

 Object-Oriented and
Classical Software
Engineering

 Eighth Edition

 Stephen R. Schach
 Vanderbilt University

sch76183_FM-i-xx.indd isch76183_FM-i-xx.indd i 10/06/10 2:36 PM10/06/10 2:36 PM

OBJECT-ORIENTED AND CLASSICAL SOFTWARE ENGINEERING, EIGHTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Previous
editions © 2007, 2005, and 2002. No part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or
broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4 3 2 1 0

ISBN 978-0-07-337618-9
MHID 0-07-337618-3

Vice President & Editor-in-Chief: Marty Lange
Publisher: Raghothaman Srinivasan
Vice President EDP & Central Publishing Services: Kimberly Meriwether David
Development Editor: Lora Neyens
Senior Marketing Manager: Curt Reynolds
Project Manager: Melissa M. Leick
Buyer: Kara Kudronowicz
Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
Cover Image: © Photodisc/Getty Images
Compositor: Glyph International
Typeface: 10/12 Times Roman
Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data
Schach, Stephen R.
 Object-oriented and classical software engineering / Stephen R. Schach. —
8th ed.
 p. cm.
 ISBN-13: 978-0-07-337618-9 (alk. paper)
 ISBN-10: 0-07-337618-3 (alk. paper)
 1. Software engineering. 2. Object-oriented programming (Computer
science) 3. UML (Computer science) 4. C++ (Computer program language) I.
Title.
 QA76.758.S318 2010
 005.1’17—dc22
 2010020995

www.mhhe.com

sch76183_FM-i-xx.indd iisch76183_FM-i-xx.indd ii 10/06/10 2:36 PM10/06/10 2:36 PM

www.mhhe.com

 To Jackson and Mikaela

sch76183_FM-i-xx.indd iiisch76183_FM-i-xx.indd iii 10/06/10 2:36 PM10/06/10 2:36 PM

 The following are registered trademarks:

 ADF
 Analyst/Designer
 Ant
 Apache
 Apple
 AS/400
 AT&T
 Bachman Product Set
 Bell Laboratories
 Borland
 Bugzilla
 Capability Maturity Model
 Chrome
 ClearCase
 ClearQuest
 CMM
 Cocoa
 Coca-Cola
 CORBA
 CppUnit
 CVS
 DB2
 Eclipse
 e-Components
 Emeraude
 Enterprise JavaBeans
 eServer
 Excel
 Firefox
 Focus
 Ford
 Foundation Class Library
 FoxBASE
 GCC
 Hewlett-Packard
 IBM
 IMS/360

 Jackpot Source Code Metrics
 Java
 JBuilder
 JUnit
 Linux
 Lotus 1-2-3
 Lucent Technologies
 MacApp
 Macintosh
 Macintosh Toolbox
 MacProject
 Microsoft
 Motif
 MS-DOS
 MVS/360
 Natural
 Netscape
 New York Times
 Object C
 Objective-C
 ObjectWindows Library
 1-800-fl owers.com
 Oracle
 Oracle Developer Suite
 OS/360
 OS/370
 OS/VS2
 Palm Pilot
 Parasoft
 Post-It Note
 PowerBuilder
 PREfi x
 PREfast
 Project
 PureCoverage
 PVCS
 QARun

 Rational
 Requisite Pro
 Rhapsody
 Rose
 SBC Communications
 SilkTest
 SLAM
 Software through Pictures
 Solaris
 SourceSafe
 SPARCstation
 Sun
 Sun Enterprise
 Sun Microsystems
 Sun ONE Studio
 System Architect
 Together
 UNIX
 VAX
 Visual Component Library
 Visual C++
 Visual J++
 VM/370
 VMS
 Wall Street Journal
 WebSphere
 Win32
 Windows 95
 Windows 2000
 Windows NT
 Word
 X11
 Xrunner
 XUnit
 Zip disk
 ZIP Code
 z10

sch76183_FM-i-xx.indd ivsch76183_FM-i-xx.indd iv 10/06/10 2:36 PM10/06/10 2:36 PM

Contents
Preface xiii

 Chapter 1
 The Scope of Software Engineering 1

 Learning Objectives 1
 1.1 Historical Aspects 2
 1.2 Economic Aspects 5
 1.3 Maintenance Aspects 6

 1.3.1 Classical and Modern Views
of Maintenance 9

 1.3.2 The Importance of Postdelivery
Maintenance 10

 1.4 Requirements, Analysis, and Design
Aspects 12

 1.5 Team Development Aspects 15
 1.6 Why There Is No Planning Phase 16
 1.7 Why There Is No Testing Phase 16
 1.8 Why There Is No Documentation

Phase 17
 1.9 The Object-Oriented Paradigm 18
 1.10 The Object-Oriented Paradigm in

Perspective 22
 1.11 Terminology 23
 1.12 Ethical Issues 26
 Chapter Review 27
 For Further Reading 27
 Key Terms 28
 Problems 29
 References 30

 PART A
SOFTWARE ENGINEERING
CONCEPTS 35

 Chapter 2
 Software Life-Cycle Models 37

 Learning Objectives 37
 2.1 Software Development in Theory 37
2.2 Winburg Mini Case Study 38
 2.3 Lessons of the Winburg Mini Case Study 42

2.4 Teal Tractors Mini Case Study 42
 2.5 Iteration and Incrementation 43
2.6 Winburg Mini Case Study Revisited 47
 2.7 Risks and Other Aspects of Iteration and

Incrementation 48
 2.8 Managing Iteration and

Incrementation 51
 2.9 Other Life-Cycle Models 52

 2.9.1 Code-and-Fix Life-Cycle Model 52
 2.9.2 Waterfall Life-Cycle Model 53
 2.9.3 Rapid-Prototyping Life-Cycle

Model 55
 2.9.4 Open-Source Life-Cycle Model 56
 2.9.5 Agile Processes 59
 2.9.6 Synchronize-and-Stabilize Life-Cycle

Model 62
 2.9.7 Spiral Life-Cycle Model 62

 2.10 Comparison of Life-Cycle Models 66
 Chapter Review 67
 For Further Reading 68
 Key Terms 69
 Problems 69
 References 70

 Chapter 3
 The Software Process 74

 Learning Objectives 74
 3.1 The Unifi ed Process 76
 3.2 Iteration and Incrementation

within the Object-Oriented
Paradigm 76

 3.3 The Requirements Workfl ow 78
 3.4 The Analysis Workfl ow 80
 3.5 The Design Workfl ow 82
 3.6 The Implementation Workfl ow 83
 3.7 The Test Workfl ow 84

 3.7.1 Requirements Artifacts 84
 3.7.2 Analysis Artifacts 84
 3.7.3 Design Artifacts 85
 3.7.4 Implementation Artifacts 85

 3.8 Postdelivery Maintenance 87

v

sch76183_FM-i-xx.indd vsch76183_FM-i-xx.indd v 10/06/10 2:36 PM10/06/10 2:36 PM

vi Contents

 3.9 Retirement 88
 3.10 The Phases of the Unifi ed Process 88

 3.10.1 The Inception Phase 89
 3.10.2 The Elaboration Phase 91
 3.10.3 The Construction Phase 92
 3.10.4 The Transition Phase 92

 3.11 One- versus Two-Dimensional Life-Cycle
Models 92

 3.12 Improving the Software Process 94
 3.13 Capability Maturity Models 95
 3.14 Other Software Process Improvement

Initiatives 98
 3.15 Costs and Benefi ts of Software Process

Improvement 99
 Chapter Review 101
 For Further Reading 102
 Key Terms 102
 Problems 103
 References 104

 Chapter 4
 Teams 107

 Learning Objectives 107
 4.1 Team Organization 107
 4.2 Democratic Team Approach 109

 4.2.1 Analysis of the Democratic Team
Approach 110

 4.3 Classical Chief Programmer Team
Approach 110
 4.3.1 The New York Times Project 112
 4.3.2 Impracticality of the Classical Chief

Programmer Team Approach 113
 4.4 Beyond Chief Programmer and

Democratic Teams 113
 4.5 Synchronize-and-Stabilize Teams 117
 4.6 Teams for Agile Processes 118
 4.7 Open-Source Programming Teams 118
 4.8 People Capability Maturity Model 119
 4.9 Choosing an Appropriate Team

Organization 120
 Chapter Review 121
 For Further Reading 121
 Key Terms 122
 Problems 122
 References 122

 Chapter 5
 The Tools of the Trade 124

 Learning Objectives 124
 5.1 Stepwise Refi nement 124

5.1.1 Stepwise Refi nement Mini Case
Study 125

 5.2 Cost–Benefi t Analysis 130
 5.3 Divide-and-Conquer 132
 5.4 Separation of Concerns 132
 5.5 Software Metrics 133
5.6 CASE 134
 5.7 Taxonomy of CASE 135
 5.8 Scope of CASE 137
 5.9 Software Versions 141

 5.9.1 Revisions 141
 5.9.2 Variations 142

 5.10 Confi guration Control 143
 5.10.1 Confi guration Control

during Postdelivery
Maintenance 145

 5.10.2 Baselines 145
 5.10.3 Confi guration Control during

Development 146
 5.11 Build Tools 146
 5.12 Productivity Gains with CASE

Technology 147
 Chapter Review 149
 For Further Reading 149
 Key Terms 150
 Problems 150
 References 151

 Chapter 6
 Testing 154

 Learning Objectives 154
 6.1 Quality Issues 155

 6.1.1 Software Quality Assurance 156
 6.1.2 Managerial Independence 156

 6.2 Non-Execution-Based Testing 157
 6.2.1 Walkthroughs 158
 6.2.2 Managing Walkthroughs 158
 6.2.3 Inspections 159
 6.2.4 Comparison of Inspections

and Walkthroughs 161

sch76183_FM-i-xx.indd visch76183_FM-i-xx.indd vi 10/06/10 2:36 PM10/06/10 2:36 PM

Contents vii

 6.2.5 Strengths and Weaknesses of
Reviews 162

 6.2.6 Metrics for Inspections 162
 6.3 Execution-Based Testing 162
 6.4 What Should Be Tested? 163

 6.4.1 Utility 164
 6.4.2 Reliability 164
 6.4.3 Robustness 165
 6.4.4 Performance 165
 6.4.5 Correctness 166

 6.5 Testing versus Correctness Proofs 167
 6.5.1 Example of a Correctness Proof 167
6.5.2 Correctness Proof Mini Case Study 171
 6.5.3 Correctness Proofs and Software

Engineering 172
 6.6 Who Should Perform Execution-Based

Testing? 175
 6.7 When Testing Stops 176
 Chapter Review 176
 For Further Reading 177
 Key Terms 177
 Problems 178
 References 179

 Chapter 7
From Modules to Objects 183

 Learning Objectives 183
 7.1 What Is a Module? 183
 7.2 Cohesion 187

 7.2.1 Coincidental Cohesion 187
 7.2.2 Logical Cohesion 188
 7.2.3 Temporal Cohesion 189
 7.2.4 Procedural Cohesion 189
 7.2.5 Communicational Cohesion 190
 7.2.6 Functional Cohesion 190
 7.2.7 Informational Cohesion 191
 7.2.8 Cohesion Example 191

 7.3 Coupling 192
 7.3.1 Content Coupling 192
 7.3.2 Common Coupling 193
 7.3.3 Control Coupling 195
 7.3.4 Stamp Coupling 195
 7.3.5 Data Coupling 196
 7.3.6 Coupling Example 197
 7.3.7 The Importance of Coupling 198

 7.4 Data Encapsulation 199
 7.4.1 Data Encapsulation and

Development 201
 7.4.2 Data Encapsulation and

Maintenance 202
 7.5 Abstract Data Types 207
 7.6 Information Hiding 209
 7.7 Objects 211
 7.8 Inheritance, Polymorphism, and Dynamic

Binding 215
 7.9 The Object-Oriented Paradigm 217
 Chapter Review 220
 For Further Reading 221
 Key Terms 221
 Problems 221
 References 222

 Chapter 8
Reusability and Portability 225

 Learning Objectives 225
 8.1 Reuse Concepts 226
 8.2 Impediments to Reuse 228
 8.3 Reuse Case Studies 229

 8.3.1 Raytheon Missile Systems
Division 230

 8.3.2 European Space Agency 231
 8.4 Objects and Reuse 232
 8.5 Reuse during Design and

Implementation 232
 8.5.1 Design Reuse 232
 8.5.2 Application Frameworks 234
 8.5.3 Design Patterns 235
 8.5.4 Software Architecture 236
 8.5.5 Component-Based Software

Engineering 237
 8.6 More on Design Patterns 237

8.6.1 FLIC Mini Case Study 238
8.6.2 Adapter Design Pattern 239
 8.6.3 Bridge Design Pattern 240
 8.6.4 Iterator Design Pattern 241
 8.6.5 Abstract Factory Design Pattern 241

 8.7 Categories of Design Patterns 245
 8.8 Strengths and Weaknesses of Design

Patterns 247
 8.9 Reuse and the World Wide Web 248

sch76183_FM-i-xx.indd viisch76183_FM-i-xx.indd vii 10/06/10 2:36 PM10/06/10 2:36 PM

viii Contents

 8.10 Reuse and Postdelivery Maintenance 249
 8.11 Portability 250

 8.11.1 Hardware Incompatibilities 250
 8.11.2 Operating System

Incompatibilities 251
 8.11.3 Numerical Software

Incompatibilities 251
 8.11.4 Compiler Incompatibilities 253

 8.12 Why Portability? 255
 8.13 Techniques for Achieving Portability 256

 8.13.1 Portable System Software 257
 8.13.2 Portable Application Software 257
 8.13.3 Portable Data 258
 8.13.4 Model-Driven Architecture 259

 Chapter Review 259
 For Further Reading 260
 Key Terms 261
 Problems 261
 References 263

 CHAPTER 9
 Planning and Estimating 268

 Learning Objectives 268
 9.1 Planning and the Software Process 268
 9.2 Estimating Duration and Cost 270

 9.2.1 Metrics for the Size of a Product 272
 9.2.2 Techniques of Cost Estimation 275
 9.2.3 Intermediate COCOMO 278
 9.2.4 COCOMO II 281
 9.2.5 Tracking Duration and Cost

Estimates 282
 9.3 Components of a Software Project

Management Plan 282
 9.4 Software Project Management Plan

Framework 284
 9.5 IEEE Software Project Management

Plan 286
 9.6 Planning Testing 288
 9.7 Planning Object-Oriented Projects 289
 9.8 Training Requirements 290
 9.9 Documentation Standards 291
 9.10 CASE Tools for Planning and

Estimating 292
 9.11 Testing the Software Project Management

Plan 292

 Chapter Review 292
 For Further Reading 292
 Key Terms 293
 Problems 294
 References 295

 PART B
THE WORKFLOWS OF THE
SOFTWARE LIFE CYCLE 299

 Chapter 10
 Key Material from Part A 301

 Learning Objective 301
 10.1 Software Development: Theory versus

Practice 301
 10.2 Iteration and Incrementation 302
 10.3 The Unifi ed Process 306
 10.4 Workfl ow Overview 307
 10.5 Teams 307
 10.6 Cost–Benefi t Analysis 308
 10.7 Metrics 308
 10.8 CASE 308
 10.9 Versions and Confi gurations 309
 10.10 Testing Terminology 309
 10.11 Execution-Based and Non-Execution-

Based Testing 309
 10.12 Modularity 310
 10.13 Reuse 310
 10.14 Software Project Management Plan 310
 Chapter Review 311
 Key Terms 311
 Problems 312

 Chapter 11
 Requirements 313

 Learning Objectives 313
 11.1 Determining What the Client Needs 313
 11.2 Overview of the Requirements

Workfl ow 314
 11.3 Understanding the Domain 315
 11.4 The Business Model 316

 11.4.1 Interviewing 316
 11.4.2 Other Techniques 317
 11.4.3 Use Cases 318

sch76183_FM-i-xx.indd viiisch76183_FM-i-xx.indd viii 10/06/10 2:36 PM10/06/10 2:36 PM

Contents ix

 11.5 Initial Requirements 319
11.6 Initial Understanding of the Domain:

The MSG Foundation Case Study 320
11.7 Initial Business Model: The MSG

Foundation Case Study 322
11.8 Initial Requirements: The MSG

Foundation Case Study 326
11.9 Continuing the Requirements Workfl ow:

The MSG Foundation Case Study 328
11.10 Revising the Requirements: The MSG

Foundation Case Study 330
11.11 The Test Workfl ow: The MSG Foundation

Case Study 338
 11.12 The Classical Requirements

Phase 347
 11.13 Rapid Prototyping 348
 11.14 Human Factors 349
 11.15 Reusing the Rapid Prototype 351
 11.16 CASE Tools for the Requirements

Workfl ow 353
 11.17 Metrics for the Requirements

Workfl ow 353
 11.18 Challenges of the Requirements

Workfl ow 354
 Chapter Review 355
 For Further Reading 356
 Key Terms 357
 Case Study Key Terms 357
 Problems 357
 References 358

 Chapter 12
 Classical Analysis 360

 Learning Objectives 360
 12.1 The Specifi cation Document 360
 12.2 Informal Specifi cations 362

12.2.1 Correctness Proof Mini Case Study
Redux 363

 12.3 Structured Systems Analysis 364
12.3.1 Sally’s Software Shop Mini Case

Study 364
12.4 Structured Systems Analysis: The MSG

Foundation Case Study 372
 12.5 Other Semiformal Techniques 373
 12.6 Entity-Relationship Modeling 374

 12.7 Finite State Machines 376
12.7.1 Finite State Machines: The Elevator

Problem Case Study 378
 12.8 Petri Nets 382

12.8.1 Petri Nets: The Elevator Problem Case
Study 385

 12.9 Z 387
 12.9.1 Z: The Elevator Problem Case

Study 388
12.9.2 Analysis of Z 390

 12.10 Other Formal Techniques 392
 12.11 Comparison of Classical Analysis

Techniques 392
 12.12 Testing during Classical Analysis 393
 12.13 CASE Tools for Classical Analysis 394
 12.14 Metrics for Classical Analysis 395
12.15 Software Project Management Plan: The

MSG Foundation Case Study 395
 12.16 Challenges of Classical Analysis 396
 Chapter Review 396
 For Further Reading 397
 Key Terms 398
 Case Study Key Terms 398
 Problems 398
 References 400

 Chapter 13
 Object-Oriented Analysis 404

 Learning Objectives 404
 13.1 The Analysis Workfl ow 405
 13.2 Extracting the Entity Classes 406
13.3 Object-Oriented Analysis: The Elevator

Problem Case Study 407
13.4 Functional Modeling: The Elevator

Problem Case Study 407
13.5 Entity Class Modeling: The Elevator

Problem Case Study 410
 13.5.1 Noun Extraction 411
 13.5.2 CRC Cards 413

13.6 Dynamic Modeling: The Elevator Problem
Case Study 414

 13.7 The Test Workfl ow: Object-Oriented
Analysis 417

 13.8 Extracting the Boundary and Control
Classes 424

sch76183_FM-i-xx.indd ixsch76183_FM-i-xx.indd ix 10/06/10 2:36 PM10/06/10 2:36 PM

x Contents

13.9 The Initial Functional Model: The MSG
Foundation Case Study 425

13.10 The Initial Class Diagram: The MSG
Foundation Case Study 428

13.11 The Initial Dynamic Model: The MSG
Foundation Case Study 430

13.12 Revising the Entity Classes: The MSG
Foundation Case Study 432

13.13 Extracting the Boundary Classes: The
MSG Foundation Case Study 434

13.14 Extracting the Control Classes: The MSG
Foundation Case Study 435

13.15 Use-Case Realization: The MSG
Foundation Case Study 435
 13.15.1 Estimate Funds Available

for Week Use Case 436
 13.15.2 Manage an Asset Use Case 442
 13.15.3 Update Estimated Annual

Operating Expenses
Use Case 446

 13.15.4 Produce a Report Use Case 449
13.16 Incrementing the Class Diagram: The

MSG Foundation Case Study 454
13.17 The Test Workfl ow: The MSG Foundation

Case Study 456
 13.18 The Specifi cation Document in the Unifi ed

Process 456
 13.19 More on Actors and Use Cases 457
 13.20 CASE Tools for the Object-Oriented

Analysis Workfl ow 458
 13.21 Metrics for the Object-Oriented Analysis

Workfl ow 459
 13.22 Challenges of the Object-Oriented

Analysis Workfl ow 459
 Chapter Review 460
 For Further Reading 461
 Key Terms 462
 Problems 462
 References 463

 Chapter 14
 Design 465

 Learning Objectives 465
 14.1 Design and Abstraction 466
 14.2 Operation-Oriented Design 466

 14.3 Data Flow Analysis 467
14.3.1 Mini Case Study Word Counting 468
 14.3.2 Data Flow Analysis Extensions 473

 14.4 Transaction Analysis 473
 14.5 Data-Oriented Design 475
 14.6 Object-Oriented Design 476
14.7 Object-Oriented Design: The Elevator

Problem Case Study 477
14.8 Object-Oriented Design: The MSG

Foundation Case Study 481
 14.9 The Design Workfl ow 483
 14.10 The Test Workfl ow: Design 487
14.11 The Test Workfl ow: The MSG Foundation

Case Study 488
 14.12 Formal Techniques for Detailed Design 488
 14.13 Real-Time Design Techniques 488
 14.14 CASE Tools for Design 490
 14.15 Metrics for Design 490
 14.16 Challenges of the Design Workfl ow 491
 Chapter Review 492
 For Further Reading 493
 Key Terms 493
 Problems 494
 References 495

 Chapter 15
 Implementation 498

 Learning Objectives 498
 15.1 Choice of Programming Language 498
 15.2 Fourth-Generation Languages 501
 15.3 Good Programming Practice 504

 15.3.1 Use of Consistent and Meaningful
Variable Names 504

 15.3.2 The Issue of Self-Documenting
Code 505

 15.3.3 Use of Parameters 507
 15.3.4 Code Layout for Increased

Readability 507
 15.3.5 Nested if Statements 507

 15.4 Coding Standards 509
 15.5 Code Reuse 510
 15.6 Integration 510

 15.6.1 Top-down Integration 511
 15.6.2 Bottom-up Integration 513
 15.6.3 Sandwich Integration 513

sch76183_FM-i-xx.indd xsch76183_FM-i-xx.indd x 10/06/10 2:36 PM10/06/10 2:36 PM

Contents xi

 15.6.4 Integration of Object-Oriented
Products 514

 15.6.5 Management of Integration 515
 15.7 The Implementation Workfl ow 516
 15.8 The Implementation Workfl ow: The MSG

Foundation Case Study 516
 15.9 The Test Workfl ow: Implementation 516
 15.10 Test Case Selection 517

 15.10.1 Testing to Specifi cations versus
Testing to Code 517

 15.10.2 Feasibility of Testing to
Specifi cations 517

 15.10.3 Feasibility of Testing to Code 518
 15.11 Black-Box Unit-Testing Techniques 520

 15.11.1 Equivalence Testing and Boundary
Value Analysis 521

 15.11.2 Functional Testing 522
15.12 Black-Box Test Cases: The MSG

Foundation Case Study 523
 15.13 Glass-Box Unit-Testing Techniques 525

 15.13.1 Structural Testing: Statement,
Branch, and Path Coverage 526

 15.13.2 Complexity Metrics 527
 15.14 Code Walkthroughs and Inspections 528
 15.15 Comparison of Unit-Testing Techniques 528
 15.16 Cleanroom 529
 15.17 Potential Problems When Testing

Objects 530
 15.18 Management Aspects of Unit Testing 533
 15.19 When to Reimplement Rather than Debug

a Code Artifact 533
 15.20 Integration Testing 535
 15.21 Product Testing 535
 15.22 Acceptance Testing 536
15.23 The Test Workfl ow: The MSG Foundation

Case Study 537
 15.24 CASE Tools for Implementation 537

 15.24.1 CASE Tools for the Complete
Software Process 538

 15.24.2 Integrated Development
Environments 538

 15.24.3 Environments for Business
Applications 539

 15.24.4 Public Tool Infrastructures 540
 15.24.5 Potential Problems with

Environments 540

 15.25 CASE Tools for the Test Workfl ow 540
 15.26 Metrics for the Implementation

Workfl ow 541
 15.27 Challenges of the Implementation

Workfl ow 542
 Chapter Review 542
 For Further Reading 543
 Key Terms 544
 Problems 545
 References 547

 Chapter 16
Postdelivery Maintenance 551

 Learning Objectives 551
 16.1 Development and Maintenance 551
 16.2 Why Postdelivery Maintenance Is

Necessary 553
 16.3 What Is Required of Postdelivery

Maintenance Programmers? 553
16.4 Postdelivery Maintenance Mini Case

Study 555
 16.5 Management of Postdelivery

Maintenance 557
 16.5.1 Defect Reports 557
 16.5.2 Authorizing Changes to the

Product 558
 16.5.3 Ensuring Maintainability 559
 16.5.4 Problem of Repeated Maintenance 559

 16.6 Maintenance of Object-Oriented
Software 560

 16.7 Postdelivery Maintenance Skills versus
Development Skills 563

 16.8 Reverse Engineering 563
 16.9 Testing during Postdelivery

Maintenance 564
 16.10 CASE Tools for Postdelivery

Maintenance 565
 16.11 Metrics for Postdelivery

Maintenance 566
16.12 Postdelivery Maintenance: The MSG

Foundation Case Study 566
 16.13 Challenges of Postdelivery

Maintenance 566
 Chapter Review 566
 For Further Reading 567

sch76183_FM-i-xx.indd xisch76183_FM-i-xx.indd xi 10/06/10 2:36 PM10/06/10 2:36 PM

xii Contents

 Key Terms 567
 Problems 567
 References 568

 Chapter 17
 More on UML 571

 Learning Objectives 571
 17.1 UML Is Not a Methodology 571
 17.2 Class Diagrams 572

 17.2.1 Aggregation 573
 17.2.2 Multiplicity 574
 17.2.3 Composition 575
 17.2.4 Generalization 576
 17.2.5 Association 576

 17.3 Notes 577
 17.4 Use-Case Diagrams 577
 17.5 Stereotypes 577
 17.6 Interaction Diagrams 579
 17.7 Statecharts 581
 17.8 Activity Diagrams 583
 17.9 Packages 585
 17.10 Component Diagrams 586
 17.11 Deployment Diagrams 586
 17.12 Review of UML Diagrams 587
 17.13 UML and Iteration 587
 Chapter Review 587
 For Further Reading 588
 Key Terms 588
 Problems 588
 References 589

 Chapter 18
 Emerging Technologies 590

 Learning Objectives 590
 18.1 Aspect-Oriented Technology 591
 18.2 Model-Driven Technology 593
 18.3 Component-Based Technology 594
 18.4 Service-Oriented Technology 594
 18.5 Comparison of Service-Oriented and

Component-Based Technology 595
 18.6 Social Computing 596
 18.7 Web Engineering 596

 18.8 Cloud Technology 597
 18.9 Web 3.0 598
 18.10 Computer Security 598
 18.11 Model Checking 598
 18.12 Present and Future 599
 Chapter Review 599
 For Further Reading 599
 Key Terms 599
 References 600

Bibliography 601
Appendix A
Term Project: Chocoholics
Anonymous 627
Appendix B
Software Engineering Resources 630
Appendix C
Requirements Workfl ow: The MSG Foundation
Case Study 632
Appendix D
Structured Systems Analysis: The MSG
Foundation Case Study 633
Appendix E
Analysis Workfl ow: The MSG Foundation
Case Study 636
Appendix F
Software Project Management Plan: The MSG
Foundation Case Study 637
Appendix G
Design Workfl ow: The MSG Foundation
Case Study 642
Appendix H
Implementation Workfl ow: The MSG Foundation
Case Study (C++ Version) 647
Appendix I
Implementation Workfl ow: The MSG Foundation
Case Study (Java Version) 648
Appendix J
Test Workfl ow: The MSG Foundation
Case Study 649

Author Index 651
Subject Index 654

sch76183_FM-i-xx.indd xiisch76183_FM-i-xx.indd xii 10/06/10 2:36 PM10/06/10 2:36 PM

xiii

 Preface
 Almost every computer science and computer engineering curriculum now includes a
required team-based software development project. In some cases, the project is only one
semester or quarter in length, but a year-long team-based software development project is
fast becoming the norm.
 In an ideal world, every student would complete a course in software engineering before
starting his or her team-based project (“two-stage curriculum”). In practice, however, many
students have to start their projects partway through their software engineering course, or
even at the beginning of the course (“parallel curriculum”).
 As explained in the next section, this book is organized in such a way that it can be used
for both curricula.

 How the Eighth Edition Is Organized
 The book comprises two main parts: Part B teaches the students how to develop a software
product; Part A provides the necessary theoretical background for Part B. The 18 chapters
are organized as follows:

 Chapter 1 Introduction to software engineering
 Part A Chapters 2 through 9 Software engineering concepts
 Part B Chapters 10 through 17 Software engineering techniques
 Chapter 18 Emerging technologies

 Chapter 10 is new. It contains a summary of the key material of Part A. When the two-stage
curriculum is followed, the instructor teaches fi rst Part A and then Part B (omitting Chapter 10,
because the material of Chapter 10 will have been covered in depth in Part A). For the parallel
curriculum, the instructor fi rst teaches Part B (so that the students can start their projects as soon
as possible), and then Part A. The material of Chapter 10 enables the students to understand Part
B without fi rst covering Part A.
 This latter approach seems counterintuitive: Surely theory should always be taught
before practice. In fact, curricular issues have forced many of the instructors who have
used the seventh edition of this book to teach the material of Part B before Part A. Surpris-
ingly, they have been most satisfi ed with the outcome. They report that their students have
a greater appreciation of the theoretical material of Part A as a consequence of their project
work. That is, team-based project work makes students more receptive to and understand-
ing of the theoretical concepts that underlie software engineering.
 In more detail, the material of the eighth edition may be taught in the following two ways:

 1. Two-Stage Curriculum

 Chapter 1 (Introduction to software engineering)
 Part A Chapters 2 through 9 (Software engineering concepts)
 Part B Chapters 11 through 17 (Software engineering techniques)
 Chapter 18 (Emerging technologies)
 The students then commence their team-based projects in the following semester

or quarter.

sch76183_FM-i-xx.indd xiiisch76183_FM-i-xx.indd xiii 10/06/10 2:36 PM10/06/10 2:36 PM

 2. Parallel Curriculum

 Chapter 1 (Introduction to software engineering)
 Chapter 10 (Key material from Part A)
 The students now commence their team-based projects, in parallel with studying

the material of Part B.
 Part B Chapters 11 through 17 (Software engineering techniques)
 Part A Chapters 2 through 9 (Software engineering concepts)

 Chapter 18 (Emerging technologies)

 New Features of the Eighth Edition

 • The book has been updated throughout.
 • I have added two new chapters. As previously explained, Chapter 10, a summary of key

points of Part A, has been included so that this book can be used when students start their
team-based term projects in parallel with their software engineering course. The other
new chapter, Chapter 18, gives an overview of 10 emerging technologies, including
 • Aspect-oriented technology
 • Model-driven technology
 • Component-based technology
 • Service-oriented technology
 • Social computing
 • Web engineering
 • Cloud technology
 • Web 3.0
 • Computer security
 • Model checking

 • I have considerably expanded the material on design patterns in Chapter 8, including a
new mini case study.

 • Two theoretical tools have been added to Chapter 5: divide-and-conquer, and separation
of concerns.

 • The object-oriented analysis of the elevator problem of Chapter 13 now refl ects a mod-
ern distributed, decentralized architecture.

 • The references have been extensively updated, with an emphasis on current research.
 • There are well over 100 new problems.
 • There are new Just in Case You Wanted to Know boxes.

 Features Retained from the Seventh Edition

 • The Unifi ed Process is still largely the methodology of choice for object-oriented soft-
ware development. Throughout this book, the student is therefore exposed to both the
theory and the practice of the Unifi ed Process.

 • In Chapter 1, the strengths of the object-oriented paradigm are analyzed in depth.

xiv Preface

sch76183_FM-i-xx.indd xivsch76183_FM-i-xx.indd xiv 10/06/10 2:36 PM10/06/10 2:36 PM

 • The iterative-and-incremental life-cycle model has been introduced as early as possible, namely,
in Chapter 2. Furthermore, as with all previous editions, numerous other life-cycle models are
presented, compared, and contrasted. Particular attention is paid to agile processes.

 • In Chapter 3 (“The Software Process”), the workfl ows (activities) and processes of the
Unifi ed Process are introduced, and the need for two-dimensional life-cycle models is
explained.

 • A wide variety of ways of organizing software teams are presented in Chapter 4 (“Teams”),
including teams for agile processes and for open-source software development.

 • Chapter 5 (“The Tools of the Trade”) includes information on important classes of
CASE tools.

 • The importance of continual testing is stressed in Chapter 6 (“Testing”).
 • Objects continue to be the focus of attention in Chapter 7 (“From Modules to Objects”).
 • Design patterns remain a central focus of Chapter 8 (“Reusability and Portability”).
 • The IEEE standard for software project management plans is again presented in

Chapter 9 (“Planning and Estimating”).
 • Chapter 11 (“Requirements”), Chapter 13 (“Object-Oriented Analysis”), and Chapter 14

(“Design”) are largely devoted to the workfl ows (activities) of the Unifi ed Process. For
obvious reasons, Chapter 12 (“Classical Analysis”) is largely unchanged.

 • The material in Chapter 15 (“Implementation”) clearly distinguishes between imple-
mentation and integration.

 • The importance of postdelivery maintenance is stressed in Chapter 16.
 • Chapter 17 provides additional material on UML to prepare the student thoroughly for

employment in the software industry. This chapter is of particular use to instructors who
utilize this book for the two-semester software engineering course sequence. In the second
semester, in addition to developing the team-based term project or a capstone project, the
student can acquire additional knowledge of UML, beyond what is needed for this book.

 • As before, there are two running case studies. The MSG Foundation case study and the
Elevator Problem case study have been developed using the Unifi ed Process. As usual,
Java and C++ implementations are available online at www.mhhe.com/schach.

 • In addition to the two running case studies that are used to illustrate the complete life
cycle, eight mini case studies highlight specifi c topics, such as the moving target prob-
lem, stepwise refi nement, design patterns, and postdelivery maintenance.

 • In all the previous editions, I have stressed the importance of documentation, mainte-
nance, reuse, portability, testing, and CASE tools. In this edition, all these concepts are
stressed equally fi rmly. It is no use teaching students the latest ideas unless they appreci-
ate the importance of the basics of software engineering.

 • As in the seventh edition, particular attention is paid to object-oriented life-cycle mod-
els, object-oriented analysis, object-oriented design, management implications of the
object-oriented paradigm, and the testing and maintenance of object-oriented software.
Metrics for the object-oriented paradigm also are included. In addition, many briefer
references are made to objects, a paragraph or even only a sentence in length. The reason
is that the object-oriented paradigm is not just concerned with how the various phases
are performed but rather permeates the way we think about software engineering. Object
technology again pervades this book.

Preface xv

sch76183_FM-i-xx.indd xvsch76183_FM-i-xx.indd xv 10/06/10 2:36 PM10/06/10 2:36 PM

www.mhhe.com/schach

 • The software process is still the concept that underlies the book as a whole. To control the pro-
cess, we have to be able to measure what is happening to the project. Accordingly, the emphasis
on metrics continues. With regard to process improvement, the material on the capability matu-
rity model (CMM), ISO/IEC 15504 (SPICE), and ISO/IEC 12207 has been retained.

 • The book is still language independent. The few code examples are presented in C++
and Java, and I have made every effort to smooth over language-dependent details and
ensure that the code examples are equally clear to C++ and Java users. For example,
instead of using cout for C++ output and System.out.println for Java output, I have
utilized the pseudocode instruction print . (The one exception is the new case study,
where complete implementation details are given in both C++ and Java, as before.)

 • As in the seventh edition, this book contains over 600 references. I have selected current
research papers as well as classic articles and books whose message remains fresh and rel-
evant. There is no question that software engineering is a rapidly moving fi eld, and students
therefore need to know the latest results and where in the literature to fi nd them. At the same
time, today’s cutting-edge research is based on yesterday’s truths, and I see no reason to
exclude an older reference if its ideas are as applicable today as they originally were.

 • With regard to prerequisites, it is assumed that the reader is familiar with a high-level
programming language such as C, C#, C++, or Java. In addition, the reader is expected
to have taken a course in data structures.

 Why the Classical Paradigm Is Still Included
 There is now almost unanimous agreement that the object-oriented paradigm is superior
to the classical paradigm. Accordingly, many instructors who adopted the seventh edition
of Object-Oriented and Classical Software Engineering chose to teach only the object-
oriented material in that book. However, when asked, instructors indicated that they prefer
to adopt a text that includes the classical paradigm.
 The reason is that, even though more and more instructors teach only the object-oriented
paradigm, they still refer to the classical paradigm in class; many object-oriented techniques are
hard for the student to understand unless that student has some idea of the classical techniques
from which those object-oriented techniques are derived. For example, understanding entity-
class modeling is easier for the student who has been introduced, even superfi cially, to entity-
relationship modeling. Similarly, a brief introduction to fi nite state machines makes it easier for
the instructor to teach statecharts. Accordingly, I have retained classical material in the eighth
edition, so that instructors have classical material available for pedagogical purposes.

 The Problem Sets
 As in the seventh edition, this book has fi ve types of problems. First, there are running
object-oriented analysis and design projects at the end of Chapters 11, 13, and 14. These
have been included because the only way to learn how to perform the requirements, analy-
sis, and design workfl ows is from extensive hands-on experience.
 Second, the end of each chapter contains a number of exercises intended to highlight key
points. These exercises are self-contained; the technical information for all the exercises
can be found in this book.

xvi Preface

sch76183_FM-i-xx.indd xvisch76183_FM-i-xx.indd xvi 10/06/10 2:36 PM10/06/10 2:36 PM

 Third, there is a software term project. It is designed to be solved by students working
in teams of three, the smallest number of team members that cannot confer over a standard
telephone. The term project comprises 15 separate components, each tied to the relevant
chapter. For example, design is the topic of Chapter 14, so in that chapter the component of
the term project is concerned with software design. By breaking a large project into smaller,
well-defi ned pieces, the instructor can monitor the progress of the class more closely. The
structure of the term project is such that an instructor may freely apply the 15 components
to any other project that he or she chooses.
 Because this book has been written for use by graduate students as well as upper-class
undergraduates, the fourth type of problem is based on research papers in the software
engineering literature. In each chapter, an important paper has been chosen; wherever pos-
sible, a paper related to object-oriented software engineering has been selected. The student
is asked to read the paper and answer a question relating to its contents. Of course, the
instructor is free to assign any other research paper; the For Further Reading section at the
end of each chapter includes a wide variety of relevant papers.
 The fi fth type of problem relates to the case study. This type of problem was fi rst intro-
duced in the third edition in response to a number of instructors who felt that their students
learn more by modifying an existing product than by developing a new product from scratch.
Many senior software engineers in the industry agree with that viewpoint. Accordingly, each
chapter in which the case study is presented has problems that require the student to modify
the case study in some way. For example, in one chapter the student is asked to redesign the
case study using a different design technique from the one used for the case study. In another
chapter, the student is asked what the effect would have been of performing the steps of the
object-oriented analysis in a different order. To make it easy to modify the source code of the
case study, it is available on the Web at www.mhhe.com/schach.
 The website also has material for instructors, including a complete set of PowerPoint
lecture notes and detailed solutions to all the exercises as well as to the term project.

