9:12 AM

E.7 Passing Arrays to Methods 507

int variable number, then execute the following statement.” Thus, for each iteration, iden-
tifier number represents an int value in array. Lines 12–13 are equivalent to the following
counter-controlled repetition statement, except that counter cannot be accessed in the
body of the enhanced for statement:

The enhanced for statement simplifies the code for iterating through an array. Note,
however, that the enhanced for statement can be used only to obtain array elements—it cannot
be used to modify elements. If your program needs to modify elements, use the traditional
counter-controlled for statement.

 The enhanced for statement can be used in place of the counter-controlled for state-
ment whenever code looping through an array does not require access to the counter indi-
cating the index of the current array element. For example, totaling the integers in an array
requires access only to the element values—the index of each element is irrelevant. How-
ever, if a program must use a counter for some reason other than simply to loop through
an array (e.g., to print an index number next to each array element value, as in the exam-
ples earlier in this appendix), use the counter-controlled for statement.

E.7 Passing Arrays to Methods
This section demonstrates how to pass arrays and individual array elements as arguments
to methods. To pass an array argument to a method, specify the name of the array without
any brackets. For example, if array hourlyTemperatures is declared as

then the method call

for (int counter = 0; counter < array.length; counter++)
 total += array[counter];

1 // Fig. E.11: EnhancedForTest.java
2 // Using the enhanced for statement to total integers in an array.
3
4 public class EnhancedForTest
5 {
6 public static void main(String[] args)
7 {
8 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
9 int total = 0;

10
11
12
13
14
15 System.out.printf("Total of array elements: %d\n", total);
16 } // end main
17 } // end class EnhancedForTest

Total of array elements: 849

Fig. E.11 | Using the enhanced for statement to total integers in an array.

double[] hourlyTemperatures = new double[24];

// add each element's value to total
for (int number : array)
 total += number;

Z05_DEIT3397_02_SE_APPE.fm Page 507 Monday, July 7, 2014 9:12 AM

508 Appendix E Arrays and ArrayLists

passes the reference of array hourlyTemperatures to method modifyArray. Every array
object “knows” its own length (via its length field). Thus, when we pass an array object’s
reference into a method, we need not pass the array length as an additional argument.

For a method to receive an array reference through a method call, the method’s
parameter list must specify an array parameter. For example, the method header for
method modifyArray might be written as

indicating that modifyArray receives the reference of a double array in parameter b. The
method call passes array hourlyTemperature’s reference, so when the called method uses
the array variable b, it refers to the same array object as hourlyTemperatures in the caller.

When an argument to a method is an entire array or an individual array element of a
reference type, the called method receives a copy of the reference. However, when an argu-
ment to a method is an individual array element of a primitive type, the called method
receives a copy of the element’s value. Such primitive values are called scalars or scalar
quantities. To pass an individual array element to a method, use the indexed name of the
array element as an argument in the method call.

Figure E.12 demonstrates the difference between passing an entire array and passing
a primitive-type array element to a method. Notice that main invokes static methods
modifyArray (line 19) and modifyElement (line 30) directly. Recall from Section D.4 that
a static method of a class can invoke other static methods of the same class directly.

modifyArray(hourlyTemperatures);

void modifyArray(double[] b)

1 // Fig. E.12: PassArray.java
2 // Passing arrays and individual array elements to methods.
3
4 public class PassArray
5 {
6 // main creates array and calls modifyArray and modifyElement
7 public static void main(String[] args)
8 {
9 int[] array = { 1, 2, 3, 4, 5 };

10
11 System.out.println(
12 "Effects of passing reference to entire array:\n" +
13 "The values of the original array are:");
14
15 // output original array elements
16 for (int value : array)
17 System.out.printf(" %d", value);
18
19
20 System.out.println("\n\nThe values of the modified array are:");
21
22 // output modified array elements
23 for (int value : array)
24 System.out.printf(" %d", value);
25

Fig. E.12 | Passing arrays and individual array elements to methods. (Part 1 of 2.)

modifyArray(array); // pass array reference

Z05_DEIT3397_02_SE_APPE.fm Page 508 Monday, July 7, 2014 9:12 AM

E.7 Passing Arrays to Methods 509

The enhanced for statement at lines 16–17 outputs the five int elements of array.
Line 19 invokes method modifyArray, passing array as an argument. Method modify-
Array (lines 36–40) receives a copy of array’s reference and uses the reference to multiply
each of array’s elements by 2. To prove that array’s elements were modified, lines 23–24
output the five elements of array again. As the output shows, method modifyArray dou-
bled the value of each element. We could not use the enhanced for statement in lines
38–39 because we’re modifying the array’s elements.

Figure E.12 next demonstrates that when a copy of an individual primitive-type array
element is passed to a method, modifying the copy in the called method does not affect the
original value of that element in the calling method’s array. Lines 26–28 output the value
of array[3] before invoking method modifyElement. Remember that the value of this ele-
ment is now 8 after it was modified in the call to modifyArray. Line 30 calls method mod-

26 System.out.printf(
27 "\n\nEffects of passing array element value:\n" +
28 "array[3] before modifyElement: %d\n", array[3]);
29
30
31 System.out.printf(
32 "array[3] after modifyElement: %d\n", array[3]);
33 } // end main
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 } // end class PassArray

Effects of passing reference to entire array:
The values of the original array are:
 1 2 3 4 5

The values of the modified array are:
 2 4 6 8 10

Effects of passing array element value:
array[3] before modifyElement: 8
Value of element in modifyElement: 16
array[3] after modifyElement: 8

Fig. E.12 | Passing arrays and individual array elements to methods. (Part 2 of 2.)

modifyElement(array[3]); // attempt to modify array[3]

// multiply each element of an array by 2
public static void modifyArray(int[] array2)
{
 for (int counter = 0; counter < array2.length; counter++)
 array2[counter] *= 2;
} // end method modifyArray

// multiply argument by 2
public static void modifyElement(int element)
{
 element *= 2;
 System.out.printf(
 "Value of element in modifyElement: %d\n", element);
} // end method modifyElement

Z05_DEIT3397_02_SE_APPE.fm Page 509 Monday, July 7, 2014 9:12 AM

510 Appendix E Arrays and ArrayLists

ifyElement and passes array[3] as an argument. Remember that array[3] is actually one
int value (8) in array. Therefore, the program passes a copy of the value of array[3].
Method modifyElement (lines 43–48) multiplies the value received as an argument by 2,
stores the result in its parameter element, then outputs the value of element (16). Since
method parameters, like local variables, cease to exist when the method in which they’re
declared completes execution, the method parameter element is destroyed when method
modifyElement terminates. When the program returns control to main, lines 31–32
output the unmodified value of array[3] (i.e., 8).

Notes on Passing Arguments to Methods
The preceding example demonstrated how arrays and primitive-type array elements are
passed as arguments to methods. We now take a closer look at how arguments in general
are passed to methods. Two ways to pass arguments in method calls in many programming
languages are pass-by-value and pass-by-reference (also called call-by-value and call-by-
reference). When an argument is passed by value, a copy of the argument’s value is passed
to the called method. The called method works exclusively with the copy. Changes to the
called method’s copy do not affect the original variable’s value in the caller.

When an argument is passed by reference, the called method can access the argu-
ment’s value in the caller directly and modify that data, if necessary. Pass-by-reference
improves performance by eliminating the need to copy possibly large amounts of data.

Unlike some other languages, Java does not allow you to choose pass-by-value or pass-
by-reference—all arguments are passed by value. A method call can pass two types of values
to a method—copies of primitive values (e.g., values of type int and double) and copies
of references to objects. Objects themselves cannot be passed to methods. When a method
modifies a primitive-type parameter, changes to the parameter have no effect on the orig-
inal argument value in the calling method. For example, when line 30 in main of Fig. E.12
passes array[3] to method modifyElement, the statement in line 45 that doubles the
value of parameter element has no effect on the value of array[3] in main. This is also
true for reference-type parameters. If you modify a reference-type parameter so that it
refers to another object, only the parameter refers to the new object—the reference stored
in the caller’s variable still refers to the original object.

Although an object’s reference is passed by value, a method can still interact with the
referenced object by calling its public methods using the copy of the object’s reference.
Since the reference stored in the parameter is a copy of the reference that was passed as an
argument, the parameter in the called method and the argument in the calling method
refer to the same object in memory. For example, in Fig. E.12, both parameter array2 in
method modifyArray and variable array in main refer to the same array object in memory.
Any changes made using the parameter array2 are carried out on the object that array
references in the calling method. In Fig. E.12, the changes made in modifyArray using
array2 affect the contents of the array object referenced by array in main. Thus, with a
reference to an object, the called method can manipulate the caller’s object directly.

Performance Tip E.1
Passing arrays by reference makes sense for performance reasons. If arrays were passed by
value, a copy of each element would be passed. For large, frequently passed arrays, this
would waste time and consume considerable storage for the copies of the arrays.

Z05_DEIT3397_02_SE_APPE.fm Page 510 Friday, June 20, 2014 6:52 PM

E.8 Case Study: Class GradeBook Using an Array to Store Grades 511

E.8 Case Study: Class GradeBook Using an Array to
Store Grades
Previous versions of class GradeBook process a set of grades entered by the user, but do not
maintain the individual grade values in instance variables of the class. Thus, repeat calcu-
lations require the user to reenter the same grades. One way to solve this problem would
be to store each grade entered in an individual instance of the class. For example, we could
create instance variables grade1, grade2, …, grade10 in class GradeBook to store 10 stu-
dent grades. But this would make the code to total the grades and determine the class av-
erage cumbersome, and the class would not be able to process any more than 10 grades at
a time. We solve this problem by storing grades in an array.

Storing Student Grades in an Array in Class GradeBook
Class GradeBook (Fig. E.13) uses an array of ints to store several students’ grades on a sin-
gle exam. This eliminates the need to repeatedly input the same set of grades. Array grades
is declared as an instance variable (line 7), so each GradeBook object maintains its own set
of grades. The constructor (lines 10–14) has two parameters—the name of the course and
an array of grades. When an application (e.g., class GradeBookTest in Fig. E.14) creates a
GradeBook object, the application passes an existing int array to the constructor, which
assigns the array’s reference to instance variable grades (line 13). The grades array’s size
is determined by the length of the array that’s passed to the constructor. Thus, a Grade-
Book object can process a variable number of grades. The grade values in the passed array
could have been input from a user or read from a file on disk. In our test application, we
initialize an array with grade values (Fig. E.14, line 10). Once the grades are stored in in-
stance variable grades of class GradeBook, all the class’s methods can access the elements
of grades as often as needed to perform various calculations.

Method processGrades (lines 37–51) contains a series of method calls that output a
report summarizing the grades. Line 40 calls method outputGrades to print the contents
of the array grades. Lines 134–136 in method outputGrades use a for statement to
output the students’ grades. A counter-controlled for must be used in this case, because
lines 135–136 use counter variable student’s value to output each grade next to a partic-
ular student number (see output in Fig. E.14). Although array indices start at 0, a professor
would typically number students starting at 1. Thus, lines 135–136 output student + 1 as
the student number to produce grade labels "Student 1: ", "Student 2: ", and so on.

1 // Fig. E.13: GradeBook.java
2 // GradeBook class using an array to store test grades.
3
4 public class GradeBook
5 {
6 private String courseName; // name of course this GradeBook represents
7
8
9 // two-argument constructor initializes courseName and grades array

10 public GradeBook(String name,)
11 {

Fig. E.13 | GradeBook class using an array to store test grades. (Part 1 of 4.)

private int[] grades; // array of student grades

int[] gradesArray

Z05_DEIT3397_02_SE_APPE.fm Page 511 Monday, July 7, 2014 9:12 AM

512 Appendix E Arrays and ArrayLists

12 courseName = name; // initialize courseName
13
14 } // end two-argument GradeBook constructor
15
16 // method to set the course name
17 public void setCourseName(String name)
18 {
19 courseName = name; // store the course name
20 } // end method setCourseName
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 } // end method getCourseName
27
28 // display a welcome message to the GradeBook user
29 public void displayMessage()
30 {
31 // getCourseName gets the name of the course
32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());
34 } // end method displayMessage
35
36 // perform various operations on the data
37 public void processGrades()
38 {
39 // output grades array
40
41
42 // call method getAverage to calculate the average grade
43 System.out.printf("\nClass average is %.2f\n",);
44
45 // call methods getMinimum and getMaximum
46 System.out.printf("Lowest grade is %d\nHighest grade is %d\n\n",
47 ,);
48
49 // call outputBarChart to print grade distribution chart
50
51 } // end method processGrades
52
53 // find minimum grade
54 public int getMinimum()
55 {
56 int lowGrade = grades[0]; // assume grades[0] is smallest
57
58
59
60
61
62
63
64

Fig. E.13 | GradeBook class using an array to store test grades. (Part 2 of 4.)

grades = gradesArray; // store grades

outputGrades();

getAverage()

getMinimum() getMaximum()

outputBarChart();

// loop through grades array
for (int grade : grades)
{
 // if grade lower than lowGrade, assign it to lowGrade
 if (grade < lowGrade)
 lowGrade = grade; // new lowest grade
} // end for

Z05_DEIT3397_02_SE_APPE.fm Page 512 Monday, July 7, 2014 9:12 AM

E.8 Case Study: Class GradeBook Using an Array to Store Grades 513

65
66 return lowGrade; // return lowest grade
67 } // end method getMinimum
68
69 // find maximum grade
70 public int getMaximum()
71 {
72 int highGrade = grades[0]; // assume grades[0] is largest
73
74 // loop through grades array
75 for (int grade : grades)
76 {
77 // if grade greater than highGrade, assign it to highGrade
78 if (grade > highGrade)
79 highGrade = grade; // new highest grade
80 } // end for
81
82 return highGrade; // return highest grade
83 } // end method getMaximum
84
85 // determine average grade for test
86 public double getAverage()
87 {
88 int total = 0; // initialize total
89
90
91
92
93
94 // return average of grades
95 return (double) total / ;
96 } // end method getAverage
97
98 // output bar chart displaying grade distribution
99 public void outputBarChart()
100 {
101 System.out.println("Grade distribution:");
102
103 // stores frequency of grades in each range of 10 grades
104 int[] frequency = new int[11];
105
106
107
108
109
110 // for each grade frequency, print bar in chart
111 for (int count = 0; count < frequency.length; count++)
112 {
113 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
114 if (count == 10)
115 System.out.printf("%5d: ", 100);

Fig. E.13 | GradeBook class using an array to store test grades. (Part 3 of 4.)

// sum grades for one student
for (int grade : grades)
 total += grade;

grades.length

// for each grade, increment the appropriate frequency
for (int grade : grades)
 ++frequency[grade / 10];

Z05_DEIT3397_02_SE_APPE.fm Page 513 Monday, July 7, 2014 9:12 AM

514 Appendix E Arrays and ArrayLists

Method processGrades next calls method getAverage (line 43) to obtain the average
of the grades in the array. Method getAverage (lines 86–96) uses an enhanced for state-
ment to total the values in array grades before calculating the average. The parameter in
the enhanced for’s header (e.g., int grade) indicates that for each iteration, the int vari-
able grade takes on a value in the array grades. The averaging calculation in line 95 uses
grades.length to determine the number of grades being averaged.

Lines 46–47 in method processGrades call methods getMinimum and getMaximum to
determine the lowest and highest grades of any student on the exam, respectively. Each of
these methods uses an enhanced for statement to loop through array grades. Lines 59–64
in method getMinimum loop through the array. Lines 62–63 compare each grade to
lowGrade; if a grade is less than lowGrade, lowGrade is set to that grade. When line 66 exe-
cutes, lowGrade contains the lowest grade in the array. Method getMaximum (lines 70–83)
works similarly to method getMinimum.

Finally, line 50 in method processGrades calls method outputBarChart to print a
distribution chart of the grade data using a technique similar to that in Fig. E.5. In that
example, we manually calculated the number of grades in each category (i.e., 0–9, 10–19,
…, 90–99 and 100) by simply looking at a set of grades. In this example, lines 107–108
use a technique similar to that in Figs. E.6 and 7.8 to calculate the frequency of grades in
each category. Line 104 declares and creates array frequency of 11 ints to store the fre-
quency of grades in each grade category. For each grade in array grades, lines 107–108
increment the appropriate element of the frequency array. To determine which element
to increment, line 108 divides the current grade by 10 using integer division. For example,
if grade is 85, line 108 increments frequency[8] to update the count of grades in the
range 80–89. Lines 111–125 next print the bar chart (see Fig. E.14) based on the values

116 else
117 System.out.printf("%02d-%02d: ",
118 count * 10, count * 10 + 9);
119
120 // print bar of asterisks
121 for (int stars = 0; stars < frequency[count]; stars++)
122 System.out.print("*");
123
124 System.out.println(); // start a new line of output
125 } // end outer for
126 } // end method outputBarChart
127
128 // output the contents of the grades array
129 public void outputGrades()
130 {
131 System.out.println("The grades are:\n");
132
133
134
135
136
137 } // end method outputGrades
138 } // end class GradeBook

Fig. E.13 | GradeBook class using an array to store test grades. (Part 4 of 4.)

// output each student's grade
for (int student = 0; student < grades.length; student++)
 System.out.printf("Student %2d: %3d\n",
 student + 1, grades[student]);

Z05_DEIT3397_02_SE_APPE.fm Page 514 Monday, July 7, 2014 9:12 AM

E.8 Case Study: Class GradeBook Using an Array to Store Grades 515

in array frequency. Like lines 23–24 of Fig. E.5, lines 121–122 of Fig. E.13 use a value
in array frequency to determine the number of asterisks to display in each bar.

Class GradeBookTest That Demonstrates Class GradeBook
The application of Fig. E.14 creates an object of class GradeBook (Fig. E.13) using the int
array gradesArray (declared and initialized in line 10 of Fig. E.14). Lines 12–13 pass a
course name and gradesArray to the GradeBook constructor. Line 14 displays a welcome
message, and line 15 invokes the GradeBook object’s processGrades method. The output
summarizes the 10 grades in myGradeBook.

Software Engineering Observation E.1
A test harness (or test application) is responsible for creating an object of the class being tested
and providing it with data. This data could come from any of several sources. Test data can
be placed directly into an array with an array initializer, it can come from the user at the
keyboard, it can come from a file, or it can come from a network. After passing this data to
the class’s constructor to instantiate the object, the test harness should call upon the object to
test its methods and manipulate its data. Gathering data in the test harness like this allows
the class to manipulate data from several sources.

1 // Fig. E.14: GradeBookTest.java
2 // GradeBookTest creates a GradeBook object using an array of grades,
3 // then invokes method processGrades to analyze them.
4 public class GradeBookTest
5 {
6 // main method begins program execution
7 public static void main(String[] args)
8 {
9

10
11
12 GradeBook myGradeBook = new GradeBook(
13 "CS101 Introduction to Java Programming",);
14 myGradeBook.displayMessage();
15 myGradeBook.processGrades();
16 } // end main
17 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

The grades are:

Student 1: 87
Student 2: 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78

Fig. E.14 | GradeBookTest creates a GradeBook object using an array of grades, then invokes
method processGrades to analyze them. (Part 1 of 2.)

// array of student grades
int[] gradesArray = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

gradesArray

Z05_DEIT3397_02_SE_APPE.fm Page 515 Monday, July 7, 2014 9:12 AM

516 Appendix E Arrays and ArrayLists

E.9 Multidimensional Arrays
Multidimensional arrays with two dimensions are often used to represent tables of values
consisting of information arranged in rows and columns. To identify a particular table ele-
ment, we must specify two indices. By convention, the first identifies the element’s row and
the second its column. Arrays that require two indices to identify a particular element are
called two-dimensional arrays. (Multidimensional arrays can have more than two dimen-
sions.) Java does not support multidimensional arrays directly, but it does allow you to
specify one-dimensional arrays whose elements are also one-dimensional arrays, thus
achieving the same effect. Figure E.15 illustrates a two-dimensional array named a that
contains three rows and four columns (i.e., a three-by-four array). In general, an array with
m rows and n columns is called an m-by-n array.

Student 7: 85
Student 8: 91
Student 9: 76
Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade is 100

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **
 100: *

Fig. E.15 | Two-dimensional array with three rows and four columns.

Fig. E.14 | GradeBookTest creates a GradeBook object using an array of grades, then invokes
method processGrades to analyze them. (Part 2 of 2.)

Row 0

Row 1

Row 2

Column index
Row index
Array name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

Z05_DEIT3397_02_SE_APPE.fm Page 516 Monday, July 7, 2014 9:12 AM

E.9 Multidimensional Arrays 517

Every element in array a is identified in Fig. E.15 by an array-access expression of the
form a[row][column]; a is the name of the array, and row and column are the indices that
uniquely identify each element in array a by row and column number. The names of the
elements in row 0 all have a first index of 0, and the names of the elements in column 3 all
have a second index of 3.

Arrays of One-Dimensional Arrays
Like one-dimensional arrays, multidimensional arrays can be initialized with array initial-
izers in declarations. A two-dimensional array b with two rows and two columns could be
declared and initialized with nested array initializers as follows:

The initial values are grouped by row in braces. So 1 and 2 initialize b[0][0] and b[0][1],
respectively, and 3 and 4 initialize b[1][0] and b[1][1], respectively. The compiler
counts the number of nested array initializers (represented by sets of braces within the out-
er braces) to determine the number of rows in array b. The compiler counts the initializer
values in the nested array initializer for a row to determine the number of columns in that
row. As we’ll see momentarily, this means that rows can have different lengths.

Multidimensional arrays are maintained as arrays of one-dimensional arrays. There-
fore array b in the preceding declaration is actually composed of two separate one-dimen-
sional arrays—one containing the values in the first nested initializer list { 1, 2 } and one
containing the values in the second nested initializer list { 3, 4 }. Thus, array b itself is an
array of two elements, each a one-dimensional array of int values.

Two-Dimensional Arrays with Rows of Different Lengths
The manner in which multidimensional arrays are represented makes them quite flexible.
In fact, the lengths of the rows in array b are not required to be the same. For example,

creates integer array b with two elements (determined by the number of nested array ini-
tializers) that represent the rows of the two-dimensional array. Each element of b is a ref-
erence to a one-dimensional array of int variables. The int array for row 0 is a one-
dimensional array with two elements (1 and 2), and the int array for row 1 is a one-di-
mensional array with three elements (3, 4 and 5).

Creating Two-Dimensional Arrays with Array-Creation Expressions
A multidimensional array with the same number of columns in every row can be created
with an array-creation expression. For example, the following lines declare array b and as-
sign it a reference to a three-by-four array:

In this case, we use the literal values 3 and 4 to specify the number of rows and number of
columns, respectively, but this is not required. Programs can also use variables to specify
array dimensions, because new creates arrays at execution time—not at compile time. As with
one-dimensional arrays, the elements of a multidimensional array are initialized when the
array object is created.

int[][] b = { { 1, 2 }, { 3, 4 } };

int[][] b = { { 1, 2 }, { 3, 4, 5 } };

int[][] b = new int[3][4];

Z05_DEIT3397_02_SE_APPE.fm Page 517 Monday, July 7, 2014 9:12 AM

518 Appendix E Arrays and ArrayLists

A multidimensional array in which each row has a different number of columns can
be created as follows:

The preceding statements create a two-dimensional array with two rows. Row 0 has five
columns, and row 1 has three columns.

Two-Dimensional Array Example: Displaying Element Values
Figure E.16 demonstrates initializing two-dimensional arrays with array initializers and
using nested for loops to traverse the arrays (i.e., manipulate every element of each array).
Class InitArray’s main declares two arrays. The declaration of array1 (line 9) uses nested
array initializers of the same length to initialize the first row to the values 1, 2 and 3, and
the second row to the values 4, 5 and 6. The declaration of array2 (line 10) uses nested
initializers of different lengths. In this case, the first row is initialized to two elements with
the values 1 and 2, respectively. The second row is initialized to one element with the value
3. The third row is initialized to three elements with the values 4, 5 and 6, respectively.

int[][] b = new int[2][]; // create 2 rows
b[0] = new int[5]; // create 5 columns for row 0
b[1] = new int[3]; // create 3 columns for row 1

1 // Fig. E.16: InitArray.java
2 // Initializing two-dimensional arrays.
3
4 public class InitArray
5 {
6 // create and output two-dimensional arrays
7 public static void main(String[] args)
8 {
9

10
11
12 System.out.println("Values in array1 by row are");
13 outputArray(array1); // displays array1 by row
14
15 System.out.println("\nValues in array2 by row are");
16 outputArray(array2); // displays array2 by row
17 } // end main
18
19 // output rows and columns of a two-dimensional array
20 public static void outputArray()
21 {
22
23
24
25
26
27
28
29
30
31 } // end method outputArray
32 } // end class InitArray

Fig. E.16 | Initializing two-dimensional arrays. (Part 1 of 2.)

int[][] array1 = { { 1, 2, 3 }, { 4, 5, 6 } };
int[][] array2 = { { 1, 2 }, { 3 }, { 4, 5, 6 } };

int[][] array

// loop through array's rows
for (int row = 0; row < array.length; row++)
{
 // loop through columns of current row
 for (int column = 0; column < array[row].length; column++)
 System.out.printf("%d ", array[row][column]);

 System.out.println(); // start new line of output
} // end outer for

Z05_DEIT3397_02_SE_APPE.fm Page 518 Monday, July 7, 2014 9:12 AM

E.9 Multidimensional Arrays 519

Lines 13 and 16 call method outputArray (lines 20–31) to output the elements of
array1 and array2, respectively. Method outputArray’s parameter—int[][] array—
indicates that the method receives a two-dimensional array. The for statement (lines 23–
30) outputs the rows of a two-dimensional array. In the loop-continuation condition of
the outer for statement, the expression array.length determines the number of rows in
the array. In the inner for statement, the expression array[row].length determines the
number of columns in the current row of the array. The inner for statement’s condition
enables the loop to determine the exact number of columns in each row.

Common Multidimensional-Array Manipulations Performed with for Statements
Many common array manipulations use for statements. As an example, the following for
statement sets all the elements in row 2 of array a in Fig. E.15 to zero:

We specified row 2; therefore, we know that the first index is always 2 (0 is the first row,
and 1 is the second row). This for loop varies only the second index (i.e., the column in-
dex). If row 2 of array a contains four elements, then the preceding for statement is equiv-
alent to the assignment statements

The following nested for statement totals the values of all the elements in array a:

These nested for statements total the array elements one row at a time. The outer for
statement begins by setting the row index to 0 so that the first row’s elements can be totaled
by the inner for statement. The outer for then increments row to 1 so that the second row
can be totaled. Then, the outer for increments row to 2 so that the third row can be to-
taled. The variable total can be displayed when the outer for statement terminates. In
the next example, we show how to process a two-dimensional array in a similar manner
using nested enhanced for statements.

Values in array1 by row are
1 2 3
4 5 6

Values in array2 by row are
1 2
3
4 5 6

for (int column = 0; column < a[2].length; column++)
 a[2][column] = 0;

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

int total = 0;

for (int row = 0; row < a.length; row++)
{
 for (int column = 0; column < a[row].length; column++)
 total += a[row][column];
} // end outer for

Fig. E.16 | Initializing two-dimensional arrays. (Part 2 of 2.)

Z05_DEIT3397_02_SE_APPE.fm Page 519 Monday, July 7, 2014 9:12 AM

520 Appendix E Arrays and ArrayLists

E.10 Case Study: Class GradeBook Using a Two-
Dimensional Array
In Section E.8, we presented class GradeBook (Fig. E.13), which used a one-dimensional
array to store student grades on a single exam. In most semesters, students take several ex-
ams. Professors are likely to want to analyze grades across the entire semester, both for a
single student and for the class as a whole.

Storing Student Grades in a Two-Dimensional Array in Class GradeBook
Figure E.17 contains a GradeBook class that uses a two-dimensional array grades to store the
grades of a number of students on multiple exams. Each row of the array represents a single
student’s grades for the entire course, and each column represents the grades of all the stu-
dents who took a particular exam. Class GradeBookTest (Fig. E.18) passes the array as an ar-
gument to the GradeBook constructor. In this example, we use a ten-by-three array for ten
students’ grades on three exams. Five methods perform array manipulations to process the
grades. Each method is similar to its counterpart in the earlier one-dimensional array version
of GradeBook (Fig. E.13). Method getMinimum (lines 52–70) determines the lowest grade of
any student for the semester. Method getMaximum (lines 73–91) determines the highest
grade of any student for the semester. Method getAverage (lines 94–104) determines a par-
ticular student’s semester average. Method outputBarChart (lines 107–137) outputs a grade
bar chart for the entire semester’s student grades. Method outputGrades (lines 140–164)
outputs the array in a tabular format, along with each student’s semester average.

1 // Fig. E.17: GradeBook.java
2 // GradeBook class using a two-dimensional array to store grades.
3
4 public class GradeBook
5 {
6 private String courseName; // name of course this grade book represents
7
8
9 // two-argument constructor initializes courseName and grades array

10 public GradeBook(String name,)
11 {
12 courseName = name; // initialize courseName
13
14 } // end two-argument GradeBook constructor
15
16 // method to set the course name
17 public void setCourseName(String name)
18 {
19 courseName = name; // store the course name
20 } // end method setCourseName
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 } // end method getCourseName

Fig. E.17 | GradeBook class using a two-dimensional array to store grades. (Part 1 of 4.)

private int[][] grades; // two-dimensional array of student grades

int[][] gradesArray

grades = gradesArray; // store grades

Z05_DEIT3397_02_SE_APPE.fm Page 520 Monday, July 7, 2014 9:12 AM

E.10 Case Study: Class GradeBook Using a Two-Dimensional Array 521

27
28 // display a welcome message to the GradeBook user
29 public void displayMessage()
30 {
31 // getCourseName gets the name of the course
32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());
34 } // end method displayMessage
35
36 // perform various operations on the data
37 public void processGrades()
38 {
39 // output grades array
40 outputGrades();
41
42 // call methods getMinimum and getMaximum
43 System.out.printf("\n%s %d\n%s %d\n\n",
44 "Lowest grade in the grade book is", getMinimum(),
45 "Highest grade in the grade book is", getMaximum());
46
47 // output grade distribution chart of all grades on all tests
48 outputBarChart();
49 } // end method processGrades
50
51 // find minimum grade
52 public int getMinimum()
53 {
54 // assume first element of grades array is smallest
55 int lowGrade = grades[0][0];
56
57
58
59
60
61
62
63
64
65
66
67
68
69 return lowGrade; // return lowest grade
70 } // end method getMinimum
71
72 // find maximum grade
73 public int getMaximum()
74 {
75 // assume first element of grades array is largest
76 int highGrade = grades[0][0];
77

Fig. E.17 | GradeBook class using a two-dimensional array to store grades. (Part 2 of 4.)

// loop through rows of grades array
for (int[] studentGrades : grades)
{
 // loop through columns of current row
 for (int grade : studentGrades)
 {
 // if grade less than lowGrade, assign it to lowGrade
 if (grade < lowGrade)
 lowGrade = grade;
 } // end inner for
} // end outer for

Z05_DEIT3397_02_SE_APPE.fm Page 521 Monday, July 7, 2014 9:12 AM

522 Appendix E Arrays and ArrayLists

78 // loop through rows of grades array
79 for (int[] studentGrades : grades)
80 {
81 // loop through columns of current row
82 for (int grade : studentGrades)
83 {
84 // if grade greater than highGrade, assign it to highGrade
85 if (grade > highGrade)
86 highGrade = grade;
87 } // end inner for
88 } // end outer for
89
90 return highGrade; // return highest grade
91 } // end method getMaximum
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106 // output bar chart displaying overall grade distribution
107 public void outputBarChart()
108 {
109 System.out.println("Overall grade distribution:");
110
111 // stores frequency of grades in each range of 10 grades
112 int[] frequency = new int[11];
113
114
115
116
117
118
119
120
121 // for each grade frequency, print bar in chart
122 for (int count = 0; count < frequency.length; count++)
123 {
124 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
125 if (count == 10)
126 System.out.printf("%5d: ", 100);
127 else
128 System.out.printf("%02d-%02d: ",
129 count * 10, count * 10 + 9);
130

Fig. E.17 | GradeBook class using a two-dimensional array to store grades. (Part 3 of 4.)

// determine average grade for particular set of grades
public double getAverage(int[] setOfGrades)
{
 int total = 0; // initialize total

 // sum grades for one student
 for (int grade : setOfGrades)
 total += grade;

 // return average of grades
 return (double) total / setOfGrades.length;
} // end method getAverage

// for each grade in GradeBook, increment the appropriate frequency
for (int[] studentGrades : grades)
{
 for (int grade : studentGrades)
 ++frequency[grade / 10];
} // end outer for

Z05_DEIT3397_02_SE_APPE.fm Page 522 Monday, July 7, 2014 9:12 AM

E.10 Case Study: Class GradeBook Using a Two-Dimensional Array 523

Methods getMinimum and getMaximum
Methods getMinimum, getMaximum, outputBarChart and outputGrades each loop
through array grades by using nested for statements—for example, the nested enhanced
for statement from the declaration of method getMinimum (lines 58–67). The outer en-
hanced for statement iterates through the two-dimensional array grades, assigning suc-
cessive rows to parameter studentGrades on successive iterations. The square brackets
following the parameter name indicate that studentGrades refers to a one-dimensional
int array—namely, a row in array grades containing one student’s grades. To find the
lowest overall grade, the inner for statement compares the elements of the current one-
dimensional array studentGrades to variable lowGrade. For example, on the first iteration
of the outer for, row 0 of grades is assigned to parameter studentGrades. The inner en-
hanced for statement then loops through studentGrades and compares each grade value
with lowGrade. If a grade is less than lowGrade, lowGrade is set to that grade. On the sec-

131 // print bar of asterisks
132 for (int stars = 0; stars < frequency[count]; stars++)
133 System.out.print("*");
134
135 System.out.println(); // start a new line of output
136 } // end outer for
137 } // end method outputBarChart
138
139 // output the contents of the grades array
140 public void outputGrades()
141 {
142 System.out.println("The grades are:\n");
143 System.out.print(" "); // align column heads
144
145 // create a column heading for each of the tests
146 for (int test = 0; test < grades[0].length; test++)
147 System.out.printf("Test %d ", test + 1);
148
149 System.out.println("Average"); // student average column heading
150
151 // create rows/columns of text representing array grades
152 for (int student = 0; student < grades.length; student++)
153 {
154 System.out.printf("Student %2d", student + 1);
155
156 for (int test : grades[student]) // output student's grades
157 System.out.printf("%8d", test);
158
159 // call method getAverage to calculate student's average grade;
160 // pass row of grades as the argument to getAverage
161
162 System.out.printf("%9.2f\n", average);
163 } // end outer for
164 } // end method outputGrades
165 } // end class GradeBook

Fig. E.17 | GradeBook class using a two-dimensional array to store grades. (Part 4 of 4.)

double average = getAverage(grades[student]);

Z05_DEIT3397_02_SE_APPE.fm Page 523 Monday, July 7, 2014 9:12 AM

524 Appendix E Arrays and ArrayLists

ond iteration of the outer enhanced for statement, row 1 of grades is assigned to stu-
dentGrades, and the elements of this row are compared with variable lowGrade. This
repeats until all rows of grades have been traversed. When execution of the nested state-
ment is complete, lowGrade contains the lowest grade in the two-dimensional array.
Method getMaximum works similarly to method getMinimum.

Method outputBarChart
Method outputBarChart (lines 107–137) is nearly identical to the one in Fig. E.13. How-
ever, to output the overall grade distribution for a whole semester, the method here uses
nested enhanced for statements (lines 115–119) to create the one-dimensional array fre-
quency based on all the grades in the two-dimensional array. The rest of the code in each
of the two outputBarChart methods that displays the chart is identical.

Method outputGrades
Method outputGrades (lines 140–164) uses nested for statements to output values of the
array grades and each student’s semester average. The output (Fig. E.18) shows the result,
which resembles the tabular format of a professor’s physical grade book. Lines 146–147
print the column headings for each test. We use a counter-controlled for statement here
so that we can identify each test with a number. Similarly, the for statement in lines 152–
163 first outputs a row label using a counter variable to identify each student (line 154).
Although array indices start at 0, lines 147 and 154 output test + 1 and student + 1, re-
spectively, to produce test and student numbers starting at 1 (see Fig. E.18). The inner for
statement (lines 156–157) uses the outer for statement’s counter variable student to loop
through a specific row of array grades and output each student’s test grade. An enhanced
for statement can be nested in a counter-controlled for statement, and vice versa. Finally,
line 161 obtains each student’s semester average by passing the current row of grades (i.e.,
grades[student]) to method getAverage.

Method getAverage
Method getAverage (lines 94–104) takes one argument—a one-dimensional array of test
results for a particular student. When line 161 calls getAverage, the argument is
grades[student], which specifies that a particular row of the two-dimensional array
grades should be passed to getAverage. For example, based on the array created in
Fig. E.18, the argument grades[1] represents the three values (a one-dimensional array of
grades) stored in row 1 of the two-dimensional array grades. Recall that a two-dimension-
al array is one whose elements are one-dimensional arrays. Method getAverage calculates
the sum of the array elements, divides the total by the number of test results and returns
the floating-point result as a double value (line 103).

Class GradeBookTest That Demonstrates Class GradeBook
Figure E.18 creates an object of class GradeBook (Fig. E.17) using the two-dimensional ar-
ray of ints named gradesArray (declared and initialized in lines 10–19). Lines 21–22 pass
a course name and gradesArray to the GradeBook constructor. Lines 23–24 then invoke
myGradeBook’s displayMessage and processGrades methods to display a welcome mes-
sage and obtain a report summarizing the students’ grades for the semester, respectively.

Z05_DEIT3397_02_SE_APPE.fm Page 524 Monday, July 7, 2014 9:12 AM

E.10 Case Study: Class GradeBook Using a Two-Dimensional Array 525

1 // Fig. E.18: GradeBookTest.java
2 // GradeBookTest creates GradeBook object using a two-dimensional array
3 // of grades, then invokes method processGrades to analyze them.
4 public class GradeBookTest
5 {
6 // main method begins program execution
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15
16
17
18
19
20
21 GradeBook myGradeBook = new GradeBook(
22 "CS101 Introduction to Java Programming",);
23 myGradeBook.displayMessage();
24 myGradeBook.processGrades();
25 } // end main
26 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

The grades are:

 Test 1 Test 2 Test 3 Average
Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77.67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77.33
Student 10 87 93 73 84.33

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Overall grade distribution:
00-09:
10-19:
20-29:
30-39:

Fig. E.18 | GradeBookTest creates GradeBook object using a two-dimensional array of grades,
then invokes method processGrades to analyze them. (Part 1 of 2.)

// two-dimensional array of student grades
int[][] gradesArray = { { 87, 96, 70 },
 { 68, 87, 90 },
 { 94, 100, 90 },
 { 100, 81, 82 },
 { 83, 65, 85 },
 { 78, 87, 65 },
 { 85, 75, 83 },
 { 91, 94, 100 },
 { 76, 72, 84 },
 { 87, 93, 73 } };

gradesArray

Z05_DEIT3397_02_SE_APPE.fm Page 525 Monday, July 7, 2014 9:12 AM

526 Appendix E Arrays and ArrayLists

E.11 Class Arrays
Class Arrays helps you avoid reinventing the wheel by providing static methods for
common array manipulations. These methods include sort for sorting an array (i.e., ar-
ranging elements into increasing order), binarySearch for searching an array (i.e., deter-
mining whether an array contains a specific value and, if so, where the value is located),
equals for comparing arrays and fill for placing values into an array. These methods are
overloaded for primitive-type arrays and for arrays of objects. Our focus in this section is
on using the built-in capabilities provided by the Java API.

Figure E.19 uses Arrays methods sort, binarySearch, equals and fill, and shows
how to copy arrays with class System’s static arraycopy method. In main, line 11 sorts
the elements of array doubleArray. The static method sort of class Arrays orders the
array’s elements in ascending order by default. Overloaded versions of sort allow you to
sort a specific range of elements. Lines 12–15 output the sorted array.

40-49:
50-59:
60-69: ***
70-79: ******
80-89: ***********
90-99: *******
 100: ***

1 // Fig. E.19: ArrayManipulations.java
2 // Arrays class methods and System.arraycopy.
3 import java.util.Arrays;
4
5 public class ArrayManipulations
6 {
7 public static void main(String[] args)
8 {
9 // sort doubleArray into ascending order

10 double[] doubleArray = { 8.4, 9.3, 0.2, 7.9, 3.4 };
11
12 System.out.printf("\ndoubleArray: ");
13
14 for (double value : doubleArray)
15 System.out.printf("%.1f ", value);
16
17 // fill 10-element array with 7s
18 int[] filledIntArray = new int[10];
19
20 displayArray(filledIntArray, "filledIntArray");
21

Fig. E.19 | Arrays class methods and System.arraycopy. (Part 1 of 3.)

Fig. E.18 | GradeBookTest creates GradeBook object using a two-dimensional array of grades,
then invokes method processGrades to analyze them. (Part 2 of 2.)

Arrays.sort(doubleArray);

Arrays.fill(filledIntArray, 7);

Z05_DEIT3397_02_SE_APPE.fm Page 526 Monday, July 7, 2014 9:12 AM

E.11 Class Arrays 527

22 // copy array intArray into array intArrayCopy
23 int[] intArray = { 1, 2, 3, 4, 5, 6 };
24 int[] intArrayCopy = new int[intArray.length];
25
26 displayArray(intArray, "intArray");
27 displayArray(intArrayCopy, "intArrayCopy");
28
29 // compare intArray and intArrayCopy for equality
30
31 System.out.printf("\n\nintArray %s intArrayCopy\n",
32 (b ? "==" : "!="));
33
34 // compare intArray and filledIntArray for equality
35
36 System.out.printf("intArray %s filledIntArray\n",
37 (b ? "==" : "!="));
38
39 // search intArray for the value 5
40
41
42 if (location >= 0)
43 System.out.printf(
44 "Found 5 at element %d in intArray\n", location);
45 else
46 System.out.println("5 not found in intArray");
47
48 // search intArray for the value 8763
49
50
51 if (location >= 0)
52 System.out.printf(
53 "Found 8763 at element %d in intArray\n", location);
54 else
55 System.out.println("8763 not found in intArray");
56 } // end main
57
58 // output values in each array
59 public static void displayArray(int[] array, String description)
60 {
61 System.out.printf("\n%s: ", description);
62
63 for (int value : array)
64 System.out.printf("%d ", value);
65 } // end method displayArray
66 } // end class ArrayManipulations

doubleArray: 0.2 3.4 7.9 8.4 9.3
filledIntArray: 7 7 7 7 7 7 7 7 7 7
intArray: 1 2 3 4 5 6
intArrayCopy: 1 2 3 4 5 6

Fig. E.19 | Arrays class methods and System.arraycopy. (Part 2 of 3.)

System.arraycopy(intArray, 0, intArrayCopy, 0, intArray.length);

boolean b = Arrays.equals(intArray, intArrayCopy);

b = Arrays.equals(intArray, filledIntArray);

int location = Arrays.binarySearch(intArray, 5);

location = Arrays.binarySearch(intArray, 8763);

Z05_DEIT3397_02_SE_APPE.fm Page 527 Monday, July 7, 2014 9:12 AM

528 Appendix E Arrays and ArrayLists

Line 19 calls static method fill of class Arrays to populate all 10 elements of
filledIntArray with 7s. Overloaded versions of fill allow you to populate a specific
range of elements with the same value. Line 20 calls our class’s displayArray method
(declared at lines 59–65) to output the contents of filledIntArray.

Line 25 copies the elements of intArray into intArrayCopy. The first argument
(intArray) passed to System method arraycopy is the array from which elements are to
be copied. The second argument (0) is the index that specifies the starting point in the
range of elements to copy from the array. This value can be any valid array index. The
third argument (intArrayCopy) specifies the destination array that will store the copy. The
fourth argument (0) specifies the index in the destination array where the first copied ele-
ment should be stored. The last argument specifies the number of elements to copy from
the array in the first argument. In this case, we copy all the elements in the array.

Lines 30 and 35 call static method equals of class Arrays to determine whether all
the elements of two arrays are equivalent. If the arrays contain the same elements in the
same order, the method returns true; otherwise, it returns false.

Lines 40 and 49 call static method binarySearch of class Arrays to perform a
binary search on intArray, using the second argument (5 and 8763, respectively) as the
key. If value is found, binarySearch returns the index of the element; otherwise, bina-
rySearch returns a negative value. The negative value returned is based on the search key’s
insertion point—the index where the key would be inserted in the array if we were per-
forming an insert operation. After binarySearch determines the insertion point, it
changes its sign to negative and subtracts 1 to obtain the return value. For example, in
Fig. E.19, the insertion point for the value 8763 is the element with index 6 in the array.
Method binarySearch changes the insertion point to –6, subtracts 1 from it and returns
the value –7. Subtracting 1 from the insertion point guarantees that method binarySearch
returns positive values (>= 0) if and only if the key is found. This return value is useful for
inserting elements in a sorted array.

E.12 Introduction to Collections and Class ArrayList
The Java API provides several predefined data structures, called collections, used to store
groups of related objects. These classes provide efficient methods that organize, store and
retrieve your data without requiring knowledge of how the data is being stored. This re-
duces application-development time.

You’ve used arrays to store sequences of objects. Arrays do not automatically change
their size at execution time to accommodate additional elements. The collection class

intArray == intArrayCopy
intArray != filledIntArray
Found 5 at element 4 in intArray
8763 not found in intArray

Common Programming Error E.3
Passing an unsorted array to binarySearch is a logic error—the value returned is unde-
fined.

Fig. E.19 | Arrays class methods and System.arraycopy. (Part 3 of 3.)

Z05_DEIT3397_02_SE_APPE.fm Page 528 Monday, July 7, 2014 9:12 AM

E.12 Introduction to Collections and Class ArrayList 529

ArrayList<T> (from package java.util) provides a convenient solution to this
problem—it can dynamically change its size to accommodate more elements. The T (by
convention) is a placeholder—when declaring a new ArrayList, replace it with the type of
elements that you want the ArrayList to hold. This is similar to specifying the type when
declaring an array, except that only nonprimitive types can be used with these collection classes.
For example,

declares list as an ArrayList collection that can store only Strings. Classes with this
kind of placeholder that can be used with any type are called generic classes. Additional
generic collection classes and generics are discussed in Appendix J. Figure E.20 shows
some common methods of class ArrayList<T>.

Figure E.21 demonstrates some common ArrayList capabilities. Line 10 creates a
new empty ArrayList of Strings with a default initial capacity of 10 elements. The
capacity indicates how many items the ArrayList can hold without growing. ArrayList
is implemented using an array behind the scenes. When the ArrayList grows, it must
create a larger internal array and copy each element to the new array. This is a time-con-
suming operation. It would be inefficient for the ArrayList to grow each time an element
is added. Instead, it grows only when an element is added and the number of elements is
equal to the capacity—i.e., there’s no space for the new element.

ArrayList< String > list;

Method Description

add Adds an element to the end of the ArrayList.
clear Removes all the elements from the ArrayList.
contains Returns true if the ArrayList contains the specified element; otherwise,

returns false.
get Returns the element at the specified index.
indexOf Returns the index of the first occurrence of the specified element in the

ArrayList.
remove Overloaded. Removes the first occurrence of the specified value or the ele-

ment at the specified index.
size Returns the number of elements stored in the ArrayList.
trimToSize Trims the capacity of the ArrayList to current number of elements.

Fig. E.20 | Some methods and properties of class ArrayList<T>.

1 // Fig. E.21: ArrayListCollection.java
2 // Generic ArrayList<T> collection demonstration.
3 import java.util.ArrayList;
4
5 public class ArrayListCollection
6 {

Fig. E.21 | Generic ArrayList<T> collection demonstration. (Part 1 of 3.)

Z05_DEIT3397_02_SE_APPE.fm Page 529 Monday, July 7, 2014 9:12 AM

530 Appendix E Arrays and ArrayLists

7 public static void main(String[] args)
8 {
9 // create a new ArrayList of Strings with an initial capacity of 10

10 ArrayList< String > items = new ArrayList< String >();
11
12 items.add("red"); // append an item to the list
13 items.add(0, "yellow"); // insert the value at index 0
14
15 // header
16 System.out.print(
17 "Display list contents with counter-controlled loop:");
18
19 // display the colors in the list
20 for (int i = 0; i < items.size(); i++)
21 System.out.printf(" %s", items.get(i));
22
23 // display colors using foreach in the display method
24 display(items,
25 "\nDisplay list contents with enhanced for statement:");
26
27 items.add("green"); // add "green" to the end of the list
28 items.add("yellow"); // add "yellow" to the end of the list
29 display(items, "List with two new elements:");
30
31 items.remove("yellow"); // remove the first "yellow"
32 display(items, "Remove first instance of yellow:");
33
34 items.remove(1); // remove item at index 1
35 display(items, "Remove second list element (green):");
36
37 // check if a value is in the List
38 System.out.printf("\"red\" is %sin the list\n",
39 items.contains("red") ? "": "not ");
40
41 // display number of elements in the List
42 System.out.printf("Size: %s\n", items.size());
43 } // end main
44
45 // display the ArrayList's elements on the console
46 public static void display(ArrayList< String > items, String header)
47 {
48 System.out.print(header); // display header
49
50 // display each element in items
51 for (String item : items)
52 System.out.printf(" %s", item);
53
54 System.out.println(); // display end of line
55 } // end method display
56 } // end class ArrayListCollection

Fig. E.21 | Generic ArrayList<T> collection demonstration. (Part 2 of 3.)

Z05_DEIT3397_02_SE_APPE.fm Page 530 Monday, July 7, 2014 9:12 AM

E.13 Wrap-Up 531

The add method adds elements to the ArrayList (lines 12–13). The add method with
one argument appends its argument to the end of the ArrayList. The add method with
two arguments inserts a new element at the specified position. The first argument is an
index. As with arrays, collection indices start at zero. The second argument is the value to
insert at that index. The indices of all subsequent elements are incremented by one.
Inserting an element is usually slower than adding an element to the end of the ArrayList

Lines 20–21 display the items in the ArrayList. The size method returns the
number of elements currently in the ArrayList. ArrayLists method get (line 21) obtains
the element at a specified index. Lines 24–25 display the elements again by invoking
method display (defined at lines 46–55). Lines 27–28 add two more elements to the
ArrayList, then line 29 displays the elements again to confirm that the two elements were
added to the end of the collection.

The remove method is used to remove an element with a specific value (line 31). It
removes only the first such element. If no such element is in the ArrayList, remove does
nothing. An overloaded version of the method removes the element at the specified index
(line 34). When an element is removed, the indices of all elements after the removed ele-
ment decrease by one.

Line 39 uses the contains method to check if an item is in the ArrayList. The con-
tains method returns true if the element is found in the ArrayList, and false otherwise.
The method compares its argument to each element of the ArrayList in order, so using
contains on a large ArrayList can be inefficient. Line 42 displays the ArrayList’s size.

E.13 Wrap-Up
This appendix began our introduction to data structures, exploring the use of arrays to
store data in and retrieve data from lists and tables of values. The appendix examples
demonstrated how to declare an array, initialize an array and refer to individual elements
of an array. The appendix introduced the enhanced for statement to iterate through ar-
rays. We used exception handling to test for ArrayIndexOutOfBoundsExceptions that oc-
cur when a program attempts to access an array element outside the bounds of an array.
We also illustrated how to pass arrays to methods and how to declare and manipulate mul-
tidimensional arrays.

We introduced the ArrayList<T> generic collection, which provides all the function-
ality and performance of arrays, along with other useful capabilities such as dynamic
resizing. We used the add methods to add new items to the end of an ArrayList and to
insert items in an ArrayList. The remove method was used to remove the first occurrence

Display list contents with counter-controlled loop: yellow red
Display list contents with enhanced for statement: yellow red
List with two new elements: yellow red green yellow
Remove first instance of yellow: red green yellow
Remove second list element (green): red yellow
"red" is in the list
Size: 2

Fig. E.21 | Generic ArrayList<T> collection demonstration. (Part 3 of 3.)

Z05_DEIT3397_02_SE_APPE.fm Page 531 Monday, July 7, 2014 9:12 AM

532 Appendix E Arrays and ArrayLists

of a specified item, and an overloaded version of remove was used to remove an item at a
specified index. We used the size method to obtain number of items in the ArrayList.

We continue our coverage of data structures in Appendix J. Appendix J introduces
the Java Collections Framework, which uses generics to allow you to specify the exact types
of objects that a particular data structure will store. Appendix J also introduces Java’s other
predefined data structures. The Collections API provides class Arrays, which contains
utility methods for array manipulation. Appendix J uses several static methods of class
Arrays to perform such manipulations as sorting and searching the data in an array.

We’ve now introduced the basic concepts of classes, objects, control statements,
methods, arrays and collections. In Appendix F, we take a deeper look at classes and
objects.

Self-Review Exercises
E.1 Fill in the blank(s) in each of the following statements:

a) Lists and tables of values can be stored in .
b) Any attempt to access an element outside a particular range of array element indices re-

sults in a runtime error that’s known as an .
c) The allows you to iterate through the elements in an array without using a

counter.
d) The number used to refer to a particular array element is called the element’s .
e) An array that uses two indices is referred to as a(n) array.
f) Use the enhanced for statement to walk through double array numbers.
g) Command-line arguments are stored in .

E.2 Determine whether each of the following is true or false. If false, explain why.
a) An array can store many different types of values.
b) An array index should normally be of type float.
c) An individual array element that’s passed to a method and modified in that method will

contain the modified value when the called method completes execution.

E.3 Perform the following tasks for an array called numbers:
a) Declare a constant ARRAY_SIZE that’s initialized to 12.
b) Declare an array with ARRAY_SIZE elements of type int, and initialize the elements to 0.
c) Refer to array element 6.
d) Assign the value 6 to array element 9.
e) Assign the value 8 to array element 6.
f) Sum all the elements of the array, using a for statement. Declare the integer variable i

as a control variable for the loop.

E.4 Perform the following tasks for an array called table:
a) Declare and create the array as an integer array that has three rows and three columns.

Assume that the constant ARRAY_SIZE has been declared to be 3.
b) How many elements does the array contain?
c) Use a for statement to initialize each element of the array to the sum of its indices. As-

sume that the integer variables x and y are declared as control variables.

Z05_DEIT3397_02_SE_APPE.fm Page 532 Friday, June 20, 2014 6:52 PM

 Answers to Self-Review Exercises 533

E.5 Find and correct the error in each of the following program segments:
a) final int ARRAY_SIZE = 5;

ARRAY_SIZE = 10;
b) Assume int[] b = new int[10];

for (int i = 0; i <= b.length; i++)

 b[i] = 1;
c) Assume int[][] a = { { 1, 2 }, { 3, 4 } };

 a[1, 1] = 5;

Answers to Self-Review Exercises
E.1 a) arrays. b) ArrayIndexOutOfBoundsException. c) enhanced for statement. d) index (or
subscript or position number). e) two-dimensional. f) for (double d : numbers). g) an array of
Strings, called args by convention.

E.2 a) False. An array can store only values of the same type. b) False. An array index must be
an integer or an integer expression. c) For individual primitive-type elements of an array: False. A
called method receives and manipulates a copy of the value of such an element, so modifications do
not affect the original value. If the reference of an array is passed to a method, however, modifica-
tions to the array elements made in the called method are indeed reflected in the original. For indi-
vidual elements of a reference type: True. A called method receives a copy of the reference of such
an element, and changes to the referenced object will be reflected in the original array element.

E.3 a) final int ARRAY_SIZE = 12;
b) int[] numbers = new int[ARRAY_SIZE];
c) numbers[6]
d) numbers[9] = 6;
e) numbers[6] = 8;
f) int total = 0;

for (int i = 0; i < numbers.length; i++)

 total += numbers[i];

E.4 a) int[][] table = new int[ARRAY_SIZE][ARRAY_SIZE];
b) Nine.
c) for (int x = 0; x < table.length; x++)

 for (int y = 0; y < table[x].length; y++)

 table[x][y] = x + y;

E.5 a) Error: Assigning a value to a constant after it has been initialized.
Correction: Assign the correct value to the constant in a final int ARRAY_SIZE
declaration or declare another variable.

b) Error: Referencing an array element outside the bounds of the array (b[10]).
Correction: Change the <= operator to <.

c) Error: Array indexing is performed incorrectly.
Correction: Change the statement to a[1][1] = 5;.

Exercises
E.6 Fill in the blanks in each of the following statements:

a) In the loop-continuation condition of the outer for statement, the expression
 determines the number of rows in the array.

b) By providing static methods for common array manipulations, class helps
you avoid reinventing the wheel.

Z05_DEIT3397_02_SE_APPE.fm Page 533 Friday, June 20, 2014 6:52 PM

534 Appendix E Arrays and ArrayLists

c) In a two-dimensional array, the first index identifies the of an element and the
second index identifies the of an element.

d) An m-by-n array contains rows, columns and elements.
e) The name of the element in row 3 and column 5 of array d is .

E.7 Determine whether each of the following is true or false. If false, explain why.
a) To refer to a particular location or element within an array, we specify the name of the

array and the value of the particular element.
b) An array declaration reserves space for the array.
c) To indicate that 100 locations should be reserved for integer array p, you write the dec-

laration
 p[100];

d) An application that initializes the elements of a 15-element array to zero must contain
at least one for statement.

e) An application that totals the elements of a two-dimensional array must contain nested
for statements.

E.8 Consider a two-by-three integer array t.
a) Write a statement that declares and creates t.
b) How many rows does t have?
c) How many columns does t have?
d) How many elements does t have?
e) Write access expressions for all the elements in row 1 of t.
f) Write access expressions for all the elements in column 2 of t.
g) Write a single statement that sets the element of t in row 0 and column 1 to zero.
h) Write individual statements to initialize each element of t to zero.
i) Write a nested for statement that initializes each element of t to zero.
j) Write a nested for statement that inputs the values for the elements of t from the user.
k) Write a series of statements that determines and displays the smallest value in t.
l) Write a single printf statement that displays the elements of the first row of t.
m) Write a statement that totals the elements of the third column of t. Do not use repeti-

tion.
n) Write a series of statements that displays the contents of t in tabular format. List the

column indices as headings across the top, and list the row indices at the left of each row.

E.9 (Duplicate Elimination) Use a one-dimensional array to solve the following problem:
Write an application that inputs five numbers, each between 10 and 100, inclusive. As each number
is read, display it only if it’s not a duplicate of a number already read. Provide for the “worst case,”
in which all five numbers are different. Use the smallest possible array to solve this problem. Display
the complete set of unique values input after the user enters each new value.

E.10 Label the elements of three-by-five two-dimensional array sales to indicate the order in
which they’re set to zero by the following program segment:

for (int row = 0; row < sales.length; row++)
{
 for (int col = 0; col < sales[row].length; col++)
 {
 sales[row][col] = 0;
 }
}

E.11 (Sieve of Eratosthenes) A prime number is any integer greater than 1 that’s evenly divisible
only by itself and 1. The Sieve of Eratosthenes is a method of finding prime numbers. It operates as
follows:

Z05_DEIT3397_02_SE_APPE.fm Page 534 Friday, June 20, 2014 6:52 PM

 Exercises 535

a) Create a primitive-type boolean array with all elements initialized to true. Array ele-
ments with prime indices will remain true. All other array elements will eventually be
set to false.

b) Starting with array index 2, determine whether a given element is true. If so, loop
through the remainder of the array and set to false every element whose index is a mul-
tiple of the index for the element with value true. Then continue the process with the
next element with value true. For array index 2, all elements beyond element 2 in the
array that have indices which are multiples of 2 (indices 4, 6, 8, 10, etc.) will be set to
false; for array index 3, all elements beyond element 3 in the array that have indices
which are multiples of 3 (indices 6, 9, 12, 15, etc.) will be set to false; and so on.

When this process completes, the array elements that are still true indicate that the index is a
prime number. These indices can be displayed. Write an application that uses an array of 1000 ele-
ments to determine and display the prime numbers between 2 and 999. Ignore array elements 0
and 1.

E.12 (Fibonacci Series) The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with the terms 0 and 1 and has the property that each succeeding term is the sum of the two
preceding terms.

a) Write a method fibonacci(n) that calculates the nth Fibonacci number. Incorporate
this method into an application that enables the user to enter the value of n.

b) Determine the largest Fibonacci number that can be displayed on your system.
c) Modify the application you wrote in part (a) to use double instead of int to calculate

and return Fibonacci numbers, and use this modified application to repeat part (b).

Z05_DEIT3397_02_SE_APPE.fm Page 535 Monday, July 7, 2014 9:12 AM

F Classes and Objects:
A Deeper Look

O b j e c t i v e s
In this appendix you’ll learn:

■ Encapsulation and data
hiding.

■ To use keyword this.

■ To use static variables and
methods.

■ To import static members
of a class.

■ To use the enum type to
create sets of constants with
unique identifiers.

■ To declare enum constants
with parameters.

■ To organize classes in
packages to promote reuse.

Z06_DEIT3397_02_SE_APPF.fm Page 536 Tuesday, July 8, 2014 8:35 AM

F.1 Introduction 537

F.1 Introduction
We now take a deeper look at building classes, controlling access to members of a class and
creating constructors. We discuss composition—a capability that allows a class to have ref-
erences to objects of other classes as members. Recall that Section D.10 introduced the ba-
sic enum type to declare a set of constants. In this appendix, we discuss the relationship
between enum types and classes, demonstrating that an enum, like a class, can be declared
in its own file with constructors, methods and fields. The appendix also discusses static
class members and final instance variables in detail. Finally, we explain how to organize
classes in packages to help manage large applications and promote reuse, then show a spe-
cial relationship between classes in the same package.

F.2 Time Class Case Study
Our first example consists of two classes—Time1 (Fig. F.1) and Time1Test (Fig. F.2).
Class Time1 represents the time of day. Class Time1Test is an application class in which
the main method creates one object of class Time1 and invokes its methods. These classes
must be declared in separate files because they’re both public classes. The output of this
program appears in Fig. F.2.

Time1 Class Declaration
Class Time1’s private int instance variables hour, minute and second (Fig. F.1, lines
6–8) represent the time in universal-time format (24-hour clock format in which hours are
in the range 0–23). Class Time1 contains public methods setTime (lines 12–25), toUni-
versalString (lines 28–31) and toString (lines 34–39). These methods are also called
the public services or the public interface that the class provides to its clients.

Default Constructor
In this example, class Time1 does not declare a constructor, so the class has a default con-
structor that’s supplied by the compiler. Each instance variable implicitly receives the
default value 0 for an int. Instance variables also can be initialized when they’re declared
in the class body, using the same initialization syntax as with a local variable.

F.1 Introduction
F.2 Time Class Case Study
F.3 Controlling Access to Members
F.4 Referring to the Current Object’s

Members with the this Reference
F.5 Time Class Case Study: Overloaded

Constructors
F.6 Default and No-Argument Constructors
F.7 Composition
F.8 Enumerations

F.9 Garbage Collection
F.10 static Class Members
F.11 final Instance Variables
F.12 Packages
F.13 Package Access
F.14 Wrap-Up

Self-Review Exercise | Answers to Self-Review Exercise | Exercises

Z06_DEIT3397_02_SE_APPF.fm Page 537 Monday, July 7, 2014 9:13 AM

538 Appendix F Classes and Objects: A Deeper Look

Method setTime and Throwing Exceptions
Method setTime (lines 12–25) is a public method that declares three int parameters and
uses them to set the time. Lines 15–16 test each argument to determine whether the value
is in the proper range, and, if so, lines 18–20 assign the values to the hour, minute and
second instance variables. The hour value must be greater than or equal to 0 and less than
24, because universal-time format represents hours as integers from 0 to 23 (e.g., 1 PM is
hour 13 and 11 PM is hour 23; midnight is hour 0 and noon is hour 12). Similarly, both
minute and second values must be greater than or equal to 0 and less than 60. For values
outside these ranges, SetTime throws an exception of type IllegalArgumentException
(lines 23–24), which notifies the client code that an invalid argument was passed to the

1 // Fig. F.1: Time1.java
2 // Time1 class declaration maintains the time in 24-hour format.
3
4 public class Time1
5 {
6
7
8
9

10 // set a new time value using universal time; throw an
11 // exception if the hour, minute or second is invalid
12 public void setTime(int h, int m, int s)
13 {
14 // validate hour, minute and second
15 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
16 (s >= 0 && s < 60))
17 {
18 = h;
19 = m;
20 = s;
21 } // end if
22 else
23
24
25 } // end method setTime
26
27 // convert to String in universal-time format (HH:MM:SS)
28 public String toUniversalString()
29 {
30
31 } // end method toUniversalString
32
33 // convert to String in standard-time format (H:MM:SS AM or PM)
34 public String toString()
35 {
36
37
38
39 } // end method toString
40 } // end class Time1

Fig. F.1 | Time1 class declaration maintains the time in 24-hour format.

private int hour; // 0 - 23
private int minute; // 0 - 59
private int second; // 0 - 59

hour
minute
second

throw new IllegalArgumentException(
 "hour, minute and/or second was out of range");

return String.format("%02d:%02d:%02d", hour, minute, second);

return String.format("%d:%02d:%02d %s",
 ((hour == 0 || hour == 12) ? 12 : hour % 12),
 minute, second, (hour < 12 ? "AM" : "PM"));

Z06_DEIT3397_02_SE_APPF.fm Page 538 Monday, July 7, 2014 9:13 AM

F.2 Time Class Case Study 539

method. As you learned in Appendix E, you can use try...catch to catch exceptions and
attempt to recover from them, which we’ll do in Fig. F.2. The throw statement (line 23)
creates a new object of type IllegalArgumentException. The parentheses following the
class name indicate a call to the IllegalArgumentException constructor. In this case, we
call the constructor that allows us to specify a custom error message. After the exception
object is created, the throw statement immediately terminates method setTime and the
exception is returned to the code that attempted to set the time.

Method toUniversalString
Method toUniversalString (lines 28–31) takes no arguments and returns a String in
universal-time format, consisting of two digits each for the hour, minute and second. For
example, if the time were 1:30:07 PM, the method would return 13:30:07. Line 30 uses
static method format of class String to return a String containing the formatted hour,
minute and second values, each with two digits and possibly a leading 0 (specified with
the 0 flag). Method format is similar to method System.out.printf except that format
returns a formatted String rather than displaying it in a command window. The format-
ted String is returned by method toUniversalString.

Method toString
Method toString (lines 34–39) takes no arguments and returns a String in standard-
time format, consisting of the hour, minute and second values separated by colons and fol-
lowed by AM or PM (e.g., 1:27:06 PM). Like method toUniversalString, method to-
String uses static String method format to format the minute and second as two-digit
values, with leading zeros if necessary. Line 37 uses a conditional operator (?:) to deter-
mine the value for hour in the String—if the hour is 0 or 12 (AM or PM), it appears as
12; otherwise, it appears as a value from 1 to 11. The conditional operator in line 38 de-
termines whether AM or PM will be returned as part of the String.

Recall from Section D.4 that all objects in Java have a toString method that returns
a String representation of the object. We chose to return a String containing the time in
standard-time format. Method toString is called implicitly whenever a Time1 object
appears in the code where a String is needed, such as the value to output with a %s format
specifier in a call to System.out.printf.