 Material on UML
 This book makes substantial use of UML (Unifi ed Modeling Language). If the students do not
have previous knowledge of UML, this material may be taught in two ways. I prefer to teach
UML on a just-in-time basis; that is, each UML concept is introduced just before it is needed.
The following table describes where the UML constructs used in this book are introduced.

 Section in Which the Corresponding
Construct UML Diagram Is Introduced

 Class diagram, note, inheritance (generalization), Section 7.7
 aggregation, association, navigation triangle
 Use case Section 11.4.3
 Use-case diagram, use-case description Section 11.7
 Stereotype Section 13.1
 Statechart Section 13.6
 Interaction diagram (sequence diagram, Section 13.15
 communication diagram)

Preface xvii

sch76183_FM-i-xx.indd xviisch76183_FM-i-xx.indd xvii 10/06/10 2:36 PM10/06/10 2:36 PM

www.mhhe.com/schach

 Alternatively, Chapter 17 contains an introduction to UML, including material above and
beyond what is needed for this book. Chapter 17 may be taught at any time; it does not depend
on material in the fi rst 16 chapters. The topics covered in Chapter 17 are as follows:

 Section in Which the Corresponding
Construct UML Diagram Is Introduced

 Class diagram, aggregation, multiplicity, Section 17.2
 composition, generalization, association
 Note Section 17.3
 Use-case diagram Section 17.4
 Stereotype Section 17.5
 Interaction diagram Section 17.6
 Statechart Section 17.7
 Activity diagram Section 17.8
 Package Section 17.9
 Component diagram Section 17.10
 Deployment diagram Section 17.11

Online Resources
A website to accompany the text is available at www.mhhe.com/schach. The website
features Java and C++ implementations as well as source code for the MSG case study for
students. For instructors, lecture PowerPoints, detailed solutions to all exercises and the term
project, and an image library are available. For details, contact your sales representative.

Electronic Textbook Options
E-books are an innovative way for students to save money and create a greener environment
at the same time. An e-book can save students about half the cost of a traditional textbook
and offers unique features like a powerful search engine, highlighting, and the ability to
share notes with classmates using e-books.
 McGraw-Hill offers this text as an e-book. To talk about the e-book options, contact your
McGraw-Hill sales representative or visit the site www.coursesmart.com to learn more.

 Acknowledgments
 I greatly appreciate the constructive criticisms and many helpful suggestions of the reviewers
of the seven previous editions. Special thanks go to the reviewers of this edition, including

xviii Preface

 Ramzi Bualuan
 University of Notre Dame

 Ruth Dameron
 University of Colorado, Boulder

 Werner Krandick
 Drexel University

 Mike McCracken
 Georgia Institute of Technology

 Nenad Medvidovic
 University of Southern California

 Saeed Monemi
 California Polytechnic University, Pomona

sch76183_FM-i-xx.indd xviiisch76183_FM-i-xx.indd xviii 10/06/10 2:36 PM10/06/10 2:36 PM

www.mhhe.com/schach
www.coursesmart.com

 With regard to my publishers, McGraw-Hill, I am most grateful to copyeditor Kevin Camp-
bell and designer Brenda Rolwes. A special word of thanks goes to Melissa Welch of Studio
Montage, who transformed a photograph of Sydney Harbour Bridge at night into the stun-
ning cover.
 Special thanks also go to Jean Naudé (Vaal University of Technology, Secunda Campus)
for co-authoring the Instructor’s Solution Manual. In particular, Jean provided a complete
solution for the term project, including implementing it in both Java and C++. In the course
of working on the ISM, Jean made numerous constructive suggestions for improving this
book. I am most grateful to Jean.
 Finally, as always, I thank my wife, Sharon, for her continual support and encourage-
ment. As with all my previous books, I did my utmost to ensure that family commitments
took precedence over writing. However, when deadlines loomed, this was not always pos-
sible. At such times, Sharon always understood, and for this I am most grateful.
 It is my privilege to dedicate my fi fteenth book to my grandchildren, Jackson and
Mikaela, with love.

 Stephen R. Schach

Preface xix

 Taehyung Wang
 California State University, Northridge

 Jie Wei
 City University of New York—City College

 Xiaojun Qi
 Utah State University

sch76183_FM-i-xx.indd xixsch76183_FM-i-xx.indd xix 10/06/10 2:36 PM10/06/10 2:36 PM

This page intentionally left blank

1

 Chapter 1
The Scope of Software
Engineering
 Learning Objectives

 After studying this chapter, you should be able to

 • Defi ne what is meant by software engineering.

 • Describe the classical software engineering life-cycle model.

 • Explain why the object-oriented paradigm is now so widely accepted.

 • Discuss the implications of the various aspects of software engineering.

 • Distinguish between the classical and modern views of maintenance.

 • Discuss the importance of continual planning, testing, and documentation.

 • Appreciate the importance of adhering to a code of ethics.

 A well-known story tells of an executive who received a computer-generated bill for $0.00.
After having a good laugh with friends about “idiot computers,” the executive tossed the
bill away. A month later, a similar bill arrived, this time marked 30 days. Then came the
third bill. The fourth bill arrived a month later, accompanied by a message hinting at pos-
sible legal action if the bill for $0.00 was not paid at once.
 The fi fth bill, marked 120 days, did not hint at anything—the message was rude and
forthright, threatening all manner of legal actions if the bill was not immediately paid.
Fearful of his organization’s credit rating in the hands of this maniacal machine, the execu-
tive called an acquaintance who was a software engineer and related the whole sorry story.
Trying not to laugh, the software engineer told the executive to mail a check for $0.00. This
had the desired effect, and a receipt for $0.00 was received a few days later. The executive
meticulously fi led it away in case at some future date the computer might allege that $0.00
was still owed.

sch76183_ch01_001-034.indd 1sch76183_ch01_001-034.indd 1 04/06/10 12:30 PM04/06/10 12:30 PM

 This well-known story has a less well-known sequel. A few days later, the executive
was summoned by his bank manager. The banker held up a check and asked, “Is this your
check?”
 The executive agreed that it was.
 “Would you mind telling me why you wrote a check for $0.00?” asked the banker.
 So the whole story was retold. When the executive had fi nished, the banker turned to
him and she quietly asked, “Have you any idea what your check for $0.00 did to our com-
puter system?”
 A computer professional can laugh at this story, albeit somewhat nervously. After all,
every one of us has designed or implemented a product that, in its original form, would
have resulted in the equivalent of sending dunning letters for $0.00. Up to now, we have
always caught this sort of fault during testing. But our laughter has a hollow ring to it,
because at the back of our minds is the fear that someday we will not detect the fault before
the product is delivered to the customer.
 A decidedly less humorous software fault was detected on November 9, 1979. The
Strategic Air Command had an alert scramble when the worldwide military command
and control system (WWMCCS) computer network reported that the Soviet Union
had launched missiles aimed toward the United States [Neumann, 1980]. What actu-
ally happened was that a simulated attack was interpreted as the real thing, just as in
the movie WarGames some 5 years later. Although the U.S. Department of Defense
understandably has not given details about the precise mechanism by which test data
were taken for actual data, it seems reasonable to ascribe the problem to a software
fault. Either the system as a whole was not designed to differentiate between simula-
tions and reality or the user interface did not include the necessary checks for ensur-
ing that end users of the system would be able to distinguish fact from fiction. In other
words, a software fault, if indeed the problem was caused by software, could have
brought civilization as we know it to an unpleasant and abrupt end. (See Just in Case
You Wanted to Know Box 1.1 for information on disasters caused by other software
faults.)
 Whether we are dealing with billing or air defense, much of our software is delivered
late, over budget, and with residual faults, and does not meet the client’s needs. Software
engineering is an attempt to solve these problems. In other words, software engineering
is a discipline whose aim is the production of fault-free software, delivered on time and
within budget, that satisfi es the client’s needs. Furthermore, the software must be easy to
modify when the user’s needs change.
 The scope of software engineering is extremely broad. Some aspects of software engi-
neering can be categorized as mathematics or computer science; other aspects fall into the
areas of economics, management, or psychology. To display the wide-reaching realm of
software engineering, we now examine fi ve different aspects.

 1.1 Historical Aspects
 It is a fact that electric power generators fail, but far less frequently than payroll prod-
ucts. Bridges sometimes collapse but considerably less often than operating systems. In
the belief that software design, implementation, and maintenance could be put on the same

2 Chapter 1 The Scope of Software Engineering

sch76183_ch01_001-034.indd 2sch76183_ch01_001-034.indd 2 04/06/10 12:30 PM04/06/10 12:30 PM

 Just in Case You Wanted to Know Box 1.1
 In the case of the WWMCCS network, disaster was averted at the last minute. However,
the consequences of other software faults have been fatal. For example, between 1985 and
1987, at least two patients died as a consequence of severe overdoses of radiation delivered
by the Therac-25 medical linear accelerator [Leveson and Turner, 1993]. The cause was a
fault in the control software.
 Also, during the 1991 Gulf War, a Scud missile penetrated the Patriot antimissile shield
and struck a barracks near Dhahran, Saudi Arabia. In all, 28 Americans were killed and 98
wounded. The software for the Patriot missile contained a cumulative timing fault. The
Patriot was designed to operate for only a few hours at a time, after which the clock was
reset. As a result, the fault never had a signifi cant effect and therefore was not detected.
In the Gulf War, however, the Patriot missile battery at Dhahran ran continuously for over
100 hours. This caused the accumulated time discrepancy to become large enough to
render the system inaccurate.
 During the Gulf War, the United States shipped Patriot missiles to Israel for protection
against the Scuds. Israeli forces detected the timing problem after only 8 hours and imme-
diately reported it to the manufacturer in the United States. The manufacturer corrected the
fault as quickly as it could, but tragically, the new software arrived the day after the direct
hit by the Scud [Mellor, 1994].
 Fortunately, it is extremely rare for death or serious injury to be caused by a software
fault. However, one fault can cause major problems for thousands and thousands of people.
For example, in February 2003, a software fault resulted in the U.S. Treasury Department
mailing 50,000 Social Security checks that had been printed without the name of the ben-
efi ciary, so the checks could not be deposited or cashed [St. Petersburg Times Online,
2003]. In April 2003, borrowers were informed by SLM Corp. (commonly known as Sallie
Mae) that the interest on their student loans had been miscalculated as a consequence of a
software fault from 1992 but detected only at the end of 2002. Nearly 1 million borrowers
were told that they would have to pay more, either in the form of higher monthly payments
or extra interest payments on loans extending beyond their original 10-year terms [GJSenti-
nel.com, 2003]. Both faults were quickly corrected, but together they resulted in nontrivial
fi nancial consequences for about a million people.
 The Belgian government overestimated its 2007 budget by €883,000,000 (more than
$1,100,000,000 at time of writing). This mistake was caused by a software fault compounded
by the manual overriding of an error-detection mechanism [La Libre Online, 2007a;
2007b]. The Belgian tax authorities used scanners and optical character recognition soft-
ware to process tax returns. If the software encountered an unreadable return, it recorded
the taxpayer’s income as €99,999,999.99 (over $125,000,000). Presumably, the “magic
number” €99,999,999.99 was chosen to be quickly detected by employees of the data pro-
cessing department, so that the return in question would then be processed manually. This
worked fi ne when the tax returns were analyzed for tax assessment purposes, but not when
the tax returns were reanalyzed for budgetary purposes. Ironically, the software product did
have fi lters to detect this sort of problem, but the fi lters were manually bypassed to speed
up processing.
 There were at least two faults in the software. First, the software engineers assumed that
there would always be adequate manual scrutiny before further processing of the data.
Second, the software allowed the fi lters to be manually overridden.

sch76183_ch01_001-034.indd 3sch76183_ch01_001-034.indd 3 04/06/10 12:30 PM04/06/10 12:30 PM

footing as traditional engineering disciplines, a NATO study group in 1967 coined the term
 software engineering . The claim that building software is similar to other engineering tasks
was endorsed by the 1968 NATO Software Engineering Conference held in Garmisch,
Germany [Naur, Randell, and Buxton, 1976]. This endorsement is not too surprising; the
very name of the conference refl ected the belief that software production should be an
engineering-like activity (but see Just in Case You Wanted to Know Box 1.2). A conclusion
of the conferees was that software engineering should use the philosophies and paradigms
of established engineering disciplines to solve what they termed the software crisis ,
namely, that the quality of software generally was unacceptably low and that deadlines and
budgets were not being met.
 Despite many software success stories, an unacceptably large proportion of software
products still are being delivered late, over budget, and with residual faults. For exam-
ple, the Standish Group is a research fi rm that analyzes software development projects.
Their study of development projects completed in 2006 is summarized in Figure 1.1
[Rubenstein, 2007]. Only 35 percent of the projects were successfully completed, whereas
19 percent were canceled before completion or were never implemented. The remaining
46 percent of the projects were completed and installed on the client’s computer. How-
ever, those projects were over budget, late, or had fewer features and functionality than
initially specifi ed. In other words, during 2006, just over one in three software develop-
ment projects was successful; almost half the projects displayed one or more symptoms
of the software crisis.

 As stated in Section 1.1, the aim of the Garmisch conference was to make software develop-
ment as successful as traditional engineering. But by no means are all traditional engineer-
ing projects successful. For example, consider bridge building.
 In July 1940, construction of a suspension bridge over the Tacoma Narrows, in Wash-
ington State, was completed. Soon after, it was discovered that the bridge swayed and
buckled dangerously in windy conditions. Approaching cars would alternately disappear
into valleys and then reappear as that part of the bridge rose again. From this behavior,
the bridge was given the nickname “Galloping Gertie.” Finally, on November 7, 1940,
the bridge collapsed in a 42 mile per hour wind; fortunately, the bridge had been closed
to all traffi c some hours earlier. The last 15 minutes of its life were captured on fi lm, now
stored in the U.S. National Film Registry.
 A somewhat more humorous bridge construction failure was observed in January
2004. A new bridge was being built over the Upper Rhine River near the German
town of Laufenberg, to connect Germany and Switzerland. The German half of the
bridge was designed and constructed by a team of German engineers; the Swiss half
by a Swiss team. When the two parts were connected, it immediately became appar-
ent that the German half was some 21 inches (54 centimeters) higher than the Swiss
half. Major reconstruction was needed to correct the problem, which was caused by
wrongly correcting for the fact that “sea level” is taken by Swiss engineers to be the
average level of the Mediterranean Sea, whereas German engineers use the North Sea.
To compensate for the difference in sea levels, the Swiss side should have been raised
10.5 inches. Instead, it was lowered 10.5 inches, resulting in the gap of 21 inches
[Spiegel Online, 2004].

 Just in Case You Wanted to Know Box 1.2

sch76183_ch01_001-034.indd 4sch76183_ch01_001-034.indd 4 04/06/10 12:30 PM04/06/10 12:30 PM

 The fi nancial implications of the software crisis are horrendous. In a survey conducted
by the Cutter Consortium [2002], the following was reported:

 • An astounding 78 percent of information technology organizations have been involved
in disputes that ended in litigation.

 • In 67 percent of those cases, the functionality or performance of the software products
as delivered did not measure up to the claims of the software developers.

 • In 56 percent of those cases, the promised delivery date slipped several times.
 • In 45 percent of those cases, the faults were so severe that the software product was

unusable.

 It is clear that far too little software is delivered on time, within budget, fault free, and
meeting its client’s needs. To achieve these goals, a software engineer has to acquire a broad
range of skills, both technical and managerial. These skills have to be applied not just to
programming but to every step of software production, from requirements to postdelivery
maintenance.
 That the software crisis still is with us, some 40 years later, tells us two things. First, the
 software process , that is, the way we produce software, has its own unique properties and
problems, even though it resembles traditional engineering in many respects. Second, the
software crisis perhaps should be renamed the software depression , in view of its long
duration and poor prognosis.
 We now consider economic aspects of software engineering.

 1.2 Economic Aspects
 A software organization currently using coding technique CT old discovers that new coding
technique CT new would result in code being produced in only nine-tenths of the time needed
by CT old and, hence, at nine-tenths the cost. Common sense seems to dictate that CT new is
the appropriate technique to use. In fact, although common sense certainly dictates that

Chapter 1 The Scope of Software Engineering 5

 FIGURE 1.1
 The outcomes
of over 9,000
development
projects
completed
in 2006
[Rubenstein,
2007].

Successful
35%

Completed late,
over budget, and/or
with features missing

46%

Canceled
19%

sch76183_ch01_001-034.indd 5sch76183_ch01_001-034.indd 5 04/06/10 12:30 PM04/06/10 12:30 PM

the faster technique is the technique of choice, the economics of software engineering may
imply the opposite.

 • One reason is the cost of introducing new technology into an organization. The fact
that coding is 10 percent faster when technique CT new is used may be less important
than the costs incurred in introducing CT new into the organization. It may be necessary
to complete two or three projects before recouping the cost of training. Also, while
attending courses on CT new , software personnel are unable to do productive work. Even
when they return, a steep learning curve may be involved; it may take many months of
practice with CT new before software professionals become as profi cient with CT new as
they currently are with CT old . Therefore, initial projects using CT new may take far longer
to complete than if the organization had continued to use CT old . All these costs need to
be taken into account when deciding whether to change to CT new .

 • A second reason why the economics of software engineering may dictate that CT old
be retained is the maintenance consequence. Coding technique CT new indeed may be
10 percent faster than CT old , and the resulting code may be of comparable quality from
the viewpoint of satisfying the client’s current needs. But the use of technique CT new
may result in code that is diffi cult to maintain, making the cost of CT new higher over
the life of the product. Of course, if the software developer is not responsible for any
postdelivery maintenance, then, from the viewpoint of just that developer, CT new is a
more attractive proposition. After all, the use of CT new would cost 10 percent less. The
client should insist that technique CT old be used and pay the higher initial costs with the
expectation that the total lifetime cost of the software will be lower. Unfortunately, often
the sole aim of both the client and the software provider is to produce code as quickly as
possible. The long-term effects of using a particular technique generally are ignored in
the interests of short-term gain. Applying economic principles to software engineering
requires the client to choose techniques that reduce long-term costs.

 This example deals with coding, which constitutes less than 10 percent of the software
development effort. The economic principles, however, apply to all other aspects of soft-
ware production as well.
 We now consider the importance of maintenance.

 1.3 Maintenance Aspects
 In this section, we describe maintenance within the context of the software life cycle.
A life-cycle model is a description of the steps that should be performed when build-
ing a software product. Many different life-cycle models have been proposed; several of
them are described in Chapter 2 . Because it is almost always easier to perform a sequence
of smaller tasks than one large task, the overall life-cycle model is broken into a series of
smaller steps, called phases . The number of phases varies from model to model—from
as few as four to as many as eight. In contrast to a life-cycle model, which is a theoretical
description of what should be done, the actual series of steps performed on a specifi c soft-
ware product, from concept exploration through fi nal retirement, is termed the life cycle of
that product. In practice, the phases of the life cycle of a software product may not be car-
ried out exactly as specifi ed in the life-cycle model, especially when time and cost overruns

6 Chapter 1 The Scope of Software Engineering

sch76183_ch01_001-034.indd 6sch76183_ch01_001-034.indd 6 04/06/10 12:30 PM04/06/10 12:30 PM

are encountered. It has been claimed that more software projects have gone wrong for
lack of time than for all other reasons combined [Brooks, 1975].
 Until the end of the 1970s, most organizations were producing software using as their
life-cycle model what now is termed the waterfall model . There are many variations
of this model, but by and large, a product developed using this classical life-cycle model
goes through the six phases shown in Figure 1.2 . These phases probably do not correspond
exactly to the phases of any one particular organization, but they are suffi ciently close to
most practices for the purposes of this book. Similarly, the precise name of each phase
varies from organization to organization. The names used here for the various phases have
been chosen to be as general as possible in the hope that the reader will feel comfortable
with them.

 1. Requirements phase . During the requirements phase , the concept is explored and
refi ned, and the client’s requirements are elicited.

 2. Analysis (specifi cation) phase. The client’s requirements are analyzed and presented
in the form of the specifi cation document , “what the product is supposed to do.”
The analysis phase sometimes is called the specifi cation phase. At the end of this
phase, a plan is drawn up, the software project management plan , describing the
proposed software development in full detail.

 3. Design phase . The specifi cations undergo two consecutive design procedures during the
 design phase . First comes architectural design , in which the product as a whole is
broken down into components, called modules . Then, each module is designed; this
procedure is termed detailed design . The two resulting design documents describe
“how the product does it.”

 4. Implementation phase . The various components undergo coding and testing (unit
testing) separately. Then, the components of the product are combined and tested as a
whole; this is termed integration . When the developers are satisfi ed that the product
functions correctly, it is tested by the client (acceptance testing). The implementa-
tion phase ends when the product is accepted by the client and installed on the client’s
computer. (We see in Chapter 15 that coding and integration should be performed in
parallel.)

 5. Postdelivery maintenance. The product is used to perform the tasks for which it
was developed. During this time, it is maintained. Postdelivery maintenance
includes all changes to the product once the product has been delivered and installed
on the client’s computer and passes its acceptance test. Postdelivery maintenance

Chapter 1 The Scope of Software Engineering 7

 FIGURE 1.2
 The six phases
of the classical
life-cycle
model.

1. Requirements phase

2. Analysis (specification) phase

3. Design phase

4. Implementation phase

5. Postdelivery maintenance

6. Retirement

sch76183_ch01_001-034.indd 7sch76183_ch01_001-034.indd 7 04/06/10 12:30 PM04/06/10 12:30 PM

includes corrective maintenance (or software repair), which consists of the
removal of residual faults while leaving the specifications unchanged, as well as
 enhancement (or software update), which consists of changes to the specifi-
cations and the implementation of those changes. There are, in turn, two types
of enhancement. The first is perfective maintenance , changes that the client
thinks will improve the effectiveness of the product, such as additional functional-
ity or decreased response time. The second is adaptive maintenance , changes
made in response to changes in the environment in which the product operates,
such as a new hardware/operating system or new government regulations. (For
an insight into the three types of postdelivery maintenance, see Just in Case You
Wanted to Know Box 1.3.)

 6. Retirement . Retirement occurs when the product is removed from service. This occurs
when the functionality provided by the product no longer is of any use to the client
organization.

 Now we examine the defi nition of maintenance in greater detail.

 Just in Case You Wanted to Know Box 1.3
 One of the most widely quoted results in software engineering is that 17.4 percent of
the postdelivery maintenance effort is corrective in nature; 18.2 percent is adaptive; 60.3
percent is perfective; and 4.1 percent can be categorized as “other.” This result is taken
from a paper published in 1978 [Lientz, Swanson, and Tompkins, 1978].
 However, the result in that paper was not derived from measurements on maintenance
data. Instead, the authors conducted a survey of maintenance managers who were asked
to estimate how much time was devoted to each category within their organization as
a whole and to state how confi dent they felt about their estimate. More specifi cally, the
participating software maintenance managers were asked whether their response was
based on reasonably accurate data, minimal data, or no data; 49.3 percent stated that
their answer was based on reasonably accurate data, 37.7 percent on minimal data, and
8.7 percent on no data.
 In fact, one should seriously question whether any respondents had “reasonably
accurate data” regarding the percentage of time devoted to the categories of mainte-
nance included in the survey; most of them probably did not have even “minimal data.”
In that survey, participants were asked to state what percentage of maintenance consisted
of items like “emergency fi xes” or “routine debugging”; from this raw information, the
percentage of adaptive, corrective, and perfective maintenance was deduced. Software
engineering was just starting to emerge as a discipline in 1978, and it was the exception
for software maintenance managers to collect the detailed information needed to re-
spond to such a survey. Indeed, in modern terminology, in 1978 virtually every organiza-
tion was still at CMM level 1 (see Section 3.13).
 Hence, we have strong grounds for questioning whether the actual distribution of post-
delivery maintenance activities back in 1978 was anything like the estimates of the man-
agers who took part in the survey. The distribution of maintenance activities is certainly
nothing like that today. For example, results on actual maintenance data for the Linux
kernel [Schach et al., 2002] and the gcc compiler [Schach et al., 2003] show that at least
50 percent of postdelivery maintenance is corrective, as opposed to the 17.4 percent fi gure
claimed in the survey.

sch76183_ch01_001-034.indd 8sch76183_ch01_001-034.indd 8 04/06/10 12:30 PM04/06/10 12:30 PM

 1.3.1 Classical and Modern Views of Maintenance
 In the 1970s, software production was viewed as consisting of two distinct activities
performed sequentially: development followed by maintenance . Starting from scratch, the
software product was developed, and then installed on the client’s computer. Any change
to the software after installation on the client’s computer and acceptance by the client,
whether to fi x a residual fault or extend the functionality, constituted classical maintenance
[IEEE 610.12, 1990]. Hence, the way that software was developed classically can be de-
scribed as the development-then-maintenance model .
 This is a temporal defi nition ; that is, an activity is classifi ed as development or main-
tenance depending on when it is performed. Suppose that a fault in the software is detected
and corrected a day after the software has been installed. By defi nition, this constitutes
classical maintenance. But if the identical fault is detected and corrected the day before
the software is installed, in terms of the defi nition, this constitutes classical development.
Now suppose that a software product has just been installed but the client wants to increase
the functionality of the software product. Classically, that would be described as perfec-
tive maintenance. However, if the client wants the same change to be made just before the
software product is installed, this would be classical development. Again, there is no differ-
ence whatsoever between the nature of the two activities, but classically one is considered
development, the other perfective maintenance.
 In addition to such inconsistencies, two other reasons explain why the development-
then-maintenance model is unrealistic today:

 1. Nowadays, it is certainly not unusual for construction of a product to take a year or
more. During this time, the client’s requirements may well change. For example, the
client might insist that the product now be implemented on a faster processor, which
has just become available. Alternatively, the client organization may have expanded into
Belgium while development was under way, and the product now has to be modifi ed
so it can also handle sales in Belgium. To see how a change in requirements can affect
the software life cycle, suppose that the client’s requirements change while the design
is being developed. The software engineering team has to suspend development and
modify the specifi cation document to refl ect the changed requirements. Furthermore, it
then may be necessary to modify the design as well, if the changes to the specifi cations
necessitate corresponding changes to those portions of the design already completed.
Only when these changes have been made can development proceed. In other words,
developers have to perform “maintenance” long before the product is installed.

 2. A second problem with the classical development-then-maintenance model arose as a
result of the way in which we now construct software. In classical software engineering,
a characteristic of development was that the development team built the target product
starting from scratch. In contrast, as a consequence of the high cost of software produc-
tion today, wherever possible developers try to reuse parts of existing software products
in the software product to be constructed (reuse is discussed in detail in Chapter 8).
Therefore, the development-then-maintenance model is inappropriate today because
reuse is so widespread.

 A more realistic way of looking at maintenance is that given in the standard for life-
cycle processes published by the International Organization for Standardization (ISO)

Chapter 1 The Scope of Software Engineering 9

sch76183_ch01_001-034.indd 9sch76183_ch01_001-034.indd 9 04/06/10 12:30 PM04/06/10 12:30 PM

and the International Electrotechnical Commission (IEC). That is, maintenance is the
process that occurs when “software undergoes modifi cations to code and associated
documentation due to a problem or the need for improvement or adaptation” [ISO/IEC
12207, 1995]. In terms of this operational defi nition , maintenance occurs whenever
a fault is fi xed or the requirements change, irrespective of whether this takes place
before or after installation of the product. The Institute for Electrical and Electronics
Engineers (IEEE) and the Electronic Industries Alliance (EIA) subsequently adopted
this defi nition [IEEE/EIA 12207.0-1996, 1998] when IEEE standards were modifi ed to
comply with ISO/IEC 12207. (See Just in Case You Wanted to Know Box 1.4 for more
on ISO.)
 In this book, the term postdelivery maintenance refers to the 1990 IEEE defi nition of
maintenance as any change to the software after it has been delivered and installed on
the client’s computer, and modern maintenance or just maintenance refers to the 1995
ISO/IEC defi nition of corrective, perfective, or adaptive activities performed at any time.
Postdelivery maintenance is therefore a subset of (modern) maintenance.

 1.3.2 The Importance of Postdelivery Maintenance
 It is sometimes said that only bad software products undergo postdelivery mainte-
nance. In fact, the opposite is true: Bad products are thrown away, whereas good prod-
ucts are repaired and enhanced, for 10, 15, or even 20 years. Furthermore, a software
product is a model of the real world, and the real world is perpetually changing. As
a consequence, software has to be maintained constantly for it to remain an accurate
reflection of the real world.
 For instance, if the sales tax rate changes from 6 to 7 percent, almost every software
product that deals with buying or selling has to be changed. Suppose the product contains
the C++ statement

 const fl oat salesTax � 6.0;

or the equivalent Java statement

 public static fi nal fl oat salesTax � (fl oat) 6.0;

 Just in Case You Wanted to Know Box 1.4
 The International Organization for Standardization (ISO) is a network of the national stan-
dards institutes of 147 countries, with a central secretariat based in Geneva, Switzerland.
ISO has published over 13,500 internationally accepted standards, ranging from standards
for photographic fi lm speed (“ISO number”) to many of the standards presented in this
book. For example, ISO 9000 is discussed in Chapter 3 .
 ISO is not an acronym. It is derived from the Greek word �����, meaning equal , the
root of the English prefi x iso - found in words such as isotope , isobar , and isosceles . The
International Organization for Standardization chose ISO as the short form of its name to
avoid having multiple acronyms arising from the translation of the name “International
Organization for Standardization” into the languages of the different member countries.
Instead, to achieve international standardization, a universal short form of its name was
chosen.

sch76183_ch01_001-034.indd 10sch76183_ch01_001-034.indd 10 04/06/10 12:30 PM04/06/10 12:30 PM

declaring that salesTax is a fl oating-point constant initialized to the value 6.0. In this case,
maintenance is relatively simple. With the aid of a text editor the value 6.0 is replaced
by 7.0 and the code is recompiled and relinked. However, if instead of using the name
salesTax, the actual value 6.0 has been used in the product wherever the value of the sales
tax is invoked, then such a product is extremely diffi cult to modify. For example, there may
be occurrences of the value 6.0 in the source code that should be changed to 7.0 but are
overlooked, or instances of 6.0 that do not refer to sales tax but are incorrectly changed to
7.0. Finding these faults almost always is diffi cult and time consuming. In fact, with some
software, it might be less expensive in the long run to throw away the product and recode
it rather than try to determine which of the many constants need to be changed and how to
make the modifi cations.
 The real-time real world also is constantly changing. The missiles with which a jet fi ghter
is armed may be replaced by a new model, requiring a change to the weapons control com-
ponent of the associated avionics system. A six-cylinder engine is to be offered as an option
in a popular four-cylinder automobile; this implies changing the onboard computers that
control the fuel injection system, timing, and so on.
 But just how much time (= money) is devoted to postdelivery maintenance? The pie
chart in Figure 1.3(a) shows that, some 40 years ago, approximately two-thirds of total
software costs went to postdelivery maintenance; the data were obtained by averaging
information from various sources, including [Elshoff, 1976], [Daly, 1977], [Zelkowitz,
Shaw, and Gannon, 1979], and [Boehm, 1981]. Newer data show that an even larger pro-
portion is devoted to postdelivery maintenance. Many organizations devote 70–80 percent
or more of their software budget to postdelivery maintenance [Yourdon, 1992; Hatton,
1998], as shown in Figure 1.3(b) .
 Surprisingly, the average cost percentages of the classical development phases have
hardly changed. This is shown in Figure 1.4 , which compares the data used to derive
 Figure 1.3(a) with more recent data on 132 Hewlett-Packard projects [Grady, 1994].

Chapter 1 The Scope of Software Engineering 11

 FIGURE 1.3
 Approximate
average cost
percentages of
development
and postdelivery
maintenance
(a) between
1976 and 1981
and (b) between
1992 and 1998.

(a) (b)

Development
33%

Postdelivery
maintenance

67%

Development
25%

Postdelivery
maintenance

75%

sch76183_ch01_001-034.indd 11sch76183_ch01_001-034.indd 11 04/06/10 12:30 PM04/06/10 12:30 PM

12 Chapter 1 The Scope of Software Engineering

 FIGURE 1.4 A comparison of the approximate average cost percentages of the classical
development phases for various projects between 1976 and 1981 and for 132 more recent Hewlett-
Packard projects.

 Various Projects 132 More Recent
 between 1976 and 1981 Hewlett-Packard Projects

 Requirements and analysis 21% 18%
 (specifi cation) phases
 Design phase 18 19
 Implementation phase
 Coding (including unit testing) 36 34
 Integration 24 29

 Now consider again the software organization currently using coding technique CT old
that learns that CT new will reduce coding time by 10 percent. Even if CT new has no ad-
verse effect on maintenance, an astute software manager will think twice before chang-
ing coding practices. The entire staff has to be retrained, new software development tools
purchased, and perhaps additional staff members hired who are experienced in the new
technique. All this expense and disruption has to be endured for a decrease of at most 0.85
percent in software costs because, as shown in Figures 1.3(b) and 1.4 , coding together
with unit testing constitutes on average only 34 percent of 25 percent or 8.5 percent of
total software costs.
 Now suppose a new technique that reduces postdelivery maintenance costs by 10 percent
is developed. This probably should be introduced at once, because on average, it will reduce
overall costs by 7.5 percent. The overhead involved in changing to this technique is a small
price to pay for such large overall savings.
 Because postdelivery maintenance is so important, a major aspect of software engineer-
ing consists of those techniques, tools, and practices that lead to a reduction in postdelivery
maintenance costs.

 1.4 Requirements, Analysis, and Design Aspects
 Software professionals are human and therefore sometimes make a mistake while develop-
ing a product. As a result, there will be a fault in the software. If the mistake is made while
eliciting the requirements, the resulting fault will probably also appear in the specifi cations,
the design, and the code. Clearly, the earlier we correct a fault, the better.
 The relative costs of fi xing a fault at various phases in the classical software life cycle are
shown in Figure 1.5 [Boehm, 1981]. The fi gure refl ects data from IBM [Fagan, 1974], GTE
[Daly, 1977], the Safeguard project [Stephenson, 1976], and some smaller TRW projects
[Boehm, 1980]. The solid line in Figure 1.5 is the best fi t for the data relating to the larger
projects, and the dashed line is the best fi t for the smaller projects. For each of the phases
of the classical software life cycle, the corresponding relative cost to detect and correct a

sch76183_ch01_001-034.indd 12sch76183_ch01_001-034.indd 12 04/06/10 12:30 PM04/06/10 12:30 PM

fault is depicted in Figure 1.6 . Each step on the solid line in Figure 1.6 is constructed by
taking the corresponding point on the solid straight line of Figure 1.5 and plotting the data
on a linear scale.
 Suppose it costs $40 to detect and correct a specific fault during the design phase.
From the solid line in Figure 1.6 (projects between 1974 and 1980), that same fault
would cost only about $30 to fix during the analysis phase. But during postdelivery
maintenance, that fault would cost around $2000 to detect and correct. Newer data
show that now it is even more important to detect faults early. The dashed line in
 Figure 1.6 shows the cost of detecting and correcting a fault during the development
of system software for the IBM AS/400 [Kan et al., 1994]. On average, the same
fault would have cost $3680 to fix during postdelivery maintenance of the AS/400
software.
 The reason that the cost of correcting a fault increases so steeply is related to what has to
be done to correct a fault. Early in the development life cycle, the product essentially exists
only on paper, and correcting a fault may simply mean making a change to a document.
The other extreme is a product already delivered to a client. At the very least, correcting
a fault at that time means editing the code, recompiling and relinking it, and then care-
fully testing that the problem is solved. Next, it is critical to check that making the change
has not created a new problem elsewhere in the product. All the relevant documentation,
including manuals, needs to be updated. Finally, the corrected product must be delivered

Chapter 1 The Scope of Software Engineering 13

 FIGURE 1.5 The relative cost of fi xing a fault at each phase of the classical software life cycle.
The solid line is the best fi t for the data relating to the larger software projects, and the dashed line
is the best fi t for the smaller software projects. (Barry Boehm, Software Engineering Economics ,
© 1981, p. 40. Adapted by permission of Prentice Hall, Inc., Englewood Cliffs , NJ.)

1000

Maintenance

Acceptance
test

Integration

Implementation

Design

500

200

100

50

20

10

5

2

1

Larger software projects

IBM-SSD

GTE
80%
Median (TRW survey)
20%
SAFEGUARD

Re
la

tiv
e

co
st

 t
o

fix
 fa

ul
t

Smaller software projects

[Boehm, 1980]

Requirements
and specification

Phase in which fault was detected and corrected

sch76183_ch01_001-034.indd 13sch76183_ch01_001-034.indd 13 04/06/10 12:30 PM04/06/10 12:30 PM

and reinstalled. The moral of the story is this: We must fi nd faults early or else it will cost us
money. We therefore should employ techniques for detecting faults during the requirements
and analysis (specifi cation) phases.
 There is a further need for such techniques. Studies have shown [Boehm, 1979] that
between 60 and 70 percent of all faults detected in large projects are requirements,
analysis, or design faults. Newer results from inspections bear out this preponderance
of requirements, analysis, or design faults (an inspection is a meticulous examination
of a document by a team, as described in Section 6.2.3). During 203 inspections of Jet
Propulsion Laboratory software for the NASA unmanned interplanetary space pro-
gram, on average, about 1.9 faults were detected per page of a specifi cation document,
0.9 faults per page of a design, but only 0.3 faults per page of code [Kelly, Sherif, and
Hops, 1992].
 Therefore it is important that we improve our requirements, analysis, and design tech-
niques, not only so that faults can be found as early as possible but also because require-
ments, analysis, and design faults constitute such a large proportion of all faults. Just as the
example in Section 1.3 showed that reducing postdelivery maintenance costs by 10 percent
reduces overall costs by about 7.5 percent, reducing requirements, analysis, and design
faults by 10 percent reduces the overall number of faults by 6–7 percent.
 That so many faults are introduced early in the software life cycle highlights another
important aspect of software engineering: techniques that yield better requirements, speci-
fi cations, and designs.
 Most software is produced by a team of software engineers rather than by a single indi-
vidual responsible for every aspect of the development and maintenance life cycle. We now
consider the implications of this.

14 Chapter 1 The Scope of Software Engineering

 FIGURE 1.6
 The solid line
depicts the
points on the
solid line of
 Figure 1.5
plotted on a
linear scale.
The dashed
line depicts
newer data.

Requirements

400

350

300

250

200

150

100

50

368

200

DesignAnalysis
(specification)

Implementation Postdelivery
maintenance

1 3 4

52
30

A
p

p
ro

xi
m

at
e

re
la

tiv
e

co
st

 t
o

de
te

ct
an

d
co

rr
ec

t
a

fa
ul

t

Projects between 1974 and 1980
IBM AS/400 [Kan et al.,1994]

sch76183_ch01_001-034.indd 14sch76183_ch01_001-034.indd 14 04/06/10 12:30 PM04/06/10 12:30 PM

 1.5 Team Development Aspects
 The cost of hardware continues to decrease rapidly. A mainframe computer of the 1950s
that cost in excess of a million preinfl ation dollars was considerably less powerful in every
way than a laptop computer of today costing less than $1000. As a result, organizations easily
can afford hardware that can run large products, that is, products too large (or too complex)
to be implemented by one person within the allowed time constraints. For example, if a
product has to be delivered within 18 months but would take a single software profes-
sional 15 years to complete, then the product must be developed by a team. However, team
development leads to interfacing problems among code components and communication
problems among team members.
 For example, Jeff and Juliet code modules p and q, respectively, where module p
calls module q. When Jeff codes p, he inserts a call to q with fi ve arguments in the
argument list. Juliet codes q with fi ve arguments, but in a different order from those of
Jeff. Some software tools, such as the Java interpreter and loader, or lint for C (Section
8.11.4), detect such a type violation but only if the interchanged arguments are of dif-
ferent types; if they are of the same type, then the problem may not be detected for a
long period of time. It may be debated that this is a design problem, and if the modules
had been more carefully designed, this problem would not have happened. That may be
true, but in practice a design often is changed after coding commences, and notifi cation
of a change may not be distributed to all members of the development team. Therefore,
when a design that affects two or more programmers has been changed, poor com-
munication can lead to the interface problems Jeff and Juliet experienced. This sort of
problem is less likely to occur when only one individual is responsible for every aspect
of the product, as was the case before powerful computers that can run huge products
became affordable.
 But interfacing problems are merely the tip of the iceberg when it comes to problems
that can arise when software is developed by teams. Unless the team is properly organized,
an inordinate amount of time can be wasted in conferences between team members. Sup-
pose that a product takes a single programmer 1 year to complete. If the same task is
assigned to a team of six programmers, the time for completing the task frequently is closer
to 1 year than the expected 2 months, and the quality of the resulting code may well be
lower than if the entire task had been assigned to one individual (see Section 4.1). Because
a considerable proportion of today’s software is developed and maintained by teams, the
scope of software engineering must include techniques for ensuring that teams are properly
organized and managed.
 As has been shown in the preceding sections, the scope of software engineering is
extremely broad. It includes every step of the software life cycle, from requirements to
postdelivery retirement. It also includes human aspects, such as team organization; eco-
nomic aspects; and legal aspects, such as copyright law. All these aspects implicitly are
incorporated in the defi nition of software engineering given at the beginning of this chap-
ter, that software engineering is a discipline whose aim is the production of fault-free soft-
ware delivered on time, within budget, and satisfying the user’s needs.
 We return to the classical phases of Figure 1.2 to ask why there is no planning, testing,
or documentation phase.

Chapter 1 The Scope of Software Engineering 15

sch76183_ch01_001-034.indd 15sch76183_ch01_001-034.indd 15 04/06/10 12:30 PM04/06/10 12:30 PM

 1.6 Why There Is No Planning Phase
 Clearly it is impossible to develop a software product without a plan. Accordingly, it appears
to be essential to have a planning phase at the very beginning of the project.
 The key point is that, until it is known exactly what is to be developed, there is
no way an accurate, detailed plan can be drawn up. Therefore, three types of plan-
ning activities take place when a software product is developed using the classical
paradigm:

 1. At the beginning of the project, preliminary planning takes place for managing the
requirements and analysis phases.

 2. Once what is going to be developed is known precisely, the software project manage-
ment plan (SPMP) is drawn up. This includes the budget, staffi ng requirements, and
detailed schedule. The earliest we can draw up the project management plan is when the
specifi cation document has been approved by the client, that is, at the end of the analysis
phase. Until that time, planning has to be preliminary and partial.

 3. All through the project, management needs to monitor the SPMP and be on the watch
for any deviation from the plan.

 For example, suppose that the SPMP for a specifi c project states that the project as a
whole will take 16 months and that the design phase will take 4 of those months. After a
year, management notices that the project as a whole seems to be progressing much more
slowly than anticipated. A detailed investigation shows that, so far, 8 months have been
devoted to the design phase, which is still far from complete. The project almost certainly
will have to be abandoned, and the funds spent to date are wasted. Instead, management
should have tracked progress by phase, and noticed, after at most 2 months, a serious
problem in the design phase. At that time, a decision could have been made how best to
proceed. The usual initial step in such a situation is to call in a consultant to determine if
the project is feasible and to determine whether the design team is competent to carry out
the task or the risk of proceeding is too great. Based on the report of the consultant, vari-
ous alternatives are now considered, including reducing the scope of the target product,
and then designing and implementing a less ambitious one. Only if all other alternatives
are considered unworkable does the project have to be canceled. In the case of the specifi c
project, this cancellation would have taken place some 6 months earlier if management
had monitored the plan closely, saving a considerable sum of money.
 In conclusion, there is no separate planning phase. Instead, planning activities are car-
ried out all through the life cycle. However, there are times when planning activities pre-
dominate. These include the beginning of the project (preliminary planning) and directly
after the specifi cation document has been signed off on by the client (software project
management plan).

 1.7 Why There Is No Testing Phase
 It is essential to check a software product meticulously after it has been developed.
Accordingly, it is reasonable to ask why there is no testing phase after the product has been
implemented.

16 Chapter 1 The Scope of Software Engineering

sch76183_ch01_001-034.indd 16sch76183_ch01_001-034.indd 16 04/06/10 12:30 PM04/06/10 12:30 PM

 Unfortunately, checking a software product once it is ready to be delivered to the client
is far too late. For instance, if there is a fault in the specifi cation document, this fault will
have been carried forward into the design and implementation. There are times in the soft-
ware process when testing is carried out almost to the total exclusion of other activities. This
occurs toward the end of each phase (verifi cation) and is especially true before the product
is handed over to the client (validation). Although there are times when testing predomi-
nates, there should never be times when no testing is being performed. If testing is treated as
a separate (testing) phase , then there is a very real danger that testing will not be carried out
constantly throughout every phase of the product development and maintenance process.
 But even this is not enough. What is needed is continual checking of a software product.
Meticulous checking should automatically accompany every software development and
maintenance activity. A separate testing phase is incompatible with the goal of ensuring
that a software product is as fault free as possible at all times.
 Every software development organization should contain an independent group whose
primary responsibility is to ensure that the delivered product is what the client needs and
that the product has been built correctly in every way. This group is called the software
quality assurance (SQA) group. The quality of software is the extent to which it meets
its specifi cations. Quality and software quality assurance are described in more detail in
 Chapter 6 , as is the role of SQA in setting and enforcing standards.

 1.8 Why There Is No Documentation Phase
 Just as there should never be a separate planning phase or testing phase, there also should
never be a separate documentation phase . On the contrary, at all times, the documenta-
tion of a software product must be complete, correct, and up to date. For instance, during
the analysis phase, the specifi cation document must refl ect the current version of the speci-
fi cations, and this is also true for the other phases.

 1. One reason why it is essential to ensure that the documentation is always up to date is
the large turnover in personnel in the software industry. For example, suppose that the
design documentation has not been kept current and the chief designer leaves to take
another job. It is now extremely hard to update the design document to refl ect all the
changes made while the system was being designed.

 2. It is almost impossible to perform the steps of a specifi c phase unless the documentation
of the previous phase is complete, correct, and up to date. For instance, an incomplete
specifi cation document must inevitably result in an incomplete design and then in an
incomplete implementation.

 3. It is virtually impossible to test whether a software product is working correctly unless
documents are available that state how that software product is supposed to behave.

 4. Maintenance is almost impossible unless there is a complete and correct set of docu-
mentation that describes precisely what the current version of the product does.

 Therefore, just as there is no separate planning phase or testing phase, there is no sepa-
rate documentation phase. Instead, planning, testing, and documentation should be activi-
ties that accompany all other activities while a software product is being constructed.
 Now we examine the object-oriented paradigm.

Chapter 1 The Scope of Software Engineering 17

sch76183_ch01_001-034.indd 17sch76183_ch01_001-034.indd 17 04/06/10 12:30 PM04/06/10 12:30 PM

 1.9 The Object-Oriented Paradigm
 Before 1975, most software organizations used no specifi c techniques; each individual
worked his or her own way. Major breakthroughs were made between approximately 1975
and 1985, with the development of the so-called structured or classical paradigm . The
techniques constituting the classical paradigm include structured systems analysis (Section
12.3), data fl ow analysis (Section 14.3), structured programming, and structured testing
(Section 15.13.2). These techniques seemed extremely promising when fi rst used. How-
ever, as time passed, they proved to be somewhat less successful in two respects:

 1. The techniques sometimes were unable to cope with the increasing size of software
products. That is, the classical techniques were adequate when dealing with small-scale
products (typically 5000 lines of code) or even medium-scale products of 50,000 lines
of code. Today, however, large-scale products of 500,000 lines of code are relatively
common; even products of 5 million or more lines of code are not considered unusual.
However, the classical techniques frequently could not scale up suffi ciently to handle the
development of today’s larger products.

 2. The classical paradigm did not live up to earlier expectations during postdelivery main-
tenance. A major driving force behind the development of the classical paradigm some
40 years ago was that, on average, two-thirds of the software budget was being devoted
to postdelivery maintenance (see Figure 1.3). Unfortunately, the classical paradigm has
not solved this problem; as pointed out in Section 1.3.2, many organizations still spend
70–80 percent or more of their time and effort on postdelivery maintenance [Yourdon,
1992; Hatton, 1998].

 A major reason for the limited success of the classical paradigm is that classical tech-
niques are either operation oriented or attribute (data) oriented but not both. The basic
components of a software product are the operations of the product and the attributes on
which those operations operate. For example, determine_average_height 1 is an opera-
tion that operates on a collection of heights (attributes) and returns the average of those
heights (attribute). Some classical techniques, such as data fl ow analysis (Section 14.3), are
operation oriented. That is, such techniques concentrate on the operations of the product;
the attributes are of secondary importance. Conversely, techniques such as Jackson system
development (Section 14.5) are attribute oriented. The emphasis here is on the attributes;
the operations that operate on the attributes are less signifi cant.
 In contrast, the object-oriented paradigm considers both attributes and operations to be
equally important. A simplistic way of looking at an object is as a unifi ed software artifact
that incorporates both the attributes and the operations performed on the attributes (an
 artifact is a component of a software product, such as a specifi cation document, a code
module, or a manual). This defi nition of an object is incomplete and is fl eshed out later
in the book, once inheritance has been defi ned (Section 7.8). Nevertheless, the defi nition
captures much of the essence of an object.

18 Chapter 1 The Scope of Software Engineering

 1 In this book, the name of a variable in a classical software product is written using the classical convention of
separating the parts of a variable name with underscores, for example, this_is_a_classical_variable. A variable
in an object-oriented software product is written using the object-oriented convention of using an uppercase
letter to mark the start of a new part of the name of a variable; for example, thisIsAnObjectOrientedVariable.

sch76183_ch01_001-034.indd 18sch76183_ch01_001-034.indd 18 04/06/10 12:30 PM04/06/10 12:30 PM

 A bank account is one example of an object (see Figure 1.7). The attribute component
of the object is the accountBalance. The operations that can be performed on that account
balance include deposit money in the account, withdraw money from the account, and
determineBalance. The bank account object combines an attribute with the three opera-
tions performed on that attribute in a single artifact. From the viewpoint of the classical
paradigm, a product that deals with banking would have to incorporate an attribute, the
account_balance, and three operations, deposit, withdraw, and determine_balance.
 Up to now, there seems to be little difference between the two approaches. However,
a key point is the way in which an object is implemented. Specifi cally, details as to how
the attributes of an object are stored are not known from outside the object. This is an
instance of “information hiding,” discussed in more detail in Section 7.6. In the case of
the bank account object shown in Figure 1.7(b) , the rest of the software product is aware
that there is such a thing as a balance within a bank account object, but it has no idea as
to the format of accountBalance. That is, there is no knowledge outside the object as to
whether the account balance is implemented as an integer or a fl oating-point number or a
fi eld (component) of some larger structure. This information barrier surrounding the object
is denoted by the solid black line in Figure 1.7(b) , which depicts an implementation using
the object-oriented paradigm. In contrast, a dashed line surrounds account_balance in
 Figure 1.7(a) , because all the details of account_balance are known to the modules in the
implementation using the classical paradigm, and the value of account_balance therefore
can be changed by any of them.
 Returning to Figure 1.7(b) , the object-oriented implementation, if a customer deposits
$10 in an account, then a message is sent to the deposit method of the relevant object tell-
ing it to increment the accountBalance attribute by $10 (a method is an implementation
of an operation). The deposit method is within the bank account object and knows how
the accountBalance is implemented; this is denoted by the dashed circular line inside the

Chapter 1 The Scope of Software Engineering 19

 FIGURE 1.7 A comparison of implementations of a bank account using (a) the classical paradigm and (b) the object-
oriented paradigm. The solid black line surrounding the object denotes that details as to how accountBalance is
implemented are not known outside the object.

message

message

message

accountBalance

withdrawdeposit

determineBalance

(a) (b)

deposit

withdraw

account_balance

determine_balance

sch76183_ch01_001-034.indd 19sch76183_ch01_001-034.indd 19 04/06/10 12:30 PM04/06/10 12:30 PM

object. But no entity external to the object needs this knowledge. That the three methods in
 Figure 1.7(b) shield accountBalance from the rest of the product symbolizes this localiza-
tion of knowledge. The fact that implementation details are local to an object illustrates the
fi rst of the many strengths of the object-oriented paradigm:

 1. Consider postdelivery maintenance. Suppose that the banking product has been con-
structed using the classical paradigm. If the way an account_balance is represented
is changed from (say) an integer to a fi eld of a structure, then every part of that product
that has anything to do with an account_balance has to be changed, and these changes
have to be made consistently. In contrast, if the object-oriented paradigm is used, then
changes need be made only within the bank account object itself. No other part of the
product has knowledge of how an accountBalance is implemented, so no other part
can have access to an accountBalance. Consequently, no other part of the banking
product needs to be changed. Accordingly, the object-oriented paradigm makes mainte-
nance quicker and easier, and the chance of introducing a regression fault (that is, a
fault inadvertently introduced into one part of a product as a consequence of making an
apparently unrelated change to another part of the product) is greatly reduced.

 2. In addition to maintenance, the object-oriented paradigm also makes development eas-
ier. In many instances, an object has a physical counterpart. For example, a bank account
object in the bank product corresponds to an actual bank account in the bank for which
this product is being implemented. As will be shown in Part B, modeling plays a major
role in the object-oriented paradigm. The close correspondence between the objects in a
product and their counterparts in the real world should lead to better-quality software.

 3. Well-designed objects are independent units. As has been explained, an object consists
of both attributes and the operations performed on the attributes. If all the operations
performed on the attributes of an object are included in that object, then the object
can be considered a conceptually independent entity. Everything in the product that
relates to the portion of the real world modeled by that object can be found in the
object itself. This conceptual independence sometimes is termed encapsulation
(Section 7.4). But there is an additional form of independence, physical indepen-
dence. In a well-designed object, information hiding ensures that implementation
details are hidden from everything outside that object. The only allowable form
of communication is sending a message to the object to carry out a specifi c op-
eration. The way that the operation is carried out is entirely the responsibility of
the object itself. For this reason, object-oriented design sometimes is referred to
as responsibility-driven design [Wirfs-Brock, Wilkerson, and Wiener, 1990] or
 design by contract [Meyer, 1992]. (For another view of responsibility-driven de-
sign, see Just in Case You Wanted to Know Box 1.5, derived from an example in
[Budd, 2002].) Another way of looking at both encapsulation and information hiding
is as instances of separation of concerns (Section 5.4).

 4. A product built using the classical paradigm is implemented as a set of modules, but
conceptually it is essentially a single unit. This is one reason why the classical paradigm
has been less successful when applied to larger products. In contrast, when the object-
oriented paradigm is used correctly, the resulting product consists of a number of smaller,
largely independent units. The object-oriented paradigm reduces the level of complexity
of a software product and hence simplifi es both development and maintenance.

20 Chapter 1 The Scope of Software Engineering

sch76183_ch01_001-034.indd 20sch76183_ch01_001-034.indd 20 04/06/10 12:30 PM04/06/10 12:30 PM

 5. The object-oriented paradigm promotes reuse; because objects are independent entities, they
can generally be utilized in future products (but see Problem 1.17). This reuse of objects
reduces the time and cost of both development and maintenance, as explained in Chapter 8 .

 When the object-oriented paradigm is utilized, the classical software life cycle of Figure
1.2 has to be modifi ed. Figure 1.8 compares the life-cycle model of the classical paradigm
with that of the object-oriented paradigm.
 The fi rst difference appears to be purely terminological; the word phase is used for the
classical paradigm, whereas workfl ow is used for the object-oriented paradigm. In fact, as
will be explained in detail in Chapter 2 , there is no correspondence between a phase and a
workfl ow. On the contrary, the two terms are totally distinct, and this distinction epitomizes
the differences between the life-cycle models that underlie the two paradigms.
 In this chapter, we consider another difference between the two paradigms, the role
played by modules (in the classical paradigm) versus that played by objects (in the object-
oriented paradigm). First consider the design phase of the classical paradigm. As stated
in Section 1.3, this phase is divided into two subphases: architectural design followed by
detailed design. In the architectural design subphase, the product is decomposed into com-
ponents, called modules . Then, during the detailed design subphase, the data structures and
algorithms of each module are designed in turn. Finally, during the implementation phase,
these modules are implemented.
 If the object-oriented paradigm is used instead, one of the steps of the object-
oriented analysis workfl ow is to determine the classes. Because a class is a kind of
module, architectural design is performed during the object-oriented analysis workfl ow.

 Just in Case You Wanted to Know Box 1.5
 Suppose that you live in New Orleans, and you want to send a Mother’s Day bouquet to
your mother in Chicago. One strategy would be to consult the Chicago yellow pages (on
the World Wide Web), determine which fl orist is located closest to your mother’s apart-
ment, and place your order with that fl orist. A more convenient way is to order the fl owers
at 1-800-fl owers.com, leaving the total responsibility for delivering the fl owers to that
company. It is irrelevant where 1-800-fl owers.com is physically located or which fl orist is
given your order to deliver. In any event, the company does not divulge that information,
an instance of information hiding.
 In exactly the same way, when a message is sent to an object, not only is it entirely
irrelevant how the request is carried out, but the unit that sends the message is not even
allowed to know the internal structure of the object. The object itself is entirely responsible
for every detail of carrying out the message.

 FIGURE 1.8
 Comparison of
the life-cycle
models of
the classical
paradigm and
the object-
oriented
paradigm.

 Classical Paradigm Object-Oriented Paradigm

 1. Requirements phase 1. Requirements workfl ow

 2. Analysis (specifi cation) phase 2�. Object-oriented analysis workfl ow

 3. Design phase 3�. Object-oriented design workfl ow

 4. Implementation phase 4�. Object-oriented implementation workfl ow

 5. Postdelivery maintenance 5. Postdelivery maintenance

 6. Retirement 6. Retirement

sch76183_ch01_001-034.indd 21sch76183_ch01_001-034.indd 21 04/06/10 12:30 PM04/06/10 12:30 PM

Consequently, object-oriented analysis goes further than the corresponding analysis (speci-
fi cation) phase of the classical paradigm. This is shown in Figure 1.9 .
 This difference between the two paradigms has major consequences. When the classical
paradigm is used, there almost always is a sharp transition between the analysis phase and
the design phase. After all, the aim of the analysis phase is to determine what the product is
to do, whereas the purpose of the design phase is to decide how to do it. In contrast, when
object-oriented analysis is used, objects enter the life cycle from the very beginning. The
objects are extracted in the analysis workfl ow, designed in the design workfl ow, and coded
in the implementation workfl ow. The object-oriented paradigm is therefore an integrated
approach; the transition from workfl ow to workfl ow is far smoother than with the classical
paradigm, reducing the number of faults introduced during development.
 As already mentioned, it is inadequate to defi ne an object merely as a software artifact that
encapsulates both attributes and operations and implements the principle of information hid-
ing. A more complete defi nition is given in Chapter 7 , where objects are examined in depth.

 1.10 The Object-Oriented Paradigm in Perspective
 Figure 1.1 is evidence of the many shortcomings of the classical (structured) paradigm.
However, the object-oriented paradigm is by no means a panacea for all ills:

 • Like all approaches to software production, the object-oriented paradigm has to be used
correctly; it is just as easy to misuse the object-oriented paradigm as any other paradigm.

 • When correctly applied, the object-oriented paradigm can solve some (but not all) of the
problems of the classical paradigm.

 • The object-oriented paradigm has some problems of its own, as described in Section 7.9.
 • The object-oriented paradigm is the best approach available today. However, like all

technologies, it is certain to be superseded by a superior technology in the future.

 In this book, strengths and weaknesses of both the classical and the object-oriented
paradigm are pointed out within the context of the specifi c topic under discussion. Con-
sequently, the comparison of the two paradigms does not appear in one single place but is
spread over the entire book.
 We now defi ne a number of software engineering terms.

22 Chapter 1 The Scope of Software Engineering

 FIGURE 1.9
 Differences
between the
classical
paradigm and
the object-
oriented
paradigm.

 Classical Paradigm Object-Oriented Paradigm
 2. Analysis (specifi cation) phase 2�. Object-oriented analysis workfl ow

 • Determine what the product is to do • Determine what the product is to do

 • Extract the classes

 3. Design phase 3�. Object-oriented design workfl ow

 • Architectural design (extract the modules) • Detailed design

 • Detailed design

 4. Implementation phase 4�. Object-oriented implementation workfl ow

 • Code the modules in an appropriate • Code the classes in an appropriate

 programming language object-oriented programming language

 • Integrate • Integrate

sch76183_ch01_001-034.indd 22sch76183_ch01_001-034.indd 22 04/06/10 12:30 PM04/06/10 12:30 PM

 1.11 Terminology
 The client is the individual who wants a product to be built (developed). The developers
are the members of a team responsible for building that product. The developers may be
responsible for every aspect of the software process, from the requirements onward, or they
may be responsible for only the implementation of an already designed product.
 Both the client and developers may be part of the same organization. For example, the
client may be the head actuary of an insurance company and the developers a team headed
by the vice-president for software development of that insurance company. This is termed
 internal software development . On the other hand, with contract software the cli-
ent and developers are members of totally independent organizations. For instance, the
client may be a senior offi cial in the Department of Defense and the developers employees
of a major defense contractor specializing in software for weapons systems. On a much
smaller scale, the client may be an accountant in a one-person practice and the developer a
student who earns income by developing software on a part-time basis.
 The third party involved in software production is the user . The user is the person or
persons on whose behalf the client has commissioned the product and who will utilize the
software. In the insurance company example, the users may be insurance agents, who will
use the software to select the most appropriate policies. In some instances, the client and
the user are the same person (for example, the accountant discussed previously).
 As opposed to expensive custom software developed for one client, multiple copies
of software, such as word processors or spreadsheets, are sold at much lower prices to a
large numbers of buyers. That is, the manufacturers of such software (such as Microsoft
or Borland) recover the cost of developing a product by volume selling. This type of
software usually is called commercial off-the-shelf (COTS) software . The earlier
term for this type of software was shrink-wrapped software because the box con-
taining the CD or diskettes, the manuals, and the license agreement almost always was
shrink-wrapped. Nowadays, COTS software often is downloaded over the World Wide
Web—there is no box to shrink-wrap. For this reason, COTS software nowadays some-
times is referred to as clickware . COTS software is developed for “the market”; that is,
the software is not targeted to a specifi c client or users until it has been developed and is
available for purchase.
 Open-source software is becoming extremely popular. An open-source software
product is developed and maintained by a team of volunteers and may be downloaded
and used free of charge by anyone. Widely used open-source products include the Linux
operating system, the Firefox Web browser, and the Apache Web server. The term open
source refers to the availability of the source code to all, unlike most commercial products
where only the executable version is sold. Because any user of an open-source product can
scrutinize the source code and report faults to the developers, many open-source software
products are of high quality. The expected consequence of the public nature of faults in
open-source software was formalized by Raymond in The Cathedral and the Bazaar as
 Linus’s Law , named after Linus Torvalds, the creator of Linux [Raymond, 2000]. Linus’s
Law states that “given enough eyeballs, all bugs are shallow.” In other words, if enough
individuals scrutinize the source code of an open-source software product, someone should
be able to locate that fault and suggest how to fi x it (but see Just in Case You Wanted to
Know Box 1.6). A related principle is “Release early. Release often” [Raymond, 2000].

Chapter 1 The Scope of Software Engineering 23

sch76183_ch01_001-034.indd 23sch76183_ch01_001-034.indd 23 04/06/10 12:30 PM04/06/10 12:30 PM

That is, open-source developers tend to spend less time on testing than closed-source de-
velopers, preferring to release a new version of a product virtually as soon as it is fi nished,
leaving much of the responsibility for testing to users.
 A word used on almost every page of this book is software . Software consists of not
just code in machine-readable form but also all the documentation that is an intrinsic com-
ponent of every project. Software includes the specifi cation document, the design docu-
ment, legal and accounting documents of all kinds, the software project management plan,
and other management documents as well as all types of manuals.
 Since the 1970s, the difference between a program and a system has become blurred.
In the “good old days,” the distinction was clear. A program was an autonomous piece of
code, generally in the form of a deck of punched cards that could be executed. A system
was a related collection of programs. A system might consist of programs P, Q, R, and S.
Magnetic tape T1 was mounted, and then program P was run. It caused a deck of data cards
to be read in and produced as output tapes T2 and T3. Tape T2 then was rewound, and pro-
gram Q was run, producing tape T4 as output. Program R now merged tapes T3 and T4 into
tape T5; T5 served as input for program S, which printed a series of reports.
 Compare that situation with a product, running on a machine with a front-end com-
munications processor and a back-end database manager, that performs real-time control
of a steel mill. The single piece of software controlling the steel mill does far more than
the old-fashioned system, but in terms of the classic defi nitions of program and system,
this software undoubtedly is a program. To add to the confusion, the term system now is
also used to denote the hardware–software combination. For example, the fl ight control
system in an aircraft consists of both the in-fl ight computers and the software running
on them. Depending on who is using the term, the fl ight control system also may include
the controls, such as the joystick, that send commands to the computer and the parts of
the aircraft, such as the wing fl aps, controlled by the computer. Furthermore, within the
context of traditional software development, the term systems analysis refers to the fi rst
two phases (requirements and analysis phases) and systems design refers to the third
phase (design phase).
 To minimize confusion, this book uses the term product to denote a nontrivial piece of
software. There are two reasons for this convention. The fi rst is simply to obviate the pro-
gram versus system confusion by using a third term. The second reason is more important.
This book deals with the process of software production, that is, the way we produce soft-
ware, and the end result of a process is termed a product . Finally, the term system is used
in its modern sense, that is, the combined hardware and software, or as part of universally
accepted phrases, such as operating system and management information system.
 Two words widely used within the context of software engineering are methodology
and paradigm . In the 1970s, the word methodology began to be used in the sense of
“a way of developing a software product”; the word actually means the “science of meth-
ods.” Then, in the 1980s, the word paradigm became a major buzzword of the busi-
ness world, as in the phrase, “It’s a whole new paradigm.” The software industry soon

 Just in Case You Wanted to Know Box 1.6
 It is self-evident that the more people who carefully examine a piece of code, the more likely
it is that someone will be able to fi nd and fi x a fault in that code. Accordingly, Linus’s Law
should perhaps be called “Torvalds’s Truism.”

sch76183_ch01_001-034.indd 24sch76183_ch01_001-034.indd 24 04/06/10 12:30 PM04/06/10 12:30 PM

started using the word paradigm in the phrases object-oriented paradigm and classical
(or traditional) paradigm to mean “a style of software development.” This was another
unfortunate choice of terminology, because a paradigm is a model or a pattern. Erudite
readers offended by this corruption of the English language are warmly invited to take up
the cudgels of linguistic accuracy on the author’s behalf; he is tired of tilting at windmills.
 A methodology or a paradigm is a component of the software process as a whole. In
contrast, a technique is a component of a portion of the software process. Examples
include coding techniques, documentation techniques, and planning techniques.
 When a programmer makes a mistake , the consequence of that mistake is a fault in the
code. Executing the software product then results in a failure , that is, the observed incor-
rect behavior of the product as a consequence of the fault. An error is the amount by which
a result is incorrect. The terms mistake , fault , failure , and error are defi ned in IEEE Stan-
dard 610.12, “A Glossary of Software Engineering Terminology” [IEEE 610.12, 1990],
reaffi rmed in 2002 [IEEE Standards, 2003]. The word defect is a generic term that refers
to a fault, failure, or error. In the interests of precision, in this book we therefore minimize
use of the umbrella term defect .
 One term that is avoided as far as possible is bug (the history of this word is in Just in
Case You Wanted to Know Box 1.7). The term bug nowadays is simply a euphemism for
a fault . Although there generally is no real harm in using euphemisms, the word bug has
overtones that are not conducive to good software production. Specifi cally, instead of say-
ing, “I made a mistake,” a programmer will say, “A bug crept into the code” (not my code
but the code), thereby transferring responsibility for the mistake from the programmer to
the bug. No one blames a programmer for coming down with a case of infl uenza, because
the fl u is caused by the fl u bug. Referring to a mistake as a bug is a way of casting off
responsibility. In contrast, the programmer who says, “I made a mistake,” is a computer
professional who takes responsibility for his or her actions.
 Considerable confusion surrounds object-oriented terminology. For example, in addi-
tion to the term attribute for a data component of an object, the term state variable
sometimes is used in the object-oriented literature. In Java, the term is instance variable .
In C++ the term fi eld is used, and in Visual Basic .NET, the term is property . With regard
to the implementation of the operations of an object, the term method usually is used; in

 Just in Case You Wanted to Know Box 1.7
 The fi rst use of the word bug to denote a fault is attributed to the late Rear Admiral Grace
Murray Hopper, one of the designers of COBOL. On September 9, 1945, a moth fl ew into
the Mark II computer that Hopper and her colleagues used at Harvard and lodged between
the contact plates of a relay. Accordingly, there was actually a bug in the system. Hopper
taped the bug to the logbook and wrote, “First actual case of bug being found.” The
logbook, with moth still attached, is in the Naval Museum at the Naval Surface Weapons
Center, in Dahlgren, Virginia.
 Although this may have been the fi rst use of bug in a computer context, the word was
used in engineering slang in the 19th century [Shapiro, 1994]. For example, Thomas Alva
Edison wrote on November 18, 1878, “This thing gives out and then that—‘Bugs’—as such
little faults and diffi culties are called . . .” [Josephson, 1992]. One of the defi nitions of bug in
the 1934 edition of Webster’s New English Dictionary is, “A defect in apparatus or its opera-
tion.” It is clear from Hopper’s remark that she, too, was familiar with the use of the word
in that context; otherwise, she would have explained what she meant.

sch76183_ch01_001-034.indd 25sch76183_ch01_001-034.indd 25 04/06/10 12:30 PM04/06/10 12:30 PM

C++, however, the term is member function . In C++, a member of an object refers to
either an attribute (“fi eld”) or a method. In Java, the term fi eld is used to denote either an
attribute (“instance variable”) or a method. To avoid confusion, wherever possible, the ge-
neric terms attribute and method are used in this book.
 Fortunately, some terminology is widely accepted. For example, when a method
within an object is invoked, this almost universally is termed sending a message to
the object.

 1.12 Ethical Issues

 We conclude this chapter on a cautionary note. Software products are developed and
maintained by humans. If those individuals are hard working, intelligent, sensible, up
to date, and above all, ethical , then the chances are good that the way that the software
products they develop and maintain will be satisfactory. Unfortunately, the converse is
equally true.
 Most societies for professionals have a code of ethics to which all its members must
adhere. The two major societies for computer professionals, the Association for Computing
Machinery (ACM) and the Computer Society of the Institute of Electrical and Electronics
Engineers (IEEE-CS) jointly approved a Software Engineering Code of Ethics and Profes-
sional Practice as the standard for teaching and practicing software engineering [IEEE/
ACM, 1999]. It is lengthy, so a short version, consisting of a preamble and eight principles,
was also produced. Here is the short version:

 Software Engineering Code of Ethics and Professional Practice 2 (Version 5.2)

as recommended by the IEEE-CS/ACM Joint Task Force on
Software Engineering Ethics and Professional Practices

Short Version
Preamble

 The short version of the code summarizes aspirations at a high level of abstraction; the
clauses that are included in the full version give examples and details of how these aspira-
tions change the way we act as software engineering professionals. Without the aspira-
tions, the details can become legalistic and tedious; without the details, the aspirations can
become high sounding but empty; together, the aspirations and the details form a cohesive
code.
 Software engineers shall commit themselves to making the analysis, specifi cation, design,
development, testing and maintenance of software a benefi cial and respected profession. In
accordance with their commitment to the health, safety and welfare of the public, software
engineers shall adhere to the following Eight Principles:

 1. Public —Software engineers shall act consistently with the public interest.
 2. Client and Employer— Software engineers shall act in a manner that is in the best interests

of their client and employer consistent with the public interest.

26 Chapter 1 The Scope of Software Engineering

 2 © 1999 by the Institute of Electrical and Electronics Engineers, Inc., and the Association for Computing
Machinery, Inc.

sch76183_ch01_001-034.indd 26sch76183_ch01_001-034.indd 26 04/06/10 12:30 PM04/06/10 12:30 PM

Chapter 1 The Scope of Software Engineering 27

 3. Product —Software engineers shall ensure that their products and related modifi cations
meet the highest professional standards possible.

 4. Judgment —Software engineers shall maintain integrity and independence in their profes-
sional judgment.

 5. Management —Software engineering managers and leaders shall subscribe to and promote
an ethical approach to the management of software development and maintenance.

 6. Profession —Software engineers shall advance the integrity and reputation of the profes-
sion consistent with the public interest.

 7. Colleagues —Software engineers shall be fair to and supportive of their colleagues.
 8. Self— Software engineers shall participate in lifelong learning regarding the practice of

their profession and shall promote an ethical approach to the practice of the profession.

 The codes of ethics of other societies for computer professionals express similar senti-
ments. It is vital for the future of our profession that we adhere rigorously to such codes of
ethics.
 In Chapter 2 , we examine various life-cycle models to shed further light on the differ-
ences between the classical and the object-oriented paradigm.

 Chapter
Review
 Software engineering is defi ned (Section 1.1) as a discipline whose aim is the production of fault-free

software that satisfi es the user’s needs and is delivered on time and within budget. To achieve this goal,
appropriate techniques have to be used throughout software production, including when performing
analysis (specifi cation) and design (Section 1.4) and postdelivery maintenance (Section 1.3). Software
engineering addresses all the steps of the software life cycle and incorporates aspects of many different
areas of human knowledge, including economics (Section 1.2) and the social sciences (Section 1.5).
There is no separate planning phase (Section 1.6), no testing phase (Section 1.7), and no documenta-
tion phase (Section 1.8). In Section 1.9, objects are introduced, and a comparison between the classi-
cal and object-oriented paradigms is made. Then the object-oriented paradigm is evaluated (Section
1.10). Next, in Section 1.11, the terminology used in this book is explained. Finally, ethical issues are
discussed in Section 1.12.

 For
Further
Reading

 The earliest source of information on the scope of software engineering is [Boehm, 1976]. The future of
software engineering is discussed in [Finkelstein, 2000]. The current state of the practice of software
engineering is described in a variety of articles in the November–December 2003 issue of IEEE Soft-
ware. An investigation of the factors leading to successful software development appears in [Procac-
cino, Verner, and Lorenzet, 2006].
 For a view on the importance of postdelivery maintenance in software engineering and how to
plan for it, see [Parnas, 1994]. Software development for COTS-based products is the subject of
[Brownsword, Oberndorf, and Sledge, 2000]. Acquiring COTS components is described in [Ulkuni-
emi and Seppanen, 2004] and in [Keil and Tiwana, 2005]. Risk management when software is devel-
oped using COTS components is described in [Li et al., 2008]. The July–August 2005 issue of IEEE
Software contains six articles on integrating COTS components into software products, including
[Donzelli et al., 2005] and [Yang, Bhuta, Boehm, and Port, 2005]. A reassessment of risk manage-
ment appears in [Bannerman, 2008].
 Risks in enterprise systems are described in [Scott and Vessey, 2002] and in information systems
in general in [Longstaff, Chittister, Pethia, and Haimes, 2000]. Zvegintzov [1998] explains just how
little accurate data on software engineering practice actually are available.

sch76183_ch01_001-034.indd 27sch76183_ch01_001-034.indd 27 04/06/10 12:30 PM04/06/10 12:30 PM

 The fact that mathematics underpins software engineering is stressed in [Devlin, 2001]. The
importance of economics in software engineering is discussed in [Boehm and Huang, 2003].
The November–December 2002 issue of IEEE Software contains a number of articles on software
engineering economics.
 Two classic books on the social sciences and software engineering are [Weinberg, 1971] and
[Shneiderman, 1980]. Neither book requires prior knowledge of psychology or the behavioral sci-
ences in general.
 Brooks’s [1975] timeless work, The Mythical Man-Month , is a highly recommended introduction
to the realities of software engineering. The book includes material on all the topics mentioned in this
chapter.
 An excellent introduction to open-source software is [Raymond, 2000]. Paulsen, Succi, and
Eberlein [2004] present an empirical study comparing open- and closed-source software products.
Reuse of open-source components is described in [Madanmohan and De’, 2004]. A variety of
articles on open-source software appears in the January/February 2004 issue of IEEE Software and
in issue No. 2, 2005, of IBM Systems Journal . The issue of whether open-source software leads to
increased security is discussed in [Hoepman and Jacobs, 2007]. The interplay between business
and open-source software is the subject of [Watson et al., 2008], [Ven, Verelst, and Mannaert,
2008], and [Wesselius, 2008].
 An excellent introduction to the object-oriented paradigm is [Budd, 2002]. Three successful
projects carried out using the object-oriented paradigm are described in [Capper, Colgate, Hunter,
and James, 1994], with a detailed analysis. A survey of the attitudes of 150 experienced software
developers toward the object-oriented paradigm is reported in [Johnson, 2000]. With regard to eth-
ics, an ethical code common to both business and software professionals is presented in [Payne and
Landry, 2006].

28 Chapter 1 The Scope of Software Engineering

 acceptance testing 7
 adaptive maintenance 8
 analysis phase 7
 architectural design 7
 artifact 18
 attribute 25
 bug 25
 classical paradigm 18
 clickware 23
 client 23
 coding 7
 commercial-off-the-shelf

(COTS) software 23
 contract software 23
 corrective maintenance 8
 defect 25
 design by contract 20
 design document 7
 design phase 7
 detailed design 7

 developer 23
 development-then-

maintenance model 9
 documentation phase 17
 encapsulation 20
 enhancement 8
 error 25
 ethics 26
 failure 25
 fault 25
 fi eld 25
 implementation phase 7
 instance variable 25
 integration 7
 internal software

development 23
 life cycle 6
 life-cycle model 6
 Linus’s Law 23
 maintenance 10

 message 19
 member function 26
 method 19
 methodology 24
 mistake 25
 module 7
 object-oriented paradigm 25
 open-source software 23
 operational defi nition (of

maintenance) 10
 paradigm 24
 perfective maintenance 8
 phase 6
 planning phase 16
 postdelivery

maintenance 7
 process 5
 product 24
 program 24
 property 25

 Key Terms

sch76183_ch01_001-034.indd 28sch76183_ch01_001-034.indd 28 04/06/10 12:30 PM04/06/10 12:30 PM

 1.1 You are in charge of automating a multi-site architectural practice. The cost of developing the
software has been estimated to be $530,000. Approximately how much additional money will
be needed for postdelivery maintenance of the software?