Using Class Time1
As you learned in Appendix B, each class you declare represents a new type in Java. There-
fore, after declaring class Time1, we can use it as a type in declarations such as

The Time1Test application class (Fig. F.2) uses class Time1. Line 9 declares and creates a
Time1 object and assigns it to local variable time. Operator new implicitly invokes class
Time1’s default constructor, since Time1 does not declare any constructors. Lines 12–16
output the time first in universal-time format (by invoking time’s toUniversalString
method in line 13), then in standard-time format (by explicitly invoking time’s toString
method in line 15) to confirm that the Time1 object was initialized properly. Next, line 19
invokes method setTime of the time object to change the time. Then lines 20–24 output
the time again in both formats to confirm that it was set correctly.

Time1 sunset; // sunset can hold a reference to a Time1 object

Z06_DEIT3397_02_SE_APPF.fm Page 539 Monday, July 7, 2014 9:13 AM

540 Appendix F Classes and Objects: A Deeper Look

1 // Fig. F.2: Time1Test.java
2 // Time1 object used in an application.
3
4 public class Time1Test
5 {
6 public static void main(String[] args)
7 {
8 // create and initialize a Time1 object
9

10
11 // output string representations of the time
12 System.out.print("The initial universal time is: ");
13 System.out.println();
14 System.out.print("The initial standard time is: ");
15 System.out.println();
16 System.out.println(); // output a blank line
17
18 // change time and output updated time
19
20 System.out.print("Universal time after setTime is: ");
21 System.out.println();
22 System.out.print("Standard time after setTime is: ");
23 System.out.println();
24 System.out.println(); // output a blank line
25
26 // attempt to set time with invalid values
27 try
28 {
29
30 } // end try
31 catch (IllegalArgumentException e)
32 {
33 System.out.printf("Exception: %s\n\n", e.getMessage());
34 } // end catch
35
36 // display time after attempt to set invalid values
37 System.out.println("After attempting invalid settings:");
38 System.out.print("Universal time: ");
39 System.out.println();
40 System.out.print("Standard time: ");
41 System.out.println();
42 } // end main
43 } // end class Time1Test

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

Universal time after setTime is: 13:27:06
Standard time after setTime is: 1:27:06 PM

Exception: hour, minute and/or second was out of range

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

Fig. F.2 | Time1 object used in an application.

Time1 time = new Time1(); // invokes Time1 constructor

time.toUniversalString()

time.toString()

time.setTime(13, 27, 6);

time.toUniversalString()

time.toString()

time.setTime(99, 99, 99); // all values out of range

time.toUniversalString()

time.toString()

Z06_DEIT3397_02_SE_APPF.fm Page 540 Monday, July 7, 2014 9:13 AM

F.3 Controlling Access to Members 541

Calling Time1 Method setTime with Invalid Values
To illustrate that method setTime validates its arguments, line 29 calls method setTime
with invalid arguments of 99 for the hour, minute and second. This statement is placed in
a try block (lines 27–30) in case setTime throws an IllegalArgumentException, which
it will do since the arguments are all invalid. When this occurs, the exception is caught at
lines 31–34, and line 33 displays the exception’s error message by calling its getMessage
method. Lines 37–41 output the time again in both formats to confirm that setTime did
not change the time when invalid arguments were supplied.

Notes on the Time1 Class Declaration
Consider several issues of class design with respect to class Time1. The instance variables
hour, minute and second are each declared private. The actual data representation used
within the class is of no concern to the class’s clients. For example, it would be perfectly
reasonable for Time1 to represent the time internally as the number of seconds since mid-
night or the number of minutes and seconds since midnight. Clients could use the same
public methods and get the same results without being aware of this.

F.3 Controlling Access to Members
The access modifiers public and private control access to a class’s variables and methods.
In Appendix G, we’ll introduce the access modifier protected. As you know, the primary
purpose of public methods is to present to the class’s clients a view of the services the class
provides (the class’s public interface). Clients need not be concerned with how the class
accomplishes its tasks. For this reason, the class’s private variables and private methods
(i.e., its implementation details) are not accessible to its clients.

Figure F.3 demonstrates that private class members are not accessible outside the
class. Lines 9–11 attempt to access directly the private instance variables hour, minute
and second of the Time1 object time. When this program is compiled, the compiler gen-
erates error messages that these private members are not accessible. This program
assumes that the Time1 class from Fig. F.1 is used.

1 // Fig. F.3: MemberAccessTest.java
2 // Private members of class Time1 are not accessible.
3 public class MemberAccessTest
4 {
5 public static void main(String[] args)
6 {
7 Time1 time = new Time1(); // create and initialize Time1 object
8
9

10
11
12 } // end main
13 } // end class MemberAccessTest

Fig. F.3 | Private members of class Time1 are not accessible. (Part 1 of 2.)

time.hour = 7; // error: hour has private access in Time1
time.minute = 15; // error: minute has private access in Time1
time.second = 30; // error: second has private access in Time1

Z06_DEIT3397_02_SE_APPF.fm Page 541 Monday, July 7, 2014 9:13 AM

542 Appendix F Classes and Objects: A Deeper Look

F.4 Referring to the Current Object’s Members with the
this Reference
Every object can access a reference to itself with keyword this (sometimes called the this
reference). When a non-static method is called for a particular object, the method’s body
implicitly uses keyword this to refer to the object’s instance variables and other methods.
This enables the class’s code to know which object should be manipulated. As you’ll see in
Fig. F.4, you can also use keyword this explicitly in a non-static method’s body.
Section F.5 shows another interesting use of keyword this. Section F.10 explains why
keyword this cannot be used in a static method.

We now demonstrate implicit and explicit use of the this reference (Fig. F.4). This
example is the first in which we declare two classes in one file—class ThisTest is declared
in lines 4–11, and class SimpleTime in lines 14–47. We do this to demonstrate that when
you compile a .java file containing more than one class, the compiler produces a separate
class file with the .class extension for every compiled class. In this case, two separate files
are produced—SimpleTime.class and ThisTest.class. When one source-code (.java)
file contains multiple class declarations, the compiler places both class files for those classes
in the same directory. Note also in Fig. F.4 that only class ThisTest is declared public. A
source-code file can contain only one public class—otherwise, a compilation error occurs.
Non-public classes can be used only by other classes in the same package. So, in this
example, class SimpleTime can be used only by class ThisTest.

MemberAccessTest.java:9: hour has private access in Time1
 time.hour = 7; // error: hour has private access in Time1
 ^
MemberAccessTest.java:10: minute has private access in Time1
 time.minute = 15; // error: minute has private access in Time1
 ^
MemberAccessTest.java:11: second has private access in Time1
 time.second = 30; // error: second has private access in Time1
 ^
3 errors

1 // Fig. F.4: ThisTest.java
2 // this used implicitly and explicitly to refer to members of an object.
3
4 public class ThisTest
5 {
6 public static void main(String[] args)
7 {
8 SimpleTime time = new SimpleTime(15, 30, 19);
9 System.out.println(time.buildString());

10 } // end main
11 } // end class ThisTest
12

Fig. F.4 | this used implicitly and explicitly to refer to members of an object. (Part 1 of 2.)

Fig. F.3 | Private members of class Time1 are not accessible. (Part 2 of 2.)

Z06_DEIT3397_02_SE_APPF.fm Page 542 Monday, July 7, 2014 9:13 AM

F.4 Referring to the Current Object’s Members with the this Reference 543

Class SimpleTime (lines 14–47) declares three private instance variables—hour,
minute and second (lines 16–18). The constructor (lines 23–28) receives three int argu-
ments to initialize a SimpleTime object. We used parameter names for the constructor
(line 23) that are identical to the class’s instance-variable names (lines 16–18). We don’t
recommend this practice, but we did it here to shadow (hide) the corresponding instance
variables so that we could illustrate a case in which explicit use of the this reference is
required. If a method contains a local variable with the same name as a field, that method
will refer to the local variable rather than the field. In this case, the local variable shadows
the field in the method’s scope. However, the method can use the this reference to refer
to the shadowed field explicitly, as shown on the left sides of the assignments in lines 25–
27 for SimpleTime’s shadowed instance variables.

13 // class SimpleTime demonstrates the "this" reference
14 class SimpleTime
15 {
16 private int hour; // 0-23
17 private int minute; // 0-59
18 private int second; // 0-59
19
20 // if the constructor uses parameter names identical to
21 // instance variable names the "this" reference is
22 // required to distinguish between the names
23 public SimpleTime(int hour, int minute, int second)
24 {
25
26
27
28 } // end SimpleTime constructor
29
30 // use explicit and implicit "this" to call toUniversalString
31 public String buildString()
32 {
33 return String.format("%24s: %s\n%24s: %s",
34 "this.toUniversalString()", ,
35 "toUniversalString()",);
36 } // end method buildString
37
38 // convert to String in universal-time format (HH:MM:SS)
39 public String toUniversalString()
40 {
41 // "this" is not required here to access instance variables,
42 // because method does not have local variables with same
43 // names as instance variables
44 return String.format("%02d:%02d:%02d",
45 , ,);
46 } // end method toUniversalString
47 } // end class SimpleTime

this.toUniversalString(): 15:30:19
 toUniversalString(): 15:30:19

Fig. F.4 | this used implicitly and explicitly to refer to members of an object. (Part 2 of 2.)

this.hour = hour; // set "this" object's hour
this.minute = minute; // set "this" object's minute
this.second = second; // set "this" object's second

this.toUniversalString()
toUniversalString()

this.hour this.minute this.second

Z06_DEIT3397_02_SE_APPF.fm Page 543 Monday, July 7, 2014 9:13 AM

544 Appendix F Classes and Objects: A Deeper Look

Method buildString (lines 31–36) returns a String created by a statement that uses
the this reference explicitly and implicitly. Line 34 uses it explicitly to call method toUni-
versalString. Line 35 uses it implicitly to call the same method. Both lines perform the
same task. You typically will not use this explicitly to reference other methods within the
current object. Also, line 45 in method toUniversalString explicitly uses the this refer-
ence to access each instance variable. This is not necessary here, because the method does
not have any local variables that shadow the instance variables of the class.

Application class ThisTest (lines 4–11) demonstrates class SimpleTime. Line 8 creates
an instance of class SimpleTime and invokes its constructor. Line 9 invokes the object’s
buildString method, then displays the results.

F.5 Time Class Case Study: Overloaded Constructors
As you know, you can declare your own constructor to specify how objects of a class should
be initialized. Next, we demonstrate a class with several overloaded constructors that en-
able objects of that class to be initialized in different ways. To overload constructors, sim-
ply provide multiple constructor declarations with different signatures.

Class Time2 with Overloaded Constructors
The default constructor for class Time1 (Fig. F.1) initialized hour, minute and second to
their default 0 values (which is midnight in universal time). The default constructor does
not enable the class’s clients to initialize the time with specific nonzero values. Class Time2
(Fig. F.5) contains five overloaded constructors that provide convenient ways to initialize
objects of the new class Time2. Each constructor initializes the object to begin in a consis-
tent state. In this program, four of the constructors invoke a fifth, which in turn calls
method setTime to ensure that the value supplied for hour is in the range 0 to 23, and the
values for minute and second are each in the range 0 to 59. The compiler invokes the ap-
propriate constructor by matching the number, types and order of the types of the argu-
ments specified in the constructor call with the number, types and order of the types of
the parameters specified in each constructor declaration. Class Time2 also provides set and
get methods for each instance variable.

Common Programming Error F.1
It’s often a logic error when a method contains a parameter or local variable that has the
same name as a field of the class. In this case, use reference this if you wish to access the
field of the class—otherwise, the method parameter or local variable will be referenced.

Error-Prevention Tip F.1
Avoid method-parameter names or local-variable names that conflict with field names.
This helps prevent subtle, hard-to-locate bugs.

Performance Tip F.1
Java conserves storage by maintaining only one copy of each method per class—this method
is invoked by every object of the class. Each object, on the other hand, has its own copy of
the class’s instance variables (i.e., non-static fields). Each method of the class implicitly
uses this to determine the specific object of the class to manipulate.

Z06_DEIT3397_02_SE_APPF.fm Page 544 Monday, July 7, 2014 9:13 AM

F.5 Time Class Case Study: Overloaded Constructors 545

1 // Fig. F.5: Time2.java
2 // Time2 class with overloaded constructors.
3
4 public class Time2
5 {
6 private int hour; // 0 - 23
7 private int minute; // 0 - 59
8 private int second; // 0 - 59
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 // Set Methods
43 // set a new time value using universal time;
44 // validate the data
45 public void setTime(int h, int m, int s)
46 {
47 setHour(h); // set the hour
48 setMinute(m); // set the minute
49 setSecond(s); // set the second
50 } // end method setTime
51

Fig. F.5 | Time2 class with overloaded constructors. (Part 1 of 3.)

// Time2 no-argument constructor:
// initializes each instance variable to zero
public Time2()
{
 this(0, 0, 0); // invoke Time2 constructor with three arguments
} // end Time2 no-argument constructor

// Time2 constructor: hour supplied, minute and second defaulted to 0
public Time2(int h)
{
 this(h, 0, 0); // invoke Time2 constructor with three arguments
} // end Time2 one-argument constructor

// Time2 constructor: hour and minute supplied, second defaulted to 0
public Time2(int h, int m)
{
 this(h, m, 0); // invoke Time2 constructor with three arguments
} // end Time2 two-argument constructor

// Time2 constructor: hour, minute and second supplied
public Time2(int h, int m, int s)
{
 setTime(h, m, s); // invoke setTime to validate time
} // end Time2 three-argument constructor

// Time2 constructor: another Time2 object supplied
public Time2(Time2 time)
{
 // invoke Time2 three-argument constructor
 this(time.getHour(), time.getMinute(), time.getSecond());
} // end Time2 constructor with a Time2 object argument

Z06_DEIT3397_02_SE_APPF.fm Page 545 Monday, July 7, 2014 9:13 AM

546 Appendix F Classes and Objects: A Deeper Look

52 // validate and set hour
53 public void setHour(int h)
54 {
55 if (h >= 0 && h < 24)
56 hour = h;
57 else
58 throw new IllegalArgumentException("hour must be 0-23");
59 } // end method setHour
60
61 // validate and set minute
62 public void setMinute(int m)
63 {
64 if (m >= 0 && m < 60)
65 minute = m;
66 else
67 throw new IllegalArgumentException("minute must be 0-59");
68 } // end method setMinute
69
70 // validate and set second
71 public void setSecond(int s)
72 {
73 if (s >= 0 && s < 60)
74 second = ((s >= 0 && s < 60) ? s : 0);
75 else
76 throw new IllegalArgumentException("second must be 0-59");
77 } // end method setSecond
78
79 // Get Methods
80 // get hour value
81 public int getHour()
82 {
83 return hour;
84 } // end method getHour
85
86 // get minute value
87 public int getMinute()
88 {
89 return minute;
90 } // end method getMinute
91
92 // get second value
93 public int getSecond()
94 {
95 return second;
96 } // end method getSecond
97
98 // convert to String in universal-time format (HH:MM:SS)
99 public String toUniversalString()
100 {
101 return String.format(
102 "%02d:%02d:%02d", getHour(), getMinute(), getSecond());
103 } // end method toUniversalString
104

Fig. F.5 | Time2 class with overloaded constructors. (Part 2 of 3.)

Z06_DEIT3397_02_SE_APPF.fm Page 546 Monday, July 7, 2014 9:13 AM

F.5 Time Class Case Study: Overloaded Constructors 547

Class Time2’s Constructors
Lines 12–15 declare a so-called no-argument constructor that’s invoked without argu-
ments. Once you declare any constructors in a class, the compiler will not provide a default
constructor. This no-argument constructor ensures that class Time2’s clients can create
Time2 objects with default values. Such a constructor simply initializes the object as spec-
ified in the constructor’s body. In the body, we introduce a use of the this reference that’s
allowed only as the first statement in a constructor’s body. Line 14 uses this in method-
call syntax to invoke the Time2 constructor that takes three parameters (lines 30–33) with
values of 0 for the hour, minute and second. Using the this reference as shown here is a
popular way to reuse initialization code provided by another of the class’s constructors
rather than defining similar code in the no-argument constructor’s body. We use this syn-
tax in four of the five Time2 constructors to make the class easier to maintain and modify.
If we need to change how objects of class Time2 are initialized, only the constructor that
the class’s other constructors call will need to be modified. In fact, even that constructor
might not need modification in this example. That constructor simply calls the setTime
method to perform the actual initialization, so it’s possible that the changes the class might
require would be localized to the set methods.

Lines 18–21 declare a Time2 constructor with a single int parameter representing the
hour, which is passed with 0 for the minute and second to the constructor at lines 30–33.
Lines 24–27 declare a Time2 constructor that receives two int parameters representing the
hour and minute, which are passed with 0 for the second to the constructor at lines 30–
33. Like the no-argument constructor, each of these constructors invokes the constructor
at lines 30–33 to minimize code duplication. Lines 30–33 declare the Time2 constructor
that receives three int parameters representing the hour, minute and second. This con-
structor calls setTime to initialize the instance variables.

105 // convert to String in standard-time format (H:MM:SS AM or PM)
106 public String toString()
107 {
108 return String.format("%d:%02d:%02d %s",
109 ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
110 getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
111 } // end method toString
112 } // end class Time2

Common Programming Error F.2
It’s a compilation error when this is used in a constructor’s body to call another construc-
tor of the same class if that call is not the first statement in the constructor. It’s also a com-
pilation error when a method attempts to invoke a constructor directly via this.

Common Programming Error F.3
A constructor can call methods of the class. Be aware that the instance variables might not
yet be initialized, because the constructor is in the process of initializing the object. Using
instance variables before they’ve been initialized properly is a logic error.

Fig. F.5 | Time2 class with overloaded constructors. (Part 3 of 3.)

Z06_DEIT3397_02_SE_APPF.fm Page 547 Monday, July 7, 2014 9:13 AM

548 Appendix F Classes and Objects: A Deeper Look

Lines 36–40 declare a Time2 constructor that receives a reference to another Time2
object. In this case, the values from the Time2 argument are passed to the three-argument
constructor at lines 30–33 to initialize the hour, minute and second. Line 39 could have
directly accessed the hour, minute and second values of the constructor’s argument time
with the expressions time.hour, time.minute and time.second—even though hour,
minute and second are declared as private variables of class Time2. This is due to a special
relationship between objects of the same class. We’ll see in a moment why it’s preferable
to use the get methods.

Class Time2’s setTime Method
Method setTime (lines 45–50) invokes the setHour (lines 53–59), setMinute (lines 62–
68) and setSecond (lines 71–77) methods, which ensure that the value supplied for hour
is in the range 0 to 23 and the values for minute and second are each in the range 0 to 59.
If a value is out of range, each of these methods throws an IllegalArgumentException
(lines 58, 67 and 76) indicating which value was out of range.

Notes Regarding Class Time2’s set and get Methods and Constructors
Time2’s set and get methods are called throughout the class. In particular, method setTime
calls methods setHour, setMinute and setSecond in lines 47–49, and methods toUni-
versalString and toString call methods getHour, getMinute and getSecond in line 102
and lines 109–110, respectively. In each case, these methods could have accessed the class’s
private data directly without calling the set and get methods. However, consider changing
the representation of the time from three int values (requiring 12 bytes of memory) to a
single int value representing the total number of seconds that have elapsed since midnight
(requiring only 4 bytes of memory). If we made such a change, only the bodies of the
methods that access the private data directly would need to change—in particular, the
individual set and get methods for the hour, minute and second. There would be no need
to modify the bodies of methods setTime, toUniversalString or toString because they
do not access the data directly. Designing the class in this manner reduces the likelihood
of programming errors when altering the class’s implementation.

Similarly, each Time2 constructor could include a copy of the appropriate statements
from methods setHour, setMinute and setSecond. Doing so may be slightly more efficient,
because the extra calls to the constructor and setTime are eliminated. However, duplicating
statements in multiple methods or constructors makes changing the class’s internal data rep-
resentation more difficult. Having the Time2 constructors call the constructor with three
arguments (or even call setTime directly) requires that any changes to the implementation
of setTime be made only once. Also, the compiler can optimize programs by removing calls
to simple methods and replacing them with the expanded code of their declarations—a tech-
nique known as inlining the code, which improves program performance.

Software Engineering Observation F.1
When one object of a class has a reference to another object of the same class, the first object
can access all the second object’s data and methods (including those that are private).

Software Engineering Observation F.2
When implementing a method of a class, use the class’s set and get methods to access the class’s
private data. This simplifies code maintenance and reduces the likelihood of errors.

Z06_DEIT3397_02_SE_APPF.fm Page 548 Monday, July 7, 2014 9:13 AM

F.5 Time Class Case Study: Overloaded Constructors 549

Using Class Time2’s Overloaded Constructors
Class Time2Test (Fig. F.6) invokes the overloaded Time2 constructors (lines 8–12 and 40).
Line 8 invokes the no-argument constructor (Fig. F.5, lines 12–15). Lines 9–13 of the pro-
gram demonstrate passing arguments to the other Time2 constructors. Line 9 invokes the
single-argument constructor that receives an int at lines 18–21 of Fig. F.5. Line 10 invokes
the two-argument constructor at lines 24–27 of Fig. F.5. Line 11 invokes the three-argu-
ment constructor at lines 30–33 of Fig. F.5. Line 12 invokes the single-argument construc-
tor that takes a Time2 at lines 36–40 of Fig. F.5. Next, the application displays the String
representations of each Time2 object to confirm that it was initialized properly. Line 40 at-
tempts to intialize t6 by creating a new Time2 object and passing three invalid values to the
constructor. When the constructor attempts to use the invalid hour value to initialize the
object’s hour, an IllegalArgumentException occurs. We catch this exception at line 42
and display its error message, which results in the last line of the output.

1 // Fig. F.6: Time2Test.java
2 // Overloaded constructors used to initialize Time2 objects.
3
4 public class Time2Test
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13
14 System.out.println("Constructed with:");
15 System.out.println("t1: all arguments defaulted");
16 System.out.printf(" %s\n", t1.toUniversalString());
17 System.out.printf(" %s\n", t1.toString());
18
19 System.out.println(
20 "t2: hour specified; minute and second defaulted");
21 System.out.printf(" %s\n", t2.toUniversalString());
22 System.out.printf(" %s\n", t2.toString());
23
24 System.out.println(
25 "t3: hour and minute specified; second defaulted");
26 System.out.printf(" %s\n", t3.toUniversalString());
27 System.out.printf(" %s\n", t3.toString());
28
29 System.out.println("t4: hour, minute and second specified");
30 System.out.printf(" %s\n", t4.toUniversalString());
31 System.out.printf(" %s\n", t4.toString());
32
33 System.out.println("t5: Time2 object t4 specified");
34 System.out.printf(" %s\n", t5.toUniversalString());
35 System.out.printf(" %s\n", t5.toString());
36

Fig. F.6 | Overloaded constructors used to initialize Time2 objects. (Part 1 of 2.)

Time2 t1 = new Time2(); // 00:00:00
Time2 t2 = new Time2(2); // 02:00:00
Time2 t3 = new Time2(21, 34); // 21:34:00
Time2 t4 = new Time2(12, 25, 42); // 12:25:42
Time2 t5 = new Time2(t4); // 12:25:42

Z06_DEIT3397_02_SE_APPF.fm Page 549 Monday, July 7, 2014 9:13 AM

550 Appendix F Classes and Objects: A Deeper Look

F.6 Default and No-Argument Constructors
Every class must have at least one constructor. If you do not provide any in a class’s dec-
laration, the compiler creates a default constructor that takes no arguments when it’s in-
voked. The default constructor initializes the instance variables to the initial values
specified in their declarations or to their default values (zero for primitive numeric types,
false for boolean values and null for references). In Section G.4.1, you’ll learn that the
default constructor performs another task also.

If your class declares constructors, the compiler will not create a default constructor.
In this case, you must declare a no-argument constructor if default initialization is
required. Like a default constructor, a no-argument constructor is invoked with empty
parentheses. The Time2 no-argument constructor (lines 12–15 of Fig. F.5) explicitly ini-
tializes a Time2 object by passing to the three-argument constructor 0 for each parameter.
Since 0 is the default value for int instance variables, the no-argument constructor in this
example could actually be declared with an empty body. In this case, each instance variable
would receive its default value when the no-argument constructor was called. If we omit
the no-argument constructor, clients of this class would not be able to create a Time2
object with the expression new Time2().

37 // attempt to initialize t6 with invalid values
38 try
39 {
40
41 } // end try
42 catch (IllegalArgumentException e)
43 {
44 System.out.printf("\nException while initializing t6: %s\n",
45 e.getMessage());
46 } // end catch
47 } // end main
48 } // end class Time2Test

Constructed with:
t1: all arguments defaulted
 00:00:00
 12:00:00 AM
t2: hour specified; minute and second defaulted
 02:00:00
 2:00:00 AM
t3: hour and minute specified; second defaulted
 21:34:00
 9:34:00 PM
t4: hour, minute and second specified
 12:25:42
 12:25:42 PM
t5: Time2 object t4 specified
 12:25:42
 12:25:42 PM

Exception while initializing t6: hour must be 0-23

Fig. F.6 | Overloaded constructors used to initialize Time2 objects. (Part 2 of 2.)

Time2 t6 = new Time2(27, 74, 99); // invalid values

Z06_DEIT3397_02_SE_APPF.fm Page 550 Monday, July 7, 2014 9:13 AM

F.7 Composition 551

F.7 Composition
A class can have references to objects of other classes as members. This is called composi-
tion and is sometimes referred to as a has-a relationship. For example, an AlarmClock ob-
ject needs to know the current time and the time when it’s supposed to sound its alarm,
so it’s reasonable to include two references to Time objects in an AlarmClock object.

Class Date
This composition example contains classes Date (Fig. F.7), Employee (Fig. F.8) and Employ-
eeTest (Fig. F.9). Class Date (Fig. F.7) declares instance variables month, day and year (lines
6–8) to represent a date. The constructor receives three int parameters. Line 17 invokes util-
ity method checkMonth (lines 26–32) to validate the month—if the value is out of range the
method throws an exception. Line 15 assumes that the value for year is correct and doesn’t
validate it. Line 19 invokes utility method checkDay (lines 35–48) to validate the day based
on the current month and year. Line 38 determines whether the day is correct based on the
number of days in the particular month. If the day is not correct, lines 42–43 determine
whether the month is February, the day is 29 and the year is a leap year. If the day is still
invalid, the method throws an exception. Lines 21–22 in the constructor output the this
reference as a String. Since this is a reference to the current Date object, the object’s to-
String method (lines 51–54) is called implicitly to obtain the object’s String representation.

1 // Fig. F.7: Date.java
2 // Date class declaration.
3
4 public class Date
5 {
6 private int month; // 1-12
7 private int day; // 1-31 based on month
8 private int year; // any year
9

10 private static final int[] daysPerMonth = // days in each month
11 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
12
13 // constructor: call checkMonth to confirm proper value for month;
14 // call checkDay to confirm proper value for day
15 public Date(int theMonth, int theDay, int theYear)
16 {
17 month = checkMonth(theMonth); // validate month
18 year = theYear; // could validate year
19 day = checkDay(theDay); // validate day
20
21 System.out.printf(
22 "Date object constructor for date %s\n", this);
23 } // end Date constructor
24
25 // utility method to confirm proper month value
26 private int checkMonth(int testMonth)
27 {
28 if (testMonth > 0 && testMonth <= 12) // validate month
29 return testMonth;

Fig. F.7 | Date class declaration. (Part 1 of 2.)

Z06_DEIT3397_02_SE_APPF.fm Page 551 Monday, July 7, 2014 9:13 AM

552 Appendix F Classes and Objects: A Deeper Look

Class Employee
Class Employee (Fig. F.8) has instance variables firstName, lastName, birthDate and
hireDate. Members firstName and lastName (lines 6–7) are references to String objects.
Members birthDate and hireDate (lines 8–9) are references to Date objects. This demon-
strates that a class can have as instance variables references to objects of other classes. The
Employee constructor (lines 12–19) takes four parameters—first, last, dateOfBirth and
dateOfHire. The objects referenced by the parameters are assigned to the Employee object’s
instance variables. When class Employee’s toString method is called, it returns a String
containing the employee’s name and the String representations of the two Date objects.
Each of these Strings is obtained with an implicit call to the Date class’s toString method.

30 else // month is invalid
31 throw new IllegalArgumentException("month must be 1-12");
32 } // end method checkMonth
33
34 // utility method to confirm proper day value based on month and year
35 private int checkDay(int testDay)
36 {
37 // check if day in range for month
38 if (testDay > 0 && testDay <= daysPerMonth[month])
39 return testDay;
40
41 // check for leap year
42 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
43 (year % 4 == 0 && year % 100 != 0)))
44 return testDay;
45
46 throw new IllegalArgumentException(
47 "day out-of-range for the specified month and year");
48 } // end method checkDay
49
50 // return a String of the form month/day/year
51 public String toString()
52 {
53 return String.format("%d/%d/%d", month, day, year);
54 } // end method toString
55 } // end class Date

1 // Fig. F.8: Employee.java
2 // Employee class with references to other objects.
3
4 public class Employee
5 {
6 private String firstName;
7 private String lastName;
8
9

Fig. F.8 | Employee class with references to other objects. (Part 1 of 2.)

Fig. F.7 | Date class declaration. (Part 2 of 2.)

private Date birthDate;
private Date hireDate;

Z06_DEIT3397_02_SE_APPF.fm Page 552 Monday, July 7, 2014 9:13 AM

F.7 Composition 553

Class EmployeeTest
Class EmployeeTest (Fig. F.9) creates two Date objects (lines 8–9) to represent an Employ-
ee’s birthday and hire date, respectively. Line 10 creates an Employee and initializes its in-
stance variables by passing to the constructor two Strings (representing the Employee’s
first and last names) and two Date objects (representing the birthday and hire date). Line
12 implicitly invokes the Employee’s toString method to display the values of its instance
variables and demonstrate that the object was initialized properly.

10
11 // constructor to initialize name, birth date and hire date
12 public Employee(String first, String last, Date dateOfBirth,
13 Date dateOfHire)
14 {
15 firstName = first;
16 lastName = last;
17 birthDate = dateOfBirth;
18 hireDate = dateOfHire;
19 } // end Employee constructor
20
21 // convert Employee to String format
22 public String toString()
23 {
24 return String.format("%s, %s Hired: %s Birthday: %s",
25 lastName, firstName, hireDate, birthDate);
26 } // end method toString
27 } // end class Employee

1 // Fig. F.9: EmployeeTest.java
2 // Composition demonstration.
3
4 public class EmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 Date birth = new Date(7, 24, 1949);
9 Date hire = new Date(3, 12, 1988);

10
11
12
13 } // end main
14 } // end class EmployeeTest

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Fig. F.9 | Composition demonstration.

Fig. F.8 | Employee class with references to other objects. (Part 2 of 2.)

Employee employee = new Employee("Bob", "Blue", birth, hire);

System.out.println(employee);

Z06_DEIT3397_02_SE_APPF.fm Page 553 Monday, July 7, 2014 9:13 AM

554 Appendix F Classes and Objects: A Deeper Look

F.8 Enumerations
In Fig. D.5, we introduced the basic enum type, which defines a set of constants represent-
ed as unique identifiers. In that program the enum constants represented the game’s status.
In this section we discuss the relationship between enum types and classes. Like classes, all
enum types are reference types. An enum type is declared with an enum declaration, which
is a comma-separated list of enum constants—the declaration may optionally include other
components of traditional classes, such as constructors, fields and methods. Each enum
declaration declares an enum class with the following restrictions:

1. enum constants are implicitly final, because they declare constants that shouldn’t
be modified.

2. enum constants are implicitly static.

3. Any attempt to create an object of an enum type with operator new results in a
compilation error.

The enum constants can be used anywhere constants can be used, such as in the case labels
of switch statements and to control enhanced for statements.

Figure F.10 illustrates how to declare instance variables, a constructor and methods
in an enum type. The enum declaration (lines 5–37) contains two parts—the enum constants
and the other members of the enum type. The first part (lines 8–13) declares six enum con-
stants. Each is optionally followed by arguments which are passed to the enum constructor
(lines 20–24). Like the constructors you’ve seen in classes, an enum constructor can specify
any number of parameters and can be overloaded. In this example, the enum constructor
requires two String parameters. To properly initialize each enum constant, we follow it
with parentheses containing two String arguments, which are passed to the enum’s con-
structor. The second part (lines 16–36) declares the other members of the enum type—two
instance variables (lines 16–17), a constructor (lines 20–24) and two methods (lines 27–
30 and 33–36).

1 // Fig. F.10: Book.java
2 // Declaring an enum type with constructor and explicit instance fields
3 // and accessors for these fields
4
5 public enum Book
6 {
7
8
9

10
11
12
13
14
15 // instance fields
16 private final String title; // book title
17 private final String copyrightYear; // copyright year

Fig. F.10 | Declaring an enum type with constructor and explicit instance fields and accessors for
these fields. (Part 1 of 2.)

// declare constants of enum type
JHTP("Java How to Program", "2012"),
CHTP("C How to Program", "2007"),
IW3HTP("Internet & World Wide Web How to Program", "2008"),
CPPHTP("C++ How to Program", "2012"),
VBHTP("Visual Basic 2010 How to Program", "2011"),
CSHARPHTP("Visual C# 2010 How to Program", "2011");

Z06_DEIT3397_02_SE_APPF.fm Page 554 Monday, July 7, 2014 9:13 AM

F.8 Enumerations 555

Lines 16–17 declare the instance variables title and copyrightYear. Each enum con-
stant in Book is actually an object of type Book that has its own copy of instance variables
title and copyrightYear. The constructor (lines 20–24) takes two String parameters,
one that specifies the book’s title and one that specifies its copyright year. Lines 22–23
assign these parameters to the instance variables. Lines 27–36 declare two methods, which
return the book title and copyright year, respectively.

Figure F.11 tests the enum type Book and illustrates how to iterate through a range of
enum constants. For every enum, the compiler generates the static method values (called
in line 12) that returns an array of the enum’s constants in the order they were declared.
Lines 12–14 use the enhanced for statement to display all the constants declared in the
enum Book. Line 14 invokes the enum Book’s getTitle and getCopyrightYear methods to
get the title and copyright year associated with the constant. When an enum constant is
converted to a String (e.g., book in line 13), the constant’s identifier is used as the String
representation (e.g., JHTP for the first enum constant).

18
19 // enum constructor
20 Book(String bookTitle, String year)
21 {
22 title = bookTitle;
23 copyrightYear = year;
24 } // end enum Book constructor
25
26 // accessor for field title
27 public String getTitle()
28 {
29 return title;
30 } // end method getTitle
31
32 // accessor for field copyrightYear
33 public String getCopyrightYear()
34 {
35 return copyrightYear;
36 } // end method getCopyrightYear
37 } // end enum Book

1 // Fig. F.11: EnumTest.java
2 // Testing enum type Book.
3 import java.util.EnumSet;
4
5 public class EnumTest
6 {
7 public static void main(String[] args)
8 {
9 System.out.println("All books:\n");

Fig. F.11 | Testing enum type Book. (Part 1 of 2.)

Fig. F.10 | Declaring an enum type with constructor and explicit instance fields and accessors for
these fields. (Part 2 of 2.)

Z06_DEIT3397_02_SE_APPF.fm Page 555 Monday, July 7, 2014 9:13 AM

556 Appendix F Classes and Objects: A Deeper Look

Lines 19–21 use the static method range of class EnumSet (declared in package
java.util) to display a range of the enum Book’s constants. Method range takes two
parameters—the first and the last enum constants in the range—and returns an EnumSet
that contains all the constants between these two constants, inclusive. For example, the
expression EnumSet.range(Book.JHTP, Book.CPPHTP) returns an EnumSet containing
Book.JHTP, Book.CHTP, Book.IW3HTP and Book.CPPHTP. The enhanced for statement can
be used with an EnumSet just as it can with an array, so lines 12–14 use it to display the
title and copyright year of every book in the EnumSet. Class EnumSet provides several other
static methods for creating sets of enum constants from the same enum type.

F.9 Garbage Collection
Every object uses system resources, such as memory. We need a disciplined way to give
resources back to the system when they’re no longer needed; otherwise, “resource leaks”
might occur that would prevent them from being reused by your program or possibly by
other programs. The JVM performs automatic garbage collection to reclaim the memory

10
11 // print all books in enum Book
12 for ()
13 System.out.printf("%-10s%-45s%s\n", book,
14 ,);
15
16 System.out.println("\nDisplay a range of enum constants:\n");
17
18 // print first four books
19 for (Book book :)
20 System.out.printf("%-10s%-45s%s\n", book,
21 ,);
22 } // end main
23 } // end class EnumTest

All books:

JHTP Java How to Program 2012
CHTP C How to Program 2007
IW3HTP Internet & World Wide Web How to Program 2008
CPPHTP C++ How to Program 2012
VBHTP Visual Basic 2010 How to Program 2011
CSHARPHTP Visual C# 2010 How to Program 2011

Display a range of enum constants:

JHTP Java How to Program 2012
CHTP C How to Program 2007
IW3HTP Internet & World Wide Web How to Program 2008
CPPHTP C++ How to Program 2012

Common Programming Error F.4
In an enum declaration, it’s a syntax error to declare enum constants after the enum type’s
constructors, fields and methods.

Fig. F.11 | Testing enum type Book. (Part 2 of 2.)

Book book : Book.values()

book.getTitle() book.getCopyrightYear()

EnumSet.range(Book.JHTP, Book.CPPHTP)

book.getTitle() book.getCopyrightYear()

Z06_DEIT3397_02_SE_APPF.fm Page 556 Monday, July 7, 2014 9:13 AM

F.10 static Class Members 557

occupied by objects that are no longer used. When there are no more references to an ob-
ject, the object is eligible to be collected. This typically occurs when the JVM executes its
garbage collector. So, memory leaks that are common in other languages like C and C++
(because memory is not automatically reclaimed in those languages) are less likely in Java,
but some can still happen in subtle ways. Other types of resource leaks can occur. For ex-
ample, an application may open a file on disk to modify its contents. If it does not close
the file, the application must terminate before any other application can use it.

F.10 static Class Members
Every object has its own copy of all the instance variables of the class. In certain cases, only
one copy of a particular variable should be shared by all objects of a class. A static field—
called a class variable—is used in such cases. A static variable represents classwide infor-
mation—all objects of the class share the same piece of data. The declaration of a static
variable begins with the keyword static.

Let’s motivate static data with an example. Suppose that we have a video game with
Martians and other space creatures. Each Martian tends to be brave and willing to attack
other space creatures when the Martian is aware that at least four other Martians are
present. If fewer than five Martians are present, each of them becomes cowardly. Thus,
each Martian needs to know the martianCount. We could endow class Martian with mar-
tianCount as an instance variable. If we do this, then every Martian will have a separate
copy of the instance variable, and every time we create a new Martian, we’ll have to update
the instance variable martianCount in every Martian object. This wastes space with the
redundant copies, wastes time in updating the separate copies and is error prone. Instead,
we declare martianCount to be static, making martianCount classwide data. Every Mar-
tian can see the martianCount as if it were an instance variable of class Martian, but only
one copy of the static martianCount is maintained. This saves space. We save time by
having the Martian constructor increment the static martianCount—there’s only one
copy, so we do not have to increment separate copies for each Martian object.

Static variables have class scope. We can access a class’s public static members
through a reference to any object of the class, or by qualifying the member name with the
class name and a dot (.), as in Math.random(). A class’s private static class members
can be accessed by client code only through methods of the class. Actually, static class
members exist even when no objects of the class exist—they’re available as soon as the class is
loaded into memory at execution time. To access a public static member when no
objects of the class exist (and even when they do), prefix the class name and a dot (.) to

Software Engineering Observation F.3
A class that uses system resources, such as files on disk, should provide a method that
programmers can call to release resources when they’re no longer needed in a program.
Many Java API classes provide close or dispose methods for this purpose. For example,
class Scanner has a close method.

Software Engineering Observation F.4
Use a static variable when all objects of a class must use the same copy of the variable.

Z06_DEIT3397_02_SE_APPF.fm Page 557 Monday, July 7, 2014 9:13 AM

558 Appendix F Classes and Objects: A Deeper Look

the static member, as in Math.PI. To access a private static member when no objects
of the class exist, provide a public static method and call it by qualifying its name with
the class name and a dot.

A static method cannot access non-static class members, because a static method
can be called even when no objects of the class have been instantiated. For the same reason,
the this reference cannot be used in a static method. The this reference must refer to
a specific object of the class, and when a static method is called, there might not be any
objects of its class in memory.

Tracking the Number of Employee Objects That Have Been Created
Our next program declares two classes—Employee (Fig. F.12) and EmployeeTest
(Fig. F.13). Class Employee declares private static variable count (Fig. F.12, line 9) and
public static method getCount (lines 36–39). The static variable count is initialized
to zero in line 9. If a static variable is not initialized, the compiler assigns it a default val-
ue—in this case 0, the default value for type int. Variable count maintains a count of the
number of objects of class Employee that have been created so far.

Software Engineering Observation F.5
Static class variables and methods exist, and can be used, even if no objects of that class
have been instantiated.

Common Programming Error F.5
A compilation error occurs if a static method calls an instance (non-static) method in
the same class by using only the method name. Similarly, a compilation error occurs if a
static method attempts to access an instance variable in the same class by using only the
variable name.

Common Programming Error F.6
Referring to this in a static method is a compilation error.

1 // Fig. F.12: Employee.java
2 // Static variable used to maintain a count of the number of
3 // Employee objects in memory.
4
5 public class Employee
6 {
7 private String firstName;
8 private String lastName;
9

10
11 // initialize Employee, add 1 to static count and
12 // output String indicating that constructor was called
13 public Employee(String first, String last)
14 {

Fig. F.12 | static variable used to maintain a count of the number of Employee objects in
memory. (Part 1 of 2.)

private static int count = 0; // number of Employees created

Z06_DEIT3397_02_SE_APPF.fm Page 558 Monday, July 7, 2014 9:13 AM

F.10 static Class Members 559

When Employee objects exist, variable count can be used in any method of an
Employee object—this example increments count in the constructor (line 18). The public
static method getCount (lines 36–39) returns the number of Employee objects that have
been created so far. When no objects of class Employee exist, client code can access variable
count by calling method getCount via the class name, as in Employee.getCount(). When
objects exist, method getCount can also be called via any reference to an Employee object.

EmployeeTest method main (Fig. F.13) instantiates two Employee objects (lines
13–14). When each Employee object’s constructor is invoked, lines 15–16 of Fig. F.12
assign the Employee’s first name and last name to instance variables firstName and last-
Name. These two statements do not make copies of the original String arguments. Actu-
ally, String objects in Java are immutable—they cannot be modified after they’re created.
Therefore, it’s safe to have many references to one String object. This is not normally the
case for objects of most other classes in Java. If String objects are immutable, you might
wonder why we’re able to use operators + and += to concatenate String objects. String-
concatenation operations actually result in a new Strings object containing the concate-
nated values. The original String objects are not modified.

15 firstName = first;
16 lastName = last;
17
18
19 System.out.printf("Employee constructor: %s %s; count = %d\n",
20 firstName, lastName, count);
21 } // end Employee constructor
22
23 // get first name
24 public String getFirstName()
25 {
26 return firstName;
27 } // end method getFirstName
28
29 // get last name
30 public String getLastName()
31 {
32 return lastName;
33 } // end method getLastName
34
35
36
37
38
39
40 } // end class Employee

Good Programming Practice F.1
Invoke every static method by using the class name and a dot (.) to emphasize that the
method being called is a static method.

Fig. F.12 | static variable used to maintain a count of the number of Employee objects in
memory. (Part 2 of 2.)

++count; // increment static count of employees

// static method to get static count value
public static int getCount()
{
 return count;
} // end method getCount

Z06_DEIT3397_02_SE_APPF.fm Page 559 Monday, July 7, 2014 9:13 AM

560 Appendix F Classes and Objects: A Deeper Look

When main has finished using the two Employee objects, the references e1 and e2 are
set to null at lines 31–32 (Fig. F.13). At this point, references e1 and e2 no longer refer
to the objects that were instantiated in lines 13–14. The objects become “eligible for gar-
bage collection” because there are no more references to them in the program.

1 // Fig. F.13: EmployeeTest.java
2 // static member demonstration.
3
4 public class EmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // show that count is 0 before creating Employees
9 System.out.printf("Employees before instantiation: %d\n",

10);
11
12 // create two Employees; count should be 2
13
14
15
16 // show that count is 2 after creating two Employees
17 System.out.println("\nEmployees after instantiation: ");
18 System.out.printf("via e1.getCount(): %d\n",);
19 System.out.printf("via e2.getCount(): %d\n",);
20 System.out.printf("via Employee.getCount(): %d\n",
21);
22
23 // get names of Employees
24 System.out.printf("\nEmployee 1: %s %s\nEmployee 2: %s %s\n",
25 e1.getFirstName(), e1.getLastName(),
26 e2.getFirstName(), e2.getLastName());
27
28
29
30
31
32
33 } // end main
34 } // end class EmployeeTest

Employees before instantiation: 0
Employee constructor: Susan Baker; count = 1
Employee constructor: Bob Blue; count = 2

Employees after instantiation:
via e1.getCount(): 2
via e2.getCount(): 2
via Employee.getCount(): 2

Employee 1: Susan Baker
Employee 2: Bob Blue

Fig. F.13 | static member demonstration.

Employee.getCount()

Employee e1 = new Employee("Susan", "Baker");
Employee e2 = new Employee("Bob", "Blue");

e1.getCount()
e2.getCount()

Employee.getCount()

// in this example, there is only one reference to each Employee,
// so the following two statements indicate that these objects
// are eligible for garbage collection
e1 = null;
e2 = null;

Z06_DEIT3397_02_SE_APPF.fm Page 560 Monday, July 7, 2014 9:13 AM

F.11 final Instance Variables 561

Eventually, the garbage collector might reclaim the memory for these objects (or the
operating system will reclaim the memory when the program terminates). The JVM does
not guarantee when, or even whether, the garbage collector will execute. When it does, it’s
possible that no objects or only a subset of the eligible objects will be collected.

F.11 final Instance Variables
The principle of least privilege is fundamental to good software engineering. In the con-
text of an application, it states that code should be granted only the amount of privilege
and access that it needs to accomplish its designated task, but no more. This makes your
programs more robust by preventing code from accidentally (or maliciously) modifying
variable values and calling methods that should not be accessible.

Let’s see how this principle applies to instance variables. Some of them need to be mod-
ifiable and some do not. You can use the keyword final to specify that a variable is not mod-
ifiable (i.e., it’s a constant) and that any attempt to modify it is an error. For example,

declares a final (constant) instance variable INCREMENT of type int. Such variables can be
initialized when they’re declared. If they are not, they must be initialized in every construc-
tor of the class. Initializing constants in constructors enables each object of the class to have
a different value for the constant. If a final variable is not initialized in its declaration or
in every constructor, a compilation error occurs.

F.12 Packages
We’ve seen in almost every example in the text that classes from preexisting libraries, such
as the Java API, can be imported into a Java program. Each class in the Java API belongs
to a package that contains a group of related classes. These packages are defined once, but

private final int INCREMENT;

Software Engineering Observation F.6
Declaring an instance variable as final helps enforce the principle of least privilege. If an
instance variable should not be modified, declare it to be final to prevent modification.

Common Programming Error F.7
Attempting to modify a final instance variable after it’s initialized is a compilation error.

Error-Prevention Tip F.2
Attempts to modify a final instance variable are caught at compilation time rather than
causing execution-time errors. It’s always preferable to get bugs out at compilation time,
if possible, rather than allow them to slip through to execution time (where experience has
found that repair is often many times more expensive).

Software Engineering Observation F.7
A final field should also be declared static if it’s initialized in its declaration to a value
that’s the same for all objects of the class. After this initialization, its value can never
change. Therefore, we don’t need a separate copy of the field for every object of the class.
Making the field static enables all objects of the class to share the final field.

Z06_DEIT3397_02_SE_APPF.fm Page 561 Monday, July 7, 2014 9:13 AM

562 Appendix F Classes and Objects: A Deeper Look

can be imported into many programs. As applications become more complex, packages
help you manage the complexity of application components. Packages also facilitate soft-
ware reuse by enabling programs to import classes from other packages (as we’ve done in
most examples), rather than copying the classes into each program that uses them. Another
benefit of packages is that they provide a convention for unique class names, which helps
prevent class-name conflicts.

F.13 Package Access
If no access modifier (public, protected or private) is specified for a method or variable
when it’s declared in a class, the method or variable has package access. In a program that
consists of one class declaration, this has no specific effect. However, if a program uses
multiple classes from the same package (i.e., a group of related classes), these classes can
access each other’s package-access members directly through references to objects of the
appropriate classes, or in the case of static members through the class name. Package ac-
cess is rarely used.

F.14 Wrap-Up
In this appendix, we presented additional class concepts. The Time class case study present-
ed a complete class declaration consisting of private data, overloaded public constructors
for initialization flexibility, set and get methods for manipulating the class’s data, and
methods that returned String representations of a Time object in two different formats.
You also learned that every class can declare a toString method that returns a String rep-
resentation of an object of the class and that method toString can be called implicitly
whenever an object of a class appears in the code where a String is expected.

You learned that the this reference is used implicitly in a class’s non-static methods
to access the class’s instance variables and other non-static methods. You also saw explicit
uses of the this reference to access the class’s members (including shadowed fields) and
how to use keyword this in a constructor to call another constructor of the class.

We discussed the differences between default constructors provided by the compiler
and no-argument constructors provided by the programmer. You learned that a class can
have references to objects of other classes as members—a concept known as composition.
You saw the enum class type and learned how it can be used to create a set of constants for
use in a program. You learned about Java’s garbage-collection capability and how it
(unpredictably) reclaims the memory of objects that are no longer used. We explained the
motivation for static fields in a class and demonstrated how to declare and use static
fields and methods in your own classes. You also learned how to declare and initialize
final variables.

You learned that fields declared without an access modifier are given package access
by default and that classes in the same package can access the package-access members of
other classes in the package.

In the next appendix, you’ll learn about two important aspects of object-oriented pro-
gramming in Java—inheritance and polymorphism. You’ll see that all classes in Java are
related directly or indirectly to the class called Object. You’ll also begin to understand how
the relationships between classes enable you to build more powerful applications.

Z06_DEIT3397_02_SE_APPF.fm Page 562 Monday, July 7, 2014 9:13 AM

 Self-Review Exercise 563

Self-Review Exercise
F.1 Fill in the blanks in each of the following statements:

a) The public methods of a class are also known as the class’s or .
b) Method takes no arguments and returns a String in universal-time format,

consisting of two digits each for the hour, minute and second.
c) If a method contains a local variable with the same name as one of its class’s fields, the

local variable the field in that method’s scope.
d) Keyword specifies that a variable is not modifiable.
e) The states that code should be granted only the amount of privilege and access

that it needs to accomplish its designated task.
f) If a class declares constructors, the compiler will not create a(n) .
g) An object’s method is called implicitly when an object appears in code where

a String is needed.
h) For every enum, the compiler generates a static method called that returns an

array of the enum’s constants in the order in which they were declared.
i) Composition is sometimes referred to as a(n) relationship.
j) A(n) declaration contains a comma-separated list of constants.
k) A(n) variable represents classwide information that’s shared by all the objects

of the class.

Answers to Self-Review Exercise
F.1 a) public services, public interface. b) toUniversalString. c) shadows. d) final. e) prin-
ciple of least privilege. f) default constructor. g) toString. h) values. i) has-a. j) enum. k) static.

Exercises
F.2 (Cuboid Class) Create a class Cuboid with attributes length, width and breadth, each of
which defaults to 1. Provide methods that calculate the cuboid’s area. Provide set and get methods
for length, width and breadth. The set methods should verify that length, width and breadth are
each floating-point numbers larger than 0.0 and less than 20.0. Write a program to test class Cuboid.

F.3 (Savings Account Class) Create class SavingsAccount. Use a static variable annualInter-
estRate to store the annual interest rate for all account holders. Each object of the class should con-
tain a private instance variable savingsBalance indicating the amount the saver currently has on
deposit. Provide method calculateMonthlyInterest to calculate the monthly interest by multiply-
ing the savingsBalance by annualInterestRate divided by 12—this interest should be added to
savingsBalance. Provide a static method modifyInterestRate that sets the annualInterestRate
to a new value. Write a program to test class SavingsAccount. Instantiate two savingsAccount ob-
jects, saver1 and saver2, with balances of $2000.00 and $3000.00, respectively. Set annual-
InterestRate to 4%, then calculate the monthly interest for each of 12 months and print the new
balances for both savers. Next, set the annualInterestRate to 5%, calculate the next month’s inter-
est and print the new balances for both savers.

F.4 (Enhancing Class Time2) Modify class Time2 of Fig. F.5 to include a tick method that in-
crements the time stored in a Time2 object by one second. Provide method incrementMinute to in-
crement the minute by one and method incrementHour to increment the hour by one. Write a
program that tests the tick method, the incrementMinute method and the incrementHour method
to ensure that they work correctly. Be sure to test the following cases:

a) incrementing into the next minute,
b) incrementing into the next hour and
c) incrementing into the next day (i.e., 11:59:59 PM to 12:00:00 AM).

Z06_DEIT3397_02_SE_APPF.fm Page 563 Friday, June 20, 2014 6:55 PM

564 Appendix F Classes and Objects: A Deeper Look

F.5 Write an enum type TrafficLight, whose constants (RED, GREEN, YELLOW) take one parame-
ter—the duration of the light. Write a program to test the TrafficLight enum so that it displays the
enum constants and their durations.

F.6 (Date Class) Create class Date with the following capabilities:
a) Output the date in multiple formats, such as

MM/DD/YYYY
June 14, 1992
DDD YYYY

b) Use overloaded constructors to create Date objects initialized with dates of the formats
in part (a). In the first case the constructor should receive three integer values. In the
second case it should receive a String and two integer values. In the third case it should
receive two integer values, the first of which represents the day number in the year.
[Hint: To convert the String representation of the month to a numeric value, compare
Strings using the equals method. For example, if s1 and s2 are Strings, the method
call s1.equals(s2) returns true if the Strings are identical and otherwise returns
false.]

F.7 (Huge Integer Class) Create a class HugeInteger which uses a 40-element array of digits to
store integers as large as 40 digits each. Provide methods parse, toString, add and subtract. Meth-
od parse should receive a String, extract each digit using method charAt and place the integer
equivalent of each digit into the integer array. For comparing HugeInteger objects, provide the fol-
lowing methods: isEqualTo, isNotEqualTo, isGreaterThan, isLessThan, isGreaterThanOrEqualTo
and isLessThanOrEqualTo. Each of these so-called predicate methods (that is, methods that test a
condition and return true or false) returns true if the relationship holds between the two
HugeInteger objects and returns false if the relationship does not hold. Provide a predicate method
isZero. If you feel ambitious, also provide methods multiply, divide and remainder. [Note: Prim-
itive boolean values can be output as the word “true” or the word “false” with format specifier %b.]

F.8 (Tic-Tac-Toe) Create a class TicTacToe that will enable you to write a program to play Tic-
Tac-Toe. The class contains a private 3-by-3 two-dimensional array. Use an enumeration to repre-
sent the value in each cell of the array. The enumeration’s constants should be named X, O and EMPTY
(for a position that does not contain an X or an O). The constructor should initialize the board ele-
ments to EMPTY. Allow two human players. Wherever the first player moves, place an X in the spec-
ified square, and place an O wherever the second player moves. Each move must be to an empty
square. After each move, determine whether the game has been won and whether it’s a draw. If you
feel ambitious, modify your program so that the computer makes the moves for one of the players.
Also, allow the player to specify whether he or she wants to go first or second. If you feel exception-
ally ambitious, develop a program that will play three-dimensional Tic-Tac-Toe on a 4-by-4-by-4
board [Note: This is an extremely challenging project!].

Z06_DEIT3397_02_SE_APPF.fm Page 564 Monday, July 7, 2014 9:13 AM

GObject-Oriented
Programming: Inheritance
and Polymorphism

O b j e c t i v e s
In this appendix you’ll:

■ Learn how inheritance
promotes software resuse.

■ Understand the relationships
between superclasses and
subclasses.

■ Use keyword extends to
effect inheritance.

■ Use protected to give
subclass methods access to
superclass members.

■ Reference superclass
members with super.

■ Learn the methods of class
Object.

■ Learn the concept of
polymorphism.

■ Use overridden methods to
effect polymorphism.

■ Distinguish between abstract
and concrete classes.

■ Declare abstract methods to
create abstract classes.

■ Learn how polymorphism
makes systems extensible
and maintainable.

■ Determine an object’s type at
execution time.

■ Declare and implement
interfaces.

Z07_DEIT3397_02_SE_APPG.fm Page 565 Tuesday, July 8, 2014 8:36 AM

566 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

G.1 Introduction to Inheritance
The first part of this appendix continues our discussion of object-oriented programming
(OOP) by introducing one of its primary capabilities—inheritance, which is a form of
software reuse in which a new class is created by absorbing an existing class’s members and
embellishing them with new or modified capabilities. With inheritance, you can save time
during program development by basing new classes on existing proven and debugged
high-quality software. The existing class is called the superclass, and the new class is the
subclass. Each subclass can become a superclass for future subclasses.

A subclass can add its own fields and methods. Therefore, a subclass is more specific
than its superclass and represents a more specialized group of objects. The subclass exhibits
the behaviors of its superclass and can modify those behaviors so that they operate appro-
priately for the subclass. This is why inheritance is sometimes referred to as specialization.

The direct superclass is the superclass from which the subclass explicitly inherits. An
indirect superclass is any class above the direct superclass in the class hierarchy, which
defines the inheritance relationships between classes. In Java, the class hierarchy begins
with class Object (in package java.lang), which every class in Java directly or indirectly
extends (or “inherits from”). Section G.5 lists the methods of class Object that are inher-
ited by all other Java classes.

We distinguish between the is-a relationship and the has-a relationship. Is-a repre-
sents inheritance. In an is-a relationship, an object of a subclass can also be treated as an object
of its superclass—e.g., a car is a vehicle. By contrast, has-a represents composition (see
Appendix F). In a has-a relationship, an object contains as members references to other
objects—e.g., a car has a steering wheel (and a car object has a reference to a steering-wheel
object).

Later in the appendix, we discuss the concept of polymorphism, which simplifies pro-
gramming with objects from the same class hierarchy. You’ll see that polymorphism also
makes it possible to extend systems to add new capabilities. Finally, we discuss interfaces,
which are useful for assigning common functionality to possibly unrelated classes. This
allows objects of unrelated classes to be processed polymorphically—objects of classes that
implement the same interface can respond to all of the interface method calls in their own
customized way.

G.1 Introduction to Inheritance
G.2 Superclasses and Subclasses
G.3 protected Members
G.4 Relationship between Superclasses

and Subclasses
G.5 Class Object
G.6 Introduction to Polymorphism
G.7 Polymorphism: An Example
G.8 Demonstrating Polymorphic Behavior

G.9 Abstract Classes and Methods
G.10 Case Study: Payroll System Using

Polymorphism
G.11 final Methods and Classes
G.12 Case Study: Creating and Using

Interfaces
G.13 Common Interfaces of the Java API
G.14 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Z07_DEIT3397_02_SE_APPG.fm Page 566 Monday, July 7, 2014 9:15 AM

G.2 Superclasses and Subclasses 567

G.2 Superclasses and Subclasses
Often, an object of one class is an object of another class as well. Figure G.1 lists several
examples of superclasses and subclasses—superclasses tend to be “more general” and sub-
classes “more specific.” For example, a CarLoan is a Loan as are HomeImprovementLoans and
MortgageLoans. Thus, in Java, class CarLoan can be said to inherit from class Loan. In this
context, class Loan is a superclass and class CarLoan is a subclass. A CarLoan is a specific
type of Loan, but it’s incorrect to claim that every Loan is a CarLoan—the Loan could be
any type of loan.

Because every subclass object is an object of its superclass, and one superclass can have
many subclasses, the set of objects represented by a superclass is often larger than the set
of objects represented by any of its subclasses. For example, the superclass Vehicle repre-
sents all vehicles, including cars, trucks, boats, bicycles and so on. By contrast, subclass Car
represents a smaller, more specific subset of vehicles.

University Community Member Hierarchy
Inheritance relationships form treelike hierarchical structures. A superclass exists in a hier-
archical relationship with its subclasses. Let’s develop a sample class hierarchy (Fig. G.2),
also called an inheritance hierarchy. A university community has thousands of members,
including employees, students and alumni. Employees are either faculty or staff members.

Superclass Subclasses

Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle, Sphere, Cube

Loan CarLoan, HomeImprovementLoan, MortgageLoan
Employee Faculty, Staff
BankAccount CheckingAccount, SavingsAccount

Fig. G.1 | Inheritance examples.

Fig. G.2 | Inheritance hierarchy for university CommunityMembers.

Student

CommunityMember

Administrator

AlumnusEmployee

StaffFaculty

Teacher

Z07_DEIT3397_02_SE_APPG.fm Page 567 Monday, July 7, 2014 9:15 AM

568 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Faculty members are either administrators (e.g., deans and department chairpersons) or
teachers. The hierarchy could contain many other classes. For example, students can be
graduate or undergraduate students. Undergraduate students can be freshmen, sopho-
mores, juniors or seniors.

Each arrow in the hierarchy represents an is-a relationship. As we follow the arrows
upward in this class hierarchy, we can state, for instance, that “an Employee is a
CommunityMember” and “a Teacher is a Faculty member.” CommunityMember is the direct
superclass of Employee, Student and Alumnus and is an indirect superclass of all the other
classes in the diagram. Starting from the bottom, you can follow the arrows and apply the
is-a relationship up to the topmost superclass. For example, an Administrator is a Fac-
ulty member, is an Employee, is a CommunityMember and, of course, is an Object.

Shape Hierarchy
Now consider the Shape inheritance hierarchy in Fig. G.3. This hierarchy begins with su-
perclass Shape, which is extended by subclasses TwoDimensionalShape and ThreeDim-
ensionalShape—Shapes are either TwoDimensionalShapes or ThreeDimensionalShapes.
The third level of this hierarchy contains specific types of TwoDimensionalShapes and
ThreeDimensionalShapes. As in Fig. G.2, we can follow the arrows from the bottom of
the diagram to the topmost superclass in this class hierarchy to identify several is-a rela-
tionships. For instance, a Triangle is a TwoDimensionalShape and is a Shape, while a
Sphere is a ThreeDimensionalShape and is a Shape. This hierarchy could contain many
other classes. For example, ellipses and trapezoids are TwoDimensionalShapes.

It’s possible to treat superclass objects and subclass objects similarly—their common-
alities are expressed in the superclass’s members. Objects of all classes that extend a
common superclass can be treated as objects of that superclass—such objects have an is-a
relationship with the superclass. Later in this appendix, we consider many examples that
take advantage of the is-a relationship.

A subclass can customize methods that it inherits from its superclass. To do this, the
subclass overrides (redefines) the superclass method with an appropriate implementation,
as we’ll see often in this appendix’s code examples.

G.3 protected Members
In this section, we introduce access modifier protected. Using protected access offers an
intermediate level of access between public and private. A superclass’s protected mem-

Fig. G.3 | Inheritance hierarchy for Shapes.

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

Z07_DEIT3397_02_SE_APPG.fm Page 568 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 569

bers can be accessed by the class, by members of its subclasses and by members of other
classes in the same package—protected members also have package access.

All public and protected superclass members retain their original access modifier
when they become members of the subclass—public members of the superclass become
public members of the subclass, and protected members of the superclass become pro-
tected members of the subclass. A superclass’s private members are not accessible outside
the class itself. Rather, they’re hidden in its subclasses and can be accessed only through the
public or protected methods inherited from the superclass.

Subclass methods can refer to public and protected members inherited from the
superclass simply by using the member names. When a subclass method overrides an
inherited superclass method, the superclass method can be accessed from the subclass by
preceding the superclass method name with keyword super and a dot (.) separator. We
discuss accessing overridden members of the superclass in Section G.4.

G.4 Relationship between Superclasses and Subclasses
We now use an inheritance hierarchy containing types of employees in a company’s pay-
roll application to discuss the relationship between a superclass and its subclass. In this
company, commission employees (who will be represented as objects of a superclass) are
paid a percentage of their sales, while base-salaried commission employees (who will be
represented as objects of a subclass) receive a base salary plus a percentage of their sales.

We create an example that sets the CommissionEmployee instance variables to private
to enforce good software engineering. Then we show how the BasePlusCommissionEm-
ployee subclass can use CommissionEmployee’s public methods to manipulate (in a con-
trolled manner) the private instance variables inherited from CommissionEmployee.

G.4.1 Creating and Using a CommissionEmployee Class
We begin by declaring class CommissionEmployee (Fig. G.4). Line 4 begins the class dec-
laration and indicates that class CommissionEmployee extends (i.e., inherits from) class
Object (from package java.lang). This causes class CommissionEmployee to inherit the
class Object’s methods—class Object does not have any fields. If you don’t explicitly spec-
ify which class a new class extends, the class extends Object implicitly. For this reason, you
typically will not include “extends Object” in your code—we do so in this example only
for demonstration purposes.

Overview of Class CommissionEmployee’s Methods and Instance Variables
Class CommissionEmployee’s public services include a constructor (lines 13–22) and meth-
ods earnings (lines 93–96) and toString (lines 99–107). Lines 25–90 declare public get
and set methods for the class’s instance variables (declared in lines 6–10) firstName, last-
Name, socialSecurityNumber, grossSales and commissionRate. The class declares its in-
stance variables as private, so objects of other classes cannot directly access these variables.
Declaring instance variables as private and providing get and set methods to manipulate
and validate them helps enforce good software engineering. Methods setGrossSales and
setCommissionRate, for example, validate their arguments before assigning the values to
instance variables grossSales and commissionRate, respectively. In a real-world, business-
critical application, we’d also perform validation in the class’s other set methods.

Z07_DEIT3397_02_SE_APPG.fm Page 569 Monday, July 7, 2014 9:15 AM

570 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

1 // Fig. G.4: CommissionEmployee.java
2 // CommissionEmployee class represents an employee paid a
3 // percentage of gross sales.
4
5 {
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 // set first name
25 public void setFirstName(String first)
26 {
27 firstName = first; // should validate
28 } // end method setFirstName
29
30 // return first name
31 public String getFirstName()
32 {
33 return firstName;
34 } // end method getFirstName
35
36 // set last name
37 public void setLastName(String last)
38 {
39 lastName = last; // should validate
40 } // end method setLastName
41
42 // return last name
43 public String getLastName()
44 {
45 return lastName;
46 } // end method getLastName
47
48 // set social security number
49 public void setSocialSecurityNumber(String ssn)
50 {
51 socialSecurityNumber = ssn; // should validate
52 } // end method setSocialSecurityNumber

Fig. G.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 1 of 3.)

public class CommissionEmployee extends Object

private String firstName;
private String lastName;
private String socialSecurityNumber;
private double grossSales; // gross weekly sales
private double commissionRate; // commission percentage

// five-argument constructor
public CommissionEmployee(String first, String last, String ssn,
 double sales, double rate)
{
 // implicit call to Object constructor occurs here
 firstName = first;
 lastName = last;
 socialSecurityNumber = ssn;
 setGrossSales(sales); // validate and store gross sales
 setCommissionRate(rate); // validate and store commission rate
} // end five-argument CommissionEmployee constructor

Z07_DEIT3397_02_SE_APPG.fm Page 570 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 571

53
54 // return social security number
55 public String getSocialSecurityNumber()
56 {
57 return socialSecurityNumber;
58 } // end method getSocialSecurityNumber
59
60 // set gross sales amount
61 public void setGrossSales(double sales)
62 {
63 if (sales >= 0.0)
64 grossSales = sales;
65 else
66 throw new IllegalArgumentException(
67 "Gross sales must be >= 0.0");
68 } // end method setGrossSales
69
70 // return gross sales amount
71 public double getGrossSales()
72 {
73 return grossSales;
74 } // end method getGrossSales
75
76 // set commission rate
77 public void setCommissionRate(double rate)
78 {
79 if (rate > 0.0 && rate < 1.0)
80 commissionRate = rate;
81 else
82 throw new IllegalArgumentException(
83 "Commission rate must be > 0.0 and < 1.0");
84 } // end method setCommissionRate
85
86 // return commission rate
87 public double getCommissionRate()
88 {
89 return commissionRate;
90 } // end method getCommissionRate
91
92
93
94
95
96
97
98
99
100
101
102
103
104

Fig. G.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 2 of 3.)

// calculate earnings
public double earnings()
{
 return commissionRate * grossSales;
} // end method earnings

// return String representation of CommissionEmployee object
@Override // indicates that this method overrides a superclass method
public String toString()
{
 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",
 "commission employee", firstName, lastName,
 "social security number", socialSecurityNumber,

Z07_DEIT3397_02_SE_APPG.fm Page 571 Monday, July 7, 2014 9:15 AM

572 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Class CommissionEmployee’s Constructor
Constructors are not inherited, so class CommissionEmployee does not inherit class Ob-
ject’s constructor. However, a superclass’s constructors are still available to subclasses. In
fact, the first task of any subclass constructor is to call its direct superclass’s constructor, either
explicitly or implicitly (if no constructor call is specified), to ensure that the instance vari-
ables inherited from the superclass are initialized properly. In this example, class Commis-
sionEmployee’s constructor calls class Object’s constructor implicitly. The syntax for
calling a superclass constructor explicitly is discussed in Section G.4.3. If the code does not
include an explicit call to the superclass constructor, Java implicitly calls the superclass’s
default or no-argument constructor. The comment in line 16 of Fig. G.4 indicates where
the implicit call to the superclass Object’s default constructor is made (you do not write
the code for this call). Object’s default (empty) constructor does nothing. Even if a class
does not have constructors, the default constructor that the compiler implicitly declares
for the class will call the superclass’s default or no-argument constructor.

After the implicit call to Object’s constructor, lines 17–21 of CommissionEmployee’s
constructor assign values to the class’s instance variables. We do not validate the values of
arguments first, last and ssn before assigning them to the corresponding instance vari-
ables. We could validate the first and last names—perhaps to ensure that they’re of a rea-
sonable length. Similarly, a social security number could be validated using regular
expressions to ensure that it contains nine digits, with or without dashes (e.g., 123-45-
6789 or 123456789).

Class CommissionEmployee’s earnings Method
Method earnings (lines 93–96) calculates a CommissionEmployee’s earnings. Line 95
multiplies the commissionRate by the grossSales and returns the result.

Class CommissionEmployee’s toString Method and the @Override Annotation
Method toString (lines 99–107) is special—it’s one of the methods that every class inher-
its directly or indirectly from class Object (summarized in Section G.5). Method to-
String returns a String representing an object. It’s called implicitly whenever an object
must be converted to a String representation, such as when an object is output by printf
or output by String method format via the %s format specifier. Class Object’s toString
method returns a String that includes the name of the object’s class. It’s primarily a place-
holder that can be overridden by a subclass to specify an appropriate String representation
of the data in a subclass object. Method toString of class CommissionEmployee overrides
(redefines) class Object’s toString method. When invoked, CommissionEmployee’s to-
String method uses String method format to return a String containing information
about the CommissionEmployee. To override a superclass method, a subclass must declare
a method with the same signature (method name, number of parameters, parameter types

105
106
107
108 } // end class CommissionEmployee

Fig. G.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 3 of 3.)

 "gross sales", grossSales,
 "commission rate", commissionRate);
} // end method toString

Z07_DEIT3397_02_SE_APPG.fm Page 572 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 573

and order of parameter types) as the superclass method—Object’s toString method takes
no parameters, so CommissionEmployee declares toString with no parameters.

Line 99 uses the @Override annotation to indicate that method toString should
override a superclass method. Annotations have several purposes. For example, when you
attempt to override a superclass method, common errors include naming the subclass
method incorrectly, or using the wrong number or types of parameters in the parameter
list. Each of these problems creates an unintentional overload of the superclass method. If
you then attempt to call the method on a subclass object, the superclass’s version is
invoked and the subclass version is ignored—potentially leading to subtle logic errors.
When the compiler encounters a method declared with @Override, it compares the
method’s signature with the superclass’s method signatures. If there isn’t an exact match,
the compiler issues an error message, such as “method does not override or implement a
method from a supertype.” This indicates that you’ve accidentally overloaded a superclass
method. You can then fix your method’s signature so that it matches one in the superclass.

In web applications and web services, annotations can also add complex support code
to your classes to simplify the development process and can be used by servers to configure
certain aspects of web applications.

Class CommissionEmployeeTest
Figure G.5 tests class CommissionEmployee. Lines 9–10 instantiate a CommissionEmploy-
ee object and invoke CommissionEmployee’s constructor (lines 13–22 of Fig. G.4) to ini-
tialize it with "Sue" as the first name, "Jones" as the last name, "222-22-2222" as the
social security number, 10000 as the gross sales amount and .06 as the commission rate.
Lines 15–24 use CommissionEmployee’s get methods to retrieve the object’s instance-vari-
able values for output. Lines 26–27 invoke the object’s methods setGrossSales and set-
CommissionRate to change the values of instance variables grossSales and
commissionRate. Lines 29–30 output the String representation of the updated Commis-
sionEmployee. When an object is output using the %s format specifier, the object’s to-
String method is invoked implicitly to obtain the object’s String representation. [Note:
Early in this appendix, we do not use the earnings methods of our classes—they’re used
extensively in the polymorphism part of the appendix.]

Common Programming Error G.1
It’s a syntax error to override a method with a more restricted access modifier—a public
method of the superclass cannot become a protected or private method in the subclass;
a protected method of the superclass cannot become a private method in the subclass.
Doing so would break the is-a relationship in which it’s required that all subclass objects
be able to respond to method calls that are made to public methods declared in the super-
class. If a public method, for example, could be overridden as a protected or private
method, the subclass objects would not be able to respond to the same method calls as su-
perclass objects. Once a method is declared public in a superclass, the method remains
public for all that class’s direct and indirect subclasses.

1 // Fig. G.5: CommissionEmployeeTest.java
2 // CommissionEmployee class test program.
3

Fig. G.5 | CommissionEmployee class test program. (Part 1 of 2.)

Z07_DEIT3397_02_SE_APPG.fm Page 573 Monday, July 7, 2014 9:15 AM

574 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

G.4.2 Creating and Using a BasePlusCommissionEmployee Class
We now discuss the second part of our introduction to inheritance by declaring and testing
(a completely new and independent) class BasePlusCommissionEmployee (Fig. G.6),
which contains a first name, last name, social security number, gross sales amount, com-
mission rate and base salary. Class BasePlusCommissionEmployee’s public services in-
clude a BasePlusCommissionEmployee constructor (lines 15–25) and methods earnings

4 public class CommissionEmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // instantiate CommissionEmployee object
9

10
11
12 // get commission employee data
13 System.out.println(
14 "Employee information obtained by get methods: \n");
15 System.out.printf("%s %s\n", "First name is",
16);
17 System.out.printf("%s %s\n", "Last name is",
18);
19 System.out.printf("%s %s\n", "Social security number is",
20);
21 System.out.printf("%s %.2f\n", "Gross sales is",
22);
23 System.out.printf("%s %.2f\n", "Commission rate is",
24);
25
26
27
28
29
30
31 } // end main
32 } // end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 500.00
commission rate: 0.10

Fig. G.5 | CommissionEmployee class test program. (Part 2 of 2.)

CommissionEmployee employee = new CommissionEmployee(
 "Sue", "Jones", "222-22-2222", 10000, .06);

employee.getFirstName()

employee.getLastName()

employee.getSocialSecurityNumber()

employee.getGrossSales()

employee.getCommissionRate()

employee.setGrossSales(500); // set gross sales
employee.setCommissionRate(.1); // set commission rate

System.out.printf("\n%s:\n\n%s\n",
 "Updated employee information obtained by toString", employee);

Z07_DEIT3397_02_SE_APPG.fm Page 574 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 575

(lines 112–115) and toString (lines 118–127). Lines 28–109 declare public get and set
methods for the class’s private instance variables (declared in lines 7–12) firstName,
lastName, socialSecurityNumber, grossSales, commissionRate and baseSalary. These
variables and methods encapsulate all the necessary features of a base-salaried commission
employee. Note the similarity between this class and class CommissionEmployee

(Fig. G.4)—in this example, we’ll not yet exploit that similarity.

1 // Fig. G.6: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class represents an employee who receives
3 // a base salary in addition to a commission.
4
5 public class BasePlusCommissionEmployee
6 {
7 private String firstName;
8 private String lastName;
9 private String socialSecurityNumber;

10 private double grossSales; // gross weekly sales
11 private double commissionRate; // commission percentage
12
13
14 // six-argument constructor
15 public BasePlusCommissionEmployee(String first, String last,
16 String ssn, double sales, double rate, double salary)
17 {
18 // implicit call to Object constructor occurs here
19 firstName = first;
20 lastName = last;
21 socialSecurityNumber = ssn;
22 setGrossSales(sales); // validate and store gross sales
23 setCommissionRate(rate); // validate and store commission rate
24
25 } // end six-argument BasePlusCommissionEmployee constructor
26
27 // set first name
28 public void setFirstName(String first)
29 {
30 firstName = first; // should validate
31 } // end method setFirstName
32
33 // return first name
34 public String getFirstName()
35 {
36 return firstName;
37 } // end method getFirstName
38
39 // set last name
40 public void setLastName(String last)
41 {
42 lastName = last; // should validate
43 } // end method setLastName

Fig. G.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 1 of 3.)

private double baseSalary; // base salary per week

setBaseSalary(salary); // validate and store base salary

Z07_DEIT3397_02_SE_APPG.fm Page 575 Monday, July 7, 2014 9:15 AM

576 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

44
45 // return last name
46 public String getLastName()
47 {
48 return lastName;
49 } // end method getLastName
50
51 // set social security number
52 public void setSocialSecurityNumber(String ssn)
53 {
54 socialSecurityNumber = ssn; // should validate
55 } // end method setSocialSecurityNumber
56
57 // return social security number
58 public String getSocialSecurityNumber()
59 {
60 return socialSecurityNumber;
61 } // end method getSocialSecurityNumber
62
63 // set gross sales amount
64 public void setGrossSales(double sales)
65 {
66 if (sales >= 0.0)
67 grossSales = sales;
68 else
69 throw new IllegalArgumentException(
70 "Gross sales must be >= 0.0");
71 } // end method setGrossSales
72
73 // return gross sales amount
74 public double getGrossSales()
75 {
76 return grossSales;
77 } // end method getGrossSales
78
79 // set commission rate
80 public void setCommissionRate(double rate)
81 {
82 if (rate > 0.0 && rate < 1.0)
83 commissionRate = rate;
84 else
85 throw new IllegalArgumentException(
86 "Commission rate must be > 0.0 and < 1.0");
87 } // end method setCommissionRate
88
89 // return commission rate
90 public double getCommissionRate()
91 {
92 return commissionRate;
93 } // end method getCommissionRate

Fig. G.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 2 of 3.)

Z07_DEIT3397_02_SE_APPG.fm Page 576 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 577

Class BasePlusCommissionEmployee does not specify “extends Object” in line 5, so
the class implicitly extends Object. Also, like class CommissionEmployee’s constructor
(lines 13–22 of Fig. G.4), class BasePlusCommissionEmployee’s constructor invokes class
Object’s default constructor implicitly, as noted in the comment in line 18.

Class BasePlusCommissionEmployee’s earnings method (lines 112–115) returns the
result of adding the BasePlusCommissionEmployee’s base salary to the product of the
commission rate and the employee’s gross sales.

Class BasePlusCommissionEmployee overrides Object method toString to return a
String containing the BasePlusCommissionEmployee’s information. Once again, we use
format specifier %.2f to format the gross sales, commission rate and base salary with two
digits of precision to the right of the decimal point (line 122).

94
95 // set base salary
96 public void setBaseSalary(double salary)
97 {
98 if (salary >= 0.0)
99 baseSalary = salary;
100 else
101 throw new IllegalArgumentException(
102 "Base salary must be >= 0.0");
103 } // end method setBaseSalary
104
105
106
107
108
109
110
111 // calculate earnings
112 public double earnings()
113 {
114 return
115 } // end method earnings
116
117 // return String representation of BasePlusCommissionEmployee
118 @Override // indicates that this method overrides a superclass method
119 public String toString()
120 {
121 return String.format(
122 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n ",
123 "base-salaried commission employee", firstName, lastName,
124 "social security number", socialSecurityNumber,
125 "gross sales", grossSales, "commission rate", commissionRate,
126);
127 } // end method toString
128 } // end class BasePlusCommissionEmployee

Fig. G.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 3 of 3.)

// return base salary
public double getBaseSalary()
{
 return baseSalary;
} // end method getBaseSalary

baseSalary + (commissionRate * grossSales);

%s: %.2f

"base salary", baseSalary

Z07_DEIT3397_02_SE_APPG.fm Page 577 Monday, July 7, 2014 9:15 AM

578 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Testing Class BasePlusCommissionEmployee
Figure G.7 tests class BasePlusCommissionEmployee. Lines 9–11 create a BasePlusCom-
missionEmployee object and pass "Bob", "Lewis", "333-33-3333", 5000, .04 and 300 to
the constructor as the first name, last name, social security number, gross sales, commis-
sion rate and base salary, respectively. Lines 16–27 use BasePlusCommissionEmployee’s
get methods to retrieve the values of the object’s instance variables for output. Line 29 in-
vokes the object’s setBaseSalary method to change the base salary. Method setBaseSal-
ary (Fig. G.6, lines 96–103) ensures that instance variable baseSalary is not assigned a
negative value. Lines 31–33 of Fig. G.7 invoke method toString explicitly to get the ob-
ject’s String representation.

Notes on Class BasePlusCommissionEmployee
Much of class BasePlusCommissionEmployee’s code (Fig. G.6) is similar, or identical, to
that of class CommissionEmployee (Fig. G.4). For example, private instance variables

1 // Fig. G.7: BasePlusCommissionEmployeeTest.java
2 // BasePlusCommissionEmployee test program.
3
4 public class BasePlusCommissionEmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // instantiate BasePlusCommissionEmployee object
9

10
11
12
13 // get base-salaried commission employee data
14 System.out.println(
15 "Employee information obtained by get methods: \n");
16 System.out.printf("%s %s\n", "First name is",
17);
18 System.out.printf("%s %s\n", "Last name is",
19);
20 System.out.printf("%s %s\n", "Social security number is",
21);
22 System.out.printf("%s %.2f\n", "Gross sales is",
23);
24 System.out.printf("%s %.2f\n", "Commission rate is",
25);
26 System.out.printf("%s %.2f\n", "Base salary is",
27);
28
29
30
31 System.out.printf("\n%s:\n\n%s\n",
32 "Updated employee information obtained by toString",
33);
34 } // end main
35 } // end class BasePlusCommissionEmployeeTest

Fig. G.7 | BasePlusCommissionEmployee test program. (Part 1 of 2.)

BasePlusCommissionEmployee employee =
 new BasePlusCommissionEmployee(
 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

employee.getFirstName()

employee.getLastName()

employee.getSocialSecurityNumber()

employee.getGrossSales()

employee.getCommissionRate()

employee.getBaseSalary()

employee.setBaseSalary(1000); // set base salary

employee.toString()

Z07_DEIT3397_02_SE_APPG.fm Page 578 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 579

firstName and lastName and methods setFirstName, getFirstName, setLastName and
getLastName are identical to those of class CommissionEmployee. The classes also both con-
tain private instance variables socialSecurityNumber, commissionRate and grossSales,
and corresponding get and set methods. In addition, the BasePlusCommissionEmployee con-
structor is almost identical to that of class CommissionEmployee, except that BasePlusCom-
missionEmployee’s constructor also sets the baseSalary. The other additions to class
BasePlusCommissionEmployee are private instance variable baseSalary and methods
setBaseSalary and getBaseSalary. Class BasePlusCommissionEmployee’s toString
method is nearly identical to that of class CommissionEmployee except that it also outputs
instance variable baseSalary with two digits of precision to the right of the decimal point.

We literally copied code from class CommissionEmployee and pasted it into class Base-
PlusCommissionEmployee, then modified class BasePlusCommissionEmployee to include
a base salary and methods that manipulate the base salary. This “copy-and-paste” approach
is often error prone and time consuming. Worse yet, it spreads copies of the same code
throughout a system, creating a code-maintenance nightmare. Is there a way to “absorb”
the instance variables and methods of one class in a way that makes them part of other
classes without duplicating code? Next we answer this question, using a more elegant
approach to building classes that emphasizes the benefits of inheritance.

G.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Now we redeclare class BasePlusCommissionEmployee (Fig. G.8) to extend class Commis-
sionEmployee (Fig. G.4). A BasePlusCommissionEmployee object is a CommissionEm-
ployee, because inheritance passes on class CommissionEmployee’s capabilities. Class
BasePlus-CommissionEmployee also has instance variable baseSalary (Fig. G.8, line 6).

Employee information obtained by get methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Software Engineering Observation G.1
With inheritance, the common instance variables and methods of all the classes in the
hierarchy are declared in a superclass. When changes are made for these common features in
the superclass—subclasses then inherit the changes. Without inheritance, changes would
need to be made to all the source-code files that contain a copy of the code in question.

Fig. G.7 | BasePlusCommissionEmployee test program. (Part 2 of 2.)

Z07_DEIT3397_02_SE_APPG.fm Page 579 Monday, July 7, 2014 9:15 AM

580 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Keyword extends (line 4) indicates inheritance. BasePlusCommissionEmployee inherits
CommissionEmployee’s instance variables and methods, but only the superclass’s public
and protected members are directly accessible in the subclass. The CommissionEmployee
constructor is not inherited. So, the public BasePlusCommissionEmployee services in-
clude its constructor (lines 9–16), public methods inherited from CommissionEmployee,
and methods setBaseSalary (lines 19–26), getBaseSalary (lines 29–32), earnings
(lines 35–40) and toString (lines 43–53). Methods earnings and toString override the
corresponding methods in class CommissionEmployee because their superclass versions do
not properly calculate a BasePlusCommissionEmployee’s earnings or return an appropriate
String representation.

1 // Fig. G.8: BasePlusCommissionEmployee.java
2 // private superclass members cannot be accessed in a subclass.
3
4
5 {
6 private double baseSalary; // base salary per week
7
8 // six-argument constructor
9 public BasePlusCommissionEmployee(String first, String last,

10 String ssn, double sales, double rate, double salary)
11 {
12
13
14
15 setBaseSalary(salary); // validate and store base salary
16 } // end six-argument BasePlusCommissionEmployee constructor
17
18 // set base salary
19 public void setBaseSalary(double salary)
20 {
21 if (salary >= 0.0)
22 baseSalary = salary;
23 else
24 throw new IllegalArgumentException(
25 "Base salary must be >= 0.0");
26 } // end method setBaseSalary
27
28 // return base salary
29 public double getBaseSalary()
30 {
31 return baseSalary;
32 } // end method getBaseSalary
33
34 // calculate earnings
35 @Override // indicates that this method overrides a superclass method
36 public double earnings()
37 {
38
39
40 } // end method earnings

Fig. G.8 | private superclass members cannot be accessed in a subclass. (Part 1 of 2.)

public class BasePlusCommissionEmployee extends CommissionEmployee

// explicit call to superclass CommissionEmployee constructor
super(first, last, ssn, sales, rate);

// not allowed: commissionRate and grossSales private in superclass
return baseSalary + (commissionRate * grossSales);

Z07_DEIT3397_02_SE_APPG.fm Page 580 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 581

A Subclass’s Constructor Must Call Its Superclass’s Constructor
Each subclass constructor must implicitly or explicitly call its superclass constructor to
initialize the instance variables inherited from the superclass. Line 13 in BasePlusCommis-
sionEmployee’s six-argument constructor (lines 9–16) explicitly calls class Commission-
Employee’s five-argument constructor (declared at lines 13–22 of Fig. G.4) to initialize the
superclass portion of a BasePlusCommissionEmployee object (i.e., variables firstName,
lastName, socialSecurityNumber, grossSales and commissionRate). We do this by us-

41
42 // return String representation of BasePlusCommissionEmployee
43 @Override // indicates that this method overrides a superclass method
44 public String toString()
45 {
46
47
48
49
50
51
52
53 } // end method toString
54 } // end class BasePlusCommissionEmployee

BasePlusCommissionEmployee.java:39: commissionRate has private access in
CommissionEmployee
 return baseSalary + (commissionRate * grossSales);
 ^
BasePlusCommissionEmployee.java:39: grossSales has private access in
CommissionEmployee
 return baseSalary + (commissionRate * grossSales);
 ^
BasePlusCommissionEmployee.java:49: firstName has private access in
CommissionEmployee
 "base-salaried commission employee", firstName, lastName,
 ^
BasePlusCommissionEmployee.java:49: lastName has private access in
CommissionEmployee
 "base-salaried commission employee", firstName, lastName,
 ^
BasePlusCommissionEmployee.java:50: socialSecurityNumber has private access
in CommissionEmployee
 "social security number", socialSecurityNumber,
 ^
BasePlusCommissionEmployee.java:51: grossSales has private access in
CommissionEmployee
 "gross sales", grossSales, "commission rate", commissionRate,
 ^
BasePlusCommissionEmployee.java:51: commissionRate has private access in
CommissionEmployee
 "gross sales", grossSales, "commission rate", commissionRate,
 ^
7 errors

Fig. G.8 | private superclass members cannot be accessed in a subclass. (Part 2 of 2.)

// not allowed: attempts to access private superclass members
return String.format(
 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",
 "base-salaried commission employee", firstName, lastName,
 "social security number", socialSecurityNumber,
 "gross sales", grossSales, "commission rate", commissionRate,
 "base salary", baseSalary);

Z07_DEIT3397_02_SE_APPG.fm Page 581 Monday, July 7, 2014 9:15 AM

582 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

ing the superclass constructor call syntax—keyword super, followed by a set of parenthe-
ses containing the superclass constructor arguments. The arguments first, last, ssn,
sales and rate are used to initialize superclass members firstName, lastName, social-
SecurityNumber, grossSales and commissionRate, respectively. If BasePlusCommis-
sionEmployee’s constructor did not invoke the superclass’s constructor explicitly, Java
would attempt to invoke the superclass’s no-argument or default constructor. Class Com-
missionEmployee does not have such a constructor, so the compiler would issue an error.
The explicit superclass constructor call in line 13 of Fig. G.8 must be the first statement
in the subclass constructor’s body. When a superclass contains a no-argument constructor,
you can use super() to call that constructor explicitly, but this is rarely done.

BasePlusCommissionEmployee Method Earnings
The compiler generates errors for line 39 because superclass CommissionEmployee’s in-
stance variables commissionRate and grossSales are private—subclass BasePlusCom-
missionEmployee’s methods are not allowed to access superclass CommissionEmployee’s
private instance variables. We highlighted the erroneous code. The compiler issues addi-
tional errors at lines 49–51 of BasePlusCommissionEmployee’s toString method for the
same reason. The errors in BasePlusCommissionEmployee could have been prevented by
using the get methods inherited from class CommissionEmployee. For example, line 39
could have used getCommissionRate and getGrossSales to access CommissionEmployee’s
private instance variables commissionRate and grossSales, respectively. Lines 49–51
also could have used appropriate get methods to retrieve the values of the superclass’s in-
stance variables.

G.4.4 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Instance Variables
To enable class BasePlusCommissionEmployee to directly access superclass instance vari-
ables firstName, lastName, socialSecurityNumber, grossSales and commissionRate,
we can declare those members as protected in the superclass. As we discussed in
Section G.3, a superclass’s protected members are accessible by all subclasses of that su-
perclass. In the new CommissionEmployee class, we modified only lines 6–10 of Fig. G.4
to declare the instance variables with the protected access modifier as follows:

The rest of the class declaration (which is not shown here) is identical to that of Fig. G.4.
We could have declared CommissionEmployee’s instance variables public to enable

subclass BasePlusCommissionEmployee to access them. However, declaring public
instance variables is poor software engineering because it allows unrestricted access to the
these variables, greatly increasing the chance of errors. With protected instance variables,
the subclass gets access to the instance variables, but classes that are not subclasses and
classes that are not in the same package cannot access these variables directly—recall that
protected class members are also visible to other classes in the same package.

protected String firstName;
protected String lastName;
protected String socialSecurityNumber;
protected double grossSales; // gross weekly sales
protected double commissionRate; // commission percentage

Z07_DEIT3397_02_SE_APPG.fm Page 582 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 583

Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. G.9) extends the new version of class Commis-
sionEmployee with protected instance variables. BasePlusCommissionEmployee objects
inherit CommissionEmployee’s protected instance variables firstName, lastName, so-
cialSecurityNumber, grossSales and commissionRate—all these variables are now pro-
tected members of BasePlusCommissionEmployee. As a result, the compiler does not
generate errors when compiling line 37 of method earnings and lines 46–48 of method
toString. If another class extends this version of class BasePlusCommissionEmployee, the
new subclass also can access the protected members.

1 // Fig. G.9: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee inherits protected instance
3 // variables from CommissionEmployee.
4
5
6 {
7 private double baseSalary; // base salary per week
8
9 // six-argument constructor

10 public BasePlusCommissionEmployee(String first, String last,
11 String ssn, double sales, double rate, double salary)
12 {
13
14 setBaseSalary(salary); // validate and store base salary
15 } // end six-argument BasePlusCommissionEmployee constructor
16
17 // set base salary
18 public void setBaseSalary(double salary)
19 {
20 if (salary >= 0.0)
21 baseSalary = salary;
22 else
23 throw new IllegalArgumentException(
24 "Base salary must be >= 0.0");
25 } // end method setBaseSalary
26
27 // return base salary
28 public double getBaseSalary()
29 {
30 return baseSalary;
31 } // end method getBaseSalary
32
33 // calculate earnings
34 @Override // indicates that this method overrides a superclass method
35 public double earnings()
36 {
37
38 } // end method earnings
39

Fig. G.9 | BasePlusCommissionEmployee inherits protected instance variables from
CommissionEmployee. (Part 1 of 2.)

public class BasePlusCommissionEmployee extends CommissionEmployee

super(first, last, ssn, sales, rate);

return baseSalary + (commissionRate * grossSales);

Z07_DEIT3397_02_SE_APPG.fm Page 583 Monday, July 7, 2014 9:15 AM

584 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

When you create a BasePlusCommissionEmployee object, it contains all instance vari-
ables declared in the class hierarchy to that point—i.e., those from classes Object, Commis-
sionEmployee and BasePlusCommissionEmployee. Class BasePlusCommissionEmployee
does not inherit class CommissionEmployee’s constructor. However, class BasePlus-
CommissionEmployee’s six-argument constructor (lines 10–15) calls class Commission-
Employee’s five-argument constructor explicitly to initialize the instance variables that
BasePlusCommissionEmployee inherited from class CommissionEmployee. Similarly, class
CommissionEmployee’s constructor implicitly calls class Object’s constructor. Base-
PlusCommissionEmployee’s constructor must do this explicitly because CommissionEm-
ployee does not provide a no-argument constructor that could be invoked implicitly.

Testing Class BasePlusCommissionEmployee
The BasePlusCommissionEmployeeTest class for this example is identical to that of
Fig. G.7 and produces the same output, so we do not show it here. Although the version
of class BasePlusCommissionEmployee in Fig. G.6 does not use inheritance and the ver-
sion in Fig. G.9 does, both classes provide the same functionality. The source code in
Fig. G.9 (51 lines) is considerably shorter than that in Fig. G.6 (128 lines), because most
of BasePlusCommissionEmployee’s functionality is now inherited from Commission-
Employee—there’s now only one copy of the CommissionEmployee functionality. This
makes the code easier to maintain, modify and debug, because the code related to a com-
mission employee exists only in class CommissionEmployee.

Notes on Using protected Instance Variables
In this example, we declared superclass instance variables as protected so that subclasses
could access them. Inheriting protected instance variables slightly increases performance,
because we can directly access the variables in the subclass without incurring the overhead
of a set or get method call. In most cases, however, it’s better to use private instance vari-
ables to encourage proper software engineering, and leave code optimization issues to the
compiler. Your code will be easier to maintain, modify and debug.

Using protected instance variables creates several potential problems. First, the sub-
class object can set an inherited variable’s value directly without using a set method. There-
fore, a subclass object can assign an invalid value to the variable, possibly leaving the object
in an inconsistent state. For example, if we were to declare CommissionEmployee’s instance

40 // return String representation of BasePlusCommissionEmployee
41 @Override // indicates that this method overrides a superclass method
42 public String toString()
43 {
44
45
46
47
48
49
50 } // end method toString
51 } // end class BasePlusCommissionEmployee

Fig. G.9 | BasePlusCommissionEmployee inherits protected instance variables from
CommissionEmployee. (Part 2 of 2.)

return String.format(
 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",
 "base-salaried commission employee", firstName, lastName,
 "social security number", socialSecurityNumber,
 "gross sales", grossSales, "commission rate", commissionRate,
 "base salary", baseSalary);

Z07_DEIT3397_02_SE_APPG.fm Page 584 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 585

variable grossSales as protected, a subclass object (e.g., BasePlusCommissionEmployee)
could then assign a negative value to grossSales. Another problem with using protected
instance variables is that subclass methods are more likely to be written so that they depend
on the superclass’s data implementation. In practice, subclasses should depend only on the
superclass services (i.e., non-private methods) and not on the superclass data implemen-
tation. With protected instance variables in the superclass, we may need to modify all the
subclasses of the superclass if the superclass implementation changes. For example, if for
some reason we were to change the names of instance variables firstName and lastName
to first and last, then we would have to do so for all occurrences in which a subclass
directly references superclass instance variables firstName and lastName. In such a case,
the software is said to be fragile or brittle, because a small change in the superclass can
“break” subclass implementation. You should be able to change the superclass implemen-
tation while still providing the same services to the subclasses. Of course, if the superclass
services change, we must reimplement our subclasses. A third problem is that a class’s pro-
tected members are visible to all classes in the same package as the class containing the
protected members—this is not always desirable.

G.4.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Instance Variables
Let’s reexamine our hierarchy once more, this time using good software engineering prac-
tices. Class CommissionEmployee (Fig. G.10) declares instance variables firstName, last-
Name, socialSecurityNumber, grossSales and commissionRate as private (lines 6–10)
and provides public methods setFirstName, getFirstName, setLastName, getLastName,
setSocialSecurityNumber, getSocialSecurityNumber, setGrossSales, getGross-

Sales, setCommissionRate, getCommissionRate, earnings and toString for manipulat-
ing these values. Methods earnings (lines 93–96) and toString (lines 99–107) use the
class’s get methods to obtain the values of its instance variables. If we decide to change the
instance-variable names, the earnings and toString declarations will not require modifi-
cation—only the bodies of the get and set methods that directly manipulate the instance
variables will need to change. These changes occur solely within the superclass—no chang-
es to the subclass are needed. Localizing the effects of changes like this is a good software
engineering practice.

Software Engineering Observation G.2
Use the protected access modifier when a superclass should provide a method only to its
subclasses and other classes in the same package, but not to other clients.

Software Engineering Observation G.3
Declaring superclass instance variables private (as opposed to protected) enables the
superclass implementation of these instance variables to change without affecting subclass
implementations.

Error-Prevention Tip G.1
When possible, do not include protected instance variables in a superclass. Instead, in-
clude non-private methods that access private instance variables. This will help ensure
that objects of the class maintain consistent states.

Z07_DEIT3397_02_SE_APPG.fm Page 585 Monday, July 7, 2014 9:15 AM

586 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

1 // Fig. G.10: CommissionEmployee.java
2 // CommissionEmployee class uses methods to manipulate its
3 // private instance variables.
4 public class CommissionEmployee
5 {
6
7
8
9

10
11
12 // five-argument constructor
13 public CommissionEmployee(String first, String last, String ssn,
14 double sales, double rate)
15 {
16 // implicit call to Object constructor occurs here
17 firstName = first;
18 lastName = last;
19 socialSecurityNumber = ssn;
20 setGrossSales(sales); // validate and store gross sales
21 setCommissionRate(rate); // validate and store commission rate
22 } // end five-argument CommissionEmployee constructor
23
24 // set first name
25 public void setFirstName(String first)
26 {
27 firstName = first; // should validate
28 } // end method setFirstName
29
30 // return first name
31 public String getFirstName()
32 {
33 return firstName;
34 } // end method getFirstName
35
36 // set last name
37 public void setLastName(String last)
38 {
39 la5stName = last; // should validate
40 } // end method setLastName
41
42 // return last name
43 public String getLastName()
44 {
45 return lastName;
46 } // end method getLastName
47
48 // set social security number
49 public void setSocialSecurityNumber(String ssn)
50 {
51 socialSecurityNumber = ssn; // should validate
52 } // end method setSocialSecurityNumber

Fig. G.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 1 of 3.)

private String firstName;
private String lastName;
private String socialSecurityNumber;
private double grossSales; // gross weekly sales
private double commissionRate; // commission percentage

Z07_DEIT3397_02_SE_APPG.fm Page 586 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 587

53
54 // return social security number
55 public String getSocialSecurityNumber()
56 {
57 return socialSecurityNumber;
58 } // end method getSocialSecurityNumber
59
60 // set gross sales amount
61 public void setGrossSales(double sales)
62 {
63 if (sales >= 0.0)
64 grossSales = sales;
65 else
66 throw new IllegalArgumentException(
67 "Gross sales must be >= 0.0");
68 } // end method setGrossSales
69
70 // return gross sales amount
71 public double getGrossSales()
72 {
73 return grossSales;
74 } // end method getGrossSales
75
76 // set commission rate
77 public void setCommissionRate(double rate)
78 {
79 if (rate > 0.0 && rate < 1.0)
80 commissionRate = rate;
81 else
82 throw new IllegalArgumentException(
83 "Commission rate must be > 0.0 and < 1.0");
84 } // end method setCommissionRate
85
86 // return commission rate
87 public double getCommissionRate()
88 {
89 return commissionRate;
90 } // end method getCommissionRate
91
92 // calculate earnings
93 public double earnings()
94 {
95 return * ;
96 } // end method earnings
97
98 // return String representation of CommissionEmployee object
99 @Override // indicates that this method overrides a superclass method
100 public String toString()
101 {
102 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",
103 "commission employee", , ,
104 "social security number", ,

Fig. G.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 2 of 3.)

getCommissionRate() getGrossSales()

getFirstName() getLastName()
getSocialSecurityNumber()

Z07_DEIT3397_02_SE_APPG.fm Page 587 Monday, July 7, 2014 9:15 AM

588 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Subclass BasePlusCommissionEmployee (Fig. G.11) inherits CommissionEmployee’s
non-private methods and can access the private superclass members via those methods.
Class BasePlusCommissionEmployee has several changes that distinguish it from Fig. G.9.
Methods earnings (lines 35–39) and toString (lines 42–47) each invoke method get-
BaseSalary to obtain the base salary value, rather than accessing baseSalary directly. If
we decide to rename instance variable baseSalary, only the bodies of method setBase-
Salary and getBaseSalary will need to change.

105 "gross sales", ,
106 "commission rate",);
107 } // end method toString
108 } // end class CommissionEmployee

1 // Fig. G.11: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class inherits from CommissionEmployee
3 // and accesses the superclass’s private data via inherited
4 // public methods.
5
6 public class BasePlusCommissionEmployee extends CommissionEmployee
7 {
8 private double baseSalary; // base salary per week
9

10 // six-argument constructor
11 public BasePlusCommissionEmployee(String first, String last,
12 String ssn, double sales, double rate, double salary)
13 {
14 super(first, last, ssn, sales, rate);
15 setBaseSalary(salary); // validate and store base salary
16 } // end six-argument BasePlusCommissionEmployee constructor
17
18 // set base salary
19 public void setBaseSalary(double salary)
20 {
21 if (salary >= 0.0)
22 baseSalary = salary;
23 else
24 throw new IllegalArgumentException(
25 "Base salary must be >= 0.0");
26 } // end method setBaseSalary
27
28 // return base salary
29 public double getBaseSalary()
30 {
31 return baseSalary;
32 } // end method getBaseSalary
33

Fig. G.11 | BasePlusCommissionEmployee class inherits from CommissionEmployee and
accesses the superclass’s private data via inherited public methods. (Part 1 of 2.)

Fig. G.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 3 of 3.)

getGrossSales()
getCommissionRate()

Z07_DEIT3397_02_SE_APPG.fm Page 588 Monday, July 7, 2014 9:15 AM

G.4 Relationship between Superclasses and Subclasses 589

Class BasePlusCommissionEmployee’s earnings Method
Method earnings (lines 35–39) overrides class CommissionEmployee’s earnings method
(Fig. G.10, lines 93–96) to calculate a base-salaried commission employee’s earnings. The
new version obtains the portion of the earnings based on commission alone by calling Com-
missionEmployee’s earnings method with super.earnings() (line 38), then adds the
base salary to this value to calculate the total earnings. Note the syntax used to invoke an
overridden superclass method from a subclass—place the keyword super and a dot (.) sep-
arator before the superclass method name. This method invocation is a good software en-
gineering practice—if a method performs all or some of the actions needed by another
method, call that method rather than duplicate its code. By having BasePlusCommission-
Employee’s earnings method invoke CommissionEmployee’s earnings method to calcu-
late part of a BasePlusCommissionEmployee object’s earnings, we avoid duplicating the
code and reduce code-maintenance problems. If we did not use “super.” then BasePlusCom-
missionEmployee’s earnings method would call itself rather than the superclass version.
This would result in a phenomenon called infinite recursion, which would eventually cause
the method-call stack to overflow—a fatal runtime error.

Class BasePlusCommissionEmployee’s toString Method
Similarly, BasePlusCommissionEmployee’s toString method (Fig. G.11, lines 42–47)
overrides class CommissionEmployee’s toString method (Fig. G.10, lines 99–107) to re-
turn a String representation that’s appropriate for a base-salaried commission employee.
The new version creates part of a BasePlusCommissionEmployee object’s String represen-
tation (i.e., the String "commission employee" and the values of class CommissionEm-
ployee’s private instance variables) by calling CommissionEmployee’s toString method
with the expression super.toString() (Fig. G.11, line 46). BasePlusCommissionEm-
ployee’s toString method then outputs the remainder of a BasePlusCommissionEmploy-
ee object’s String representation (i.e., the value of class BasePlusCommissionEmployee’s
base salary).

34 // calculate earnings
35 @Override // indicates that this method overrides a superclass method
36 public double earnings()
37 {
38
39 } // end method earnings
40
41 // return String representation of BasePlusCommissionEmployee
42 @Override // indicates that this method overrides a superclass method
43 public String toString()
44 {
45
46
47 } // end method toString
48 } // end class BasePlusCommissionEmployee

Fig. G.11 | BasePlusCommissionEmployee class inherits from CommissionEmployee and
accesses the superclass’s private data via inherited public methods. (Part 2 of 2.)

return getBaseSalary() + super.earnings();

return String.format("%s %s\n%s: %.2f", "base-salaried",
 super.toString(), "base salary", getBaseSalary());

Z07_DEIT3397_02_SE_APPG.fm Page 589 Monday, July 7, 2014 9:15 AM

590 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Testing Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployeeTest performs the same manipulations on a Base-
PlusCommissionEmployee object as in Fig. G.7 and produces the same output, so we do
not show it here. Although each BasePlusCommissionEmployee class you’ve seen behaves
identically, the version in Fig. G.11 is the best engineered. By using inheritance and by
calling methods that hide the data and ensure consistency, we’ve efficiently and effectively
constructed a well-engineered class.

G.5 Class Object
As we discussed earlier in this appendix, all classes in Java inherit directly or indirectly from
the Object class (package java.lang), so its 11 methods (some are overloaded) are inher-
ited by all other classes. Figure G.12 summarizes Object’s methods. We discuss several
Object methods throughout this book (as indicated in Fig. G.12).

Common Programming Error G.2
When a superclass method is overridden in a subclass, the subclass version often calls the
superclass version to do a portion of the work. Failure to prefix the superclass method name
with the keyword super and a dot (.) separator when calling the superclass’s method
causes the subclass method to call itself, potentially creating an error called infinite recur-
sion. Recursion, used correctly, is a powerful capability.

Method Description

clone This protected method, which takes no arguments and returns an Object
reference, makes a copy of the object on which it’s called. The default imple-
mentation performs a so-called shallow copy—instance-variable values in
one object are copied into another object of the same type. For reference
types, only the references are copied. A typical overridden clone method’s
implementation would perform a deep copy that creates a new object for
each reference-type instance variable. Implementing clone correctly is diffi-
cult. For this reason, its use is discouraged. Many industry experts suggest
that object serialization should be used instead. We introduce object serial-
ization in Appendix J.

equals This method compares two objects for equality and returns true if they’re
equal and false otherwise. The method takes any Object as an argument.
When objects of a particular class must be compared for equality, the class
should override method equals to compare the contents of the two objects.
The default equals implementation uses operator == to determine whether
two references refer to the same object in memory.

finalize This protected method (introduced in Section F.9) is called by the garbage
collector to perform termination housekeeping on an object just before the
garbage collector reclaims the object’s memory. Recall that it’s unclear
whether, or when, method finalize will be called. For this reason, most
programmers should avoid method finalize.

Fig. G.12 | Object methods. (Part 1 of 2.)

Z07_DEIT3397_02_SE_APPG.fm Page 590 Monday, July 7, 2014 9:15 AM

G.6 Introduction to Polymorphism 591

Recall from Appendix E that arrays are objects. As a result, like all other objects, arrays
inherit the members of class Object. Every array has an overridden clone method that
copies the array. However, if the array stores references to objects, the objects are not
copied—a shallow copy is performed.

G.6 Introduction to Polymorphism
We continue our study of object-oriented programming by explaining and demonstrating
polymorphism with inheritance hierarchies. Polymorphism enables you to “program in
the general” rather than “program in the specific.” In particular, polymorphism enables
you to write programs that process objects that share the same superclass (either directly
or indirectly) as if they’re all objects of the superclass; this can simplify programming.

Consider the following example of polymorphism. Suppose we create a program that
simulates the movement of several types of animals for a biological study. Classes Fish,
Frog and Bird represent the types of animals under investigation. Imagine that each class
extends superclass Animal, which contains a method move and maintains an animal’s cur-
rent location as x-y coordinates. Each subclass implements method move. Our program
maintains an Animal array containing references to objects of the various Animal sub-
classes. To simulate the animals’ movements, the program sends each object the same mes-
sage once per second—namely, move. Each specific type of Animal responds to a move
message in its own way—a Fish might swim three feet, a Frog might jump five feet and a
Bird might fly ten feet. Each object knows how to modify its x-y coordinates appropriately
for its specific type of movement. Relying on each object to know how to “do the right
thing” (i.e., do what is appropriate for that type of object) in response to the same method
call is the key concept of polymorphism. The same message (in this case, move) sent to a
variety of objects has “many forms” of results—hence the term polymorphism.

getClass Every object in Java knows its own type at execution time. Method get-
Class returns an object of class Class (package java.lang) that contains
information about the object’s type, such as its class name (returned by
Class method getName).

hashCode Hashcodes are int values that are useful for high-speed storage and retrieval
of information stored in a data structure that’s known as a hashtable (dis-
cussed in Section J.9). This method is also called as part of class Object’s
default toString method implementation.

wait, notify,
notifyAll

Methods notify, notifyAll and the three overloaded versions of wait are
related to multithreading, which is discussed in Appendix J.

toString This method (introduced in Section G.4.1) returns a String representation
of an object. The default implementation of this method returns the pack-
age name and class name of the object’s class followed by a hexadecimal rep-
resentation of the value returned by the object’s hashCode method.

Method Description

Fig. G.12 | Object methods. (Part 2 of 2.)

Z07_DEIT3397_02_SE_APPG.fm Page 591 Monday, July 7, 2014 9:15 AM

592 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Programming in the Specific
Occasionally, when performing polymorphic processing, we need to program “in the spe-
cific.” We’ll demonstrate that a program can determine the type of an object at execution
time and act on that object accordingly.

Interfaces
The appendix continues with an introduction to Java interfaces. An interface describes a
set of methods that can be called on an object, but does not provide concrete implemen-
tations for all the methods. You can declare classes that implement (i.e., provide concrete
implementations for the methods of) one or more interfaces. Each interface method must
be declared in all the classes that explicitly implement the interface. Once a class imple-
ments an interface, all objects of that class have an is-a relationship with the interface type,
and all objects of the class are guaranteed to provide the functionality described by the in-
terface. This is true of all subclasses of that class as well.

Interfaces are particularly useful for assigning common functionality to possibly unre-
lated classes. This allows objects of unrelated classes to be processed polymorphically—
objects of classes that implement the same interface can respond to all of the interface
method calls. To demonstrate creating and using interfaces, we modify our payroll appli-
cation to create a general accounts payable application that can calculate payments due for
company employees and invoice amounts to be billed for purchased goods. As you’ll see,
interfaces enable polymorphic capabilities similar to those possible with inheritance.

G.7 Polymorphism: An Example

Space Objects in a Video Game
Suppose we design a video game that manipulates objects of classes Martian, Venusian,
Plutonian, SpaceShip and LaserBeam. Imagine that each class inherits from the superclass
SpaceObject, which contains method draw. Each subclass implements this method. A
screen manager maintains a collection (e.g., a SpaceObject array) of references to objects
of the various classes. To refresh the screen, the screen manager periodically sends each ob-
ject the same message—namely, draw. However, each object responds its own way, based
on its class. For example, a Martian object might draw itself in red with green eyes and the
appropriate number of antennae. A SpaceShip object might draw itself as a bright silver
flying saucer. A LaserBeam object might draw itself as a bright red beam across the screen.
Again, the same message (in this case, draw) sent to a variety of objects has “many forms”
of results.

A screen manager might use polymorphism to facilitate adding new classes to a system
with minimal modifications to the system’s code. Suppose that we want to add Mercurian
objects to our video game. To do so, we’d build a class Mercurian that extends SpaceOb-
ject and provides its own draw method implementation. When Mercurian objects appear
in the SpaceObject collection, the screen manager code invokes method draw, exactly as it
does for every other object in the collection, regardless of its type. So the new Mercurian objects
simply “plug right in” without any modification of the screen manager code by the pro-
grammer. Thus, without modifying the system (other than to build new classes and
modify the code that creates new objects), you can use polymorphism to conveniently
include additional types that were not envisioned when the system was created.

Z07_DEIT3397_02_SE_APPG.fm Page 592 Monday, July 7, 2014 9:15 AM

G.8 Demonstrating Polymorphic Behavior 593

G.8 Demonstrating Polymorphic Behavior
Section G.4 created a class hierarchy, in which class BasePlusCommissionEmployee inher-
ited from CommissionEmployee. The examples in that section manipulated Commission-
Employee and BasePlusCommissionEmployee objects by using references to them to
invoke their methods—we aimed superclass variables at superclass objects and subclass
variables at subclass objects. These assignments are natural and straightforward—super-
class variables are intended to refer to superclass objects, and subclass variables are intended
to refer to subclass objects. However, as you’ll soon see, other assignments are possible.

In the next example, we aim a superclass reference at a subclass object. We then show
how invoking a method on a subclass object via a superclass reference invokes the subclass
functionality—the type of the referenced object, not the type of the variable, determines
which method is called. This example demonstrates that an object of a subclass can be treated
as an object of its superclass, enabling various interesting manipulations. A program can
create an array of superclass variables that refer to objects of many subclass types. This is
allowed because each subclass object is an object of its superclass. For instance, we can
assign the reference of a BasePlusCommissionEmployee object to a superclass Commission-
Employee variable, because a BasePlusCommissionEmployee is a CommissionEmployee—
we can treat a BasePlusCommissionEmployee as a CommissionEmployee.

As you’ll learn later in this appendix, you cannot treat a superclass object as a subclass
object, because a superclass object is not an object of any of its subclasses. For example, we
cannot assign the reference of a CommissionEmployee object to a subclass BasePlusCom-
missionEmployee variable, because a CommissionEmployee is not a BasePlusCommission-
Employee—a CommissionEmployee does not have a baseSalary instance variable and does
not have methods setBaseSalary and getBaseSalary. The is-a relationship applies only
up the hierarchy from a subclass to its direct and indirect superclasses, and not vice versa
(i.e., not down the hierarchy from a superclass to its subclasses).

The Java compiler does allow the assignment of a superclass reference to a subclass
variable if we explicitly cast the superclass reference to the subclass type—a technique we
discuss in Section G.10. Why would we ever want to perform such an assignment? A super-
class reference can be used to invoke only the methods declared in the super-
class—attempting to invoke subclass-only methods through a superclass reference results in
compilation errors. If a program needs to perform a subclass-specific operation on a subclass

Software Engineering Observation G.4
Polymorphism enables you to deal in generalities and let the execution-time environment
handle the specifics. You can command objects to behave in manners appropriate to those
objects, without knowing their types (as long as the objects belong to the same inheritance
hierarchy).

Software Engineering Observation G.5
Polymorphism promotes extensibility: Software that invokes polymorphic behavior is
independent of the object types to which messages are sent. New object types that can
respond to existing method calls can be incorporated into a system without modifying the
base system. Only client code that instantiates new objects must be modified to
accommodate new types.

Z07_DEIT3397_02_SE_APPG.fm Page 593 Monday, July 7, 2014 9:15 AM

594 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

object referenced by a superclass variable, the program must first cast the superclass refer-
ence to a subclass reference through a technique known as downcasting. This enables the
program to invoke subclass methods that are not in the superclass. We show a downcasting
example in Section G.10.

The example in Fig. G.13 demonstrates three ways to use superclass and subclass vari-
ables to store references to superclass and subclass objects. The first two are straightfor-
ward—as in Section G.4, we assign a superclass reference to a superclass variable, and a
subclass reference to a subclass variable. Then we demonstrate the relationship between
subclasses and superclasses (i.e., the is-a relationship) by assigning a subclass reference to a
superclass variable. This program uses classes CommissionEmployee and BasePlusCommis-
sionEmployee from Fig. G.10 and Fig. G.11, respectively.

1 // Fig. G.13: PolymorphismTest.java
2 // Assigning superclass and subclass references to superclass and
3 // subclass variables.
4
5 public class PolymorphismTest
6 {
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15
16
17
18 // invoke toString on superclass object using superclass variable
19 System.out.printf("%s %s:\n\n%s\n\n",
20 "Call CommissionEmployee's toString with superclass reference ",
21 "to superclass object",);
22
23 // invoke toString on subclass object using subclass variable
24 System.out.printf("%s %s:\n\n%s\n\n",
25 "Call BasePlusCommissionEmployee's toString with subclass",
26 "reference to subclass object",
27);
28
29 // invoke toString on subclass object using superclass variable
30
31
32 System.out.printf("%s %s:\n\n%s\n",
33 "Call BasePlusCommissionEmployee's toString with superclass",
34 "reference to subclass object",);
35 } // end main
36 } // end class PolymorphismTest

Fig. G.13 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 1 of 2.)

// assign superclass reference to superclass variable
CommissionEmployee commissionEmployee = new CommissionEmployee(
 "Sue", "Jones", "222-22-2222", 10000, .06);

// assign subclass reference to subclass variable
BasePlusCommissionEmployee basePlusCommissionEmployee =
 new BasePlusCommissionEmployee(
 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

commissionEmployee.toString()

basePlusCommissionEmployee.toString()

CommissionEmployee commissionEmployee2 =
 basePlusCommissionEmployee;

commissionEmployee2.toString()

Z07_DEIT3397_02_SE_APPG.fm Page 594 Monday, July 7, 2014 9:15 AM

G.8 Demonstrating Polymorphic Behavior 595

In Fig. G.13, lines 10–11 create a CommissionEmployee object and assign its reference
to a CommissionEmployee variable. Lines 14–16 create a BasePlusCommissionEmployee
object and assign its reference to a BasePlusCommissionEmployee variable. These assign-
ments are natural—for example, a CommissionEmployee variable’s primary purpose is to
hold a reference to a CommissionEmployee object. Lines 19–21 use commissionEmployee
to invoke toString explicitly. Because commissionEmployee refers to a CommissionEm-
ployee object, superclass CommissionEmployee’s version of toString is called. Similarly,
lines 24–27 use basePlusCommissionEmployee to invoke toString explicitly on the
BasePlusCommissionEmployee object. This invokes subclass BasePlusCommissionEm-
ployee’s version of toString.

Lines 30–31 then assign the reference of subclass object basePlusCommissionEm-
ployee to a superclass CommissionEmployee variable, which lines 32–34 use to invoke
method toString. When a superclass variable contains a reference to a subclass object, and
that reference is used to call a method, the subclass version of the method is called. Hence,
commissionEmployee2.toString() in line 34 actually calls class BasePlusCommissionEm-
ployee’s toString method. The Java compiler allows this “crossover” because an object
of a subclass is an object of its superclass (but not vice versa). When the compiler encoun-
ters a method call made through a variable, the compiler determines if the method can be
called by checking the variable’s class type. If that class contains the proper method decla-
ration (or inherits one), the call is compiled. At execution time, the type of the object to
which the variable refers determines the actual method to use. This process, called dynamic
binding, is discussed in detail in Section G.10.

Call CommissionEmployee's toString with superclass reference to superclass
object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Call BasePlusCommissionEmployee's toString with subclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Call BasePlusCommissionEmployee's toString with superclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. G.13 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 2 of 2.)

Z07_DEIT3397_02_SE_APPG.fm Page 595 Monday, July 7, 2014 9:15 AM

596 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

G.9 Abstract Classes and Methods
When we think of a class, we assume that programs will create objects of that type. Some-
times it’s useful to declare classes—called abstract classes—for which you never intend to
create objects. Because they’re used only as superclasses in inheritance hierarchies, we refer
to them as abstract superclasses. These classes cannot be used to instantiate objects, be-
cause, as we’ll soon see, abstract classes are incomplete. Subclasses must declare the “missing
pieces” to become “concrete” classes, from which you can instantiate objects. Otherwise,
these subclasses, too, will be abstract. We demonstrate abstract classes in Section G.10.

Purpose of Abstract Classes
An abstract class’s purpose is to provide an appropriate superclass from which other classes
can inherit and thus share a common design. In the Shape hierarchy of Fig. G.3, for exam-
ple, subclasses inherit the notion of what it means to be a Shape—perhaps common attri-
butes such as location, color and borderThickness, and behaviors such as draw, move,
resize and changeColor. Classes that can be used to instantiate objects are called concrete
classes. Such classes provide implementations of every method they declare (some of the im-
plementations can be inherited). For example, we could derive concrete classes Circle,
Square and Triangle from abstract superclass TwoDimensionalShape. Similarly, we could
derive concrete classes Sphere, Cube and Tetrahedron from abstract superclass Three-
DimensionalShape. Abstract superclasses are too general to create real objects—they specify
only what is common among subclasses. We need to be more specific before we can create
objects. For example, if you send the draw message to abstract class TwoDimensionalShape,
the class knows that two-dimensional shapes should be drawable, but it does not know what
specific shape to draw, so it cannot implement a real draw method. Concrete classes provide
the specifics that make it reasonable to instantiate objects.

Not all hierarchies contain abstract classes. However, you’ll often write client code
that uses only abstract superclass types to reduce the client code’s dependencies on a range
of subclass types. For example, you can write a method with a parameter of an abstract
superclass type. When called, such a method can receive an object of any concrete class that
directly or indirectly extends the superclass specified as the parameter’s type.

Abstract classes sometimes constitute several levels of a hierarchy. For example, the
Shape hierarchy of Fig. G.3 begins with abstract class Shape. On the next level of the hier-
archy are abstract classes TwoDimensionalShape and ThreeDimensionalShape. The next
level of the hierarchy declares concrete classes for TwoDimensionalShapes (Circle, Square
and Triangle) and for ThreeDimensionalShapes (Sphere, Cube and Tetrahedron).

Declaring an Abstract Class and Abstract Methods
You make a class abstract by declaring it with keyword abstract. An abstract class nor-
mally contains one or more abstract methods. An abstract method is one with keyword
abstract in its declaration, as in

Abstract methods do not provide implementations. A class that contains any abstract
methods must be explicitly declared abstract even if that class contains some concrete
(nonabstract) methods. Each concrete subclass of an abstract superclass also must provide
concrete implementations of each of the superclass’s abstract methods. Constructors and

public abstract void draw(); // abstract method

Z07_DEIT3397_02_SE_APPG.fm Page 596 Monday, July 7, 2014 9:15 AM

G.10 Case Study: Payroll System Using Polymorphism 597

static methods cannot be declared abstract. Constructors are not inherited, so an
abstract constructor could never be implemented. Though non-private static
methods are inherited, they cannot be overridden. Since abstract methods are meant to
be overridden so that they can process objects based on their types, it would not make
sense to declare a static method as abstract.

Using Abstract Classes to Declare Variables
Although we cannot instantiate objects of abstract superclasses, you’ll soon see that we can
use abstract superclasses to declare variables that can hold references to objects of any con-
crete class derived from those abstract superclasses. Programs typically use such variables
to manipulate subclass objects polymorphically. You also can use abstract superclass names
to invoke static methods declared in those abstract superclasses.

Consider another application of polymorphism. A drawing program needs to display
many shapes, including types of new shapes that you’ll add to the system after writing the
drawing program. The drawing program might need to display shapes, such as Circles,
Triangles, Rectangles or others, that derive from abstract class Shape. The drawing pro-
gram uses Shape variables to manage the objects that are displayed. To draw any object in
this inheritance hierarchy, the drawing program uses a superclass Shape variable con-
taining a reference to the subclass object to invoke the object’s draw method. This method
is declared abstract in superclass Shape, so each concrete subclass must implement
method draw in a manner specific to that shape—each object in the Shape inheritance hier-
archy knows how to draw itself. The drawing program does not have to worry about the
type of each object or whether the program has ever encountered objects of that type.

G.10 Case Study: Payroll System Using Polymorphism
This section reexamines the CommissionEmployee-BasePlusCommissionEmployee hierar-
chy that we explored throughout Section G.4. Now we use an abstract method and poly-
morphism to perform payroll calculations based on an enhanced employee inheritance
hierarchy that meets the following requirements:

A company pays its employees on a weekly basis. The employees are of four types: Salaried
employees are paid a fixed weekly salary regardless of the number of hours worked, hourly
employees are paid by the hour and receive overtime pay (i.e., 1.5 times their hourly sal-
ary rate) for all hours worked in excess of 40 hours, commission employees are paid a per-
centage of their sales and base-salaried commission employees receive a base salary plus a
percentage of their sales. For the current pay period, the company has decided to reward
salaried-commission employees by adding 10% to their base salaries. The company
wants to write an application that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The
classes that extend Employee are SalariedEmployee, CommissionEmployee and HourlyEm-

Software Engineering Observation G.6
An abstract class declares common attributes and behaviors (both abstract and concrete)
of the various classes in a class hierarchy. An abstract class typically contains one or more
abstract methods that subclasses must override if they are to be concrete. The instance
variables and concrete methods of an abstract class are subject to the normal rules of
inheritance.

Z07_DEIT3397_02_SE_APPG.fm Page 597 Monday, July 7, 2014 9:15 AM

598 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

ployee. Class BasePlusCommissionEmployee—which extends CommissionEm-

ployee—represents the last employee type. The UML class diagram in Fig. G.14 shows the
inheritance hierarchy for our polymorphic employee-payroll application. Abstract class name
Employee is italicized—a convention of the UML.

Abstract superclass Employee declares the “interface” to the hierarchy—that is, the set
of methods that a program can invoke on all Employee objects. We use the term “interface”
here in a general sense to refer to the various ways programs can communicate with objects
of any Employee subclass. Be careful not to confuse the general notion of an “interface”
with the formal notion of a Java interface, the subject of Section G.12. Each employee,
regardless of the way his or her earnings are calculated, has a first name, a last name and a
social security number, so private instance variables firstName, lastName and social-
SecurityNumber appear in abstract superclass Employee.

The following sections implement the Employee class hierarchy of Fig. G.14. The first
section implements abstract superclass Employee. The next four sections each implement
one of the concrete classes. The last section implements a test program that builds objects
of all these classes and processes those objects polymorphically.

G.10.1 Abstract Superclass Employee
Class Employee (Fig. G.16) provides methods earnings and toString, in addition to the
get and set methods that manipulate Employee’s instance variables. An earnings method
certainly applies generically to all employees. But each earnings calculation depends on the
employee’s class. So we declare earnings as abstract in superclass Employee because a de-
fault implementation does not make sense for that method—there isn’t enough informa-
tion to determine what amount earnings should return. Each subclass overrides earnings
with an appropriate implementation. To calculate an employee’s earnings, the program as-
signs to a superclass Employee variable a reference to the employee’s object, then invokes
the earnings method on that variable. We maintain an array of Employee variables, each
holding a reference to an Employee object. (Of course, there cannot be Employee objects,
because Employee is an abstract class. Because of inheritance, however, all objects of all sub-
classes of Employee may nevertheless be thought of as Employee objects.) The program will
iterate through the array and call method earnings for each Employee object. Java processes
these method calls polymorphically. Declaring earnings as an abstract method in Em-

Fig. G.14 | Employee hierarchy UML class diagram.

Employee

CommissionEmployee HourlyEmployeeSalariedEmployee

BasePlusCommissionEmployee

Z07_DEIT3397_02_SE_APPG.fm Page 598 Monday, July 7, 2014 9:15 AM

G.10 Case Study: Payroll System Using Polymorphism 599

ployee enables the calls to earnings through Employee variables to compile and forces
every direct concrete subclass of Employee to override earnings.

Method toString in class Employee returns a String containing the first name, last
name and social security number of the employee. As we’ll see, each subclass of Employee
overrides method toString to create a String representation of an object of that class that
contains the employee’s type (e.g., "salaried employee:") followed by the rest of the
employee’s information.

The diagram in Fig. G.15 shows each of the five classes in the hierarchy down the left
side and methods earnings and toString across the top. For each class, the diagram
shows the desired results of each method. We do not list superclass Employee’s get and set
methods because they’re not overridden in any of the subclasses—each of these methods
is inherited and used “as is” by each subclass.

Let’s consider class Employee’s declaration (Fig. G.16). The class includes a con-
structor that takes the first name, last name and social security number as arguments (lines
11–16); get methods that return the first name, last name and social security number (lines
25–28, 37–40 and 49–52, respectively); set methods that set the first name, last name and
social security number (lines 19–22, 31–34 and 43–46, respectively); method toString

Fig. G.15 | Polymorphic interface for the Employee hierarchy classes.

weeklySalary

abstract

Commission-
Employee

BasePlus-
Commission-
Employee

Hourly-
Employee

Salaried-
Employee

Employee

toStringearnings

if (hours <= 40)
 wage * hours
else if (hours > 40)
{
 40 * wage +
 (hours - 40) *
 wage * 1.5
}

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklySalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage; hours worked: hours

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate

base salaried commission employee:
 firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate;
base salary: baseSalary

firstName lastName
social security number: SSN

Z07_DEIT3397_02_SE_APPG.fm Page 599 Monday, July 7, 2014 9:15 AM

600 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

(lines 55–60), which returns the String representation of an Employee; and abstract
method earnings (line 63), which will be implemented by each of the concrete subclasses.
The Employee constructor does not validate its parameters in this example; normally, such
validation should be provided.

1 // Fig. G.16: Employee.java
2 // Employee abstract superclass.
3
4
5 {
6 private String firstName;
7 private String lastName;
8 private String socialSecurityNumber;
9

10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;s
16 } // end three-argument Employee constructor
17
18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first; // should validate
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29
30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last; // should validate
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41
42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47

Fig. G.16 | Employee abstract superclass. (Part 1 of 2.)

public abstract class Employee

Z07_DEIT3397_02_SE_APPG.fm Page 600 Monday, July 7, 2014 9:15 AM

G.10 Case Study: Payroll System Using Polymorphism 601

Why did we decide to declare earnings as an abstract method? It simply does not
make sense to provide an implementation of this method in class Employee. We cannot
calculate the earnings for a general Employee—we first must know the specific type of
Employee to determine the appropriate earnings calculation. By declaring this method
abstract, we indicate that each concrete subclass must provide an appropriate earnings
implementation and that a program will be able to use superclass Employee variables to
invoke method earnings polymorphically for any type of Employee.

G.10.2 Concrete Subclass SalariedEmployee
Class SalariedEmployee (Fig. G.17) extends class Employee (line 4) and overrides ab-
stract method earnings (lines 33–37), which makes SalariedEmployee a concrete class.
The class includes a constructor (lines 9–14) that takes a first name, a last name, a social
security number and a weekly salary as arguments; a set method to assign a new nonnega-
tive value to instance variable weeklySalary (lines 17–24); a get method to return week-
lySalary’s value (lines 27–30); a method earnings (lines 33–37) to calculate a
SalariedEmployee’s earnings; and a method toString (lines 40–45), which returns a
String including the employee’s type, namely, "salaried employee: " followed by em-
ployee-specific information produced by superclass Employee’s toString method and
Salaried-Employee’s getWeeklySalary method. Class SalariedEmployee’s constructor
passes the first name, last name and social security number to the Employee constructor
(line 12) to initialize the private instance variables not inherited from the superclass.
Method earnings overrides Employee’s abstract method earnings to provide a concrete
implementation that returns the SalariedEmployee’s weekly salary. If we do not imple-
ment earnings, class SalariedEmployee must be declared abstract—otherwise, class
SalariedEmployee will not compile. Of course, we want SalariedEmployee to be a con-
crete class in this example.

Method toString (lines 40–45) overrides Employee method toString. If class Sal-
ariedEmployee did not override toString, SalariedEmployee would have inherited the
Employee version of toString. In that case, SalariedEmployee’s toString method would

48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53
54 // return String representation of Employee object
55 @Override
56 public String toString()
57 {
58 return String.format("%s %s\nsocial security number: %s",
59 getFirstName(), getLastName(), getSocialSecurityNumber());
60 } // end method toString
61
62
63
64 } // end abstract class Employee

Fig. G.16 | Employee abstract superclass. (Part 2 of 2.)