 1.2 Is there a way of reconciling the classical temporal defi nition of maintenance with the opera-
tional defi nition we now use? Explain your answer.

 1.3 You are a software-engineering consultant. The chief information offi cer of a regional gaso-
line distribution corporation wants you to develop a software product that will carry out all the
accounting functions of the company and provide online information to the head offi ce staff re-
garding orders and inventory in the various company storage tanks. Computers are required for
21 accounting clerks, 15 order clerks, and 37 storage tank clerks. In addition, 14 managers need
access to the data. The company is willing to pay $30,000 for the hardware and the software to-
gether and wants the complete software product in 4 weeks. What do you tell him? Bear in mind
that your company wants his corporation’s business, no matter how unreasonable his request.

 1.4 You are a vice-admiral in the Velorian Navy. It has been decided to call in a software develop-
ment organization to develop the control software for a new generation of ship-to-ship missiles.
You are in charge of supervising the project. To protect the government of Veloria, what clauses
do you include in the contract with the software developers?

 1.5 You are a software engineer whose job is to supervise the development of the software in Prob-
lem 1.4. List ways your company can fail to satisfy the contract with the navy. What are the
probable causes of such failures?

 1.6 Nine months after delivery, a fault is detected in the software of a product that analyzes mRNA
using the Stein–Röntgen reagent. The cost of fi xing the fault is $18,900. The cause of the fault
is an ambiguous sentence in the specifi cation document. Approximately how much would it
have cost to correct the fault during the analysis phase?

 1.7 Suppose that the fault in Problem 1.6 had been detected during the implementation phase.
Approximately how much would it have cost to fi x then?

 1.8 You are the president of an organization that builds large-scale software. You show Figure 1.6 to
your employees, urging them to fi nd faults early in the software life cycle. Someone responds
that it is unreasonable to expect anyone to remove faults before they have entered the product.
For example, how can anyone remove a fault while the design is being produced if the fault in
question is a coding fault? What do you reply?

 1.9 Describe a situation in which the client, developer, and user are the same person.

 1.10 What problems can arise if the client, developer, and user are the same person? How can these
problems be solved?

Chapter 1 The Scope of Software Engineering 29

 quality 17
 regression fault 20
 requirements phase 7
 responsibility-driven design 20
 retirement 8
 send a message 26
 shrink-wrapped

software 23
 software 24
 software crisis 4
 software depression 5

 software engineering 2
 software project management

plan 7
 software repair 8
 specifi cation document 7
 specifi cation phase 7
 state variable 25
 structured paradigm 18
 system 24
 systems analysis 24
 systems design 24

 technique 25
 temporal defi nition

(of maintenance) 9
 testing phase 17
 traditional paradigm 25
 unit testing 7
 user 23
 validation 17
 verifi cation 17
 waterfall model 7

 Problems

sch76183_ch01_001-034.indd 29sch76183_ch01_001-034.indd 29 04/06/10 12:30 PM04/06/10 12:30 PM

 1.11 What potential advantages accrue if the client, developer, and user are the same person?

 1.12 Look up the word system in a dictionary. How many different defi nitions are there? Write
down those defi nitions that are applicable within the context of software engineering.

 1.13 It is your fi rst day at your fi rst job. Your manager hands you a program listing and says, “See if
you can fi nd the bug.” What do you reply?

 1.14 You are in charge of developing the product in Problem 1.1. Will you use the object-oriented
paradigm or the classical paradigm? Give reasons for your answer.

 1.15 Instead of implementing component c9 of a software product, the developers decide to buy a
COTS component with the same specifi cations as component c9. What are the advantages and
disadvantages of this approach?

 1.16 Instead of implementing component c37 of a software product, the developers decide to uti-
lize an open-source component with the same specifi cations as component c37. What are the
advantages and disadvantages of this approach?

 1.17 Object P invokes method m1 of object Q. Suppose we wish to reuse object P in a new soft-
ware product. Can P be reused without reusing Q as well? What does this say about objects as
“independent entities” (as stated in Section 1.9)?

 1.18 Is it correct to state that, as a consequence of Linus’s Law, all open-source software is of high
quality?

 1.19 (Term Project) Suppose that the product for Chocoholics Anonymous of Appendix A has been
implemented exactly as described. Now the product has to be modifi ed to include endocrinolo-
gists as providers. In what ways will the existing product have to be changed? Would it be better
to discard everything and start again from scratch?

 1.20 (Readings in Software Engineering) Your instructor will distribute copies of Schach et al.
[2003]. What is your opinion of the relative merits of results based on managers’ estimates
compared to results computed from actual data?

30 Chapter 1 The Scope of Software Engineering

 [Bannerman, 2008] P. L. BANNERMAN, “Risk and Risk Management in Software Projects: A Reas-
sessment,” Journal of Systems and Software 81 (December 2008), pp. 2118–33.

 [Boehm, 1976] B. W. BOEHM, “Software Engineering,” IEEE Transactions on Computers C-25
(December 1976), pp. 1226–41.

 [Boehm, 1979] B. W. BOEHM, “Software Engineering, R & D Trends and Defense Needs,” in:
 Research Directions in Software Technology , P. Wegner (Editor), The MIT Press, Cambridge,
MA, 1979.

 [Boehm, 1980] B. W. BOEHM, “Developing Small-Scale Application Software Products: Some Ex-
perimental Results,” Proceedings of the Eighth IFIP World Computer Congress, October 1980,
IFIP, pp. 321–26.

 [Boehm, 1981] B. W. BOEHM, Software Engineering Economics, Prentice Hall, Englewood Cliffs,
NJ, 1981.

 [Boehm and Huang, 2003] B. BOEHM AND L. G. HUANG, “Value-Based Software Engineering: A
Case Study,” IEEE Computer 36 (March 2003), pp. 33–41.

 [Brooks, 1975] F. P. BROOKS, JR., The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley, Reading, MA, 1975; Twentieth Anniversary Edition, Addison-Wesley, Reading,
MA, 1995.

 [Brownsword, Oberndorf, and Sledge, 2000] L. BROWNSWORD, T. OBERNDORF, AND C. A. SLEDGE,
“Developing New Process for COTS-Based Systems,” IEEE Software 17 (July–August 2000),
pp. 40–47.

 References

sch76183_ch01_001-034.indd 30sch76183_ch01_001-034.indd 30 10/06/10 2:08 PM10/06/10 2:08 PM

 [Budd, 2002] T. A. BUDD, An Introduction to Object-Oriented Programming , 3rd ed., Addison-
Wesley, Reading, MA, 2002.

 [Capper, Colgate, Hunter, and James, 1994] N. P. CAPPER, R. J. COLGATE, J. C. HUNTER, AND M. F.
JAMES, “The Impact of Object-Oriented Technology on Software Quality: Three Case Histories,”
 IBM Systems Journal 33 (No. 1, 1994), pp. 131–57.

 [Cutter Consortium, 2002] Cutter Consortium, “78% of IT Organizations Have Litigated,” The Cut-
ter Edge , www.cutter.com/research/2002/edge020409.html, 3 April 09, 2002.

 [Daly, 1977] E. B. DALY, “Management of Software Development,” IEEE Transactions on Software
Engineering SE-3 (May 1977), pp. 229–42.

 [Devlin, 2001] K. DEVLIN, “The Real Reason Why Software Engineers Need Math,” Communica-
tions of the ACM 44 (October 2001), pp. 21–22.

 [Donzelli et al., 2005] P. DONZELLI, M. ZELKOWITZ, V. BASILI, D. ALLARD, AND K. N. MEYER,
“Evaluating COTS Component Dependability in Context,” IEEE Software 22 (July–August
2005), pp. 46–53.

 [Elshoff, 1976] J. L. ELSHOFF, “An Analysis of Some Commercial PL/I Programs,” IEEE Transac-
tions on Software Engineering SE-2 (June 1976), pp. 113–20.

 [Fagan, 1974] M. E. FAGAN, “Design and Code Inspections and Process Control in the Development
of Programs,” Technical Report IBM-SSD TR 21.572, IBM Corporation, December 1974.

 [Finkelstein, 2000] A. FINKELSTEIN (Editor), The Future of Software Engineering , IEEE Computer
Society Press, Los Alamitos, CA, 2000.

 [GJSentinel.com, 2003] “Sallie Mae’s Errors Double Some Bills,” www.gjsentinel.com/news/
content/coxnet/headlines/0522_salliemae.html, May 22, 2003.

 [Grady, 1994] R. B. GRADY, “Successfully Applying Software Metrics,” IEEE Computer 27
(September 1994), pp. 18–25.

 [Hatton, 1998] L. HATTON, “Does OO Sync with How We Think?” IEEE Software 15 (May–June
1998), pp. 46–54.

 [Hoepman and Jacobs, 2007] J.-H. HOEPMAN AND B. JACOBS, “Increased Security through Open
Source,” Communications of the ACM 50 (January 2007), pp. 79–83.

 [IEEE 610.12, 1990] “A Glossary of Software Engineering Terminology,” IEEE 610.12-1990, Insti-
tute of Electrical and Electronic Engineers, Inc., 1990.

 [IEEE Standards, 2003] “Products and Projects Status Report,” standards.ieee.org/db/status/
status.txt, June 3, 2003.

 [IEEE/ACM, 1999] “Software Engineering Code of Ethics and Professional Practice, Version 5.2,
as Recommended by the IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and
Professional Practice,” www.computer.org/tab/seprof/code.htm, 1999.

 [IEEE/EIA 12207.0-1996, 1998] “IEEE/EIA 12207.0-1996 Industry Implementation of Interna-
tional Standard ISO/IEC 12207:1995,” Institute of Electrical and Electronic Engineers, Electronic
Industries Alliance, New York, 1998.

 [ISO/IEC 12207, 1995] “ISO/IEC 12207:1995, Information Technology—Software Life-Cycle Pro-
cesses,” International Organization for Standardization, International Electrotechnical Commis-
sion, Geneva, 1995.

Chapter 1 The Scope of Software Engineering 31

 3 This and the other URLs cited in this book were correct at the time of going to press. However, Web addresses
tend to change all too frequently and without prior or subsequent notifi cation. If this happens, the reader should
use a search engine to locate the new URL. The date given in a reference to a URL is the publication date.

sch76183_ch01_001-034.indd 31sch76183_ch01_001-034.indd 31 04/06/10 12:30 PM04/06/10 12:30 PM

www.cutter.com/research/2002/edge020409.html
www.gjsentinel.com/news/content/coxnet/headlines/0522_salliemae.html
www.gjsentinel.com/news/content/coxnet/headlines/0522_salliemae.html
www.computer.org/tab/seprof/code.htm

 [Johnson, 2000] R. A. JOHNSON, “The Ups and Downs of Object-Oriented System Development,”
 Communications of the ACM 43 (October 2000), pp. 69–73.

 [Josephson, 1992] M. JOSEPHSON, Edison, A Biography , John Wiley and Sons, New York, 1992.

 [Kan et al., 1994] S. H. KAN, S. D. DULL, D. N. AMUNDSON, R. J. LINDNER, AND R. J. HEDGER, “AS/400
Software Quality Management,” IBM Systems Journal 33 (No. 1, 1994), pp. 62–88.

 [Keil and Tiwana, 2005] M. KEIL AND A. TIWANA, “Beyond Cost: The Drivers of COTS Application
Value,” IEEE Software 22 (May–June 2005), pp. 64–69.

 [Kelly, Sherif, and Hops, 1992] J. C. KELLY, J. S. SHERIF, AND J. HOPS, “An Analysis of Defect Den-
sities Found during Software Inspections,” Journal of Systems and Software 17 (January 1992),
pp. 111–17.

 [La Libre Online, 2007a] “Lalibre.be—Une erreur à 883 millions d’euros,” www.lalibre.be/index.
php?view=article&art_id=305607.

 [La Libre Online, 2007b] “Lalibre.be—C’est la faute à l’informatique,” www.lalibre.be/index.
php?view=article&art_id=307021.

 [Leveson and Turner, 1993] N. G. LEVESON AND C. S. TURNER, “An Investigation of the Therac-25
Accidents,” IEEE Computer 26 (July 1993), pp. 18–41.

 [Li et al., 2008] J. LI, O. P. N. SLYNGSTAD, M. TORCHIANO, M. MORISIO, AND C. BUNSE, “A State-of-
the-Practice Survey of Risk Management in Development with Off-the-Shelf Software Compo-
nents,” IEEE Transactions on Software Engineering 34 (March–April 2008), pp. 271–86.

 [Lientz, Swanson, and Tompkins, 1978] B. P. LIENTZ, E. B. SWANSON, AND G. E. TOMPKINS, “Char-
acteristics of Application Software Maintenance,” Communications of the ACM 21 (June 1978),
pp. 466–71.

 [Longstaff, Chittister, Pethia, and Haimes, 2000] T. A. LONGSTAFF, C. CHITTISTER, R. PETHIA, AND
Y. Y. HAIMES, “Are We Forgetting the Risks of Information Technology?” IEEE Computer 33
(December 2000), pp. 43–51.

 [Madanmohan and De’, 2004] T. R. MADANMOHAN AND R. DE’, “Open Source Reuse in Commercial
Firms,” IEEE Software 21 (November–December 2004), pp. 62–69.

 [Mellor, 1994] P. MELLOR, “CAD: Computer-Aided Disaster,” Technical Report, Centre for Software
Reliability, City University, London, July 1994.

 [Meyer, 1992] B. MEYER, “Applying ‘Design by Contract’,” IEEE Computer 25 (October 1992),
pp. 40–51.

 [Naur, Randell, and Buxton, 1976] P. NAUR, B. RANDELL, AND J. N. BUXTON (Editors), Software
Engineering: Concepts and Techniques: Proceedings of the NATO Conferences , Petrocelli-
Charter, New York, 1976.

 [Neumann, 1980] P. G. NEUMANN, Letter from the Editor, ACM SIGSOFT Software Engineering
Notes 5 (July 1980), p. 2.

 [Parnas, 1994] D. L. PARNAS, “Software Aging,” Proceedings of the 16th International Conference
on Software Engineering , Sorrento, Italy, May 1994, IEEE, pp. 279–87.

 [Paulson, Succi, and Eberlein, 2004] J. W. PAULSON, G. SUCCI, AND A. EBERLEIN, “An Empirical
Study of Open-Source and Closed-Source Software Products,” IEEE Transactions on Software
Engineering 30 (April 2004), pp. 246–56.

 [Payne and Landry, 2006] D. PAYNE AND B. J. L. LANDRY, “A Uniform Code of Ethics: Business and
IT Professional Ethics,” Communications of the ACM 49 (November 2006), pp. 81–84.

 [Procaccino, Verner, and Lorenzet, 2006] J. D. PROCACCINO, J. M. VERNER, AND S. J. LORENZET,
“Defi ning and Contributing to Software Development Success,” Communications of the ACM
(August 2006), pp. 79–83.

32 Chapter 1 The Scope of Software Engineering

sch76183_ch01_001-034.indd 32sch76183_ch01_001-034.indd 32 04/06/10 12:30 PM04/06/10 12:30 PM

www.lalibre.be/index.php?view=article&art_id=305607
www.lalibre.be/index.php?view=article&art_id=305607
www.lalibre.be/index.php?view=article&art_id=307021
www.lalibre.be/index.php?view=article&art_id=307021

Chapter 1 The Scope of Software Engineering 33

 [Raymond, 2000] E. S. RAYMOND, The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary , O’Reilly & Associates, Sebastopol, CA, 2000; also avail-
able at www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/.

 [Rubenstein, 2007] D. RUBENSTEIN, “Standish Group Report: There’s Less Development Chaos
Today,” www.sdtimes.com/content/article.aspx?ArticleID=30247, March 1, 2007.

 [Schach et al., 2002] S. R. SCHACH, B. JIN, D. R. WRIGHT, G. Z. HELLER, AND A. J. OFFUTT, “Main-
tainability of the Linux Kernel,” IEE Proceedings—Software 149 (February 2002), pp. 18–23.

 [Schach et al., 2003] S. R. SCHACH, B. JIN, G. Z. HELLER, L. YU, AND J. OFFUTT, “Determining the
Distribution of Maintenance Categories: Survey versus Measurement,” Empirical Software Engi-
neering 8 (December 2003), pp. 351–66.

 [Scott and Vessey, 2002] J. E. SCOTT AND I. VESSEY, “Managing Risks in Enterprise Systems Imple-
mentations,” Communications of the ACM 45 (April 2002), pp. 74–81.

 [Shapiro, 1994] F. R. SHAPIRO, “The First Bug,” Byte 19 (April 1994), p. 308.

 [Shneiderman, 1980] B. SHNEIDERMAN, Software Psychology: Human Factors in Computer and
Information Systems , Winthrop Publishers, Cambridge, MA, 1980.

 [Spiegel Online, 2004] “Rheinbrücke mit Treppe—54 Zentimeter Höhenunterschied,” www.spiegel.
de/panorama/0,1518,281837,00.html.

 [St. Petersburg Times Online, 2003] “Thousands of Federal Checks Uncashable,” www.sptimes.
com/2003/02/07/Worldandnation/Thousands_of_federal_.shtml, February 07, 2003.

 [Stephenson, 1976] W. E. STEPHENSON, “An Analysis of the Resources Used in Safeguard System
Software Development,” Bell Laboratories, Draft Paper, August 1976.

 [Ulkuniemi and Seppanen, 2004] P. ULKUNIEMI, AND V. SEPPANEN, “COTS Component Acquisition in
an Emerging Market,” IEEE Software 21 (November–December 2004), pp. 76–82.

 [Ven, Verelst, and Mannaert, 2008] K. VEN, I. VERELST, AND H. MANNAERT, “Should You Adopt Open
Source Software?” IEEE Software 25 (May–June 2008), pp. 54–59.

 [Watson et al., 2008] R. T. WATSON, M.-C. BOUDREAU, P. T. YORK, M. E. GREINER, AND D. WYNN, “The
Business of Open Source,” Communications of the ACM 51 (April 2008), pp. 41–46.

 [Weinberg, 1971] G. M. WEINBERG, The Psychology of Computer Programming , Van Nostrand
Reinhold, New York, 1971.

 [Wesselius, 2008] J. WESSELIUS, “The Bazaar inside the Cathedral: Business Models for Internal
Markets,” IEEE Software 25 (May–June 2008), pp. 60–66.

 [Wirfs-Brock, Wilkerson, and Wiener, 1990] R. WIRFS-BROCK, B. WILKERSON, AND L. WIENER,
 Designing Object-Oriented Software , Prentice Hall, Englewood Cliffs, NJ, 1990.

 [Yang, Bhuta, Boehm, and Port, 2005] Y. YANG, J. BHUTA, B. BOEHM, AND D. N. PORT, “Value-Based
Processes for COTS-Based Applications,” IEEE Software 22 (July–August 2005), pp. 54–62.

 [Yourdon, 1992] E. YOURDON, The Decline and Fall of the American Programmer , Yourdon Press,
Upper Saddle River, NJ, 1992.

 [Zelkowitz, Shaw, and Gannon, 1979] M. V. ZELKOWITZ, A. C. SHAW, AND J. D. GANNON, Principles
of Software Engineering and Design, Prentice Hall, Englewood Cliffs, NJ, 1979.

 [Zvegintzov, 1998] N. ZVEGINTZOV, “Frequently Begged Questions and How to Answer Them,” IEEE
Software 15 (January/February 1998), pp. 93–96.

sch76183_ch01_001-034.indd 33sch76183_ch01_001-034.indd 33 04/06/10 12:30 PM04/06/10 12:30 PM

www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
www.sdtimes.com/content/article.aspx?ArticleID=30247
www.spiegel.de/panorama/0,1518,281837,00.html
www.spiegel.de/panorama/0,1518,281837,00.html
www.sptimes.com/2003/02/07/Worldandnation/Thousands_of_federal_.shtml
www.sptimes.com/2003/02/07/Worldandnation/Thousands_of_federal_.shtml

This page intentionally left blank

 Software
Engineering
Concepts

Part

A
 Chapters 2 through 9 of this book play a dual role: They introduce the reader to the
software process, and they provide the foundation for the material in the second half of
the book, where the workfl ows (activities) of software development are described.
 The software process is the way we produce software. It starts with concept
exploration and ends when the product is fi nally decommissioned. During this period,
the product goes through a series of steps such as requirements, analysis (specifi cation),
design, implementation, integration, postdelivery maintenance, and ultimately, retirement.
The software process includes the tools and techniques we use to develop and maintain
software as well as the software professionals involved.
 A variety of different software life-cycle models are discussed in detail in Chapter 2 ,
“Software Life-Cycle Models.” These include the evolution-tree model, the waterfall
model, the rapid-prototyping model, the synchronize-and-stabilize model, the open-
source model, the agile process model, the spiral model, and most important of all,
the iterative-and-incremental model. To enable the reader to decide on an appropriate
life-cycle model for a specifi c project, the various life-cycle models are compared and
contrasted.
 “The Software Process” is the title of Chapter 3 . The emphasis in this chapter is on
the Unifi ed Process, currently the most promising way of developing software. Agile
processes, an alternative approach to software development gaining in popularity, are also
treated in detail. The chapter concludes with material on software process improvement.
 Chapter 4 is entitled “Teams.” Today’s projects are too large to be completed by
a single individual within the given time constraints. Instead, a team of software
professionals collaborate on the project. The major topic of this chapter is how teams
should be organized so that team members work together productively. Various ways of
organizing teams are discussed, including democratic teams, chief programmer teams,
synchronize-and-stabilize teams, open-source teams, and agile process teams.

sch76183_ch02_035-073.indd 35sch76183_ch02_035-073.indd 35 04/06/10 12:34 PM04/06/10 12:34 PM

 A software engineer needs to be able to use a number of different tools, both analytical
and practical. In Chapter 5 , “The Tools of the Trade,” the reader is introduced to a variety
of software engineering tools. One such tool is stepwise refi nement, a technique for
decomposing a large problem into smaller, more tractable problems. Another tool is cost–
benefi t analysis, a technique for determining whether a software project is fi nancially
feasible. Then, computer-aided software engineering (CASE) tools are described. A
CASE tool is a software product that helps software engineers to develop and maintain
software. Finally, to manage the software process, it is necessary to measure various
quantities to determine whether the project is on track. These measures (metrics) are
critical to the success of a project.
 The last two topics of Chapter 5 , CASE tools and metrics, are treated in detail in
Chapters 11 through 16, which describe the specifi c workfl ows of the software life
cycle. There is a discussion of the CASE tools that support each workfl ow, as well as a
description of the metrics needed to manage that workfl ow adequately.
 Chapter 6 , “Testing,” discusses the concepts underlying testing. The consideration of
testing techniques specifi c to each workfl ow of the software life cycle is deferred until
Chapters 11 through 16.
 Chapter 7 , “From Modules to Objects,” gives a detailed explanation of classes and
objects and why the object-oriented paradigm is proving more successful than the
classical paradigm. The concepts of this chapter are utilized in the rest of the book,
particularly Chapter 11 , “Requirements”; Chapter 13 , “Object-Oriented Analysis”; and
 Chapter 14 , “Design,” in which object-oriented design is presented.
 The ideas of Chapter 7 are extended in Chapter 8 , “Reusability and Portability.” It is
important to be able to implement reusable software that can be ported to a variety of
different hardware. The fi rst part of the chapter is devoted to reuse; the topics include a
variety of reuse case studies as well as reuse strategies such as object-oriented patterns
and frameworks. Portability is the second major topic; portability strategies are presented
in some depth. A recurring theme of this chapter is the role of objects in achieving
reusability and portability.
 The last chapter in Part A is Chapter 9 , “Planning and Estimating.” Before starting
a software project, it is essential to plan the entire operation in detail. Once the project
begins, management must closely monitor progress, noting deviations from the plan
and taking corrective action where necessary. Also, it is vital that the client be provided
accurate estimates of how long the project will take and how much it will cost. Different
estimation techniques are presented, including function points and COCOMO II. A
detailed description of a software project management plan is given. The material of this
chapter is utilized in Chapters 12 and 13 . When the classical paradigm is used, major
planning and estimating activities take place at the end of the classical analysis phase, as
explained in Chapter 12 . When software is developed using the object-oriented paradigm,
this planning takes place at the end of the object-oriented analysis workfl ow (Chapter 13).

36 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 36sch76183_ch02_035-073.indd 36 04/06/10 12:34 PM04/06/10 12:34 PM

 Chapter 2
Software Life-Cycle
Models
 Learning Objectives

 After studying this chapter, you should be able to

 • Describe how software products are developed in practice.

 • Understand the evolution-tree life-cycle model.

 • Appreciate the negative impact of change on software products.

 • Utilize the iterative-and-incremental life-cycle model.

 • Comprehend the impact of Miller’s Law on software production.

 • Describe the strengths of the iterative-and-incremental life-cycle model.

 • Realize the importance of mitigating risks early.

 • Describe agile processes, including extreme programming.

 • Compare and contrast a variety of other life-cycle models.

37

 Chapter 1 describes how software products would be developed in an ideal world. The
theme of this chapter is what happens in practice. As will be explained, there are vast dif-
ferences between theory and practice.

 2.1 Software Development in Theory
 In an ideal world, a software product is developed as described in Chapter 1 . As depicted
schematically in Figure 2.1 , the system is developed from scratch; � denotes the empty
set. (See Just in Case You Wanted to Know Box 2.1 if you want to know the origin of the
term from scratch .) First the client’s Requirements are determined, and then the Analysis

sch76183_ch02_035-073.indd 37sch76183_ch02_035-073.indd 37 04/06/10 12:34 PM04/06/10 12:34 PM

is performed. When the analysis artifacts are complete, the Design is produced. This is
followed by the Implementation of the complete software product, which is then installed
on the client’s computer.
 However, software development is considerably different in practice for two reasons.
First, software professionals are human and therefore make mistakes. Second, the client’s
requirements can change while the software is being developed. In this chapter, both these
issues are discussed in some depth, but fi rst we present a mini case study, based on the case
study in [Tomer and Schach, 2000], that illustrates the issues involved.

 FIGURE 2.1
 Idealized
software
development.

Development

Requirements

Implementation

Analysis

Design

�

 Winburg Mini Case Study

 To reduce traffi c congestion in downtown Winburg, Indiana, the mayor convinces the
city to set up a public transportation system. Bus-only lanes are to be established,
and commuters will be encouraged to “park and ride”; that is, to park their cars in
suburban parking lots and then take buses from there to work and back at a cost of
one dollar per ride. Each bus is to have a fare machine that accepts only dollar bills.
Passengers insert a bill into the slot as they enter the bus. Sensors inside the fare
machine scan the bill, and the software in the machine uses an image recognition

C
2.22.2

 Mini ase Study

Just in Case You Wanted to Know Box 2.1

The term from scratch, meaning “starting with nothing,” comes from 19th century sports
terminology. Before roads (and running tracks) were paved, races had to be held on open
ground. In many cases, the starting line was a scratch in the sand. A runner who had no
advantage or handicap had to start from that line, that is, “from [the] scratch.”
 The term scratch has a different sporting connotation nowadays. A “scratch golfer” is
one whose golfi ng handicap is zero.

sch76183_ch02_035-073.indd 38sch76183_ch02_035-073.indd 38 04/06/10 12:34 PM04/06/10 12:34 PM

algorithm to decide whether the passenger has indeed inserted a valid dollar bill into
the slot. It is important that the fare machine be accurate because, once the news gets
out that any piece of paper will do the trick, fare income will plummet to effectively
zero. Conversely, if the machine regularly rejects valid dollar bills, passengers will be
reluctant to use the buses. In addition, the fare machine must be rapid. Passengers will
be equally reluctant to use the buses if the machine spends 15 seconds coming to a
decision regarding the validity of a dollar bill—it would take even a relatively small
number of passengers many minutes to board a bus. Therefore, the requirements for
the fare machine software include an average response time of less than 1 second and
an average accuracy of at least 98 percent.

 Episode 1 The fi rst version of the software is implemented.
 Episode 2 Tests show that the required constraint of an average response time of
1 second for deciding on the validity of a dollar bill is not achieved. In fact, on
average, it takes 10 seconds to get a response. Senior management discovers the
cause. It seems that, to get the required 98 percent accuracy, a programmer has been
instructed by her manager to use double-precision numbers for all mathematical cal-
culations. As a result, every operation takes at least twice as long as it would with the
usual single-precision numbers. The result is that the program is much slower than it
should be, resulting in the long response time. Calculations then show that, despite
what the manager told the programmer, the stipulated 98 percent accuracy can be at-
tained even if single-precision numbers are used. The programmer starts to make the
necessary changes to the implementation.
 Episode 3 Before the programmer can complete her work, further tests of the sys-
tem show that, even if the indicated changes to the implementation were made, the
system would still have an average response time of over 4.5 seconds, nowhere near
the stipulated 1 second. The problem is the complex image recognition algorithm.
Fortunately, a faster algorithm has just been discovered, so the fare machine software
is redesigned and reimplemented using the new algorithm. This results in the average
response time being successfully achieved.
 Episode 4 By now, the project is considerably behind schedule and way over
budget. The mayor, a successful entrepreneur, has the bright idea of asking the
software development team to try to increase the accuracy of the dollar bill rec-
ognition component of the system as much as possible, to sell the resulting pack-
age to vending machine companies. To meet this new requirement, a new design
is adopted that improves the average accuracy to over 99.5 percent. Management
decides to install that version of the software in the fare machines. At this point,
development of the software is complete. The city is later able to sell its system
to two small vending machine companies, defraying about one-third of the cost
overrun.
 Epilogue A few years later, the sensors inside the fare machine become obsolete
and need to be replaced by a newer model. Management suggests taking advantage
of the change to upgrade the hardware at the same time. The software professionals
point out that changing the hardware means that new software also is needed. They
suggest reimplementing the software in a different programming language. At the

Chapter 2 Software Life-Cycle Models 39

sch76183_ch02_035-073.indd 39sch76183_ch02_035-073.indd 39 04/06/10 12:34 PM04/06/10 12:34 PM

time of writing, the project is 6 months behind schedule and 25 percent over budget.
However, everyone involved is confi dent that the new system will be more reliable
and of higher quality, despite “minor discrepancies” in meeting its response time and
accuracy requirements.

 Figure 2.2 depicts the evolution-tree life-cycle model of the mini case study.
The leftmost boxes represent Episode 1. As shown in the fi gure, the system was
developed from scratch (�). The requirements (Requirements 1), analysis (Analysis 1),
design (Design 1), and implementation (Implementation 1) followed in turn. Next, as
previously described, trials of the fi rst version of the software showed that the average
response time of 1 second could not be achieved and the implementation had to be
modifi ed. The modifi ed implementation appears in Figure 2.2 as Implementation 2 .
However, Implementation 2 was never completed. That is why the rectangle repre-
senting Implementation 2 is drawn with a dotted line.
 In Episode 3, the design had to be changed. Specifi cally, a faster image recogni-
tion algorithm was used. The modifi ed design (Design 3) resulted in a modifi ed imple-
mentation (Implementation 3).
 Finally, in Episode 4, the requirements were changed (Requirements 4) to in-
crease the accuracy. This resulted in modifi ed specifi cations (Analysis 4), modifi ed
design (Design 4), and modifi ed implementation (Implementation 4).
 In Figure 2.2 , the solid arrows denote development and the dashed arrows de-
note maintenance. For example, when the design is changed in Episode 3, Design 3
replaced Design 1 as the design of Analysis 1 .
 The evolution-tree model is an example of a life-cycle model (or model ,
for short), that is, the series of steps to be performed while the software product is
developed and maintained. Another life-cycle model that can be used for the mini

 FIGURE 2.2 The evolution-tree life-cycle model for the Winburg mini case study. (The rectangle drawn with a
dotted line denotes the implementation that was not completed.)

Implementation2

Design4

Episode 4Episode 3Episode 2Episode 1

Analysis4

Design3

Implementation3

Requirements4

Analysis1

Design1

Implementation4Implementation1

Requirements1

Development
Maintenance�

40 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 40sch76183_ch02_035-073.indd 40 04/06/10 12:34 PM04/06/10 12:34 PM

case study is the waterfall life-cycle model [Royce, 1970]; a simplifi ed version
of the waterfall model is depicted in Figure 2.3 . This classical life-cycle model can
be viewed as the linear model of Figure 2.1 with feedback loops. Then, if a fault is
found during the design that was caused by a fault in the requirements, following the
dashed upward arrows, the software developers can backtrack from the design up to
the analysis and hence to the requirements and make the necessary corrections there.
Then, they move down to the analysis, correct the specifi cation document to refl ect
the corrections to the requirements, and in turn, correct the design document. Design
activities can now resume where they were suspended when the fault was discovered.
Again, the solid arrows denote development; the dashed arrows, maintenance.
 The waterfall model can certainly be used to represent the Winburg mini case study,
but, unlike the evolution-tree model of Figure 2.2 , it cannot show the order of events.
The evolution-tree model has a further advantage over the waterfall model. At the end
of each episode we have a baseline , that is, a complete set of artifacts (recall that an
 artifact is a constituent component of a software product). There are four baselines
in Figure 2.2 . They are

 At the end of Episode 1: Requirements 1 , Analysis 1 , Design 1 , Implementation 1
 At the end of Episode 2: Requirements 1 , Analysis 1 , Design 1 , Implementation 2
 At the end of Episode 3: Requirements 1 , Analysis 1 , Design 3 , Implementation 3
 At the end of Episode 4: Requirements 4 , Analysis 4 , Design 4 , Implementation 4

 The fi rst baseline is the initial set of artifacts; the second baseline refl ects the modifi ed
(but never completed) Implementation 2 of Episode 2, together with the unchanged
requirements, analysis, and design of Episode 1. The third baseline is the same as the
fi rst baseline but with the design and implementation changed. The fourth baseline is the
complete set of new artifacts shown in Figure 2.2 . We revisit the concept of a baseline in
 Chapters 5 and 16 .

Chapter 2 Software Life-Cycle Models 41

 FIGURE 2.3
A simplifi ed
version of the
waterfall life-
cycle model. Requirements

Implementation

Analysis

Design

�

Development
Maintenance

sch76183_ch02_035-073.indd 41sch76183_ch02_035-073.indd 41 04/06/10 12:34 PM04/06/10 12:34 PM

 2.3 Lessons of the Winburg Mini Case Study
 The Winburg mini case study depicts the development of a software product that goes awry
for a number of unrelated causes, such as a poor implementation strategy (the unnecessary
use of double-precision numbers) and the decision to use an algorithm that was too slow.
In the end, the project was a success. However, the obvious question is, Is software devel-
opment really as chaotic in practice? In fact, the mini case study is far less traumatic than
many, if not the majority of, software projects. In the Winburg mini case study, there were
only two new versions of the software because of faults (the inappropriate use of double-
precision numbers; the utilization of an algorithm that could not meet the response time
requirement), and only one new version because of a change made by the client (the need
for increased accuracy).
 Why are so many changes to a software product needed? First, as previously stated, soft-
ware professionals are human and therefore make mistakes. Second, a software product is a
model of the real world, and the real world is continually changing. This issue is discussed
at greater length in Section 2.4.

42 Part A Software Engineering Concepts

 Teal Tractors Mini Case Study

 Teal Tractors, Inc., sells tractors in most areas of the United States. The company
has asked its software division to develop a new product that can handle all aspects
of its business. For example, the product must be able to handle sales, inventory, and
commissions paid to the sales staff, as well as providing all necessary accounting
functions. While this software product is being implemented, Teal Tractors buys a
Canadian tractor company. The management of Teal Tractors decides that, to save
money, the Canadian operations are to be integrated into the U.S. operations. That
means that the software has to be changed before it is completed:

 1. It must be modifi ed to handle additional sales regions.
 2. It must be extended to handle those aspects of the business that are handled differ-

ently in Canada, such as taxes.
 3. It must be extended to handle two different currencies, U.S. dollars and Canadian

dollars.

 Teal Tractors is a rapidly growing company with excellent future prospects. The
takeover of the Canadian tractor company is a positive development, one that may
well lead to even greater profi ts in future years. But, from the viewpoint of the soft-
ware division, the purchase of the Canadian company could be disastrous. Unless the
requirements, analysis, and design have been performed with a view to incorporating
possible future extensions, the work involved in adding the Canadian sales regions may
be so great that it might be more effective to discard everything done to date and start
from scratch. The reason is that changing the product at this stage is similar to trying to
fi x a software product late in its life cycle (see Figure 1.6). Extending the software to

C Mini ase Study

2.42.4

sch76183_ch02_035-073.indd 42sch76183_ch02_035-073.indd 42 04/06/10 12:34 PM04/06/10 12:34 PM

handle aspects specifi c to the Canadian market, as well as Canadian currency, may be
equally hard.
 Even if the software has been well thought out and the original design is indeed
extensible, the design of the resulting patched-together product cannot be as cohesive as
it would have been if it had been developed from the very beginning to cater to both the
United States and Canada. This can have severe implications for future maintenance.
 The software division of Teal Tractors is a victim of the moving-target problem .
That is, while the software is being developed, the requirements change. It does not
matter that the reason for the change is otherwise extremely worthwhile. The fact is
that the takeover of the Canadian company could well be detrimental to the quality of
the software being developed.

 In some cases, the reason for the moving target is less benign. Sometimes a powerful
senior manager within an organization keeps changing his or her mind regarding the func-
tionality of a software product being developed. In other cases, there is feature creep , a
succession of small, almost trivial, additions to the requirements. But whatever the reason
may be, frequent changes, no matter how minor they may seem, are harmful to the health
of a software product. It is important that a software product be designed as a set of com-
ponents that are as independent as possible, so that a change to one part of the software
does not induce a fault in an apparently unrelated part of the code, a so-called regression
fault . When numerous changes are made, the effect is to induce dependencies within the
code. Finally, there are so many dependencies that virtually any change induces one or
more regression faults. At that time, the only thing that can be done is to redesign the entire
software product and reimplement it.
 Unfortunately, there is no known solution to the moving-target problem. With regard
to positive changes to requirements, growing companies are always going to change, and
these changes have to be refl ected in the mission-critical software products of the company.
As for negative changes, if the individual calling for those changes has suffi cient clout,
nothing can be done to prevent the changes being implemented, to the detriment of the
further maintainability of the software product.