// abstract method overridden by concrete subclasses
public abstract double earnings(); // no implementation here

Z07_DEIT3397_02_SE_APPG.fm Page 601 Friday, June 20, 2014 7:20 PM

602 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

simply return the employee’s full name and social security number, which does not ade-
quately represent a SalariedEmployee. To produce a complete String representation of
a SalariedEmployee, the subclass’s toString method returns "salaried employee: " fol-
lowed by the superclass Employee-specific information (i.e., first name, last name and
social security number) obtained by invoking the superclass’s toString method (line

1 // Fig. G.17: SalariedEmployee.java
2 // SalariedEmployee concrete class extends abstract class Employee.
3
4
5 {
6 private double weeklySalary;
7
8 // four-argument constructor
9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else
22 throw new IllegalArgumentException(
23 "Weekly salary must be >= 0.0");
24 } // end method setWeeklySalary
25
26 // return salary
27 public double getWeeklySalary()
28 {
29 return weeklySalary;
30 } // end method getWeeklySalary
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 } // end class SalariedEmployee

Fig. G.17 | SalariedEmployee concrete class extends abstract class Employee.

public class SalariedEmployee extends Employee

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{
 return getWeeklySalary();
} // end method earnings

// return String representation of SalariedEmployee object
@Override
public String toString()
{
 return String.format("salaried employee: %s\n%s: $%,.2f",
 super.toString(), "weekly salary", getWeeklySalary());
} // end method toString

Z07_DEIT3397_02_SE_APPG.fm Page 602 Monday, July 7, 2014 9:15 AM

G.10 Case Study: Payroll System Using Polymorphism 603

44)—this is a nice example of code reuse. The String representation of a SalariedEm-
ployee also contains the employee’s weekly salary obtained by invoking the class’s
getWeeklySalary method.

G.10.3 Concrete Subclass HourlyEmployee
Class HourlyEmployee (Fig. G.18) also extends Employee (line 4). The class includes a
constructor (lines 10–16) that takes as arguments a first name, a last name, a social security
number, an hourly wage and the number of hours worked. Lines 19–26 and 35–42 declare
set methods that assign new values to instance variables wage and hours, respectively.
Method setWage (lines 19–26) ensures that wage is nonnegative, and method setHours
(lines 35–42) ensures that hours is between 0 and 168 (the total number of hours in a
week) inclusive. Class HourlyEmployee also includes get methods (lines 29–32 and 45–48)
to return the values of wage and hours, respectively; a method earnings (lines 51–58) to
calculate an HourlyEmployee’s earnings; and a method toString (lines 61–67), which re-
turns a String containing the employee’s type ("hourly employee: ") and the employee-
specific information. The HourlyEmployee constructor, like the SalariedEmployee con-
structor, passes the first name, last name and social security number to the superclass Em-
ployee constructor (line 13) to initialize the private instance variables. In addition,
method toString calls superclass method toString (line 65) to obtain the Employee-spe-
cific information (i.e., first name, last name and social security number)—this is another
nice example of code reuse.

1 // Fig. G.18: HourlyEmployee.java
2 // HourlyEmployee class extends Employee.
3
4
5 {
6 private double wage; // wage per hour
7 private double hours; // hours worked for week
8
9 // five-argument constructor

10 public HourlyEmployee(String first, String last, String ssn,
11 double hourlyWage, double hoursWorked)
12 {
13 super(first, last, ssn);
14 setWage(hourlyWage); // validate hourly wage
15 setHours(hoursWorked); // validate hours worked
16 } // end five-argument HourlyEmployee constructor
17
18 // set wage
19 public void setWage(double hourlyWage)
20 {
21 if (hourlyWage >= 0.0)
22 wage = hourlyWage;
23 else
24 throw new IllegalArgumentException(
25 "Hourly wage must be >= 0.0");
26 } // end method setWage

Fig. G.18 | HourlyEmployee class extends Employee. (Part 1 of 2.)

public class HourlyEmployee extends Employee

Z07_DEIT3397_02_SE_APPG.fm Page 603 Monday, July 7, 2014 9:15 AM

604 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

G.10.4 Concrete Subclass CommissionEmployee
Class CommissionEmployee (Fig. G.19) extends class Employee (line 4). The class includes
a constructor (lines 10–16) that takes a first name, a last name, a social security number,
a sales amount and a commission rate; set methods (lines 19–26 and 35–42) to assign new
values to instance variables commissionRate and grossSales, respectively; get methods
(lines 29–32 and 45–48) that retrieve the values of these instance variables; method earn-
ings (lines 51–55) to calculate a CommissionEmployee’s earnings; and method toString

27
28 // return wage
29 public double getWage()
30 {
31 return wage;
32 } // end method getWage
33
34 // set hours worked
35 public void setHours(double hoursWorked)
36 {
37 if ((hoursWorked >= 0.0) && (hoursWorked <= 168.0))
38 hours = hoursWorked;
39 else
40 throw new IllegalArgumentException(
41 "Hours worked must be >= 0.0 and <= 168.0");
42 } // end method setHours
43
44 // return hours worked
45 public double getHours()
46 {
47 return hours;
48 } // end method getHours
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68 } // end class HourlyEmployee

Fig. G.18 | HourlyEmployee class extends Employee. (Part 2 of 2.)

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{
 if (getHours() <= 40) // no overtime
 return getWage() * getHours();
 else
 return 40 * getWage() + (getHours() - 40) * getWage() * 1.5;
} // end method earnings

// return String representation of HourlyEmployee object
@Override
public String toString()
{
 return String.format("hourly employee: %s\n%s: $%,.2f; %s: %,.2f",
 super.toString(), "hourly wage", getWage(),
 "hours worked", getHours());
} // end method toString

Z07_DEIT3397_02_SE_APPG.fm Page 604 Monday, July 7, 2014 9:15 AM

G.10 Case Study: Payroll System Using Polymorphism 605

(lines 58–65), which returns the employee’s type, namely, "commission employee: " and
employee-specific information. The constructor also passes the first name, last name and
social security number to Employee’s constructor (line 13) to initialize Employee’s private
instance variables. Method toString calls superclass method toString (line 62) to obtain
the Employee-specific information (i.e., first name, last name and social security number).

1 // Fig. G.19: CommissionEmployee.java
2 // CommissionEmployee class extends Employee.
3
4
5 {
6 private double grossSales; // gross weekly sales
7 private double commissionRate; // commission percentage
8
9 // five-argument constructor

10 public CommissionEmployee(String first, String last, String ssn,
11 double sales, double rate)
12 {
13 super(first, last, ssn);
14 setGrossSales(sales);
15 setCommissionRate(rate);
16 } // end five-argument CommissionEmployee constructor
17
18 // set commission rate
19 public void setCommissionRate(double rate)
20 {
21 if (rate > 0.0 && rate < 1.0)
22 commissionRate = rate;
23 else
24 throw new IllegalArgumentException(
25 "Commission rate must be > 0.0 and < 1.0");
26 } // end method setCommissionRate
27
28 // return commission rate
29 public double getCommissionRate()
30 {
31 return commissionRate;
32 } // end method getCommissionRate
33
34 // set gross sales amount
35 public void setGrossSales(double sales)
36 {
37 if (sales >= 0.0)
38 grossSales = sales;
39 else
40 throw new IllegalArgumentException(
41 "Gross sales must be >= 0.0");
42 } // end method setGrossSales
43
44 // return gross sales amount
45 public double getGrossSales()
46 {

Fig. G.19 | CommissionEmployee class extends Employee. (Part 1 of 2.)

public class CommissionEmployee extends Employee

Z07_DEIT3397_02_SE_APPG.fm Page 605 Monday, July 7, 2014 9:15 AM

606 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

G.10.5 Indirect Concrete Subclass BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. G.20) extends class CommissionEmployee (line
4) and therefore is an indirect subclass of class Employee. Class BasePlusCommission-
Employee has a constructor (lines 9–14) that takes as arguments a first name, a last name,
a social security number, a sales amount, a commission rate and a base salary. It then passes
all of these except the base salary to the CommissionEmployee constructor (line 12) to ini-
tialize the inherited members. BasePlusCommissionEmployee also contains a set method
(lines 17–24) to assign a new value to instance variable baseSalary and a get method (lines
27–30) to return baseSalary’s value. Method earnings (lines 33–37) calculates a Base-
PlusCommissionEmployee’s earnings. Line 36 in method earnings calls superclass
CommissionEmployee’s earnings method to calculate the commission-based portion of
the employee’s earnings—this is another nice example of code reuse. BasePlusCommis-
sionEmployee’s toString method (lines 40–46) creates a String representation of a
BasePlusCommissionEmployee that contains "base-salaried", followed by the String

47 return grossSales;
48 } // end method getGrossSales
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66 } // end class CommissionEmployee

1 // Fig. G.20: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class extends CommissionEmployee.
3
4
5 {
6 private double baseSalary; // base salary per week
7
8 // six-argument constructor
9 public BasePlusCommissionEmployee(String first, String last,

10 String ssn, double sales, double rate, double salary)
11 {

Fig. G.20 | BasePlusCommissionEmployee class extends CommissionEmployee. (Part 1 of 2.)

Fig. G.19 | CommissionEmployee class extends Employee. (Part 2 of 2.)

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{
 return getCommissionRate() * getGrossSales();
} // end method earnings

// return String representation of CommissionEmployee object
@Override
public String toString()
{
 return String.format("%s: %s\n%s: $%,.2f; %s: %.2f",
 "commission employee", super.toString(),
 "gross sales", getGrossSales(),
 "commission rate", getCommissionRate());
} // end method toString

public class BasePlusCommissionEmployee extends CommissionEmployee

Z07_DEIT3397_02_SE_APPG.fm Page 606 Monday, July 7, 2014 9:15 AM

G.10 Case Study: Payroll System Using Polymorphism 607

obtained by invoking superclass CommissionEmployee’s toString method (another exam-
ple of code reuse), then the base salary. The result is a String beginning with "base-
salaried commission employee" followed by the rest of the BasePlusCommissionEm-
ployee’s information. Recall that CommissionEmployee’s toString obtains the employ-
ee’s first name, last name and social security number by invoking the toString method of
its superclass (i.e., Employee)—yet another example of code reuse. BasePlusCommission-
Employee’s toString initiates a chain of method calls that span all three levels of the Em-
ployee hierarchy.

G.10.6 Polymorphic Processing, Operator instanceof and Downcasting
To test our Employee hierarchy, the application in Fig. G.21 creates an object of each of
the four concrete classes SalariedEmployee, HourlyEmployee, CommissionEmployee and
BasePlusCommissionEmployee. The program manipulates these objects nonpolymorphic-

12 super(first, last, ssn, sales, rate);
13 setBaseSalary(salary); // validate and store base salary
14 } // end six-argument BasePlusCommissionEmployee constructor
15
16 // set base salary
17 public void setBaseSalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else
22 throw new IllegalArgumentException(
23 "Base salary must be >= 0.0");
24 } // end method setBaseSalary
25
26 // return base salary
27 public double getBaseSalary()
28 {
29 return baseSalary;
30 } // end method getBaseSalary
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 } // end class BasePlusCommissionEmployee

Fig. G.20 | BasePlusCommissionEmployee class extends CommissionEmployee. (Part 2 of 2.)

// calculate earnings; override method earnings in CommissionEmployee
@Override
public double earnings()
{
 return getBaseSalary() + super.earnings();
} // end method earnings

// return String representation of BasePlusCommissionEmployee object
@Override
public String toString()
{
 return String.format("%s %s; %s: $%,.2f",
 "base-salaried", super.toString(),
 "base salary", getBaseSalary());
} // end method toString

Z07_DEIT3397_02_SE_APPG.fm Page 607 Monday, July 7, 2014 9:15 AM

608 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

ally, via variables of each object’s own type, then polymorphically, using an array of Em-
ployee variables. While processing the objects polymorphically, the program increases the
base salary of each BasePlusCommissionEmployee by 10%—this requires determining the
object’s type at execution time. Finally, the program polymorphically determines and outputs
the type of each object in the Employee array. Lines 9–18 create objects of each of the four
concrete Employee subclasses. Lines 22–30 output the String representation and earnings
of each of these objects nonpolymorphically. Each object’s toString method is called im-
plicitly by printf when the object is output as a String with the %s format specifier.

1 // Fig. G.21: PayrollSystemTest.java
2 // Employee hierarchy test program.
3
4 public class PayrollSystemTest
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20 System.out.println("Employees processed individually:\n");
21
22 System.out.printf("%s\n%s: $%,.2f\n\n",
23 salariedEmployee, "earned", salariedEmployee.earnings());
24 System.out.printf("%s\n%s: $%,.2f\n\n",
25 hourlyEmployee, "earned", hourlyEmployee.earnings());
26 System.out.printf("%s\n%s: $%,.2f\n\n",
27 commissionEmployee, "earned", commissionEmployee.earnings());
28 System.out.printf("%s\n%s: $%,.2f\n\n",
29 basePlusCommissionEmployee,
30 "earned", basePlusCommissionEmployee.earnings());
31
32 // create four-element Employee array
33
34
35
36
37
38
39
40
41 System.out.println("Employees processed polymorphically:\n");
42

Fig. G.21 | Employee hierarchy test program. (Part 1 of 3.)

// create subclass objects
SalariedEmployee salariedEmployee =
 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
HourlyEmployee hourlyEmployee =
 new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);
CommissionEmployee commissionEmployee =
 new CommissionEmployee(
 "Sue", "Jones", "333-33-3333", 10000, .06);
BasePlusCommissionEmployee basePlusCommissionEmployee =
 new BasePlusCommissionEmployee(
 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);

Employee[] employees = new Employee[4];

// initialize array with Employees
employees[0] = salariedEmployee;
employees[1] = hourlyEmployee;
employees[2] = commissionEmployee;
employees[3] = basePlusCommissionEmployee;

Z07_DEIT3397_02_SE_APPG.fm Page 608 Monday, July 7, 2014 9:15 AM

G.10 Case Study: Payroll System Using Polymorphism 609

43 // generically process each element in array employees
44 for (Employee currentEmployee : employees)
45 {
46 System.out.println(); // invokes toString
47
48 // determine whether element is a BasePlusCommissionEmployee
49 if ()
50 {
51 // downcast Employee reference to
52 // BasePlusCommissionEmployee reference
53 BasePlusCommissionEmployee employee =
54 ;
55
56 employee.setBaseSalary(1.10 * employee.getBaseSalary());
57
58 System.out.printf(
59 "new base salary with 10%% increase is: $%,.2f\n",
60 employee.getBaseSalary());
61 } // end if
62
63 System.out.printf(
64 "earned $%,.2f\n\n",);
65 } // end for
66
67
68
69
70
71 } // end main
72 } // end class PayrollSystemTest

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00

Fig. G.21 | Employee hierarchy test program. (Part 2 of 3.)

currentEmployee

currentEmployee instanceof BasePlusCommissionEmployee

(BasePlusCommissionEmployee) currentEmployee

currentEmployee.earnings()

// get type name of each object in employees array
for (int j = 0; j < employees.length; j++)
 System.out.printf("Employee %d is a %s\n", j,
 employees[j].getClass().getName());

earned: $500.00

Z07_DEIT3397_02_SE_APPG.fm Page 609 Monday, July 7, 2014 9:15 AM

610 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Creating the Array of Employees
Line 33 declares employees and assigns it an array of four Employee variables. Line 36 as-
signs the reference to a SalariedEmployee object to employees[0]. Line 37 assigns the
reference to an HourlyEmployee object to employees[1]. Line 38 assigns the reference to
a CommissionEmployee object to employees[2]. Line 39 assigns the reference to a Base-
PlusCommissionEmployee object to employee[3]. These assignments are allowed, because
a SalariedEmployee is an Employee, an HourlyEmployee is an Employee, a Commission-
Employee is an Employee and a BasePlusCommissionEmployee is an Employee. Therefore,
we can assign the references of SalariedEmployee, HourlyEmployee, CommissionEmploy-
ee and BasePlusCommissionEmployee objects to superclass Employee variables, even
though Employee is an abstract class.

Polymorphically Processing Employees
Lines 44–65 iterate through array employees and invoke methods toString and earnings
with Employee variable currentEmployee, which is assigned the reference to a different
Employee in the array on each iteration. The output illustrates that the appropriate meth-
ods for each class are indeed invoked. All calls to method toString and earnings are re-
solved at execution time, based on the type of the object to which currentEmployee refers.
This process is known as dynamic binding or late binding. For example, line 46 implicitly
invokes method toString of the object to which currentEmployee refers. As a result of
dynamic binding, Java decides which class’s toString method to call at execution time
rather than at compile time. Only the methods of class Employee can be called via an Em-

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04;

Employee 0 is a SalariedEmployee
Employee 1 is a HourlyEmployee
Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. G.21 | Employee hierarchy test program. (Part 3 of 3.)

base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

Z07_DEIT3397_02_SE_APPG.fm Page 610 Monday, July 7, 2014 9:15 AM

G.10 Case Study: Payroll System Using Polymorphism 611

ployee variable (and Employee, of course, includes the methods of class Object). A super-
class reference can be used to invoke only methods of the superclass—the subclass method
implementations are invoked polymorphically.

Performing Type-Specific Operations on BasePlusCommissionEmployees
We perform special processing on BasePlusCommissionEmployee objects—as we encoun-
ter these objects at execution time, we increase their base salary by 10%. When processing
objects polymorphically, we typically do not need to worry about the “specifics,” but to
adjust the base salary, we do have to determine the specific type of Employee object at ex-
ecution time. Line 49 uses the instanceof operator to determine whether a particular Em-
ployee object’s type is BasePlusCommissionEmployee. The condition in line 49 is true if
the object referenced by currentEmployee is a BasePlusCommissionEmployee. This
would also be true for any object of a BasePlusCommissionEmployee subclass because of
the is-a relationship a subclass has with its superclass. Lines 53–54 downcast currentEm-
ployee from type Employee to type BasePlusCommissionEmployee—this cast is allowed
only if the object has an is-a relationship with BasePlusCommissionEmployee. The condi-
tion at line 49 ensures that this is the case. This cast is required if we’re to invoke subclass
BasePlusCommissionEmployee methods getBaseSalary and setBaseSalary on the cur-
rent Employee object—as you’ll see momentarily, attempting to invoke a subclass-only meth-
od directly on a superclass reference is a compilation error.

If the instanceof expression in line 49 is true, lines 53–60 perform the special pro-
cessing required for the BasePlusCommissionEmployee object. Using BasePlusCommis-
sionEmployee variable employee, line 56 invokes subclass-only methods getBaseSalary
and setBaseSalary to retrieve and update the employee’s base salary with the 10% raise.

Calling earnings Polymorphically
Lines 63–64 invoke method earnings on currentEmployee, which polymorphically calls
the appropriate subclass object’s earnings method. Obtaining the earnings of the Sala-
riedEmployee, HourlyEmployee and CommissionEmployee polymorphically in lines 63–
64 produces the same results as obtaining these employees’ earnings individually in lines
22–27. The earnings amount obtained for the BasePlusCommissionEmployee in lines 63–
64 is higher than that obtained in lines 28–30, due to the 10% increase in its base salary.

Common Programming Error G.3
Assigning a superclass variable to a subclass variable (without an explicit cast) is a com-
pilation error.

Software Engineering Observation G.7
If a subclass object’s reference has been assigned to a variable of one of its direct or indirect
superclasses at execution time, it’s acceptable to downcast the reference stored in that
superclass variable back to a subclass-type reference. Before performing such a cast, use the
instanceof operator to ensure that the object is indeed an object of an appropriate subclass.

Common Programming Error G.4
When downcasting a reference, a ClassCastException occurs if the referenced object at ex-
ecution time does not have an is-a relationship with the type specified in the cast operator.

Z07_DEIT3397_02_SE_APPG.fm Page 611 Monday, July 7, 2014 9:15 AM

612 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Using Reflection to Get Each Employee’s Class Name
Lines 68–70 display each employee’s type as a String, using basic features of Java’s so-
called reflection capabilities. Every object knows its own class and can access this informa-
tion through the getClass method, which all classes inherit from class Object. Method
getClass returns an object of type Class (from package java.lang), which contains in-
formation about the object’s type, including its class name. Line 70 invokes getClass on
the current object to get its runtime class. The result of the getClass call is used to invoke
getName to get the object’s class name.

Avoiding Compilation Errors with Downcasting
In the previous example, we avoided several compilation errors by downcasting an Em-
ployee variable to a BasePlusCommissionEmployee variable in lines 53–54. If you remove
the cast operator (BasePlusCommissionEmployee) from line 54 and attempt to assign Em-
ployee variable currentEmployee directly to BasePlusCommissionEmployee variable em-
ployee, you’ll receive an “incompatible types” compilation error. This error indicates
that the attempt to assign the reference of superclass object currentEmployee to subclass
variable employee is not allowed. The compiler prevents this assignment because a Com-
missionEmployee is not a BasePlusCommissionEmployee—the is-a relationship applies only
between the subclass and its superclasses, not vice versa.

Similarly, if lines 56 and 60 used superclass variable currentEmployee to invoke sub-
class-only methods getBaseSalary and setBaseSalary, we’d receive “cannot find symbol”
compilation errors at these lines. Attempting to invoke subclass-only methods via a super-
class variable is not allowed—even though lines 56 and 60 execute only if instanceof in line
49 returns true to indicate that currentEmployee holds a reference to a BasePlusCommis-
sionEmployee object. Using a superclass Employee variable, we can invoke only methods
found in class Employee—earnings, toString and Employee’s get and set methods.

G.10.7 Summary of the Allowed Assignments Between Superclass and
Subclass Variables
Now that you’ve seen a complete application that processes diverse subclass objects polymor-
phically, we summarize what you can and cannot do with superclass and subclass objects and
variables. Although a subclass object also is a superclass object, the two objects are neverthe-
less different. As discussed previously, subclass objects can be treated as objects of their su-
perclass. But because the subclass can have additional subclass-only members, assigning a
superclass reference to a subclass variable is not allowed without an explicit cast—such an as-
signment would leave the subclass members undefined for the superclass object.

We’ve discussed four ways to assign superclass and subclass references to variables of
superclass and subclass types:

1. Assigning a superclass reference to a superclass variable is straightforward.

2. Assigning a subclass reference to a subclass variable is straightforward.

Software Engineering Observation G.8
Although the actual method that’s called depends on the runtime type of the object to
which a variable refers, a variable can be used to invoke only those methods that are
members of that variable’s type, which the compiler verifies.

Z07_DEIT3397_02_SE_APPG.fm Page 612 Monday, July 7, 2014 9:15 AM

G.11 final Methods and Classes 613

3. Assigning a subclass reference to a superclass variable is safe, because the subclass
object is an object of its superclass. However, the superclass variable can be used
to refer only to superclass members. If this code refers to subclass-only members
through the superclass variable, the compiler reports errors.

4. Attempting to assign a superclass reference to a subclass variable is a compilation
error. To avoid this error, the superclass reference must be cast to a subclass type
explicitly. At execution time, if the object to which the reference refers is not a sub-
class object, an exception will occur. (For more on exception handling, see
Appendix H.) You should use the instanceof operator to ensure that such a cast
is performed only if the object is a subclass object.

G.11 final Methods and Classes
We saw in Sections D.3 and D.10 that variables can be declared final to indicate that they
cannot be modified after they’re initialized—such variables represent constant values. It’s
also possible to declare methods, method parameters and classes with the final modifier.

Final Methods Cannot Be Overridden
A final method in a superclass cannot be overridden in a subclass—this guarantees that
the final method implementation will be used by all direct and indirect subclasses in the
hierarchy. Methods that are declared private are implicitly final, because it’s not possi-
ble to override them in a subclass. Methods that are declared static are also implicitly fi-
nal. A final method’s declaration can never change, so all subclasses use the same method
implementation, and calls to final methods are resolved at compile time—this is known
as static binding.

Final Classes Cannot Be Superclasses
A final class that’s declared final cannot be a superclass (i.e., a class cannot extend a fi-
nal class). All methods in a final class are implicitly final. Class String is an example of
a final class. If you were allowed to create a subclass of String, objects of that subclass
could be used wherever Strings are expected. Since class String cannot be extended, pro-
grams that use Strings can rely on the functionality of String objects as specified in the
Java API. Making the class final also prevents programmers from creating subclasses that
might bypass security restrictions. For more insights on the use of keyword final, visit

and

docs.oracle.com/javase/tutorial/java/IandI/final.html

www.ibm.com/developerworks/java/library/j-jtp1029.html

Common Programming Error G.5
Attempting to declare a subclass of a final class is a compilation error.

Software Engineering Observation G.9
In the Java API, the vast majority of classes are not declared final. This enables
inheritance and polymorphism. However, in some cases, it’s important to declare classes
final—typically for security reasons.

Z07_DEIT3397_02_SE_APPG.fm Page 613 Monday, July 7, 2014 9:15 AM

614 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

G.12 Case Study: Creating and Using Interfaces
Our next example (Figs. G.23–G.27) reexamines the payroll system of Section G.10. Sup-
pose that the company involved wishes to perform several accounting operations in a sin-
gle accounts payable application—in addition to calculating the earnings that must be
paid to each employee, the company must also calculate the payment due on each of sev-
eral invoices (i.e., bills for goods purchased). Though applied to unrelated things (i.e., em-
ployees and invoices), both operations have to do with obtaining some kind of payment
amount. For an employee, the payment refers to the employee’s earnings. For an invoice,
the payment refers to the total cost of the goods listed on the invoice. Can we calculate
such different things as the payments due for employees and invoices in a single application
polymorphically? Does Java offer a capability requiring that unrelated classes implement a
set of common methods (e.g., a method that calculates a payment amount)? Java interfaces
offer exactly this capability.

Standardizing Interactions
Interfaces define and standardize the ways in which things such as people and systems can
interact with one another. For example, the controls on a radio serve as an interface between
radio users and a radio’s internal components. The controls allow users to perform only a
limited set of operations (e.g., change the station, adjust the volume, choose between AM
and FM), and different radios may implement the controls in different ways (e.g., using
push buttons, dials, voice commands). The interface specifies what operations a radio must
permit users to perform but does not specify how the operations are performed.

Software Objects Communicate Via Interfaces
Software objects also communicate via interfaces. A Java interface describes a set of meth-
ods that can be called on an object to tell it, for example, to perform some task or return
some piece of information. The next example introduces an interface named Payable to
describe the functionality of any object that must be capable of being paid and thus must
offer a method to determine the proper payment amount due. An interface declaration
begins with the keyword interface and contains only constants and abstract methods.
Unlike classes, all interface members must be public, and interfaces may not specify any im-
plementation details, such as concrete method declarations and instance variables. All
methods declared in an interface are implicitly public abstract methods, and all fields
are implicitly public, static and final. [Note: As of Java SE 5, it became a better pro-
gramming practice to declare sets of constants as enumerations with keyword enum. See
Section D.10 for an introduction to enum and Section F.8 for additional enum details.]

Using an Interface
To use an interface, a concrete class must specify that it implements the interface and must
declare each method in the interface with the signature specified in the interface declara-
tion. To specify that a class implements an interface add the implements keyword and the

Good Programming Practice G.1
According to Chapter 9 of the Java Language Specification, it’s proper style to declare an
interface’s methods without keywords public and abstract, because they’re redundant
in interface method declarations. Similarly, constants should be declared without key-
words public, static and final, because they, too, are redundant.

Z07_DEIT3397_02_SE_APPG.fm Page 614 Monday, July 7, 2014 9:15 AM

G.12 Case Study: Creating and Using Interfaces 615

name of the interface to the end of your class declaration’s first line. A class that does not
implement all the methods of the interface is an abstract class and must be declared
abstract. Implementing an interface is like signing a contract with the compiler that
states, “I will declare all the methods specified by the interface or I will declare my class
abstract.”

Relating Disparate Types
An interface is often used when disparate (i.e., unrelated) classes need to share common
methods and constants. This allows objects of unrelated classes to be processed polymor-
phically—objects of classes that implement the same interface can respond to the same
method calls. You can create an interface that describes the desired functionality, then im-
plement this interface in any classes that require that functionality. For example, in the ac-
counts payable application developed in this section, we implement interface Payable in
any class that must be able to calculate a payment amount (e.g., Employee, Invoice).

Interfaces vs. Abstract Classes
An interface is often used in place of an abstract class when there’s no default implementation
to inherit—that is, no fields and no default method implementations. Like public ab-
stract classes, interfaces are typically public types. Like a public class, a public interface
must be declared in a file with the same name as the interface and the .java file-name ex-
tension.

Tagging Interfaces
We’ll see in Appendix J, the notion of “tagging interfaces”—empty interfaces that have no
methods or constant values. They’re used to add is-a relationships to classes. For example,
in Appendix J we’ll discuss a mechanism called object serialization, which can convert ob-
jects to byte representations and can convert those byte representations back to objects. To
enable this mechanism to work with your objects, you simply have to mark them as Se-
rializable by adding implements Serializable to the end of your class declaration’s
first line. Then, all the objects of your class have the is-a relationship with Serializable.

G.12.1 Developing a Payable Hierarchy
To build an application that can determine payments for employees and invoices alike, we
first create interface Payable, which contains method getPaymentAmount that returns a
double amount that must be paid for an object of any class that implements the interface.
Method getPaymentAmount is a general-purpose version of method earnings of the
Employee hierarchy—method earnings calculates a payment amount specifically for an
Employee, while getPaymentAmount can be applied to a broad range of unrelated objects.
After declaring interface Payable, we introduce class Invoice, which implements interface
Payable. We then modify class Employee such that it also implements interface Payable.
Finally, we update Employee subclass SalariedEmployee to “fit” into the Payable hierar-
chy by renaming SalariedEmployee method earnings as getPaymentAmount.

Common Programming Error G.6
Failing to implement any method of an interface in a concrete class that implements the
interface results in a compilation error indicating that the class must be declared ab-
stract.

Z07_DEIT3397_02_SE_APPG.fm Page 615 Monday, July 7, 2014 9:15 AM

616 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Classes Invoice and Employee both represent things for which the company must be
able to calculate a payment amount. Both classes implement the Payable interface, so a
program can invoke method getPaymentAmount on Invoice objects and Employee objects
alike. As we’ll soon see, this enables the polymorphic processing of Invoices and
Employees required for the company’s accounts payable application.

The UML class diagram in Fig. G.22 shows the hierarchy used in our accounts pay-
able application. The hierarchy begins with interface Payable. The UML distinguishes an
interface from other classes by placing the word “interface” in guillemets (« and ») above
the interface name. The UML expresses the relationship between a class and an interface
through a relationship known as realization. A class is said to “realize,” or implement, the
methods of an interface. A class diagram models a realization as a dashed arrow with a
hollow arrowhead pointing from the implementing class to the interface. The diagram in
Fig. G.22 indicates that classes Invoice and Employee each realize (i.e., implement) inter-
face Payable. As in the class diagram of Fig. G.14, class Employee appears in italics, indi-
cating that it’s an abstract class. Concrete class SalariedEmployee extends Employee and
inherits its superclass’s realization relationship with interface Payable.

G.12.2 Interface Payable
The declaration of interface Payable begins in Fig. G.23 at line 4. Interface Payable con-
tains public abstract method getPaymentAmount (line 6). The method is not explicitly
declared public or abstract. Interface methods are always public and abstract, so they
do not need to be declared as such. Interface Payable has only one method—interfaces
can have any number of methods. In addition, method getPaymentAmount has no param-
eters, but interface methods can have parameters. Interfaces may also contain fields that
are implicitly final and static.

Good Programming Practice G.2
When declaring a method in an interface, choose a method name that describes the meth-
od’s purpose in a general manner, because the method may be implemented by many un-
related classes.

Fig. G.22 | Payable interface hierarchy UML class diagram.

Invoice Employee

SalariedEmployee

«interface»
Payable

Z07_DEIT3397_02_SE_APPG.fm Page 616 Monday, July 7, 2014 9:15 AM

G.12 Case Study: Creating and Using Interfaces 617

G.12.3 Class Invoice
We now create class Invoice (Fig. G.24) to represent a simple invoice that contains billing
information for only one kind of part. The class declares private instance variables part-
Number, partDescription, quantity and pricePerItem (in lines 6–9) that indicate the
part number, a description of the part, the quantity of the part ordered and the price per
item. Class Invoice also contains a constructor (lines 12–19), get and set methods (lines
22–74) that manipulate the class’s instance variables and a toString method (lines 77–
83) that returns a String representation of an Invoice object. Methods setQuantity
(lines 46–52) and setPricePerItem (lines 61–68) ensure that quantity and pricePer-
Item obtain only nonnegative values.

1 // Fig. G.23: Payable.java
2 // Payable interface declaration.
3
4
5
6
7

Fig. G.23 | Payable interface declaration.

1 // Fig. G.24: Invoice.java
2 // Invoice class that implements Payable.
3
4
5 {
6 private String partNumber;
7 private String partDescription;
8 private int quantity;2
9 private double pricePerItem;

10
11 // four-argument constructor
12 public Invoice(String part, String description, int count,
13 double price)
14 {
15 partNumber = part;
16 partDescription = description;
17 setQuantity(count); // validate and store quantity
18 setPricePerItem(price); // validate and store price per item
19 } // end four-argument Invoice constructor
20
21 // set part number
22 public void setPartNumber(String part)
23 {
24 partNumber = part; // should validate
25 } // end method setPartNumber
26

Fig. G.24 | Invoice class that implements Payable. (Part 1 of 3.)

public interface Payable
{
 double getPaymentAmount(); // calculate payment; no implementation
} // end interface Payable

public class Invoice implements Payable

Z07_DEIT3397_02_SE_APPG.fm Page 617 Monday, July 7, 2014 9:15 AM

618 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

27 // get part number
28 public String getPartNumber()
29 {
30 return partNumber;
31 } // end method getPartNumber
32
33 // set description
34 public void setPartDescription(String description)
35 {
36 partDescription = description; // should validate
37 } // end method setPartDescription
38
39 // get description
40 public String getPartDescription()
41 {
42 return partDescription;
43 } // end method getPartDescription
44
45 // set quantity
46 public void setQuantity(int count)
47 {
48 if (count >= 0)
49 quantity = count;
50 else
51 throw new IllegalArgumentException("Quantity must be >= 0");
52 } // end method setQuantity
53
54 // get quantity
55 public int getQuantity()
56 {
57 return quantity;
58 } // end method getQuantity
59
60 // set price per item
61 public void setPricePerItem(double price)
62 {
63 if (price >= 0.0)
64 pricePerItem = price;
65 else
66 throw new IllegalArgumentException(
67 "Price per item must be >= 0");
68 } // end method setPricePerItem
69
70 // get price per item
71 public double getPricePerItem()
72 {
73 return pricePerItem;
74 } // end method getPricePerItem
75
76 // return String representation of Invoice object
77 @Override
78 public String toString()
79 {

Fig. G.24 | Invoice class that implements Payable. (Part 2 of 3.)

Z07_DEIT3397_02_SE_APPG.fm Page 618 Monday, July 7, 2014 9:15 AM

G.12 Case Study: Creating and Using Interfaces 619

Line 4 indicates that class Invoice implements interface Payable. Like all classes, class
Invoice also implicitly extends Object. Java does not allow subclasses to inherit from
more than one superclass, but it allows a class to inherit from one superclass and imple-
ment as many interfaces as it needs. To implement more than one interface, use a comma-
separated list of interface names after keyword implements in the class declaration, as in:

Class Invoice implements the one method in interface Payable—method get-
PaymentAmount is declared in lines 86–90. The method calculates the total payment
required to pay the invoice. The method multiplies the values of quantity and pricePer-
Item (obtained through the appropriate get methods) and returns the result (line 89). This
method satisfies the implementation requirement for this method in interface Payable—
we’ve fulfilled the interface contract with the compiler.

G.12.4 Modifying Class Employee to Implement Interface Payable
We now modify class Employee such that it implements interface Payable. Figure G.25
contains the modified class, which is identical to that of Fig. G.16 with two exceptions.
First, line 4 of Fig. G.25 indicates that class Employee now implements interface Payable.
So we must rename earnings to getPaymentAmount throughout the Employee hierarchy.
As with method earnings in the version of class Employee in Fig. G.16, however, it does
not make sense to implement method getPaymentAmount in class Employee because we
cannot calculate the earnings payment owed to a general Employee—we must first know
the specific type of Employee. In Fig. G.16, we declared method earnings as abstract for
this reason, so class Employee had to be declared abstract. This forced each Employee
concrete subclass to override earnings with an implementation.

In Fig. G.25, we handle this situation differently. Recall that when a class implements
an interface, it makes a contract with the compiler stating either that the class will imple-
ment each of the methods in the interface or that the class will be declared abstract. If the

80 return String.format("%s: \n%s: %s (%s) \n%s: %d \n%s: $%,.2f",
81 "invoice", "part number", getPartNumber(), getPartDescription(),
82 "quantity", getQuantity(), "price per item", getPricePerItem());
83 } // end method toString
84
85
86
87
88
89
90
91 } // end class Invoice

public class ClassName extends SuperclassName implements FirstInterface,
 SecondInterface, …

Software Engineering Observation G.10
All objects of a class that implement multiple interfaces have the is-a relationship with
each implemented interface type.

Fig. G.24 | Invoice class that implements Payable. (Part 3 of 3.)

// method required to carry out contract with interface Payable
@Override
public double getPaymentAmount()
{
 return getQuantity() * getPricePerItem(); // calculate total cost
} // end method getPaymentAmount

Z07_DEIT3397_02_SE_APPG.fm Page 619 Monday, July 7, 2014 9:15 AM

620 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

1 // Fig. G.25: Employee.java
2 // Employee abstract superclass that implements Payable.
3
4
5 {
6 private String firstName;
7 private String lastName;
8 private String socialSecurityNumber;
9

10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17
18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first; // should validate
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29
30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last; // should validate
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41
42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53

Fig. G.25 | Employee abstract superclass that implements Payable. (Part 1 of 2.)

public abstract class Employee implements Payable

Z07_DEIT3397_02_SE_APPG.fm Page 620 Monday, July 7, 2014 9:15 AM

G.12 Case Study: Creating and Using Interfaces 621

latter option is chosen, we do not need to declare the interface methods as abstract in the
abstract class—they’re already implicitly declared as such in the interface. Any concrete
subclass of the abstract class must implement the interface methods to fulfill the super-
class’s contract with the compiler. If the subclass does not do so, it too must be declared
abstract. As indicated by the comments in lines 62–63, class Employee of Fig. G.25 does
not implement method getPaymentAmount, so the class is declared abstract. Each direct
Employee subclass inherits the superclass’s contract to implement method getPaymentAmount
and thus must implement this method to become a concrete class for which objects can be
instantiated. A class that extends one of Employee’s concrete subclasses will inherit an
implementation of getPaymentAmount and thus will also be a concrete class.

G.12.5 Modifying Class SalariedEmployee for Use in the Payable
Hierarchy
Figure G.26 contains a modified SalariedEmployee class that extends Employee and ful-
fills superclass Employee’s contract to implement Payable method getPaymentAmount.
This version of SalariedEmployee is identical to that of Fig. G.17, but it replaces method
earnings with method getPaymentAmount (lines 34–38). Recall that the Payable version
of the method has a more general name to be applicable to possibly disparate classes. The
remaining Employee subclasses (e.g., HourlyEmployee, CommissionEmployee and Base-
PlusCommissionEmployee) also must be modified to contain method getPaymentAmount
in place of earnings to reflect the fact that Employee now implements Payable. We leave
these modifications as an exercise (Exercise G.16) and use only SalariedEmployee in our
test program here. Exercise G.17 asks you to implement interface Payable in the entire
Employee class hierarchy of Figs. G.16–G.21 without modifying the Employee subclasses.

When a class implements an interface, the same is-a relationship provided by inheri-
tance applies. Class Employee implements Payable, so we can say that an Employee is a
Payable. In fact, objects of any classes that extend Employee are also Payable objects. Sal-
ariedEmployee objects, for instance, are Payable objects. Objects of any subclasses of the
class that implements the interface can also be thought of as objects of the interface type.
Thus, just as we can assign the reference of a SalariedEmployee object to a superclass
Employee variable, we can assign the reference of a SalariedEmployee object to an inter-
face Payable variable. Invoice implements Payable, so an Invoice object also is a Pay-
able object, and we can assign the reference of an Invoice object to a Payable variable.

54 // return String representation of Employee object
55 @Override
56 public String toString()
57 {
58 return String.format("%s %s\nsocial security number: %s",
59 getFirstName(), getLastName(), getSocialSecurityNumber());
60 } // end method toString
61
62
63
64 } // end abstract class Employee

Fig. G.25 | Employee abstract superclass that implements Payable. (Part 2 of 2.)

// Note: We do not implement Payable method getPaymentAmount here so
// this class must be declared abstract to avoid a compilation error.

Z07_DEIT3397_02_SE_APPG.fm Page 621 Monday, July 7, 2014 9:15 AM

622 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

Software Engineering Observation G.11
When a method parameter is declared with a superclass or interface type, the method
processes the object received as an argument polymorphically.

Software Engineering Observation G.12
Using a superclass reference, we can polymorphically invoke any method declared in the
superclass and its superclasses (e.g., class Object). Using an interface reference, we can
polymorphically invoke any method declared in the interface, its superinterfaces (one
interface can extend another) and in class Object—a variable of an interface type must
refer to an object to call methods, and all objects have the methods of class Object.

1 // Fig. G.26: SalariedEmployee.java
2 // SalariedEmployee class extends Employee, which implements Payable.
3
4 public class SalariedEmployee extends Employee
5 {
6 private double weeklySalary;
7
8 // four-argument constructor
9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else
22 throw new IllegalArgumentException(
23 "Weekly salary must be >= 0.0");
24 } // end method setWeeklySalary
25
26 // return salary
27 public double getWeeklySalary()
28 {
29 return weeklySalary;
30 } // end method getWeeklySalary
31
32
33
34 @Override
35
36
37
38

Fig. G.26 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 1 of 2.)

// calculate earnings; implement interface Payable method that was
// abstract in superclass Employee

public double getPaymentAmount()
{
 return getWeeklySalary();
} // end method getPaymentAmount

Z07_DEIT3397_02_SE_APPG.fm Page 622 Monday, July 7, 2014 9:15 AM

G.12 Case Study: Creating and Using Interfaces 623

G.12.6 Using Interface Payable to Process Invoices and Employees
Polymorphically
PayableInterfaceTest (Fig. G.27) illustrates that interface Payable can be used to pro-
cess a set of Invoices and Employees polymorphically in a single application. Line 9 de-
clares payableObjects and assigns it an array of four Payable variables. Lines 12–13
assign the references of Invoice objects to the first two elements of payableObjects. Lines
14–17 then assign the references of SalariedEmployee objects to the remaining two ele-
ments of payableObjects. These assignments are allowed because an Invoice is a Pay-
able, a SalariedEmployee is an Employee and an Employee is a Payable. Lines 23–29 use
the enhanced for statement to polymorphically process each Payable object in payable-
Objects, printing the object as a String, along with the payment amount due. Line 27
invokes method toString via a Payable interface reference, even though toString is not
declared in interface Payable—all references (including those of interface types) refer to objects
that extend Object and therefore have a toString method. (Method toString also can be
invoked implicitly here.) Line 28 invokes Payable method getPaymentAmount to obtain
the payment amount for each object in payableObjects, regardless of the actual type of
the object. The output reveals that the method calls in lines 27–28 invoke the appropriate
class’s implementation of methods toString and getPaymentAmount. For instance, when
currentPayable refers to an Invoice during the first iteration of the for loop, class In-
voice’s toString and getPaymentAmount execute.

39
40 // return String representation of SalariedEmployee object
41 @Override
42 public String toString()
43 {
44 return String.format("salaried employee: %s\n%s: $%,.2f",
45 super.toString(), "weekly salary", getWeeklySalary());
46 } // end method toString
47 } // end class SalariedEmployee

1 // Fig. G.27: PayableInterfaceTest.java
2 // Tests interface Payable.
3
4 public class PayableInterfaceTest
5 {
6 public static void main(String[] args)
7 {
8 // create four-element Payable array
9

10
11 // populate array with objects that implement Payable
12 payableObjects[0] = new Invoice("01234", "seat", 2, 375.00);

Fig. G.27 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 1 of 2.)

Fig. G.26 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 2 of 2.)

Payable[] payableObjects = new Payable[4];

Z07_DEIT3397_02_SE_APPG.fm Page 623 Monday, July 7, 2014 9:15 AM

624 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

G.13 Common Interfaces of the Java API
In this section, we overview several common interfaces found in the Java API. The power
and flexibility of interfaces is used frequently throughout the Java API. These interfaces
are implemented and used in the same manner as the interfaces you create (e.g., interface
Payable in Section G.12.2). The Java API’s interfaces enable you to use your own classes
within the frameworks provided by Java, such as comparing objects of your own types and

13 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95);
14 payableObjects[2] =
15 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
16 payableObjects[3] =
17 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00);
18
19 System.out.println(
20 "Invoices and Employees processed polymorphically:\n");
21
22 // generically process each element in array payableObjects
23 for (Payable currentPayable : payableObjects)
24 {
25 // output currentPayable and its appropriate payment amount
26 System.out.printf("%s \n%s: $%,.2f\n\n",
27 ,
28 "payment due",);
29 } // end for
30 } // end main
31 } // end class PayableInterfaceTest

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
quantity: 2
price per item: $375.00
payment due: $750.00

invoice:
part number: 56789 (tire)
quantity: 4
price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00
payment due: $1,200.00

Fig. G.27 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 2 of 2.)

currentPayable.toString()
currentPayable.getPaymentAmount()

Z07_DEIT3397_02_SE_APPG.fm Page 624 Monday, July 7, 2014 9:15 AM

G.14 Wrap-Up 625

creating tasks that can execute concurrently with other tasks in the same program.
Figure G.28 overviews a few commonly used interfaces of the Java API.

G.14 Wrap-Up
We introduced inheritance—the ability to create classes by absorbing an existing class’s
members and embellishing them with new capabilities. You learned the notions of super-
classes and subclasses and used keyword extends to create a subclass that inherits members
from a superclass. We showed how to use the @Override annotation to prevent unintend-
ed overloading by indicating that a method overrides a superclass method. We introduced
the access modifier protected; subclass methods can directly access protected superclass
members. You learned how to use super to access overridden superclass members. You
also saw how constructors are used in inheritance hierarchies. Next, you learned about the
methods of class Object, the direct or indirect superclass of all Java classes.

We discussed polymorphism—the ability to process objects that share the same super-
class in a class hierarchy as if they’re all objects of the superclass. We considered how poly-
morphism makes systems extensible and maintainable, then demonstrated how to use
overridden methods to effect polymorphic behavior. We introduced abstract classes,
which allow you to provide an appropriate superclass from which other classes can inherit.
You learned that an abstract class can declare abstract methods that each subclass must

Interface Description

Comparable Java contains several comparison operators (e.g., <, <=, >, >=, ==, !=)
that allow you to compare primitive values. However, these operators
cannot be used to compare objects. Interface Comparable is used to
allow objects of a class that implements the interface to be compared
to one another. Interface Comparable is commonly used for ordering
objects in a collection such as an array.

Serializable An interface used to identify classes whose objects can be written to
(i.e., serialized) or read from (i.e., deserialized) some type of storage
(e.g., file on disk, database field) or transmitted across a network.

Runnable Implemented by any class for which objects of that class should be
able to execute in parallel using a technique called multithreading
(discussed in Appendix J). The interface contains one method, run,
which describes the behavior of an object when executed.

GUI event-listener
interfaces

You work with graphical user interfaces (GUIs) every day. In your web
browser, you might type the address of a website to visit, or you might
click a button to return to a previous site. The browser responds to
your interaction and performs the desired task. Your interaction is
known as an event, and the code that the browser uses to respond to
an event is known as an event handler.

SwingConstants Contains a set of constants used in GUI programming to position
GUI elements on the screen.

Fig. G.28 | Common interfaces of the Java API.

Z07_DEIT3397_02_SE_APPG.fm Page 625 Monday, July 7, 2014 9:15 AM

626 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

implement to become a concrete class and that a program can use variables of an abstract
class to invoke the subclasses’ implementations of abstract methods polymorphically. You
also learned how to determine an object’s type at execution time. We discussed the con-
cepts of final methods and classes. Finally, we discussed declaring and implementing an
interface as another way to achieve polymorphic behavior.

You should now be familiar with classes, objects, encapsulation, inheritance, poly-
morphism and interfaces—the most essential aspects of object-oriented programming.

Next, you’ll learn about exceptions, useful for handling errors during a program’s exe-
cution. Exception handling helps you build more robust programs.

Self-Review Exercises (Sections G.1–G.5)
G.1 Fill in the blanks in each of the following statements:

a) is a form of software reusability in which new classes acquire the members of
existing classes and embellish those classes with new capabilities.

b) A superclass’s members can be accessed in the superclass declaration and in
subclass declarations.

c) In a(n) relationship, an object of a subclass can also be treated as an object of
its superclass.

d) In a(n) relationship, a class object has references to objects of other classes as
members.

e) In single inheritance, a class exists in a(n) relationship with its subclasses.
f) A superclass’s members are accessible anywhere that the program has a refer-

ence to an object of that superclass or to an object of one of its subclasses.
g) When an object of a subclass is instantiated, a superclass is called implicitly or

explicitly.
h) Subclass constructors can call superclass constructors via the keyword.

G.2 State whether each of the following is true or false. If a statement is false, explain why.
a) Superclass constructors are not inherited by subclasses.
b) A has-a relationship is implemented via inheritance.
c) A Car class has an is-a relationship with the SteeringWheel and Brakes classes.
d) When a subclass redefines a superclass method by using the same signature, the subclass

is said to overload that superclass method.

Self-Review Exercises (Sections G.6–G.13)
G.3 Fill in the blanks in each of the following statements:

a) If a class contains at least one abstract method, it’s a(n) class.
b) Classes from which objects can be instantiated are called classes.
c) involves using a superclass variable to invoke methods on superclass and sub-

class objects, enabling you to “program in the general.”
d) Methods that are not interface methods and that do not provide implementations must

be declared using keyword .
e) Casting a reference stored in a superclass variable to a subclass type is called .

G.4 State whether each of the statements that follows is true or false. If false, explain why.
a) All methods in an abstract class must be declared as abstract methods.
b) Invoking a subclass-only method through a subclass variable is not allowed.
c) If a superclass declares an abstract method, a subclass must implement that method.

Z07_DEIT3397_02_SE_APPG.fm Page 626 Friday, June 20, 2014 7:20 PM

 Answers to Self-Review Exercises (Sections G.1–G.5) 627

d) An object of a class that implements an interface may be thought of as an object of that
interface type.

Answers to Self-Review Exercises (Sections G.1–G.5)
G.1 a) Inheritance. b) public and protected. c) is-a or inheritance. d) has-a or composition.
e) hierarchical. f) public. g) constructor. h) super.

G.2 a) True. b) False. A has-a relationship is implemented via composition. An is-a relationship
is implemented via inheritance. c) False. This is an example of a has-a relationship. Class Car has an
is-a relationship with class Vehicle. d) False. This is known as overriding, not overloading—an
overloaded method has the same name, but a different signature.

Answers to Self-Review Exercises (Sections G.6–G.13)
G.3 a) abstract. b) concrete. c) Polymorphism. d) abstract. e) downcasting.

G.4 a) False. An abstract class can include methods with implementations and abstract meth-
ods. b) False. Trying to invoke a subclass-only method with a superclass variable is not allowed.
c) False. Only a concrete subclass must implement the method. d) True.

Exercises (Sections G.1–G.5)
G.5 What is an Object class? Explain its clone, equals and finalize methods along with each
of their significance.

G.6 Draw an inheritance hierarchy for students at a university similar to the hierarchy shown in
Fig. G.2. Use Student as the superclass of the hierarchy, then extend Student with classes Under-
graduateStudent and GraduateStudent. Continue to extend the hierarchy as deep (i.e., as many lev-
els) as possible. For example, Freshman, Sophomore, Junior and Senior might extend
UndergraduateStudent, and DoctoralStudent and MastersStudent might be subclasses of Gradu-
ateStudent. After drawing the hierarchy, discuss the relationships that exist between the classes.
[Note: You do not need to write any code for this exercise.]

G.7 Some programmers prefer not to use protected access, because they believe it breaks the
encapsulation of the superclass. Discuss the relative merits of using protected access vs. using pri-
vate access in superclasses.

G.8 Write an inheritance hierarchy for classes Quadrilateral, Trapezoid, Parallelogram,
Rectangle and Square. Use Quadrilateral as the superclass of the hierarchy. Create and use a Point
class to represent the points in each shape. Make the hierarchy as deep (i.e., as many levels) as pos-
sible. Specify the instance variables and methods for each class. The private instance variables of
Quadrilateral should be the x-y coordinate pairs for the four endpoints of the Quadrilateral.
Write a program that instantiates objects of your classes and outputs each object’s area (except Quad-
rilateral).

Exercises (Sections G.6–G.13)
G.9 How does polymorphism enable you to program “in the general” rather than “in the spe-
cific”? Discuss the key advantages of programming “in the general.”

G.10 What are abstract methods? Describe the circumstances in which an abstract method would
be appropriate.

G.11 Describe the relationship between superclasses and subclasses.

Z07_DEIT3397_02_SE_APPG.fm Page 627 Monday, July 7, 2014 9:15 AM

628 Appendix G Object-Oriented Programming: Inheritance and Polymorphism

G.12 Discuss four ways in which you can assign superclass and subclass references to variables of
superclass and subclass types.

G.13 Compare and contrast abstract classes and interfaces. Why would you use an abstract class?
Why would you use an interface?

G.14 (Payroll System Modification) Modify the payroll system of Figs. G.16–G.21 to include
private instance variable birthDate in class Employee. Use class Date of Fig. F.7 to represent an em-
ployee’s birthday. Add get methods to class Date. Assume that payroll is processed once per month.
Create an array of Employee variables to store references to the various employee objects. In a loop,
calculate the payroll for each Employee (polymorphically), and add a $100.00 bonus to the person’s
payroll amount if the current month is the one in which the Employee’s birthday occurs.

G.15 (Payroll System Modification) Modify the payroll system of Figs. G.16–G.21 to include an
additional Employee subclass PieceWorker that represents an employee whose pay is based on the
number of pieces of merchandise produced. Class PieceWorker should contain private instance
variables wage (to store the employee’s wage per piece) and pieces (to store the number of pieces
produced). Provide a concrete implementation of method earnings in class PieceWorker that cal-
culates the employee’s earnings by multiplying the number of pieces produced by the wage per
piece. Create an array of Employee variables to store references to objects of each concrete class in
the new Employee hierarchy. For each Employee, display its String representation and earnings.

G.16 (Accounts Payable System Modification) In this exercise, we modify the accounts payable
application of Figs. G.23–G.27 to include the complete functionality of the payroll application of
Figs. G.16–G.21. The application should still process two Invoice objects, but now should process
one object of each of the four Employee subclasses. If the object currently being processed is a Base-
PlusCommissionEmployee, the application should increase the BasePlusCommissionEmployee’s base
salary by 10%. Finally, the application should output the payment amount for each object. Com-
plete the following steps to create the new application:

a) Modify classes HourlyEmployee (Fig. G.18) and CommissionEmployee (Fig. G.19) to
place them in the Payable hierarchy as subclasses of the version of Employee (Fig. G.25)
that implements Payable. [Hint: Change the name of method earnings to getPayment-
Amount in each subclass so that the class satisfies its inherited contract with interface
Payable.]

b) Modify class BasePlusCommissionEmployee (Fig. G.20) such that it extends the version
of class CommissionEmployee created in part (a).

c) Modify PayableInterfaceTest (Fig. G.27) to polymorphically process two Invoices,
one SalariedEmployee, one HourlyEmployee, one CommissionEmployee and one Base-
PlusCommissionEmployee. First output a String representation of each Payable object.
Next, if an object is a BasePlusCommissionEmployee, increase its base salary by 10%. Fi-
nally, output the payment amount for each Payable object.

G.17 (Accounts Payable System Modification) It’s possible to include the functionality of the pay-
roll application (Figs. G.16–G.21) in the accounts payable application without modifying Employee
subclasses SalariedEmployee, HourlyEmployee, CommissionEmployee or BasePlusCommission-

Emplyee. To do so, you can modify class Employee (Fig. G.16) to implement interface Payable and
declare method getPaymentAmount to invoke method earnings. Method getPaymentAmount would
then be inherited by the subclasses in the Employee hierarchy. When getPaymentAmount is called for
a particular subclass object, it polymorphically invokes the appropriate earnings method for that
subclass. Reimplement Exercise G.16 using the original Employee hierarchy from the payroll appli-
cation of Figs. G.16–G.21. Modify class Employee as described in this exercise, and do not modify
any of class Employee’s subclasses.

Z07_DEIT3397_02_SE_APPG.fm Page 628 Monday, July 7, 2014 9:15 AM

HException Handling: A
Deeper Look

O b j e c t i v e s
In this appendix you’ll:

■ Learn what exceptions are
and how they’re handled.

■ Understand when to use
exception handling.

■ Use try blocks to delimit
code in which exceptions
might occur.

■ throw exceptions to indicate
a problem.

■ Use catch blocks to specify
exception handlers.

■ Use the finally block to
release resources.

■ Become familiar with the
exception class hierarchy.

Z08_DEIT3397_02_SE_APPH.fm Page 629 Tuesday, July 8, 2014 8:37 AM

630 Appendix H Exception Handling: A Deeper Look

H.1 Introduction
An exception is an indication of a problem that occurs during a program’s execution. Ex-
ception handling enables you to create applications that can resolve (or handle) exceptions.
In many cases, handling an exception allows a program to continute executing as if no
problem had been encountered. The features presented in this appendix help you write ro-
bust programs that can deal with problems and continue executing or terminate gracefully.

H.2 Example: Divide by Zero without Exception Handling
First we demonstrate what happens when errors arise in an application that does not use
exception handling. Figure H.1 prompts the user for two integers and passes them to
method quotient, which calculates the integer quotient and returns an int result. In this
example, you’ll see that exceptions are thrown (i.e., the exception occurs) when a method
detects a problem and is unable to handle it.

H.1 Introduction
H.2 Example: Divide by Zero without

Exception Handling
H.3 Example: Handling

ArithmeticExceptions and
InputMismatchExceptions

H.4 When to Use Exception Handling

H.5 Java Exception Hierarchy
H.6 finally Block
H.7 Stack Unwinding and Obtaining

Information from an Exception
Object

H.8 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1 // Fig. H.1: DivideByZeroNoExceptionHandling.java
2 // Integer division without exception handling.
3 import java.util.Scanner;
4
5 public class DivideByZeroNoExceptionHandling
6 {
7 // demonstrates throwing an exception when a divide-by-zero occurs
8 public static int quotient(int numerator, int denominator)
9 {

10
11 } // end method quotient
12
13 public static void main(String[] args)
14 {
15 Scanner scanner = new Scanner(System.in); // scanner for input
16
17 System.out.print("Please enter an integer numerator: ");
18 int numerator = scanner.nextInt();
19 System.out.print("Please enter an integer denominator: ");
20
21

Fig. H.1 | Integer division without exception handling. (Part 1 of 2.)

return numerator / denominator; // possible division by zero

int denominator = scanner.nextInt();

Z08_DEIT3397_02_SE_APPH.fm Page 630 Monday, July 7, 2014 9:34 AM

H.2 Example: Divide by Zero without Exception Handling 631

The first sample execution in Fig. H.1 shows a successful division. In the second exe-
cution, the user enters the value 0 as the denominator. Several lines of information are dis-
played in response to this invalid input. This information is known as a stack trace, which
includes the name of the exception (java.lang.ArithmeticException) in a descriptive
message that indicates the problem that occurred and the method-call stack (i.e., the call
chain) at the time it occurred. The stack trace includes the path of execution that led to the
exception method by method. This helps you debug the program. The first line specifies
that an ArithmeticException has occurred. The text after the name of the exception (“/
by zero”) indicates that this exception occurred as a result of an attempt to divide by zero.
Java does not allow division by zero in integer arithmetic. When this occurs, Java throws an
ArithmeticException. ArithmeticExceptions can arise from a number of different prob-
lems in arithmetic, so the extra data (“/ by zero”) provides more specific information. Java
does allow division by zero with floating-point values. Such a calculation results in the value
positive or negative infinity, which is represented in Java as a floating-point value (but dis-
plays as the string Infinity or -Infinity). If 0.0 is divided by 0.0, the result is NaN (not
a number), which is also represented in Java as a floating-point value (but displays as NaN).

22 int result = quotient(numerator, denominator);
23 System.out.printf(
24 "\nResult: %d / %d = %d\n", numerator, denominator, result);
25 } // end main
26 } // end class DivideByZeroNoExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0
Exception in thread "main" java.lang.ArithmeticException: / by zero
 at DivideByZeroNoExceptionHandling.quotient(
 DivideByZeroNoExceptionHandling.java:10)
 at DivideByZeroNoExceptionHandling.main(
 DivideByZeroNoExceptionHandling.java:22)

Please enter an integer numerator: 100
Please enter an integer denominator: hello
Exception in thread "main" java.util.InputMismatchException
 at java.util.Scanner.throwFor(Unknown Source)
 at java.util.Scanner.next(Unknown Source)
 at java.util.Scanner.nextInt(Unknown Source)
 at java.util.Scanner.nextInt(Unknown Source)
 at DivideByZeroNoExceptionHandling.main(
 DivideByZeroNoExceptionHandling.java:20)

Fig. H.1 | Integer division without exception handling. (Part 2 of 2.)

Z08_DEIT3397_02_SE_APPH.fm Page 631 Monday, July 7, 2014 9:34 AM

632 Appendix H Exception Handling: A Deeper Look

Starting from the last line of the stack trace, we see that the exception was detected in
line 22 of method main. Each line of the stack trace contains the class name and method
(DivideByZeroNoExceptionHandling.main) followed by the file name and line number
(DivideByZeroNoExceptionHandling.java:22). Moving up the stack trace, we see that
the exception occurs in line 10, in method quotient. The top row of the call chain indi-
cates the throw point—the initial point at which the exception occurs. The throw point
of this exception is in line 10 of method quotient.

In the third execution, the user enters the string "hello" as the denominator. Notice
again that a stack trace is displayed. This informs us that an InputMismatchException has
occurred (package java.util). Our prior examples that read numeric values from the user
assumed that the user would input a proper integer value. However, users sometimes make
mistakes and input noninteger values. An InputMismatchException occurs when Scanner
method nextInt receives a string that does not represent a valid integer. Starting from
the end of the stack trace, we see that the exception was detected in line 20 of method
main. Moving up the stack trace, we see that the exception occurred in method nextInt.
Notice that in place of the file name and line number, we’re provided with the text
Unknown Source. This means that the so-called debugging symbols that provide the file-
name and line number information for that method’s class were not available to the
JVM—this is typically the case for the classes of the Java API. Many IDEs have access to
the Java API source code and will display file names and line numbers in stack traces.

In the sample executions of Fig. H.1 when exceptions occur and stack traces are dis-
played, the program also exits. This does not always occur in Java—sometimes a program
may continue even though an exception has occurred and a stack trace has been printed.
In such cases, the application may produce unexpected results. For example, a graphical
user interface (GUI) application will often continue executing. The next section demon-
strates how to handle these exceptions.

In Fig. H.1 both types of exceptions were detected in method main. In the next
example, we’ll see how to handle these exceptions to enable the program to run to normal
completion.

H.3 Example: Handling ArithmeticExceptions and
InputMismatchExceptions
The application in Fig. H.2, which is based on Fig. H.1, uses exception handling to pro-
cess any ArithmeticExceptions and InputMistmatchExceptions that arise. The applica-
tion still prompts the user for two integers and passes them to method quotient, which
calculates the quotient and returns an int result. This version of the application uses ex-
ception handling so that if the user makes a mistake, the program catches and handles (i.e.,
deals with) the exception—in this case, allowing the user to enter the input again.

1 // Fig. H.2: DivideByZeroWithExceptionHandling.java
2 // Handling ArithmeticExceptions and InputMismatchExceptions.
3
4 import java.util.Scanner;

Fig. H.2 | Handling ArithmeticExceptions and InputMismatchExceptions. (Part 1 of 3.)

import java.util.InputMismatchException;

Z08_DEIT3397_02_SE_APPH.fm Page 632 Monday, July 7, 2014 9:34 AM

H.3 ArithmeticExceptions and InputMismatchExceptions 633

5
6 public class DivideByZeroWithExceptionHandling
7 {
8 // demonstrates throwing an exception when a divide-by-zero occurs
9 public static int quotient(int numerator, int denominator)

10
11 {
12 return numerator / denominator; // possible division by zero
13 } // end method quotient
14
15 public static void main(String[] args)
16 {
17 Scanner scanner = new Scanner(System.in); // scanner for input
18 boolean continueLoop = true; // determines if more input is needed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 } // end main
50 } // end class DivideByZeroWithExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Fig. H.2 | Handling ArithmeticExceptions and InputMismatchExceptions. (Part 2 of 3.)

throws ArithmeticException

do
{
 try // read two numbers and calculate quotient
 {
 System.out.print("Please enter an integer numerator: ");
 int numerator = scanner.nextInt();
 System.out.print("Please enter an integer denominator: ");
 int denominator = scanner.nextInt();

 int result = quotient(numerator, denominator);
 System.out.printf("\nResult: %d / %d = %d\n", numerator,
 denominator, result);
 continueLoop = false; // input successful; end looping
 } // end try
 catch (InputMismatchException inputMismatchException)
 {
 System.err.printf("\nException: %s\n",
 inputMismatchException);
 scanner.nextLine(); // discard input so user can try again
 System.out.println(
 "You must enter integers. Please try again.\n");
 } // end catch
 catch (ArithmeticException arithmeticException)
 {
 System.err.printf("\nException: %s\n", arithmeticException);
 System.out.println(
 "Zero is an invalid denominator. Please try again.\n");
 } // end catch
} while (continueLoop); // end do...while

Z08_DEIT3397_02_SE_APPH.fm Page 633 Monday, July 7, 2014 9:34 AM

634 Appendix H Exception Handling: A Deeper Look

The first sample execution in Fig. H.2 is a successful one that does not encounter any
problems. In the second execution the user enters a zero denominator, and an Arithmet-
icException exception occurs. In the third execution the user enters the string "hello"
as the denominator, and an InputMismatchException occurs. For each exception, the user
is informed of the mistake and asked to try again, then is prompted for two new integers.
In each sample execution, the program runs successfully to completion.

Class InputMismatchException is imported in line 3. Class ArithmeticException
does not need to be imported because it’s in package java.lang. Line 18 creates the
boolean variable continueLoop, which is true if the user has not yet entered valid input.
Lines 20–48 repeatedly ask users for input until a valid input is received.

Enclosing Code in a try Block
Lines 22–33 contain a try block, which encloses the code that might throw an exception
and the code that should not execute if an exception occurs (i.e., if an exception occurs, the
remaining code in the try block will be skipped). A try block consists of the keyword try
followed by a block of code enclosed in curly braces. [Note: The term “try block” some-
times refers only to the block of code that follows the try keyword (not including the try
keyword itself). For simplicity, we use the term “try block” to refer to the block of code
that follows the try keyword, as well as the try keyword.] The statements that read the in-
tegers from the keyboard (lines 25 and 27) each use method nextInt to read an int value.
Method nextInt throws an InputMismatchException if the value read in is not an integer.

The division that can cause an ArithmeticException is not performed in the try
block. Rather, the call to method quotient (line 29) invokes the code that attempts the
division (line 12); the JVM throws an ArithmeticException object when the denomi-
nator is zero.

Please enter an integer numerator: 100
Please enter an integer denominator: 0

Exception: java.lang.ArithmeticException: / by zero
Zero is an invalid denominator. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: hello

Exception: java.util.InputMismatchException
You must enter integers. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Fig. H.2 | Handling ArithmeticExceptions and InputMismatchExceptions. (Part 3 of 3.)

Z08_DEIT3397_02_SE_APPH.fm Page 634 Monday, July 7, 2014 9:34 AM

H.3 ArithmeticExceptions and InputMismatchExceptions 635

Catching Exceptions
The try block in this example is followed by two catch blocks—one that handles an In-
putMismatchException (lines 34–41) and one that handles an ArithmeticException
(lines 42–47). A catch block (also called a catch clause or exception handler) catches (i.e.,
receives) and handles an exception. A catch block begins with the keyword catch and is
followed by a parameter in parentheses (called the exception parameter, discussed shortly)
and a block of code enclosed in curly braces. [Note: The term “catch clause” is sometimes
used to refer to the keyword catch followed by a block of code, whereas the term “catch
block” refers to only the block of code following the catch keyword, but not including it.
For simplicity, we use the term “catch block” to refer to the block of code following the
catch keyword, as well as the keyword itself.]

At least one catch block or a finally block (discussed in Section H.6) must imme-
diately follow the try block. Each catch block specifies in parentheses an exception
parameter that identifies the exception type the handler can process. When an exception
occurs in a try block, the catch block that executes is the first one whose type matches the
type of the exception that occurred (i.e., the type in the catch block matches the thrown
exception type exactly or is a superclass of it). The exception parameter’s name enables the
catch block to interact with a caught exception object—e.g., to implicitly invoke the
caught exception’s toString method (as in lines 37 and 44), which displays basic infor-
mation about the exception. Notice that we use the System.err (standard error stream)
object to output error messages. By default, System.err’s print methods, like those of
System.out, display data to the command prompt.

Line 38 of the first catch block calls Scanner method nextLine. Because an Input-
MismatchException occurred, the call to method nextInt never successfully read in the
user’s data—so we read that input with a call to method nextLine. We do not do anything
with the input at this point, because we know that it’s invalid. Each catch block displays
an error message and asks the user to try again. After either catch block terminates, the
user is prompted for input. We’ll soon take a deeper look at how this flow of control works
in exception handling.

An uncaught exception is one for which there are no matching catch blocks. You saw
uncaught exceptions in the second and third outputs of Fig. H.1. Recall that when excep-
tions occurred in that example, the application terminated early (after displaying the
exception’s stack trace). This does not always occur as a result of uncaught exceptions. Java

Software Engineering Observation H.1
Exceptions may surface through explicitly mentioned code in a try block, through calls to
other methods, through deeply nested method calls initiated by code in a try block or from
the Java Virtual Machine as it executes Java bytecodes.

Common Programming Error H.1
It’s a syntax error to place code between a try block and its corresponding catch blocks.

Common Programming Error H.2
Each catch block can have only a single parameter—specifying a comma-separated list of
exception parameters is a syntax error.

Z08_DEIT3397_02_SE_APPH.fm Page 635 Monday, July 7, 2014 9:34 AM

636 Appendix H Exception Handling: A Deeper Look

uses a “multithreaded” model of program execution—each thread is a parallel activity.
One program can have many threads. If a program has only one thread, an uncaught
exception will cause the program to terminate. If a program has multiple threads, an
uncaught exception will terminate only the thread where the exception occurred. In such
programs, however, certain threads may rely on others, and if one thread terminates due
to an uncaught exception, there may be adverse effects to the rest of the program.
Appendix J discusses these issues.

Termination Model of Exception Handling
If an exception occurs in a try block (such as an InputMismatchException being thrown
as a result of the code at line 25 of Fig. H.2), the try block terminates immediately and
program control transfers to the first of the following catch blocks in which the exception
parameter’s type matches the thrown exception’s type. In Fig. H.2, the first catch block
catches InputMismatchExceptions (which occur if invalid input is entered) and the sec-
ond catch block catches ArithmeticExceptions (which occur if an attempt is made to di-
vide by zero). After the exception is handled, program control does not return to the throw
point, because the try block has expired (and its local variables have been lost). Rather,
control resumes after the last catch block. This is known as the termination model of ex-
ception handling. Some languages use the resumption model of exception handling, in
which, after an exception is handled, control resumes just after the throw point.

Notice that we name our exception parameters (inputMismatchException and
arithmeticException) based on their type. Java programmers often simply use the letter
e as the name of their exception parameters.

After executing a catch block, this program’s flow of control proceeds to the first
statement after the last catch block (line 48 in this case). The condition in the do…while

statement is true (variable continueLoop contains its initial value of true), so control
returns to the beginning of the loop and the user is once again prompted for input. This
control statement will loop until valid input is entered. At that point, program control
reaches line 32, which assigns false to variable continueLoop. The try block then termi-
nates. If no exceptions are thrown in the try block, the catch blocks are skipped and con-
trol continues with the first statement after the catch blocks (we’ll learn about another
possibility when we discuss the finally block in Section H.6). Now the condition for the
do…while loop is false, and method main ends.

The try block and its corresponding catch and/or finally blocks form a try state-
ment. Do not confuse the terms “try block” and “try statement”—the latter includes the
try block as well as the following catch blocks and/or finally block.

As with any other block of code, when a try block terminates, local variables declared
in the block go out of scope and are no longer accessible; thus, the local variables of a try
block are not accessible in the corresponding catch blocks. When a catch block termi-
nates, local variables declared within the catch block (including the exception parameter
of that catch block) also go out of scope and are destroyed. Any remaining catch blocks
in the try statement are ignored, and execution resumes at the first line of code after the
try…catch sequence—this will be a finally block, if one is present.

Using the throws Clause
Now let’s examine method quotient (Fig. H.2, lines 9–13). The portion of the method
declaration located at line 10 is known as a throws clause. It specifies the exceptions the

Z08_DEIT3397_02_SE_APPH.fm Page 636 Monday, July 7, 2014 9:34 AM

H.4 When to Use Exception Handling 637

method throws. This clause appears after the method’s parameter list and before the meth-
od’s body. It contains a comma-separated list of the exceptions that the method will throw
if various problems occur. Such exceptions may be thrown by statements in the method’s
body or by methods called from the body. A method can throw exceptions of the classes
listed in its throws clause or of their subclasses. We’ve added the throws clause to this ap-
plication to indicate to the rest of the program that this method may throw an Arithmet-
icException. Clients of method quotient are thus informed that the method may throw
an ArithmeticException. You’ll learn more about the throws clause in Section H.5.

When line 12 executes, if the denominator is zero, the JVM throws an ArithmeticEx-
ception object. This object will be caught by the catch block at lines 42–47, which dis-
plays basic information about the exception by implicitly invoking the exception’s
toString method, then asks the user to try again.

If the denominator is not zero, method quotient performs the division and returns
the result to the point of invocation of method quotient in the try block (line 29). Lines
30–31 display the result of the calculation and line 32 sets continueLoop to false. In this
case, the try block completes successfully, so the program skips the catch blocks and fails
the condition at line 48, and method main completes execution normally.

When quotient throws an ArithmeticException, quotient terminates and does not
return a value, and quotient’s local variables go out of scope (and are destroyed). If quo-
tient contained local variables that were references to objects and there were no other ref-
erences to those objects, the objects would be marked for garbage collection. Also, when
an exception occurs, the try block from which quotient was called terminates before lines
30–32 can execute. Here, too, if local variables were created in the try block prior to the
exception’s being thrown, these variables would go out of scope.

If an InputMismatchException is generated by lines 25 or 27, the try block termi-
nates and execution continues with the catch block at lines 34–41. In this case, method
quotient is not called. Then method main continues after the last catch block (line 48).

H.4 When to Use Exception Handling
Exception handling is designed to process synchronous errors, which occur when a state-
ment executes. Common examples we’ll see throughout the book are out-of-range array
indices, arithmetic overflow (i.e., a value outside the representable range of values), divi-
sion by zero, invalid method parameters, thread interruption (as we’ll see in Appendix J)
and unsuccessful memory allocation (due to lack of memory). Exception handling is not
designed to process problems associated with asynchronous events (e.g., disk I/O comple-
tions, network message arrivals, mouse clicks and keystrokes), which occur in parallel with,
and independent of, the program’s flow of control.

H.5 Java Exception Hierarchy
All Java exception classes inherit directly or indirectly from class Exception, forming an
inheritance hierarchy. You can extend this hierarchy with your own exception classes.
Class Throwable (a subclass of Object) is the superclass of class Exception. Only Throw-
able objects can be used with the exception-handling mechanism. Class Throwable has
two subclasses: Exception and Error. Class Exception and its subclasses—for instance,
RuntimeException (package java.lang) and IOException (package java.io)—represent

Z08_DEIT3397_02_SE_APPH.fm Page 637 Monday, July 7, 2014 9:34 AM

638 Appendix H Exception Handling: A Deeper Look

exceptional situations that can occur in a Java program and that can be caught by the ap-
plication. Class Error and its subclasses represent abnormal situations that happen in the
JVM. Most Errors happen infrequently and should not be caught by applications—it’s usually
not possible for applications to recover from Errors.

Checked vs. Unchecked Exceptions
Java distinguishes between checked exceptions and unchecked exceptions. This distinc-
tion is important, because the Java compiler enforces a catch-or-declare requirement for
checked exceptions. An exception’s type determines whether it’s checked or unchecked.
All exception types that are direct or indirect subclasses of class RuntimeException (pack-
age java.lang) are unchecked exceptions. These are typically caused by defects in your
program’s code. Examples of unchecked exceptions include ArrayIndexOutOfBoundsEx-
ceptions (discussed in Appendix E) and ArithmeticExceptions. All classes that inherit
from class Exception but not class RuntimeException are considered to be checked excep-
tions. Such exceptions are typically caused by conditions that are not under the control of
the program—for example, in file processing, the program can’t open a file because the file
does not exist. Classes that inherit from class Error are considered to be unchecked.

The compiler checks each method call and method declaration to determine whether
the method throws checked exceptions. If so, the compiler verifies that the checked excep-
tion is caught or is declared in a throws clause. We show how to catch and declare checked
exceptions in the next several examples. Recall from Section H.3 that the throws clause
specifies the exceptions a method throws. Such exceptions are not caught in the method’s
body. To satisfy the catch part of the catch-or-declare requirement, the code that generates
the exception must be wrapped in a try block and must provide a catch handler for the
checked-exception type (or one of its superclass types). To satisfy the declare part of the
catch-or-declare requirement, the method containing the code that generates the excep-
tion must provide a throws clause containing the checked-exception type after its param-
eter list and before its method body. If the catch-or-declare requirement is not satisfied,
the compiler will issue an error message indicating that the exception must be caught or
declared. This forces you to think about the problems that may occur when a method that
throws checked exceptions is called.

Software Engineering Observation H.2
You must deal with checked exceptions. This results in more robust code than would be
created if you were able to simply ignore the exceptions.

Common Programming Error H.3
A compilation error occurs if a method explicitly attempts to throw a checked exception
(or calls another method that throws a checked exception) and that exception is not listed
in that method’s throws clause.

Common Programming Error H.4
If a subclass method overrides a superclass method, it’s an error for the subclass method to
list more exceptions in its throws clause than the overridden superclass method does. How-
ever, a subclass’s throws clause can contain a subset of a superclass’s throws list.

Z08_DEIT3397_02_SE_APPH.fm Page 638 Monday, July 7, 2014 9:34 AM

H.5 Java Exception Hierarchy 639

Unlike checked exceptions, the Java compiler does not check the code to determine
whether an unchecked exception is caught or declared. Unchecked exceptions typically
can be prevented by proper coding. For example, the unchecked ArithmeticException
thrown by method quotient (lines 9–13) in Fig. H.2 can be avoided if the method
ensures that the denominator is not zero before attempting to perform the division.
Unchecked exceptions are not required to be listed in a method’s throws clause—even if
they are, it’s not required that such exceptions be caught by an application.

Catching Subclass Exceptions
If a catch handler is written to catch superclass-type exception objects, it can also catch all
objects of that class’s subclasses. This enables catch to handle related errors with a concise
notation and allows for polymorphic processing of related exceptions. You can certainly
catch each subclass type individually if those exceptions require different processing.

Only the First Matching catch Executes
If there are multiple catch blocks that match a particular exception type, only the first
matching catch block executes when an exception of that type occurs. It’s a compilation
error to catch the exact same type in two different catch blocks associated with a particular
try block. However, there may be several catch blocks that match an exception—i.e., sev-
eral catch blocks whose types are the same as the exception type or a superclass of that
type. For instance, we could follow a catch block for type ArithmeticException with a
catch block for type Exception—both would match ArithmeticExceptions, but only
the first matching catch block would execute.

Software Engineering Observation H.3
If your method calls other methods that throw checked exceptions, those exceptions must
be caught or declared in your method. If an exception can be handled meaningfully in a
method, the method should catch the exception rather than declare it.

Software Engineering Observation H.4
Although the compiler does not enforce the catch-or-declare requirement for unchecked ex-
ceptions, provide appropriate exception-handling code when it’s known that such excep-
tions might occur. For example, a program should process the NumberFormatException
from Integer method parseInt, even though NumberFormatException (an indirect sub-
class of RuntimeException) is an unchecked exception type. This makes your programs
more robust.

Error-Prevention Tip H.1
Catching subclass types individually is subject to error if you forget to test for one or more
of the subclass types explicitly; catching the superclass guarantees that objects of all sub-
classes will be caught. Positioning a catch block for the superclass type after all other sub-
class catch blocks ensures that all subclass exceptions are eventually caught.

Common Programming Error H.5
Placing a catch block for a superclass exception type before other catch blocks that catch
subclass exception types would prevent those catch blocks from executing, so a compilation
error occurs.

Z08_DEIT3397_02_SE_APPH.fm Page 639 Monday, July 7, 2014 9:34 AM

640 Appendix H Exception Handling: A Deeper Look

H.6 finally Block
Programs that obtain certain types of resources must return them to the system explicitly
to avoid so-called resource leaks. In programming languages such as C and C++, the most
common kind of resource leak is a memory leak. Java performs automatic garbage collec-
tion of memory no longer used by programs, thus avoiding most memory leaks. However,
other types of resource leaks can occur. For example, files, database connections and net-
work connections that are not closed properly after they’re no longer needed might not be
available for use in other programs.

The finally block (which consists of the finally keyword, followed by code
enclosed in curly braces), sometimes referred to as the finally clause, is optional. If it’s
present, it’s placed after the last catch block. If there are no catch blocks, the finally
block immediately follows the try block.

The finally block will execute whether or not an exception is thrown in the corre-
sponding try block. The finally block also will execute if a try block exits by using a
return, break or continue statement or simply by reaching its closing right brace. The
finally block will not execute if the application exits early from a try block by calling
method System.exit. This method immediately terminates an application.

Because a finally block almost always executes, it typically contains resource-release
code. Suppose a resource is allocated in a try block. If no exception occurs, the catch
blocks are skipped and control proceeds to the finally block, which frees the resource.
Control then proceeds to the first statement after the finally block. If an exception
occurs in the try block, the try block terminates. If the program catches the exception in
one of the corresponding catch blocks, it processes the exception, then the finally block
releases the resource and control proceeds to the first statement after the finally block. If
the program doesn’t catch the exception, the finally block still releases the resource and
an attempt is made to catch the exception in a calling method.

If an exception that occurs in a try block cannot be caught by one of that try block’s
catch handlers, the program skips the rest of the try block and control proceeds to the
finally block. Then the program passes the exception to the next outer try block—nor-

Error-Prevention Tip H.2
A subtle issue is that Java does not entirely eliminate memory leaks. Java will not garbage-
collect an object until there are no remaining references to it. Thus, if you erroneously keep
references to unwanted objects, memory leaks can occur. To help avoid this problem, set
reference-type variables to null when they’re no longer needed.

Error-Prevention Tip H.3
The finally block is an ideal place to release resources acquired in a try block (such as
opened files), which helps eliminate resource leaks.

Performance Tip H.1
Always release a resource explicitly and at the earliest possible moment at which it’s no lon-
ger needed. This makes resources available for reuse as early as possible, thus improving
resource utilization.

Z08_DEIT3397_02_SE_APPH.fm Page 640 Monday, July 7, 2014 9:34 AM

H.6 finally Block 641

mally in the calling method—where an associated catch block might catch it. This process
can occur through many levels of try blocks. Also, the exception could go uncaught.

If a catch block throws an exception, the finally block still executes. Then the
exception is passed to the next outer try block—again, normally in the calling method.

Figure H.3 demonstrates that the finally block executes even if an exception is not
thrown in the corresponding try block. The program contains static methods main
(lines 6–18), throwException (lines 21–44) and doesNotThrowException (lines 47–64).
Methods throwException and doesNotThrowException are declared static, so main can
call them directly without instantiating a UsingExceptions object.

1 // Fig. H.3: UsingExceptions.java
2 // try...catch...finally exception handling mechanism.
3
4 public class UsingExceptions
5 {
6 public static void main(String[] args)
7 {
8 try
9 {

10 throwException(); // call method throwException
11 } // end try
12 catch (Exception exception) // exception thrown by throwException
13 {
14 System.err.println("Exception handled in main");
15 } // end catch
16
17 doesNotThrowException();
18 } // end main
19
20 // demonstrate try...catch...finally
21 public static void throwException() throws Exception
22 {
23 try // throw an exception and immediately catch it
24 {
25 System.out.println("Method throwException");
26
27 } // end try
28 catch (Exception exception) // catch exception thrown in try
29 {
30 System.err.println(
31 "Exception handled in method throwException");
32
33
34 // code here would not be reached; would cause compilation errors
35
36 } // end catch
37
38
39
40
41

Fig. H.3 | try…catch…finally exception-handling mechanism. (Part 1 of 2.)

throw new Exception(); // generate exception

throw exception; // rethrow for further processing

finally // executes regardless of what occurs in try...catch
{
 System.err.println("Finally executed in throwException");
} // end finally

Z08_DEIT3397_02_SE_APPH.fm Page 641 Monday, July 7, 2014 9:34 AM

642 Appendix H Exception Handling: A Deeper Look

System.out and System.err are streams—sequences of bytes. While System.out
(known as the standard output stream) displays a program’s output, System.err (known
as the standard error stream) displays a program’s errors. Output from these streams can
be redirected (i.e., sent to somewhere other than the command prompt, such as to a file).
Using two different streams enables you to easily separate error messages from other
output. For instance, data output from System.err could be sent to a log file, while data
output from System.out can be displayed on the screen. For simplicity, this appendix will
not redirect output from System.err, but will display such messages to the command
prompt. You’ll learn more about streams in Appendix J.

Throwing Exceptions Using the throw Statement
Method main (Fig. H.3) begins executing, enters its try block and immediately calls
method throwException (line 10). Method throwException throws an Exception. The
statement at line 26 is known as a throw statement—it’s executed to indicate that an ex-
ception has occurred. So far, you’ve only caught exceptions thrown by called methods.

42 // code here would not be reached; would cause compilation errors
43
44 } // end method throwException
45
46 // demonstrate finally when no exception occurs
47 public static void doesNotThrowException()
48 {
49 try // try block does not throw an exception
50 {
51 System.out.println("Method doesNotThrowException");
52 } // end try
53 catch (Exception exception) // does not execute
54 {
55 System.err.println(exception);
56 } // end catch
57
58
59
60
61
62
63 System.out.println("End of method doesNotThrowException");
64 } // end method doesNotThrowException
65 } // end class UsingExceptions

Method throwException
Exception handled in method throwException
Finally executed in throwException
Exception handled in main
Method doesNotThrowException
Finally executed in doesNotThrowException
End of method doesNotThrowException

Fig. H.3 | try…catch…finally exception-handling mechanism. (Part 2 of 2.)

finally // executes regardless of what occurs in try...catch
{
 System.err.println(
 "Finally executed in doesNotThrowException");
} // end finally

Z08_DEIT3397_02_SE_APPH.fm Page 642 Monday, July 7, 2014 9:34 AM

H.6 finally Block 643

You can throw exceptions yourself by using the throw statement. Just as with exceptions
thrown by the Java API’s methods, this indicates to client applications that an error has
occurred. A throw statement specifies an object to be thrown. The operand of a throw can
be of any class derived from class Throwable.

Rethrowing Exceptions
Line 32 of Fig. H.3 rethrows the exception. Exceptions are rethrown when a catch block,
upon receiving an exception, decides either that it cannot process that exception or that it
can only partially process it. Rethrowing an exception defers the exception handling (or
perhaps a portion of it) to another catch block associated with an outer try statement. An
exception is rethrown by using the throw keyword, followed by a reference to the excep-
tion object that was just caught. Exceptions cannot be rethrown from a finally block, as
the exception parameter (a local variable) from the catch block no longer exists.

When a rethrow occurs, the next enclosing try block detects the rethrown exception,
and that try block’s catch blocks attempt to handle it. In this case, the next enclosing try
block is found at lines 8–11 in method main. Before the rethrown exception is handled,
however, the finally block (lines 37–40) executes. Then method main detects the
rethrown exception in the try block and handles it in the catch block (lines 12–15).

Next, main calls method doesNotThrowException (line 17). No exception is thrown
in doesNotThrowException’s try block (lines 49–52), so the program skips the catch
block (lines 53–56), but the finally block (lines 57–61) nevertheless executes. Control
proceeds to the statement after the finally block (line 63). Then control returns to main
and the program terminates.

Software Engineering Observation H.5
When toString is invoked on any Throwable object, its resulting string includes the
descriptive string that was supplied to the constructor, or simply the class name if no
string was supplied.

Software Engineering Observation H.6
An object can be thrown without containing information about the problem that
occurred. In this case, simply knowing that an exception of a particular type occurred may
provide sufficient information for the handler to process the problem correctly.

Software Engineering Observation H.7
Exceptions can be thrown from constructors. When an error is detected in a constructor,
an exception should be thrown to avoid creating an improperly formed object.

Common Programming Error H.6
If an exception has not been caught when control enters a finally block and the finally
block throws an exception that’s not caught in the finally block, the first exception will
be lost and the exception from the finally block will be returned to the calling method.

Error-Prevention Tip H.4
Avoid placing code that can throw an exception in a finally block. If such code is re-
quired, enclose the code in a try…catch within the finally block.

Z08_DEIT3397_02_SE_APPH.fm Page 643 Monday, July 7, 2014 9:34 AM

644 Appendix H Exception Handling: A Deeper Look

H.7 Stack Unwinding and Obtaining Information from
an Exception Object
When an exception is thrown but not caught in a particular scope, the method-call stack
is “unwound,” and an attempt is made to catch the exception in the next outer try block.
This process is called stack unwinding. Unwinding the method-call stack means that the
method in which the exception was not caught terminates, all local variables in that meth-
od go out of scope and control returns to the statement that originally invoked that meth-
od. If a try block encloses that statement, an attempt is made to catch the exception. If a
try block does not enclose that statement or if the exception is not caught, stack unwind-
ing occurs again. Figure H.4 demonstrates stack unwinding, and the exception handler in
main shows how to access the data in an exception object.

Common Programming Error H.7
Assuming that an exception thrown from a catch block will be processed by that catch block
or any other catch block associated with the same try statement can lead to logic errors.

Good Programming Practice H.1
Exception handling is intended to remove error-processing code from the main line of a
program’s code to improve program clarity. Do not place try…catch… finally around
every statement that may throw an exception. This makes programs difficult to read.
Rather, place one try block around a significant portion of your code, follow that try
block with catch blocks that handle each possible exception and follow the catch blocks
with a single finally block (if one is required).

1 // Fig. H.4: UsingExceptions.java
2 // Stack unwinding and obtaining data from an exception object.
3
4 public class UsingExceptions
5 {
6 public static void main(String[] args)
7 {
8 try
9 {

10
11 } // end try
12 catch (Exception exception) // catch exception thrown in method1
13 {
14 System.err.printf("%s\n\n",);
15
16
17 // obtain the stack-trace information
18
19
20 System.out.println("\nStack trace from getStackTrace:");
21 System.out.println("Class\t\tFile\t\t\tLine\tMethod");
22

Fig. H.4 | Stack unwinding and obtaining data from an exception object. (Part 1 of 2.)

method1(); // call method1

exception.getMessage()
exception.printStackTrace(); // print exception stack trace

StackTraceElement[] traceElements = exception.getStackTrace();

Z08_DEIT3397_02_SE_APPH.fm Page 644 Monday, July 7, 2014 9:34 AM

H.7 Stack Unwinding and Obtaining Information from an Exception Object 645

Stack Unwinding
In main, the try block (lines 8–11) calls method1 (declared at lines 35–38), which in turn
calls method2 (declared at lines 41–44), which in turn calls method3 (declared at lines 47–
50). Line 49 of method3 throws an Exception object—this is the throw point. Because the
throw statement at line 49 is not enclosed in a try block, stack unwinding occurs—method3

terminates at line 49, then returns control to the statement in method2 that invoked
method3 (i.e., line 43). Because no try block encloses line 43, stack unwinding occurs

23 // loop through traceElements to get exception description
24 for (StackTraceElement element : traceElements)
25 {
26 System.out.printf("%s\t",);
27 System.out.printf("%s\t",);
28 System.out.printf("%s\t",);
29 System.out.printf("%s\n",);
30 } // end for
31 } // end catch
32 } // end main
33
34 // call method2; throw exceptions back to main
35 public static void method1()
36 {
37
38 } // end method method1
39
40 // call method3; throw exceptions back to method1
41 public static void method2()
42 {
43
44 } // end method method2
45
46 // throw Exception back to method2
47 public static void method3()
48 {
49
50 } // end method method3
51 } // end class UsingExceptions

Exception thrown in method3

java.lang.Exception: Exception thrown in method3
 at UsingExceptions.method3(UsingExceptions.java:49)
 at UsingExceptions.method2(UsingExceptions.java:43)
 at UsingExceptions.method1(UsingExceptions.java:37)
 at UsingExceptions.main(UsingExceptions.java:10)

Stack trace from getStackTrace:
Class File Line Method
UsingExceptions UsingExceptions.java 49 method3
UsingExceptions UsingExceptions.java 43 method2
UsingExceptions UsingExceptions.java 37 method1
UsingExceptions UsingExceptions.java 10 main

Fig. H.4 | Stack unwinding and obtaining data from an exception object. (Part 2 of 2.)

element.getClassName()
element.getFileName()
element.getLineNumber()
element.getMethodName()

throws Exception

method2();

throws Exception

method3();

throws Exception

throw new Exception("Exception thrown in method3");

Z08_DEIT3397_02_SE_APPH.fm Page 645 Monday, July 7, 2014 9:34 AM

646 Appendix H Exception Handling: A Deeper Look

again—method2 terminates at line 43 and returns control to the statement in method1 that
invoked method2 (i.e., line 37). Because no try block encloses line 37, stack unwinding oc-
curs one more time—method1 terminates at line 37 and returns control to the statement
in main that invoked method1 (i.e., line 10). The try block at lines 8–11 encloses this state-
ment. The exception has not been handled, so the try block terminates and the first
matching catch block (lines 12–31) catches and processes the exception. If there were no
matching catch blocks, and the exception is not declared in each method that throws it,
a compilation error would occur. Remember that this is not always the case—for un-
checked exceptions, the application will compile, but it will run with unexpected results.

Obtaining Data from an Exception Object
Recall that exceptions derive from class Throwable. Class Throwable offers a printStack-
Trace method that outputs to the standard error stream the stack trace (discussed in
Section H.2). Often, this is helpful in testing and debugging. Class Throwable also pro-
vides a getStackTrace method that retrieves the stack-trace information that might be
printed by printStackTrace. Class Throwable’s getMessage method returns the descrip-
tive string stored in an exception.

The catch handler in Fig. H.4 (lines 12–31) demonstrates getMessage, printStack-
Trace and getStackTrace. If we wanted to output the stack-trace information to streams
other than the standard error stream, we could use the information returned from get-
StackTrace and output it to another stream or use one of the overloaded versions of
method printStackTrace.

Line 14 invokes the exception’s getMessage method to get the exception description.
Line 15 invokes the exception’s printStackTrace method to output the stack trace that
indicates where the exception occurred. Line 18 invokes the exception’s getStackTrace
method to obtain the stack-trace information as an array of StackTraceElement objects.
Lines 24–30 get each StackTraceElement in the array and invoke its methods getClass-
Name, getFileName, getLineNumber and getMethodName to get the class name, file name,
line number and method name, respectively, for that StackTraceElement. Each Stack-
TraceElement represents one method call on the method-call stack.

The program’s output shows that the stack-trace information printed by printStack-
Trace follows the pattern: className.methodName(fileName:lineNumber), where class-
Name, methodName and fileName indicate the names of the class, method and file in which
the exception occurred, respectively, and the lineNumber indicates where in the file the
exception occurred. You saw this in the output for Fig. H.1. Method getStackTrace

Error-Prevention Tip H.5
An exception that’s not caught in an application causes Java’s default exception handler
to run. This displays the name of the exception, a descriptive message that indicates the
problem that occurred and a complete execution stack trace. In an application with a sin-
gle thread of execution, the application terminates. In an application with multiple
threads, the thread that caused the exception terminates.

Error-Prevention Tip H.6
Throwable method toString (inherited by all Throwable subclasses) returns a String
containing the name of the exception’s class and a descriptive message.

Z08_DEIT3397_02_SE_APPH.fm Page 646 Monday, July 7, 2014 9:34 AM

H.8 Wrap-Up 647

enables custom processing of the exception information. Compare the output of print-
StackTrace with the output created from the StackTraceElements to see that both con-
tain the same stack-trace information.

H.8 Wrap-Up
In this appendix, you learned how to use exception handling to deal with errors. You
learned that exception handling enables you to remove error-handling code from the
“main line” of the program’s execution. We showed how to use try blocks to enclose code
that may throw an exception, and how to use catch blocks to deal with exceptions that
may arise. You learned about the termination model of exception handling, which dictates
that after an exception is handled, program control does not return to the throw point. We
discussed checked vs. unchecked exceptions, and how to specify with the throws clause
the exceptions that a method might throw. You learned how to use the finally block to
release resources whether or not an exception occurs. You also learned how to throw and
rethrow exceptions. We showed how to obtain information about an exception using
methods printStackTrace, getStackTrace and getMessage. In the next appendix, we
discuss graphical user interface concepts and explain the essentials of event handling.

Software Engineering Observation H.8
Never provide a catch handler with an empty body—this effectively ignores the exception.
At least use printStackTrace to output an error message to indicate that a problem exists.

Self-Review Exercises
H.1 What does the information called stack trace contain?

H.2 Give several reasons why exception-handling techniques should not be used for conven-
tional program control.

H.3 Will the finally block be executed only when an exception is thrown? If it is used in a Java
program, where should it be placed?

H.4 When does an InputMismatchException occur?

H.5 If no exceptions are thrown in a try block, where does control proceed to when the try
block completes execution?

H.6 Give a key advantage of using catch(Exception exceptionName).

H.7 Is it mandatory to have both the catch and finally blocks after a try block?

H.8 What happens if no catch handler matches the type of a thrown object?

H.9 What happens if several catch blocks match the type of the thrown object?

H.10 Briefly explain the Java Exception Hierarchy.

H.11 What is the key reason for using finally blocks?

H.12 What happens when a catch block throws an Exception?

H.13 What does the statement throw exceptionReference do in a catch block?

H.14 What happens to a local reference in a try block when that block throws an Exception?

Z08_DEIT3397_02_SE_APPH.fm Page 647 Monday, July 7, 2014 9:34 AM

648 Appendix H Exception Handling: A Deeper Look

Answers to Self-Review Exercises
H.1 It contains the name of the exception in a descriptive error message, which indicates the
problem that occurred and the method-call stack at the time, along with the path of execution that
led to the exception method by method.

H.2 (a) Exception handling is designed to handle infrequently occurring situations that often
result in program termination, not situations that arise all the time. (b) Flow of control with con-
ventional control structures is generally clearer and more efficient than with exceptions. (c) The ad-
ditional exceptions can get in the way of genuine error-type exceptions. It becomes more difficult
for you to keep track of the larger number of exception cases.

H.3 No. The finally block will execute whether or not an exception is thrown in the try block.
It should be placed after the last catch block.

H.4 An InputMismatchException occurs when a Scanner method receives data of a type that is
different from what it expects.

H.5 The catch blocks for that try statement are skipped, and the program resumes execution
after the last catch block. If there’s a finally block, it’s executed first; then the program resumes
execution after the finally block.

H.6 The form catch(Exception exceptionName) catches any type of exception thrown in a try
block. An advantage is that no thrown Exception can slip by without being caught. You can then
decide to handle the exception or possibly rethrow it.

H.7 No. At least one catch block or a finally block must immediately follow the try block.

H.8 This causes the search for a match to continue in the next enclosing try statement. If there’s
a finally block, it will be executed before the exception goes to the next enclosing try statement.
If there are no enclosing try statements for which there are matching catch blocks and the excep-
tions are declared (or unchecked), a stack trace is printed and the current thread terminates early. If
the exceptions are checked, but not caught or declared, compilation errors occur.

H.9 The first matching catch block after the try block is executed.

H.10 All Java exception classes inherit either directly or indirectly from class Exception. Using
one’s own exception classes, this hierarchy can be extended. Class Throwable is the superclass of class
Exception.

H.11 The finally block is the preferred means for releasing resources to prevent resource leaks.

H.12 First, control passes to the finally block if there is one. Then the exception will be pro-
cessed by a catch block (if one exists) associated with an enclosing try block (if one exists).

H.13 It rethrows the exception for processing by an exception handler of an enclosing try state-
ment, after the finally block of the current try statement executes.

H.14 The reference goes out of scope. If the referenced object becomes unreachable, the object
can be garbage collected.

Exercises
H.15 (Exceptional Conditions) List the various exceptional conditions that have occurred in pro-
grams throughout the appendices so far. List as many additional exceptional conditions as you can.
For each of these, describe briefly how a program typically would handle the exception by using the
exception-handling techniques discussed in this appendix. Typical exceptions include division by
zero and array index out of bounds.

Z08_DEIT3397_02_SE_APPH.fm Page 648 Monday, July 7, 2014 9:34 AM

 Exercises 649

H.16 (Exceptions and Constructor Failure) Until this appendix, we’ve found dealing with errors
detected by constructors to be a bit awkward. Explain why exception handling is an effective means
for dealing with constructor failure.

H.17 (Catching Exceptions with Superclasses) Use inheritance to create an exception superclass
(called ExceptionA) and exception subclasses ExceptionB and ExceptionC, where ExceptionB inher-
its from ExceptionA and ExceptionC inherits from ExceptionB. Write a program to demonstrate
that the catch block for type ExceptionA catches exceptions of types ExceptionB and ExceptionC.

H.18 (Catching Exceptions Using Class Exception) Write a program that demonstrates how var-
ious exceptions are caught with

catch (Exception exception)

This time, define classes ExceptionA (which inherits from class Exception) and ExceptionB (which
inherits from class ExceptionA). In your program, create try blocks that throw exceptions of types
ExceptionA, ExceptionB, NullPointerException and IOException. All exceptions should be
caught with catch blocks specifying type Exception.

H.19 (Usage of finally blocks) Write a program that shows the usage of finally blocks. Your
program should show the behavior of finally blocks in all the case scenarios mentioned in section
H.6.

H.20 (Constructor Failure) Write a program that shows a constructor passing information about
constructor failure to an exception handler. Define class SomeClass, which throws an Exception in
the constructor. Your program should try to create an object of type SomeClass and catch the ex-
ception that’s thrown from the constructor.

H.21 (Rethrowing Exceptions) Write a program that illustrates rethrowing an exception. Define
methods someMethod and someMethod2. Method someMethod2 should initially throw an exception.
Method someMethod should call someMethod2, catch the exception and rethrow it. Call someMethod
from method main, and catch the rethrown exception. Print the stack trace of this exception.

H.22 (Catching Exceptions Using Outer Scopes) Write a program showing that a method with its
own try block does not have to catch every possible error generated within the try. Some exceptions
can slip through to, and be handled in, other scopes.

Z08_DEIT3397_02_SE_APPH.fm Page 649 Monday, July 7, 2014 9:34 AM

I GUI Components and Event
Handling

O b j e c t i v e s
In this appendix you’ll learn:

■ How to use Java’s cross-
platform Nimbus look-and-
feel.

■ To build GUIs and handle
events generated by user
interactions with GUIs.

■ To use nested classes and
anonymous inner classes to
implement event handlers.

Z09_DEIT3397_02_SE_APPI.fm Page 650 Tuesday, July 8, 2014 8:37 AM

I.1 Introduction 651

I.1 Introduction
A graphical user interface (GUI) presents a user-friendly mechanism for interacting with
an app. A GUI (pronounced “GOO-ee”) gives an app a distinctive “look-and-feel.” GUIs
are built from GUI components, such as labels, buttons, textboxes, menus scrollbars and
more. These are sometimes called controls or widgets—short for window gadgets. A GUI
component is an object with which the user interacts via the mouse, the keyboard or an-
other form of input, such as voice recognition. In this appendix, we introduce a few basic
GUI components and how to respond to user interactions with them—a technique
known as event handling. We also discuss nested classes and anonymous inner classes, which
are commonly used for event handling in Java and Android apps.

I.2 Nimbus Look-and-Feel
In our screen captures, we use Java’s elegant Nimbus cross-platform look-and-feel. There
are three ways that you can use Nimbus:

1. Set it as the default for all Java apps that run on your computer.

2. Set it as the look-and-feel at the time that you launch an app by passing a com-
mand-line argument to the java command.

3. Set it as the look-and-feel programatically in your app.

We set Nimbus as the default for all Java apps. To do so, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

For more information on locating these installation folders visit

In addition to the standalone JRE, there is a JRE nested in your JDK’s installation folder.
If you’re using an IDE that depends on the JDK, you may also need to place the
swing.properties file in the nested jre folder’s lib folder.

If you prefer to select Nimbus on an app-by-app basis, place the following command-
line argument after the java command and before the app’s name when you run the app:

I.1 Introduction
I.2 Nimbus Look-and-Feel
I.3 Text Fields and an Introduction to

Event Handling with Nested Classes
I.4 Common GUI Event Types and

Listener Interfaces
I.5 How Event Handling Works

I.6 JButton
I.7 JComboBox; Using an Anonymous

Inner Class for Event Handling
I.8 Adapter Classes
I.9 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

bit.ly/JavaInstallationInstructions

-Dswing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

Z09_DEIT3397_02_SE_APPI.fm Page 651 Monday, July 7, 2014 9:19 AM

652 Appendix I GUI Components and Event Handling

I.3 Text Fields and an Introduction to Event Handling
with Nested Classes
Normally, a user interacts with an app’s GUI to indicate the tasks that the app should per-
form. For example, when you write an e-mail in an e-mail app, clicking the Send button
tells the app to send the e-mail to the specified e-mail addresses. GUIs are event driven.
When the user interacts with a GUI component, the interaction—known as an
event—drives the program to perform a task. Some common user interactions that cause
an app to perform a task include clicking a button, typing in a text field, selecting an item
from a menu, closing a window and moving the mouse. The code that performs a task in
response to an event is called an event handler, and the overall process of responding to
events is known as event handling.

Let’s consider two GUI components that can generate events—JTextFields and
JPasswordFields (package javax.swing). Class JTextField extends class JTextCompo-
nent (package javax.swing.text), which provides many features common to Swing’s
text-based components. Class JPasswordField extends JTextField and adds methods
that are specific to processing passwords. Each of these components is a single-line area in
which the user can enter text via the keyboard. Apps can also display text in a JTextField
(see the output of Fig. I.2). A JPasswordField shows that characters are being typed as the
user enters them, but hides the actual characters with an echo character, assuming that
they represent a password that should remain known only to the user.

When the user types in a JTextField or a JPasswordField, then presses Enter, an
event occurs. Our next example demonstrates how a program can perform a task in
response to that event. The techniques shown here are applicable to all GUI components
that generate events.

The app of Figs. I.1–I.2 uses classes JTextField and JPasswordField to create and
manipulate four text fields. When the user types in one of the text fields, then presses
Enter, the app displays a message dialog box containing the text the user typed. You can
type only in the text field that’s “in focus.” When you click a component, it receives the
focus. This is important, because the text field with the focus is the one that generates an
event when you press Enter. In this example, you press Enter in the JPasswordField, the
password is revealed. We begin by discussing the setup of the GUI, then discuss the event-
handling code.

1 // Fig. I.1: TextFieldFrame.java
2 // JTextFields and JPasswordFields.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JTextField;
8 import javax.swing.JPasswordField;
9 import javax.swing.JOptionPane;

10
11 public class TextFieldFrame extends JFrame
12 {

Fig. I.1 | JTextFields and JPasswordFields. (Part 1 of 3.)

Z09_DEIT3397_02_SE_APPI.fm Page 652 Monday, July 7, 2014 9:19 AM

I.3 Text Fields and an Introduction to Event Handling with Nested Classes 653

13 private JTextField textField1; // text field with set size
14 private JTextField textField2; // text field constructed with text
15 private JTextField textField3; // text field with text and size
16 private JPasswordField passwordField; // password field with text
17
18 // TextFieldFrame constructor adds JTextFields to JFrame
19 public TextFieldFrame()
20 {
21 super("Testing JTextField and JPasswordField");
22 setLayout(new FlowLayout()); // set frame layout
23
24
25
26 add(textField1); // add textField1 to JFrame
27
28
29
30 add(textField2); // add textField2 to JFrame
31
32
33
34
35 add(textField3); // add textField3 to JFrame
36
37 // construct passwordfield with default text
38
39 add(passwordField); // add passwordField to JFrame
40
41 // register event handlers
42
43
44
45
46
47 } // end TextFieldFrame constructor
48
49 // private inner class for event handling
50
51 {
52 // process text field events
53
54 {
55 String string = ""; // declare string to display
56
57 // user pressed Enter in JTextField textField1
58 if ()
59 string = String.format("textField1: %s",
60);
61
62 // user pressed Enter in JTextField textField2
63 else if ()
64 string = String.format("textField2: %s",
65);

Fig. I.1 | JTextFields and JPasswordFields. (Part 2 of 3.)

// construct textfield with 10 columns
textField1 = new JTextField(10);

// construct textfield with default text
textField2 = new JTextField("Enter text here");

// construct textfield with default text and 21 columns
textField3 = new JTextField("Uneditable text field", 21);
textField3.setEditable(false); // disable editing

passwordField = new JPasswordField("Hidden text");

TextFieldHandler handler = new TextFieldHandler();
textField1.addActionListener(handler);
textField2.addActionListener(handler);
textField3.addActionListener(handler);
passwordField.addActionListener(handler);

private class TextFieldHandler implements ActionListener

public void actionPerformed(ActionEvent event)

event.getSource() == textField1

event.getActionCommand()

event.getSource() == textField2

event.getActionCommand()

Z09_DEIT3397_02_SE_APPI.fm Page 653 Monday, July 7, 2014 9:19 AM

654 Appendix I GUI Components and Event Handling

Lines 3–9 import the classes and interfaces we use in this example. Class TextField-
Frame extends JFrame and declares three JTextField variables and a JPasswordField
vari-able (lines 13–16). Each of the corresponding text fields is instantiated and attached
to the TextFieldFrame in the constructor (lines 19–47).

Specifying the Layout
When building a GUI, you must attach each GUI component to a container, such as a win-
dow created with a JFrame. Also, you typically must decide where to position each GUI com-
ponent—known as specifying the layout. Java provides several layout managers that can
help you position components.

Many IDEs provide GUI design tools in which you can specify components’ exact
sizes and locations in a visual manner by using the mouse; then the IDE will generate the
GUI code for you. Such IDEs can greatly simplify GUI creation.

To ensure that our GUIs can be used with any IDE, we did not use an IDE to create
the GUI code. We use Java’s layout managers to size and position components. With the
FlowLayout layout manager, components are placed on a container from left to right in
the order in which they’re added. When no more components can fit on the current line,
they continue to display left to right on the next line. If the container is resized, a Flow-
Layout reflows the components, possibly with fewer or more rows based on the new con-
tainer width. Every container has a default layout, which we’re changing for
TextFieldFrame to a FlowLayout (line 22). Method setLayout is inherited into class
TextFieldFrame indirectly from class Container. The argument to the method must be
an object of a class that implements the LayoutManager interface (e.g., FlowLayout). Line
22 creates a new FlowLayout object and passes its reference as the argument to setLayout.

Creating the GUI
Line 25 creates textField1 with 10 columns of text. A text column’s width in pixels is de-
termined by the average width of a character in the text field’s current font. When text is
displayed in a text field and the text is wider than the field itself, a portion of the text at
the right side is not visible. If you’re typing in a text field and the cursor reaches the right

66
67 // user pressed Enter in JTextField textField3
68 else if ()
69 string = String.format("textField3: %s",
70);
71
72 // user pressed Enter in JTextField passwordField
73 else if ()
74 string = String.format("passwordField: %s",
75);
76
77 // display JTextField content
78 JOptionPane.showMessageDialog(null, string);
79 } // end method actionPerformed
80 } // end private inner class TextFieldHandler
81 } // end class TextFieldFrame

Fig. I.1 | JTextFields and JPasswordFields. (Part 3 of 3.)

event.getSource() == textField3

event.getActionCommand()

event.getSource() == passwordField

event.getActionCommand()

Z09_DEIT3397_02_SE_APPI.fm Page 654 Monday, July 7, 2014 9:19 AM

I.3 Text Fields and an Introduction to Event Handling with Nested Classes 655

edge, the text at the left edge is pushed off the left side of the field and is no longer visible.
Users can use the left and right arrow keys to move through the complete text. Line 26
adds textField1 to the JFrame.

Line 29 creates textField2 with the initial text "Enter text here" to display in the
text field. The width of the field is determined by the width of the default text specified in
the constructor. Line 30 adds textField2 to the JFrame.

Line 33 creates textField3 and calls the JTextField constructor with two argu-
ments—the default text "Uneditable text field" to display and the text field’s width in
columns (21). Line 34 uses method setEditable (inherited by JTextField from class
JTextComponent) to make the text field uneditable—i.e., the user cannot modify the text
in the field. Line 35 adds textField3 to the JFrame.

Line 38 creates passwordField with the text "Hidden text" to display in the text
field. The width of the field is determined by the width of the default text. When you exe-
cute the app, notice that the text is displayed as a string of asterisks. Line 39 adds pass-
wordField to the JFrame.

Steps Required to Set Up Event Handling for a GUI Component
This example should display a message dialog containing the text from a text field when
the user presses Enter in that text field. Before an app can respond to an event for a partic-
ular GUI component, you must:

1. Create a class that represents the event handler and implements an appropriate
interface—known as an event-listener interface.

2. Indicate that an object of the class from Step 1 should be notified when the event
occurs—known as registering the event handler.

Using a Nested Class to Implement an Event Handler
All the classes discussed so far were so-called top-level classes—that is, they were not de-
clared inside another class. Java allows you to declare classes inside other classes—these are
called nested classes. Nested classes can be static or non-static. Non-static nested
classes are called inner classes and are frequently used to implement event handlers.

An inner-class object must be created by an object of the top-level class that contains
the inner class. Each inner-class object implicitly has a reference to an object of its top-level
class. The inner-class object is allowed to use this implicit reference to directly access all
the variables and methods of the top-level class. A nested class that’s static does not
require an object of its top-level class and does not implicitly have a reference to an object
of the top-level class.

Nested Class TextFieldHandler
The event handling in this example is performed by an object of the private inner class
TextFieldHandler (lines 50–80). This class is private because it will be used only to cre-
ate event handlers for the text fields in top-level class TextFieldFrame. As with other class
members, inner classes can be declared public, protected or private. Since event han-
dlers tend to be specific to the app in which they’re defined, they’re often implemented as
private inner classes or as anonymous inner classes (Section I.7).

GUI components can generate many events in response to user interactions. Each
event is represented by a class and can be processed only by the appropriate type of event

Z09_DEIT3397_02_SE_APPI.fm Page 655 Monday, July 7, 2014 9:19 AM

656 Appendix I GUI Components and Event Handling

handler. Normally, a component’s supported events are described in the Java API docu-
mentation for that component’s class and its superclasses. When the user presses Enter in
a JTextField or JPasswordField, an ActionEvent (package java.awt.event) occurs.
Such an event is processed by an object that implements the interface ActionListener
(package java.awt.event). The information discussed here is available in the Java API
documentation for classes JTextField and ActionEvent. Since JPasswordField is a sub-
class of JTextField, JPasswordField supports the same events.

To prepare to handle the events in this example, inner class TextFieldHandler
implements interface ActionListener and declares the only method in that inter-
face—actionPerformed (lines 53–79). This method specifies the tasks to perform when
an ActionEvent occurs. So, inner class TextFieldHandler satisfies Step 1 listed earlier in
this section. We’ll discuss the details of method actionPerformed shortly.

Registering the Event Handler for Each Text Field
In the TextFieldFrame constructor, line 42 creates a TextFieldHandler object and as-
signs it to variable handler. This object’s actionPerformed method will be called auto-
matically when the user presses Enter in any of the GUI’s text fields. However, before this
can occur, the program must register this object as the event handler for each text field.
Lines 43–46 are the event-registration statements that specify handler as the event handler
for the three JTextFields and the JPasswordField. The app calls JTextField method
addActionListener to register the event handler for each component. This method re-
ceives as its argument an ActionListener object, which can be an object of any class that
implements ActionListener. The object handler is an ActionListener, because class
TextFieldHandler implements ActionListener. After lines 43–46 execute, the object
handler listens for events. Now, when the user presses Enter in any of these four text
fields, method actionPerformed (line 53–79) in class TextFieldHandler is called to han-
dle the event. If an event handler is not registered for a particular text field, the event that
occurs when the user presses Enter in that text field is consumed—i.e., it’s simply ignored
by the app.

Details of Class TextFieldHandler’s actionPerformed Method
In this example, we’re using one event-handling object’s actionPerformed method (lines
53–79) to handle the events generated by four text fields. Since we’d like to output the
name of each text field’s instance variable for demonstration purposes, we must determine
which text field generated the event each time actionPerformed is called. The event
source is the GUI component with which the user interacted. When the user presses Enter
while one of the text fields or the password field has the focus, the system creates a unique
ActionEvent object that contains information about the event that just occurred, such as
the event source and the text in the text field. The system passes this ActionEvent object

Software Engineering Observation I.1
The event listener for an event must implement the appropriate event-listener interface.

Common Programming Error I.1
Forgetting to register an event-handler object for a particular GUI component’s event type
causes events of that type to be ignored.

Z09_DEIT3397_02_SE_APPI.fm Page 656 Monday, July 7, 2014 9:19 AM

I.3 Text Fields and an Introduction to Event Handling with Nested Classes 657

to the event listener’s actionPerformed method. Line 55 declares the String that will be
displayed. The variable is initialized with the empty string—a String containing no char-
acters. The compiler requires the variable to be initialized in case none of the branches of
the nested if in lines 58–75 executes.

ActionEvent method getSource (called in lines 58, 63, 68 and 73) returns a reference
to the event source. The condition in line 58 asks, “Is the event source textField1?” This
condition compares references with the == operator to determine if they refer to the same
object. If they both refer to textField1, the user pressed Enter in textField1. Then, lines
59–60 create a String containing the message that line 78 displays in a message dialog.
Line 60 uses ActionEvent method getActionCommand to obtain the text the user typed in
the text field that generated the event.

In this example, we display the text of the password in the JPasswordField when the
user presses Enter in that field. Sometimes it’s necessary to programatically process the
characters in a password. Class JPasswordField method getPassword returns the pass-
word’s characters as an array of type char.

Class TextFieldTest
Class TextFieldTest (Fig. I.2) contains the main method that executes this app and displays
an object of class TextFieldFrame. When you execute the app, even the uneditable JText-
Field (textField3) can generate an ActionEvent. To test this, click the text field to give it
the focus, then press Enter. Also, the actual text of the password is displayed when you press
Enter in the JPasswordField. Of course, you would normally not display the password!

This app used a single object of class TextFieldHandler as the event listener for four
text fields. It’s possible to declare several event-listener objects of the same type and register
each object for a separate GUI component’s event. This technique enables us to eliminate
the if…else logic used in this example’s event handler by providing separate event han-
dlers for each component’s events.

1 // Fig. I.2: TextFieldTest.java
2 // Testing TextFieldFrame.
3 import javax.swing.JFrame;
4
5 public class TextFieldTest
6 {
7 public static void main(String[] args)
8 {
9 TextFieldFrame textFieldFrame = new TextFieldFrame();

10 textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textFieldFrame.setSize(350, 100); // set frame size
12 textFieldFrame.setVisible(true); // display frame
13 } // end main
14 } // end class TextFieldTest

Fig. I.2 | Testing TextFieldFrame. (Part 1 of 2.)

Z09_DEIT3397_02_SE_APPI.fm Page 657 Monday, July 7, 2014 9:19 AM

658 Appendix I GUI Components and Event Handling

I.4 Common GUI Event Types and Listener Interfaces
In Section I.3, you learned that information about the event that occurs when the user
presses Enter in a text field is stored in an ActionEvent object. Many different types of
events can occur when the user interacts with a GUI. The event information is stored in
an object of a class that extends AWTEvent (from package java.awt). Figure I.3 illustrates
a hierarchy containing many event classes from the package java.awt.event. Additional
event types are declared in package javax.swing.event.

Let’s summarize the three parts to the event-handling mechanism that you saw in
Section I.3—the event source, the event object and the event listener. The event source is the
GUI component with which the user interacts. The event object encapsulates information
about the event that occurred, such as a reference to the event source and any event-spe-
cific information that may be required by the event listener for it to handle the event. The
event listener is an object that’s notified by the event source when an event occurs; in
effect, it “listens” for an event, and one of its methods executes in response to the event. A
method of the event listener receives an event object when the event listener is notified of
the event. The event listener then uses the event object to respond to the event. This event-
handling model is known as the delegation event model—an event’s processing is dele-
gated to an object (the event listener) in the app.

Fig. I.2 | Testing TextFieldFrame. (Part 2 of 2.)

Z09_DEIT3397_02_SE_APPI.fm Page 658 Monday, July 7, 2014 9:19 AM

I.5 How Event Handling Works 659

For each event-object type, there’s typically a corresponding event-listener interface.
An event listener for a GUI event is an object of a class that implements one or more of
the event-listener interfaces.

Each event-listener interface specifies one or more event-handling methods that must
be declared in the class that implements the interface. Recall from Section G.12 that any
class which implements an interface must declare all the abstract methods of that inter-
face; otherwise, the class is an abstract class and cannot be used to create objects.

When an event occurs, the GUI component with which the user interacted notifies
its registered listeners by calling each listener’s appropriate event-handling method. For
example, when the user presses the Enter key in a JTextField, the registered listener’s
actionPerformed method is called. How did the event handler get registered? How does
the GUI component know to call actionPerformed rather than another event-handling
method? We answer these questions and diagram the interaction in the next section.

I.5 How Event Handling Works
Let’s illustrate how the event-handling mechanism works, using textField1 from the ex-
ample of Fig. I.1. We have two remaining open questions from Section I.3:

1. How did the event handler get registered?

2. How does the GUI component know to call actionPerformed rather than some
other event-handling method?

Fig. I.3 | Some event classes of package java.awt.event.

Object

EventObject

AWTEvent

ContainerEvent

FocusEvent

PaintEvent

WindowEvent

InputEvent

ActionEvent

AdjustmentEvent

ItemEvent

TextEvent

ComponentEvent

MouseEventKeyEvent

MouseWheelEvent

Z09_DEIT3397_02_SE_APPI.fm Page 659 Monday, July 7, 2014 9:19 AM

660 Appendix I GUI Components and Event Handling

The first question is answered by the event registration performed in lines 43–46 of
Fig. I.1. Figure I.4 diagrams JTextField variable textField1, TextFieldHandler vari-
able handler and the objects to which they refer.

Registering Events
Every JComponent has an instance variable called listenerList that refers to an object of
class EventListenerList (package javax.swing.event). Each object of a JComponent
subclass maintains references to its registered listeners in the listenerList. For simplici-
ty, we’ve diagramed listenerList as an array below the JTextField object in Fig. I.4.

When line 43 of Fig. I.1

executes, a new entry containing a reference to the TextFieldHandler object is placed in
textField1’s listenerList. Although not shown in the diagram, this new entry also in-
cludes the listener’s type (in this case, ActionListener). Using this mechanism, each light-
weight Swing GUI component maintains its own list of listeners that were registered to
handle the component’s events.

Event-Handler Invocation
The event-listener type is important in answering the second question: How does the GUI
component know to call actionPerformed rather than another method? Every GUI com-
ponent supports several event types, including mouse events, key events and others. When
an event occurs, the event is dispatched only to the event listeners of the appropriate type.
Dispatching is simply the process by which the GUI component calls an event-handling
method on each of its listeners that are registered for the event type that occurred.

Each event type has one or more corresponding event-listener interfaces. For example,
ActionEvents are handled by ActionListeners, MouseEvents by MouseListeners and

Fig. I.4 | Event registration for JTextField textField1.

textField1.addActionListener(handler);

This reference is created by the statement
 textField1.addActionListener(handler);

public void actionPerformed(
 ActionEvent event)
{
 // event handled here
}

listenerList

TextFieldHandler objectJTextField object

textField1 handler

...

Z09_DEIT3397_02_SE_APPI.fm Page 660 Monday, July 7, 2014 9:19 AM

I.6 JButton 661

MouseMotionListeners, and KeyEvents by KeyListeners. When an event occurs, the
GUI component receives (from the JVM) a unique event ID specifying the event type.
The GUI component uses the event ID to decide the listener type to which the event
should be dispatched and to decide which method to call on each listener object. For an
ActionEvent, the event is dispatched to every registered ActionListener’s actionPer-
formed method (the only method in interface ActionListener). For a MouseEvent, the
event is dispatched to every registered MouseListener or MouseMotionListener,
depending on the mouse event that occurs. The MouseEvent’s event ID determines which
of the several mouse event-handling methods are called. All these decisions are handled for
you by the GUI components. All you need to do is register an event handler for the par-
ticular event type that your app requires, and the GUI component will ensure that the
event handler’s appropriate method gets called when the event occurs. We discuss other
event types and event-listener interfaces as they’re needed with each new component we
introduce.

I.6 JButton
A button is a component the user clicks to trigger a specific action. A Java app can use sev-
eral types of buttons, including command buttons, checkboxes, toggle buttons and radio
buttons. Figure I.5 shows the inheritance hierarchy of the Swing buttons we cover in this
appendix. As you can see, all the button types are subclasses of AbstractButton (package
javax.swing), which declares the common features of Swing buttons. In this section, we
concentrate on buttons that are typically used to initiate a command.

A command button (see Fig. I.7’s output) generates an ActionEvent when the user
clicks it. Command buttons are created with class JButton. The text on the face of a
JButton is called a button label. A GUI can have many JButtons, but each button label
should be unique in the portion of the GUI that’s currently displayed.

Fig. I.5 | Swing button hierarchy.

Look-and-Feel Observation I.1
The text on buttons typically uses book-title capitalization.

JComponent

AbstractButton

JButton JToggleButton

JCheckBox JRadioButton

Z09_DEIT3397_02_SE_APPI.fm Page 661 Monday, July 7, 2014 9:19 AM

662 Appendix I GUI Components and Event Handling

The app of Figs. I.6 and I.7 creates two JButtons and demonstrates that JButtons
support the display of Icons. Event handling for the buttons is performed by a single
instance of inner class ButtonHandler (lines 39–47).

Look-and-Feel Observation I.2
Having more than one JButton with the same label makes the JButtons ambiguous to
the user. Provide a unique label for each button.

1 // Fig. I.6: ButtonFrame.java
2 // Command buttons and action events.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JButton;
8 import javax.swing.Icon;
9 import javax.swing.ImageIcon;

10 import javax.swing.JOptionPane;
11
12 public class ButtonFrame extends JFrame
13 {
14
15
16
17 // ButtonFrame adds JButtons to JFrame
18 public ButtonFrame()
19 {
20 super("Testing Buttons");
21 setLayout(new FlowLayout()); // set frame layout
22
23
24 add(plainJButton); // add plainJButton to JFrame
25
26
27
28
29
30 add(fancyJButton); // add fancyJButton to JFrame
31
32
33
34
35
36 } // end ButtonFrame constructor
37
38 // inner class for button event handling
39
40 {
41 // handle button event
42 public void actionPerformed(ActionEvent event)
43 {

Fig. I.6 | Command buttons and action events. (Part 1 of 2.)

private JButton plainJButton; // button with just text
private JButton fancyJButton; // button with icons

plainJButton = new JButton("Plain Button"); // button with text

Icon bug1 = new ImageIcon(getClass().getResource("bug1.gif"));
Icon bug2 = new ImageIcon(getClass().getResource("bug2.gif"));
fancyJButton = new JButton("Fancy Button", bug1); // set image
fancyJButton.setRolloverIcon(bug2); // set rollover image

// create new ButtonHandler for button event handling
ButtonHandler handler = new ButtonHandler();
fancyJButton.addActionListener(handler);
plainJButton.addActionListener(handler);

private class ButtonHandler implements ActionListener

Z09_DEIT3397_02_SE_APPI.fm Page 662 Monday, July 7, 2014 9:19 AM

I.6 JButton 663

44 JOptionPane.showMessageDialog(, String.format(
45 "You pressed: %s",));
46 } // end method actionPerformed
47 } // end private inner class ButtonHandler
48 } // end class ButtonFrame

1 // Fig. I.7: ButtonTest.java
2 // Testing ButtonFrame.
3 import javax.swing.JFrame;
4
5 public class ButtonTest
6 {
7 public static void main(String[] args)
8 {
9 ButtonFrame buttonFrame = new ButtonFrame(); // create ButtonFrame

10 buttonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 buttonFrame.setSize(275, 110); // set frame size
12 buttonFrame.setVisible(true); // display frame
13 } // end main
14 } // end class ButtonTest

Fig. I.7 | Testing ButtonFrame.

Fig. I.6 | Command buttons and action events. (Part 2 of 2.)

ButtonFrame.this
event.getActionCommand()

Z09_DEIT3397_02_SE_APPI.fm Page 663 Monday, July 7, 2014 9:19 AM

664 Appendix I GUI Components and Event Handling

Lines 14–15 of Fig. I.6 declare JButton variables plainJButton and fancyJButton.
The corresponding objects are instantiated in the constructor. Line 23 creates plain-
JButton with the button label "Plain Button". Line 24 adds the JButton to the JFrame.

A JButton can display an Icon. To provide the user with an extra level of visual inter-
action with the GUI, a JButton can also have a rollover Icon—an Icon that’s displayed
when the user positions the mouse over the JButton. The icon on the JButton changes as
the mouse moves in and out of the JButton’s area on the screen. Lines 26–27 (Fig. I.6)
create two ImageIcon objects that represent the default Icon and rollover Icon for the
JButton created at line 28. Both statements assume that the image files are stored in the
same directory as the app. Images are commonly placed in the same directory as the app
or a subdirectory like images). These image files have been provided for you with the
example.

Line 28 creates fancyButton with the text "Fancy Button" and the icon bug1. By
default, the text is displayed to the right of the icon. Line 29 uses setRolloverIcon (inher-
ited from class AbstractButton) to specify the image displayed on the JButton when the
user positions the mouse over it. Line 30 adds the JButton to the JFrame.

JButtons, like JTextFields, generate ActionEvents that can be processed by any
ActionListener object. Lines 33–35 create an object of private inner class ButtonHan-
dler and use addActionListener to register it as the event handler for each JButton. Class
ButtonHandler (lines 39–47) declares actionPerformed to display a message dialog box
containing the label for the button the user pressed. For a JButton event, ActionEvent
method getActionCommand returns the label on the JButton.

Accessing the this Reference in an Object of a Top-Level Class From a Nested Class
When you execute this app and click one of its buttons, notice that the message dialog that
appears is centered over the app’s window. This occurs because the call to JOptionPane
method showMessageDialog (lines 44–45 of Fig. I.6) uses ButtonFrame.this rather than
null as the first argument. When this argument is not null, it represents the so-called par-
ent GUI component of the message dialog (in this case the app window is the parent com-
ponent) and enables the dialog to be centered over that component when the dialog is
displayed. ButtonFrame.this represents the this reference of the object of top-level class
ButtonFrame.

Look-and-Feel Observation I.3
Because class AbstractButton supports displaying text and images on a button, all sub-
classes of AbstractButton also support displaying text and images.

Look-and-Feel Observation I.4
Using rollover icons for JButtons provides users with visual feedback indicating that when
they click the mouse while the cursor is positioned over the JButton, an action will occur.

Software Engineering Observation I.2
When used in an inner class, keyword this refers to the current inner-class object being
manipulated. An inner-class method can use its outer-class object’s this by preceding this
with the outer-class name and a dot, as in ButtonFrame.this.

Z09_DEIT3397_02_SE_APPI.fm Page 664 Monday, July 7, 2014 9:19 AM

I.7 JComboBox; Using an Anonymous Inner Class for Event Handling 665

I.7 JComboBox; Using an Anonymous Inner Class for
Event Handling
A combo box (sometimes called a drop-down list) enables the user to select one item from
a list (Fig. I.9). Combo boxes are implemented with class JComboBox, which extends class
JComponent. JComboBoxes generate ItemEvents just as JCheckBoxes and JRadioButtons
do. This example also demonstrates a special form of inner class that’s used frequently in
event handling. The app (Figs. I.8–I.9) uses a JComboBox to provide a list of four image-
file names from which the user can select one image to display. When the user selects a
name, the app displays the corresponding image as an Icon on a JLabel. Class ComboBox-
Test (Fig. I.9) contains the main method that executes this app. The screen captures for
this app show the JComboBox list after the selection was made to illustrate which image-file
name was selected.

Lines 19–23 (Fig. I.8) declare and initialize array icons with four new ImageIcon
objects. String array names (lines 17–18) contains the names of the four image files that
are stored in the same directory as the app.

1 // Fig. I.8: ComboBoxFrame.java
2 // JComboBox that displays a list of image names.
3 import java.awt.FlowLayout;
4 import java.awt.event.ItemListener;
5 import java.awt.event.ItemEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JLabel;
8 import javax.swing.JComboBox;
9 import javax.swing.Icon;

10 import javax.swing.ImageIcon;
11
12 public class ComboBoxFrame extends JFrame
13 {
14
15 private JLabel label; // label to display selected icon
16
17 private static final String[] names =
18 { "bug1.gif", "bug2.gif", "travelbug.gif", "buganim.gif" };
19 private Icon[] icons = {
20 new ImageIcon(getClass().getResource(names[0])),
21 new ImageIcon(getClass().getResource(names[1])),
22 new ImageIcon(getClass().getResource(names[2])),
23 new ImageIcon(getClass().getResource(names[3])) };
24
25 // ComboBoxFrame constructor adds JComboBox to JFrame
26 public ComboBoxFrame()
27 {
28 super("Testing JComboBox");
29 setLayout(new FlowLayout()); // set frame layout
30
31
32

Fig. I.8 | JComboBox that displays a list of image names. (Part 1 of 2.)

private JComboBox imagesJComboBox; // combobox to hold names of icons

imagesJComboBox = new JComboBox(names); // set up JComboBox
imagesJComboBox.setMaximumRowCount(3); // display three rows

Z09_DEIT3397_02_SE_APPI.fm Page 665 Monday, July 7, 2014 9:19 AM

666 Appendix I GUI Components and Event Handling

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 add(imagesJComboBox); // add combobox to JFrame
49 label = new JLabel(icons[0]); // display first icon
50 add(label); // add label to JFrame
51 } // end ComboBoxFrame constructor
52 } // end class ComboBoxFrame

1 // Fig. I.9: ComboBoxTest.java
2 // Testing ComboBoxFrame.
3 import javax.swing.JFrame;
4
5 public class ComboBoxTest
6 {
7 public static void main(String[] args)
8 {
9 ComboBoxFrame comboBoxFrame = new ComboBoxFrame();

10 comboBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 comboBoxFrame.setSize(350, 150); // set frame size
12 comboBoxFrame.setVisible(true); // display frame
13 } // end main
14 } // end class ComboBoxTest

Fig. I.9 | Testing ComboBoxFrame. (Part 1 of 2.)