 2.5 Iteration and Incrementation
 As a consequence of both the moving-target problem and the need to correct the inevitable
mistakes made while a software product is being developed, the life cycle of actual soft-
ware products resembles the evolution-tree model of Figure 2.2 or the waterfall model of
 Figure 2.3 , rather than the idealized chain of Figure 2.1 . One consequence of this reality
is that it does not make much sense to talk about (say) “ the analysis phase.” Instead, the
operations of the analysis phase are spread out over the life cycle. Similarly, Figure 2.2
shows four different versions of the implementation, one of which (Implementation 2)
was never completed because of the moving-target problem.
 Consider successive versions of an artifact, for example, the specifi cation document or
a code module. From this viewpoint, the basic process is iterative. That is, we produce the
fi rst version of the artifact, then we revise it and produce the second version, and so on. Our

Chapter 2 Software Life-Cycle Models 43

sch76183_ch02_035-073.indd 43sch76183_ch02_035-073.indd 43 04/06/10 12:34 PM04/06/10 12:34 PM

intent is that each version is closer to our target than its predecessor and fi nally we con-
struct a version that is satisfactory. Iteration is an intrinsic aspect of software engineering,
and iterative life-cycle models have been used for over 30 years [Larman and Basili, 2003].
For example, the waterfall model, which was fi rst put forward in 1970, is iterative (but not
incremental).
 A second aspect of developing real-world software is the restriction imposed on us by
 Miller’s Law . In 1956, George Miller, a professor of psychology, showed that, at any one
time, we humans are capable of concentrating on only approximately seven chunks (units
of information) [Miller, 1956]. However, a typical software artifact has far more than seven
chunks. For example, a code artifact is likely to have considerably more than seven variables,
and a requirements document is likely to have many more than seven requirements. One way
we humans handle this restriction on the amount of information we can handle at any one
time is to use stepwise refi nement . That is, we concentrate on those aspects that are cur-
rently the most important and postpone until later those aspects that are currently less critical.
In other words, every aspect is eventually handled but in order of current importance. This
means that we start off by constructing an artifact that solves only a small part of what we
are trying to achieve. Then, we consider further aspects of the problem and add the resulting
new pieces to the existing artifact. For example, we might construct a requirements document
by considering the seven requirements we consider the most important. Then, we would con-
sider the seven next most important requirements, and so on. This is an incremental process.
 Incrementation is also an intrinsic aspect of software engineering; incremental software
development is over 45 years old [Larman and Basili, 2003].
 In practice, iteration and incrementation are used in conjunction with one another. That is,
an artifact is constructed piece by piece (incrementation), and each increment goes through
multiple versions (iteration). These ideas are illustrated in Figure 2.2 , which represents the life
cycle for the Winburg mini case study (Sections 2.2 and 2.3). As shown in that fi gure, there
is no single “requirements phase” as such. Instead, the client’s requirements are extracted
and analyzed twice, yielding the original requirements (Requirements 1) and the modifi ed
requirements (Requirements 4). Similarly, there is no single “implementation phase,” but
rather four separate episodes in which the code is produced and then modifi ed.
 These ideas are generalized in Figure 2.4 , which refl ects the basic concepts underly-
ing the iterative-and-incremental life-cycle model [Jacobson, Booch, and Rumbaugh,
1999]. The fi gure shows the development of a software product in four increments, labeled
Increment A, Increment B, Increment C, and Increment D. The horizontal axis is time,
and the vertical axis is person-hours (one person-hour is the amount of work that one person
can do in 1 hour), so the shaded area under each curve is the total effort for that increment.
 It is important to appreciate that Figure 2.4 depicts just one possible way a software
product can be decomposed into increments. Another software product may be constructed
in just 2 increments, whereas a third may require 14. Furthermore, the fi gure is not intended
to be an accurate representation of precisely how a software product is developed. Instead,
it shows how the emphasis changes from iteration to iteration.
 The sequential phases of Figure 2.1 are artifi cial constructs. Instead, as explicitly
refl ected in Figure 2.4 , we must acknowledge that different workfl ows (activities) are
performed over the entire life cycle. There are fi ve core workfl ows , the requirements
workfl ow , analysis workfl ow , design workfl ow , implementation workfl ow , and
 test workfl ow , and, as stated in the previous sentence, all fi ve are performed over the life

44 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 44sch76183_ch02_035-073.indd 44 04/06/10 12:34 PM04/06/10 12:34 PM

cycle of a software product. However, there are times when one workfl ow predominates
over the other four.
 For example, at the beginning of the life cycle, the software developers extract an initial
set of requirements. In other words, at the beginning of the iterative-and-incremental life
cycle, the requirements workfl ow predominates. These requirements artifacts are extended
and modifi ed during the remainder of the life cycle. During that time, the other four
workfl ows (analysis, design, implementation, and test) predominate. In other words, the
requirements workfl ow is the major workfl ow at the beginning of the life cycle, but its rela-
tive importance decreases thereafter. Conversely, the implementation and test workfl ows
occupy far more of the time of the members of the software development team toward the
end of the life cycle than they do at the beginning.
 Planning and documentation activities are performed throughout the iterative-and-
incremental life cycle. Furthermore, testing is a major activity during each iteration, and
particularly at the end of each iteration. In addition, the software as a whole is thoroughly
tested once it has been completed; at that time, testing and then modifying the implemen-
tation in the light of the outcome of the various tests is virtually the sole activity of the
software team. This is refl ected in the test workfl ow of Figure 2.4 .
 Figure 2.4 shows four increments. Consider Increment A, depicted by the column on
the left. At the beginning of this increment, the requirements team members determine the
client’s requirements. Once most of the requirements have been determined, the fi rst ver-
sion of part of the analysis can be started. When suffi cient progress has been made with
the analysis, the fi rst version of the design can be started. Even some coding is often done
during this fi rst increment, perhaps in the form of a proof-of-concept prototype to test
the feasibility of part of the proposed software product. Finally, as previously mentioned,

Chapter 2 Software Life-Cycle Models 45

 FIGURE 2.4 The construction of a software product in four increments.

Increment A Increment DIncrement CIncrement B

Requirements
workflow

Analysis
workflow

Design
workflow

Implementation
workflow

Test
workflow

Pe
rs

on
-h

ou
rs

Time

sch76183_ch02_035-073.indd 45sch76183_ch02_035-073.indd 45 04/06/10 12:34 PM04/06/10 12:34 PM

planning, testing, and documentation activities start on Day One and continue from then
on, until the software product is fi nally delivered to the client.
 Similarly, the primary concentration during Increment B is on the requirements and
analysis workfl ows, and then on the design workfl ow. The emphasis during Increment C
is fi rst on the design workfl ow, and then on the implementation workfl ow and test workfl ow.
Finally, during Increment D, the implementation workfl ow and test workfl ow dominate.
 As refl ected in Figure 1.4 , about one-fi fth of the total effort is devoted to the require-
ments and analysis workfl ows (together), another one-fi fth to the design workfl ow, and
about three-fi fths to the implementation workfl ow. The relative total sizes of the shaded
areas in Figure 2.4 refl ect these values.
 There is iteration during each increment of Figure 2.4 . This is shown in Figure 2.5 ,
which depicts three iterations during Increment B. (Figure 2.5 is an enlarged view of the
second column of Figure 2.4 .) As shown in Figure 2.5 , each iteration involves all fi ve work-
fl ows but again in varying proportions.
 Again, it must be stressed that Figure 2.5 is not intended to show that every incre-
ment involves exactly three iterations. The number of iterations varies from increment to
increment. The purpose of Figure 2.5 is to show the iteration within each increment and
repeat that all fi ve workfl ows (requirements, analysis, design, implementation, and testing,
together with planning and documentation) are carried out during almost every iteration,
although in varying proportions each time.
 As previously explained, Figure 2.4 refl ects the incrementation intrinsic to the devel-
opment of every software product. Figure 2.5 explicitly displays the iteration that under-
lies incrementation. Specifi cally, Figure 2.5 depicts three consecutive iterative steps, as
opposed to one large incrementation. In more detail, Iteration B.1 consists of requirements,

 FIGURE 2.5
 The three
iterations of
Increment B
of the iterative-
and-incremental
life-cycle model
of Figure 2.4 .

Increment B

Requirements
workflow

Analysis
workflow

Design
workflow

Implementation
workflow

Iteration B.1 Iteration B.2 Iteration B.3

Test
workflow

Pe
rs

on
-h

ou
rs

Time

Baseline

46 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 46sch76183_ch02_035-073.indd 46 04/06/10 12:34 PM04/06/10 12:34 PM

analysis, design, implementation, and test workfl ows, represented by the leftmost dashed
rectangle with rounded corners. The iteration continues until the artifacts of each of the fi ve
workfl ows are satisfactory.
 Next, all fi ve sets of artifacts are iterated in Iteration B.2. This second iteration is simi-
lar in nature to the fi rst. That is, the requirements artifacts are improved, which in turn trig-
gers improvements to the analysis artifacts, and so on, as refl ected in the second iteration
of Figure 2.5 , and similarly for the third iteration.
 The process of iteration and incrementation starts at the beginning of Increment A and
continues until the end of Increment D. The completed software product is then installed
on the client’s computer.

Chapter 2 Software Life-Cycle Models 47

C Mini ase Study

2.62.6 Winburg Mini Case Study Revisited

 Figure 2.6 shows the evolution-tree model of the Winburg mini case study (Figure 2.2)
superimposed on the iterative-and-incremental model (the test workfl ow is not shown
because the evolution-tree model assumes continual testing, explained in Section 1.7).
 Figure 2.6 sheds additional light on the nature of incrementation:

 • Increment A corresponds to Episode 1, Increment B corresponds to Episode 2,
and so on.

 FIGURE 2.6 The evolution-tree life-cycle model for the Winburg mini case study (Figure 2.2) superimposed on
the iterative-and-incremental life-cycle model.

Increment A Increment DIncrement CIncrement B

Requirements
workflow

Analysis
workflow

Design
workflow

Implementation
workflow

Pe
rs

on
-h

ou
rs

Time

Requirements1

Episode 2

Analysis1

Requirements4

Design3

Analysis4

Episode 3

Implementation4

Episode 4

Design4

Implementation1

Episode 1

Implementation3

�
Development
Maintenance

Implementation2

Design1

sch76183_ch02_035-073.indd 47sch76183_ch02_035-073.indd 47 04/06/10 12:34 PM04/06/10 12:34 PM

48 Part A Software Engineering Concepts

 • From the viewpoint of the iterative-and-incremental model, two of the increments
do not include all four workfl ows. In more detail, Increment B (Episode 2) in-
cludes only the implementation workfl ow, and Increment C (Episode 3) includes
only the design workfl ow and the implementation workfl ow. The iterative-and-
incremental model does not require that every workfl ow be performed during
every increment.

 • Furthermore, in Figure 2.4 most of the requirements workfl ow is performed
in Increment A and Increment B, whereas in Figure 2.6 it is performed in
Increment A and Increment D. Also, in Figure 2.4 most of the analysis is per-
formed in Increment B, whereas in Figure 2.6 the analysis workfl ow is performed
in Increment A and Increment D. This indicates that neither Figure 2.4 nor
 Figure 2.6 represents the way every software product is built. Instead, each fi gure
shows the way that one particular software product is built, highlighting the under-
lying iteration and incrementation.

 • The small size and abrupt termination of the implementation workfl ow during
Increment B (Episode 2) of Figure 2.6 shows that Implementation 2 was not
completed. The gray piece refl ects the part of the implementation workfl ow that
was not performed.

 • The three dashed arrows of the evolution-tree model show that each incre-
ment constitutes maintenance of the previous increment. In this example, the
second and third increments are instances of corrective maintenance. That
is, each increment corrects faults in the previous increment. As previously
explained, Increment B (Episode 2) corrects the implementation workfl ow by
replacing double-precision variables with the usual single-precision variables.
Increment C (Episode 3) corrects the design workfl ow by using a faster image
recognition algorithm, thereby enabling the response time requirement to be
met. Corresponding changes then have to be made to the implementation work-
fl ow. Finally, in Increment D (Episode 4) the requirements are changed to
stipulate improved overall accuracy, an instance of perfective maintenance. Cor-
responding changes are then made to the analysis workfl ow, design workfl ow,
and implementation workfl ow.

 2.7 Risks and Other Aspects of Iteration
and Incrementation

 Another way of looking at iteration and incrementation is that the project as a whole is
divided into smaller mini projects (or increments). Each mini project extends the require-
ments, analysis, design, implementation, and testing artifacts. Finally, the resulting set of
artifacts constitutes the complete software product.
 In fact, each mini project consists of more than just extending the artifacts. It is essential
to check that each artifact is correct (the test workfl ow) and make any necessary changes
to the relevant artifacts. This process of checking and modifying, then rechecking and
remodifying, and so on, is clearly iterative in nature. It continues until the members of the

sch76183_ch02_035-073.indd 48sch76183_ch02_035-073.indd 48 10/06/10 2:10 PM10/06/10 2:10 PM

development team are satisfi ed with all the artifacts of the current mini project (or incre-
ment). When that happens, they proceed to the next increment.
 Comparing Figure 2.3 (the waterfall model) with Figure 2.5 (view of the iterations within
Increment B) shows that each iteration can be viewed as a small but complete waterfall
model. That is, during each iteration the members of the development team go through the
classical requirements, analysis, design, and implementation phases on a specifi c portion of
the software product. From this viewpoint, the iterative-and-incremental model of Figures 2.4
and 2.5 can be viewed as a consecutive series of waterfall models.
 The iterative-and-incremental model has many strengths:

 1. Multiple opportunities are offered for checking that the software product is correct.
Every iteration incorporates the test workfl ow, so every iteration is another chance to
check all the artifacts developed up to this point. The later faults are detected and cor-
rected, the higher is the cost, as shown in Figure 1.6 . Unlike the classical waterfall
model, each of the many iterations of the iterative-and-incremental model offers a fur-
ther opportunity to fi nd faults and correct them, thereby saving money.

 2. The robustness of the underlying architecture can be determined relatively early in
the life cycle. The architecture of a software product includes the various compo-
nent artifacts and how they fit together. An analogy is the architecture of a cathe-
dral, which might be described as Romanesque, Gothic, or Baroque, among other
possibilities. Similarly, the architecture of a software product might be described
as object-oriented (Chapter 7), pipes and filters (UNIX or Linux components), or
client–server (with a central server providing file storage for a network of client
computers). The architecture of a software product developed using the iterative-
and-incremental model must have the property that it can be extended continually
(and, if necessary, easily changed) to incorporate the next increment. Being able
to handle such extensions and changes without falling apart is called robustness .
Robustness is an important quality during development of a software product; it is
vital during postdelivery maintenance. So, if a software product is to last through
the usual 12, 15, or more years of postdelivery maintenance, the underlying archi-
tecture has to be robust. When an iterative-and-incremental model is used, it soon
becomes apparent whether or not the architecture is robust. If, in the course of
incorporating (say) the third increment, it is clear that the software developed to
date has to be drastically reorganized and large parts reimplemented, then it is clear
that the architecture is not sufficiently robust. The client must decide whether to
abandon the project or start again from scratch. Another possibility is to redesign
the architecture to be more robust, and then reuse as much of the current artifacts
as possible before proceeding to the next increment. Another reason why a robust
architecture is so important is the moving-target problem (Section 2.4). It is all but
certain that the client’s requirements will change, either because of growth within
the client’s organization or because the client keeps changing his or her mind as
to what the target software has to do. The more robust the architecture, the more
resilient to change the software will be. It is not possible to design an architecture
that can cope with too many drastic changes. But, if the required changes are rea-
sonable in scope, a robust architecture should be capable of incorporating those
changes without having to be drastically restructured.

Chapter 2 Software Life-Cycle Models 49

sch76183_ch02_035-073.indd 49sch76183_ch02_035-073.indd 49 04/06/10 12:34 PM04/06/10 12:34 PM

 3. The iterative-and-incremental model enables us to mitigate risks early. Risks are invariably
involved in software development and maintenance. In the Winburg mini case study, for
example, the original image recognition algorithm was not fast enough; there is an ever-
present risk that a completed software product will not meet its time constraints. Develop-
ing a software product incrementally enables us to mitigate such risks early in the life cycle.
For example, suppose a new local area network (LAN) is being developed and there
is concern that the current network hardware is inadequate for the new software prod-
uct. Then, the fi rst one or two iterations are directed toward constructing those parts of
the software that interface with the network hardware. If it turns out that, contrary to the
developers’ fears, the network has the necessary capability, the developers can proceed with
the project, confi dent that this risk has been mitigated. On the other hand, if the network
indeed cannot cope with the additional traffi c that the new LAN generates, this is reported
to the client early in the life cycle, when only a small proportion of the budget has been
spent. The client can now decide whether to cancel the project, extend the capabilities of the
existing network, buy a new and more powerful network, or take some other action.

 4. We always have a working version of the software. Suppose a software product is developed
using the classical life-cycle model of Figure 2.1 . Only at the very end of the project is there
a working version of the software product. In contrast, when the iterative-and-incremental
life-cycle model is used, at the end of each iteration, there is a working version of part of the
overall target software product. The client and the intended users can experiment with that
version and determine what changes are needed to ensure that the future complete imple-
mentation meets their needs. These changes can be made to a subsequent increment, and
the client and users can then determine if further changes are needed. A variation on this is
to deliver partial versions of the software product, not only for experimentation but also to
smooth the introduction of the new software product in the client organization. Change is
almost always perceived as a threat. All too often, users fear that the introduction of a new
software product within the workplace will result in them losing their jobs to a computer.
However, introducing a software product gradually can have two benefi ts. First, the under-
standable fear of being replaced by a computer is diminished. Second, it is generally easier
to learn the functionality of a complex software product if that functionality is introduced
stepwise over a period of months, rather than as a whole.

 5. There is empirical evidence that the iterative-and-incremental life cycle works. The pie
chart of Figure 1.1 shows the results of the report from the Standish Group on projects
completed in 2006 [Rubenstein, 2007]. In fact, this report (the so-called CHAOS Report—
see Just in Case You Wanted to Know Box 2.2) is produced every 2 years. Figure 2.7
shows the results for 1994 through 2006. The percentage of successful products increased
steadily from 16 percent in 1994 to 34 percent in 2002, but then decreased to 29 percent in
2004. In both the 2002 [Softwaremag.com, 2004] and 2004 [Hayes, 2004] reports, one of
the factors associated with the successful projects was the use of an iterative process. (The
reasons given for the decrease in the percentage of successful projects in 2004 included:
more large projects than in 2002, use of the waterfall model, lack of user involvement, and
lack of support from senior executives [Hayes, 2004].) Then, the percentage of successful
projects increased again in the 2006 study to 35 percent. The president of the Standish
Group, Jim Johnson, attributed this increase to three factors: better project management,
the emerging Web infrastructure, and (again) iterative development [Rubenstein, 2007].

50 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 50sch76183_ch02_035-073.indd 50 04/06/10 12:34 PM04/06/10 12:34 PM

 2.8 Managing Iteration and Incrementation
 At fi rst glance, the iterative-and-incremental model of Figures 2.4 and 2.5 looks totally cha-
otic. Instead of the orderly progression from requirements to implementation of the waterfall
model (Figure 2.3), it appears that developers do whatever they like, perhaps some coding in
the morning, an hour or two of design after lunch, and then half an hour of specifying before
going home. That is not the case. On the contrary, the iterative-and-incremental model is as
regimented as the waterfall model, because as previously pointed out, developing a software
product using the iterative-and-incremental model is nothing more or less than developing a
series of smaller software products, all using the waterfall model.

 FIGURE 2.7
 Results of the
Standish Group
CHAOS Report
from 1994 to
2006.

0% 20% 40% 60% 100%80%

2004

2006

2002

2000

1998

1996

1994

29% 53% 18%

35% 46% 19%

34% 51% 15%

28% 49% 23%

26% 46% 28%

27% 33% 40%

16% 53% 31%

Completed on time and within budget
Late, over budget, or with features missing
Canceled before completion

 Just in Case You Wanted to Know Box 2.2

 The term CHAOS is an acronym. For some unknown reason, the Standish Group keeps the
acronym top secret. They state [Standish, 2003]:

 Only a few people at The Standish Group, and any one of the 360 people who received and
saved the T-shirts we gave out after they completed the fi rst survey in 1994, know what the
CHAOS letters represent.

sch76183_ch02_035-073.indd 51sch76183_ch02_035-073.indd 51 04/06/10 12:34 PM04/06/10 12:34 PM

 In more detail, as shown in Figure 2.3 , developing a software product using the
waterfall model means successively performing the requirements, analysis, design, and
implementation phases (in that order) on the software product as a whole. If a problem
is encountered, the feedback loops of Figure 2.3 (dashed arrows) are followed; that is,
iteration (maintenance) is performed. However, if the same software product is devel-
oped using the iterative-and-incremental model, the software product is treated as a
set of increments. For each increment in turn, the requirements, analysis, design, and
implementation phases (in that order) are repeatedly performed on that increment until
it is clear that no further iteration is needed. In other words, the project as a whole is
broken up into a series of waterfall mini projects. During each mini project, iteration is
performed as needed, as shown in Figure 2.5 . Therefore, the reason the previous para-
graph stated that the iterative-and-incremental model is as regimented as the waterfall
model is because the iterative-and-incremental model is the waterfall model, applied
successively.

 2.9 Other Life-Cycle Models
 We now consider a number of other life-cycle models, including the spiral model and the
synchronize-and-stabilize model. We begin with the infamous code-and-fi x model.

 2.9.1 Code-and-Fix Life-Cycle Model
 It is unfortunate that so many products are developed using what might be termed the
 code-and-fi x life-cycle model . The product is implemented without requirements or
specifi cations, or any attempt at design. Instead, the developers simply throw code together
and rework it as many times as necessary to satisfy the client. This approach is shown in
 Figure 2.8 , which clearly displays the absence of requirements, specifi cations, and design.
Although this approach may work well on short programming exercises 100 or 200 lines
long, the code-and-fi x model is totally unsatisfactory for products of any reasonable size.
 Figure 1.6 shows that the cost of changing a software product is relatively small if the

52 Part A Software Engineering Concepts

 FIGURE 2.8
The code-and-
fi x life-cycle
model.

Implement the
first version

Modify until
client is satisfied

Postdelivery
maintenance

Retirement
Development
Maintenance

sch76183_ch02_035-073.indd 52sch76183_ch02_035-073.indd 52 04/06/10 12:34 PM04/06/10 12:34 PM

change is made during the requirements, analysis, or design phases but grows unaccept-
ably large if changes are made after the product has been coded or, worse, if it has already
been delivered and installed on the client’s computer. Hence, the cost of the code-and-fi x
approach is actually far greater than the cost of a properly specifi ed and meticulously de-
signed product. In addition, maintenance of a product can be extremely diffi cult without
specifi cation or design documents, and the chances of a regression fault occurring are con-
siderably greater. Instead of the code-and-fi x approach, it is essential that, before develop-
ment of a product begins, an appropriate life-cycle model be chosen.
 Regrettably, all too many projects use the code-and-fi x model. The problem is particu-
larly acute in organizations that measure progress solely in terms of lines of code, so mem-
bers of the software development team are pressured into churning out as many lines of
code as possible, starting on Day One of the project. The code-and-fi x model is the easiest
way to develop software—and by far the worst way.
 A simplifi ed version of the waterfall model was presented in Section 2.2. We now con-
sider that model in more detail.

 2.9.2 Waterfall Life-Cycle Model
 The waterfall life-cycle model was fi rst put forward by Royce [1970]. Figure 2.9 shows
the feedback loops for maintenance while the product is being developed, as refl ected in
 Figure 2.3 , the simplifi ed waterfall model. Figure 2.9 also shows the feedback loops for
postdelivery maintenance.
 A critical point regarding the waterfall model is that no phase is complete until the
documentation for that phase has been completed and the products of that phase have been
approved by the software quality assurance (SQA) group. This carries over into modifi ca-
tions; if the products of an earlier phase have to be changed as a consequence of following

Chapter 2 Software Life-Cycle Models 53

 FIGURE 2.9
The full
waterfall life-
cycle model.

Requirements

Analysis

Design

Implementation

Retirement

Postdelivery
maintenance

Changed
requirements

Development
Maintenance

sch76183_ch02_035-073.indd 53sch76183_ch02_035-073.indd 53 04/06/10 12:34 PM04/06/10 12:34 PM

a feedback loop, that earlier phase is deemed to be complete only when the documentation
for the phase has been modifi ed and the modifi cations have been checked by the SQA
group. Inherent in every phase of the waterfall model is testing. Testing is not a separate
phase to be performed only after the product has been constructed, nor is it to be performed
only at the end of each phase. Instead, as stated in Section 1.7, testing should proceed con-
tinually throughout the software process. In particular, during maintenance, it is necessary
to ensure not only that the modifi ed version of the product still does what the previous ver-
sion did—and still does it correctly (regression testing)—but that it also satisfi es any new
requirements imposed by the client.
 The waterfall model has many strengths, including the enforced disciplined
approach—the stipulation that documentation be provided at each phase and the require-
ment that all the products of each phase (including the documentation) be meticulously
checked by SQA. However, the fact that the waterfall model is documentation driven
can also be a weakness. To see this, consider the following two somewhat bizarre
scenarios.
 First, Joe and Jane Johnson decide to build a house. They consult with an architect.
Instead of showing them sketches, plans, and perhaps a scale model, the architect gives
them a 20-page single-spaced typed document describing the house in highly technical
terms. Even though both Joe and Jane have no previous architectural experience and hardly
understand the document, they enthusiastically sign it and say, “Go right ahead, build the
house!”
 Another scenario is as follows: Mark Marberry buys his suits by mail order. Instead
of mailing him pictures of their suits and samples of available cloths, the company sends
Mark a written description of the cut and the cloth of their products. Mark then orders a suit
solely on the basis of a written description.
 The preceding two scenarios are highly unlikely. Nevertheless, they typify precisely the
way software is often constructed using the waterfall model. The process begins with the
specifi cations. In general, specifi cation documents are long, detailed, and, quite frankly,
boring to read. The client is usually inexperienced in the reading of software specifi cations,
and this diffi culty is compounded by the fact that specifi cation documents are usually writ-
ten in a style with which the client is unfamiliar. The diffi culty is even worse when the
specifi cations are written in a formal specifi cation language like Z [Spivey, 1992] (Section
12.9). Nevertheless, the client proceeds to sign off on the specifi cation document, whether
properly understood or not. In many ways there is little difference between Joe and Jane
Johnson contracting to have a house built from a written description that they only partially
comprehend and clients approving a software product described in terms of a specifi cation
document that they only partially understand.
 Mark Marberry and his mail-order suits may seem bizarre in the extreme, but that is
precisely what happens when the waterfall model is used in software development. The fi rst
time that the client sees a working product is only after the entire product has been coded.
Small wonder that software developers live in fear of the sentence, “I know this is what I
asked for, but it isn’t really what I wanted.”
 What has gone wrong? There is a considerable difference between the way a client un-
derstands a product as described by the specifi cation document and the actual product. The
specifi cations exist only on paper; the client therefore cannot really understand what the
product itself will be like. The waterfall model, depending as it does so crucially on written

54 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 54sch76183_ch02_035-073.indd 54 04/06/10 12:34 PM04/06/10 12:34 PM

specifi cations, can lead to the construction of products that simply do not meet the client’s
real needs.
 In fairness it should be pointed out that, just as an architect can help a client understand
what is to be built by providing scale models, sketches, and plans, so the software engineer
can use graphical techniques, such as data fl ow diagrams (Section 12.3) or UML diagrams
(Chapter 17) to communicate with the client. The problem is that these graphical aids do
not describe how the fi nished product will work. For example, there is a considerable dif-
ference between a fl owchart (a diagrammatic description of a product) and the working
product itself. In this book, two solutions are put forward for solving the problem that the
specifi cation document generally does not describe a product in a way that enables the cli-
ent to determine whether the proposed product meets his or her needs. The object-oriented
solution is described in Chapters 11 and 13 . The classical solution is the rapid-prototyping
model, described in Section 2.9.3.

 2.9.3 Rapid-Prototyping Life-Cycle Model
 A rapid prototype is a working model that is functionally equivalent to a subset of the
product. For example, if the target product is to handle accounts payable, accounts receiv-
able, and warehousing, then the rapid prototype might consist of a product that performs
the screen handling for data capture and prints the reports, but does no fi le updating or error
handling. A rapid prototype for a target product that is to determine the concentration of
an enzyme in a solution might perform the calculation and display the answer, but without
doing any validation or reasonableness checking of the input data.
 The fi rst step in the rapid-prototyping life-cycle model depicted in Figure 2.10 is
to build a rapid prototype and let the client and future users interact and experiment with
the rapid prototype. Once the client is satisfi ed that the rapid prototype indeed does most of

Chapter 2 Software Life-Cycle Models 55

 FIGURE 2.10
The rapid-
prototyping life-
cycle model.

Analysis

Design

Implementation

Retirement

Postdelivery
maintenance

Changed
requirements

Rapid
prototype

Development
Maintenance

sch76183_ch02_035-073.indd 55sch76183_ch02_035-073.indd 55 04/06/10 12:34 PM04/06/10 12:34 PM

what is required, the developers can draw up the specifi cation document with some assur-
ance that the product meets the client’s real needs.
 Having produced the rapid prototype, the software process continues as shown in
 Figure 2.10 . A major strength of the rapid-prototyping model is that the development
of the product is essentially linear, proceeding from the rapid prototype to the delivered
product; the feedback loops of the waterfall model (Figure 2.9) are less likely to be
needed in the rapid-prototyping model. There are a number of reasons for this. First, the
members of the development team use the rapid prototype to construct the specifi cation
document. Because the working rapid prototype has been validated through interaction
with the client, it is reasonable to expect that the resulting specifi cation document will be
correct. Second, consider the design. Even though the rapid prototype has (quite rightly)
been hurriedly assembled, the design team can gain insight from it—at worst it will be of
the “how not to do it” variety. Again, the feedback loops of the waterfall model are less
likely to be needed here.
 Implementation comes next. In the waterfall model, implementation of the design some-
times leads to design faults coming to light. In the rapid-prototyping model, the fact that a
preliminary working version of the software product has already been built tends to lessen
the need to repair the design during or after implementation. The prototype has given some
insights to the design team, even though it may refl ect only partial functionality of the
complete target product.
 Once the product has been accepted by the client and installed, postdelivery main-
tenance begins. Depending on the specifi c maintenance task that has to be performed,
the cycle is reentered either at the requirements, analysis, design, or implementation
phase.
 An essential aspect of a rapid prototype is embodied in the word rapid . The develop-
ers should endeavor to construct the rapid prototype as rapidly as possible to speed up the
software development process. After all, the sole use of the rapid prototype is to determine
what the client’s real needs are; once this has been determined, the rapid prototype imple-
mentation is discarded but the lessons learned are retained and used in subsequent develop-
ment phases. For this reason, the internal structure of the rapid prototype is not relevant.
What is important is that the prototype be built rapidly and modifi ed rapidly to refl ect the
client’s needs. Therefore, speed is of the essence.
 Rapid prototyping is discussed in greater detail in Chapter 11 .

 2.9.4 Open-Source Life-Cycle Model
 Almost all successful open-source software projects go through two informal phases.
First, a single individual has an idea for a program, such as an operating system (Linux), a
Net browser (Firefox), or a Web server (Apache). He or she builds an initial version, which
is then made available for distribution free of charge to anyone who would like a copy;
nowadays, this is done via the Internet, at sites like SourceForge.net and FreshMeat.net.
If someone downloads a copy of the initial version and thinks that the program fulfi lls a
need, he or she will start to use that program.
 If there is suffi cient interest in the program, the project moves gradually into informal
phase two. Users become co-developers, in that some users report defects and others sug-
gest ways of fi xing those defects. Some users put forward ideas for extending the program,

56 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 56sch76183_ch02_035-073.indd 56 04/06/10 12:34 PM04/06/10 12:34 PM

and others implement those ideas. As the program expands in functionality, yet other users
port the program so that it can run on additional operating system/hardware combinations.
A key aspect is that individuals usually work on an open-source project in their spare time
on a voluntary basis; they are not paid to participate.
 Now look more closely at the three activities of the second informal phase:

 1. Reporting and correcting defects is corrective maintenance.
 2. Adding additional functionality is perfective maintenance.
 3. Porting the program to a new environment is adaptive maintenance.

 In other words, the second informal phase of the open-source life-cycle model consists
solely of postdelivery maintenance, as shown in Figure 2.11 . In fact, the term co-developers
in the second paragraph of this section should rather be co-maintainers .
 There are a number of key differences between closed-source and open-source software
life-cycle models:

 • Closed-source software is maintained and tested by teams of employees of the organiza-
tion that owns the software. Users sometimes submit defect reports. However, these are
restricted to failure reports (reports of observed incorrect behavior); users have no
access to the source code, so they cannot possibly submit fault reports (reports that
describe where the source code is incorrect and how to correct it).

 In contrast, open-source software is generally maintained by unpaid volunteers. Users
are strongly encouraged to submit defect reports. Although all users have access to the
source code, only the minority have the inclination and the time, as well as the necessary
skills, to peruse the source code and submit fault reports (“fi xes”); most defect reports
are therefore failure reports. There is generally a core group of dedicated maintainers
who take responsibility for managing the open-source project. Some members of the
 peripheral group , that is, the users who are not members of the core group, choose to
submit defect reports from time to time. The members of the core group are responsible
for ensuring that these defects are corrected. In more detail, when a fault report is sub-
mitted, a core group member checks that the fi x indeed solves the problem and modifi es
the source code appropriately. When a failure report is submitted, a member of the core
group will either personally determine the fi x or assign that task to another volunteer,

 FIGURE 2.11
The open-
source life-cycle
model.

Implement the
first version

Perform corrective,
perfective, and adaptive

postdelivery maintenance

Retirement
Development
Maintenance

Chapter 2 Software Life-Cycle Models 57

sch76183_ch02_035-073.indd 57sch76183_ch02_035-073.indd 57 04/06/10 12:34 PM04/06/10 12:34 PM

often a member of the peripheral group who is eager to become more involved in the
open-source project. Again, the power to install the fi x in the software is restricted to
members of the core group.

 • New versions of closed-source software are typically released roughly once a year. Each
new version is carefully checked by the software quality assurance group before release;
a wide variety of test cases are run.

 In contrast, a dictum of the open-source movement is “Release early. Release often”
[Raymond, 2000]. That is, the core group releases a new version of an open-source prod-
uct as soon as it is ready, which may be a month or even only a day after the previous
version was released. This new version is released after minimal testing; it is assumed
that more extensive testing will be performed by the members of the peripheral group.
A new version may be installed by literally hundreds of thousands of users within a day
or two of its release. These users do not run test cases as such. However, in the course of
utilizing the new version on their computer, they encounter failures, which they report
via e-mail. In this way, faults in the new version (as well as deeper faults in previous
versions) come to light and are corrected.

 Comparing Figures 2.8 , 2.10 , and 2.11 , we see that the open-source life-cycle model
has features in common with both the code-and-fi x model and the rapid-prototyping
model. In all three life-cycle models, an initial working version is produced. In the case
of the rapid-prototyping model, this initial version is discarded, and the target product
is then specifi ed and designed before being coded. In both the code-and-fi x and open-
source life-cycle models, the initial version is reworked until it becomes the target
product. Accordingly, in an open-source project, there are generally no specifi cations
or design.
 Bearing in mind the great importance of having specifi cations and designs, how have
some open-source projects been so successful? In the closed-source world, some software
professionals are more skilled and some are less skilled (see Section 9.2). The challenge
of producing open-source software has attracted some of the fi nest software experts. In
other words, an open-source project can be successful, despite the lack of specifi cations or
design, if the skills of the individuals who work on that project are so superb that they can
function effectively without specifi cations or design.
 The open-source life-cycle model is restricted in its applicability. On the one hand,
the open-source model has been exceedingly successfully used for certain infrastruc-
ture software projects, such as operating systems (Linux, OpenBSD, Mach, Darwin),
Web browsers (Firefox, Netscape), compilers (gcc), Web servers (Apache), or database
management systems (MySQL). On the other hand, it is hard to conceive of open-source
development of a software product to be used only in one commercial organization. A
key to open-source software development is that the members of both the core group and
the periphery are users of the software being developed. Consequently, the open-source
life-cycle model is inapplicable unless the target product is viewed by a wide range of
users as useful to them.
 At the time of writing, there are about 350,000 open-source projects at SourceForge.
net and FreshMeat.net. About half them have never even attracted a team to work on the
project. Of those where work has started, the overwhelming preponderance have never been
completed and are unlikely to ever progress much further. But when the open-source model

58 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 58sch76183_ch02_035-073.indd 58 04/06/10 12:34 PM04/06/10 12:34 PM

has worked, it has sometimes been incredibly successful. The open-source products listed
in parentheses in the previous paragraph are widely used; most of them are utilized on a
regular basis by literally millions of users.
 Explanations for the success of the open-source life-cycle model are presented in
 Chapter 4 within the context of team organizational aspects of open-source software
projects.

 2.9.5 Agile Processes
 Extreme programming [Beck, 2000] is a somewhat controversial new approach to
software development based on the iterative-and-incremental model. The fi rst step is
that the software development team determines the various features (stories) the client
would like the product to support. For each such feature, the team informs the client
how long it will take to implement that feature and how much it will cost. This fi rst step
corresponds to the requirements and analysis workfl ows of the iterative-and-incremental
model (Figure 2.4).
 The client selects the features to be included in each successive build using cost–
benefi t analysis (Section 5.2), that is, on the basis of the duration and the cost estimates
provided by the development team as well as the potential benefi ts of the feature to
his or her business. The proposed build is broken down into smaller pieces termed
 tasks . A programmer fi rst draws up test cases for a task; this is termed test-driven
development (TDD). Two programmers work together on one computer (pair
programming) [Williams, Kessler, Cunningham, and Jeffries, 2000], implementing
the task and ensuring that all the test cases work correctly. The two programmers alter-
nate typing every 15 or 20 minutes; the programmer who is not typing carefully checks
the code while it is being entered by his or her partner. The task is then integrated into
the current version of the product. Ideally, implementing and integrating a task should
take no more than a few hours. In general, a number of pairs will implement tasks in
parallel, so integration is essentially continuous. Team members change coding part-
ners daily, if possible; learning from the other team members increases everyone’s
skill level. The TDD test cases used for the task are retained and utilized in all further
integration testing.
 Some drawbacks to pair programming have been observed in practice [Drobka, Noftz,
and Raghu, 2004]. For example, pair programming requires large blocks of uninterrupted
time, and software professionals can have diffi culty in fi nding 3- to 4-hour blocks of time.
In addition, pair programming does not always work well with shy or overbearing individu-
als, or with two inexperienced programmers.
 A number of features of extreme programming (XP) are somewhat different from the
way in which software is usually developed:

 • The computers of the XP team are set up in the center of a large room lined with small
cubicles.

 • A client representative works with the XP team at all times.
 • No individual can work overtime for two successive weeks.
 • There is no specialization. Instead, all members of the XP team work on requirements,

analysis, design, code, and testing.

Chapter 2 Software Life-Cycle Models 59

sch76183_ch02_035-073.indd 59sch76183_ch02_035-073.indd 59 04/06/10 12:34 PM04/06/10 12:34 PM

 • There is no overall design step before the various builds are constructed. Instead, the de-
sign is modifi ed while the product is being built. This procedure is termed refactoring .
Whenever a test case will not run, the code is reorganized until the team is satisfi ed that
the design is simple, straightforward, and runs all the test cases satisfactorily.