Fig. I.8 | JComboBox that displays a list of image names. (Part 2 of 2.)

imagesJComboBox.addItemListener(
 new ItemListener() // anonymous inner class
 {
 // handle JComboBox event
 public void itemStateChanged(ItemEvent event)
 {
 // determine whether item selected
 if (event.getStateChange() == ItemEvent.SELECTED)
 label.setIcon(icons[
 imagesJComboBox.getSelectedIndex()]);
 } // end method itemStateChanged
 } // end anonymous inner class
); // end call to addItemListener

Scrollbar to scroll through the
items in the list

Scroll arrowsScroll box

Z09_DEIT3397_02_SE_APPI.fm Page 666 Monday, July 7, 2014 9:19 AM

I.7 JComboBox; Using an Anonymous Inner Class for Event Handling 667

At line 31, the constructor initializes a JComboBox object with the Strings in array
names as the elements in the list. Each item in the list has an index. The first item is added
at index 0, the next at index 1 and so forth. The first item added to a JComboBox appears
as the currently selected item when the JComboBox is displayed. Other items are selected
by clicking the JComboBox, then selecting an item from the list that appears.

Line 32 uses JComboBox method setMaximumRowCount to set the maximum number
of elements that are displayed when the user clicks the JComboBox. If there are additional
items, the JComboBox provides a scrollbar (see the first screen) that allows the user to scroll
through all the elements in the list. The user can click the scroll arrows at the top and
bottom of the scrollbar to move up and down through the list one element at a time, or
else drag the scroll box in the middle of the scrollbar up and down. To drag the scroll box,
position the mouse cursor on it, hold the mouse button down and move the mouse. In
this example, the drop-down list is too short to drag the scroll box, so you can click the up
and down arrows or use your mouse’s wheel to scroll through the four items in the list.

Line 48 attaches the JComboBox to the ComboBoxFrame’s FlowLayout (set in line 29).
Line 49 creates the JLabel that displays ImageIcons and initializes it with the first Image-
Icon in array icons. Line 50 attaches the JLabel to the ComboBoxFrame’s FlowLayout.

Using an Anonymous Inner Class for Event Handling
Lines 34–46 are one statement that declares the event listener’s class, creates an object of
that class and registers it as the listener for imagesJComboBox’s ItemEvents. This event-lis-
tener object is an instance of an anonymous inner class—an inner class that’s declared
without a name and typically appears inside a method declaration. As with other inner
classes, an anonymous inner class can access its top-level class’s members. However, an anony-
mous inner class has limited access to the local variables of the method in which it’s de-
clared. Since an anonymous inner class has no name, one object of the class must be
created at the point where the class is declared (starting at line 35).

Look-and-Feel Observation I.5
Set the maximum row count for a JComboBox to a number of rows that prevents the list
from expanding outside the bounds of the window in which it’s used.

Software Engineering Observation I.3
An anonymous inner class declared in a method can access the instance variables and
methods of the top-level class object that declared it, as well as the method’s final local
variables, but cannot access the method’s non-final local variables.

Fig. I.9 | Testing ComboBoxFrame. (Part 2 of 2.)

Z09_DEIT3397_02_SE_APPI.fm Page 667 Monday, July 7, 2014 9:19 AM

668 Appendix I GUI Components and Event Handling

Lines 34–46 are a call to imagesJComboBox’s addItemListener method. The argu-
ment to this method must be an object that is an ItemListener (i.e., any object of a class
that implements ItemListener). Lines 35–45 are a class-instance creation expression that
declares an anonymous inner class and creates one object of that class. A reference to that
object is then passed as the argument to addItemListener. The syntax ItemListener()
after new begins the declaration of an anonymous inner class that implements interface
ItemListener. This is similar to beginning a class declaration with

The opening left brace at 36 and the closing right brace at line 45 delimit the body of
the anonymous inner class. Lines 38–44 declare the ItemListener’s itemStateChanged
method. When the user makes a selection from imagesJComboBox, this method sets
label’s Icon. The Icon is selected from array icons by determining the index of the
selected item in the JComboBox with method getSelectedIndex in line 43. For each item
selected from a JComboBox, another item is first deselected—so two ItemEvents occur
when an item is selected. We wish to display only the icon for the item the user just
selected. For this reason, line 41 determines whether ItemEvent method getStateChange
returns ItemEvent.SELECTED. If so, lines 42–43 set label’s icon.

The syntax shown in lines 35–45 for creating an event handler with an anonymous
inner class is similar to the code that would be generated by a Java IDE. Typically, an IDE
enables you to design a GUI visually, then it generates code that implements the GUI. You
simply insert statements in the event-handling methods that declare how to handle each
event.

I.8 Adapter Classes
Many event-listener interfaces, such as MouseListener and MouseMotionListener, con-
tain multiple methods. It’s not always desirable to declare every method in an event-listen-
er interface. For instance, an app may need only the mouseClicked handler from
MouseListener or the mouseDragged handler from MouseMotionListener. Interface Win-
dowListener specifies seven window event-handling methods. For many of the listener in-
terfaces that have multiple methods, packages java.awt.event and javax.swing.event
provide event-listener adapter classes. An adapter class implements an interface and pro-
vides a default implementation (with an empty method body) of each method in the in-
terface. You can extend an adapter class to inherit the default implementation of every
method and subsequently override only the method(s) you need for event handling.

public class MyHandler implements ItemListener

Software Engineering Observation I.4
Like any other class, when an anonymous inner class implements an interface, the class
must implement every method in the interface.

Software Engineering Observation I.5
When a class implements an interface, the class has an is-a relationship with that
interface. All direct and indirect subclasses of that class inherit this interface. Thus, an
object of a class that extends an event-adapter class is an object of the corresponding event-
listener type (e.g., an object of a subclass of MouseAdapter is a MouseListener).

Z09_DEIT3397_02_SE_APPI.fm Page 668 Monday, July 7, 2014 9:19 AM

I.9 Wrap-Up 669

I.9 Wrap-Up
In this appendix, you learned about a few Java GUI components and how to implement
event handlers using nested classes and anonymous inner classes. You saw the special rela-
tionship between an inner-class object and an object of its top-level class. You also learned
how to create apps that execute in their own windows. We discussed class JFrame and
components that enable a user to interact with an app.

Self-Review Exercises
I.1 Fill in the blanks in each of the following statements:

a) A(n) arranges GUI components in a Container.
b) The add method for attaching GUI components is a method of class .
c) GUI is an acronym for .
d) Method is used to specify the layout manager for a container.

I.2 Specify whether the folowing statement is true or false and if false, explain why: Inner classes
are not allowed to access the members of the enclosing class.

Answers to Self-Review Exercises
I.1 a) layout manager. b) Container. c) graphical user interface. d) setLayout.

I.2 False. Inner classes have access to all members of the enclosing class declaration.

Exercises
I.3 (Temperature Conversion) Write a temperature-conversion app that converts from Fahren-
heit to Celsius. The Fahrenheit temperature should be entered from the keyboard (via a JText-
Field). A JLabel should be used to display the converted temperature. Use the following formula
for the conversion:

Celsius = × (Fahrenheit – 32)

I.4 (Temperature-Conversion Modification) Enhance the temperature-conversion app of
Exercise I.3 by adding the Kelvin temperature scale. The app should also allow the user to make
conversions between any two scales. Use the following formula for the conversion between Kelvin
and Celsius (in addition to the formula in Exercise I.3):

Kelvin = Celsius + 273.15

I.5 (Guess-the-Number Game) Write an app that plays “guess the number” as follows: Your app
chooses the number to be guessed by selecting an integer at random in the range 1–1000. The app
then displays the following in a label:

I have a number between 1 and 1000. Can you guess my number?
Please enter your first guess.

A JTextField should be used to input the guess. As each guess is input, the background color
should change to either red or blue. Red indicates that the user is getting “warmer,” and blue,
“colder.” A JLabel should display either "Too High" or "Too Low" to help the user zero in. When
the user gets the correct answer, "Correct!" should be displayed, and the JTextField used for
input should be changed to be uneditable. A JButton should be provided to allow the user to play
the game again. When the JButton is clicked, a new random number should be generated and the
input JTextField changed to be editable.

5
9

Z09_DEIT3397_02_SE_APPI.fm Page 669 Friday, June 20, 2014 7:30 PM

–

J Other Java Topics

O b j e c t i v e s
In this appendix you’ll:

■ Learn what collections are.

■ Use class Arrays for array
manipulations.

■ Understand how type-
wrapper classes enable
programs to process primitive
data values as objects.

■ Use prebuilt generic data
structures from the
collections framework.

■ Use iterators to “walk
through” a collection.

■ Learn fundamental file- and
stream-processing concepts.

■ What threads are and why
they’re useful.

■ How threads enable you to
manage concurrent activities.

■ To create and execute
Runnables.

■ Fundamentals of thread
synchronization.

■ How multiple threads can
update Swing GUI
components in a thread-safe
manner.

Z10_DEIT3397_02_SE_APPJ.fm Page 670 Tuesday, July 8, 2014 8:38 AM

J.1 Introduction 671

J.1 Introduction
This appendix presents several additional topics to support the Android portion of the
book. Sections J.2–J.9 present an overview of the Java collections framework and several
examples of working with various collections that we use in our Android apps.
Sections J.10–J.12 introduce file and stream concepts, overview method of class File and
discuss object-serialization for writing entire objects to streams and reading entire objects
from streams. Finally, Sections J.13–J.17 present the fundamentals of multithreading.

J.2 Collections Overview
Section E.12 introducted the generic ArrayList collection—a resizable array-like data struc-
ture that stores references to objects of a type that you specify when you create the Array-
List. We now continue our discussion of the Java collections framework, which contains
many other prebuilt generic data structures and various methods for manipulating them. We
focus on those that are used in the Android chapters of this book and those that have close
parallels in the Android APIs. For complete details of the collections framework, visit

A collection is a data structure—actually, an object—that can hold references to other
objects. Usually, collections contain references to objects that are all of the same type. The
collections-framework interfaces declare the operations to be performed generically on
various types of collections. Figure J.1 lists some of the interfaces of the collections frame-
work. Several implementations of these interfaces are provided within the framework. You
may also provide implementations specific to your own requirements.

Because you specify the type to store in a collection at compile time, generic collec-
tions provide compile-time type safety that allows the compiler to catch attempts to use
invalid types. For example, you cannot store Employees in a collection of Strings. Some

J.1 Introduction
J.2 Collections Overview
J.3 Type-Wrapper Classes for Primitive

Types
J.5 Interface Collection and Class

Collections
J.5 Lists

J.5.1 ArrayList and Iterator
J.5.2 LinkedList
J.5.3 Views into Collections and Arrays

Method asList
J.6 Collections Methods

J.6.1 Method sort
J.6.2 Method shuffle

J.7 Interface Queue

J.8 Sets
J.9 Maps

J.10 Introduction to Files and Streams
J.11 Class File
J.12 Introduction to Object Serialization
J.13 Introduction to Multithreading
J.14 Creating and Executing Threads with

the Executor Framework
J.15 Overview of Thread Synchronization
J.16 Concurrent Collections Overview
J.17 Multithreading with GUI
J.18 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

docs.oracle.com/javase/6/docs/technotes/guides/collections/

Z10_DEIT3397_02_SE_APPJ.fm Page 671 Monday, July 7, 2014 9:21 AM

672 Appendix J Other Java Topics

examples of collections are the cards you hold in a card game, your favorite songs stored
in your computer, the members of a sports team and the real-estate records in your local
registry of deeds (which map book numbers and page numbers to property owners).

J.3 Type-Wrapper Classes for Primitive Types
Each primitive type (listed in Appendix L) has a corresponding type-wrapper class in
package java.lang. These classes are called Boolean, Byte, Character, Double, Float,
Integer, Long and Short. These enable you to manipulate primitive-type values as ob-
jects. Java’s reusable data structures manipulate and share objects—they cannot manipulate
variables of primitive types. However, they can manipulate objects of the type-wrapper
classes, because every class ultimately derives from Object.

Each of the numeric type-wrapper classes—Byte, Short, Integer, Long, Float and
Double—extends class Number. Also, the type-wrapper classes are final classes, so you
cannot extend them.

Primitive types do not have methods, so the methods related to a primitive type are
located in the corresponding type-wrapper class (e.g., method parseInt, which converts a
String to an int value, is located in class Integer). If you need to manipulate a primitive
value in your program, first refer to the documentation for the type-wrapper classes—the
method you need might already be declared.

Autoboxing and Auto-Unboxing
Java provides boxing and unboxing conversions to automatically convert between primitive-
type values and type-wrapper objects. A boxing conversion converts a value of a primitive
type to an object of the corresponding type-wrapper class. An unboxing conversion con-
verts an object of a type-wrapper class to a value of the corresponding primitive type. These
conversions are performed automatically (called autoboxing and auto-unboxing), allowing
primitive-type values to be used where type-wrapper objects are expected and vice versa.

J.4 Interface Collection and Class Collections
Interface Collection is the root interface in the collection hierarchy from which interfaces
Set, Queue and List are derived. Interface Set defines a collection that does not contain
duplicates. Interface Queue defines a collection that represents a waiting line—typically,
insertions are made at the back of a queue and deletions from the front, though other or-

Interface Description

Collection The root interface in the collections hierarchy from which interfaces Set,
Queue and List are derived.

Set A collection that does not contain duplicates.

List An ordered collection that can contain duplicate elements.

Map A collection that associates keys to values and cannot contain duplicate keys.

Queue Typically a first-in, first-out collection that models a waiting line; other
orders can be specified.

Fig. J.1 | Some collections-framework interfaces.

Z10_DEIT3397_02_SE_APPJ.fm Page 672 Monday, July 7, 2014 9:21 AM

J.5 Lists 673

ders can be specified. We discuss Queue and Set in Sections J.7––J.8. Interface Collec-
tion contains bulk operations (i.e., operations performed on an entire collection) for
operations such as adding, clearing and comparing objects (or elements) in a collection. A
Collection can also be converted to an array. In addition, interface Collection provides
a method that returns an Iterator object, which allows a program to walk through the
collection and remove elements from it during the iteration. We discuss class Iterator in
Section J.5.1. Other methods of interface Collection enable a program to determine a
collection’s size and whether a collection is empty. Class Collections provides static
methods that search, sort and perform other operations on collections. Section J.6 discuss-
es the methods that are available in class Collections.

J.5 Lists
A List is an ordered Collection that can contain duplicate elements. Like array indices,
List indices are zero based (i.e., the first element’s index is zero). In addition to the meth-
ods inherited from Collection, interface List provides methods for manipulating ele-
ments via their indices, manipulating a specified range of elements, searching for elements
and obtaining a ListIterator to access the elements.

Interface List is implemented by several classes, including ArrayList (introduced in
Appendix E) and LinkedList. Class ArrayList is a resizable-array implementation of
List. Inserting an element between existing elements of an ArrayList is an inefficient
operation—all elements after the new one must be moved out of the way, which could be
an expensive operation in a collection with a large number of elements. A LinkedList
enables efficient insertion (or removal) of elements in the middle of a collection. The fol-
lowing two subsections demonstrate various List and Collection capabilities.

J.5.1 ArrayList and Iterator
Figure J.2 uses an ArrayList (introduced in Section E.12) to demonstrate several capabil-
ities of interface Collection. The program places two Color arrays in ArrayLists and uses
an Iterator to remove elements in the second ArrayList collection from the first.

Software Engineering Observation J.1
Most collection implementations provide a constructor that takes a Collection

argument, thereby allowing a new collection to be constructed containing the elements of
the specified collection.

1 // Fig. J.2: CollectionTest.java
2 // Collection interface demonstrated via an ArrayList object.
3 import java.util.List;
4 import java.util.ArrayList;
5 import java.util.Collection;
6 import java.util.Iterator;
7
8 public class CollectionTest
9 {

Fig. J.2 | Collection interface demonstrated via an ArrayList object. (Part 1 of 2.)

Z10_DEIT3397_02_SE_APPJ.fm Page 673 Monday, July 7, 2014 9:21 AM

674 Appendix J Other Java Topics

10 public static void main(String[] args)
11 {
12 // add elements in colors array to list
13 String[] colors = { "MAGENTA", "RED", "WHITE", "BLUE", "CYAN" };
14 List< String > list = new ArrayList< String >();
15
16 for (String color : colors)
17 list.add(color); // adds color to end of list
18
19 // add elements in removeColors array to removeList
20 String[] removeColors = { "RED", "WHITE", "BLUE" };
21 List< String > removeList = new ArrayList< String >();
22
23 for (String color : removeColors)
24 removeList.add(color);
25
26 // output list contents
27 System.out.println("ArrayList: ");
28
29 for (int count = 0; count < list.size(); count++)
30 System.out.printf("%s ", list.get(count));
31
32 // remove from list the colors contained in removeList
33 removeColors(list, removeList);
34
35 // output list contents
36 System.out.println("\n\nArrayList after calling removeColors: ");
37
38 for (String color : list)
39 System.out.printf("%s ", color);
40 } // end main
41
42 // remove colors specified in collection2 from collection1
43 private static void removeColors(Collection< String > collection1,
44 Collection< String > collection2)
45 {
46 // get iterator
47 Iterator< String > iterator = collection1.iterator();
48
49 // loop while collection has items
50 while (iterator.hasNext())
51 {
52 if (collection2.contains(iterator.next()))
53 iterator.remove(); // remove current Color
54 } // end while
55 } // end method removeColors
56 } // end class CollectionTest

ArrayList:
MAGENTA RED WHITE BLUE CYAN

ArrayList after calling removeColors:
MAGENTA CYAN

Fig. J.2 | Collection interface demonstrated via an ArrayList object. (Part 2 of 2.)

Z10_DEIT3397_02_SE_APPJ.fm Page 674 Monday, July 7, 2014 9:21 AM

J.5 Lists 675

Lines 13 and 20 declare and initialize String arrays colors and removeColors. Lines
14 and 21 create ArrayList<String> objects and assign their references to List<String>
variables list and removeList, respectively. We refer to the ArrayLists in this example via
List variables. This makes our code more flexible and easier to modify. If we later decide
that LinkedLists would be more appropriate, we’ll need to modify only lines 14 and 21
where we created the ArrayList objects.

Lines 16–17 populate list with Strings stored in array colors, and lines 23–24 pop-
ulate removeList with Strings stored in array removeColors using List method add.
Lines 29–30 output each element of list. Line 29 calls List method size to get the
number of elements in the ArrayList. Line 30 uses List method get to retrieve indi-
vidual element values. Lines 29–30 also could have used the enhanced for statement
(which we’ll demonstrate with collections in other examples).

Line 33 calls method removeColors (lines 43–55), passing list and removeList as
arguments. Method removeColors deletes the Strings in removeList from the Strings
in list. Lines 38–39 print list’s elements after removeColors completes its task.

Method removeColors declares two Collection<String> parameters (lines 43–44)
that allow any two Collections containing strings to be passed as arguments to this method.
The method accesses the elements of the first Collection (collection1) via an Iterator.
Line 47 calls Collection method iterator to get an Iterator for the Collection. Inter-
faces Collection and Iterator are generic types. The loop-continuation condition (line 50)
calls Iterator method hasNext to determine whether the Collection contains more ele-
ments. Method hasNext returns true if another element exists and false otherwise.

The if condition in line 52 calls Iterator method next to obtain a reference to the
next element, then uses method contains of the second Collection (collection2) to
determine whether collection2 contains the element returned by next. If so, line 53 calls
Iterator method remove to remove the element from the Collection collection1.

J.5.2 LinkedList
Figure J.3 demonstrates various operations on LinkedLists. The program creates two
LinkedLists of Strings. The elements of one List are added to the other. Then all the
Strings are converted to uppercase, and a range of elements is deleted.

Common Programming Error J.1
If a collection is modified after an iterator is created for that collection, the iterator im-
mediately becomes invalid—operations performed with the iterator after this point throw
ConcurrentModificationExceptions. For this reason, iterators are said to be “fail fast.”

1 // Fig. J.3: ListTest.java
2 // Lists, LinkedLists and ListIterators.
3 import java.util.List;
4 import java.util.LinkedList;
5 import java.util.ListIterator;
6
7 public class ListTest
8 {

Fig. J.3 | Lists, LinkedLists and ListIterators. (Part 1 of 3.)

Z10_DEIT3397_02_SE_APPJ.fm Page 675 Monday, July 7, 2014 9:21 AM

676 Appendix J Other Java Topics

9 public static void main(String[] args)
10 {
11 // add colors elements to list1
12 String[] colors =
13 { "black", "yellow", "green", "blue", "violet", "silver" };
14 List< String > list1 = new LinkedList< String >();
15
16 for (String color : colors)
17 list1.add(color);
18
19 // add colors2 elements to list2
20 String[] colors2 =
21 { "gold", "white", "brown", "blue", "gray", "silver" };
22 List< String > list2 = new LinkedList< String >();
23
24 for (String color : colors2)
25 list2.add(color);
26
27 list1.addAll(list2); // concatenate lists
28 list2 = null; // release resources
29 printList(list1); // print list1 elements
30
31 convertToUppercaseStrings(list1); // convert to uppercase string
32 printList(list1); // print list1 elements
33
34 System.out.print("\nDeleting elements 4 to 6...");
35 removeItems(list1, 4, 7); // remove items 4-6 from list
36 printList(list1); // print list1 elements
37 printReversedList(list1); // print list in reverse order
38 } // end main
39
40 // output List contents
41 private static void printList(List< String > list)
42 {
43 System.out.println("\nlist: ");
44
45 for (String color : list)
46 System.out.printf("%s ", color);
47
48 System.out.println();
49 } // end method printList
50
51 // locate String objects and convert to uppercase
52 private static void convertToUppercaseStrings(List< String > list)
53 {
54 ListIterator< String > iterator = list.listIterator();
55
56 while (iterator.hasNext())
57 {
58 String color = iterator.next(); // get item
59 iterator.set(color.toUpperCase()); // convert to upper case
60 } // end while
61 } // end method convertToUppercaseStrings

Fig. J.3 | Lists, LinkedLists and ListIterators. (Part 2 of 3.)

Z10_DEIT3397_02_SE_APPJ.fm Page 676 Monday, July 7, 2014 9:21 AM

J.5 Lists 677

Lines 14 and 22 create LinkedLists list1 and list2 of type String. LinkedList is
a generic class that has one type parameter for which we specify the type argument String
in this example. Lines 16–17 and 24–25 call List method add to append elements from
arrays colors and colors2 to the end of list1 and list2, respectively.

Line 27 calls List method addAll to append all elements of list2 to the end of
list1. Line 28 sets list2 to null, so the LinkedList to which list2 referred can be gar-
bage collected. Line 29 calls method printList (lines 41–49) to output list1’s contents.
Line 31 calls method convertToUppercaseStrings (lines 52–61) to convert each String
element to uppercase, then line 32 calls printList again to display the modified Strings.
Line 35 calls method removeItems (lines 64–68) to remove the elements starting at index
4 up to, but not including, index 7 of the list. Line 37 calls method printReversedList
(lines 71–80) to print the list in reverse order.

Method convertToUppercaseStrings
Method convertToUppercaseStrings (lines 52–61) changes lowercase String elements in
its List argument to uppercase Strings. Line 54 calls List method listIterator to get
the List’s bidirectional iterator (i.e., one that can traverse a List backward or forward).

62
63 // obtain sublist and use clear method to delete sublist items
64 private static void removeItems(List< String > list,
65 int start, int end)
66 {
67 list.subList(start, end).clear(); // remove items
68 } // end method removeItems
69
70 // print reversed list
71 private static void printReversedList(List< String > list)
72 {
73 ListIterator< String > iterator = list.listIterator(list.size());
74
75 System.out.println("\nReversed List:");
76
77 // print list in reverse order
78 while (iterator.hasPrevious())
79 System.out.printf("%s ", iterator.previous());
80 } // end method printReversedList
81 } // end class ListTest

list:
black yellow green blue violet silver gold white brown blue gray silver

list:
BLACK YELLOW GREEN BLUE VIOLET SILVER GOLD WHITE BROWN BLUE GRAY SILVER

Deleting elements 4 to 6...
list:
BLACK YELLOW GREEN BLUE WHITE BROWN BLUE GRAY SILVER

Reversed List:
SILVER GRAY BLUE BROWN WHITE BLUE GREEN YELLOW BLACK

Fig. J.3 | Lists, LinkedLists and ListIterators. (Part 3 of 3.)

Z10_DEIT3397_02_SE_APPJ.fm Page 677 Monday, July 7, 2014 9:21 AM

678 Appendix J Other Java Topics

ListIterator is also a generic class. In this example, the ListIterator references String
objects, because method listIterator is called on a List of Strings. Line 56 calls method
hasNext to determine whether the List contains another element. Line 58 gets the next
String in the List. Line 59 calls String method toUpperCase to get an uppercase version
of the String and calls ListIterator method set to replace the current String to which
iterator refers with the String returned by method toUpperCase. Like method toUpper-
Case, String method toLowerCase returns a lowercase version of the String.

Method removeItems
Method removeItems (lines 64–68) removes a range of items from the list. Line 67 calls
List method subList to obtain a portion of the List (called a sublist). This is a so-called
range-view method, which enables the program to view a portion of the list. The sublist
is simply a view into the List on which subList is called. Method subList takes as argu-
ments the beginning and ending index for the sublist. The ending index is not part of the
range of the sublist. In this example, line 35 passes 4 for the beginning index and 7 for the
ending index to subList. The sublist returned is the set of elements with indices 4 through
6. Next, the program calls List method clear on the sublist to remove the elements of
the sublist from the List. Any changes made to a sublist are also made to the original List.

Method printReversedList
Method printReversedList (lines 71–80) prints the list backward. Line 73 calls List
method listIterator with the starting position as an argument (in our case, the last ele-
ment in the list) to get a bidirectional iterator for the list. List method size returns the
number of items in the List. The while condition (line 78) calls ListIterator’s hasPre-
vious method to determine whether there are more elements while traversing the list
backward. Line 79 calls ListIterator’s previous method to get the previous element
from the list and outputs it to the standard output stream.

J.5.3 Views into Collections and Arrays Method asList
An important feature of the collections framework is the ability to manipulate the ele-
ments of one collection type (such as a set) through a different collection type (such as a
list), regardless of the collection’s internal implementation. The set of public methods
through which collections are manipulated is called a view.

Class Arrays provides static method asList to view an array (sometimes called the
backing array) as a List collection. A List view allows you to manipulate the array as if it
were a list. This is useful for adding the elements in an array to a collection and for sorting
array elements. The next example demonstrates how to create a LinkedList with a List view
of an array, because we cannot pass the array to a LinkedList constructor. Any modifications
made through the List view change the array, and any modifications made to the array
change the List view. The only operation permitted on the view returned by asList is set,
which changes the value of the view and the backing array. Any other attempts to change the
view (such as adding or removing elements) result in an UnsupportedOperationException.

Viewing Arrays as Lists and Converting Lists to Arrays
Figure J.4 uses Arrays method asList to view an array as a List and uses List method
toArray to get an array from a LinkedList collection. The program calls method asList
to create a List view of an array, which is used to initialize a LinkedList object, then adds

Z10_DEIT3397_02_SE_APPJ.fm Page 678 Monday, July 7, 2014 9:21 AM

J.5 Lists 679

a series of strings to the LinkedList and calls method toArray to obtain an array contain-
ing references to the Strings.

Lines 13–14 construct a LinkedList of Strings containing the elements of array
colors. Line 14 uses Arrays method asList to return a List view of the array, then uses
that to initialize the LinkedList with its constructor that receives a Collection as an argu-
ment (a List is a Collection). Line 16 calls LinkedList method addLast to add "red" to
the end of links. Lines 17–18 call LinkedList method add to add "pink" as the last ele-
ment and "green" as the element at index 3 (i.e., the fourth element). Method addLast (line
16) functions identically to method add (line 17). Line 19 calls LinkedList method add-
First to add "cyan" as the new first item in the LinkedList. The add operations are per-
mitted because they operate on the LinkedList object, not the view returned by asList.

1 // Fig. J.4: UsingToArray.java
2 // Viewing arrays as Lists and converting Lists to arrays.
3 import java.util.LinkedList;
4 import java.util.Arrays;
5
6 public class UsingToArray
7 {
8 // creates a LinkedList, adds elements and converts to array
9 public static void main(String[] args)

10 {
11 String[] colors = { "black", "blue", "yellow" };
12
13 LinkedList< String > links =
14 new LinkedList< String >(Arrays.asList(colors));
15
16 links.addLast("red"); // add as last item
17 links.add("pink"); // add to the end
18 links.add(3, "green"); // add at 3rd index
19 links.addFirst("cyan"); // add as first item
20
21 // get LinkedList elements as an array
22 colors = links.toArray(new String[links.size()]);
23
24 System.out.println("colors: ");
25
26 for (String color : colors)
27 System.out.println(color);
28 } // end main
29 } // end class UsingToArray

colors:
cyan
black
blue
yellow
green
red
pink

Fig. J.4 | Viewing arrays as Lists and converting Lists to arrays.

Z10_DEIT3397_02_SE_APPJ.fm Page 679 Monday, July 7, 2014 9:21 AM

680 Appendix J Other Java Topics

Line 22 calls the List interface’s toArray method to get a String array from links. The
array is a copy of the list’s elements—modifying the array’s contents does not modify the list.
The array passed to method toArray is of the same type that you’d like method toArray to
return. If the number of elements in that array is greater than or equal to the number of ele-
ments in the LinkedList, toArray copies the list’s elements into its array argument and
returns that array. If the LinkedList has more elements than the number of elements in the
array passed to toArray, toArray allocates a new array of the same type it receives as an argu-
ment, copies the list’s elements into the new array and returns the new array.

J.6 Collections Methods
Class Collections provides several high-performance algorithms (Fig. J.5) for manipulat-
ing collection elements. The algorithms are implemented as static methods. The meth-
ods sort, binarySearch, reverse, shuffle, fill and copy operate on Lists. Methods
min, max and addAll operate on Collections.

J.6.1 Method sort
Method sort sorts the elements of a List, which must implement the Comparable inter-
face. The order is determined by the natural order of the elements’ type as implemented
by a compareTo method. Method compareTo is declared in interface Comparable and is
sometimes called the natural comparison method. The sort call may specify as a second
argument a Comparator object that determines an alternative ordering of the elements.

Sorting in Ascending or Descending Order
If list is a List of Comparable objects (such as Strings), you can use Collections meth-
od sort to order the elements in ascending order as follows:

You can sort the List in descending order as follows:

Method Description

sort Sorts the elements of a List.

binarySearch Locates an object in a List.

reverse Reverses the elements of a List.

shuffle Randomly orders a List’s elements.

fill Sets every List element to refer to a specified object.

copy Copies references from one List into another.

min Returns the smallest element in a Collection.

max Returns the largest element in a Collection.

addAll Appends all elements in an array to a Collection.

Fig. J.5 | Some methods of class Collections.

Collections.sort(list); // sort list into ascending order

// sort list into descending order
Collections.sort(list, Collections.reverseOrder());

Z10_DEIT3397_02_SE_APPJ.fm Page 680 Monday, July 7, 2014 9:21 AM

J.6 Collections Methods 681

The static Collections method reverseOrder returns a Comparator object that orders
the collection’s elements in reverse order.

Sorting with a Comparator
For objects that are not Comparable, you can create custom Comparators. Figure J.6 cre-
ates a custom Comparator class, named TimeComparator, that implements interface Com-
parator to compare two Time2 objects. Class Time2, declared in Fig. F.5, represents times
with hours, minutes and seconds.

Class TimeComparator implements interface Comparator, a generic type that takes
one type argument (in this case Time2). A class that implements Comparator must declare
a compare method that receives two arguments and returns a negative integer if the first
argument is less than the second, 0 if the arguments are equal or a positive integer if the
first argument is greater than the second. Method compare (lines 7–26) performs compar-
isons between Time2 objects. Line 9 compares the two hours of the Time2 objects. If the
hours are different (line 12), then we return this value. If this value is positive, then the
first hour is greater than the second and the first time is greater than the second. If this
value is negative, then the first hour is less than the second and the first time is less than
the second. If this value is zero, the hours are the same and we must test the minutes (and
maybe the seconds) to determine which time is greater.

1 // Fig. J.8: TimeComparator.java
2 // Custom Comparator class that compares two Time2 objects.
3 import java.util.Comparator;
4
5 public class TimeComparator implements Comparator< Time2 >
6 {
7 public int compare(Time2 time1, Time2 time2)
8 {
9 int hourCompare = time1.getHour() - time2.getHour(); // compare hour

10
11 // test the hour first
12 if (hourCompare != 0)
13 return hourCompare;
14
15 int minuteCompare =
16 time1.getMinute() - time2.getMinute(); // compare minute
17
18 // then test the minute
19 if (minuteCompare != 0)
20 return minuteCompare;
21
22 int secondCompare =
23 time1.getSecond() - time2.getSecond(); // compare second
24
25 return secondCompare; // return result of comparing seconds
26 } // end method compare
27 } // end class TimeComparator

Fig. J.6 | Custom Comparator class that compares two Time2 objects.

Z10_DEIT3397_02_SE_APPJ.fm Page 681 Monday, July 7, 2014 9:21 AM

682 Appendix J Other Java Topics

Figure J.7 sorts a list using the custom Comparator class TimeComparator. Line 11
creates an ArrayList of Time2 objects. Recall that both ArrayList and List are generic
types and accept a type argument that specifies the element type of the collection. Lines
13–17 create five Time2 objects and add them to this list. Line 23 calls method sort,
passing it an object of our TimeComparator class (Fig. J.6).

J.6.2 Method shuffle
Method shuffle randomly orders a List’s elements. Appendix E presented a card shuf-
fling and dealing simulation that shuffled a deck of cards with a loop. If you have an array
of 52 Card objects, you can shuffle them with method shuffle as follows:

The second line above shuffles the array by calling static method shuffle of class
Collections. Method shuffle requires a List argument, so we must obtain a List view

1 // Fig. J.7: Sort.java
2 // Collections method sort with a custom Comparator object.
3 import java.util.List;
4 import java.util.ArrayList;
5 import java.util.Collections;
6
7 public class Sort3
8 {
9 public static void main(String[] args)

10 {
11 List< Time2 > list = new ArrayList< Time2 >(); // create List
12
13 list.add(new Time2(6, 24, 34));
14 list.add(new Time2(18, 14, 58));
15 list.add(new Time2(6, 05, 34));
16 list.add(new Time2(12, 14, 58));
17 list.add(new Time2(6, 24, 22));
18
19 // output List elements
20 System.out.printf("Unsorted array elements:\n%s\n", list);
21
22 // sort in order using a comparator
23 Collections.sort(list, new TimeComparator());
24
25 // output List elements
26 System.out.printf("Sorted list elements:\n%s\n", list);
27 } // end main
28 } // end class Sort3

Unsorted array elements:
[6:24:34 AM, 6:14:58 PM, 6:05:34 AM, 12:14:58 PM, 6:24:22 AM]
Sorted list elements:
[6:05:34 AM, 6:24:22 AM, 6:24:34 AM, 12:14:58 PM, 6:14:58 PM]

Fig. J.7 | Collections method sort with a custom Comparator object.

List< Card > list = Arrays.asList(deck); // get List
Collections.shuffle(list); // shuffle deck

Z10_DEIT3397_02_SE_APPJ.fm Page 682 Monday, July 7, 2014 9:21 AM

J.7 Interface Queue 683

of the array before we can shuffle it. The Arrays class’s static method asList gets a List
view of the deck array.

J.7 Interface Queue
A queue is a collection that represents a waiting line—typically, insertions are made at the
back of a queue and deletions are made from the front. Interface Queue extends interface
Collection and provides additional operations for inserting, removing and inspecting el-
ements in a queue. You can view the details of interface Queue and the list of classes that
implement it at

J.8 Sets
A Set is an unordered Collection of unique elements (i.e., no duplicate elements). The
collections framework contains several Set implementations, including HashSet and
TreeSet. HashSet stores its elements in a hash table, and TreeSet stores its elements in a
tree. Hash tables are presented in Section J.9.

Figure J.8 uses a HashSet to remove duplicate strings from a List. Recall that both
List and Collection are generic types, so line 16 creates a List that contains String
objects, and line 20 passes a Collection of Strings to method printNonDuplicates.

docs.oracle.com/javase/6/docs/api/index.html?java/util/Queue.html

1 // Fig. J.8: SetTest.java
2 // HashSet used to remove duplicate values from an array of strings.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.HashSet;
6 import java.util.Set;
7 import java.util.Collection;
8
9 public class SetTest

10 {
11 public static void main(String[] args)
12 {
13 // create and display a List< String >
14 String[] colors = { "red", "white", "blue", "green", "gray",
15 "orange", "tan", "white", "cyan", "peach", "gray", "orange" };
16 List< String > list = Arrays.asList(colors);
17 System.out.printf("List: %s\n", list);
18
19 // eliminate duplicates then print the unique values
20 printNonDuplicates(list);
21 } // end main
22
23 // create a Set from a Collection to eliminate duplicates
24 private static void printNonDuplicates(Collection< String > values)
25 {
26 // create a HashSet
27 Set< String > set = new HashSet< String >(values);

Fig. J.8 | HashSet used to remove duplicate values from an array of strings. (Part 1 of 2.)

Z10_DEIT3397_02_SE_APPJ.fm Page 683 Monday, July 7, 2014 9:21 AM

684 Appendix J Other Java Topics

Method printNonDuplicates (lines 24–35) takes a Collection argument. Line 27
constructs a HashSet<String> from the Collection<String> argument. By definition,
Sets do not contain duplicates, so when the HashSet is constructed, it removes any dupli-
cates in the Collection. Lines 31–32 output elements in the Set.

Sorted Sets
The collections framework also includes the SortedSet interface (which extends Set) for
sets that maintain their elements in sorted order—either the elements’ natural order (e.g.,
numbers are in ascending order) or an order specified by a Comparator. Class TreeSet im-
plements SortedSet. Items placed in a TreeSet are sorted as they’re added.

J.9 Maps
Maps associate keys to values. The keys in a Map must be unique, but the associated values
need not be. If a Map contains both unique keys and unique values, it’s said to implement
a one-to-one mapping. If only the keys are unique, the Map is said to implement a many-
to-one mapping—many keys can map to one value.

Maps differ from Sets in that Maps contain keys and values, whereas Sets contain only
values. Three of the several classes that implement interface Map are Hashtable, HashMap
and TreeMap, and maps are used extensively in Android. Hashtables and HashMaps store
elements in hash tables, and TreeMaps store elements in trees—the details of the under-
lying data structures are beyond the scope of this book. Interface SortedMap extends Map
and maintains its keys in sorted order—either the elements’ natural order or an order spec-
ified by a Comparator. Class TreeMap implements SortedMap. Figure J.9 uses a HashMap
to count the number of occurrences of each word in a string.

28
29 System.out.print("\nNonduplicates are: ");
30
31 for (String value : set)
32 System.out.printf("%s ", value);
33
34 System.out.println();
35 } // end method printNonDuplicates
36 } // end class SetTest

List: [red, white, blue, green, gray, orange, tan, white, cyan, peach, gray,
orange]

Nonduplicates are: orange green white peach gray cyan red blue tan

1 // Fig. J.9: WordTypeCount.java
2 // Program counts the number of occurrences of each word in a String.
3 import java.util.Map;

Fig. J.9 | Program counts the number of occurrences of each word in a String. (Part 1 of 3.)

Fig. J.8 | HashSet used to remove duplicate values from an array of strings. (Part 2 of 2.)

Z10_DEIT3397_02_SE_APPJ.fm Page 684 Monday, July 7, 2014 9:21 AM

J.9 Maps 685

4 import java.util.HashMap;
5 import java.util.Set;
6 import java.util.TreeSet;
7 import java.util.Scanner;
8
9 public class WordTypeCount

10 {
11 public static void main(String[] args)
12 {
13 // create HashMap to store String keys and Integer values
14 Map< String, Integer > myMap = new HashMap< String, Integer >();
15
16 createMap(myMap); // create map based on user input
17 displayMap(myMap); // display map content
18 } // end main
19
20 // create map from user input
21 private static void createMap(Map< String, Integer > map)
22 {
23 Scanner scanner = new Scanner(System.in); // create scanner
24 System.out.println("Enter a string:"); // prompt for user input
25 String input = scanner.nextLine();
26
27 // tokenize the input
28 String[] tokens = input.split(" ");
29
30 // processing input text
31 for (String token : tokens)
32 {
33 String word = token.toLowerCase(); // get lowercase word
34
35 // if the map contains the word
36 if (map.containsKey(word)) // is word in map
37 {
38 int count = map.get(word); // get current count
39 map.put(word, count + 1); // increment count
40 } // end if
41 else
42 map.put(word, 1); // add new word with a count of 1 to map
43 } // end for
44 } // end method createMap
45
46 // display map content
47 private static void displayMap(Map< String, Integer > map)
48 {
49 Set< String > keys = map.keySet(); // get keys
50
51 // sort keys
52 TreeSet< String > sortedKeys = new TreeSet< String >(keys);
53
54 System.out.println("\nMap contains:\nKey\t\tValue");
55

Fig. J.9 | Program counts the number of occurrences of each word in a String. (Part 2 of 3.)

Z10_DEIT3397_02_SE_APPJ.fm Page 685 Monday, July 7, 2014 9:21 AM

686 Appendix J Other Java Topics

Line 14 creates an empty HashMap with a default initial capacity (16 elements) and a
default load factor (0.75)—these defaults are built into the implementation of HashMap.
When the number of occupied slots in the HashMap becomes greater than the capacity
times the load factor, the capacity is doubled automatically. HashMap is a generic class that
takes two type arguments—the type of key (i.e., String) and the type of value (i.e.,
Integer). Recall that the type arguments passed to a generic class must be reference types,
hence the second type argument is Integer, not int.

Line 16 calls method createMap (lines 21–44), which uses a map to store the number
of occurrences of each word in the sentence. Line 25 obtains the user input, and line 28
tokenizes it. The loop in lines 31–43 converts the next token to lowercase letters (line 33),
then calls Map method containsKey (line 36) to determine whether the word is in the map
(and thus has occurred previously in the string). If the Map does not contain a mapping for
the word, line 42 uses Map method put to create a new entry in the map, with the word as
the key and an Integer object containing 1 as the value. Autoboxing occurs when the pro-
gram passes integer 1 to method put, because the map stores the number of occurrences
of the word as an Integer. If the word does exist in the map, line 38 uses Map method get
to obtain the key’s associated value (the count) in the map. Line 39 increments that value
and uses put to replace the key’s associated value in the map. Method put returns the key’s
prior associated value, or null if the key was not in the map.

Method displayMap (lines 47–62) displays all the entries in the map. It uses HashMap
method keySet (line 49) to get a set of the keys. The keys have type String in the map, so

56 // generate output for each key in map
57 for (String key : sortedKeys)
58 System.out.printf("%-10s%10s\n", key, map.get(key));
59
60 System.out.printf(
61 "\nsize: %d\nisEmpty: %b\n", map.size(), map.isEmpty());
62 } // end method displayMap
63 } // end class WordTypeCount

Enter a string:
this is a sample sentence with several words this is another sample
sentence with several different words

Map contains:
Key Value
a 1
another 1
different 1
is 2
sample 2
sentence 2
several 2
this 2
with 2
words 2

size: 10
isEmpty: false

Fig. J.9 | Program counts the number of occurrences of each word in a String. (Part 3 of 3.)

Z10_DEIT3397_02_SE_APPJ.fm Page 686 Monday, July 7, 2014 9:21 AM

J.10 Introduction to Files and Streams 687

method keySet returns a generic type Set with type parameter specified to be String.
Line 52 creates a TreeSet of the keys, in which the keys are sorted. The loop in lines 57–58
accesses each key and its value in the map. Line 58 displays each key and its value using
format specifier %-10s to left justify each key and format specifier %10s to right justify each
value. The keys are displayed in ascending order. Line 61 calls Map method size to get the
number of key/value pairs in the Map. Line 61 also calls Map method isEmpty, which
returns a boolean indicating whether the Map is empty.

J.10 Introduction to Files and Streams
Data stored in variables and arrays is temporary—it’s lost when a local variable goes out of
scope or when the program terminates. For long-term retention of data, even after the
programs that create the data terminate, computers use files. You use files every day for
tasks such as writing a document or creating a spreadsheet. Data maintained in files is per-
sistent data—it exists beyond the duration of program execution.

Files as Streams of Bytes
Java views each file as a sequential stream of bytes (Fig. J.10). Every operating system pro-
vides a mechanism to determine the end of a file, such as an end-of-file marker or a count
of the total bytes in the file that’s recorded in a system-maintained administrative data
structure. A Java program processing a stream of bytes simply receives an indication from
the operating system when it reaches the end of the stream—the program does not need
to know how the underlying platform represents files or streams. In some cases, the end-
of-file indication occurs as an exception. In other cases, the indication is a return value
from a method invoked on a stream-processing object.

Byte-Based and Character-Based Streams
Streams can be used to input and output data as bytes or characters. Byte-based streams
input and output data in its binary format. Character-based streams input and output
data as a sequence of characters. If the value 5 were being stored using a byte-based stream,
it would be stored in the binary format of the numeric value 5, or 101. If the value 5 were
being stored using a character-based stream, it would be stored in the binary format of the
character 5, or 00000000 00110101 (this is the binary representation for the numeric value
53, which indicates the Unicode® character 5). The difference between the two forms is
that the numeric value can be used as an integer in calculations, whereas the character 5 is
simply a character that can be used in a string of text, as in "Sarah Miller is 15 years
old". Files that are created using byte-based streams are referred to as binary files, while
files created using character-based streams are referred to as text files. Text files can be read
by text editors, while binary files are read by programs that understand the file’s specific
content and its ordering.

Fig. J.10 | Java’s view of a file of n bytes.

0 1 2 3 4 5 6 7 8 9 ...

...

n-1

end-of-file marker

Z10_DEIT3397_02_SE_APPJ.fm Page 687 Monday, July 7, 2014 9:21 AM

688 Appendix J Other Java Topics

Opening a File
A Java program opens a file by creating an object and associating a stream of bytes or char-
acters with it. The object’s constructor interacts with the operating system to open the file.

The java.io Package
Java programs perform file processing by using classes from package java.io. This pack-
age includes definitions for stream classes, such as FileInputStream (for byte-based input
from a file), FileOutputStream (for byte-based output to a file), FileReader (for charac-
ter-based input from a file) and FileWriter (for character-based output to a file), which
inherit from classes InputStream, OutputStream, Reader and Writer, respectively. Thus,
the methods of the these stream classes can also be applied to file streams.

Java contains classes that enable you to perform input and output of objects or vari-
ables of primitive data types. The data will still be stored as bytes or characters behind the
scenes, allowing you to read or write data in the form of ints, Strings, or other types
without having to worry about the details of converting such values to byte format. To per-
form such input and output, objects of classes ObjectInputStream and ObjectOutput-
Stream can be used together with the byte-based file stream classes FileInputStream and
FileOutputStream (these classes will be discussed in more detail shortly). The complete
hierarchy of types in package java.io can be viewed in the online documentation at

Character-based input and output can also be performed with classes Scanner and
Formatter. Class Scanner is used extensively to input data from the keyboard—it can also
read data from a file. Class Formatter enables formatted data to be output to any text-
based stream in a manner similar to method System.out.printf.

J.11 Class File
Class File is useful for retrieving information about files or directories from disk. File ob-
jects are used frequently with objects of other java.io classes to specify files or directories
to manipulate.

Creating File Objects
Class File provides several constructors. The one with a String argument specifies the
name of a file or directory to associate with the File object. The name can contain path in-
formation as well as a file or directory name. A file or directory’s path specifies its location
on disk. The path includes some or all of the directories leading to the file or directory. An
absolute path contains all the directories, starting with the root directory, that lead to a spe-
cific file or directory. Every file or directory on a particular disk drive has the same root di-
rectory in its path. A relative path normally starts from the directory in which the
application began executing and is therefore “relative” to the current directory. The con-
structor with two String arguments specifies an absolute or relative path as the first argu-
ment and the file or directory to associate with the File object as the second argument. The
constructor with File and String arguments uses an existing File object that specifies the
parent directory of the file or directory specified by the String argument. The fourth con-
structor uses a URI object to locate the file. A Uniform Resource Identifier (URI) is a more
general form of the Uniform Resource Locators (URLs) that are used to locate websites.

docs.oracle.com/javase/6/docs/api/java/io/package-tree.html

Z10_DEIT3397_02_SE_APPJ.fm Page 688 Monday, July 7, 2014 9:21 AM

J.12 Introduction to Object Serialization 689

For example, http://www.deitel.com/ is the URL for the Deitel & Associates website.
URIs for locating files vary across operating systems. On Windows platforms, the URI

identifies the file data.txt stored in the root directory of the C: drive. On UNIX/Linux
platforms, the URI

identifies the file data.txt stored in the home directory of the user student.
Figure J.11 lists some common File methods. The complete list can be viewed at

docs.oracle.com/javase/6/docs/api/java/io/File.html.

J.12 Introduction to Object Serialization
Java provides object serialization for writing entire objects to a stream and reading entire
objects from a stream. A so-called serialized object is an object represented as a sequence

file://C:/data.txt

file:/home/student/data.txt

Method Description

boolean canRead() Returns true if a file is readable by the current application;
false otherwise.

boolean canWrite() Returns true if a file is writable by the current application;
false otherwise.

boolean exists() Returns true if the file or directory represented by the File
object exists; false otherwise.

boolean isFile() Returns true if the name specified as the argument to the File
constructor is a file; false otherwise.

boolean isDirectory() Returns true if the name specified as the argument to the File
constructor is a directory; false otherwise.

boolean isAbsolute() Returns true if the arguments specified to the File constructor
indicate an absolute path to a file or directory; false otherwise.

String getAbsolutePath() Returns a String with the absolute path of the file or directory.

String getName() Returns a String with the name of the file or directory.

String getPath() Returns a String with the path of the file or directory.

String getParent() Returns a String with the parent directory of the file or direc-
tory (i.e., the directory in which the file or directory is located).

long length() Returns the length of the file, in bytes. If the File object repre-
sents a directory, an unspecified value is returned.

long lastModified() Returns a platform-dependent representation of the time at
which the file or directory was last modified. The value
returned is useful only for comparison with other values
returned by this method.

String[] list() Returns an array of Strings representing a directory’s contents.
Returns null if the File object does not represent a directory.

Fig. J.11 | File methods.

Z10_DEIT3397_02_SE_APPJ.fm Page 689 Monday, July 7, 2014 9:21 AM

690 Appendix J Other Java Topics

of bytes that includes the object’s data as well as information about the object’s type and
the types of data stored in the object. After a serialized object has been written into a file,
it can be read from the file and deserialized—that is, the type information and bytes that
represent the object and its data can be used to recreate the object in memory.

Classes ObjectInputStream and ObjectOutputStream
Classes ObjectInputStream and ObjectOutputStream, which respectively implement the
ObjectInput and ObjectOutput interfaces, enable entire objects to be read from or writ-
ten to a stream (possibly a file). To use serialization with files, we initialize ObjectInput-
Stream and ObjectOutputStream objects with stream objects that read from and write to
files—objects of classes FileInputStream and FileOutputStream, respectively. Initializ-
ing stream objects with other stream objects in this manner is sometimes called wrap-
ping—the new stream object being created wraps the stream object specified as a
constructor argument. To wrap a FileInputStream in an ObjectInputStream, for in-
stance, we pass the FileInputStream object to the ObjectInputStream’s constructor.

Interfaces ObjectOutput and ObjectInput
The ObjectOutput interface contains method writeObject, which takes an Object as an
argument and writes its information to an OutputStream. A class that implements inter-
face ObjectOutput (such as ObjectOutputStream) declares this method and ensures that
the object being output implements interface Serializable (discussed shortly). Corre-
spondingly, the ObjectInput interface contains method readObject, which reads and re-
turns a reference to an Object from an InputStream. After an object has been read, its
reference can be cast to the object’s actual type.

J.13 Introduction to Multithreading
It would be nice if we could focus our attention on performing only one action at a time
and performing it well, but that’s usually difficult to do. The human body performs a great
variety of operations in parallel—or, as we say in programming, concurrently. Respiration,
blood circulation, digestion, thinking and walking, for example, can occur concurrently,
as can all the senses—sight, touch, smell, taste and hearing.

Computers, too, can perform operations concurrently. It’s common for personal
computers to compile a program, send a file to a printer and receive electronic mail mes-
sages over a network concurrently. Only computers that have multiple processors can truly
execute multiple instructions concurrently. Operating systems on single-processor com-
puters create the illusion of concurrent execution by rapidly switching between activities,
but on such computers only a single instruction can execute at once. Today’s multicore
computers have multiple processors that enable computers to perform tasks truly concur-
rently. Multicore smartphones are starting to appear.

Java Concurrency
Java makes concurrency available to you through the language and APIs. Java programs
can have multiple threads of execution, where each thread has its own method-call stack
and program counter, allowing it to execute concurrently with other threads while sharing
with them application-wide resources such as memory. This capability is called multi-
threading.

Z10_DEIT3397_02_SE_APPJ.fm Page 690 Monday, July 7, 2014 9:21 AM

J.14 Creating and Executing Threads with the Executor Framework 691

Concurrent Programming Uses
We’ll discuss many applications of concurrent programming. For example, when down-
loading a large file (e.g., an image, an audio clip or a video clip) over the Internet, the user
may not want to wait until the entire clip downloads before starting the playback. To solve
this problem, multiple threads can be used—one to download the clip, and another to play
it. These activities proceed concurrently. To avoid choppy playback, the threads are syn-
chronized (that is, their actions are coordinated) so that the player thread doesn’t begin
until there’s a sufficient amount of the clip in memory to keep the player thread busy. The
Java Virtual Machine (JVM) creates threads to run programs and threads to perform
housekeeping tasks such as garbage collection.

Concurrent Programming Is Difficult
Writing multithreaded programs can be tricky. Although the human mind can perform
functions concurrently, people find it difficult to jump between parallel trains of thought.
To see why multithreaded programs can be difficult to write and understand, try the fol-
lowing experiment: Open three books to page 1, and try reading the books concurrently.
Read a few words from the first book, then a few from the second, then a few from the
third, then loop back and read the next few words from the first book, and so on. After
this experiment, you’ll appreciate many of the challenges of multithreading—switching
between the books, reading briefly, remembering your place in each book, moving the
book you’re reading closer so that you can see it and pushing the books you’re not reading
aside—and, amid all this chaos, trying to comprehend the content of the books!

Use the Prebuilt Classes of the Concurrency APIs Whenever Possible
Programming concurrent applications is difficult and error prone. If you must use syn-
chronization in a program, you should use existing classes from the Concurrency APIs that
manage synchronization for you. These classes are written by experts, have been thoroughly
tested and debugged, operate efficiently and help you avoid common traps and pitfalls.

J.14 Creating and Executing Threads with the Executor
Framework
This section demonstrates how to perform concurrent tasks in an application by using
Executors and Runnable objects.

Creating Concurrent Tasks with the Runnable Interface
You implement the Runnable interface (of package java.lang) to specify a task that can
execute concurrently with other tasks. The Runnable interface declares the single method
run, which contains the code that defines the task that a Runnable object should perform.

Performance Tip J.1
A problem with single-threaded applications that can lead to poor responsiveness is that
lengthy activities must complete before others can begin. In a multithreaded application,
threads can be distributed across multiple processors (if available) so that multiple tasks ex-
ecute truly concurrently and the application can operate more efficiently. Multithreading
can also increase performance on single-processor systems that simulate concurren-
cy—when one thread cannot proceed (because, for example, it’s waiting for the result of an
I/O operation), another can use the processor.

Z10_DEIT3397_02_SE_APPJ.fm Page 691 Monday, July 7, 2014 9:21 AM

692 Appendix J Other Java Topics

Executing Runnable Objects with an Executor
To allow a Runnable to perform its task, you must execute it. An Executor object executes
Runnables. An Executor does this by creating and managing a group of threads called a
thread pool. When an Executor begins executing a Runnable, the Executor calls the Run-
nable object’s run method, which executes in the new thread.

The Executor interface declares a single method named execute which accepts a Run-
nable as an argument. The Executor assigns every Runnable passed to its execute method
to one of the available threads in the thread pool. If there are no available threads, the
Executor creates a new thread or waits for a thread to become available and assigns that
thread the Runnable that was passed to method execute.

Using an Executor has many advantages over creating threads yourself. Executors can
reuse existing threads to eliminate the overhead of creating a new thread for each task and
can improve performance by optimizing the number of threads to ensure that the processor
stays busy, without creating so many threads that the application runs out of resources.

Using Class Executors to Obtain an ExecutorService
The ExecutorService interface (of package java.util.concurrent) extends Executor
and declares various methods for managing the life cycle of an Executor. An object that
implements the ExecutorService interface can be created using static methods declared
in class Executors (of package java.util.concurrent). We use interface ExecutorSer-
vice and a method of class Executors in our example, which executes three tasks.

Implementing the Runnable Interface
Class PrintTask (Fig. J.12) implements Runnable (line 5), so that multiple PrintTasks can
execute concurrently. Variable sleepTime (line 7) stores a random integer value from 0 to
5 seconds created in the PrintTask constructor (line 17). Each thread running a Print-
Task sleeps for the amount of time specified by sleepTime, then outputs its task’s name
and a message indicating that it’s done sleeping.

Software Engineering Observation J.2
Though it’s possible to create threads explicitly, it’s recommended that you use the
Executor interface to manage the execution of Runnable objects.

1 // Fig. J.12: PrintTask.java
2 // PrintTask class sleeps for a random time from 0 to 5 seconds
3 import java.util.Random;
4
5 public class PrintTask implements Runnable
6 {
7 private final int sleepTime; // random sleep time for thread
8 private final String taskName; // name of task
9 private final static Random generator = new Random();

10
11 // constructor
12 public PrintTask(String name)
13 {
14 taskName = name; // set task name

Fig. J.12 | PrintTask class sleeps for a random time from 0 to 5 seconds. (Part 1 of 2.)

Z10_DEIT3397_02_SE_APPJ.fm Page 692 Friday, June 20, 2014 1:14 PM

J.14 Creating and Executing Threads with the Executor Framework 693

A PrintTask executes when a thread calls the PrintTask’s run method. Lines 25–26
display a message indicating the name of the currently executing task and that the task is
going to sleep for sleepTime milliseconds. Line 27 invokes static method sleep of class
Thread to place the thread in the timed waiting state for the specified amount of time. At
this point, the thread loses the processor, and the system allows another thread to execute.
When the thread awakens, it reenters the runnable state. When the PrintTask is assigned
to a processor again, line 36 outputs a message indicating that the task is done sleeping,
then method run terminates. The catch at lines 29–33 is required because method sleep
might throw a checked exception of type InterruptedException if a sleeping thread’s
interrupt method is called.

Using the ExecutorService to Manage Threads that Execute PrintTasks
Figure J.13 uses an ExecutorService object to manage threads that execute PrintTasks
(as defined in Fig. J.12). Lines 11–13 create and name three PrintTasks to execute. Line
18 uses Executors method newCachedThreadPool to obtain an ExecutorService that’s
capable of creating new threads as they’re needed by the application. These threads are
used by ExecutorService (threadExecutor) to execute the Runnables.

15
16 // pick random sleep time between 0 and 5 seconds
17 sleepTime = generator.nextInt(5000); // milliseconds
18 } // end PrintTask constructor
19
20 // method run contains the code that a thread will execute
21 public void run()
22 {
23 try // put thread to sleep for sleepTime amount of time
24 {
25 System.out.printf("%s going to sleep for %d milliseconds.\n",
26 taskName, sleepTime);
27 Thread.sleep(sleepTime); // put thread to sleep
28 } // end try
29 catch (InterruptedException exception)
30 {
31 System.out.printf("%s %s\n", taskName,
32 "terminated prematurely due to interruption");
33 } // end catch
34
35 // print task name
36 System.out.printf("%s done sleeping\n", taskName);
37 } // end method run
38 } // end class PrintTask

1 // Fig. J.13: TaskExecutor.java
2 // Using an ExecutorService to execute Runnables.
3 import java.util.concurrent.Executors;
4 import java.util.concurrent.ExecutorService;

Fig. J.13 | Using an ExecutorService to execute Runnables. (Part 1 of 2.)

Fig. J.12 | PrintTask class sleeps for a random time from 0 to 5 seconds. (Part 2 of 2.)

Z10_DEIT3397_02_SE_APPJ.fm Page 693 Monday, July 7, 2014 9:21 AM

694 Appendix J Other Java Topics

Lines 21–23 each invoke the ExecutorService’s execute method, which executes
the Runnable passed to it as an argument (in this case a PrintTask) some time in the
future. The specified task may execute in one of the threads in the ExecutorService’s
thread pool, in a new thread created to execute it, or in the thread that called the execute
method—the ExecutorService manages these details. Method execute returns immedi-

5
6 public class TaskExecutor
7 {
8 public static void main(String[] args)
9 {

10 // create and name each runnable
11 PrintTask task1 = new PrintTask("task1");
12 PrintTask task2 = new PrintTask("task2");
13 PrintTask task3 = new PrintTask("task3");
14
15 System.out.println("Starting Executor");
16
17 // create ExecutorService to manage threads
18 ExecutorService threadExecutor = Executors.newCachedThreadPool();
19
20 // start threads and place in runnable state
21 threadExecutor.execute(task1); // start task1
22 threadExecutor.execute(task2); // start task2
23 threadExecutor.execute(task3); // start task3
24
25 // shut down worker threads when their tasks complete
26 threadExecutor.shutdown();
27
28 System.out.println("Tasks started, main ends.\n");
29 } // end main
30 } // end class TaskExecutor

Starting Executor
Tasks started, main ends

task1 going to sleep for 4806 milliseconds
task2 going to sleep for 2513 milliseconds
task3 going to sleep for 1132 milliseconds
task3 done sleeping
task2 done sleeping
task1 done sleeping

Starting Executor
task1 going to sleep for 3161 milliseconds.
task3 going to sleep for 532 milliseconds.
task2 going to sleep for 3440 milliseconds.
Tasks started, main ends.

task3 done sleeping
task1 done sleeping
task2 done sleeping

Fig. J.13 | Using an ExecutorService to execute Runnables. (Part 2 of 2.)

Z10_DEIT3397_02_SE_APPJ.fm Page 694 Monday, July 7, 2014 9:21 AM

J.15 Overview of Thread Synchronization 695

ately from each invocation—the program does not wait for each PrintTask to finish. Line
26 calls ExecutorService method shutdown, which notifies the ExecutorService to stop
accepting new tasks, but continues executing tasks that have already been submitted. Once all
of the previously submitted Runnables have completed, the threadExecutor terminates.
Line 28 outputs a message indicating that the tasks were started and the main thread is fin-
ishing its execution.

The code in main executes in the main thread, a thread created by the JVM. The code
in the run method of PrintTask (lines 21–37 of Fig. J.12) executes whenever the Exec-
utor starts each PrintTask—again, this is sometime after they’re passed to the Execu-
torService’s execute method (Fig. J.13, lines 21–23). When main terminates, the
program itself continues running because there are still tasks that must finish executing.
The program will not terminate until these tasks complete.

The sample outputs show each task’s name and sleep time as the thread goes to sleep.
The one with the shortest sleep time normally awakens first, indicates that it’s done
sleeping and terminates. In the first output, the main thread terminates before any of the
PrintTasks output their names and sleep times. This shows that the main thread runs to
completion before the PrintTasks get a chance to run. In the second output, all of the
PrintTasks output their names and sleep times before the main thread terminates. Also,
notice in the second example output, task3 goes to sleep before task2, even though we
passed task2 to the ExecutorService’s execute method before task3. This illustrates the
fact that we cannot predict the order in which the tasks will start executing, even if we know
the order in which they were created and started.

J.15 Overview of Thread Synchronization
When multiple threads share an object and it’s modified by one or more of them, indeter-
minate results may occur unless access to the shared object is managed properly. If one
thread is in the process of updating a shared object and another thread also tries to update
it, it’s unclear which thread’s update takes effect. When this happens, the program’s be-
havior cannot be trusted—sometimes the program will produce the correct results, and
sometimes it won’t. In either case, there’ll be no indication that the shared object was ma-
nipulated incorrectly.

The problem can be solved by giving only one thread at a time exclusive access to code
that manipulates the shared object. During that time, other threads desiring to manipulate
the object are kept waiting. When the thread with exclusive access to the object finishes
manipulating it, one of the threads that was waiting is allowed to proceed. This process,
called thread synchronization, coordinates access to shared data by multiple concurrent
threads. By synchronizing threads in this manner, you can ensure that each thread
accessing a shared object excludes all other threads from doing so simultaneously—this is
called mutual exclusion.

Monitors
A common way to perform synchronization is to use Java’s built-in monitors. Every object
has a monitor and a monitor lock (or intrinsic lock). The monitor ensures that its object’s
monitor lock is held by a maximum of only one thread at any time, and thus can be used
to enforce mutual exclusion. If an operation requires the executing thread to hold a lock
while the operation is performed, a thread must acquire the lock before proceeding with

Z10_DEIT3397_02_SE_APPJ.fm Page 695 Monday, July 7, 2014 9:21 AM

696 Appendix J Other Java Topics

the operation. Other threads attempting to perform an operation that requires the same
lock will be blocked until the first thread releases the lock, at which point the blocked
threads may attempt to acquire the lock and proceed with the operation.

To specify that a thread must hold a monitor lock to execute a block of code, the code
should be placed in a synchronized statement. Such code is said to be guarded by the
monitor lock; a thread must acquire the lock to execute the guarded statements. The mon-
itor allows only one thread at a time to execute statements within synchronized state-
ments that lock on the same object, as only one thread at a time can hold the monitor lock.
The synchronized statements are declared using the synchronized keyword:

where object is the object whose monitor lock will be acquired; object is normally this if
it’s the object in which the synchronized statement appears. If several synchronized
statements are trying to execute on an object at the same time, only one of them may be
active on the object—all the other threads attempting to enter a synchronized statement
on the same object are temporarily blocked from executing.

When a synchronized statement finishes executing, the object’s monitor lock is
released and one of the blocked threads attempting to enter a synchronized statement can
be allowed to acquire the lock to proceed. Java also allows synchronized methods. Before
executing, a non-static synchronized method must acquire the lock on the object that’s
used to call the method. Similary, a static synchronized method must acquire the lock
on the class that’s used to call the method.

J.16 Concurrent Collections Overview
Earlier in this appendix, we introduced various collections from the Java Collections API.
The collections from the java.util.concurrent package are specifically designed and op-
timized for use in programs that share collections among multiple threads. For informa-
tion on the many concurrent collections in package java.util.concurrent, visit

J.17 Multithreading with GUI
Swing applications present a unique set of challenges for multithreaded programming. All
Swing applications have an event dispatch thread to handle interactions with the GUI
components. Typical interactions include updating GUI components or processing user ac-
tions such as mouse clicks. All tasks that require interaction with an application’s GUI are
placed in an event queue and are executed sequentially by the event dispatch thread.