 Two acronyms now associated with extreme programming are YAGNI (you aren’t gonna
need it) and DTSTTCPW (do the simplest thing that could possibly work). In other words,
a principle of extreme programming is to minimize the number of features; there is no need
to build a product that does any more than what the client actually needs.
 Extreme programming is one of a number of new paradigms that are collectively referred
to as agile processes . Seventeen software developers (later dubbed the Agile Alliance) met
at a Utah ski resort for two days in February 2001 and produced the Manifesto for Agile Soft-
ware Development [Beck et al., 2001]. Many of the participants had previously authored their
own software development methodologies, including Extreme Programming [Beck, 2000],
Crystal [Cockburn, 2001], and Scrum [Schwaber, 2001]. Consequently, the Agile Alliance
did not prescribe a specifi c life-cycle model, but rather laid out a group of underlying prin-
ciples that were common to their individual approaches to software development.
 Agile processes are characterized by considerably less emphasis on analysis and design
than in almost all other modern life-cycle models. Implementation starts much earlier in
the life cycle because working software is considered more important than detailed docu-
mentation. Responsiveness to changes in requirements is another major goal of agile pro-
cesses, and so is the importance of collaborating with the client.
 One of the principles in the Manifesto is to deliver working software frequently, ideally every
2 or 3 weeks. One way of achieving this is to use timeboxing [Jalote, Palit, Kurien, and Peeth-
amber, 2004], which has been used for many years as a time management technique. A specifi c
amount of time is set aside for a task, and the team members then do the best job they can during
that time. Within the context of agile processes, typically 3 weeks are set aside for each iteration.
On the one hand, it gives the client confi dence to know that a new version with additional func-
tionality will arrive every 3 weeks. On the other hand, the developers know that they will have
3 weeks (but no more) to deliver a new iteration without client interference of any kind; once
the client has chosen the work for an iteration, it cannot be changed or increased. However, if it
is impossible to complete the entire task in the timebox, the work may be reduced (“descoped”).
In other words, agile processes demand fi xed time, not fi xed features.
 Another common feature of agile processes is to have a short meeting at a regular time
each day. All team members have to attend the meeting. Making all the participants stand
in a circle, rather than sit around a table, helps to ensure that the meeting lasts no more than
the stipulated 15 minutes. Each team member in turn answers fi ve questions:

 • What have I done since yesterday’s meeting?
 • What am I working on today?
 • What problems are preventing me from achieving this?
 • What have we forgotten?
 • What did I learn that I would like to share with the team?

 The aim of the stand-up meeting is to raise problems, not solve them; solutions
are found at follow-up meetings, preferably held directly after the stand-up meeting.
Like timeboxing, stand-up meetings are a successful management technique now utilized

60 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 60sch76183_ch02_035-073.indd 60 04/06/10 12:34 PM04/06/10 12:34 PM

within the context of agile processes. Both timeboxed iterations and stand-up meetings are
instances of two basic principles that underlie all agile methods: communication and satis-
fying the client’s needs as quickly as possible.
 Agile processes have been successfully used on a number of small-scale projects. How-
ever, agile processes have not yet been used widely enough to determine whether this
approach will fulfi ll its early promise. Furthermore, even if agile processes turn out to be
good for small-scale software products, that does not necessarily mean that they can be
used for medium- or large-scale software products, as will now be explained.
 To appreciate why many software professionals have expressed doubts about agile pro-
cesses within the context of medium- and especially large-scale software products [Reifer,
Maurer, and Erdogmus, 2003], consider the following analogy by Grady Booch [2000].
Anyone can successfully hammer together a few planks to build a doghouse, but it would
be foolhardy to build a three-bedroom home without detailed plans. In addition, skills in
plumbing, wiring, and roofi ng are needed to build a three-bedroom home, and inspections
are essential. (That is, being able to build small-scale software products does not neces-
sarily mean that one has the skills for building medium-scale software products.) Further-
more, the fact that a skyscraper is the height of 1000 doghouses does not mean that one can
build a skyscraper by piling 1000 doghouses on top of one another. In other words, building
large-scale software products requires even more specialized and sophisticated skills than
those needed to cobble together small-scale software products.
 A key determinant in deciding whether agile processes are indeed a major breakthrough in
software engineering will be the cost of future postdelivery maintenance (Section 1.3.2). That
is, if the use of agile processes results in a reduction in the cost of postdelivery maintenance,
XP and other agile processes will become widely adopted. On the other hand, refactoring is an
intrinsic component of agile processes. As previously explained, the product is not designed as
a whole; instead, the design is developed incrementally, and the code is reorganized whenever
the current design is unsatisfactory for any reason. This refactoring then continues during
postdelivery maintenance. If the design of a product when it passes its acceptance test is open-
ended and fl exible, then perfective maintenance should be easy to achieve at a low cost. How-
ever, if the design has to be refactored whenever additional functionality is added, then the cost
of postdelivery maintenance of that product will be unacceptably high. As a consequence of
the newness of the approach, there are still essentially no data on the maintenance of software
developed using agile processes. However, preliminary maintenance data indicate that refac-
toring can consume a large percentage of the overall cost [Li and Alshayeb, 2002].
 Experiments have shown that certain features of agile processes can work well. For ex-
ample, Williams, Kessler, Cunningham, and Jeffries [2000] showed that pair programming
leads to the development of higher-quality code in a shorter time, with greater job satisfac-
tion. However, an extensive experiment to evaluate pair programming within the context of
software maintenance described in Section 4.6 [Arisholm, Gallis, Dybå, and Sjøberg, 2007]
came to the same conclusion as an analysis of 15 published studies comparing the effective-
ness of individual and pair programming [Dybå et al., 2007]: It depends on both the program-
mer’s expertise and the complexity of the software product and the tasks to be solved.
 The Manifesto for Agile Software Development essentially claims that agile processes are
superior to more disciplined processes like the Unifi ed Process (Chapter 3). Skeptics respond
that proponents of agile processes are little more than hackers. However, there is a middle
ground. The two approaches are not incompatible; it is possible to incorporate proven features

Chapter 2 Software Life-Cycle Models 61

sch76183_ch02_035-073.indd 61sch76183_ch02_035-073.indd 61 04/06/10 12:34 PM04/06/10 12:34 PM

of agile processes within the framework of disciplined processes. This integration of the two
approaches is described in books such as the one by Boehm and Turner [2003].
 In conclusion, agile processes appear to be a useful approach to building small-scale soft-
ware products when the client’s requirements are vague. In addition, some of the features of
agile processes can be effectively utilized within the context of other life-cycle models.

 2.9.6 Synchronize-and-Stabilize Life-Cycle Model
 Microsoft, Inc., is the world’s largest manufacturer of COTS software. The majority of its
packages are built using a version of the iterative-and-incremental model that has been termed
the synchronize-and-stabilize life-cycle model [Cusumano and Selby, 1997].
 The requirements analysis phase is conducted by interviewing numerous potential clients
for the package and extracting a list of features of highest priority to the clients. A specifi ca-
tion document is now drawn up. Next, the work is divided into three or four builds. The fi rst
build consists of the most critical features, the second build consists of the next most critical
features, and so on. Each build is carried out by a number of small teams working in parallel.
At the end of each day, all the teams synchronize ; that is, they put the partially completed
components together and test and debug the resulting product. Stabilization is performed at
the end of each of the builds. Any remaining faults that have been detected so far are fi xed, and
they now freeze the build; that is, no further changes will be made to the specifi cations.
 The repeated synchronization step ensures that the various components always work
together. Another advantage of this regular execution of the partially constructed product
is that the developers obtain early insight into the operation of the product and can modify
the requirements if necessary during the course of a build. The life-cycle model can be
used even if the initial specifi cation is incomplete. The synchronize-and-stabilize model is
considered further in Section 4.5, where team organizational details are discussed.
 The spiral model has been left to last because it incorporates aspects of all the other
models described in Section 2.9.

 2.9.7 Spiral Life-Cycle Model
 As stated in Section 2.5, an element of risk is always involved in the development of
software. For example, key personnel can resign before the product has been adequately
documented. The manufacturer of hardware on which the product is critically dependent
can go bankrupt. Too much, or too little, can be invested in testing and quality assurance.
After spending hundreds of thousands of dollars on developing a major software product,
technological breakthroughs can render the entire product worthless. An organization may
research and develop a database management system, but before the product can be mar-
keted, a lower-priced, functionally equivalent package is announced by a competitor. The
components of a product may not fi t together when integration is performed. For obvious
reasons, software developers try to minimize such risks wherever possible.
 One way of minimizing certain types of risk is to construct a prototype. As described in
Section 2.9.3, one approach to reducing the risk that the delivered product will not satisfy the
client’s real needs is to construct a rapid prototype during the requirements phase. During
subsequent phases, other sorts of prototypes may be appropriate. For example, a telephone
company may devise a new, apparently highly effective algorithm for routing calls through
a long-distance network. If the product is implemented but does not work as expected, the
telephone company will have wasted the cost of developing the product. In addition, angry or

62 Part A Software Engineering Concepts

sch76183_ch02_035-073.indd 62sch76183_ch02_035-073.indd 62 04/06/10 12:34 PM04/06/10 12:34 PM

Chapter 2 Software Life-Cycle Models 63

inconvenienced customers may take their business elsewhere. This outcome can be avoided
by constructing a proof-of-concept prototype to handle only the routing of calls and
testing it on a simulator. In this way, the actual system is not disturbed; and for the cost of
implementing just the routing algorithm, the telephone company can determine whether it is
worthwhile to develop an entire network controller incorporating the new algorithm.
 A proof-of-concept prototype is not a rapid prototype constructed to be certain that the
requirements have been accurately determined, as described in Section 2.9.3. Instead, it is more
like an engineering prototype, that is, a scale model constructed to test the feasibility of construc-
tion. If the development team is concerned whether a particular part of the proposed software
product can be constructed, a proof-of-concept prototype is constructed. For example, the de-
velopers may be concerned whether a particular computation can be performed quickly enough.
In that case, they build a prototype to test the timing of just that computation. Or they may be
worried that the font they intend to use for all screens will be too small for the average user to
read without eyestrain. In this instance, they construct a prototype to display a number of differ-
ent screens and determine by experiment whether the users fi nd the font uncomfortably small.
 The idea of minimizing risk via the use of prototypes and other means is the idea under-
lying the spiral life-cycle model [Boehm, 1988]. A simplifi ed way of looking at this life-
cycle model is as a waterfall model with each phase preceded by risk analysis, as shown in
 Figure 2.12 . Before commencing each phase, an attempt is made to mitigate (control) the
risks . If it is impossible to mitigate all the signifi cant risks at that stage, then the project is
immediately terminated.

 FIGURE 2.12
 A simplifi ed
version of the
spiral life-cycle
model.

Specification

Risk analysis

Risk analysis

Risk analysis

Design

Risk analysis

Risk analysis

Implementation

Retirement

Postdelivery
maintenance

Changed
requirements

Risk analysis

Rapid
prototype

Development
Maintenance

sch76183_ch02_035-073.indd 63sch76183_ch02_035-073.indd 63 04/06/10 12:34 PM04/06/10 12:34 PM

64 Part A Software Engineering Concepts

 Prototypes can be used effectively to provide information about certain classes of risk.
For example, timing constraints can generally be tested by constructing a prototype and
measuring whether the prototype can achieve the necessary performance. If the prototype
is an accurate functional representation of the relevant features of the product, then mea-
surements made on the prototype should give the developers a good idea as to whether the
timing constraints can be achieved.
 Other areas of risk are less amenable to prototyping, for example, the risk that the
software personnel necessary to build the product cannot be hired or that key personnel
may resign before the project is complete. Another potential risk is that a particular team
may not be competent enough to develop a specifi c large-scale product. A successful
contractor who builds single-family homes would probably not be able to build a high-
rise offi ce complex. In the same way, there are essential differences between small-scale
and large-scale software, and prototyping is of little use. This risk cannot be mitigated
by testing team performance on a much smaller prototype, in which team organizational
issues specifi c to large-scale software cannot arise. Another area of risk for which pro-
totyping cannot be employed is evaluating the delivery promises of a hardware supplier.
A strategy the developer can adopt is to determine how well previous clients of the sup-
plier have been treated, but past performance is by no means a certain predictor of future
performance. A penalty clause in the delivery contract is one way of trying to ensure that
essential hardware is delivered on time, but what if the supplier refuses to sign an agree-
ment that includes such a clause? Even with a penalty clause, late delivery may occur
and eventually lead to legal action that can drag on for years. In the meantime, the soft-
ware developer may have gone bankrupt because nondelivery of the promised hardware
caused nondelivery of the promised software. In short, whereas prototyping helps reduce
risk in some areas, in other areas it is at best a partial answer, and in still others it is no
answer at all.
 The full spiral model is shown in Figure 2.13 . The radial dimension represents cumula-
tive cost to date, and the angular dimension represents progress through the spiral. Each
cycle of the spiral corresponds to a phase. A phase begins (in the top left quadrant) by
determining objectives of that phase, alternatives for achieving those objectives, and con-
straints imposed on those alternatives. This process results in a strategy for achieving those
objectives. Next, that strategy is analyzed from the viewpoint of risk. Attempts are made to
mitigate every potential risk, in some cases by building a prototype. If certain risks cannot
be mitigated, the project may be terminated immediately; under some circumstances, how-
ever, a decision could be made to continue the project but on a signifi cantly smaller scale.
If all risks are successfully mitigated, the next development step is started (bottom right
quadrant). This quadrant of the spiral model corresponds to the classical waterfall model.
Finally, the results of that phase are evaluated and the next phase is planned.
 The spiral model has been used successfully to develop a wide variety of products. In
one set of 25 projects in which the spiral model was used in conjunction with other means
of increasing productivity, the productivity of every project increased by at least 50 percent
over previous productivity levels and by 100 percent in most of the projects [Boehm, 1988].
To be able to decide whether the spiral model should be used for a given project, the
strengths and weaknesses of the spiral model are now assessed.
 The spiral model has a number of strengths. The emphasis on alternatives and con-
straints supports the reuse of existing software (Section 8.1) and the incorporation of

sch76183_ch02_035-073.indd 64sch76183_ch02_035-073.indd 64 04/06/10 12:34 PM04/06/10 12:34 PM

software quality as a specifi c objective. In addition, a common problem in software devel-
opment is determining when the products of a specifi c phase have been adequately tested.
Spending too much time on testing is a waste of money, and delivery of the product may
be unduly delayed. Conversely, if too little testing is performed, then the delivered software
may contain residual faults, resulting in unpleasant consequences for the developers. The
spiral model answers this question in terms of the risks that would be incurred by not doing
enough testing or by doing too much testing. Perhaps most important, within the structure
of the spiral model, postdelivery maintenance is simply another cycle of the spiral; there is
essentially no distinction between postdelivery maintenance and development. Therefore,
the problem that postdelivery maintenance is sometimes maligned by ignorant software
professionals does not arise, because postdelivery maintenance is treated the same way as
development.

 FIGURE 2.13 Full spiral life-cycle model [Boehm, 1988]. (© 1988 IEEE.)

Cumulative
cost

Progress
through
steps

Commitment
Review

Determine
objectives,
alternatives,
constraints

Evaluate alternatives,
identify, mitigate risks

Risk
analysisRisk

analysisRisk
analysis

Requirements plan
Life-cycle plan Concept of

operation

Requirements
validation

Design validation
and verification

Integration
and test

plan

Develop-
ment plan

Plan next phase

Prototype
1

Prototype
2

Prototype
3

Opera-
tional
prototype

Detailed
design

partition

Implementation

Accep-
tance
test

Inte-
gration
test

Unit
test

Code

Software
product
design

Software
require-
ments

Ri
sk

an
al

ys
is

Develop, verify
next-level product

Simulations, models, benchmarks

Chapter 2 Software Life-Cycle Models 65

sch76183_ch02_035-073.indd 65sch76183_ch02_035-073.indd 65 04/06/10 12:34 PM04/06/10 12:34 PM

66 Part A Software Engineering Concepts

 There are restrictions on the applicability of the spiral model. Specifi cally, in its present form,
the model is intended exclusively for internal development of large-scale software [Boehm,
1988]. Consider an internal project, that is, one where the developers and client are members
of the same organization. If risk analysis leads to the conclusion that the project should be
terminated, then in-house software personnel can simply be reassigned to a different project.
However, once a contract has been signed between a development organization and an exter-
nal client, an attempt by either side to terminate that contract can lead to a breach-of-contract
lawsuit. Therefore, in the case of contract software, all risk analysis must be performed by both
client and developers before the contract is signed, not as in the spiral model.
 A second restriction on the spiral model relates to the size of the project. Specifi cally,
the spiral model is applicable to only large-scale software. It makes no sense to perform
risk analysis if the cost of performing the risk analysis is comparable to the cost of the
project as a whole, or if performing the risk analysis would signifi cantly affect the profi t
potential. Instead, the developers should fi rst decide how much is at risk and then how
much risk analysis, if any, to perform.
 A major strength of the spiral model is that it is risk driven, but this can also be a weakness.
Unless the software developers are skilled at pinpointing the possible risks and analyzing the
risks accurately, there is a real danger that the team may believe that all is well at a time when
the project, in fact, is headed for disaster. Only if the members of the development team are
competent risk analysts should management decide to use the spiral model.
 Overall, however, the major weakness of the spiral model, as well as the waterfall model
and the rapid-prototyping model, is that it assumes that software is developed in discrete
phases. In reality, however, software development is iterative and incremental, as refl ected in
the evolution-tree model (Section 2.2) or the iterative-and-incremental model (Section 2.5).

 2.10 Comparison of Life-Cycle Models
 Nine different software life-cycle models have been examined with special attention paid to
some of their strengths and weaknesses. The code-and-fi x model (Section 2.9.1) should be
avoided. The waterfall model (Section 2.9.2) is a known quantity. Its strengths are understood,
and so are its weaknesses. The rapid-prototyping model (Section 2.9.3) was developed as a
reaction to a specifi c perceived weakness in the waterfall model, namely, that the delivered
product may not be what the client really needs. However, there is still insuffi cient evidence
that this approach is superior to the waterfall model in other respects. The open-source life-
cycle model has been incredibly successful in a small number of cases when used to con-
struct infrastructure software (Section 2.9.4). Agile processes (Section 2.9.5) are a set of
controversial new approaches that, so far, appear to work, but for only small-scale software.
The synchronize-and-stabilize model (Section 2.9.6) has been used with great success by
Microsoft, but as yet there is no evidence of comparable success in other corporate cultures.
Yet another alternative is to use the spiral model (Section 2.9.7), but only if the developers are
adequately trained in risk analysis and risk resolution. The evolution-tree model (Section 2.2)
and the iterative-and-incremental model (Section 2.5) are closest to the way that software is
produced in the real world. An overall comparison appears in Figure 2.14 .
 Each software development organization should decide on a life-cycle model that is
appropriate for that organization, its management, its employees, and its software process

sch76183_ch02_035-073.indd 66sch76183_ch02_035-073.indd 66 04/06/10 12:34 PM04/06/10 12:34 PM

and should vary the life-cycle model depending on the features of the specifi c product cur-
rently under development. Such a model incorporates appropriate aspects of the various
life-cycle models, utilizing their strengths and minimizing their weaknesses.

 FIGURE 2.14
 Comparison
of life-cycle
models
described in
this chapter,
including the
section in which
each is defi ned.

 Life-Cycle Model Strengths Weaknesses

 Evolution-tree model Closely models real-world
 (Section 2.2) software production

 Equivalent to the iterative-
 and-incremental model
 Iterative-and-incremental life- Closely models real-world
 cycle model (Section 2.5) software production
 Underlies the Unifi ed
 Process
 Code-and-fi x life-cycle model Fine for short programs that Totally unsatisfactory for
 (Section 2.9.1) require no maintenance nontrivial programs
 Waterfall life-cycle model Disciplined approach Delivered product may
 (Section 2.9.2) Document driven not meet client’s needs
 Rapid-prototyping life-cycle Ensures that the delivered Not yet proven beyond
 model (Section 2.9.3) product meets the client’s all doubt
 needs
 Open-source life-cycle Has worked extremely well in Limited applicability
 model (Section 2.9.4) a small number of instances Usually does not work
 Agile processes (Section 2.9.5) Work well when the client’s Appear to work on only
 requirements are vague small-scale projects
 Synchronize-and-stabilize life- Future users’ needs are met Has not been widely
 cycle model (Section 2.9.6) Ensures that components used other than at
 can be successfully integrated Microsoft
 Spiral life-cycle model Risk driven Can be used for only
 (Section 2.9.7) large-scale, in-house
 products
 Developers have to be
 competent in risk analysis
 and risk resolution

 Chapter
Review
 There are signifi cant differences between the way that software is developed in theory (Section 2.1) and the

way it is developed in practice. The Winburg mini case study is used to introduce the evolution-tree model
(Section 2.2). Lessons of this mini case study, especially that requirements change, are presented in Sec-
tion 2.3. Change is discussed in greater detail in Section 2.4, where the moving-target problem is presented
using the Teal Tractors mini case study. In Section 2.5, the importance of iteration and incrementation
in real-world software engineering is stressed, and the iterative-and-incremental model is presented. The
Winburg mini case study is then re-examined in Section 2.6 to illustrate the equivalence of the evolution-
tree model and the iterative-and-incremental model. In Section 2.7, the strengths of the iterative-and-
incremental model are presented, particularly that it enables us to resolve risks early. Management of the
iterative-and-incremental model is discussed in Section 2.8. A number of different life-cycle models are
now described, including the code-and-fi x life-cycle model (Section 2.9.1), waterfall life-cycle model
(Section 2.9.2), rapid-prototyping life-cycle model (Section 2.9.3), open-source life-cycle model (Section
2.9.4), agile processes (Section 2.9.5), synchronize-and-stabilize life-cycle model (Section 2.9.6), and spi-
ral life-cycle model (Section 2.9.7). In Section 2.10, these life-cycle models are compared and suggestions
are made regarding the choice of a life-cycle model for a specifi c project.

Chapter 2 Software Life-Cycle Models 67

sch76183_ch02_035-073.indd 67sch76183_ch02_035-073.indd 67 04/06/10 12:34 PM04/06/10 12:34 PM

68 Part A Software Engineering Concepts

 For
Further
Reading

 The waterfall model was fi rst put forward in [Royce, 1970]. An analysis of the waterfall model is given
in the fi rst chapter of [Royce, 1998].
 The synchronize-and-stabilize model is outlined in [Cusumano and Selby, 1997] and described
in detail in [Cusumano and Selby, 1995]. The spiral model is explained in [Boehm, 1988], and its
application to the TRW Software Productivity System appears in [Boehm et al., 1984].
 Extreme programming is described in [Beck, 2000]; refactoring is the subject of [Fowler et al.,
1999]. The Manifesto for Agile Software Development may be found at [Beck et al., 2001]. Books have
been published on a variety of agile methods, including [Cockburn, 2001] and [Schwaber, 2001]. Agile
methods are advocated in [Highsmith and Cockburn, 2001], [Boehm, 2002], [DeMarco and Boehm,
2002], and [Boehm and Turner, 2003], whereas the case against agile methods is presented in [Stephens
and Rosenberg, 2003]. Refactoring is surveyed in [Mens and Tourwe, 2004]. The use of XP in four
mission-critical projects is described in [Drobka, Noftz, and Raghu, 2004]. Issues that can arise when
introducing agile processes within an organization that currently is using traditional methodologies are
discussed in [Nerur, Mahapatra, and Mangalaraj, 2005] and in [Boehm and Turner, 2005].
 A number of papers on extreme programming appear in the May–June 2003 issue of IEEE Soft-
ware , including [Murru, Deias, and Mugheddu, 2003] and [Rasmusson, 2003], both of which describe
successful projects developed using extreme programming. The June 2003 issue of IEEE Computer
contains several articles on agile processes. The May–June 2005 issue of IEEE Software has four
articles on agile processes, especially [Ceschi, Sillitti, Succi, and De Panfi lis, 2005] and [Karlström
and Runeson, 2005]. The extent to which agile methods are used in the software industry is analyzed
in [Hansson, Dittrich, Gustafsson, and Zarnak, 2006]. A survey of the critical success factors in agile
software products is presented in [Chow and Cao, 2008]. Approaches to assist in the transition to
agile methods are given in [Qumer and Henderson-Sellers, 2008]. Refactoring poses problems for
software confi guration management tools; a solution is put forward in [Dig, Manzoor, Johnson, and
Nguyen, 2008].
 Agile testing of a large-scale software product is described in [Talby, Keren, Hazzan, and Dubin-
sky, 2006]. The effectiveness of test-driven development is discussed in [Erdogmus, Morisio, and
Torchiano, 2005]. The May–June 2007 issue of IEEE Software has a variety of articles on test-driven
development, including [Martin, 2007].
 Risk analysis is described in [Ropponen and Lyttinen, 2000], [Longstaff, Chittister, Pethia, and
Haimes, 2000], and [Scott and Vessey, 2002]. Managing risks in offshore software development is
presented in [Sakthivel, 2007] and in [Iacovou and Nakatsu, 2008]. Risk management when software
is developed using COTS components is described in [Li et al., 2008].
 A major iterative-and-incremental model is described in detail in [Jacobson, Booch, and Rumbaugh,
1999]. However, many other iterative-and-incremental models have been put forward over the past
30 years, as recounted in [Larman and Basili, 2003]. The use of an incremental model to build an air-
traffi c control system is discussed in [Goth, 2000]. An iterative approach to re-engineering legacy systems
is given in [Bianchi, Caivano, Marengo, and Visaggio, 2003]. A tool for supporting incremental software
development while ensuring that the artifacts evolve consistently is described in [Reiss, 2006].
 Many other life-cycle models have been put forward. For example, Rajlich and Bennett [2000]
describe a maintenance-oriented life-cycle model. The July–August 2000 issue of IEEE Software has a
variety of papers on software life-cycle models, including [Williams, Kessler, Cunningham, and Jeffries,
2000] which describes an experiment on pair programming, one component of agile methods.
 Rajlich [2006] goes further and suggests that many of the topics of this chapter have led us to a
new paradigm for software engineering.
 The proceedings of the International Software Process Workshops are a useful source of informa-
tion on life-cycle models. [ISO/IEC 12207, 1995] is a widely accepted standard for software life-
cycle processes.

sch76183_ch02_035-073.indd 68sch76183_ch02_035-073.indd 68 04/06/10 12:34 PM04/06/10 12:34 PM

 Key Terms agile process 60
 analysis workfl ow 44
 architecture 49
 artifact 41
 baseline 41
 code-and-fi x life-cycle

model 52
 core group 57
 core workfl ow 44
 design workfl ow 44
 evolution-tree life-cycle

model 40
 extreme programming 59
 failure report 57
 fault report 57
 feature creep 43
 freeze 62
 implementation workfl ow 44

 incrementation 44
 iteration 44
 iterative-and-incremental

life-cycle model 44
 life-cycle model 40
 Miller’s Law 44
 mitigate risk 63
 model 40
 moving-target problem 43
 open-source software 56
 pair programming 59
 peripheral group 57
 proof-of-concept prototype 63
 rapid prototype 55
 rapid-prototyping life-cycle

model 55
 refactoring 60
 regression fault 43

 requirements workfl ow 44
 risk 50
 robustness 49
 spiral life-cycle model 63
 stabilize 62
 stand-up meeting 60
 stepwise refi nement 44
 story 59
 synchronize 62
 synchronize-and-stabilize

life-cycle model 62
 task 59
 test-driven development 59
 test workfl ow 44
 timeboxing 60
 waterfall life-cycle model 41
 workfl ow 44

 Problems 2.1 Represent the Winburg mini case study of Sections 2.2 and 2.3 using the waterfall model. Is this
more or less effective than the evolution-tree model? Explain your answer.

 2.2 Assume that the programmer in the Winburg mini case study had used single-precision numbers
from the beginning. Draw the resulting evolution tree.

 2.3 What is the connection between Miller’s Law and stepwise refi nement?

 2.4 Does stepwise refi nement correspond to iteration or incrementation?

 2.5 How are a workfl ow, an artifact, and a baseline related?

 2.6 What is the connection between the waterfall model and the iterative-and-incremental model?

 2.7 Suppose you have to build a product to determine the cube root of 9384.2034 to four decimal
places. Once the product has been implemented and tested, it will be thrown away. Which
life-cycle model would you use? Give reasons for your answer.

 2.8 You are a software engineering consultant and have been called in by the vice-president for
fi nance of a corporation that manufactures tires and sells them via its large chain of retail
outlets. She wants your organization to build a product that will monitor the company’s stock,
starting with the purchasing of the raw materials and keeping track of the tires as they are manu-
factured, distributed to the individual stores, and sold to customers. What criteria would you use
in selecting a life-cycle model for the project?

 2.9 List the risks involved in developing the software of Problem 2.8. How would you attempt to
mitigate each risk?

 2.10 Your development of the stock control product for the tire company is so successful that your
organization decides that it must be reimplemented as a package to be sold to a variety of
different organizations that manufacture and sell products via their own retailers. The new prod-
uct must therefore be portable and easily adapted to new hardware and/or operating systems.
How would the criteria you use in selecting a life-cycle model for this project differ from those
in your answer to Problem 2.8?

 2.11 Describe the sort of product that would be an ideal application for open-source software
development.

Chapter 2 Software Life-Cycle Models 69

sch76183_ch02_035-073.indd 69sch76183_ch02_035-073.indd 69 04/06/10 12:34 PM04/06/10 12:34 PM

70 Part A Software Engineering Concepts

 2.12 Now describe the type of situation where open-source software development is inappropriate.

 2.13 Describe the sort of product that would be an ideal application for an agile process.

 2.14 Now describe the type of situation where an agile process is inappropriate.

 2.15 Describe the sort of product that would be an ideal application for the spiral life-cycle model.

 2.16 Now describe the type of situation where the spiral life-cycle model is inappropriate.

 2.17 Describe a risk inherent in using the waterfall life-cycle model.

 2.18 Describe a risk inherent in using the code-and-fi x life-cycle model.

 2.19 Describe a risk inherent in using the open-source life-cycle model.

 2.20 Describe a risk inherent in using agile processes.

 2.21 Describe a risk inherent in using the spiral life-cycle model.

 2.22 (Term Project) Which software life-cycle model would you use for the Chocoholics Anonymous
product described in Appendix A? Give reasons for your answer.

 2.23 (Readings in Software Engineering) Your instructor will distribute copies of [Rajlich, 2006]. Do
you agree that software engineering has embarked on a new paradigm? Explain your answer.

 References [Arisholm, Gallis, Dybå, and Sjøberg, 2007] E. ARISHOLM, H. GALLIS, T. DYBÅ, AND D. I. K. SJØBERG,
“Evaluating Pair Programming with Respect to System Complexity and Programmer Expertise,”
 IEEE Transactions on Software Engineering 33 (February 2007), pp. 65–86.

 [Beck, 2000] K. BECK, Extreme Programming Explained: Embrace Change, Addison-Wesley
Longman, Reading, MA, 2000.

 [Beck et al., 2001] K. BECK, M. BEEDLE, A. COCKBURN, W. CUNNINGHAM, M. FOWLER, J. GRENNING,
J. HIGHSMITH, A. HUNT, R. JEFFRIES, J. KERN, B. MARICK, R. C. MARTIN, S. MELLOR, K. SCHWABER,
J. SUTHERLAND, D. THOMAS, AND A. VAN BENNEKUM, Manifesto for Agile Software Development ,
agilemanifesto.org, 2001.

 [Bianchi, Caivano, Marengo, and Visaggio, 2003] A. BIANCHI, D. CAIVANO, V. MARENGO, AND
G. VISAGGIO, “Iterative Reengineering of Legacy Systems,” IEEE Transactions on Software Engi-
neering 29 (March 2003), pp. 225–41.

 [Boehm, 1988] B. W. BOEHM, “A Spiral Model of Software Development and Enhancement,” IEEE
Computer 21 (May 1988), pp. 61–72.

 [Boehm, 2002] B. W. BOEHM, “Get Ready for Agile Methods, with Care,” IEEE Computer 35 (January
2002), pp. 64–69.

 [Boehm and Turner, 2003] B. BOEHM AND R. TURNER, Balancing Agility and Discipline: A Guide for
the Perplexed , Addison-Wesley Professional, Boston, MA, 2003.

 [Boehm and Turner, 2005] B. BOEHM AND R. TURNER, “Management Challenges to Implementing
Agile Processes in Traditional Development Organizations,” IEEE Software 22 (September–
October 2005), pp. 30–39.

 [Boehm et al., 1984] B. W. BOEHM, M. H. PENEDO, E. D. STUCKLE, R. D. WILLIAMS, AND A. B. PYSTER,
“A Software Development Environment for Improving Productivity,” IEEE Computer 17 (June
1984), pp. 30–44.

 [Booch, 2000] G. BOOCH, “The Future of Software Engineering,” keynote address, International
Conference on Software Engineering, Limerick, Ireland, May 2000.

 [Ceschi, Sillitti, Succi, and De Panfi lis, 2005] M. CESCHI, A. SILLITTI, G. SUCCI, AND S. DE PANFILIS,
“Project Management in Plan-Based and Agile Companies,” IEEE Software 22 (May–June 2005),
pp. 21–27.

sch76183_ch02_035-073.indd 70sch76183_ch02_035-073.indd 70 04/06/10 12:34 PM04/06/10 12:34 PM

Chapter 2 Software Life-Cycle Models 71

 [Chow and Cao, 2008] T. CHOW AND D.-B. CAO, “A Survey Study of Critical Success Factors in Agile
Software Projects,” Journal of Systems and Software 81 (June 2008), pp. 961–71.

 [Cockburn, 2001] A. COCKBURN, Agile Software Development , Addison-Wesley Professional, Read-
ing, MA, 2001.

 [Cusumano and Selby, 1995] M. A. CUSUMANO AND R. W. SELBY, Microsoft Secrets: How the World’s
Most Powerful Software Company Creates Technology, Shapes Markets, and Manages People ,
The Free Press/Simon and Schuster, New York, 1995.

 [Cusumano and Selby, 1997] M. A. CUSUMANO AND R. W. SELBY, “How Microsoft Builds Software,”
 Communications of the ACM 40 (June 1997), pp. 53–61.

 [DeMarco and Boehm, 2002] T. DEMARCO AND B. BOEHM, “The Agile Methods Fray,” IEEE Com-
puter 35 (June 2002), pp. 90–92.

 [Dig, Manzoor, Johnson, and Nguyen, 2008] D. DIG, K. MANZOOR, R. E. JOHNSON, AND T. N. NGUYEN,
“Effective Software Merging in the Presence of Object-Oriented Refactorings,” IEEE Transac-
tions on Software Engineering 34 (May–June 2008), pp. 321–35.

 [Drobka, Noftz, and Raghu, 2004] J. DROBKA, D. NOFTZ, AND R. RAGHU, “Piloting XP on Four
Mission-Critical Projects,” IEEE Software 21 (November–December 2004), pp. 70–75.

 [Dybå et al., 2007] T. DYBÅ, E. ARISHOLM, D. I. K. SJØBERG, J. E. HANNAY, AND F. SHULL, “Are
Two Heads Better than One? On the Effectiveness of Pair Programming,” IEEE Software 24
(November–December 2007), pp. 12–15.

 [Erdogmus, Morisio, and Torchiano, 2005] H. ERDOGMUS, M. MORISIO, AND M. TORCHIANO, “On the
Effectiveness of the Test-First Approach to Programming,” IEEE Transactions on Software Engi-
neering 31 (March 2005), pp. 226–37.

 [Fowler et al., 1999] M. FOWLER wITH K. BECK, J. BRANT, W. OPDYKE, AND D. ROBERTS, Refactoring:
Improving the Design of Existing Code , Addison-Wesley, Reading, MA, 1999.

 [Goth, 2000] G. GOTH, “New Air Traffi c Control Software Takes an Incremental Approach,” IEEE
Software 17 (July–August 2000), pp. 108–11.

 [Hansson, Dittrich, Gustafsson, and Zarnak, 2006] C. HANSSON, Y. DITTRICH, B. GUSTAFSSON, AND
S. ZARNAK, “How Agile Are Industrial Software Development Practices?” Journal of Systems and
Software 79 (September 2006), pp. 1217–58.

 [Hayes, 2004] F. HAYES, “Chaos Is Back,” Computerworld , www.computerworld.com/
managementtopics/management/project/story/0,10801,97283,00.html, November 8, 2004.

 [Highsmith and Cockburn, 2001] J. HIGHSMITH AND A. COCKBURN, “Agile Software Development:
The Business of Innovation,” IEEE Computer 34 (September 2001), pp. 120–22.

 [Iacovou and Nakatsu, 2008] C. L. IACOVOU AND R. NAKATSU, “A Risk Profi le of Offshore-Outsourced
Development Projects,” Communications of the ACM 51 (June 2008) pp. 89–94.

 [ISO/IEC 12207, 1995] “ISO/IEC 12207:1995, Information Technology—Software Life-Cycle Pro-
cesses,” International Organization for Standardization, International Electrotechnical Commis-
sion, Geneva, 1995.

 [Jacobson, Booch, and Rumbaugh, 1999] I. JACOBSON, G. BOOCH, AND J. RUMBAUGH, The Unifi ed
Software Development Process , Addison-Wesley, Reading, MA, 1999.

 [Jalote, Palit, Kurien, and Peethamber, 2004] P. JALOTE, A. PALIT, P. KURIEN, AND V. T. PEETHAMBER,
 “ Timeboxing: A Process Model for Iterative Software Development,” Journal of Systems and
Software 70 (February 2004), pp. 117–27.

 [Karlström and Runeson, 2005] D. KARLSTRÖM AND P. RUNESON, “Combining Agile Methods with
Stage-Gate Project Management,” IEEE Software 22 (May–June 2005), pp. 43–49.

sch76183_ch02_035-073.indd 71sch76183_ch02_035-073.indd 71 04/06/10 12:34 PM04/06/10 12:34 PM

www.computerworld.com/managementtopics/management/project/story/0,10801,97283,00.html
www.computerworld.com/managementtopics/management/project/story/0,10801,97283,00.html

72 Part A Software Engineering Concepts

 [Larman and Basili, 2003] C. LARMAN AND V. R. BASILI, “Iterative and Incremental Development: A
Brief History,” IEEE Computer 36 (June 2003), pp. 47–56.

 [Li and Alshayeb, 2002] W. LI AND M. ALSHAYEB, “An Empirical Study of XP Effort,” Proceedings of
the 17th International Forum on COCOMO and Software Cost Modeling , Los Angeles, October
2002, IEEE.

 [Li et al., 2008] J. LI, O. P. N. SLYNGSTAD, M. TORCHIANO, M. MORISIO, AND C. BUNSE, “A State-of-
the-Practice Survey of Risk Management in Development with Off-the-Shelf Software Compo-
nents,” IEEE Transactions on Software Engineering 34 (March–April 2008), pp. 271–86.

 [Longstaff, Chittister, Pethia, and Haimes, 2000] T. A. LONGSTAFF, C. CHITTISTER, R. PETHIA, AND
Y. Y. HAIMES, “Are We Forgetting the Risks of Information Technology?” IEEE Computer 33
(December 2000), pp. 43–51.

 [Martin, 2007] R. C. MARTIN, “Professionalism and Test-Driven Development,” IEEE Software 24
(May–June 2007), pp. 32–36.

 [Mens and Tourwe, 2004] T. MENS AND T. TOURWE, “A Survey of Software Refactoring,” IEEE Trans-
actions on Software Engineering 30 (February 2004), pp. 126–39.

 [Miller, 1956] G. A. MILLER, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,” The Psychological Review 63 (March 1956), pp. 81–97;
reprinted in: www.well.com/user/smalin/miller.html.

 [Murru, Deias, and Mugheddu, 2003] O. MURRU, R. DEIAS, AND G. MUGHEDDU, “Assessing XP at a
European Internet Company,” IEEE Software 20 (May–June, 2003), pp. 37–43.

 [Nerur, Mahapatra, and Mangalaraj, 2005] S. NERUR, R. MAHAPATRA, AND G. MANGALARAJ,
“Challenges of Migrating to Agile Methodologies,” Communications of the ACM 48
(May 2005), pp. 72–78.

 [Qumer and Henderson-Sellers, 2008] A. QUMER AND B. HENDERSON-SELLERS, “A Framework to
Support the Evaluation, Adoption and Improvement of Agile Methods in Practice,” Journal of
Systems and Software 81 (November 2008), pp. 1899–1919.

 [Rajlich, 2006] V. RAJLICH, “Changing the Paradigm of Software Engineering,” Communications of
the ACM 49 (August 2006), pp. 67–70.

 [Rajlich and Bennett, 2000] V. RAJLICH AND K. H. BENNETT, “A Staged Model for the Software Life
Cycle,” IEEE Computer 33 (July 2000), pp. 66–71.

 [Rasmusson, 2003] J. RASMUSSON, “Introducing XP into Greenfi eld Projects: Lessons Learned,”
 IEEE Software 20 (May–June, 2003), pp. 21–29.

 [Raymond, 2000] E. S. RAYMOND, The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary , O’Reilly & Associates, Sebastopol, CA, 2000; also available at
www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/.

 [Reifer, Maurer, and Erdogmus, 2003] D. REIFER, F. MAURER, AND H. ERDOGMUS, “Scaling Agile
Methods,” IEEE Software 20 (July–August 2004), pp. 12–14.

 [Reiss, 2006] S. P. REISS, “Incremental Maintenance of Software Artifacts,” IEEE Transactions on
Software Engineering 32 (September 2006), pp. 682–97.

 [Ropponen and Lyttinen, 2000] J. ROPPONEN AND K. LYTTINEN, “Components of Software Develop-
ment Risk: How to Address Them? A Project Manager Survey,” IEEE Transactions on Software
Engineering 26 (February 2000), pp. 96–111.

 [Royce, 1970] W. W. ROYCE, “Managing the Development of Large Software Systems: Concepts
and Techniques,” 1970 WESCON Technical Papers, Western Electronic Show and Convention ,
Los Angeles, August 1970, pp. A/1-1–A/1-9; reprinted in: Proceedings of the 11th International
Conference on Software Engineering , Pittsburgh, May 1989, IEEE, pp. 328–38.

sch76183_ch02_035-073.indd 72sch76183_ch02_035-073.indd 72 04/06/10 12:34 PM04/06/10 12:34 PM

www.well.com/user/smalin/miller.html
www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

Chapter 2 Software Life-Cycle Models 73

 [Royce, 1998] W. ROYCE, Software Project Management: A Unifi ed Framework , Addison-Wesley,
Reading, MA, 1998.

 [Rubenstein, 2007] D. RUBENSTEIN, “Standish Group Report: There’s Less Development Chaos
Today,” www.sdtimes.com/content/article.aspx?ArticleID=30247, March 1, 2007.

 [Sakthivel, 2007] S. SAKTHIVEL, “Managing Risk in Offshore Systems Development,” Communica-
tions of the ACM 50 (April 2007), pp. 69–75.

 [Schwaber, 2001] K. SCHWABER, Agile Software Development with Scrum , Prentice Hall, Upper
Saddle River, NJ, 2001.

 [Scott and Vessey, 2002] J. E. SCOTT AND I. VESSEY, “Managing Risks in Enterprise Systems Imple-
mentations,” Communications of the ACM 45 (April 2002), pp. 74–81.

 [Softwaremag.com, 2004] “Standish: Project Success Rates Improved over 10 Years,” www.
softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/Standish, January 15, 2004.

 [Spivey, 1992] J. M. SPIVEY, The Z Notation: A Reference Manual , Prentice Hall, New York, 1992.

 [Standish, 2003] STANDISH GROUP INTERNATIONAL, “Introduction,” www.standishgroup.com/
chaos/introduction.pdf, 2003.

 [Stephens and Rosenberg, 2003] M. STEPHENS AND D. ROSENBERG, Extreme Programming Refac-
tored: The Case against XP , Apress, Berkeley, CA, 2003.

 [Talby, Keren, Hazzan, and Dubinsky, 2006] D. TALBY, A. KEREN, O. HAZZAN, AND Y. DUBINSKY,
“Agile Software Testing in a Large-Scale Project,” IEEE Software 23 (July–August 2006),
pp. 30–37.

 [Tomer and Schach, 2000] A. TOMER AND S. R. SCHACH, “The Evolution Tree: A Maintenance-
Oriented Software Development Model,” in: Proceedings of the Fourth European Conference on
Software Maintenance and Reengineering (CSMR 2000) , Zürich, Switzerland, February/March
2000, ACM, pp. 209–14.

 [Williams, Kessler, Cunningham, and Jeffries, 2000] L. WILLIAMS, R. R. KESSLER, W. CUNNINGHAM,
AND R. JEFFRIES, “Strengthening the Case for Pair Programming,” IEEE Software 17 (July–August
2000), pp. 19–25.

sch76183_ch02_035-073.indd 73sch76183_ch02_035-073.indd 73 04/06/10 12:34 PM04/06/10 12:34 PM

www.sdtimes.com/content/article.aspx?ArticleID=30247
www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/Standish
www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/Standish
www.standishgroup.com/chaos/introduction.pdf
www.standishgroup.com/chaos/introduction.pdf

 Chapter 3
The Software Process
 Learning Objectives

 After studying this chapter, you should be able to

 • Explain why two-dimensional life-cycle models are important.

 • Describe the fi ve core workfl ows of the Unifi ed Process.

 • List the artifacts tested in the test workfl ow.

 • Describe the four phases of the Unifi ed Process.

 • Explain the difference between the workfl ows and the phases of the Unifi ed
Process.

 • Appreciate the importance of software process improvement.

 • Describe the capability maturity model (CMM).

74

 The software process is the way we produce software. It incorporates the methodology
(Section 1.11) with its underlying software life-cycle model (Chapter 2) and techniques,
the tools we use (Sections 5.6 through 5.12), and most important of all, the individuals
building the software.
 Different organizations have different software processes. For example, consider the
issue of documentation. Some organizations consider the software they produce to be self-
documenting; that is, the product can be understood simply by reading the source code.
Other organizations, however, are documentation intensive. They punctiliously draw up
specifi cations and check them methodically. Then they perform design activities pains-
takingly, check and recheck their designs before coding commences, and give extensive
descriptions of each code artifact to the programmers. Test cases are preplanned, the result
of each test run is logged, and the test data are meticulously fi led away. Once the product
has been delivered and installed on the client’s computer, any suggested change must be pro-
posed in writing, with detailed reasons for making the change. The proposed change can be
made only with written authorization, and the modifi cation is not integrated into the product
until the documentation has been updated and the changes to the documentation approved.

sch76183_ch03_074-106.indd 74sch76183_ch03_074-106.indd 74 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 75

 Intensity of testing is another measure by which organizations can be compared. Some
organizations devote up to half their software budgets to testing software, whereas others
feel that only the user can thoroughly test a product. Consequently, some companies devote
minimal time and effort to testing the product but spend a considerable amount of time
fi xing problems reported by users.
 Postdelivery maintenance is a major preoccupation of many software organizations.
Software that is 10, 15, or even 20 years old is continually enhanced to meet changing
needs; in addition, residual faults continue to appear, even after the software has been suc-
cessfully maintained for many years. Almost all organizations move their software to newer
hardware every 3 to 5 years; this, too, constitutes postdelivery maintenance.
 In contrast, yet other organizations essentially are concerned with research, leaving
development—let alone maintenance—to others. This applies particularly to university
computer science departments, where graduate students build software to prove that a par-
ticular design or technique is feasible. The commercial exploitation of the validated con-
cept is left to other organizations. (See Just in Case You Wanted to Know Box 3.1 regarding
the wide variation in the ways different organizations develop software.)
 However, regardless of the exact procedure, the software development process is
structured around the fi ve workfl ows of Figure 2.4 : requirements, analysis (specifi -
cation), design, implementation, and testing. In this chapter, these workfl ows are
described, together with potential challenges that may arise during each workfl ow.
Solutions to the challenges associated with the production of software usually are non-
trivial, and the rest of this book is devoted to describing suitable techniques. In the
fi rst part of this chapter, only the challenges are highlighted, but the reader is guided
to the relevant sections or chapters for solutions. Accordingly, this part of the chapter
not only is an overview of the software process, but a guide to much of the rest of the
book. The chapter concludes with national and international initiatives to improve the
software process.
 We now examine the Unifi ed Process.

 Just in Case You Wanted to Know Box 3.1
 Why does the software process vary so drastically from organization to organization? A
major reason is lack of software engineering skills. All too many software professionals
simply do not keep up to date. They continue to develop software Ye Olde Fashioned
Way, because they know no other way.
 Another reason for differences in the software process is that many software managers
are excellent managers but know precious little about software development or mainte-
nance. Their lack of technical knowledge can result in the project slipping so badly behind
schedule that there is no point in continuing. This frequently is the reason why many
software projects are never completed.
 Yet another reason for differences among processes is management outlook. For
example, one organization may decide that it is better to deliver a product on time, even if
it is not adequately tested. Given the identical circumstances, a different organization might
conclude that the risk of delivering that product without comprehensive testing would be
far greater than taking the time to test the product thoroughly and consequently delivering
it late.

sch76183_ch03_074-106.indd 75sch76183_ch03_074-106.indd 75 04/06/10 6:35 PM04/06/10 6:35 PM

76 Part A Software Engineering Concepts

 3.1 The Unifi ed Process
 As stated at the beginning of this chapter, methodology is one component of a software
process. The primary object-oriented methodology today is the Unifi ed Process . As
explained in Just in Case You Wanted to Know Box 3.2, the Unifi ed “Process” is actually
a methodology, but the name Unifi ed Methodology already had been used as the name
of the fi rst version of the Unifi ed Modeling Language (UML). The three precursors of
the Unifi ed Process (OMT, Booch’s method, and Objectory) are no longer supported, and
the other object-oriented methodologies have had little or no following. As a result, the
Unifi ed Process is usually the primary choice today for object-oriented software produc-
tion. Fortunately, as will be demonstrated in Part B of this book, the Unifi ed Process is an
excellent object-oriented methodology in almost every way.
 The Unifi ed Process is not a specifi c series of steps that, if followed, will result in the
construction of a software product. In fact, no such single “one size fi ts all” methodology
could exist because of the wide variety of types of software products. For example, there
are many different application domains, such as insurance, aerospace, and manufacturing.
Also, a methodology for rushing a COTS package to market ahead of its competitors is
different from one used to construct a high-security electronic funds transfer network. In
addition, the skills of software professionals can vary widely.
 Instead, the Unifi ed Process should be viewed as an adaptable methodology. That is, it
is modifi ed for the specifi c software product to be developed. As will be seen in Part B,
some features of the Unifi ed Process are inapplicable to small- and even medium-scale
software. However, much of the Unifi ed Process is used for software products of all sizes.
The emphasis in this book is on this common subset of the Unifi ed Process, but aspects
of the Unifi ed Process applicable to only large-scale software also are discussed, to ensure
that the issues that need to be addressed when larger software products are constructed are
thoroughly appreciated.

 3.2 Iteration and Incrementation within
the Object-Oriented Paradigm

 The object-oriented paradigm uses modeling throughout. A model is a set of UML dia-
grams that represent one or more aspects of the software product to be developed. (UML
diagrams are introduced in Chapter 7 .) Recall that UML stands for Unifi ed Modeling Lan-
guage. That is, UML is the tool that we use to represent (model) the target software product.
A major reason for using a graphical representation like UML is best expressed by the old
proverb, a picture is worth a thousand words. UML diagrams enable software professionals
to communicate with one another more quickly and more accurately than if only verbal
descriptions were used.
 The object-oriented paradigm is an iterative-and-incremental methodology. Each work-
fl ow consists of a number of steps, and to carry out that workfl ow, the steps of the workfl ow
are repeatedly performed until the members of the development team are satisfi ed that
they have an accurate UML model of the software product they want to develop. That is,
even the most experienced software professionals iterate and reiterate until they are fi nally
satisfi ed that the UML diagrams are correct. The implication is that software engineers, no

sch76183_ch03_074-106.indd 76sch76183_ch03_074-106.indd 76 10/06/10 2:11 PM10/06/10 2:11 PM

 Just in Case You Wanted to Know Box 3.2
 Until recently, the most popular object-oriented software development methodologies were
object modeling technique (OMT) [Rumbaugh et al., 1991] and Grady Booch’s method
[Booch, 1994]. OMT was developed by Jim Rumbaugh and his team at the General Elec-
tric Research and Development Center in Schenectady, New York, whereas Grady Booch
developed his method at Rational, Inc., in Santa Clara, California. All object-oriented soft-
ware development methodologies essentially are equivalent, so the differences between
OMT and Booch’s method are small. Nevertheless, there always was a friendly rivalry
between the supporters of the two camps.
 This changed in October 1994, when Rumbaugh joined Booch at Rational. The two
methodologists immediately began to work together to develop a methodology that would
combine OMT and Booch’s method. When a preliminary version of their work was pub-
lished, it was pointed out that they had not developed a methodology but merely a notation
for representing an object-oriented software product. The name Unifi ed Methodology was
quickly changed to Unifi ed Modeling Language (UML). In 1995, they were joined at Rational
by Ivar Jacobson, author of the Objectory methodology. Booch, Jacobson, and Rumbaugh,
affectionately called the “Three Amigos” (after the 1986 John Landis movie Three Amigos!
with Chevy Chase and Steve Martin), then worked together. Version 1.0 of UML, published
in 1997, took the software engineering world by storm. Until then, there had been no
universally accepted notation for the development of a software product. Almost overnight
UML was used all over the world. The Object Management Group (OMG), an association of
the world’s leading companies in object technology, took the responsibility for organizing
an international standard for UML, so that every software professional would use the same
version of UML, thereby promoting communication among individuals within an organi-
zation as well as companies worldwide. UML [Booch, Rumbaugh, and Jacobson, 1999] is
today the unquestioned international standard notation for representing object-oriented
software products.
 An orchestral score shows which musical instruments are needed to play the piece, the
notes each instrument is to play and when it is to play them, as well as a whole host of
technical information such as the key signature, tempo, and loudness. Could this informa-
tion be given in English, rather than a diagram? Probably, but it would be impossible to play
music from such a description. For example, there is no way a pianist and a violinist could
perform a piece described as follows: “The music is in march time, in the key of B minor. The
fi rst bar begins with the A above middle C on the violin (a quarter note). While this note is
being played, the pianist plays a chord consisting of seven notes. The right hand plays the
following four notes: E sharp above middle C . . .”
 It is clear that, in some fi elds, a textual description simply cannot replace a diagram.
Music is one such fi eld; software development is another. And for software development,
the best modeling language available today is UML.
 Taking the software engineering world by storm with UML was not enough for the Three
Amigos. Their next endeavor was to publish a complete software development methodol-
ogy that unifi ed their three separate methodologies. This unifi ed methodology was fi rst
called the Rational Unifi ed Process (RUP); Rational is in the name of the methodology not
because the Three Amigos considered all other approaches to be irrational, but because at
that time all three were senior managers at Rational, Inc. (Rational was bought by IBM in
2003). In their book on RUP [Jacobson, Booch, and Rumbaugh, 1999], the name Unifi ed
Software Development Process (USDP) was used. The term Unifi ed Process is generally used
today, for brevity.

sch76183_ch03_074-106.indd 77sch76183_ch03_074-106.indd 77 04/06/10 6:35 PM04/06/10 6:35 PM

78 Part A Software Engineering Concepts

matter how outstanding they may be, almost never get the various work products right the
fi rst time. How can this be?
 The nature of software products is such that virtually everything has to be developed
iteratively and incrementally. After all, software engineers are human, and therefore subject
to Miller’s Law (Section 2.5). That is, it is impossible to consider everything at the same time,
so just seven or so chunks (units of information) are handled initially. Then, when the next set
of chunks is considered, more knowledge about the target software product is gained, and the
UML diagrams are modifi ed in the light of this additional information. The process continues
in this way until eventually the software engineers are satisfi ed that all the models for a given
workfl ow are correct. In other words, initially the best possible UML diagrams are drawn in the
light of the knowledge available at the beginning of the workfl ow. Then, as more knowledge
about the real-world system being modeled is gained, the diagrams are made more accurate
(iteration) and extended (incrementation). Accordingly, no matter how experienced and skillful
a software engineer may be, he or she repeatedly iterates and increments until satisfi ed that the
UML diagrams are an accurate representation of the software product to be developed.
 Ideally, by the end of this book, the reader would have the software engineering skills
necessary for constructing the large, complex software products for which the Unifi ed Pro-
cess was developed. Unfortunately, there are three reasons why this is not feasible.

 1. Just as it is not possible to become an expert on calculus or a foreign language in one
single course, gaining profi ciency in the Unifi ed Process requires extensive study and,
more important, unending practice in object-oriented software engineering.

 2. The Unifi ed Process was created primarily for use in developing large, complex soft-
ware products. To be able to handle the many intricacies of such software products, the
Unifi ed Process is itself large. It would be hard to cover every aspect of the Unifi ed
Process in a textbook of this size.

 3. To teach the Unifi ed Process, it is necessary to present a case study that illustrates the
features of the Unifi ed Process. To illustrate the features that apply to large software
products, such a case study would have to be large. For example, just the specifi cations
typically would take over 1000 pages.

 For these three reasons, this book presents most, but not all, of the Unifi ed Process.
 The fi ve core workfl ows of the Unifi ed Process (requirements workfl ow, analysis
workfl ow, design workfl ow, implementation workfl ow, and test workfl ow) and their chal-
lenges are now discussed.

 3.3 The Requirements Workfl ow

 Software development is expensive. The development process usually begins when the
client approaches a development organization with regard to a software product that, in
the opinion of the client, is either essential to the profi tability of his or her enterprise or
somehow can be justifi ed economically. The aim of the requirements workfl ow is for
the development organization to determine the client’s needs. The fi rst task of the develop-
ment team is to acquire a basic understanding of the application domain (domain for
short), that is, the specifi c environment in which the target software product is to operate.
The domain could be banking, automobile manufacturing, or nuclear physics.

sch76183_ch03_074-106.indd 78sch76183_ch03_074-106.indd 78 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 79

 At any stage of the process, if the client stops believing that the software will be cost
effective, development will terminate immediately. Throughout this chapter the assumption
is made that the client feels that the cost is justifi ed. Therefore, a vital aspect of software
development is the business case , a document that demonstrates the cost-effectiveness of
the target product. (In fact, the “cost” is not always purely fi nancial. For example, military
software often is built for strategic or tactical reasons. Here, the cost of the software is the
potential damage that could be suffered in the absence of the weapon being developed.)
 At an initial meeting between client and developers, the client outlines the product as
he or she conceptualizes it. From the viewpoint of the developers, the client’s description
of the desired product may be vague, unreasonable, contradictory, or simply impossible
to achieve. The task of the developers at this stage is to determine exactly what the client
needs and to fi nd out from the client what constraints exist.

 • A major constraint is almost always the deadline . For example, the client may stipulate
that the fi nished product must be completed within 14 months. In almost every application
domain, it is now commonplace for a target software product to be mission critical. That
is, the client needs the software product for core activities of his or her organization, and
any delay in delivering the target product is detrimental to the organization.

 • A variety of other constraints often are present, such as reliability (for example, the
product must be operational 99 percent of the time, or the mean time between failures
must be at least 4 months). Another common constraint is the size of the executable load
image (for example, it has to run on the client’s personal computer or on the hardware
inside the satellite).

 • The cost is almost invariably an important constraint. However, the client rarely tells
the developers how much money is available to build the product. Instead, a common
practice is that, once the specifi cations have been fi nalized, the client asks the developers
to name their price for completing the project. Clients follow this bidding procedure in
the hope that the amount of the developers’ bid is lower than the amount the client has
budgeted for the project.

 The preliminary investigation of the client’s needs sometimes is called concept explo-
ration . In subsequent meetings between members of the development team and the client
team, the functionality of the proposed product is successively refi ned and analyzed for
technical feasibility and fi nancial justifi cation.
 Up to now, everything seems to be straightforward. Unfortunately, the requirements
workfl ow often is performed inadequately. When the product fi nally is delivered to the
user, perhaps a year or two after the specifi cations have been signed off on by the client, the
client may say to the developers, “I know that this is what I asked for, but it isn’t really what
I wanted.” What the client asked for and, therefore, what the developers thought the client
wanted, was not what the client actually needed . There can be a number of reasons for this
predicament. First, the client may not truly understand what is going on in his or her own
organization. For example, it is no use asking the software developers for a faster operating
system if the cause of the current slow turnaround is a badly designed database. Or, if the
client operates an unprofi table chain of retail stores, the client may ask for a fi nancial man-
agement information system that refl ects such items as sales, salaries, accounts payable,
and accounts receivable. Such a product will be of little use if the real reason for the losses

sch76183_ch03_074-106.indd 79sch76183_ch03_074-106.indd 79 04/06/10 6:35 PM04/06/10 6:35 PM

is shrinkage (theft by employees and shoplifting). If that is the case, then a stock control
system rather than a fi nancial management information system is required.
 But the major reason why the client frequently asks for the wrong product is that soft-
ware is complex. If it is diffi cult for a software professional to visualize a piece of software
and its functionality, the problem is far worse for a client who is barely computer literate.
As will be shown in Chapter 11 , the Unifi ed Process can help in this regard; the many UML
diagrams of the Unifi ed Process assist the client in gaining the necessary detailed under-
standing of what needs to be developed.

 3.4 The Analysis Workfl ow
 The aim of the analysis workfl ow is to analyze and refi ne the requirements to achieve
the detailed understanding of the requirements essential for developing a software product
correctly and maintaining it easily. At fi rst sight, however, there is no need for an analysis
workfl ow. Instead, an apparently simpler way to proceed would be to develop a software
product by continuing with further iterations of the requirements workfl ow until the neces-
sary understanding of the target software product has been obtained.
 The key point is that the output of the requirements workfl ow must be totally compre-
hended by the client. In other words, the artifacts of the requirements workfl ow must be
expressed in the language of the client, that is, in a natural (human) language such as English,
Armenian, or Zulu. But all natural languages, without exception, are somewhat imprecise and
lend themselves to misunderstanding. For example, consider the following paragraph:

 A part record and a plant record are read from the database. If it contains the letter A directly
followed by the letter Q, then calculate the cost of transporting that part to that plant.

 At fi rst sight, this requirement seems perfectly clear. But to what does it (the second
word in the second sentence) refer: the part record, the plant record, or the database?
 Ambiguities of this kind cannot arise if the requirements are expressed (say) in a math-
ematical notation. However, if a mathematical notation is used for the requirements, then
the client is unlikely to understand much of the requirements. As a result, there may well be
miscommunication between client and developers regarding the requirements, and conse-
quently, the software product developed to satisfy those requirements may not be what the
client needs.
 The solution is to have two separate workfl ows. The requirements workfl ow is couched
in the language of the client; the analysis workfl ow, in a more precise language that ensures
that the design and implementation workfl ows are correctly carried out. In addition, more
details are added during the analysis workfl ow, details not relevant to the client’s under-
standing of the target software product but essential for the software professionals who will
develop the software product. For example, the initial state of a statechart (Section 13.6)
would surely not concern the client in any way but has to be included in the specifi cations
if the developers are to build the target product correctly.
 The specifi cations of the product constitute a contract. The software developers are
deemed to have completed the contract when they deliver a product that satisfi es the
acceptance criteria of the specifi cations. For this reason, the specifi cations should not
include imprecise terms like suitable, convenient, ample , or enough , or similar terms that

80 Part A Software Engineering Concepts

sch76183_ch03_074-106.indd 80sch76183_ch03_074-106.indd 80 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 81

sound exact but in practice are equally imprecise, such as optimal or 98 percent complete .
Whereas contract software development can lead to a lawsuit, there is no chance of the
specifi cations forming the basis for legal action when the client and developers are from
the same organization. Nevertheless, even in the case of internal software development, the
specifi cations always should be written as if they will be used as evidence in a trial.
 More important, the specifi cations are essential for both testing and maintenance. Unless
the specifi cations are precise, there is no way to determine whether they are correct, let
alone whether the implementation satisfi es the specifi cations. And it is hard to change the
specifi cations unless some document states exactly what the specifi cations currently are.
 When the Unifi ed Process is used, there is no specifi cation document in the usual sense of
the term. Instead, a set of UML artifacts are shown to the client, as described in Chapter 13 .
These UML diagrams and their descriptions can obviate many (but by no means all) of the
problems of the classical specifi cation document.
 One mistake that can be made by a classical analysis team is that the specifi cations are
ambiguous; as previously explained, ambiguity is intrinsic to natural languages. Incom-
pleteness is another problem in the specifi cations; that is, some relevant fact or require-
ment may be omitted. For instance, the specifi cation document may not state what actions
are to be taken if the input data contain errors. Moreover, the specifi cation document may
contain contradictions . For example, one place in the specifi cation document for a prod-
uct that controls a fermentation process states that if the pressure exceeds 35 psi, then
valve M17 immediately must be shut. However, another place states that, if the pressure
exceeds 35 psi, then the operator immediately must be alerted; only if the operator takes
no remedial action within 30 seconds should valve M17 be shut automatically. Software
development cannot proceed until such problems in the specifi cations have been corrected.
As pointed out in the previous paragraph, many of these problems can be reduced by using
the Unifi ed Process. This is because UML diagrams together with descriptions of those
diagrams are less likely to contain ambiguity, incompleteness, and contradictions.
 Once the client has approved the specifi cations, detailed planning and estimating com-
mences. No client authorizes a software project without knowing in advance how long the
project will take and how much it will cost. From the viewpoint of the developers, these
two items are just as important. If the developers underestimate the cost of a project, then
the client pays the agreed-upon fee, which may be signifi cantly less than the develop-
ers’ actual cost. Conversely, if the developers overestimate what the project costs, then the
client may turn down the project or have the job done by other developers whose estimate
is more reasonable. Similar issues arise with regard to duration estimates. If the developers
underestimate how long completing a project will take, then the resulting late delivery of
the product, at best, results in a loss of confi dence by the client. At worst, lateness penalty
clauses in the contract are invoked, causing the developers to suffer fi nancially. Again, if
the developers overestimate how long it will take for the product to be delivered, the client
may well award the job to developers who promise faster delivery.
 For the developers, merely estimating the duration and total cost is not enough.
The developers need to assign the appropriate personnel to the various workfl ows of the
development process. For example, the implementation team cannot start until the relevant
design artifacts have been approved by the software quality assurance (SQA) group, and
the design team is not needed until the analysis team has completed its task. In other words,
the developers have to plan ahead. A software project management plan (SPMP) must be

sch76183_ch03_074-106.indd 81sch76183_ch03_074-106.indd 81 04/06/10 6:35 PM04/06/10 6:35 PM

82 Part A Software Engineering Concepts

drawn up that refl ects the separate workfl ows of the development process and shows which
members of the development organization are involved in each task, as well as the deadlines
for completing each task.
 The earliest that such a detailed plan can be drawn up is when the specifi cations have
been fi nalized. Before that time, the project is too amorphous for complete planning. Some
aspects of the project certainly must be planned right from the start, but until the developers
know exactly what is to be built, they cannot specify all aspects of the plan for building it.
 Therefore, once the specifi cations have been approved by the client, preparation of the
software project management plan commences. Major components of the plan are the
 deliverables (what the client is going to get), the milestones (when the client gets them),
and the budget (how much it is going to cost).
 The plan describes the software process in fullest detail. It includes aspects such as the
life-cycle model to be used, the organizational structure of the development organization,
project responsibilities, managerial objectives and priorities, the techniques and CASE
tools to be used, and detailed schedules, budgets, and resource allocations. Underlying the
entire plan are the duration and cost estimates; techniques for obtaining such estimates are
described in Section 9.2.
 The analysis workfl ow is described in Chapters 12 and 13 : classical analysis techniques
are described in Chapter 12 , and object-oriented analysis is the subject of Chapter 13 .
A major artifact of the analysis workfl ow is the software project management plan. An
explanation of how to draw up the SPMP is given in Sections 9.3 though 9.5.
 Now the design workfl ow is examined.

 3.5 The Design Workfl ow
 The specifi cations of a product spell out what the product is to do; the design shows how
the product is to do it. More precisely, the aim of the design workfl ow is to refi ne the
artifacts of the analysis workfl ow until the material is in a form that can be implemented
by the programmers.
 As explained in Section 1.3, during the classical design phase, the design team determines
the internal structure of the product. The designers decompose the product into modules ,
independent pieces of code with well-defi ned interfaces to the rest of the product. The
interface of each module (that is, the arguments passed to the module and the arguments
returned by the module) must be specifi ed in detail. For example, a module might measure
the water level in a nuclear reactor and cause an alarm to sound if the level is too low. A
module in an avionics product might take as input two or more sets of coordinates of an
incoming enemy missile, compute its trajectory, and invoke another module to advise the
pilot as to possible evasive action. Once the team has completed the decomposition into
modules (the architectural design), the detailed design is performed. For each mod-
ule, algorithms are selected and data structures chosen.
 Turning now to the object-oriented paradigm, the basis of that paradigm is the class , a
specifi c type of module. Classes are extracted during the analysis workfl ow and designed
during the design workfl ow. Consequently, the object-oriented counterpart of architectural
design is performed as a part of the object-oriented analysis workfl ow, and the object-
oriented counterpart of detailed design is part of the object-oriented design workfl ow.

sch76183_ch03_074-106.indd 82sch76183_ch03_074-106.indd 82 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 83

 The design team must keep a meticulous record of the design decisions that are made.
This information is essential for two reasons.

 1. While the product is being designed, a dead end will be reached at times and the design
team must backtrack and redesign certain pieces. Having a written record of why specifi c
decisions were made assists the team when this occurs and helps it get back on track.

 2. Ideally, the design of the product should be open-ended, meaning future enhancements
(postdelivery maintenance) can be done by adding new classes or replacing existing
classes without affecting the design as a whole. Of course, in practice, this ideal is dif-
fi cult to achieve. Deadline constraints in the real world are such that designers struggle
against the clock to complete a design that satisfi es the original specifi cations, without
worrying about any later enhancements. If future enhancements (to be added after the
product is delivered to the client) are included in the specifi cations, then these must be
allowed for in the design, but this situation is extremely rare. In general, the specifi ca-
tions, and hence the design, deal with only present requirements. In addition, while
the product is still being designed, there is no way to determine all possible future
enhancements. Finally, if the design has to take all future possibilities into account,
at best it will be unwieldy; at worst, it will be so complicated that implementation is
impossible. So the designers have to compromise, putting together a design that can be
extended in many reasonable ways without the need for total redesign. But, in a product
that undergoes major enhancement, the time will come when the design simply cannot
handle further changes. When this stage is reached, the product must be redesigned as
a whole. The task of the redesign team is considerably easier if the team members are
provided a record of the reasons for all the original design decisions.

 3.6 The Implementation Workfl ow
 The aim of the implementation workfl ow is to implement the target software product
in the chosen implementation language(s). A small software product is sometimes imple-
mented by the designer. In contrast, a large software product is partitioned into smaller sub-
systems, which are then implemented in parallel by coding teams. The subsystems, in turn,
consist of components or code artifacts implemented by an individual programmer.
 Usually, the only documentation given a programmer is the relevant design artifact. For
example, in the case of the classical paradigm, the programmer is given the detailed design
of the module he or she is to implement. The detailed design usually provides enough
information for the programmer to implement the code artifact without too much diffi culty.
If there are any problems, they can quickly be cleared up by consulting the responsible
designer. However, there is no way for the individual programmer to know if the architec-
tural design is correct. Only when integration of individual code artifacts commences do
the shortcomings of the design as a whole start coming to light.
 Suppose that a number of code artifacts have been implemented and integrated and the
parts of the product integrated so far appear to be working correctly. Suppose further that
a programmer has correctly implemented artifact a45, but when this artifact is integrated
with the other existing artifacts, the product fails. The cause of the failure lies not in artifact
a45 itself, but rather in the way that artifact a45 interacts with the rest of the product, as

sch76183_ch03_074-106.indd 83sch76183_ch03_074-106.indd 83 04/06/10 6:35 PM04/06/10 6:35 PM

84 Part A Software Engineering Concepts

specifi ed in the architectural design. Nevertheless, in this type of situation the program-
mer who just coded artifact a45 tends to be blamed for the failure. This is unfortunate,
because the programmer has simply followed the instructions provided by the designer and
implemented the artifact exactly as described in the detailed design for that artifact. The
members of the programming team are rarely shown the “big picture,” that is, the archi-
tectural design, let alone asked to comment on it. Although it is grossly unfair to expect an
individual programmer to be aware of the implications of a specifi c artifact for the product
as a whole, this unfortunately happens in practice all too often. This is yet another reason
why it is so important for the design to be correct in every respect.
 The correctness of the design (as well as the other artifacts) is checked as part of the test
workfl ow.

 3.7 The Test Workfl ow
 As shown in Figure 2.4 , in the Unifi ed Process, testing is carried out in parallel with the
other workfl ows, starting from the beginning. There are two major aspects to testing.

 1. Every developer and maintainer is personally responsible for ensuring that his or her
work is correct. Therefore, a software professional has to test and retest each artifact he
or she develops or maintains.

 2. Once the software professional is convinced that an artifact is correct, it is handed over to
the software quality assurance group for independent testing, as described in Chapter 6 .

 The nature of the test workfl ow changes depending on the artifacts being tested. How-
ever, a feature important to all artifacts is traceability.

 3.7.1 Requirements Artifacts
 If the requirements artifacts are to be testable over the life cycle of the software product,
then one property they must have is traceability . For example, it must be possible to trace
every item in the analysis artifacts back to a requirements artifact and similarly for the
design artifacts and the implementation artifacts. If the requirements have been presented
methodically, properly numbered, cross-referenced, and indexed, then the developers
should have little diffi culty tracing through the subsequent artifacts and ensuring that they
are indeed a true refl ection of the client’s requirements. When the work of the members of
the requirements team is subsequently checked by the SQA group, traceability simplifi es
their task, too.

 3.7.2 Analysis Artifacts
 As pointed out in Chapter 1 , a major source of faults in delivered software is faults in the
specifi cations that are not detected until the software has been installed on the client’s
computer and used by the client’s organization for its intended purpose. Both the analy-
sis team and the SQA group must therefore check the analysis artifacts assiduously. In
addition, they must ensure that the specifi cations are feasible, for example, that a specifi c
hardware component is fast enough or that the client’s current online disk storage capacity
is adequate to handle the new product. An excellent way of checking the analysis artifacts
is by means of a review. Representatives of the analysis team and of the client are present.

sch76183_ch03_074-106.indd 84sch76183_ch03_074-106.indd 84 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 85

The meeting usually is chaired by a member of the SQA group. The aim of the review is to
determine whether the analysis artifacts are correct. The reviewers go through the analysis
artifacts, checking to see if there are any faults. Walkthroughs and inspections are two types
of reviews, and they are described in Section 6.2.
 We turn now to the checking of the detailed planning and estimating that takes place
once the client has signed off on the specifi cations. Whereas it is essential that every aspect
of the SPMP be meticulously checked by the development team and then by the SQA
group, particular attention must be paid to the plan’s duration and cost estimates. One way
to do this is for management to obtain two (or more) independent estimates of both dura-
tion and cost when detailed planning starts, and then reconcile any signifi cant differences.
With regard to the SPMP document, an excellent way to check it is by a review similar to
the review of the analysis artifacts. If the duration and cost estimates are satisfactory, the
client will give permission for the project to proceed.

 3.7.3 Design Artifacts
 As mentioned in Section 3.7.1, a critical aspect of testability is traceability. In the case of
the design, this means that every part of the design can be linked to an analysis artifact. A
suitably cross-referenced design gives the developers and the SQA group a powerful tool
for checking whether the design agrees with the specifi cations and whether every part of
the specifi cations is refl ected in some part of the design.
 Design reviews are similar to the reviews that the specifi cations undergo. However, in
view of the technical nature of most designs, the client usually is not present. Members of
the design team and the SQA group work through the design as a whole as well as through
each separate design artifact, ensuring that the design is correct. The types of faults to look
for include logic faults, interface faults, lack of exception handling (processing of error
conditions), and most important, nonconformance to the specifi cations. In addition, the
review team always should be aware of the possibility that some analysis faults were not
detected during the previous workfl ow. A detailed description of the review process is given
in Section 6.2.