Swing GUI components are not thread safe—they cannot be manipulated by multiple
threads without the risk of incorrect results. Thread safety in GUI applications is achieved
not by synchronizing thread actions, but by ensuring that Swing components are accessed
from the event dispatch thread—a technique called thread confinement.

Usually it’s sufficient to perform simple tasks on the event dispatch thread in sequence
with GUI component manipulations. If a lengthy task is performed in the event dispatch

synchronized (object)
{
 statements
} // end synchronized statement

docs.oracle.com/javase/6/docs/api/java/util/concurrent/
 package-summary.html

Z10_DEIT3397_02_SE_APPJ.fm Page 696 Monday, July 7, 2014 9:21 AM

J.17 Multithreading with GUI 697

thread, it cannot attend to other tasks in the event queue while it’s tied up in that task.
This causes the GUI to become unresponsive. Long-running tasks should be handled in sep-
arate threads, freeing the event dispatch thread to continue managing other GUI interac-
tions. Of course, to update the GUI based on the tasks’s results, you must use the event
dispatch thread, rather than from the worker thread that performed the computation.

Class SwingWorker
Class SwingWorker (in package javax.swing) perform long-running tasks in a worker
thread and to update Swing components from the event dispatch thread based on the tasks’
results. SwingWorker implements the Runnable interface, meaning that a SwingWorker ob-
ject can be scheduled to execute in a separate thread. The SwingWorker class provides several
methods to simplify performing tasks in a worker thread and making the results available
for display in a GUI. Some common SwingWorker methods are described in Fig. J.14. Class
SwingWorker is similar to class AsyncTask, which is used frequently in Android apps.

Performing Tasks in a Worker Thread
In the next example, the user enters a number n and the program gets the nth Fibonacci
number, which we calculate using a recursive algorithm. The algorithm is time consuming
for large values, so we use a SwingWorker object to perform the calculation in a worker
thread. The GUI also allows the user to get the next Fibonacci number in the sequence
with each click of a button, beginning with fibonacci(1). This short calculation is per-
formed directly in the event dispatch thread. The program is capable of producing up to
the 92nd Fibonacci number—subsequent values are outside the range that can be repre-
sented by a long. You can use class BigInteger to represent arbitrarily large integer values.

Class BackgroundCalculator (Fig. J.15) performs the recursive Fibonacci calculation
in a worker thread. This class extends SwingWorker (line 8), overriding the methods doIn-
Background and done. Method doInBackground (lines 21–24) computes the nth Fibo-
nacci number in a worker thread and returns the result. Method done (lines 27–43)
displays the result in a JLabel.

Method Description

doInBackground Defines a long task and is called in a worker thread.

done Executes on the event dispatch thread when doInBackground returns.

execute Schedules the SwingWorker object to be executed in a worker thread.

get Waits for the task to complete, then returns the result of the task (i.e.,
the return value of doInBackground).

publish Sends intermediate results from the doInBackground method to the pro-
cess method for processing on the event dispatch thread.

process Receives intermediate results from the publish method and processes
these results on the event dispatch thread.

setProgress Sets the progress property to notify any property change listeners on the
event dispatch thread of progress bar updates.

Fig. J.14 | Commonly used SwingWorker methods.

Z10_DEIT3397_02_SE_APPJ.fm Page 697 Monday, July 7, 2014 9:21 AM

698 Appendix J Other Java Topics

1 // Fig. J.15: BackgroundCalculator.java
2 // SwingWorker subclass for calculating Fibonacci numbers
3 // in a worker thread.
4 import javax.swing.SwingWorker;
5 import javax.swing.JLabel;
6 import java.util.concurrent.ExecutionException;
7
8 public class BackgroundCalculator extends SwingWorker< Long, Object >
9 {

10 private final int n; // Fibonacci number to calculate
11 private final JLabel resultJLabel; // JLabel to display the result
12
13 // constructor
14 public BackgroundCalculator(int number, JLabel label)
15 {
16 n = number;
17 resultJLabel = label;
18 } // end BackgroundCalculator constructor
19
20 // long-running code to be run in a worker thread
21 public Long doInBackground()
22 {
23 return nthFib = fibonacci(n);
24 } // end method doInBackground
25
26 // code to run on the event dispatch thread when doInBackground returns
27 protected void done()
28 {
29 try
30 {
31 // get the result of doInBackground and display it
32 resultJLabel.setText(get().toString());
33 } // end try
34 catch (InterruptedException ex)
35 {
36 resultJLabel.setText("Interrupted while waiting for results.");
37 } // end catch
38 catch (ExecutionException ex)
39 {
40 resultJLabel.setText(
41 "Error encountered while performing calculation.");
42 } // end catch
43 } // end method done
44
45 // recursive method fibonacci; calculates nth Fibonacci number
46 public long fibonacci(long number)
47 {
48 if (number == 0 || number == 1)
49 return number;
50 else
51 return fibonacci(number - 1) + fibonacci(number - 2);
52 } // end method fibonacci
53 } // end class BackgroundCalculator

Fig. J.15 | SwingWorker subclass for calculating Fibonacci numbers in a worker thread.

Z10_DEIT3397_02_SE_APPJ.fm Page 698 Monday, July 7, 2014 9:21 AM

J.17 Multithreading with GUI 699

SwingWorker is a generic class. In line 8, the first type parameter is Long and the second
is Object. The first type parameter indicates the type returned by the doInBackground
method; the second indicates the type that’s passed between the publish and process
methods to handle intermediate results. Since we do not use publish and process in this
example, we simply use Object as the second type parameter.

A BackgroundCalculator object can be instantiated from a class that controls a GUI.
A BackgroundCalculator maintains instance variables for an integer that represents the
Fibonacci number to be calculated and a JLabel that displays the results of the calculation
(lines 10–11). The BackgroundCalculator constructor (lines 14–18) initializes these
instance variables with the arguments that are passed to the constructor.

When method execute is called on a BackgroundCalculator object, the object is
scheduled for execution in a worker thread. Method doInBackground is called from the
worker thread and invokes the fibonacci method (lines 46–52), passing instance variable
n as an argument (line 23). Method fibonacci uses recursion to compute the Fibonacci
of n. When fibonacci returns, method doInBackground returns the result.

After doInBackground returns, method done is automatically called from the event
dispatch thread. This method attempts to set the result JLabel to the return value of doIn-
Background by calling method get to retrieve this return value (line 32). Method get waits
for the result to be ready if necessary, but since we call it from method done, the compu-
tation will be complete before get is called. Lines 34–37 catch InterruptedException if
the current thread is interrupted while waiting for get to return. This exception will not
occur in this example since the calculation will have already completed by the time get is
called. Lines 38–42 catch ExecutionException, which is thrown if an exception occurs
during the computation.

Class FibonacciNumbers
Class FibonacciNumbers (Fig. J.16) displays a window containing two sets of GUI com-
ponents—one set to compute a Fibonacci number in a worker thread and another to get
the next Fibonacci number in response to the user’s clicking a JButton. The constructor
(lines 38–109) places these components in separate titled JPanels. Lines 46–47 and
78–79 add two JLabels, a JTextField and a JButton to the workerJPanel to allow the
user to enter an integer whose Fibonacci number will be calculated by the Background-
Worker. Lines 84–85 and 103 add two JLabels and a JButton to the event dispatch thread
panel to allow the user to get the next Fibonacci number in the sequence. Instance vari-
ables n1 and n2 contain the previous two Fibonacci numbers in the sequence and are ini-
tialized to 0 and 1, respectively (lines 29–30). Instance variable count stores the most
recently computed sequence number and is initialized to 1 (line 31). The two JLabels dis-
play count and n2 initially, so that the user will see the text Fibonacci of 1: 1 in the
eventThreadJPanel when the GUI starts.

Software Engineering Observation J.3
Any GUI components that will be manipulated by SwingWorker methods, such as
components that will be updated from methods process or done, should be passed to the
SwingWorker subclass’s constructor and stored in the subclass object. This gives these
methods access to the GUI components they’ll manipulate.

Z10_DEIT3397_02_SE_APPJ.fm Page 699 Monday, July 7, 2014 9:21 AM

700 Appendix J Other Java Topics

1 // Fig. J.16: FibonacciNumbers.java
2 // Using SwingWorker to perform a long calculation with
3 // results displayed in a GUI.
4 import java.awt.GridLayout;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9 import javax.swing.JPanel;

10 import javax.swing.JLabel;
11 import javax.swing.JTextField;
12 import javax.swing.border.TitledBorder;
13 import javax.swing.border.LineBorder;
14 import java.awt.Color;
15 import java.util.concurrent.ExecutionException;
16
17 public class FibonacciNumbers extends JFrame
18 {
19 // components for calculating the Fibonacci of a user-entered number
20 private final JPanel workerJPanel =
21 new JPanel(new GridLayout(2, 2, 5, 5));
22 private final JTextField numberJTextField = new JTextField();
23 private final JButton goJButton = new JButton("Go");
24 private final JLabel fibonacciJLabel = new JLabel();
25
26 // components and variables for getting the next Fibonacci number
27 private final JPanel eventThreadJPanel =
28 new JPanel(new GridLayout(2, 2, 5, 5));
29 private long n1 = 0; // initialize with first Fibonacci number
30 private long n2 = 1; // initialize with second Fibonacci number
31 private int count = 1; // current Fibonacci number to display
32 private final JLabel nJLabel = new JLabel("Fibonacci of 1: ");
33 private final JLabel nFibonacciJLabel =
34 new JLabel(String.valueOf(n2));
35 private final JButton nextNumberJButton = new JButton("Next Number");
36
37 // constructor
38 public FibonacciNumbers()
39 {
40 super("Fibonacci Numbers");
41 setLayout(new GridLayout(2, 1, 10, 10));
42
43 // add GUI components to the SwingWorker panel
44 workerJPanel.setBorder(new TitledBorder(
45 new LineBorder(Color.BLACK), "With SwingWorker"));
46 workerJPanel.add(new JLabel("Get Fibonacci of:"));
47 workerJPanel.add(numberJTextField);
48 goJButton.addActionListener(
49 new ActionListener()
50 {

Fig. J.16 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 1 of 3.)

Z10_DEIT3397_02_SE_APPJ.fm Page 700 Monday, July 7, 2014 9:21 AM

J.17 Multithreading with GUI 701

51 public void actionPerformed(ActionEvent event)
52 {
53 int n;
54
55 try
56 {
57 // retrieve user's input as an integer
58 n = Integer.parseInt(numberJTextField.getText());
59 } // end try
60 catch(NumberFormatException ex)
61 {
62 // display an error message if the user did not
63 // enter an integer
64 fibonacciJLabel.setText("Enter an integer.");
65 return;
66 } // end catch
67
68 // indicate that the calculation has begun
69 fibonacciJLabel.setText("Calculating...");
70
71 // create a task to perform calculation in background
72 BackgroundCalculator task =
73 new BackgroundCalculator(n, fibonacciJLabel);
74 task.execute(); // execute the task
75 } // end method actionPerformed
76 } // end anonymous inner class
77); // end call to addActionListener
78 workerJPanel.add(goJButton);
79 workerJPanel.add(fibonacciJLabel);
80
81 // add GUI components to the event-dispatching thread panel
82 eventThreadJPanel.setBorder(new TitledBorder(
83 new LineBorder(Color.BLACK), "Without SwingWorker"));
84 eventThreadJPanel.add(nJLabel);
85 eventThreadJPanel.add(nFibonacciJLabel);
86 nextNumberJButton.addActionListener(
87 new ActionListener()
88 {
89 public void actionPerformed(ActionEvent event)
90 {
91 // calculate the Fibonacci number after n2
92 long temp = n1 + n2;
93 n1 = n2;
94 n2 = temp;
95 ++count;
96
97 // display the next Fibonacci number
98 nJLabel.setText("Fibonacci of " + count + ": ");
99 nFibonacciJLabel.setText(String.valueOf(n2));
100 } // end method actionPerformed
101 } // end anonymous inner class
102); // end call to addActionListener

Fig. J.16 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 2 of 3.)

Z10_DEIT3397_02_SE_APPJ.fm Page 701 Monday, July 7, 2014 9:21 AM

702 Appendix J Other Java Topics

Lines 48–77 register the event handler for the goJButton. If the user clicks this
JButton, line 58 gets the value entered in the numberJTextField and attempts to parse it
as an integer. Lines 72–73 create a new BackgroundCalculator object, passing in the user-
entered value and the fibonacciJLabel that’s used to display the calculation’s results.
Line 74 calls method execute on the BackgroundCalculator, scheduling it for execution
in a separate worker thread. Method execute does not wait for the BackgroundCalcu-
lator to finish executing. It returns immediately, allowing the GUI to continue pro-
cessing other events while the computation is performed.

103 eventThreadJPanel.add(nextNumberJButton);
104
105 add(workerJPanel);
106 add(eventThreadJPanel);
107 setSize(275, 200);
108 setVisible(true);
109 } // end constructor
110
111 // main method begins program execution
112 public static void main(String[] args)
113 {
114 FibonacciNumbers application = new FibonacciNumbers();
115 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
116 } // end main
117 } // end class FibonacciNumbers

Fig. J.16 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 3 of 3.)

a) Begin calculating Fibonacci of 40 in the
background

b) Calculating other Fibonacci values while
Fibonacci of 40 continues calculating

c) Fibonacci of 40 calculation finishes

Z10_DEIT3397_02_SE_APPJ.fm Page 702 Monday, July 7, 2014 9:21 AM

J.18 Wrap-Up 703

If the user clicks the nextNumberJButton in the eventThreadJPanel, the event handler
registered in lines 86–102 executes. Lines 92–95 add the previous two Fibonacci numbers
stored in n1 and n2 to determine the next number in the sequence, update n1 and n2 to their
new values and increment count. Then lines 98–99 update the GUI to display the next
number. The code for these calculations is in method actionPerformed, so they’re per-
formed on the event dispatch thread. Handling such short computations in the event dispatch
thread does not cause the GUI to become unresponsive, as with the recursive algorithm for
calculating the Fibonacci of a large number. Because the longer Fibonacci computation is
performed in a separate worker thread using the SwingWorker, it’s possible to get the next
Fibonacci number while the recursive computation is still in progress.

J.18 Wrap-Up
In this appendix, you used classes ArrayList and LinkedList, which both implement the
List interface. You used several predefined methods for manipulating collections. Next,
you learned how to use the Set interface and class HashSet to manipulate an unordered
collection of unique values. We discussed the SortedSet interface and class TreeSet for
manipulating a sorted collection of unique values. You then learned about Java’s interfaces
and classes for manipulating key/value pairs—Map, SortedMap, HashMap and TreeMap. We
discussed the Collections class’s static methods for obtaining unmodifiable and syn-
chronized views of collections.

Next, we introduced fundamental concepts of file and stream processing and over-
viewed object serialization. Finally, we introduced multithreading. You learned that Java
makes concurrency available to you through the language and APIs. You also learned that
the JVM itself creates threads to run a program, and that it also can create threads to per-
form housekeeping tasks such as garbage collection. We presented the interface Runnable,
which is used to specify a task that can execute concurrently with other tasks. We showed
how to use the Executor interface to manage the execution of Runnable objects via thread
pools, which can reuse existing threads to eliminate the overhead of creating a new thread
for each task and can improve performance by optimizing the number of threads to ensure
that the processor stays busy. We discussed how to use a synchronized block to coordi-
nate access to shared data by multiple concurrent threads.

We discussed the fact that Swing GUIs are not thread safe, so all interactions with and
modifications to the GUI must be performed in the event dispatch thread. We also dis-
cussed the problems associated with performing long-running calculations in the event
dispatch thread. Then we showed how you can use the SwingWorker class to perform long-
running calculations in worker threads and how to display the results of a SwingWorker in
a GUI when the calculation completed.

Self-Review Exercises
J.1 Fill in the blanks in each of the following statements:

a) A(n) is used to iterate through a collection and can remove elements from the
collection during the iteration.

b) An element in a List can be accessed by using the element’s .
c) Assuming that myArray contains references to Double objects, occurs when the

statement "myArray[0] = 1.25;" executes.

Z10_DEIT3397_02_SE_APPJ.fm Page 703 Monday, July 7, 2014 9:21 AM

704 Appendix J Other Java Topics

d) Java classes and provide the capabilities of arraylike data structures
that can resize themselves dynamically.

e) Assuming that myArray contains references to Double objects, occurs when the
statement "double number = myArray[0];" executes.

f) ExecutorService method ends each thread in an ExecutorService as soon
as it finishes executing its current Runnable, if any.

g) Keyword indicates that only one thread at a time should execute on an object.

J.2 Determine whether each statement is true or false. If false, explain why.
a) Values of primitive types may be stored directly in a collection.
b) A Set can contain duplicate values.
c) A Map can contain duplicate keys.
d) A List is an ordered collection that can contain duplicate elements.
e) Collections is an interface.
f) Iterators can remove elements.
g) Method exists of class File returns true if the name specified as the argument to the

File constructor is a file or directory in the specified path.
h) Binary files are human readable in a text editor.
i) An absolute path contains all the directories, starting with the root directory, that lead

to a specific file or directory.

Answers to Self-Review Exercises
J.1 a) Iterator. b) index. c) autoboxing. d) ArrayList, Vector. e) auto-unboxing. f) shutdown.
g) synchronized.

J.2 a) False. Autoboxing occurs when adding a primitive type to a collection, which means the
primitive type is converted to its corresponding type-wrapper class. b) False. A Set cannot contain
duplicate values. c) False. A Map cannot contain duplicate keys. d) True. e) False. Collections is a
class; Collection is an interface. f) True. g) True. h) False. Text files are human readable in a text
editor. Binary files might be human readable, but only if the bytes in the file represent ASCII char-
acters. i) True.

Execises
J.3 Define each of the following terms:

a) Collection
b) Collections
c) Comparator
d) List
e) HashMap
f) ObjectOutputStream
g) File
h) ObjectOutputStream
i) byte-based stream
j) character-based stream

J.4 Briefly answer the following questions:
a) What is the primary difference between a Set and a List?
b) Explain any two types of Lists.
c) Can you print all the elements in a collection without using an Iterator? If yes, how?

J.5 (Duplicate Elimination) Write a program that reads in a series of first names and eliminates
duplicates by storing them in a Set. Allow the user to search for a first name.

Z10_DEIT3397_02_SE_APPJ.fm Page 704 Monday, July 7, 2014 9:21 AM

 Execises 705

J.6 (Counting Letters) Modify the program of Fig. J.9 to count the number of occurrences of
each letter rather than of each word. For example, the string "HELLO THERE" contains two Hs, three
Es, two Ls, one O, one T and one R. Display the results.

J.7 (Color Chooser) Use a HashMap to create a reusable class for choosing one of the 13 pre-
defined colors in class Color. The names of the colors should be used as keys, and the predefined
Color objects should be used as values. Place this class in a package that can be imported into any
Java program. Use your new class in an application that allows the user to select a color and draw a
shape in that color.

J.8 (Counting Duplicate Words) Write a program that determines and prints the number of
duplicate words in a sentence. Treat uppercase and lowercase letters the same. Ignore punctuation.

J.9 (Prime Numbers and Prime Factors) Write a program that takes a whole number input
from a user and determines whether it’s prime. If the number is not prime, display its unique prime
factors. Remember that a prime number’s factors are only 1 and the prime number itself. Every
number that is not prime has a unique prime factorization. For example, consider the number 54.
The prime factors of 54 are 2, 3, 3 and 3. When the values are multiplied together, the result is 54.
For the number 54, the prime factors output should be 2 and 3. Use Sets as part of your solution.

J.10 (Sorting Words with a TreeSet) Write a program that uses a String method split to to-
kenize a line of text input by the user and places each token in a TreeSet. Print the elements of the
TreeSet. [Note: This should cause the elements to be printed in ascending sorted order.]

J.11 (Bouncing Ball) Write a program that bounces a blue ball inside a JPanel. The ball should
begin moving with a mousePressed event. When the ball hits the edge of the JPanel, it should
bounce off the edge and continue in the opposite direction. The ball should be updated using a Run-
nable.

Z10_DEIT3397_02_SE_APPJ.fm Page 705 Monday, July 7, 2014 9:21 AM

K
Operator Precedence Chart

Operators are shown in decreasing order of precedence from top to bottom (Fig. K.1).

Operator Description Associativity

++
--

unary postfix increment
unary postfix decrement

right to left

++
--
+
-
!
~
(type)

unary prefix increment
unary prefix decrement
unary plus
unary minus
unary logical negation
unary bitwise complement
unary cast

right to left

*
/
%

multiplication
division
remainder

left to right

+
-

addition or string concatenation
subtraction

left to right

<<
>>
>>>

left shift
signed right shift
unsigned right shift

left to right

<
<=
>
>=
instanceof

less than
less than or equal to
greater than
greater than or equal to
type comparison

left to right

==
!=

is equal to
is not equal to

left to right

& bitwise AND
boolean logical AND

left to right

^ bitwise exclusive OR
boolean logical exclusive OR

left to right

Fig. K.1 | Operator precedence chart. (Part 1 of 2.)

Z11_DEIT3397_02_SE_APPK.fm Page 706 Tuesday, July 8, 2014 8:39 AM

 Operator Precedence Chart 707

| bitwise inclusive OR
boolean logical inclusive OR

left to right

&& conditional AND left to right

|| conditional OR left to right

?: conditional right to left

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=
>>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
remainder assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left-shift assignment
bitwise signed-right-shift assignment
bitwise unsigned-right-shift assign-
ment

right to left

Operator Description Associativity

Fig. K.1 | Operator precedence chart. (Part 2 of 2.)

Z11_DEIT3397_02_SE_APPK.fm Page 707 Monday, July 7, 2014 9:22 AM

L
Primitive Types

For more information on IEEE 754 visit grouper.ieee.org/groups/754/.

Type Size in bits Values Standard

boolean true or false

[Note: A boolean’s representation is specific to the Java Virtual Machine on each platform.]

char 16 '\u0000' to '\uFFFF' (0 to 65535) (ISO Unicode
character set)

byte 8 –128 to +127 (–27 to 27 – 1)

short 16 –32,768 to +32,767 (–215 to 215 – 1)

int 32 –2,147,483,648 to +2,147,483,647 (–231 to 231 –
1)

long 64 –9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807 (–263 to 263 – 1)

float 32 Negative range:
–3.4028234663852886E+38 to
–1.40129846432481707e–45
Positive range:
1.40129846432481707e–45 to
3.4028234663852886E+38

(IEEE 754
floating point)

double 64 Negative range:
–1.7976931348623157E+308 to
–4.94065645841246544e–324
Positive range:
4.94065645841246544e–324 to
1.7976931348623157E+308

(IEEE 754
floating point)

Fig. L.1 | Java primitive types.

Z12_DEIT3397_02_SE_APPL.fm Page 708 Tuesday, July 8, 2014 8:40 AM

Symbols
^, boolean logical exclusive OR 450, 452

truth table 452
, (comma) formatting flag 442
--, predecrement/postdecrement 434
-, subtraction 382, 383
!, logical NOT 450, 453

truth table 453
!=, not equals 385
?:, ternary conditional operator 420
. dot separator 397
(Android Developer Tools

rule markers in the Graphical Lay-
out editor 95

{, left brace 372
}, right brace 372
@Override annotation 573
* wildcard in a file name 398
*, multiplication 382, 383
*=, multiplication assignment operator

435
/, division 382, 383
/* */ traditional comment 372
//, end-of-line comment 372
/=, division assignment operator 435
\, backslash escape sequence 376
\", double-quote escape sequence 376
\n, newline escape sequence 376
\r, carriage-return escape sequence 376
\t, horizontal tab escape sequence 376
&, boolean logical AND 450, 452
&&, conditional AND 450, 451

truth table 451
%, remainder 382, 383
%=, remainder assignment operator 435
%d format specifier 380
%f format specifier 392, 410
%s format specifier 377
– (minus sign) formatting flag 441
+, addition 382, 383
++, preincrement/postincrement 434
+=, addition assignment operator 434
<, less than 386
<=, less than or equal 386
=, assignment operator 380
-=, subtraction assignment operator 435
== to determine whether two references

refer to the same object 590
==, is equal to 385
>, greater than 386
>=, greater than or equal to 386
|, boolean logical inclusive OR 450, 452
||, conditional OR 450, 451

truth table 452

Numerics
0 flag 498
0 format flag 539
100 Destinations 44

A
abbreviating assignment expressions 434
abs method of Math 464
absolute path 688, 689
absolute value 464
abstract class 596, 597, 615
abstract data type (ADT) 538
abstract keyword 596
abstract method 596, 597, 600, 659
abstract superclass 596
Abstract Window Toolkit Event package

471
AbstractButton class 661, 664

addActionListener method 664
setRolloverIcon method 664

accelerometer 53
listening 269

accelerometer sensor 256, 270
access Android services 156
access modifier 396, 402

private 402, 541
protected 541, 568
public 396, 541

Accessibility
Content Description property 99,

151
Explore by Touch 78, 98
TalkBack 78, 98
TalkBack localization 103

accessibility 21, 70, 78, 98, 149
explore-by-touch mode 47

Accessibility APIs 47
accessing Android content providers 51
Accounts Payable System Modification

exercise 628
acquire the lock 696
action 419, 422
action bar 83, 175, 176
action to execute 417
ACTION_SEND constant of class Intent

167
ACTION_VIEW constant of classIntent

165
ActionEvent class 656, 657, 661

getActionCommand method 657,
664

ActionListener interface 656, 660
actionPerformed method 656,

659

actionPerformed method of interface
ActionListener 656, 659

activation record 469
Activity class 110, 123

findFragmentById method 182,
getFragmentManager method

182, 199, 213
getMenuInflater method 200
getResources method 198
getString method 164
getString method with mulitple

arguments 167
getSystemService method 269
lifecycle methods 224
onCreate method 110, 223
onCreateOptionsMenu method

181, 199
onDestroy method 223, 224
onOptionsItemSelected method

181, 200
onPause method 223, 224
onResume method 223
onStart method 199, 223
onStop method 223
runOnUiThread method 244
sent to background 229
setContentView method 126
setRequestedOrientation

method 198
setVolumeControlStream meth-

od 224, 228
Activity Not Responding (ANR) dialog

304
Activity templates 83
activity_main.xml 89
ActivityNotFoundException class

145
Adapter class 21, 144, 257
adapter class 668
AdapterView class 21, 144, 157
AdapterView.OnItemClick-

Listener interface 157, 321
AdapterView.OnItemLongClick-

Listener interface 157
add a class to a project 227
add method

ArrayList<T> 531
LinkedList<T> 679
List<T> 675, 677

add method of class
FragmentTransaction 314

addActionListener method
of class AbstractButton 664
of class JTextField 656

addAll method
Collections 680
List 677

Index

Z13_DEIT3397_02_SE_IDX.fm Page 709 Tuesday, July 8, 2014 8:41 AM

710 Index

addCallback method of class
SurfaceHolder 233

addFirst method of LinkedList 679
adding components to a row 113
addition 382, 383
addition compound assignment operator,

+= 434
addLast method of LinkedList 679
addPreferencesFromResource

method of class
PreferenceFragment 214

Address Book app 21, 53
addToBackStack method of class

FragmentTransaction 315
Adjust View Bounds property of an

ImageView 191
AdMob 355, 356
ADT (Android Development Tools

Plugin) 52
ADT Plugin for Eclipse 352
advertising revenue 356
AlertDialog class 145, 156, 161, 256
AlertDialog.Builder class 145, 161
algebraic notation 383
algorithm 417, 422

in Java Collections Framework 680
alpha (transparency) values 120
alpha animation for a View 195
alpha method of class Color 288
alternative-resource naming conventions

100
Amazon Mobile app 356
Analog Clock app exercise 251
analysis 56
Android 2.2 (Froyo) 45
Android 2.3 (Gingerbread) 46
Android 3.x

Honeycomb 46
Android 4.0 (Ice Cream Sandwich) 46
Android APIs 43
Android app marketplaces 362

Amazon Appstore 362
AndroidPIT 362
Appitalism 362
GetJar 362
Handango 362
Moborobo 362
Mplayit 362
Opera Mobile Store 362
Samsung Apps 362
SlideMe 362

Android Asset Studio 350
Android Beam 47, 48
Android Cloud to Device Messaging

(C2DM) 45
Android developer documentation

(developer.android.com) 26
Android developer documentation

(developer.android.com/sdk/
installing/studio.html 26

Android Developer Tools 21
Graphical Layout editor 78, 86, 87,

89
Android Developer Tools IDE 77, 78
Android Development Tools (ADT)

Plugin 52
Android device manufacturers 21
Android emulator 34, 52, 78
Android for Programmers website 21

Android How to Program, 2/e website 21
Android Jelly Bean 47
Android KitKat 48
Android Lint 80, 99
Android Manifest editor 113
Android Manifest editor 130, 131
Android Market

language 360
location 361
price 361

Android Newsgroups
Android Discuss 71

Android Programming Quiz app
exercise 218

Android project
res folder 86, 91
value folder 91

Android Resources editor 101
Android SDK 31, 34, 40, 52, 73
Android SDK 2.x 19, 23
Android SDK Manager 33
Android SDK versions and API levels 80
Android SDK/ADT Bundle 31
Android SDK/ADT bundle 32, 33, 57,

79
Android services

access 156
Android source code and documentation

FAQs 42
governance philosophy 42
licenses 42
source code 42

Android Studio 41, 51, 52, 78
Android Support Library 111, 181, 258,

258, 285
Android versions

Android 1.5 (Cupcake) 45
Android 1.6 (Donut) 45
Android 2.0–2.1 (Eclair) 45
Android 2.2 (Froyo) 45
Android 2.3 (Gingerbread) 45
Android 3.0–3.2 45
Android 4.0 (Ice Cream Sandwich)

45
Android 4.1–4.3 45
Android 4.4 45

Android Virtual Device (AVD) 34, 52,
57, 61, 97
Setting hardware emulation op-

tions 68
Android Virtual Device Manager 34
android:background attribute

of a TextView 307
android:duration attribute of a

translate animation 196
android:fromXDelta attribute of a

translate animation 195
android:layout_height attribute

wrap_content value 119, 120
android:layout_width attribute

wrap_content value 119, 120
android:startOffset attribute of a

translate animation 196
android:toXDelta attribute of a

translate animation 195
android.app package 110, 123, 144,

156, 181, 182, 304
android.content package 144, 156,

257

android.content.res package 183,
198, 206

android.database package 304
android.database.sqlite package

304
android.graphics package 225, 257
android.graphics.drawable

package 211
android.media package 224
android.net package 156
android.os package 123, 184, 304
android.preference package 181
android.text package 112, 123
android.util package 185, 232
android.view package 157, 181, 224,

257
android.view.animation package

184
android.view.inputmethod package

157
android.widget package 111, 123,

144, 157, 184, 304
Android@Home framework 47
AndroidLicenser 362
AndroidManifest.xml 113, 146
anim folder of an Android project 87,

183
animation 23

alpha animation for a View 195
framework 46
manual 224
options in an XML file 184
rotate animation for a View 195
scale animation for a View 195
set 195
thread 224
translate animation for a View

195
tween 195
View based 195

Animation class 184
setRepeatCount method 185, 206

AnimationUtils class 184, 206
loadAnimation method 184, 206

animator folder of an Android project
87, 183

annotation
@Override 573

anonymous inner class 110, 655, 667
anonymous inner classes 651
ANR (activity not responding) dialog 304
ANR (Application Not Responding)

dialog 124, 159
ANR dialog 224
anti-aliasing 275
API (application programming interface)

378, 462
API documentation 471
.apk file (Android application package

file) 351
app 31
app bar 62
app development 31
app platforms

Amazon Kindle 363
Android 363
BlackBerry 363
iPhone 363
Windows Mobile 363

Z13_DEIT3397_02_SE_IDX.fm Page 710 Monday, July 7, 2014 9:22 AM

Index 711

app review sites
Android and Me 365
Android App Review Source 365
Android Police 365
Android Tapp 365
AndroidGuys 365
AndroidLib 365
AndroidPIT 365
AndroidZoom 365
Androinica 365
AppBrain 365
Appolicious 365
Appstorm 365
Best Android Apps Review 365
Phandroid 365

app review video sites
Android Video Review 365
Appolicious 365
Crazy Mike’s Apps 365
Daily App Show 365
Life of Android 365

app-driven approach 40
application 371, 372, 396

command-line arguments 465
Application Not Responding (ANR)

dialog 124, 159
application programming interface (API)

462
application resource 51
application resources

(developer.android.com/
guide/topics/resources/
index.html) 91

apply method of class
SharedPreferences.Editor 163

apps in the book 21
area of a circle 488
ARGB 286
ARGB color scheme 63
argb method of class Color 289
ARGB_8888 constant 277
argument promotion 469
argument to a method 373, 398
arithmetic calculation 382
arithmetic compound assignment

operators 434
arithmetic mean 384
arithmetic operators 382
arithmetic overflow 637
ArithmeticException class 631, 637
array 491, 687

bounds checking 499
ignoring element zero 501
length instance variable 492
pass an array element to a method

508
pass an array to a method 508

array-access expression 491
array-creation expression 492
array initializer 495

for multidimensional array 517
nested 517

array of one-dimensional arrays 517
ArrayAdapter class 144, 157, 160, 304
arraycopy method of class System

526, 528
ArrayIndexOutOfBoundsException

class 499, 501
ArrayList class 144, 156, 185

ArrayList<T> generic class 529, 673
add method 531
clear method 529
contains method 529, 531
get method 531
indexOf method 529
remove method 529, 531
size method 531
trimToSize method 529

Arrays class 526
asList method 678, 678
binarySearch method 526
equals method 526
fill method 526
sort method 526

ascending order 526
asList method of Arrays 678, 678
asset 360
AssetManager class 183

list method 207
assets folder of an Android app 182
assign a value to a variable 380
Assigning superclass and subclass

references to superclass and subclass
variables 594

assignment operator, = 380, 388
assignment operators 434
assignment statement 380
associate

right to left 430
associativity of operators 383, 388

left to right 388
right to left 383

asynchronous event 637
AsyncTask class 304, 322, 323, 324,

334, 335, 336, 337
execute method 322

attribute
in the UML 56, 75
of a class 54
of an object 56, 75

AttributeSet class 232
audio 23, 51
audio playback 22
audio recording 22
audio stream

music 233
audio streams 224

music 224
audio volume 224
AudioManager class 224, 233
auto-unboxing 672
autoboxing 672
automatic garbage collection 640
AVD (Android Virtual Device) 34, 52,

57, 61
average 384, 422, 425
AWTEvent class 658

B
back button 62
back stack 303, 315, 316, 318

pop 315
push 315

background
activity sent to 229

Background property of a view 120
backing array 678

backslash (\) 376
Bank of America app 356
bar chart 497, 498
bar of asterisks 497, 498
BasePlusCommissionEmployee class

extends CommissionEmployee 606
beginTransaction method of class

FragmentManager 314
behavior

of a class 54, 73
best practices 23
Bezier curve 282
bidirectional iterator 677
BigDecimal class 409
BigInteger class 697
binary file 687
binary operator 380, 382, 453
binarySearch method

of Arrays 526, 528
of Collections 680

bind data to a ListView 144
Bitmap class 225, 257, 292

bitmap encoding 277
createBitmap method 277
eraseColor method 293

Bitmap.Config.ARGB_8888 constant
277

bitwise operators 450
Blackjack app exercise 172

enhanced 173
Blank Activity template 83
blank line 372
block 421
Block Breaker Game app exercise 297

enhanced 297
blue method of class Color 288
Bluetooth Health Devices 47
body

of a class declaration 372
of a loop 422
of a method 373
of an if statement 385

Body Mass Index Calculator app
exercise 134

book-title capitalization 661
Boolean

class 672
boolean

expression 420
promotions 470

boolean logical AND, & 450, 452
boolean logical exclusive OR, ^ 450, 452

truth table 452
boolean logical inclusive OR, | 452
boolean primitive type 420, 708
Bouncing Ball Game app exercise 251
bounds checking 499
boxing conversion 672
braces ({ and }) 421, 439, 495

not required 447
brand awareness 356
branding apps

Amazon Mobile 356
Bank of America 356
Best Buy 356
CNN 356
Epicurious Recipe 356
ESPN ScoreCenter 356
NFL Mobile 356

Z13_DEIT3397_02_SE_IDX.fm Page 711 Monday, July 7, 2014 9:22 AM

712 Index

branding apps (cont.)
NYTimes 356
Pocket Agent 356
Progressive Insurance 356
UPS Mobile 356
USA Today 356
Wells Fargo Mobile 356
Women’s Health Workouts Lite 356

break statement 447, 450
Brick Game app exercise 251
brittle software 585
bulk operation 673
Bundle class 123, 125

for an Intent 168
putLong method 315

button 661
button label 661
byte-based stream 687
Byte class 672
byte keyword 708
byte primitive type 443

promotions 470
bytecode 374

C
C2DM (Android Cloud to Device

Messaging) 45
calculations 389
Calendar API 47
call-by-reference 510
call-by-value 510
callback methods 303
calling method (caller) 396, 403
camera 43
Cannon Game app 21, 53
Cannon Game app exercise 250
canRead method of File 689
Canvas class 225, 257

drawBitmap method 278
drawCircle method 242
drawLine method 243
drawPath method 278, 283
drawRect method 242
drawText method 242

canWrite method of File 689
Car Payment Calculator app exercise

133
Card Game Apps exercise 173
card games 502
card shuffling

Fisher-Yates 505
carriage return 376
carrier billing 355
case-insensitive sort 160
case keyword 447
case sensitive 372
casino 474
cast

downcast 594
operator 430, 470

catch
a superclass exception 639
an exception 632

catch
block 635, 637, 640, 643, 646
clause 635
keyword 635

Catch block 501

catch-or-declare requirement 638
Catching Exceptions Using Class

Exception exercise 649
Catching Exceptions Using Outer Scopes

exercise 649
Catching Exceptions with Superclasses

exercise 649
cd to change directories 374
ceil method of Math 464
cell in a TableLayout 113
Celsius 669

equivalent of a Fahrenheit tempera-
ture 488

change directories 374
changeCursor method of class

CursorAdapter 324
char

keyword 708
primitive type 379, 443
promotions 470

character
constant 449

character-based stream 687
Character class 672
character string 373
characteristics of great apps 69
checkbox 661
checked exception 638
check-in 364
circumference 392
class 51, 55

class keyword 396
constructor 397, 406
data hiding 402
declaration 372
declare a method 395
default constructor 406
field 401
file 374
get method 544
instance variable 56, 401, 464
instantiating an object 395
name 372
set method 544

class-average problem 422, 423, 427, 428
class cannot extend a final class 613
Class class 591, 612

getName method 591, 612
.class file 374

separate one for every class 542
class hierarchy 566, 597
class instance creation expression 397,

407
class keyword 372, 396
class library 43
class method 463
class name

fully qualified 401
class variable 464, 557
classwide information 557
Classes

AbstractButton 661, 664
ActionEvent 656, 657, 661
Activity 110, 123
ActivityNotFoundException

145
Adapter 144
AdapterView 144, 157
AlertDialog 145, 156

Classes (cont.)
AlertDialog.Builder 145
Animation 184
AnimationUtils 184, 206
ArithmeticException 631
ArrayAdapter 144, 157, 160
ArrayIndexOutOfBoundsExcep-

tion 499, 501
ArrayList 144, 156, 185
ArrayList<T> 529, 529, 531, 673,

673
Arrays 526
AssetManager 183
AsyncTask 304, 322, 334
AttributeSet 232
AudioManager 224, 233
AWTEvent 658
BigDecimal 409
BigInteger 697
Bitmap 225, 257, 292
Boolean 672
Bundle 123, 125
Byte 672
Canvas 225, 257
Character 672
Class 591, 612
Collections 156, 185, 673
Color 288
Configuration 198
ContentResolver 257
ContentValues 340
Context 156
Cursor 304
CursorAdapter 304, 321
CursorFactory 343
DialogFragment 181, 213
DialogInterface 156
Display 184, 199
Double 672
Drawable 211
EditText 111, 123
EnumSet 556
Error 638
EventListenerList 660
Exception 637
ExecutionException 699
Executors 692
File 688
FileInputStream 688
FileOutputStream 688
FileReader 688
FileWriter 688
Float 672
FlowLayout 654
Formatter 688
Fragment 181
FragmentManager 182
FragmentTransaction 182, 303,

314, 315
FrameLayout 226
GestureDetector.SimpleGes-

tureListener 279
GestureDetector.Simple-

OnGestureListener 257
GridLayout 111, 147
Handler 184
HashMap 684
HashSet 683
Hashtable 684

Z13_DEIT3397_02_SE_IDX.fm Page 712 Monday, July 7, 2014 9:22 AM

Index 713

Classes (cont.)
ImageButton 144, 150, 157
ImageView 78, 95
IndexOutOfRangeException 501
InputMethodManager 157
InputMismatchException 632
InputStream 211
Integer 672
Intent 145, 156
InterruptedException 693
JButton 661, 664
JComboBox 665
JComponent 660, 665
JPasswordField 652, 657
JTextComponent 652, 655
JTextField 652, 656, 659
KeyEvent 661
LayoutInflater 182
LinearLayout 111
LinkedList 673
ListActivity 144, 156
ListFragment 304, 305
ListPreference 182
ListView 144
Log 185, 208
Long 672
Math 463
MediaStore 257
MediaStore.Images.Media 257
Menu 181, 199
MenuInflater 200, 324
MotionEvent 224, 246, 257, 281
MouseAdapter 668
MouseEvent 660
MultiSelectListPreference

182
NumberFormat 112, 122
ObjectInputStream 688
ObjectOutputStream 688
Paint 225
Path 257
Preference 182
PreferenceFragment 181, 214
PreferenceManager 182, 198
PrintHelper 285
R 125
R.drawable 125
R.id 126
R.layout 126
R.string 126
Random 471, 472
Resources 198, 198, 206
RuntimeException 638
Scanner 379, 400
ScrollView 308
SeekBar 109, 111, 123
Sensor 256
SensorEvent 271
SensorManager 269
SharedPreferences 144, 156,

157
SharedPreferences.Editor

144, 163
Short 672
SimpleCursorAdapter 321
SoundPool 224, 233
SQLiteDatabase 304
SQLiteOpenHelper 304
StackTraceElement 646

Classes (cont.)
SurfaceHolder 225, 233
SurfaceView 225, 233
SwingWorker 697
TableLayout 113
TextView 78, 91, 111, 123
Thread 224, 247
Throwable 637, 646
Toast 184, 202
TreeMap 684
TreeSet 683
UnsupportedOperationExcep-

tion 678
Uri 156, 165
View 157, 225
ViewGroup 308
WindowManager 184, 199

CLASSPATH environment variable 375
clear method

of ArrayList<T> 529
of List<T> 678

click a button 652
click the mouse 664
click the scroll arrows 667
client

of an object 405
client area 77, 144
client code 593
clone method of Object 590
cloning objects

deep copy 590
shallow copy 590

close a window 652
close method of class Cursor 324
close method of class

SQLiteOpenHelpter 340
cloud computing 45
code file 360
code highlighting 24, 40
code license 22
code reuse 566
code walkthrough 40
coin tossing 472, 488
collection 528, 671

shuffle 211
collection hierarchy 672
Collection interface 672, 672, 675,

680
contains method 675
iterator method 675

Collections class 156, 185, 673
addAll method 680
binarySearch method 680
copy method 680
fill method 680
max method 680
min method 680
reverse method 680
reverseOrder method 681
shuffle method 185, 680, 682
sort method 160, 680

collections framework 671
College Loan Payoff Calculator app

exercise 133
collision detection 225, 236, 238
color 225
Color class 288

alpha method 288
argb method 289

Color class (cont.)
blue method 288
green method 288
red method 288

color folder of an Android project 87,
183

colors.xml 188
column 516
Column Count property of a

GridLayout 115
Column property of a LinearLayout 117
columns of a two-dimensional array 516
combo box 665
comma (,) formatting flag 442
comma-separated list

of arguments 377
of parameters 466

command button 661
command line 373
command-line argument 465
Command Prompt 373
command window 373
comment

end-of-line (single-line), // 372, 373
single line 373

CommissionEmployee class derived
from Employee 605

commit method of class
FragmentTransaction 314

Companion Website 22
Comparable<T> interface 625, 680

compareTo method 680
Comparator interface 680

compare method 681
Comparator object 684
Comparator<String> object

String.CASE_INSENSITIVE_
ORDER 160

compare method of interface
Comparator 681

compareTo method
of Comparable 680

comparison operator 625
compilation error 372
compile 374
compile-time type safety 671
compiler error 372
compiling an application with multiple

classes 398
compiling apps 349
component 54, 75
component of an array 491
composition 551, 566
compound assignment operators 434
compound interest 440
computer-assisted instruction (CAI) 489
computer-assisted instruction (CAI):

Reducing Student Fatigue 489
computer-assisted instruction (CAI):

Varying the Types of Problems 489
Computer Assisted Instruction app

exercise 219
computer-assisted instruction (CAI)

exercise 219
computers in education 489
concatenate strings 559
concatenation 467
concrete class 596
concrete subclass 601

Z13_DEIT3397_02_SE_IDX.fm Page 713 Monday, July 7, 2014 9:22 AM

714 Index

Concurrency API 691
concurrent operations 690
concurrent programming 691
condition 385
conditional AND, && 450, 452

truth table 451
conditional expression 420
conditional operator, ?: 420
conditional OR, || 450, 451

truth table 452
Configuration class 198
confusing the equality operator == with

the assignment operator = 388
consistent state 544
constant 561

in an interface 625
Math.PI 392

constant integral expression 443, 449
constant variable 449, 496, 561

must be initialized 496
Constants

MODE_PRIVATE 159
MODE_WORLD_READABLE 159
MODE_WORLD_WRITABLE 159

constructor 397, 406
call another constructor of the same

class using this 547
multiple parameters 408
no argument 547
overloaded 544
parameter list 407

Constructor failure exercise 649
constructors cannot specify a return type

407
consume an event 656
contain other Views 308
Container class

setLayout method 654
contains method

of Collection 675
contains method of class

ArrayList<T> 529, 531
containsKey method of Map 686
Content Description property 99, 151
ContentResolver class 257
ContentValues class 340
Context class 156

getSharedPreferences method
159

startActivity method 145, 165
ContextWrapper class

getAssets method 207, 211
continue statement 450, 450
control 53, 75
control statement 418
control variable 422, 437, 438
controlling expression of a switch 447
controls 651
Cooking with Healthier Ingredients

app exercise 346
copy method of Collections 680
copying objects

deep copy 590
shallow copy 590

core package 374
corners element of a shape 307
cos method of Math 464
cosine 464
counter 422

counter-controlled repetition 422, 423,
429, 437, 438

Country Quiz app exercise 218
craps (casino game) 219, 474, 489
Craps Game app exercise 219

modification 219
crash report 362
create a package 561
create an object of a class 397
Create New Android String dialog 92
createBitmap method of class Bitmap

277
createChooser method of class

Intent 168
createFromStream method of class

Drawable 211
creating a database 339
creating and initializing an array 494
credit limit on a charge account 458
Crossword Puzzle Generator app

exercise 347
cryptographic key 349
<Ctrl>-d 446
<Ctrl>-z 446
cursor 373, 375
Cursor class 304, 337, 342

close method 324
getColumnIndex method 337
getColumnIndexOrThrow method

337
getString method 337
moveToFirst method 337

CursorAdapter class 304, 321
changeCursor method 324, 324
getCursor method 324

CursorFactory class 343
custom subclass of View 230
custom view 223

D
Dalvik Debug Monitor Service (DDMS)

352
data binding 144
data hiding 402
data structure 491
database

creating 339
opening 339
upgrading 339
version number 343

date 471
Date class exercise 564
Daydream 48
DDMS (Dalvik Debug Monitor Server)

352
DDMS perspective

LogCat tab 185
dealing 502
debugging

logging exceptions 185, 208
decimal integer formatting 380
decision 385
declaration

class 372
import 378, 379
method 373

declare a method of a class 395
decrement of a control variable 437

decrement operator, -- 434
deep copy 590
default case in a switch 447, 449
default constructor 406, 550, 572
default exception handler 646
default initial value 404
default package 401
default preferences 198
default resources 100
default value 404
Deitel Facebook page 364
Deitel Web site (www.deitel.com) 37
Deitel® Buzz Online Newsletter

(www.deitel.com/newsletter/
subscribe.html) 37, 368

delegation event model 658
delete method of class

SQLiteDatabase 342
density-independent pixels

dp 93
deserialized object 690
design process 56
Dev Guide 349
developer documentation

Keeping Your App Responsive 71
Launch Checklist 350
Performance Tips 71
Signing Your Applications 352
Tablet App Quality Checklist 350

Developer options 48
developer registration 358
device configuration 51
Device Screen Capture window 353
DialogFragment class 181, 213

onCreateDialog method 213
show method 213

DialogInterface class 156
DialogInterface.OnClickListene

r interface 156
diameter 392
dice game 474
digit 379
digital certificate 352
Digital Clock app exercise 251
digitally sign your app 352
Digits property of an EditText 119
dimens.xml 149
dimension resource 149
direct superclass 566, 568
directory 688, 689

name 688
disabilities 78, 98
disk I/O completion 637
dispatch

an event 660
display a line of text 373
Display class 184, 199
display output 389
distance between values (random

numbers) 473
divide-and-conquer approach 463
divide by zero 631
division 382, 383
division compound assignment operator,

/= 435
do...while repetition statement 419, 442
document a program 371

Z13_DEIT3397_02_SE_IDX.fm Page 714 Monday, July 7, 2014 9:22 AM

Index 715

documentation
Android Design 70
App Components 70
application resources 91
Class Index 70
Data Backup 71
Debugging 71
Get Started with Publishing 71
Getting Started with Android Studio

71
Google Play Developer Distribution

Agreement 71
Launch Checklist (for Google Play) 71
Managing Projects from Eclipse with

ADT 71
Managing Your App’s Memory 71
Package Index 70
Security Tips 71
Tools Help 71
Using the Android Emulator 70

doInBackground method of class
AsyncTask 322, 323, 324, 335

dollar signs ($) 372
Doodlz app 21, 57
Doodlz app exercise 296
dot (.) separator 397, 442, 463, 557
(double) cast 430
Double class 672
double equals, == 388
double-precision floating-point number

409
double primitive type 379, 408, 409,

427, 708
promotions 470

double quotes, " 373, 376
double-selection statement 419
downcast 611
downcasting 594
downloading source code 25
dp (density-independent pixels) 93, 93,

93
drag event 282
drag the scroll box 667
draw

circles 225
lines 225
text 225

Drawable class 211
createFromStream method 211

drawable folder of an Android project
87

Drawable resource
shape element 307

drawBitmap method of class Canvas
278

drawCircle method of class Canvas
242

drawing characterstics 225
color 225
font size 225
line thickness 225

drawLine method of class Canvas 243
drawPath method of class Canvas 278,

283
drawRect method of class Canvas 242
drawText method of class Canvas 242
drive sales 356
driver class 396
drop-down list 665

dummy value 427
Duplicate Elimination 534
dynamic binding 610
dynamic resizing 491

E
e method of class Log 208
echo character of class JPasswordField

652
Eclipse

demonstration video 371
import project 109, 137, 177, 223, 302
Outline window 109, 111

Eclipse documentation
(www.eclipse.org/
documentation) 26

Eclipse IDE 40
edit method of class

SharedPreferences 163
Editable interface 123
EditText

Digits property 119
Ems property 119
Max Length property 119

EditText class 111, 123
Hint property 149, 151
IME Options property 149, 151
input type 116
restrict maximum number of digits

111
element of an array 491
eligible for garbage collection 560
eliminate resource leaks 640
Employee abstract superclass 600
Employee class hierarchy test program

608
Employee class that implements

Payable 620
empty statement (a semicolon, ;) 388
empty string 657
Ems property of an EditText 119
emulator 52, 350

gestures 53
emulator functionality 53
emulator gestures and controls 53
encapsulation 56
“end of data entry” 427
end-of-file (EOF)

indicator 446
marker 687

end-of-line (single-line) comment, //
372, 373

End User License Agreement (EULA)
349, 350

enhanced for statement 506
Enhancing Class Time2 (exercise) 563
Enter (or Return) key 659
enum 477

constant 554
constructor 554
declaration 554
EnumSet class 556
keyword 477
values method 555

enumeration 477
enumeration constant 477
EnumSet class 556

range method 556

environment variable
CLASSPATH 375
PATH 374

equal likelihood 472
equality operators 385
equals method

of class Arrays 526
of class Object 590

eraseColor method of class Bitmap
293

Error class 638
escape character 376
escape sequence 376, 379

\, backslash 376
\", double-quote 376
\t, horizontal tab 376
newline, \n 376, 379

Euclid’s Algorithm 488
event 625, 652
event classes 658
event-dispatch thread (EDT) 696
event driven 652
event handler 625, 652

returning false 279
event handling 110, 652, 655, 659

event source 656
event ID 661
event listener 625, 658, 668

adapter class 668
interface 655, 656, 659, 660, 668

event object 658
event registration 656
event source 656, 658
EventListenerList class 660
EventObject class

getSource method 657
events 43
examination-results problem 432
Examples 37
exception 501, 630

handler 501
handling 499
parameter 502

Exception class 637
exception handler 635
exception parameter 635
Exceptions 501

IndexOutOfRangeException 501
execSQL method of class

SQLiteDatabase 344
execute method of class AsyncTask

322
execute method of the Executor

interface 692, 694, 695
ExecutionException class 699
Executor interface 692

execute method 692, 694, 695
Executors class 692

newCachedThreadPool method
693

ExecutorService interface 692
shutdown method 695

exists method of File 689
exit method of class System 640
exp method of Math 464
Expense Tracker app exercise 346
explicit conversion 430
explicit Intent 145, 185, 200
Explore by Touch 78, 98

Z13_DEIT3397_02_SE_IDX.fm Page 715 Monday, July 7, 2014 9:22 AM

716 Index

exponential method 464
exponentiation operator 442
expression 380
extend a class 566
extends keyword 569, 580
extensibility 593

F
face detection 47
Facebook 142, 364

Deitel page 364
Fahrenheit 669

equivalent of a Celsius temperature
488

false keyword 385, 420
fatal error 422
fatal logic error 422
fault tolerant 380
fault-tolerant program 501
Favorite Twitter Searches app exercise

enhanced 346
Favorite Websites app exercise 172
Fibonacci series 535
field 401

default initial value 404
field of a class 478
field width 441
file 687
File class 688

canRead method 689
canWrite method 689
exists method 689
File methods 689
getAbsolutePath method 689
getName method 689
getParent method 689
getPath method 689
isAbsolute method 689
isDirectory method 689
lastModified method 689
length method 689
list method 689

File methods 689
file processing 688
file system access 51
FileInputStream class 688, 690
FileOutputStream class 688, 690
FileReader class 688
FileWriter class 688
fill method

of class Arrays 526, 528
of class Collections 680

final
class 613
classes and methods 613
keyword 449, 464, 496, 561, 613
local variable 667
method 613
variable 496

final local variable for use in an
anonymous inner class 166

final value 438
finalize method 590
finally

block 635, 640
clause 640
keyword 635

financial transaction 358

findFragmentById method of class
Activity 182, 199

Fireworks Designer app exercise 251
Fisher-Yates shuffling algorithm 505
fixed text 380

in a format string 377
Flag Quiz Game app 21

exercise 218
flag value 427
Flickr Searches app exercise 172

enhanced 172
fling touch event 257
float

primitive type 379, 408, 409, 708
primitive type promotions 470

Float class 672
floating-point constant 440
floating-point literal 409

double by default 409
floating-point number 408, 426, 427,

429
division 430
double precision 409
double primitive type 408
float primitive type 408
single precision 409

floor method of Math 464
flow of control 430
FlowLayout class 654
focus 652
Folders

res/raw 223, 227
folders

assets 182
res/drawable-mdpi 307

font size 225
for repetition statement 419, 438, 441

enhanced 506
header 439
nested 498

format method of class NumberFormat
126

format method of class String 539
format specifier

multiple in a String resource 186
numbering in a String resource 186

format specifiers 377
%.2f for floating-point numbers

with precision 431
%d 380
%f 392, 410
%s 377

format string 377
formatted output

, (comma) formatting flag 442
%f format specifier 410
– (minus sign) formatting flag 441
0 flag 498, 539
comma (,) formatting flag 442
field width 441
floating-point numbers 410
grouping separator 442
left justify 441
minus sign (–) formatting flag 441
precision 411
right justification 441

Formatter class 688
formatting strings 186
Fortune Teller app exercise 297

forums 71
Android Forums 72
Stack Overflow 71

Fractal app exercise 297
fragile software 585
fragment 46, 181
Fragment class 110, 181

getActivity method 206
getResources method 206
onActivityCreated method 228
onAttach method 256, 288, 320,

327, 332
onCreate method 182, 214
onCreateOptionsMenu method

272
onCreateView method 182, 204,

228
onDestroy method 224, 229
onDetach method 256, 288, 320,

327, 332
onOptionsItemSelected method

272
onPause lifecycle method 270
onPause method 224, 229
onResume method 322, 334
onSaveInstanceState method

303, 334
onStart lifecycle method 269
onStop method 324
onViewCreated method 320
setArguments method 315
setRetainInstance method 321

Fragment layout 189
Fragment lifecycle 256, 320, 322, 324,

327, 332, 334
fragment lifecycle 182
Fragment lifecycle methods 288
FragmentManager class 182

beginTransaction method 314
getFragmentByTag method 213
popBackStack method 315

FragmentTransaction class 182, 303,
314, 315
add method 314
addToBackStack method 315
commit method 314
replace method 315

FrameLayout class 226
fraudulent order 359
free app 354
Froyo (Android 2.2) 45
Fullscreen Activity template 83
fully qualified class name 401
fully qualify a custom View’s class name

in an XML layout 223
function 463
future proof 70

G
game loop 224, 235, 236, 247
Game of Snake app exercise 297
game playing 471
games 69
gaming console 43
garbage collection 691
garbage collector 556, 557, 637, 640
gen folder of an android project 125
general class average problem 426

Z13_DEIT3397_02_SE_IDX.fm Page 716 Monday, July 7, 2014 9:22 AM

Index 717

generalities 593
generic class 529
gesture 43

double tap 43
double touch 43
drag 43
long press 43
pinch zoom 43
Swipe 43
touch 43

GestureDetector.OnDoubleTap-
Listener interface 257, 279

GestureDetector.OnGesture-
Listener interface 257

GestureDetector.SimpleGesture-
Listener class 257, 279
onSingleTap method 279

Gestures
drag 43
long press 43
pinch 43
tap 43

get a value 405
get method

of class ArrayList<T> 531
of interface List<T> 675
of interface Map 686

get method 405, 544
getAbsolutePath method of class

File 689
getActionCommand method of class

ActionEvent 657, 664
getActionIndex method of class

MotionEvent 281
getActionMasked method of class

MotionEvent 281
getActivity method of class

Fragment 206
getAll method of class

SharedPreferences 159
getAssets method of class

ContextWrapper 207, 211
getClass method of Object 591, 612
getClassName method of class

StackTraceElement 646
getColumnIndex method of class

Cursor 337
getColumnIndexOrThrow method of

class Cursor 337
getConfiguration method of class

Resources 198
getCursor method of class

CursorAdapter 324
getDefaultSensor method of class

SensorManager 269
getFileName method of class

StackTraceElement 646
getFragmentByTag method of class

FragmentManager 213
getFragmentManager method of class

Activity 182, 199, 213
getHolder method of class

SurfaceView 233
getItemID method of class MenuItem

273
getLineNumber method of class

StackTraceElement 646
getListView method of class

ListFragment 321

getListViewDefault Para Font>
method of class ListActivity
160

getMenuInflater method of class
Activity 200

getMessage method of class
Throwable 646

getMethodName method of class
StackTraceElement 646

getName method of class Class 591,
612

getName method of class File 689
getParent method of class File 689
getPassword method of class

JPasswordField 657
getPath method of class File 689
getPointerCount method of class

MotionEvent 282
getResources method of class

Activity 198
getResources method of class

Fragment 206
getSelectedIndex method of class

JComboBox 668
getSharedPreferences method of

class Context 159
getSource method of class

EventObject 657
getStackTrace method of class

Throwable 646
getStateChange method of class

ItemEvent 668
getString method of class Activity

164, 167
getString method of class Cursor 337
getString method of class Resources

206
getString method of class

SharedPreferences 164
getStringSet method of class

SharedPreferences 202
getSystemService method of clsdd

Activity 269
getSystemUiVisibilty method of

class View 279
getWritableDatase method of class

SQLiteOpenHelper 339
getX method of class MotionEvent 282
getY method of class MotionEvent 282
Google APIs 43
Google Cloud Messaging 45
Google Maps 44
Google Play 49, 349, 350, 355, 358, 365

countries 361
crash report 362
fees 359
high-resolution app icon 360
promotional graphic 360
promotional video 353, 360
publish 359, 360
Publish an Android App on

Google Play 360
publisher account 357
screenshots 360

Google Play Developer Console 362
Google Play Developer Program Policies 358
Google Play game services 22
Google Wallet 349, 355, 359

merchant account 361

Google+ 142
goto elimination 418
goto statement 418
GPS 22
graph information 498
Graphical Layout editor 109
Graphical Layout editor in the Android

Developer Tools 78, 86, 87, 89
graphical user interface (GUI) 625, 651
graphics 23, 51
Gravity property (layout) 119
Gravity property of a component 94
gravity sensor 256
greatest common divisor (GCD) 488
green method of class Color 288
GridLayout

Column Count property 115
Orientation property 115
Use Default Margins property 115

GridLayout class 111, 147
documentation 113

grouping separator (formatted output)
442

guarding code with a lock 696
“guess the number” game 488, 669
guesture 53, 75
GUI (Graphical User Interface) 625

component 651
GUI components

EditText 111
ImageButton 144, 150, 157
ImageView 78, 95
naming convention 114
programmatically create 182
ScrollView 308
SeekBar 109, 111
TextView 78, 88, 91
ViewGroup 308

GUI components are not thread safe 184
GUI design 69
GUI thread 304
gyroscope sensor 256

H
handle an exception 632
Handler class 184

postDelayed method 184, 213
Hangman Game app exercise 297
hardware support 51
has-a relationship 551, 566
hash table 683
hashCode method of Object 591
HashMap class 684

keySet method 686
HashSet class 683
Hashtable class 684
hashtag 364
hasNext method

of class Scanner 447
of interface Iterator 675, 678

hasPrevious method of
ListIterator 678

height of a table row 113
“hidden” fields 478
hide the soft keyboard 160
hint in an EditText 310
Hint property of an EditText 149, 151
Holo Dark theme 81

Z13_DEIT3397_02_SE_IDX.fm Page 717 Monday, July 7, 2014 9:22 AM

718 Index

Holo Light theme 81
Holo Light with dark action bars theme

81
Holo user interface 46, 47
home button 62
horizontal tab 376
Horse Race with Cannon Game app

exercise 251
HourlyEmployee class derived from

Employee 603
HTML5 mobile apps 22
HugeInteger Class exercise 564

I
i-Newswire 366
icon 349, 350
icon design firms

137designs 351
Aha-Soft 351
Androidicons 351
Elance 351
glyphlab 351
Iconiza 351

Id property of a layout or component 90
IDE (integrated development

environment) 52, 75
identifier 372, 379
IEEE 754 (grouper.ieee.org/

groups/754/) 708
IEEE 754 floating point 708
if single-selection statement 385, 419,

443
if...else double-selection statement

419, 429, 443
ignoring array element zero 501
IllegalArgumentException class

538
ImageButton class 144, 150, 157
images 23
ImageView class 78, 95

Adjust View Bounds property 191
Scale Type property 191

IME Options 310
IME Options property of an EditText

149, 151
immersive mode 62, 254, 257, 278, 279
immutable object 559
implement an interface 592, 614, 621
implementation of a function 601
implements keyword 614, 619
implicit conversion 430
implicit Intent 145
import an existing project into Eclipse

109, 137, 177, 223, 302
import declaration 378, 379, 401
Import dialog 59, 109, 223, 302
in-app advertising 354, 356
in-app purchase 354
in-app billing 357

security best practices 357
in-app purchase 357
increment

a control variable 438
expression 450
of a control variable 437
operator, ++ 435

increment and decrement operators 435
indefinite repetition 427

indentation 421
index 499
index (subscript) 491
index of a JComboBox 667
index zero 491
indexOf method of class

ArrayList<T> 529
IndexOutOfRangeException class

502
indirect superclass 566, 568
infinite loop 422, 439
infinite recursion 590
infinite series 459
inflate method of class

LayoutInflater 204
inflate method of class

MenuInflater 200
inflate the GUI 234
inflating a GUI 126
information hiding 56, 402
inheritance 56, 566

examples 567
extends keyword 569, 580
hierarchy 567, 597
hierarchy for university Communi-

tyMembers 567
initial value of control variable 437
initialization at the beginning of each

repetition 432
initialize a variable in a declaration 379
initializer list 495
initializing two-dimensional arrays in

declarations 518
inlining method calls 548
inner class 655

anonymous 667
innermost set of brackets 501
input data from the keyboard 389
input/output package 471
Input Type 310
input type of an EditText 116
InputMethodManager class 157
InputMismatchException class 632,

634
InputStream class 211, 690

setImageDrawable method 211
insert method of class

SQLiteDatabase 340
insertImage method of class

MediaStore.Images.Media 257
insertion point 528
instance 55
instance (non-static) method 558
instance of a class 402
instance variable 56, 401, 402, 409, 464
instanceof operator 611
instantiating an object of a class 395
int primitive type 379, 427, 435, 443,

708
promotions 470

integer 377
array 495
division 426
quotient 382
value 379

Integer class 672
integer division 382
integerPower method 487
integral expression 449

integrated development environment
(IDE) 52, 75

intent chooser 142, 145
Intent class 145, 156

ACTION_SEND constant 167
ACTION_VIEW constant 165
Bundle 168
createChooser method 168
explicit 145, 185
implicit 145
putExtra method 168

intent extras 168
intent filter 145
intent messaging 145
interest rate 440
interface 592, 615, 623

declaration 614
implementing methods in Java 128

interface keyword 614
Interfaces 614

ActionListener 656, 660
AdapterView.OnItemClickLis-

tener 157, 321
AdapterView.OnItemLong-

ClickListener 157
Collection 672, 672, 680
Comparable 625, 680
Comparator 680
DialogInterface.OnClick-

Listener 156
Editable 123
Executor 692
ExecutorService 692
GestureDetector.OnDouble-

TapListener 257, 279
GestureDetector.OnGes-

tureListener 257
Iterator 673
KeyListener 661
List 185, 672, 678
ListIterator 673
Map 672, 684
MouseListener 660
MouseMotionListener 661, 668
ObjectInput 690
ObjectOutput 690
OnSeekBarChangeListener 127
Queue 672, 683
Runnable 184, 691, 625
SeekBar.OnSeekBarChangeLis-

tener 112, 123, 289
SensorEventListener 270
Serializable 625
Set 185, 672, 683
SortedMap 684
SortedSet 684
SurfaceHolder.Callback 225,