 3.7.4 Implementation Artifacts
 Each component should be tested while it is being implemented (desk checking); and after
it has been implemented, it is run against test cases. This informal testing is done by the pro-
grammer. Thereafter, the quality assurance group tests the component methodically; this is
termed unit testing . A variety of unit-testing techniques are described in Chapter 15 .
 In addition to running test cases, a code review is a powerful, successful technique for
detecting programming faults. Here, the programmer guides the members of the review
team through the listing of the component. The review team must include an SQA repre-
sentative. The procedure is similar to reviews of specifi cations and designs described previ-
ously. As in all the other workfl ows, a record of the activities of the SQA group are kept as
part of the test workfl ow.
 Once a component has been coded, it must be combined with the other coded components
so that the SQA group can determine whether the (partial) product as a whole functions
correctly. The way in which the components are integrated (all at once or one at a time) and
the specifi c order (from top to bottom or from bottom to top in the component interconnec-
tion diagram or class hierarchy) can have a critical infl uence on the quality of the resulting

sch76183_ch03_074-106.indd 85sch76183_ch03_074-106.indd 85 04/06/10 6:35 PM04/06/10 6:35 PM

86 Part A Software Engineering Concepts

product. For example, suppose the product is integrated bottom up. A major design fault, if
present, will show up late, necessitating an expensive reimplementation. Conversely, if the
components are integrated top down, then the lower-level components usually do not receive
as thorough a testing as would be the case if the product were integrated bottom up. These and
other problems are discussed in detail in Chapter 15 . A detailed explanation is given there as
to why coding and integration must be performed in parallel.
 The purpose of this integration testing is to check that the components combine
correctly to achieve a product that satisfi es its specifi cations. During integration testing,
particular care must be paid to testing the component interfaces. It is important that the
number, order, and types of formal arguments match the number, order, and types of actual
arguments. This strong type checking [van Wijngaarden et al., 1975] is best performed by
the compiler and linker. However, many languages are not strongly typed. When such a
language is used, members of the SQA group must check the interfaces.
 When the integration testing has been completed (that is, when all the components have
been coded and integrated), the SQA group performs product testing . The functionality
of the product as a whole is checked against the specifi cations. In particular, the constraints
listed in the specifi cations must be tested. A typical example is whether the response time
has been met. Because the aim of product testing is to determine whether the specifi cations
have been correctly implemented, many of the test cases can be drawn up once the specifi -
cations are complete.
 Not only must the correctness of the product be tested but its robustness must also be
tested. That is, intentionally erroneous input data are submitted to determine whether the
product will crash or whether its error-handling capabilities are adequate for dealing with
bad data. If the product is to be run together with the client’s currently installed software,
then tests also must be performed to check that the new product will have no adverse effect
on the client’s existing computer operations. Finally, a check must be made as to whether
the source code and all other types of documentation are complete and internally consistent.
Product testing is discussed in Section 15.21. On the basis of the results of the product test,
a senior manager in the development organization decides whether the product is ready to
be released to the client.
 The fi nal step in testing the implementation artifacts is acceptance testing . The soft-
ware is delivered to the client, who tests it on the actual hardware, using actual data as
opposed to test data. No matter how methodical the development team or the SQA group
might be, there is a signifi cant difference between test cases, which by their very nature are
artifi cial, and actual data. A software product cannot be considered to satisfy its specifi ca-
tions until the product has passed its acceptance test. More details about acceptance testing
are given in Section 15.22.
 In the case of COTS software (Section 1.11), as soon as product testing is complete,
versions of the complete product are supplied to selected possible future clients for testing
on site. The fi rst such version is termed the alpha release . The corrected alpha release
is called the beta release ; in general, the beta release is intended to be close to the fi nal
version. (The terms alpha release and beta release are generally applied to all types of
software products, not just COTS.)
 Faults in COTS software usually result in poor sales of the product and huge losses for the
development company. So that as many faults as possible come to light as early as possible,
developers of COTS software frequently give alpha or beta releases to selected companies, in

sch76183_ch03_074-106.indd 86sch76183_ch03_074-106.indd 86 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 87

the expectation that on-site tests will uncover any latent faults. In return, the alpha and beta
sites frequently are promised free copies of the delivered version of the software. Risks are
involved for a company participating in alpha or beta testing. In particular, alpha releases
can be fault laden, resulting in frustration, wasted time, and possible damage to databases.
However, the company gets a head start in using the new COTS software, which can give it
an advantage over its competitors. A problem occurs sometimes when software organizations
use alpha testing by potential clients in place of thorough product testing by the SQA group.
Although alpha testing at a number of different sites usually brings to light a large variety of
faults, there is no substitute for the methodical testing that the SQA group can provide.

 3.8 Postdelivery Maintenance
 Postdelivery maintenance is not an activity grudgingly carried out after the product has been
delivered and installed on the client’s computer. On the contrary, it is an integral part of the
software process that must be planned for from the beginning. As explained in Section 3.5,
the design, as far as is feasible, should take future enhancements into account. Coding must be
performed with future maintenance kept in mind. After all, as pointed out in Section 1.3, more
money is spent on postdelivery maintenance than on all other software activities combined.
It therefore is a vital aspect of software production. Postdelivery maintenance must never be
treated as an afterthought. Instead, the entire software development effort must be carried out in
such a way as to minimize the impact of the inevitable future postdelivery maintenance.
 A common problem with postdelivery maintenance is documentation or, rather, lack of it.
In the course of developing software against a time deadline, the original analysis and design
artifacts frequently are not updated and, consequently, are almost useless to the maintenance
team. Other documentation such as the database manual or the operating manual may never
be written, because management decided that delivering the product to the client on time was
more important than developing the documentation in parallel with the software. In many
instances, the source code is the only documentation available to the maintainer. The high rate
of personnel turnover in the software industry exacerbates the maintenance situation, in that
none of the original developers may be working for the organization at the time when main-
tenance is performed. Postdelivery maintenance frequently is the most challenging aspect of
software production for these reasons and the additional reasons given in Chapter 16 .
 Turning now to testing, there are two aspects to testing changes made to a product when
postdelivery maintenance is performed. The fi rst is checking that the required changes have
been implemented correctly. The second aspect is ensuring that, in the course of making
the required changes to the product, no other inadvertent changes were made. Therefore,
once the programmer has determined that the desired changes have been implemented, the
product must be tested against previous test cases to make certain that the functionality
of the rest of the product has not been compromised. This procedure is called regres-
sion testing . To assist in regression testing, it is necessary that all previous test cases be
retained, together with the results of running those test cases. Testing during postdelivery
maintenance is discussed in greater detail in Chapter 16 .
 A major aspect of postdelivery maintenance is a record of all the changes made, together
with the reason for each change. When software is changed, it has to be regression tested.
Therefore, the regression test cases are a central form of documentation.

sch76183_ch03_074-106.indd 87sch76183_ch03_074-106.indd 87 04/06/10 6:35 PM04/06/10 6:35 PM

88 Part A Software Engineering Concepts

 3.9 Retirement
 The fi nal stage in the software life cycle is retirement . After many years of service, a stage
is reached when further postdelivery maintenance no longer is cost effective.

 • Sometimes the proposed changes are so drastic that the design as a whole would have
to be changed. In such a case, it is less expensive to redesign and recode the entire
product.

 • So many changes may have been made to the original design that interdependencies
inadvertently have been built into the product, and even a small change to one minor
component might have a drastic effect on the functionality of the product as a whole.

 • The documentation may not have been adequately maintained, thereby increasing the
risk of a regression fault to the extent that it would be safer to recode than maintain.

 • The hardware (and operating system) on which the product runs is to be replaced; it may
be more economical to reimplement from scratch than to modify.

 In each of these instances the current version is replaced by a new version, and the soft-
ware process continues.
 True retirement, on the other hand, is a somewhat rare event that occurs when a product
has outgrown its usefulness. The client organization no longer requires the functionality
provided by the product, and it fi nally is removed from the computer.

 3.10 The Phases of the Unifi ed Process
 Figure 3.1 differs from Figure 2.4 in that the labels of the increments have been changed.
Instead of Increment A, Increment B, and so on, the four increments are now labeled
Inception phase, Elaboration phase, Construction phase, and Transition phase. In
other words, the phases of the Unifi ed Process correspond to increments.

 FIGURE 3.1
The core
workfl ows and
the phases of
the Unifi ed
Process.

Requirements
workflow

Analysis
workflow

Design
workflow

Implementation
workflow

Test
workflow

Time

Pe
rs

on
-h

ou
rs

Inception
phase

Elaboration
phase

Construction
phase

Transition
phase

sch76183_ch03_074-106.indd 88sch76183_ch03_074-106.indd 88 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 89

 Although in theory the development of a software product could be performed in any
number of increments, development in practice often seems to consist of four increments.
The increments or phases are described in Sections 3.10.1 through 3.10.4, together with the
deliverables of each phase, that is, the artifacts that should be completed by the end of that
phase.
 Every step performed in the Unifi ed Process falls into one of fi ve core workfl ows and
 also into one of four phases, the inception phase, elaboration phase, construction phase,
and transition phase. The various steps of these four phases are already described in Sec-
tions 3.3 through 3.7. For example, building a business case is part of the requirements
workfl ow (Section 3.3). It is also part of the inception phase. Nevertheless, each step has to
be considered twice, as will be explained.
 Consider the requirements workfl ow. To determine the client’s needs, one of the steps
is, as just stated, to build a business case. In other words, within the framework of the
requirements workfl ow, building a business case is presented within a technical context. In
Section 3.10.1, a description is presented of building a business case within the framework
of the inception phase, the phase in which management decides whether or not to develop
the proposed software product. That is, building a business case shortly is presented within
an economic context (Section 1.2).
 At the same time, there is no point in presenting each step twice, both times at the same
level of detail. Accordingly, the inception phase is described in depth to highlight the dif-
ference between the technical context of the workfl ows and the economic context of the
phases, but the other three phases are simply outlined.

 3.10.1 The Inception Phase
 The aim of the inception phase (fi rst increment) is to determine whether it is worthwhile
to develop the target software product. In other words, the primary aim of this phase is to
determine whether the proposed software product is economically viable.
 Two steps of the requirements workfl ow are to understand the domain and build a
business model. Clearly, there is no way the developers can give any kind of opinion
regarding a possible future software product unless they fi rst understand the domain in
which they are considering developing the target software product. It does not matter if
the domain is a television network, a machine tool company, or a hospital specializing in
liver disease—if the developers do not fully understand the domain, little reliance can be
placed on what they subsequently build. Hence, the fi rst step is to obtain domain knowl-
edge. Once the developers have a full comprehension of the domain, the second step is
to build a business model, that is, a description of the client’s business processes. In
other words, the fi rst need is to understand the domain itself, and the second need is to
understand precisely how the client organization operates in that domain.
 Now the scope of the target project has to be delimited. For example, consider a pro-
posed software product for a new highly secure ATM network for a nationwide chain
of banks. The size of the business model of the banking chain as a whole is likely to be
huge. To determine what the target software product should incorporate, the developers
have to focus on only a subset of the business model, namely, the subset covered by the
proposed software product. Therefore, delimiting the scope of the proposed project is the
third step.

sch76183_ch03_074-106.indd 89sch76183_ch03_074-106.indd 89 04/06/10 6:35 PM04/06/10 6:35 PM

90 Part A Software Engineering Concepts

 Now the developers can begin to make the initial business case. The questions that
need to be answered before proceeding with the project include [Jacobson, Booch, and
Rumbaugh, 1999]:

 • Is the proposed software product cost effective? That is, will the benefi ts to be gained
as a consequence of developing the software product outweigh the costs involved? How
long will it take to obtain a return on the investment needed to develop the proposed
software product? Alternatively, what will be the cost to the client if he or she decides
not to develop the proposed software product? If the software product is to be sold in the
marketplace, have the necessary marketing studies been performed?

 • Can the proposed software product be delivered in time? That is, if the software product
is delivered late to the market, will the organization still make a profi t or will a competi-
tive software product obtain the lion’s share of the market? Alternatively, if the software
product is to be developed to support the client organization’s own activities (presum-
ably including mission-critical activities), what is the impact if the proposed software
product is delivered late?

 • What risks are involved in developing the software product, and how can these risks
be mitigated? Do the team members who will develop the proposed software product
have the necessary experience? Is new hardware needed for this software product
and, if so, is there a risk that it will not be delivered in time? If so, is there a way
to mitigate that risk, perhaps by ordering backup hardware from another supplier?
Are software tools (Chapter 5) needed? Are they currently available? Do they have
all the necessary functionality? Is it likely that a COTS package (Section 1.11)
with all (or almost all) the functionality of the proposed custom software prod-
uct will be put on the market while the project is under way, and how can this be
determined?

 By the end of the inception phase the developers need answers to these questions so that
the initial business case can be made.
 The next step is to identify the risks. There are three major risk categories:

 1. Technical risks . Examples of technical risks were just listed.
 2. Not getting the requirements right . This risk can be mitigated by performing the require-

ments workfl ow correctly.
 3. Not getting the architecture right . The architecture may not be suffi ciently robust.

(Recall from Section 2.7 that the architecture of a software product consists of the vari-
ous components and how they fi t together, and that the property of being able to handle
extensions and changes without falling apart is its robustness.) In other words, while the
software product is being developed, there is a risk that trying to add the next piece to
what has been developed so far might require the entire architecture to be redesigned
from scratch. An analogy would be to build a house of cards, only to fi nd the entire
edifi ce tumbling down when an additional card is added.

 The risks need to be ranked so that the critical risks are mitigated fi rst.
 As shown in Figure 3.1 , a small amount of the analysis workfl ow is performed during
the inception phase. All that is usually done is to extract the information needed for the
design of the architecture. This design work is also refl ected in Figure 3.1 .

sch76183_ch03_074-106.indd 90sch76183_ch03_074-106.indd 90 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 91

 Turning now to the implementation workfl ow, during the inception phase frequently
no coding is performed. However, on occasion, it is necessary to build a proof-of-concept
prototype to test the feasibility of part of the proposed software product, as described in
Section 2.9.7.
 The test workfl ow commences at the start of the inception phase. The major aim here is
to ensure that the requirements are accurately determined.
 Planning is an essential part of every phase. In the case of the inception phase, the developers
have insuffi cient information at the beginning of the phase to plan the entire development, so the
only planning done at the start of the project is the planning for the inception phase itself. For
the same reason, a lack of information, the only planning that can meaningfully be done at the
end of the inception phase is to plan for just the next phase, the elaboration phase.
 Documentation, too, is an essential part of every phase. The deliverables of the inception
phase include [Jacobson, Booch, and Rumbaugh, 1999]

 • The initial version of the domain model.
 • The initial version of the business model.
 • The initial version of the requirements artifacts.
 • A preliminary version of the analysis artifacts.
 • A preliminary version of the architecture.
 • The initial list of risks.
 • The initial use cases (see Chapter 11).
 • The plan for the elaboration phase.
 • The initial version of the business case.

 Obtaining the last item, the initial version of the business case, is the overall aim of the
inception phase. This initial version incorporates a description of the scope of the software
product as well as fi nancial details. If the proposed software product is to be marketed, the
business case includes revenue projections, market estimates, and initial cost estimates.
If the software product is to be used in-house, the business case includes the initial cost–
benefi t analysis (Section 5.2).

 3.10.2 The Elaboration Phase
 The aim of the elaboration phase (second increment) is to refi ne the initial require-
ments, refi ne the architecture, monitor the risks and refi ne their priorities, refi ne the busi-
ness case, and produce the software project management plan. The reason for the name
 elaboration phase is clear; the major activities of this phase are refi nements or elaborations
of the previous phase.
 Figure 3.1 shows that these tasks correspond to all but completing the requirements
workfl ow (Chapter 11), performing virtually the entire analysis workfl ow (Chapter 13), and
then starting the design of the architecture (Section 8.5.4).
 The deliverables of the elaboration phase include [Jacobson, Booch, and Rumbaugh, 1999]

 • The completed domain model.
 • The completed business model.
 • The completed requirements artifacts.

sch76183_ch03_074-106.indd 91sch76183_ch03_074-106.indd 91 04/06/10 6:35 PM04/06/10 6:35 PM

92 Part A Software Engineering Concepts

 • The completed analysis artifacts.
 • An updated version of the architecture.
 • An updated list of risks.
 • The software project management plan (for the remainder of the project).
 • The completed business case.

 3.10.3 The Construction Phase
 The aim of the construction phase (third increment) is to produce the fi rst operational-
quality version of the software product, the so-called beta release (Section 3.7.4). Consider
 Figure 3.1 again. Even though the fi gure is only a symbolic representation of the phases,
it is clear that the emphasis in this phase is on implementation and testing the software
product. That is, the various components are coded and unit tested. The code artifacts are
then compiled and linked (integrated) to form subsystems, which are integration tested.
Finally, the subsystems are combined into the overall system, which is product tested. This
was described in Section 3.7.4.
 The deliverables of the construction phase include [Jacobson, Booch, and Rumbaugh, 1999]

 • The initial user manual and other manuals, as appropriate.
 • All the artifacts (beta release versions).
 • The completed architecture.
 • The updated risk list.
 • The software project management plan (for the remainder of the project).
 • If necessary, the updated business case.

 3.10.4 The Transition Phase
 The aim of the transition phase (fourth increment) is to ensure that the client’s require-
ments have indeed been met. This phase is driven by feedback from the sites at which the
beta version has been installed. (In the case of a custom software product developed for
a specifi c client, there is just one such site.) Faults in the software product are corrected.
Also, all the manuals are completed. During this phase, it is important to try to discover any
previously unidentifi ed risks. (The importance of uncovering risks even during the transi-
tion phase is highlighted in Just in Case You Wanted to Know Box 3.3.)
 The deliverables of the transition phase include [Jacobson, Booch, and Rumbaugh,
1999]

 • All the artifacts (fi nal versions).
 • The completed manuals.

 3.11 One- versus Two-Dimensional Life-Cycle Models
 A classical life-cycle model (like the waterfall model of Section 2.9.2) is a one-dimensional
model, as represented by the single axis in Figure 3.2 (a). Underlying the Unifi ed Process is
a two-dimensional life-cycle model, as represented by the two axes in Figure 3.2 (b).

sch76183_ch03_074-106.indd 92sch76183_ch03_074-106.indd 92 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 93
 Just in Case You Wanted to Know Box 3.3

 A real-time system frequently is more complex than most people, even its developers, real-
ize. As a result, sometimes subtle interactions take place among components that even the
most skilled testers usually would not detect. An apparently minor change therefore can
have major consequences.
 A famous example of this is the fault that delayed the fi rst space shuttle orbital fl ight in
April 1981 [Garman, 1981]. The space shuttle avionics are controlled by four identical syn-
chronized computers. Also, an independent fi fth computer is ready for backup in case the
set of four computers fails. Two years earlier, a change had been made to the module that
performs initialization before the avionics computers are synchronized. An unfortunate side
effect of this change was that a record containing a time just slightly later than the current
time was erroneously sent to the data area used for synchronization of the avionics comput-
ers. The time sent was suffi ciently close to the actual time for this fault not to be detected.
About 1 year later, the time difference was slightly increased, just enough to cause a 1 in
67 chance of a failure. Then, on the day of the fi rst space shuttle launch, with hundreds
of millions of people watching on television all over the world, the synchronization failure
occurred and three of the four identical avionics computers were synchronized one cycle
late relative to the fi rst computer.
 A fail-safe device that prevents the independent fi fth computer from receiving informa-
tion from the other four computers unless they are in agreement had the unanticipated
consequence of preventing initialization of the fi fth computer, and the launch had to be
postponed. An all too familiar aspect of this incident was that the fault was in the initializa-
tion module, a module that apparently had no connection whatsoever with the synchroni-
zation routines.
 Unfortunately, this was by no means the last real-time software fault affecting a space
launch. For example, in April 1999, a Milstar military communications satellite was hurled
into a uselessly low orbit at a cost of $1.2 billion; the cause was a software fault in the upper
stage of the Titan 4 rocket [Florida Today , 1999].
 Not just space launches are affected by real-time faults but landings, too. In May 2003,
a Soyuz TMA-1 spaceship launched from the international space station landed 300 miles
off course in Kazakhstan after a ballistic descent. The cause of the landing problems was, yet
again, a real-time software fault [CNN.com, 2003].

 The one-dimensional nature of the waterfall model is clearly refl ected in Figure 2.3 . In
contrast, Figure 2.2 shows the evolution-tree model of the Winburg mini case study. This
model is two-dimensional and should therefore be compared to Figure 3.2 (b).
 Are the additional complications of a two-dimensional model necessary? The answer
was given in Chapter 2 , but this is such an important issue that it is repeated here. During
the development of a software product, in an ideal world, the requirements workfl ow would
be completed before proceeding to the analysis workfl ow. Similarly, the analysis workfl ow
would be completed before starting the design workfl ow, and so on. In reality, however, all
but the most trivial software products are too large to handle as a single unit. Instead, the
task has to be divided into increments (phases), and within each increment the develop-
ers have to iterate until they have completed the task under construction. As humans, we
are limited by Miller’s Law [Miller, 1956], which states that we can actively process only
seven concepts at a time. We therefore cannot deal with software products as a whole, but
instead we have to break those systems into subsystems. Even subsystems can be too large

sch76183_ch03_074-106.indd 93sch76183_ch03_074-106.indd 93 10/06/10 2:13 PM10/06/10 2:13 PM

94 Part A Software Engineering Concepts

at times—components may be all that we can handle until we have a fuller understanding
of the software product as a whole.
 The Unifi ed Process is the best solution to date for treating a large problem as a set of
smaller, largely independent subproblems. It provides a framework for incrementation and
iteration, the mechanism used to cope with the complexity of large software products.
 Another challenge that the Unifi ed Process handles well is the inevitable changes. One
aspect of this challenge is changes in the client’s requirements while a software product is
being developed, the so-called moving-target problem (Section 2.4).
 For all these reasons, the Unifi ed Process is currently the best methodology available.
However, in the future, the Unifi ed Process will doubtless be superseded by some new
methodology. Today’s software professionals are looking beyond the Unifi ed Process to the
next major breakthrough. After all, in virtually every fi eld of human endeavor, the discov-
eries of today are often superior to anything that was put forward in the past. The Unifi ed
Process is sure to be superseded, in turn, by the methodologies of the future. The important
lesson is that, based on today’s knowledge, the Unifi ed Process appears to be better than the
other alternatives currently available.
 The remainder of this chapter is devoted to national and international initiatives aimed
at process improvement.

 3.12 Improving the Software Process
 Our global economy depends critically on computers and hence on software. For this rea-
son, the governments of many countries are concerned about the software process. For
example, in 1987, a task force of the U.S. Department of Defense (DoD) reported, “After
two decades of largely unfulfi lled promises about productivity and quality gains from

 FIGURE 3.2
Comparison of
(a) a classical
one-dimensional
life-cycle model
and (b) the two-
dimensional
Unifi ed Process
life-cycle
model.

Incep
tion

p
hase

Elaboration
p

hase

C
onstruction

p
hase

Transition
p

hase
Requirements

phase

Analysis
phase

Phases

Design
phase

Implementation
phase

Requirements
workflow

Analysis
workflow

Workflows
(technical contexts)

Design
workflow

Phases/
increments
(business
contexts)

Implementation
workflow

(a) (b)

sch76183_ch03_074-106.indd 94sch76183_ch03_074-106.indd 94 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 95

applying new software methodologies and technologies, industry and government organi-
zations are realizing that their fundamental problem is the inability to manage the software
process” [Brooks et al., 1987].
 In response to this and related concerns, the DoD founded the Software Engineering In-
stitute (SEI) and set it up at Carnegie Mellon University in Pittsburgh on the basis of a com-
petitive procurement process. A major success of the SEI has been the capability maturity
model (CMM) initiative. Related software process improvement efforts include the ISO
9000-series standards of the International Organization for Standardization, and ISO/IEC
15504, an international software improvement initiative involving more than 40 countries.
We begin by describing the CMM.

 3.13 Capability Maturity Models
 The capability maturity models of the SEI are a related group of strategies for
improving the software process, irrespective of the actual life-cycle model used. (The
term maturity is a measure of the goodness of the process itself.) The SEI has developed
CMMs for software (SW–CMM), for management of human resources (P–CMM; the P
stands for “people”), for systems engineering (SE–CMM), for integrated product develop-
ment (IPD–CMM), and for software acquisition (SA–CMM). There are some inconsisten-
cies between the models and an inevitable level of redundancy. Accordingly, in 1997, it was
decided to develop a single integrated framework for maturity models, capability maturity
model integration (CMMI), which incorporates all fi ve existing capability maturity mod-
els. Additional disciplines may be added to CMMI in the future [SEI, 2002].
 For reasons of space, only one capability maturity model, SW–CMM, is examined here,
and an overview of the P–CMM is given in Section 4.8. The SW–CMM was fi rst put
forward in 1986 by Watts Humphrey [Humphrey, 1989]. Recall that a software process
encompasses the activities, techniques, and tools used to produce software. It therefore
incorporates both technical and managerial aspects of software production. Underlying the
SW–CMM is the belief that the use of new software techniques in itself will not result in
increased productivity and profi tability, because our problems are caused by how we man-
age the software process. The strategy of the SW–CMM is to improve the management
of the software process in the belief that improvements in technique are a natural conse-
quence. The resulting improvement in the process as a whole should result in better-quality
software and fewer software projects that suffer from time and cost overruns.
 Bearing in mind that improvements in the software process cannot occur overnight, the
SW–CMM induces change incrementally. More specifi cally, fi ve levels of maturity are
defi ned, and an organization advances slowly in a series of small evolutionary steps toward
the higher levels of process maturity [Paulk, Weber, Curtis, and Chrissis, 1995]. To under-
stand this approach, the fi ve levels now are described.

 Maturity Level 1. Initial Level
 At the initial level , the lowest level, essentially no sound software engineering manage-
ment practices are in place in the organization. Instead, everything is done on an ad hoc
basis. A specifi c project that happens to be staffed by a competent manager and a good
software development team may be successful. However, the usual pattern is time and cost

sch76183_ch03_074-106.indd 95sch76183_ch03_074-106.indd 95 04/06/10 6:35 PM04/06/10 6:35 PM

96 Part A Software Engineering Concepts

overruns caused by a lack of sound management in general and planning in particular.
As a result, most activities are responses to crises rather than preplanned tasks. In level-1
organizations, the software process is unpredictable, because it depends totally on the cur-
rent staff; as the staff changes, so does the process. As a consequence, it is impossible to
predict with any accuracy such important items as the time it will take to develop a product
or the cost of that product.
 It is unfortunate that the vast majority of software organizations all over the world are
still level-1 organizations.

 Maturity Level 2. Repeatable Level
 At the repeatable level , basic software project management practices are in place. Plan-
ning and management techniques are based on experience with similar products; hence,
the name repeatable . At level 2, measurements are taken, an essential fi rst step in achieving
an adequate process. Typical measurements include the meticulous tracking of costs and
schedules. Instead of functioning in a crisis mode, as in level 1, managers identify problems
as they arise and take immediate corrective action to prevent them from becoming crises.
The key point is that, without measurements, it is impossible to detect problems before
they get out of hand. Also, measurements taken during one project can be used to draw up
realistic duration and cost schedules for future projects.

 Maturity Level 3. Defi ned Level
 At the defi ned level , the process for software production is fully documented. Both
the managerial and technical aspects of the process are clearly defi ned, and continual
efforts are made to improve the process wherever possible. Reviews (Section 6.2) are
used to achieve software quality goals. At this level, it makes sense to introduce new
technology, such as CASE environments (Section 5.8), to increase quality and produc-
tivity further. In contrast, “high tech” only makes the crisis-driven level-1 process even
more chaotic.
 Although a number of organizations have attained maturity levels 2 and 3, few have
reached levels 4 or 5. The two highest levels therefore are targets for the future.

 Maturity Level 4. Managed Level
 A managed-level organization sets quality and productivity goals for each project.
These two quantities are measured continually and corrective action is taken when there
are unacceptable deviations from the goal. Statistical quality controls ([Deming, 1986],
[Juran, 1988]) are in place to enable management to distinguish a random deviation from a
meaningful violation of quality or productivity standards. (A simple example of a statistical
quality control measure is the number of faults detected per 1000 lines of code. A corre-
sponding objective is to reduce this quantity over time.)

 Maturity Level 5. Optimizing Level
 The goal of an optimizing-level organization is continuous process improvement. Sta-
tistical quality and process control techniques are used to guide the organization. The
knowledge gained from each project is utilized in future projects. The process therefore
incorporates a positive feedback loop, resulting in a steady improvement in productivity
and quality.

sch76183_ch03_074-106.indd 96sch76183_ch03_074-106.indd 96 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 97

 These fi ve maturity levels are summarized in Figure 3.3 , which also shows the key
process areas (KPAs) associated with each maturity level. To improve its software process,
an organization fi rst attempts to gain an understanding of its current process and then
formulates the intended process. Next, actions to achieve this process improvement are
determined and ranked in priority. Finally, a plan to accomplish this improvement is drawn
up and executed. This series of steps is repeated, with the organization successively im-
proving its software process; this progression from level to level is refl ected in Figure 3.3 .
Experience with the capability maturity model has shown that advancing a complete
maturity level usually takes from 18 months to 3 years, but moving from level 1 to level 2
can sometimes take 3 or even 5 years. This is a refl ection of how diffi cult it is to instill a
methodical approach in an organization that up to now has functioned on a purely ad hoc
and reactive basis.

 FIGURE 3.3
The fi ve levels
of the software
capability
maturity model
and their key
process areas
(KPAs).

2. Repeatable level:
Basic project management

Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

1. Initial level:
Ad hoc process

Not applicable

3. Defined level:
Process definition

Organization process focus
Organization process definition
Training program
Integrated software management
Software project engineering
Intergroup coordination
Peer reviews

4. Managed level:
Process measurement

Quantitative process management
Software quality management

5. Optimizing level:
Process control

Defect prevention
Technology change management
Process change management

sch76183_ch03_074-106.indd 97sch76183_ch03_074-106.indd 97 04/06/10 6:35 PM04/06/10 6:35 PM

98 Part A Software Engineering Concepts

 For each maturity level, the SEI has highlighted a series of key process areas (KPAs) that
an organization should target in its endeavor to reach the next maturity level. For example, as
shown in Figure 3.3 , the KPAs for level 2 (repeatable level) include confi guration management
(Section 5.10), software quality assurance (Section 6.1.1), project planning (Chapter 9), project
tracking (Section 9.2.5), and requirements management (Chapter 11). These areas cover the
basic elements of software management: Determine the client’s needs (requirements manage-
ment), draw up a plan (project planning), monitor deviations from that plan (project tracking),
control the various pieces that make up the software product key process area (confi guration
management), and ensure that the product is fault free (quality assurance). Within each KPA is a
group of between two and four related goals that, if achieved, result in that maturity level being
attained. For example, one project planning goal is the development of a plan that appropriately
and realistically covers the activities of software development.
 At the highest level, maturity level 5, the KPAs include fault prevention, technology
change management, and process change management. Comparing the KPAs of the two
levels, it is clear that a level-5 organization is far in advance of one at level 2. For example,
a level-2 organization is concerned with software quality assurance, that is, with detecting
and correcting faults (software quality is discussed in more detail in Chapter 6). In con-
trast, the process of a level-5 organization incorporates fault prevention, that is, trying to
ensure that no faults are in the software in the fi rst place. To help an organization to reach
the higher maturity levels, the SEI has developed a series of questionnaires that form the
basis for an assessment by an SEI team. The purpose of the assessment is to highlight cur-
rent shortcomings in the organization’s software process and to indicate ways in which the
organization can improve its process.
 The CMM program of the Software Engineering Institute was sponsored by the U.S.
Department of Defense. One of the original goals of the CMM program was to raise the
quality of defense software by evaluating the processes of contractors who produce soft-
ware for the DoD and awarding contracts to those contractors who demonstrate a mature
process. The U.S. Air Force stipulated that any software development organization that
wished to be an Air Force contractor had to conform to SW–CMM level 3 by 1998, and the
DoD as a whole subsequently issued a similar directive. Consequently, pressure is put on
organizations to improve the maturity of their software processes. However, the SW–CMM
program has moved far beyond the limited goal of improving DoD software and is being
implemented by a wide variety of software organizations that wish to improve software
quality and productivity.

 3.14 Other Software Process Improvement Initiatives
 A different attempt to improve software quality is based on the International Organiza-
tion for Standardization (ISO) 9000-series standards, a series of fi ve related standards
applicable to a wide variety of industrial activities, including design, development, produc-
tion, installation, and servicing; ISO 9000 certainly is not just a software standard. Within
the ISO 9000 series, standard ISO 9001 [1987] for quality systems is the standard most
applicable to software development. Because of the broadness of ISO 9001, ISO has pub-
lished specifi c guidelines to assist in applying ISO 9001 to software: ISO 9000-3 [1991].
(For more information on ISO, see Just in Case You Wanted to Know Box 1.4.)

sch76183_ch03_074-106.indd 98sch76183_ch03_074-106.indd 98 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 99

 ISO 9000 has a number of features that distinguish it from the CMM [Dawood, 1994].
ISO 9000 stresses documenting the process in both words and pictures to ensure consis-
tency and comprehensibility. Also, the ISO 9000 philosophy is that adherence to the stan-
dard does not guarantee a high-quality product but rather reduces the risk of a poor-quality
product. ISO 9000 is only part of a quality system. Also required are management commit-
ment to quality, intensive training of workers, and setting and achieving goals for continual
quality improvement. ISO 9000-series standards have been adopted by over 60 countries,
including the United States, Japan, Canada, and the countries of the European Union (EU).
This means, for example, that if a U.S. software organization wishes to do business with a
European client, the U.S. organization must fi rst be certifi ed as ISO 9000 compliant. A cer-
tifi ed registrar (auditor) has to examine the company’s process and certify that it complies
with the ISO standard.
 Following their European counterparts, more and more U.S. organizations are requiring
ISO 9000 certifi cation. For example, General Electric Plastic Division insisted that 340
vendors achieve the standard by June 1993 [Dawood, 1994]. It is unlikely that the U.S. gov-
ernment will follow the EU lead and require ISO 9000 compliance for non-U.S. companies
that wish to do business with organizations in the United States. Nevertheless, pressures
both within the United States and from its major trading partners ultimately may result in
signifi cant worldwide ISO 9000 compliance.
 ISO/IEC 15504 is an international process improvement initiative, like ISO 9000.
The initiative was formerly known as SPICE , an acronym formed from Software Process
Improvement Capability dEtermination. Over 40 countries actively contributed to the
SPICE endeavor. SPICE was initiated by the British Ministry of Defence (MOD) with
the long-term aim of establishing SPICE as an international standard (MOD is the UK
counterpart of the U.S. DoD, which initiated the CMM). The fi rst version of SPICE was
completed in 1995. In July 1997, the SPICE initiative was taken over by a joint committee
of the International Organization for Standardization and the International Electrotechni-
cal Commission. For this reason, the name of the initiative was changed from SPICE to
ISO/IEC 15504, or 15504 for short.

 3.15 Costs and Benefi ts of Software Process Improvement
 Does implementing software process improvement lead to increased profi tability? Results
indicate that this indeed is the case. For example, the Software Engineering Division of
Hughes Aircraft in Fullerton, California, spent nearly $500,000 between 1987 and 1990
for assessments and improvement programs [Humphrey, Snider, and Willis, 1991]. During
this 3-year period, Hughes Aircraft moved up from maturity level 2 to level 3, with every
expectation of future improvement to level 4 and even level 5. As a consequence of improv-
ing its process, Hughes Aircraft estimated its annual savings to be on the order of $2 million.
These savings accrued in a number of ways, including decreased overtime hours, fewer cri-
ses, improved employee morale, and lower turnover of software professionals.
 Comparable results have been reported at other organizations. For example, the Equip-
ment Division at Raytheon moved from level 1 in 1988 to level 3 in 1993. A twofold
increase in productivity resulted, as well as a return of $7.70 for every dollar invested in
the process improvement effort [Dion, 1993]. As a consequence of results like these, the

sch76183_ch03_074-106.indd 99sch76183_ch03_074-106.indd 99 04/06/10 6:35 PM04/06/10 6:35 PM

100 Part A Software Engineering Concepts

capability maturity models are being applied rather widely within the U.S. software indus-
try and abroad.
 For example, Tata Consultancy Services in India used both the ISO 9000 framework
and CMM to improve its process [Keeni, 2000]. Between 1996 and 2000, the errors in
effort estimation decreased from about 50 percent to only 15 percent. The effectiveness
of reviews (that is, the percentage of faults found during reviews) increased from 40 to
80 percent. The percentage of effort devoted to reworking projects dropped from nearly
12 percent to less than 6 percent.
 Motorola Government Electronics Division (GED) has been actively involved in SEI’s
software process improvement program since 1992 [Diaz and Sligo, 1997]. Figure 3.4
depicts 34 GED projects, categorized according to the maturity level of the group that
developed each project. As can be seen from the fi gure, the relative duration (that is, the
duration of a project relative to a baseline project completed before 1992) decreased with
increasing maturity level. Quality was measured in terms of faults per million equivalent
assembler source lines (MEASL); to be able to compare projects implemented in different
languages, the number of lines of source code was converted into the number of equiva-
lent lines of assembler code [Jones, 1996]. As shown in Figure 3.4 , quality increased with
increasing maturity level. Finally, productivity was measured as MEASL per person-hour.
For reasons of confi dentiality, Motorola does not publish actual productivity fi gures, so
 Figure 3.4 refl ects productivity relative to the productivity of a level-2 project. (No quality
or productivity fi gures are available for the level-1 projects because these quantities cannot
be measured when the team is at level 1.)
 Galin and Avrahami [2006] analyzed 85 projects that had previously been reported in the
literature as having advanced by one level as a consequence of implementing CMM. These
projects were divided into four groups (CMM level 1 to level 2, CMM level 2 to level 3, and
so on). For the four groups, the median fault density (number of faults per KLOC) decreased
by between 26 and 63 percent. The median productivity (KLOC per person month) increased
by between 26 and 187 percent. Median rework decreased by between 34 and 40 percent. The
median project duration decreased by between 28 and 53 percent. Fault detection effective-
ness (percentage of faults detected during development of the total detected project faults)
increased as follows: For the three lowest groups, the median increased by between 70 and
74 percent, and 13 percent for the highest group (CMM level 4 to level 5). The return on
investment varied between 120 and 650 percent, with a median value of 360 percent.

 FIGURE 3.4 Results of 34 Motorola GED projects (MEASL stands for “million equivalent assembler source lines”)
[Diaz and Sligo, 1997]. (© 1997, IEEE.)

 Relative Faults per MEASL
 Number of Decrease in Detected during Relative
 CMM Level Projects Duration Development Productivity

 Level 1 3 1.0 — —
 Level 2 9 3.2 890 1.0
 Level 3 5 2.7 411 0.8
 Level 4 8 5.0 205 2.3
 Level 5 9 7.8 126 2.8

sch76183_ch03_074-106.indd 100sch76183_ch03_074-106.indd 100 04/06/10 6:35 PM04/06/10 6:35 PM

Chapter 3 The Software Process 101

 As a consequence of published studies such as those described in this section and those
listed in the For Further Reading section of this chapter, more and more organizations
worldwide are realizing that process improvement is cost effective.
 An interesting side effect of the process improvement movement has been the interac-
tion between software process improvement initiatives and software engineering stan-
dards. For example, in 1995 the International Organization for Standardization published
ISO/IEC 12207, a full life-cycle software standard [ISO/IEC 12207, 1995]. Three years
later, a U.S. version of the standard [IEEE/EIA 12207.0-1996, 1998] was published by the
Institute of Electrical and Electronic Engineers (IEEE) and the Electronic Industries Alli-
ance (EIA). This version incorporates U.S. software “best practices,” many of which can
be traced back to CMM. To achieve compliance with IEEE/EIA 12207, an organization
must be at or near CMM capability level 3 [Ferguson and Sheard, 1998]. Also, ISO 9000-3
now incorporates parts of ISO/IEC 12207. This interplay between software engineering
standards organizations and software process improvement initiatives surely will lead to
even better software processes.
 Another dimension of software process improvement appears in Just in Case You Wanted
to Know Box 3.4.

 Just in Case You Wanted to Know Box 3.4
 There are constraints on the speed of hardware because electrons cannot travel faster than
the speed of light. In a famous article entitled “No Silver Bullet,” Brooks [1986] suggested
that inherent problems exist in software production, and that these problems can never be
solved because of analogous constraints on software. Brooks argued that intrinsic proper-
ties of software, such as its complexity, the fact that software is invisible and unvisualizable,
and the numerous changes to which software is typically subjected over its lifetime, make
it unlikely that there will ever be an order-of-magnitude increment (or “silver bullet”) in
software process improvement.

 Chapter
Review
 After some preliminary defi nitions, the Unifi ed Process is introduced in Section 3.1. The impor-

tance of iteration and incrementation within the object-oriented paradigm is described in Section
3.2. Now the core workfl ows of the Unifi ed Process are explained in detail; the requirements
workfl ow (Section 3.3), analysis workfl ow (Section 3.4), design workfl ow (Section 3.5), imple-
mentation workfl ow (Section 3.6), and test workfl ow (Section 3.7). The various artifacts tested
during the test workfl ow are described in Sections 3.7.1 through 3.7