233, 245
SwingConstants 625
TextWatcher 112, 123
View.OnClickListener 157
WindowListener 668

internationalization 21, 78, 100, 112
Internet public relations resources

ClickPress 366
i-Newswire 366
Marketwire 366
Mobility PR 366
openPR 366

Z13_DEIT3397_02_SE_IDX.fm Page 718 Monday, July 7, 2014 9:22 AM

Index 719

Internet public relations resources (cont.)
PR Leap 366
Press Release Writing 366
PRLog 366
PRWeb 366

Internet-enabled apps 22
interrupt method of class Thread 693
InterruptedException class 693
intrinsic lock 695
invalidate method of class View 277
invoke a method 405
is-a relationship 566
isAbsolute method of File 689
isDirectory method of File 689
isEmpty method of class Map 687
ItemEvent class

getStateChange method 668
iteration 425

of a loop 437, 450
iteration (looping)

of a for loop 500
Iterator interface 673

hasNext method 675
next method 675
remove method 675

iterator method of Collection 675

J
J2ObjC 363
Java 43
Java Abstract Window Toolkit Event

package 471
Java API 462, 624
Java API documentation 381

download 381
Java API Interfaces 624
Java Application Programming Interface

(Java API) 378, 462, 470
Java class library 378, 462
Java code 31
java command 371
Java Concurrency Package 471
Java developer documentation

(www.oracle.com/technetwork/
java/javase/downloads/
index.html) 26

Java Development Kit (JDK) 373
.java file name extension 395
Java Input/Output Package 471
java interpreter 374
Java Language Package 471
Java Resource Centers 373
Java SE 6

API documentation 471
Java SE 7 449

Strings in switch statements 449
Java SE 7 Software Development Kit 31
Java Swing GUI Components Package

471
Java Utilities Package 471
Java Virtual Machine (JVM) 371
Java website 471
java.awt.event package 471, 658,

668
java.io package 211, 471, 688
java.lang package 379, 463, 471, 569,

590, 691
imported in every Java program 379

java.math package 409
java.text package 112, 122
java.util package 185, 378, 471, 472,

529
java.util.concurrent package 692,

696
Java™ Language Specification 383
javac compiler 374
javax.swing package 471, 660, 661
javax.swing.event package 658, 668
JButton class 661, 664
JComboBox class 665

getSelectedIndex method 668
setMaximumRowCount method 667

JComboBox that displays a list of image
names 665

JComponent class 660, 665
JDK 373
JPasswordField class 652, 657

getPassword method 657
JTextComponent class 652, 655

setEditable method 655
JTextField class 652, 656, 659

addActionListener method 656
JTextFields and JPasswordFields

652

K
Kaleidoscope app exercise 297
Kelvin temperature scale 669
key event 660
key/value pairs

persistent 156
keyboard 43, 377, 651
keyboard types 310
KeyEvent class 661
KeyListener interface 661
keySet method

of class HashMap 686
keySet method of interface Map 159
key–value pairs associated with an app

144
keyword 372, 419
Keywords

abstract 596
boolean 420
break 447
case 447
catch 635
char 379
class 372, 396
continue 450
default 447
do 419, 442
double 379, 408
else 419
enum 477
extends 569, 580
false 420
final 449, 464, 496
finally 635
float 379, 409
for 419, 438
if 419
implements 614
import 378
instanceof 611
int 379

Keywords
interface 614
new 379, 397, 492, 494
null 405, 493
private 402, 541
public 372, 395, 396, 402, 466,

541
return 402, 403
static 442, 463
super 569
switch 419
synchronized 696
this 542, 558
throw 643
true 420
try 634
void 373, 396
while 419, 442

L
label 349
Label For property of a TextView 119
label in a switch 447
Labyrinth Game app: Open Source

exercise 297
landscape orientation 98, 131
language package 471
large-screen device 46
last-in, first-out (LIFO) 469
lastModified method of class File

689
late binding 610
layout 51
layout folder of an Android project 87
layout manager 654

FlowLayout 654
LayoutInflater class 182

inflate method 204
Layouts

GridLayout 111
LinearLayout 111

layouts 21
activity_main.xml 89
GridLayout 147
RelativeLayout 87
TableLayout 113

left brace, { 372, 373, 378
left justified 441
left-to-right evaluation 384
length field of an array 492
length instance variable of an array 492
length method of File 689
license for Android 42
licensing policy 351
licensing service 351
lifecycle methods 224
lifecycle methods of an app 123
LIFO (last-in, first-out) 469
light sensor 256
line thickness 225
linear acceleration sensor 256
LinearLayout

Column property 117
LinearLayout class 111
LinkedList class 673

add method 679
addFirst method 679
addLast method 679

Z13_DEIT3397_02_SE_IDX.fm Page 719 Monday, July 7, 2014 9:22 AM

720 Index

linking your apps 361
Linux 52, 73, 373
list 667
List interface 185, 672, 678

add method 675, 677
addAll method 677
clear method 678
get method 675
listIterator method 677
size method 675, 678
subList method 678
toArray method 678

list method of class AssetManager
207

list method of File 689
ListActivity class 144, 156

custom GUI 144
getListView method 160
setListAdapter method 160

listen for events 656
ListFragment class 304, 305, 318

built-in ListView 320
getListView method 321
setEmptyText method 321
setListAdapter method 322

ListIterator interface 673
hasPrevious method 678
previous method 678
set method 678

listIterator method of interface
List 677

ListPreference class 182
ListView

data binding 144
ListView class 144, 318

format of a list item 154
setChoiceMode method 321

literals
floating point 409

load a URL into a web browser 145
load method of class SoundPool 234
loadAnimation method of class

AnimationUtils 184, 206
local variable 401, 425, 478, 479, 543
localization 91, 100, 186
Localization Checklist 104
localized resources 100
location of a variable in the computer’s

memory 381
lock screen widgets 48
lockCanvas method of class

SurfaceHolder 248
Log class 185, 208

e method 208
log method of Math 464
logarithm 464
LogCat tab in the Android DDMS

perspective 185
logcat tool 185
logging exceptions 185, 208
logic error 380, 422, 439
logical complement operator, ! 453
logical negation, ! 453
logical negation, or logical NOT (!)

operator truth table 453
logical operators 450, 453
Long class 672
long keyword 708
long press 140

long promotions 470
long-press touch event 257
long-running operations 304
look-and-feel

Nimbus 651
loop 425

body 442
continuation condition 419
counter 437
infinite 422
statement 419

loop-continuation condition 437, 438,
439, 442, 443, 450

looping 425
Lottery Number Picker app exercise 218
lowercase letter 372

M
m-by-n array 516
Mac OS X 52, 73, 373
magnetic field sensor 256
main method 378, 396
main thread 695
make your point (game of craps) 474
makeText method of class Toast 202
making decisions 389
manifest file 349, 360
manually perform an animation 224
many-to-one mapping 684
Map interface 672, 684

containsKey method 686
get method 686
isEmpty method 687
keySet method 159
put method 686
size method 687

Marketwire 366
mashup 44
Master/Detail Flow template 83
match_parent value of the Layout

height property 149
match_parent value of the Layout

width property 149
matching catch block 635
Math class 442, 463

abs method 464
ceil method 464
cos method 464
E constant 464
exp method 464
floor method 464
log method 464
max method 464
min method 464
PI constant 464, 484
pow method 442, 463, 464, 484
random method 472
sqrt method 463, 464, 469
tan method 464

Math.PI constant 392
Max Length property of an EditText

119
max method of Collections 680
max method of Math 464
Max property of a SeekBar 120
mean 384
media files 223
MediaStore class 257

MediaStore.Images.Media class 257
insertImage method 257

medium sized font 116
memory leak 557, 640
memory location 381
Menu class 181, 199, 272
menu folder of an Android project 87,

183
menu name 31
MenuInflater class 200, 272, 324

inflate method 200
MenuItem class

getItemID method 273
merchant account 359
message 406
method 55, 373

local variable 401
parameter 398, 400
parameter list 398
return type 403
signature 482
static 442

method call 55, 466
method-call stack 469
method declaration 466
method header 396
method overloading 480
methods implicitly final 613
micro blogging 363, 364
Microsoft Windows 446
mileage obtained by automobiles 458
Miles-Per-Gallon Calculator app

exercise 134
min method of Collections 680
min method of Math 464
minus sign (–) formatting flag 441
mobile advertising 355
mobile advertising network 356, 366

AdMob 356, 367
Flurry 367
InMobi 367
Jumptap 367
Medialets 367
mMedia 367
Nexage 367
Smaato 367
Tapjoy 367

mobile payment provider 357, 358
Boku 358
PayPal Mobile Libraries 358
Samsung In-App Purchase 358
Zong 358

modal dialog 145
MODE_PRIVATE constant 159
MODE_WORLD_READABLE constant 159
MODE_WORLD_WRITABLE constant 159
modularizing a program with methods

463
modules in Java 462
monetizing apps 349, 356
monitor 695
monitor lock 695
MotionEvent class 224, 246, 257, 281

getActionIndex method 281
getActionMasked method 281
getPointerCount method 282
getX method 282
getY method 282

mouse 651

Z13_DEIT3397_02_SE_IDX.fm Page 720 Monday, July 7, 2014 9:22 AM

Index 721

mouse event 660
MouseAdapter class 668

mousePressed method 705
MouseEvent class 660
MouseListener interface 660
MouseMotionListener interface 661,

668
mousePressed method of class

MouseAdapter 705
moveTo method of class Path 281
moveToFirst method of class Cursor

337
Movie Collection app exercise 346
Movie Trivia Quiz app exercise 218
MP3 player 43
multidimensional array 516, 517
multimedia 23
multiple class declarations

in one source-code file 542
multiple format specifiers 186
multiple-selection statement 419
multiplication compound assignment

operator, *= 435
multiplication, * 382, 383
MultiSelectListPreference class

182
multithreading 690
multitouch 280
multi-touch screen 43
music audio stream 224, 233
mutual exclusion 695

N
name of a variable 381
name of an array 492
named constant 496
naming convention

GUI components 114
natural comparison method 680
natural logarithm 464
near-field communication (NFC) 46
nested array initializers 517
nested class 655
nested classes 651
nested control statements 431

Examination-results problem 433
nested for statement 498, 518, 519, 523
nested if...else selection statement 420
nested parentheses 383
nested structure of a layout 116
nested Views 308
Netbeans

demonstration video 371
network access 51
network message arrival 637
New Android Application dialog 79
new keyword 379, 397, 492, 494
new Scanner(System.in) expression

379
newCachedThreadPool method of class

Executors 693
newline character 375
newline escape sequence, \n 376, 379
newsgroups 71

Android Developers 71
next method

of Iterator 675
of Scanner 400

nextDouble method of class Scanner
412

nextInt method of class Random 472
nextLine method of class Scanner 399
Nimbus look and feel 651

swing.properties 651
no-argument constructor 547, 549
non-static class member 558
nonfatal logic error 422
notify method of Object 591
notifyAll method of Object 591
notifyDataSetChanged method 163
notifyDataSetChanged method of

class ArrayAdapter 163
null keyword 404, 405, 493
NumberFormat class 112, 122

format method 126
numbering format specifiers 186
numeric Classes 672
numeric input 111
numeric keypad 108

O
obfuscate 351
object 54
object (or instance) 56, 75
Object class 566, 569

clone method 590
equals method 590
finalize method 590
getClass method 591, 612
hashCode method 591
notify method 591
notifyAll method 591
toString method 572, 591
wait method 591

object of a derived class 593
object-oriented analysis and design

(OOAD) 56
object-oriented language 56
object-oriented programming (OOP) 56,

566
object serialization 22, 689
ObjectInput interface 690

readObject method 690
ObjectInputStream class 688, 690
Objective-C command 31
ObjectOutput interface 690

writeObject method 690
ObjectOutputStream class 688, 690
OEM original equipment manufacturer 42
off-by-one error 439
onActivityCreated method of class

Fragment 228
onAttach method of class Fragment

256, 288, 320, 327, 332
onCreate method of class Activity

110, 223
onCreate method of class Fragment

182, 214
onCreate method of class

SQLiteOpenHelper 343
onCreateDialog method of class

DialogFragment 213
onCreateOptionsMenu method of class

Activity 181, 199
onCreateOptionsMenu method of class

Fragment 272, 334

onCreateView method of class
Fragment 182, 204, 228

onDestroy method of class Activity
223, 224

onDestroy method of class Fragment
224, 229

onDetach method of class Fragment
256, 288, 320, 327, 332

onDowngrade method of class
SQLiteOpenHelper 344

onDraw method of class View 278
one-to-one mapping 684
OnItemClickListener interface 321
onOptionsItemSelected method of

class Activity 181, 200
onOptionsItemSelected method of

class Fragment 272, 334
onPause method of class Activity 223,

224
onPause method of class Fragment

224, 229, 270
onPostExecute method 323, 324, 336,

337
onPostExecute method of class

AsyncTask 323, 324, 336, 337
onProgressUpdate method 323, 336
onProgressUpdate method of class

AsyncTask 323, 336
onResume method of class Activity

223
onResume method of class Fragment

322, 334
onSaveInstanceState method of class

Fragment 303, 334
on-screen component 31
OnSeekBarChangeListener interface

127
onSensorChanged method 270
onSensorChanged method of interface

SensorEventListener 270
onSingleTap method of class

GestureDetector.Simple-
GestureListener 279

onSizeChanged method of class View
234, 276

onStart method of class Activity
199, 223

onStart method of class Fragment 269
onStop method of class Activity 223
onStop method of class Fragment 324
OnTouchEvent method of class View

280
onTouchEvent method of class View

224, 246, 257
onUpgrade method of class

SQLiteOpenHelper 343
onViewCreated method of class

Fragment 320
OOAD (object-oriented analysis and

design) 56
OOP (object-oriented programming) 56,

566
open a file 688
Open Handset Alliance 45
open source 41
open source apps 42
Open Source Project discussion groups 41
opening a database 339
openPR 366

Z13_DEIT3397_02_SE_IDX.fm Page 721 Monday, July 7, 2014 9:22 AM

722 Index

operand 380, 430
operating system 45
operating system requirements 31
operating systems services 51
operator 380
operator precedence 383

operator precedence chart 430, 706
rules 383

Operators
^, boolean logical exclusive OR 450,

452
--, predecrement/postdecrement

434
--, prefix decrement/postfix decre-

ment 435
!, logical NOT 450, 453
?:, ternary conditional operator 420
*=, multiplication assignment opera-

tor 435
/=, division assignment operator 435
&, boolean logical AND 450, 452
&&, conditional AND 450, 451
%=, remainder assignment operator

435
++, prefix increment/postfix incre-

ment 435
++, preincrement/postincrement 434
+=, addition assignment operator

434
= 380, 388
-=, subtraction assignment operator

435
|, boolean logical inclusive OR 450,

452
||, conditional OR 450, 451
arithmetic 382
binary 380, 382
boolean logical AND, & 450, 452
boolean logical exclusive OR, ^ 450,

452
boolean logical inclusive OR, | 452
cast 430
compound assignment 434
conditional AND, && 450, 452
conditional operator, ?: 420
conditional OR, || 450, 451, 452
decrement operator, -- 434, 435
increment and decrement 435
increment, ++ 435
logical complement, ! 453
logical negation, ! 453
logical operators 450, 453
multiplication, * 382
postfix decrement 435
postfix increment 435
prefix decrement 435
prefix increment 435
remainder, % 382, 383
subtraction, - 383

options menu 57, 62, 175, 177, 255
order 418
order in which actions should execute

417
Order of catch Blocks exercise 649
order of exception handlers 649
Orientation property of a GridLayout

115
orientation sensor 256

original equipment manufacturer (OEM)
42

out-of-bounds array index 637
outer set of brackets 501
Outline window 116, 148
Outline window in Eclipse 109, 111
output 373
output cursor 375
OutputStream class 690
overflow 637
overload a method 480
overloaded constructors 544
override a superclass method 568, 572

P
package 50, 378, 462, 470, 561
package access 562
package-access methods 562
Package Explorer window 223, 302
package name 401
Packages

android.app 51, 110, 123, 156,
181, 182

android.content 51, 144, 156,
257

android.content.res 51, 183,
198, 206

android.database 51, 304
android.database.sqlite 51,

304
android.graphics 51, 225, 257
android.graphics.drawable

51, 211
android.hardware 51
android.media 51, 224
android.net 51, 156
android.os 51, 123, 184
android.preference 51, 181
android.provider 51
android.text 51, 112, 123
android.util 51, 185, 232
android.view 51, 157, 181, 224,

257
android.view.animation 184
android.view.inputmethod 157
android.widget 51, 111, 123,

157, 184
default package 401
java.awt.event 471, 658, 668
java.io 51, 211, 471, 688
java.lang 379, 463, 471, 569,

590, 691
java.math 409
java.text 51, 112, 122
java.util 51, 185, 378, 471, 472,

529
java.util.concurrent 692, 696
javax.swing 471, 661
javax.swing.event 658, 660,

668
padding element of a shape 307
Padding property of a viewy 120
paid app

average price 355
Paint class 225

filled shape with a border 276
filled shape without a border 276
line 276

Paint class (cont.)
setAntiAlias method 275
setStrokeCap method 276, 292
setStrokeWidth method 276
setStyle method 275
styles 276

parallel operations 690
parameter 398, 400
parameter list 398, 407
parent directory 689
parentheses 373, 383

nested 383
parse method of class Uri 165
pass an array element to a method 508
pass an array to a method 508
pass-by-reference 510
pass-by-value 508, 510
password 652
Path class 257

moveTo method 281
quadTo method 282
reset method 281

PATH environment variable 374
path information 688
Payable interface declaration 617
Payable interface hierarchy UML class

diagram 616
Payable interface test program

processing Invoices and Employees
polymorphically 623

payment 359
payment processor 355
Payroll System Modification exercise 628
perform a calculation 389
perform a task 396
perform an action 373
performing operations concurrently 690
persistent data 687
persistent key/value pairs 156
photo sharing 364
Photo Sphere 48
“pick off” each digit 393
piracy 352
play method of class SoundPool 238
Play Store app 361
pointer (for touch events) 280
polymorphic processing of related

exceptions 639
polymorphically process Invoices and

Employees 623
polymorphism 591
polynomial 384, 385
pop off a stack 469
pop the back stack 315
popBackStack method of class

FragmentManager 315
portable GUI 471
portrait mode 234
portrait orientation 98, 113, 131
position number 491
postdecrement 435
postDelayed method of class Handler

184, 213
postfix decrement operator 435
postfix increment operator 435
postincrement 435
pow method of class Math 442, 463, 464,

484
power (exponent) 464

Z13_DEIT3397_02_SE_IDX.fm Page 722 Monday, July 7, 2014 9:22 AM

Index 723

power of 2 larger than 100 422
PR Leap 366
prebuilt data structures 671
precedence 383, 388

arithmetic operators 383
chart 383, 430, 706

precision
format of a floating-point number

431
precision of a floating-point value 408
precision of a formatted floating-point

number 411
predecrement 435
predicate method 564
Preference class 182
PreferenceFragment class 181, 214

addPreferencesFromResource
method 214

PreferenceManager class 182, 198
setDefaultValues method 198,

198
prefix decrement operator 435
prefix increment operator 435
preincrement 435
Preincrementing and postincrementing

436
Preparing for Release 349
press release writing 366
pressure sensor 256
prevent the soft keyboard from being

displayed at app startup 170
prevent the soft keyboard from displaying

when app loads 146
previous method of ListIterator

678
price 355
pricing your app 354
prime 705
prime number 534
primitive type 379, 405, 436, 470

byte 443
char 379, 443
double 379, 408, 409, 427
float 379, 408, 409
int 379, 427, 435, 443
names are keywords 379
passed by value 510
promotions 470
short 443

principal in an interest calculation 440
principle of least privilege 561
print a line of text 373
print method of System.out 375
print on multiple lines 375
printBitmap method of class

PrintHelper 285
printf method of System.out 377
PrintHelper class 285

printBitmap method 285
PrintHelper.SCALE_MODE_FILL 285
PrintHelper.SCALE_MODE_FIT 285
println method of System.out 375
printStackTrace method of class

Throwable 646
private

access modifier 402, 541
private key 352
private static

class member 558

PRLog 366
probability 472
procedure 463
procedure for solving a problem 417
program construction principles 454
program control 418
program execution stack 469
program in the general 591, 627
program in the specific 591
programmatically create GUI

components 182
Progress property of a SeekBar 120
ProGuard 351
project 79
project templates 83

Blank Activity 83
Fullscreen Activity 83
Master-Detail Application 83

project, add a class 227
promotion 430

of arguments 469
rules 469

promotions for primitive types 470
prompt 379
Properties window 90, 91, 92, 93, 95
property animation 22, 183, 195
protected access modifier 541, 568
proximity sensor 256
pseudocode 418, 420, 423, 432

algorithm 427
pseudorandom number 472, 473
public

abstract method 614
access modifier 395, 396, 402, 466,

541
class 372
final static data 614
interface 537
keyword 372, 402
member of a subclass 569
method 538, 541
service 537
static class members 557
static method 558

public relations 365
publish a new version of an app 362
publishing data on an Android device 51
push onto a stack 469
push onto the back stack 315
put method

of interface Map 686
putExtra method of class Intent 168
putLong method of class Bundle 315
putString method of class

SharedPreferences.Editor 163

Q
quadratic bezier curve 282
quadTo method of class Path 282
query method of class

SQLiteDatabase 341
queue 672, 683
Queue interface 672, 683

R
R class 125
R.drawable class 125

R.id class 126
R.layout class 126
R.layout.activity_main constant

126, 158
R.string class 126
radians 464
radio button 661
radius of a circle 488
Random class 471, 472

nextInt method 472
setSeed method 473

random method of class Math 472
random numbers 473

difference between values 473
generation 502
processing 471
pseudorandom number 472
scaling 472
scaling factor 472, 473
seed 472
seed value 473
shift a range 472
shifting value 472, 473

range method of class EnumSet 556
range-view methods 678
raw folder of an Android project 87, 183
readability 371
readObject method of ObjectInput

690
real number 379, 427
realization in the UML 616
recent apps button 62
Recipe app exercise 346
reclaim memory 561
rectangle 563
Rectangle Class (exercise) 563
red method of class Color 288
redraw a View 278
refer to an object 405
reference 405
reference type 405, 562
reflection 612
registered listener 660
registering the event handler 655
registerListener method of class

SensorManager 269
registerOnSharedPreference-

ChangeListener method of class
SharedPreferences 198

reinventing the wheel 378, 526
relational operators 385
relative path 688
RelativeLayout 87
release a resource 640
release method of class SoundPool

244
release resources 337
remainder 382
remainder compound assignment

operator, %= 435
remainder operator, % 382, 383
remove apps from Market 362
remove duplicate String 683
remove method of class ArrayList<T>

529, 531
remove method of interface Iterator

675
rendering and tracking text 51

Z13_DEIT3397_02_SE_IDX.fm Page 723 Monday, July 7, 2014 9:22 AM

724 Index

repetition
counter controlled 423, 429
sentinel controlled 426, 427, 428

repetition statement 418, 419
do...while 419, 442
for 419
while 419, 422, 425, 429, 430, 437

repetition terminates 422
replace method of class

FragmentTransaction 315
reporting bugs 41
requirements 56
res folder of an Android project 86, 91
res/drawable-mdpi folder 307
res/raw folder of an Android project

223, 227
reserved word 419

false 419
null 404, 405
true 419

reset method of class Path 281
resizable array

implementation of a List 673
resource 360
Resource Chooser dialog 91, 92, 93
resource leak 556, 640
resource-release code 640
resources 101

alternative-resource naming conven-
tions 100

android-developers.
blogspot.com/ 72

androiddevweekly.com/ 72
answers.oreilly.com/topic/

900-ten-tips-for-android-
application-development/
72

code.google.com/p/apps-for-
android/ 72

cyrilmottier.com/ 72
default 100
developer.motorola.com/ 72
developer.sprint.com/site/

global/develop/
mobile_platforms/android/
android.jsp 72

graphics-geek.blogspot.com/
72

Localization Checklist 104
localized 100
stackoverflow.com/tags/

android/topusers 72
style 303
www.brighthub.com/mobile/

google-android.aspx 72
www.curious-creature.org/

category/android/ 72
www.htcdev.com/ 72

Resources class 198, 206
getConfiguration method 198
getString method 206

responses to a survey 499, 501
restrict maximum number of digits in an

EditText 111
resumption model of exception handling

636
rethrow an exception 643, 649
Rethrowing Exceptions exercise 649
return keyword 403

return type 403
of a method 396, 403

returning false from an event handler
279

reusable software components 54, 75,
471

Reuse 55
reuse 55, 378
reverse engineering 351
reverse method of Collections 680
reverseOrder method of

Collections 681
RGB 63
RGB values 120
right brace, } 372, 373, 378, 430
right justify output 441
rise-and-shine algorithm 417
Road Sign Quiz app exercise 218
robust 380
robust application 630
rolling two dice 476
rollover Icon 664
root directory 688
rotate animation for a View 195
rotation vector sensor 256
round a floating-point number for display

purposes 431
rounding a number 382, 464, 487
rows of a two-dimensional array 516
rule markers (Android Developer Tools)

95
rules of operator precedence 383
run method of interface Runnable 691
Runnable interface 184, 244
Runnable interface 625, 691

run method 691
runOnUiThread method of class

Activity 244
runtime logic error 380
RuntimeException class 638

S
SalariedEmployee class that

implements interface Payable
method getPaymentAmount 622

SalariedEmployee concrete class
extends abstract class Employee
602

saved state 125
savings account 440
SavingsAccount Class (exercise) 563
scalar 508
scale animation for a View 195
scale mode 285
Scale Type property of an ImageView

191
SCALE_MODE_FILL 285
SCALE_MODE_FIT 285
scale-independent pixels 188
scale-independent pixels (sp) 93
scaling (random numbers) 472
scaling factor (random numbers) 472,

473
Scanner class 378, 379

hasNext method 447
next method 400
nextDouble method 412
nextLine method 399

scope 439
scope of a declaration 478
scope of a variable 439
Scrapbooking app exercise 106
screen capture 352
screen cursor 376
screen-manager program 592
screenshot specifications 352
scroll 666
scroll arrow 667
scroll box 667
scroll touch event 257
scrollable list of items 144, 304
scrollbar

of a JComboBox 667
ScrollView class 308
search operators (Twitter) 136
second-degree polynomial 384, 385
seed value (random numbers) 472, 473
SeekBar

Max property 120
Progress property 120

SeekBar class 109, 111, 123
SeekBar.OnSeekBarChangeListener

interface 112, 123, 289
selecting an item from a menu 652
selection statement 418, 419

if 419, 443
if...else 419, 429, 443
switch 419, 443

semicolon (;) 373, 379, 388
send a message to an object 55, 73
send message 406
Sensor class 256
Sensor Simulator 53
SENSOR_DELAY_NORMAL constant of

class SensorManager 269
Sensor.TYPE_ACCELEROMETER

constant 269
SensorEvent class 271
SensorEventListener interface 270
SensorEventListener listener 270
SensorManager class 269

getDefaultSensor method 269
registerListener method 269
unregisterListener method 270

SensorManager.SENSOR_DELAY_
NORMAL constant 269

sensors
accelerometer 256, 270
gravity 256
gyroscope 256
light 256
linear acceleration 256
magnetic field 256
orientation 256
pressure 256
proximity 256
rotation vector 256
temperature 256

sentinel-controlled repetition 427, 428
sentinel value 427, 430
sequence structure 418
sequential execution 418
Serializable interface 625
serialized object 689
service of a class 541
set a value 405
set in an animation 195

Z13_DEIT3397_02_SE_IDX.fm Page 724 Monday, July 7, 2014 9:22 AM

Index 725

Set interface 185, 672, 683, 684
set method

of interface ListIterator 678
set method 405, 544
set of constants

as an interface 614
set up event handling 655
setAntiAlias method of class Paint

275
setArguments method of class

Fragment 315
setBackgroundColor method 289
setBackgroundColor method of class

View 289
setChoiceMode method of class

ListView 321
setContentView method of class

Activity 126
setDefaultValues method of class

PreferenceManager 198, 198
setEditable method of class

JTextComponent 655
setEmptyText method of class

ListFragment 321
setImageBitmap method of class View

293
setImageDrawable method of class

InputStream 211
setLayout method of class Container

654
setListAdapter method of class

ListActivity 160
setListAdapter method of class

ListFragment 322
setMaximumRowCount method of class

JComboBox 667
setRepeatCount method of class

Animation 185, 206
setRequestedOrientation method

of class Activity 198
setRetainInstance method of class

Fragment 321
setRolloverIcon method of class

AbstractButton 664
setSeed method of class Random 473
setStrokeCap method of class Paint

276, 292
setStrokeWidth method of class

Paint 276
setStyle method of class Paint 275
setSystemUiVisibility method of

class View 279
Setting hardware emulation options

68
setVolumeControlStream method of

class Activity 224, 228
shadow a field 478
shallow copy 590, 591
Shape class hierarchy 568
shape element 307
Shape Hierarchy exercise 628
SharedPreferences class 144, 156,

157
edit method 163
getAll method 159
getString method 164
getStringSet method 202

SharedPreferences class (cont.)
registerOnSharedPrefer-

enceChangeListener method
198

SharedPreferences.Editor class
144, 163
apply method 163
putString method 163

shell 373
shift (random numbers) 472
shifting value 472
shifting value (random numbers) 473
Shopping List app exercise 346
short-circuit evaluation 452
Short class 672
short primitive type 443, 708

promotions 470
show method of class DialogFragment

213
shuffle 502

algorithm 682
shuffle a collection 211
shuffle method of class Collections

185, 680, 682
shuffling

Fisher-Yates 505
shutdown method of class

ExecutorService 695
side effect 452
Sieve of Eratosthenes 534
signal value 427
signature 482
signature of a method 482
signing apps 349
simple collision detection 238
simple touch events 224
SimpleCursorAdapter class 321
SimpleOnGestureListener interface

279
simulation 471

coin tossing 488
sin method of class Math 464
sine 464
single-line (end-of-line) comment 373
single-precision floating-point number

409
single-selection statement 419
single-screen app 83
size method

of class ArrayList<T> 531
of interface List 675, 678
of interface Map 687

size of a variable 381
sleep method of class Thread 693
slider 111
smallest of several integers 459
SMS 142
Social API 47
social media sites 363
social networking 363, 364
soft buttons on an Android device 62
soft keyboard

prevent display at app startup 170
prevent from displaying when app

loads 146
remain on screen 113
types 310

soft keypad 131
software reuse 463, 562, 566

Solitaire Card Game app exercise 173
sort

case insensitive 160
sort method

of class Arrays 526
of class Collections 680

sort method of class Collections 160
sorted order 684
SortedMap interface 684
SortedSet interface 684
sorting

with a Comparator 681
sound effects 224
sound files 227
sound quality 233
SoundPool class 224, 233

load method 234
play method 238
release method 244

sounds 223
source code 40
source-code listing 40
sp (scale-independent pixels) 93
space character 372
special character 379
specialization 566
specifics 593
speech recognition 22, 23
speech synthesis 22, 23
sphere 484
Sports Trivia Quiz app exercise 218
SQL (Structured Query Language) 304
SQLite 51, 299, 304
SQLiteDatabase class 304

delete method 342
execSQL method 344
insert method 340
query method 341
update method 341

SQLiteOpenHelper class 304, 339, 343
getWritableDatabase method

339
onCreate method 343
onDowngrade method 344
onUpgrade method 343

SQLiteOpenHelpter class
close method 340

sqrt method of class Math 463, 464, 469
square brackets, [] 491
square root 464
stack 251, 469

method call stack 469
program execution stack 469
stack overflow 469

stack frame 469
stack trace 631
stack unwinding 644
StackTraceElement class 646

getClassName method 646
getFileName method 646
getLineNumber method 646
getMethodName method 646

standard error stream 635, 642
standard input stream (System.in) 379
standard output stream 642
standard output stream (System.out)

373
standard time format 539
star ratings for apps 362

Z13_DEIT3397_02_SE_IDX.fm Page 725 Monday, July 7, 2014 9:22 AM

726 Index

startActivity method of class
Context 145, 165

startAnimation method of class View
185

statement 373, 396
Statements

break 447, 450
continue 450
control statement 418
do...while 419, 442
double selection 419
empty 388
enhanced for 506
for 419, 438, 441
if 385, 419, 443
if...else 419, 429, 443
looping 419
multiple selection 419
nested 431
nested if...else 420
repetition 418, 419
selection 418, 419
single selection 419
switch 419, 443
try 501
while 419, 422, 425, 429, 430, 437

statements
throw 539

static
class member 557
class variable 558
field (class variable) 557
keyword 463
method 396, 442

static binding 613
straight-line form 382
stream 642
stream for playing music 233
stream of bytes 687
streaming 51
string 373

literal 373
of characters 373

String class
format method 539
immutable 559
toLowerCase 678
toUpperCase 678

string concatenation 467, 559
String resource

containing multiple format specifiers
186

String.CASE_INSENSITIVE_ORDER
Comparator<String> object 160

Strings in switch statements 449
strings.xml 91, 118, 148
stroke element of a shape 307
strongly typed languages 436
structured programming 418
Structured Query Language (SQL) 304
style attribute of a GUI component

303
Style property of a View 309, 311
style resource 309, 311
style resources 303
styles.xml 306
subclass 110, 566
sublist 678
subList method of List 678

subscript (index) 491
subtraction 382

operator, - 383
subtraction compound assignment

operator, -= 435
summarizing responses to a survey 499
super keyword 569

call superclass constructor 582
superclass 566

constructor 572
constructor call syntax 582
default constructor 572
direct 566, 568
indirect 566, 568
method overridden in a subclass 590

support both portrait and landscape
orientations 149

surfaceChanged method of interface
SurfaceHolder.Callback 245

surfaceCreated method of interface
SurfaceHolder.Callback 245

surfaceDestroyed method of interface
SurfaceHolder.Callback 245

SurfaceHolder class 225, 233
addCallback method 233
lockCanvas method 248

SurfaceHolder.Callback interface
225, 233, 245
surfaceChanged method 245
surfaceCreated method 245
surfaceDestroyed method 245

SurfaceView class 225, 233
getHolder method 233

Swing GUI components package 471
swing.properties file 651
SwingConstants interface 625
SwingWorker class 697

doInBackground method 697, 699
done method 697, 699
execute method 697
get method 697
process method 697
publish method 697
setProgress method 697

switch multiple-selection statement
419, 443
case label 447
comparing Strings 449
controlling expression 447
default case 447, 449

synchronization 695
synchronize 691
synchronized 248

keyword 696
method 696
statement 696

synchronous error 637
syntax error 372, 374
syntax shading 24
system bar 77, 144, 303
System class

arraycopy 526, 528
exit method 640

SYSTEM_UI_FLAG_FULLSCREEN 279
SYSTEM_UI_FLAG_HIDE_NAVIGATION

279
SYSTEM_UI_FLAG_IMMERSIVE 279
SYSTEM_UI_FLAG_LAYOUT_

FULLSCREEN 279

SYSTEM_UI_FLAG_LAYOUT_HIDE_NAV
IGATION 279

SYSTEM_UI_FLAG_LAYOUT_STABLE
279

System.err (standard error stream) 635
System.out

print method 375, 375
printf method 377
println method 373, 375

System.out (standard output stream)
373

T
tab character, \t 376
tab stops 376
table 516
table element 516
table of values 516
TableLayout class 113
tablet 46
tabular format 495
tagging interface 615
TalkBack 78, 98, 149, 151

Localization 103
tan method of class Math 464
tangent 464
Target-Heart-Rate Calculator app

exercise 134
temperature sensor 256
temporary 430
terminal window 373
termination housekeeping 590
termination model of exception handling

636
ternary operator 420
Text Appearance property of a

TextView 116
text box 111
Text Color property of a component 94
text field 111
text file 687
Text property of a component 91
Text Size property of a component 93
Text-to-Speech API 47
TextView

Text Appearance property 116
TextView class 78, 91, 111, 123

Label For property 119
TextView component 88
TextWatcher interface 112, 123
The Java™ Language Specification 383
Theme

Holo Dark 81
Holo Light 81
Holo Light with dark action bars

theme 81
this

keyword 542, 558
reference 542
to call another constructor of the

same class 547
thread 636

of execution 690
synchronization 695

thread (for animation) 224
Thread class 247

interrupt method 693
sleep method 693

Z13_DEIT3397_02_SE_IDX.fm Page 726 Monday, July 7, 2014 9:22 AM

Index 727

thread confinement 696
thread pool 692
thread safe 696
thread safe GUI 184
Threadr class 224
throw an exception 501, 538, 630, 634
throw an exception 539, 548
throw keyword 643
throw point 632
throw statement 642
Throwable class 637, 646

getMessage method 646
getStackTrace method 646
printStackTrace method 646

throws clause 636
TicTacToe exercise 564
Tip Calculator app 21, 53
toArray method of List 678, 680
Toast class 184, 202

makeText method 202
toggle buttons 661
toLowerCase method of class String

678
Tools

logcat 185
top-level class 655
toString method

of class Object 572, 591
total 423
touch event 257, 280
touch events

fling 257
long press 257
scroll 257
simple 224

toUpperCase method of class String
678

Towers of Hanoi app exercise 251
track app installs 362
traditional comment 372
transfer of control 418
translate animation

android:duration attribute 196
android:fromXDelta attribute

195
android:startOffset attribute

196
android:toXDelta attribute 195

translate animation for a View 195
transparency 120, 255
traverse an array 518
tree 683
TreeMap class 684
TreeSet class 683, 684
trigonometric cosine 464
trigonometric sine 464
trigonometric tangent 464
trimToSize method of class

ArrayList<T> 529
true 385
true reserved word 419, 420
truncate 382
truncate fractional part of a calculation

426
truth table 451

for operator ^ 452
for operator ! 453
for operator && 451
for operator || 451

try block 501, 634, 645
terminates 636

try keyword 634
try statement 501, 636
tweened animation 183, 195
tweet 364
24-hour clock format 537
Twitter 44, 142, 364

@deitel 364
hashtag 364
tweet 364

Twitter search 136
operators 138

Twitter Searches app 21
Twitter Searches app exercise

enhancements 172
with Fragments 218

two-dimensional array 516, 518
two-dimensional array with three rows

and four columns 516
type 379
type casting 430
type of a variable 381
type-wrapper class 672
TYPE_ACCELEROMETER constant of class

Sensor 269
typing in a text field 652

U
U.S. State Quiz app exercise 218
unary operator 430, 453

cast 430
unboxing conversion 672
uncaught exception 635
unchecked exceptions 638
Unicode character set 437, 708
Uniform Resource Identifier (URI) 688
Uniform Resource Locator (URL) 688
universal-time format 537, 538, 539
UNIX 373, 446
unregisterListener method of class

SensorManager 270
UnsupportedOperationException

class 678
unwinding the method-call stack 644
update method of class

SQLiteDatabase 341
upgrading a database 339
uppercase letter 372, 379
URI (Uniform Resource Identifier) 688
Uri class 156, 165

parse method 165
URL (Uniform Resource Locator) 688
URL encoded String 164
USB debugging 68
Use Default Margins property of a

GridLayout 115
utilities 69
Utilities Package 471

V
valid identifier 379
value of a variable 381
value to the nearest integer 487
values folder of an Android project 87,

91
values method of an enum 555

variable 377, 379
name 379, 381
reference type 405
size 381
type 381
value 381

variable declaration statement 379
variable is not modifiable 561
variable scope 439
Vector class 532
version code 351
version name 351
versioning your app 349
Versioning Your Applications 351
video 22, 23, 51
video game 472
video sharing 364
view 110, 678
View animations 195
View class 157, 225, 289

custom subclass 230
getSystemUiVisibilty method

279
invalidate method 277
onDraw method 278
onSizeChanged method 234, 276
onTouchEvent method 224, 246,

257, 280
redraw a View 278
setImageBitmap method 293
setSystemUiVisibility method

279
size changes 234
startAnimation method 185

View.OnClickListener interface 157
View.SYSTEM_UI_FLAG_FULLSCREEN

279
View.SYSTEM_UI_FLAG_HIDE_

NAVIGATION 279
View.SYSTEM_UI_FLAG_IMMERSIVE

279
View.SYSTEM_UI_FLAG_LAYOUT_

FULLSCREEN 279
View.SYSTEM_UI_FLAG_LAYOUT_

HIDE_NAVIGATION 279
View.SYSTEM_UI_FLAG_LAYOUT_

STABLE 279
ViewGroup class 308
viral marketing 363, 364
viral video 364
virtual camera operator 47
virtual goods 357
visual feedback 664
visual GUI design 21
VoiceOver

enable/disable 99
void keyword 373, 396
volume 224
volume of a sphere 484, 486

W
wait method of class Object 591
waiting line 672, 683
web services 44

Amazon eCommerce 44
eBay 44
Facebook 44
Flickr 44

Z13_DEIT3397_02_SE_IDX.fm Page 727 Monday, July 7, 2014 9:22 AM

728 Index

web services (cont.)
Foursquare 44
Google Maps 44
Groupon 44
Instagram 44
Last.fm 44
LinkedIn 44
Microsoft Bing 44
Netflix 44
PayPal 44
Salesforce.com 44
Skype 44
Twitter 44
WeatherBug 44
Wikipedia 44
Yahoo Search 44
YouTube 44
Zillow 44

Weight property of a component 121,
151

Weight property of a GUI component
190

Welcome app 21, 52, 53
Welcome tab in Eclipse 79
while repetition statement 419, 422,

425, 429, 430, 437
white space 372, 373, 388
widget 51, 123, 157, 651
width of a column 113
Wi-Fi Direct 47
window event-handling methods 668
window gadgets 651
Window soft input mode option 131,

170
WindowListener interface 668
WindowManager class 184, 199
Windows 52, 73, 446
Word Scramble Game app exercise 172
Word Search app exercise 297
workspace 57
Workspace Launcher window 57
wrap_content value of the

android:layout_height attribute
119, 120

wrap_content value of the
android:layout_width attribute
119, 120

wrapping stream objects 690
writeable 689
writeObject method

of interface ObjectOutput 690

X
xml folder of an Android project 87, 183
XML utilities 51

Y
YouTube 353

Z
zero-based counting 494
zeroth element 491

Z13_DEIT3397_02_SE_IDX.fm Page 728 Monday, July 7, 2014 9:22 AM

Z13_DEIT3397_02_SE_IDX.fm Page 729 Monday, July 7, 2014 9:22 AM

Z13_DEIT3397_02_SE_IDX.fm Page 730 Monday, July 7, 2014 9:22 AM

Z13_DEIT3397_02_SE_IDX.fm Page 731 Monday, July 7, 2014 9:22 AM

Z13_DEIT3397_02_SE_IDX.fm Page 732 Monday, July 7, 2014 9:22 AM

Z13_DEIT3397_02_SE_IDX.fm Page 733 Monday, July 7, 2014 9:22 AM

Z13_DEIT3397_02_SE_IDX.fm Page 734 Monday, July 7, 2014 9:22 AM

Z13_DEIT3397_02_SE_IDX.fm Page 735 Monday, July 7, 2014 9:22 AM

Z13_DEIT3397_02_SE_IDX.fm Page 736 Monday, July 7, 2014 9:22 AM

	Cover������������
	Title������������
	Copyright����������������
	Contents���������������
	Preface��������������
	Before You Begin�����������������������
	1 Introduction to Android��������������������������������
	1.1 Introduction�����������������������
	1.2 Android—The World’s Leading Mobile Operating System��
	1.3 Android Features���������������������������
	1.4 Android Operating System�����������������������������������
	1.4.1 Android 2.2 (Froyo)��������������������������������
	1.4.2 Android 2.3 (Gingerbread)��������������������������������������
	1.4.3 Android 3.0 through 3.2 (Honeycomb)��
	1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich)���
	1.4.5 Android 4.1–4.3 (Jelly Bean)���
	1.4.6 Android 4.4 (KitKat)���������������������������������

	1.5 Downloading Apps from Google Play��
	1.6 Packages�������������������
	1.7 Android Software Development Kit (SDK)���
	1.8 Object-Oriented Programming: A Quick Refresher���
	1.8.1 The Automobile as an Object��
	1.8.2 Methods and Classes��������������������������������
	1.8.3 Instantiation��������������������������
	1.8.4 Reuse������������������
	1.8.5 Messages and Method Calls��������������������������������������
	1.8.6 Attributes and Instance Variables��
	1.8.7 Encapsulation��������������������������
	1.8.8 Inheritance������������������������
	1.8.9 Object-Oriented Analysis and Design (OOAD)���

	1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD)���
	1.9.1 Running the Doodlz App in the Nexus 4 Smartphone AVD���
	1.9.2 Running the Doodlz App in a Tablet AVD���
	1.9.3 Running the Doodlz App on an Android Device��

	1.10 Building Great Android Apps���������������������������������������
	1.11 Android Development Resources���
	1.12 Wrap-Up�������������������

	2 Welcome App��������������������
	2.1 Introduction�����������������������
	2.2 Technologies Overview��������������������������������
	2.2.1 Android Developer Tools IDE��
	2.2.2 TextViews and ImageViews�������������������������������������
	2.2.3 App Resources��������������������������
	2.2.4 Accessibility��������������������������
	2.2.5 Internationalization���������������������������������

	2.3 Creating an App��������������������������
	2.3.1 Launching the Android Developer Tools IDE��
	2.3.2 Creating a New Project�����������������������������������
	2.3.3 New Android Application Dialog���
	2.3.4 Configure Project Step�����������������������������������
	2.3.5 Configure Launcher Icon Step���
	2.3.6 Create Activity Step���������������������������������
	2.3.7 Blank Activity Step��������������������������������

	2.4 Android Developer Tools Window���
	2.4.1 Package Explorer Window������������������������������������
	2.4.2 Editor Windows���������������������������
	2.4.3 Outline Window���������������������������
	2.4.4 App Resource Files�������������������������������
	2.4.5 Graphical Layout Editor������������������������������������
	2.4.6 The Default GUI����������������������������

	2.5 Building the App’s GUI with the Graphical Layout Editor��
	2.5.1 Adding Images to the Project���
	2.5.2 Changing the Id Property of the RelativeLayout and the TextView��
	2.5.3 Configuring the TextView�������������������������������������
	2.5.4 Adding ImageViews to Display the Images��

	2.6 Running the Welcome App����������������������������������
	2.7 Making Your App Accessible�������������������������������������
	2.8 Internationalizing Your App��������������������������������������
	2.9 Wrap-Up������������������

	3 Tip Calculator App���������������������������
	3.1 Introduction�����������������������
	3.2 Test-Driving the Tip Calculator App��
	3.3 Technologies Overview��������������������������������
	3.3.1 Class Activity���������������������������
	3.3.2 Activity Lifecycle Methods���������������������������������������
	3.3.3 Arranging Views with LinearLayout and GridLayout���
	3.3.4 Creating and Customizing the GUI with the Graphical Layout Editor and the Outline and Properties Windows���
	3.3.5 Formatting Numbers as Locale-Specific Currency and Percentage Strings��
	3.3.6 Implementing Interface TextWatcher for Handling EditText Text Changes��
	3.3.7 Implementing Interface OnSeekBarChangeListener for Handling SeekBar Thumb Position Changes���
	3.3.8 AndroidManifest.xml��������������������������������

	3.4 Building the App’s GUI���������������������������������
	3.4.1 GridLayout Introduction������������������������������������
	3.4.2 Creating the TipCalculator Project���
	3.4.3 Changing to a GridLayout�������������������������������������
	3.4.4 Adding the TextViews, EditText, SeekBar and LinearLayouts��
	3.4.5 Customizing the Views to Complete the Design���

	3.5 Adding Functionality to the App��
	3.6 AndroidManifest.xml������������������������������
	3.7 Wrap-Up������������������

	4 Twitter® Searches App������������������������������
	4.1 Introduction�����������������������
	4.2 Test-Driving the App�������������������������������
	4.2.1 Importing the App and Running It���
	4.2.2 Adding a Favorite Search�������������������������������������
	4.2.3 Viewing Twitter Search Results���
	4.2.4 Editing a Search�����������������������������
	4.2.5 Sharing a Search�����������������������������
	4.2.6 Deleting a Search������������������������������
	4.2.7 Scrolling Through Saved Searches���

	4.3 Technologies Overview��������������������������������
	4.3.1 ListView���������������������
	4.3.2 ListActivity�������������������������
	4.3.3 Customizing a ListActivity’s Layout��
	4.3.4 ImageButton������������������������
	4.3.5 SharedPreferences������������������������������
	4.3.6 Intents for Launching Other Activities���
	4.3.7 AlertDialog������������������������
	4.3.8 AndroidManifest.xml��������������������������������

	4.4 Building the App’s GUI���������������������������������
	4.4.1 Creating the Project���������������������������������
	4.4.2 activity_main.xml Overview���������������������������������������
	4.4.3 Adding the GridLayout and Components���
	4.4.4 Graphical Layout Editor Toolbar��
	4.4.5 ListView Item’s Layout: list_item.xml��

	4.5 Building the MainActivity Class��
	4.5.1 package and import Statements��
	4.5.2 Extending ListActivity�����������������������������������
	4.5.3 Fields of Class MainActivity���
	4.5.4 Overriding Activity Method onCreate��
	4.5.5 Anonymous Inner Class That Implements the saveButton’s OnClickListener to Save a New or Updated Search���
	4.5.6 addTaggedSearch Method�����������������������������������
	4.5.7 Anonymous Inner Class That Implements the ListView’s OnItemClickListener to Display Search Results���
	4.5.8 Anonymous Inner Class That Implements the ListView’s OnItemLongClickListener to Share, Edit or Delete a Search���
	4.5.9 shareSearch Method�������������������������������
	4.5.10 deleteSearch Method���������������������������������

	4.6 AndroidManifest.xml������������������������������
	4.7 Wrap-Up������������������

	5 Flag Quiz App����������������������
	5.1 Introduction�����������������������
	5.2 Test-Driving the Flag Quiz App���
	5.2.1 Importing the App and Running It���
	5.2.2 Configuring the Quiz���������������������������������
	5.2.3 Taking the Quiz����������������������������

	5.3 Technologies Overview��������������������������������
	5.3.1 Menus������������������
	5.3.2 Fragments����������������������
	5.3.3 Fragment Lifecycle Methods���������������������������������������
	5.3.4 Managing Fragments�������������������������������
	5.3.5 Preferences������������������������
	5.3.6 assets Folder��������������������������
	5.3.7 Resource Folders�����������������������������
	5.3.8 Supporting Different Screen Sizes and Resolutions��
	5.3.9 Determining the Screen Size��
	5.3.10 Toasts for Displaying Messages��
	5.3.11 Using a Handler to Execute a Runnable in the Future���
	5.3.12 Applying an Animation to a View���
	5.3.13 Logging Exception Messages��
	5.3.14 Using an Explicit Intent to Launch Another Activity in the Same App���
	5.3.15 Java Data Structures����������������������������������

	5.4 Building the GUI and Resource Files��
	5.4.1 Creating the Project���������������������������������
	5.4.2 strings.xml and Formatted String Resources���
	5.4.3 arrays.xml�����������������������
	5.4.4 colors.xml�����������������������
	5.4.5 dimens.xml�����������������������
	5.4.6 activity_settings.xml Layout���
	5.4.7 activity_main.xml Layout for Phone and Tablet Portrait Orientation���
	5.4.8 fragment_quiz.xml Layout�������������������������������������
	5.4.9 activity_main.xml Layout for Tablet Landscape Orientation��
	5.4.10 preferences.xml for Specifying the App’s Settings���
	5.4.11 Creating the Flag Shake Animation���

	5.5 MainActivity Class�����������������������������
	5.5.1 package Statement, import Statements and Fields��
	5.5.2 Overridden Activity Method onCreate��
	5.5.3 Overridden Activity Method onStart���
	5.5.4 Overridden Activity Method onCreateOptionsMenu���
	5.5.5 Overridden Activity Method onOptionsItemSelected���
	5.5.6 Anonymous Inner Class That Implements OnSharedPreferenceChangeListener���

	5.6 QuizFragment Class�����������������������������
	5.6.1 package Statement and import Statements��
	5.6.2 Fields�������������������
	5.6.3 Overridden Fragment Method onCreateView��
	5.6.4 Method updateGuessRows�����������������������������������
	5.6.5 Method updateRegions���������������������������������
	5.6.6 Method resetQuiz�����������������������������
	5.6.7 Method loadNextFlag��������������������������������
	5.6.8 Method getCountryName����������������������������������
	5.6.9 Anonymous Inner Class That Implements OnClickListener��
	5.6.10 Method disableButtons�����������������������������������

	5.7 SettingsFragment Class���������������������������������
	5.8 SettingsActivity Class���������������������������������
	5.9 AndroidManifest.xml������������������������������
	5.10 Wrap-Up�������������������

	6 Cannon Game App������������������������
	6.1 Introduction�����������������������
	6.2 Test-Driving the Cannon Game App���
	6.3 Technologies Overview��������������������������������
	6.3.1 Attaching a Custom View to a Layout��
	6.3.2 Using the Resource Folder raw��
	6.3.3 Activity and Fragment Lifecycle Methods��
	6.3.4 Overriding View Method onTouchEvent��
	6.3.5 Adding Sound with SoundPool and AudioManager���
	6.3.6 Frame-by-Frame Animation with Threads, SurfaceView and SurfaceHolder���
	6.3.7 Simple Collision Detection���������������������������������������
	6.3.8 Drawing Graphics Using Paint and Canvas��

	6.4 Building the App’s GUI and Resource Files��
	6.4.1 Creating the Project���������������������������������
	6.4.2 strings.xml������������������������
	6.4.3 fragment_game.xml������������������������������
	6.4.4 activity_main.xml������������������������������
	6.4.5 Adding the Sounds to the App���

	6.5 Class Line Maintains a Line’s Endpoints��
	6.6 MainActivity Subclass of Activity��
	6.7 CannonGameFragment Subclass of Fragment��
	6.8 CannonView Subclass of View��������������������������������������
	6.8.1 package and import Statements��
	6.8.2 Instance Variables and Constants���
	6.8.3 Constructor������������������������
	6.8.4 Overriding View Method onSizeChanged���
	6.8.5 Method newGame���������������������������
	6.8.6 Method updatePositions�����������������������������������
	6.8.7 Method fireCannonball����������������������������������
	6.8.8 Method alignCannon�������������������������������
	6.8.9 Method drawGameElements������������������������������������
	6.8.10 Method showGameOverDialog���������������������������������������
	6.8.11 Methods stopGame and releaseResources���
	6.8.12 Implementing the SurfaceHolder.Callback Methods���
	6.8.13 Overriding View Method onTouchEvent���
	6.8.14 CannonThread: Using a Thread to Create a Game Loop��

	6.9 Wrap-Up������������������

	7 Doodlz App�������������������
	7.1 Introduction�����������������������
	7.2 Technologies Overview��������������������������������
	7.2.1 Using SensorManager to Listen for Accelerometer Events���
	7.2.2 Custom DialogFragments�����������������������������������
	7.2.3 Drawing with Canvas and Bitmap���
	7.2.4 Processing Multiple Touch Events and Storing Lines in Paths��
	7.2.5 Android 4.4 Immersive Mode���������������������������������������
	7.2.6 GestureDetector and SimpleOnGestureListener��
	7.2.7 Saving the Drawing to the Device’s Gallery���
	7.2.8 Android 4.4 Printing and the Android Support Library’s PrintHelper Class���

	7.3 Building the App’s GUI and Resource Files��
	7.3.1 Creating the Project���������������������������������
	7.3.2 strings.xml������������������������
	7.3.3 dimens.xml�����������������������
	7.3.4 Menu for the DoodleFragment��
	7.3.5 activity_main.xml Layout for MainActivity��
	7.3.6 fragment_doodle.xml Layout for DoodleFragment��
	7.3.7 fragment_color.xml Layout for ColorDialogFragment��
	7.3.8 fragment_line_width.xml Layout for LineWidthDialogFragment���
	7.3.9 Adding Class EraseImageDialogFragment��

	7.4 MainActivity Class�����������������������������
	7.5 DoodleFragment Class�������������������������������
	7.6 DoodleView Class���������������������������
	7.7 ColorDialogFragment Class������������������������������������
	7.8 LineWidthDialogFragment Class��
	7.9 EraseImageDialogFragment Class���
	7.10 Wrap-Up�������������������

	8 Address Book App�������������������������
	8.1 Introduction�����������������������
	8.2 Test-Driving the Address Book App��
	8.3 Technologies Overview��������������������������������
	8.3.1 Displaying Fragments with FragmentTransactions���
	8.3.2 Communicating Data Between a Fragment and a Host Activity��
	8.3.3 Method onSaveInstanceState���������������������������������������
	8.3.4 Defining Styles and Applying Them to GUI Components��
	8.3.5 Specifying a Background for a TextView���
	8.3.6 Extending Class ListFragment to Create a Fragment That Contains a ListView���
	8.3.7 Manipulating a SQLite Database���
	8.3.8 Performing Database Operations Outside the GUI Thread with AsyncTasks��

	8.4 Building the GUI and Resource Files��
	8.4.1 Creating the Project���������������������������������
	8.4.2 Creating the App’s Classes���������������������������������������
	8.4.3 strings.xml������������������������
	8.4.4 styles.xml�����������������������
	8.4.5 textview_border.xml��������������������������������
	8.4.6 MainActivity’s Layout: activity_main.xml���
	8.4.7 DetailsFragment’s Layout: fragment_details.xml���
	8.4.8 AddEditFragment’s Layout: fragment_add_edit.xml��
	8.4.9 Defining the Fragments’ Menus��

	8.5 MainActivity Class�����������������������������
	8.6 ContactListFragment Class������������������������������������
	8.7 AddEditFragment Class��������������������������������
	8.8 DetailsFragment Class��������������������������������
	8.9 DatabaseConnector Utility Class��
	8.10 Wrap-Up�������������������

	9 Google Play and App Business Issues��
	9.1 Introduction�����������������������
	9.2 Preparing Your Apps for Publication��
	9.2.1 Testing Your App�����������������������������
	9.2.2 End User License Agreement���������������������������������������
	9.2.3 Icons and Labels�����������������������������
	9.2.4 Versioning Your App��������������������������������
	9.2.5 Licensing to Control Access to Paid Apps���
	9.2.6 Obfuscating Your Code����������������������������������
	9.2.7 Getting a Private Key for Digitally Signing Your App���
	9.2.8 Screenshots������������������������
	9.2.9 Promotional App Video����������������������������������

	9.3 Pricing Your App: Free or Fee��
	9.3.1 Paid Apps����������������������
	9.3.2 Free Apps����������������������

	9.4 Monetizing Apps with In-App Advertising��
	9.5 Monetizing Apps: Using In-App Billing to Sell Virtual Goods��
	9.6 Registering at Google Play�������������������������������������
	9.7 Setting Up a Google Wallet Merchant Account��
	9.8 Uploading Your Apps to Google Play���
	9.9 Launching the Play Store from Within Your App��
	9.10 Managing Your Apps in Google Play���
	9.11 Other Android App Marketplaces��
	9.12 Other Popular Mobile App Platforms��
	9.13 Marketing Your Apps�������������������������������
	9.14 Wrap-Up�������������������

	A Introduction to Java Applications��
	A.1 Introduction�����������������������
	A.2 Your First Program in Java: Printing a Line of Text��
	A.3 Modifying Your First Java Program��
	A.4 Displaying Text with printf��������������������������������������
	A.5 Another Application: Adding Integers���
	A.6 Memory Concepts��������������������������
	A.7 Arithmetic���������������������
	A.8 Decision Making: Equality and Relational Operators���
	A.9 Wrap-Up������������������

	B Introduction to Classes, Objects, Methods and Strings��
	B.1 Introduction�����������������������
	B.2 Declaring a Class with a Method and Instantiating an Object of a Class���
	B.3 Declaring a Method with a Parameter��
	B.4 Instance Variables, set Methods and get Methods��
	B.5 Primitive Types vs. Reference Types��
	B.6 Initializing Objects with Constructors���
	B.7 Floating-Point Numbers and Type double���
	B.8 Wrap-Up������������������

	C Control Statements���������������������������
	C.1 Introduction�����������������������
	C.2 Algorithms���������������������
	C.3 Pseudocode���������������������
	C.4 Control Structures�����������������������������
	C.5 if Single-Selection Statement��
	C.6 if…else Double-Selection Statement���
	C.7 while Repetition Statement�������������������������������������
	C.8 Case Study: Counter-Controlled Repetition��
	C.9 Case Study: Sentinel-Controlled Repetition���
	C.10 Case Study: Nested Control Statements���
	C.11 Compound Assignment Operators���
	C.12 Increment and Decrement Operators���
	C.13 Primitive Types���������������������������
	C.14 Essentials of Counter-Controlled Repetition���
	C.15 for Repetition Statement������������������������������������
	C.16 Examples Using the for Statement��
	C.17 do…while Repetition Statement���
	C.18 switch Multiple-Selection Statement���
	C.19 break and continue Statements���
	C.20 Logical Operators�����������������������������
	C.21 Wrap-Up�������������������

	D Methods: A Deeper Look�������������������������������
	D.1 Introduction�����������������������
	D.2 Program Modules in Java����������������������������������
	D.3 static Methods, static Fields and Class Math���
	D.4 Declaring Methods with Multiple Parameters���
	D.5 Notes on Declaring and Using Methods���
	D.6 Method-Call Stack and Activation Records���
	D.7 Argument Promotion and Casting���
	D.8 Java API Packages����������������������������
	D.9 Introduction to Random-Number Generation���
	D.9.1 Scaling and Shifting of Random Numbers���
	D.9.2 Random-Number Repeatability for Testing and Debugging��

	D.10 Case Study: A Game of Chance; Introducing Enumerations��
	D.11 Scope of Declarations���������������������������������
	D.12 Method Overloading������������������������������
	D.13 Wrap-Up�������������������

	E Arrays and ArrayLists������������������������������
	E.1 Introduction�����������������������
	E.2 Arrays�����������������
	E.3 Declaring and Creating Arrays��
	E.4 Examples Using Arrays��������������������������������
	E.5 Case Study: Card Shuffling and Dealing Simulation��
	E.6 Enhanced for Statement���������������������������������
	E.7 Passing Arrays to Methods������������������������������������
	E.8 Case Study: Class GradeBook Using an Array to Store Grades���
	E.9 Multidimensional Arrays����������������������������������
	E.10 Case Study: Class GradeBook Using a Two-Dimensional Array���
	E.11 Class Arrays������������������������
	E.12 Introduction to Collections and Class ArrayList���
	E.13 Wrap-Up�������������������

	F Classes and Objects: A Deeper Look���
	F.1 Introduction�����������������������
	F.2 Time Class Case Study��������������������������������
	F.3 Controlling Access to Members��
	F.4 Referring to the Current Object’s Members with the this Reference��
	F.5 Time Class Case Study: Overloaded Constructors���
	F.6 Default and No-Argument Constructors���
	F.7 Composition����������������������
	F.8 Enumerations�����������������������
	F.9 Garbage Collection�����������������������������
	F.10 static Class Members��������������������������������
	F.11 final Instance Variables������������������������������������
	F.12 Packages��������������������
	F.13 Package Access��������������������������
	F.14 Wrap-Up�������������������

	G Object-Oriented Programming: Inheritance and Polymorphism��
	G.1 Introduction to Inheritance��������������������������������������
	G.2 Superclasses and Subclasses��������������������������������������
	G.3 protected Members����������������������������
	G.4 Relationship between Superclasses and Subclasses���
	G.4.1 Creating and Using a CommissionEmployee Class��
	G.4.2 Creating and Using a BasePlusCommissionEmployee Class��
	G.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy���
	G.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Instance Variables���
	G.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Instance Variables���

	G.5 Class Object�����������������������
	G.6 Introduction to Polymorphism���������������������������������������
	G.7 Polymorphism: An Example�����������������������������������
	G.8 Demonstrating Polymorphic Behavior���
	G.9 Abstract Classes and Methods���������������������������������������
	G.10 Case Study: Payroll System Using Polymorphism���
	G.10.1 Abstract Superclass Employee��
	G.10.2 Concrete Subclass SalariedEmployee��
	G.10.3 Concrete Subclass HourlyEmployee��
	G.10.4 Concrete Subclass CommissionEmployee��
	G.10.5 Indirect Concrete Subclass BasePlusCommissionEmployee���
	G.10.6 Polymorphic Processing, Operator instanceof and Downcasting���
	G.10.7 Summary of the Allowed Assignments Between Superclass and Subclass Variables��

	G.11 final Methods and Classes�������������������������������������
	G.12 Case Study: Creating and Using Interfaces���
	G.12.1 Developing a Payable Hierarchy��
	G.12.2 Interface Payable�������������������������������
	G.12.3 Class Invoice���������������������������
	G.12.4 Modifying Class Employee to Implement Interface Payable���
	G.12.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy���
	G.12.6 Using Interface Payable to Process Invoices and Employees Polymorphically���

	G.13 Common Interfaces of the Java API���
	G.14 Wrap-Up�������������������

	H Exception Handling: A Deeper Look��
	H.1 Introduction�����������������������
	H.2 Example: Divide by Zero without Exception Handling���
	H.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions���
	H.4 When to Use Exception Handling���
	H.5 Java Exception Hierarchy�����������������������������������
	H.6 finally Block������������������������
	H.7 Stack Unwinding and Obtaining Information from an Exception Object���
	H.8 Wrap-Up������������������

	I GUI Components and Event Handling��
	I.1 Introduction�����������������������
	I.2 Nimbus Look-and-Feel�������������������������������
	I.3 Text Fields and an Introduction to Event Handling with Nested Classes��
	I.4 Common GUI Event Types and Listener Interfaces���
	I.5 How Event Handling Works�����������������������������������
	I.6 JButton������������������
	I.7 JComboBox; Using an Anonymous Inner Class for Event Handling���
	I.8 Adapter Classes��������������������������
	I.9 Wrap-Up������������������

	J Other Java Topics��������������������������
	J.1 Introduction�����������������������
	J.2 Collections Overview�������������������������������
	J.3 Type-Wrapper Classes for Primitive Types���
	J.4 Interface Collection and Class Collections���
	J.5 Lists����������������
	J.5.1 ArrayList and Iterator�����������������������������������
	J.5.2 LinkedList�����������������������
	J.5.3 Views into Collections and Arrays Method asList��

	J.6 Collections Methods������������������������������
	J.6.1 Method sort������������������������
	J.6.2 Method shuffle���������������������������

	J.7 Interface Queue��������������������������
	J.8 Sets���������������
	J.9 Maps���������������
	J.10 Introduction to Files and Streams���
	J.11 Class File����������������������
	J.12 Introduction to Object Serialization��
	J.13 Introduction to Multithreading��
	J.14 Creating and Executing Threads with the Executor Framework��
	J.15 Overview of Thread Synchronization��
	J.16 Concurrent Collections Overview���
	J.17 Multithreading with GUI�����������������������������������
	J.18 Wrap-Up�������������������

	K Operator Precedence Chart����������������������������������
	L Primitive Types������������������������
	Index������������
	Symbols��������������
	Numerics���������������
	A��������
	B��������
	C��������
	D��������
	E��������
	F��������
	G��������
	H��������
	I��������
	J��������
	K��������
	L��������
	M��������
	N��������
	O��������
	P��������
	Q��������
	R��������
	S��������
	T��������
	U��������
	V��������
	W��������
	X��������
	Y��������
	Z��������

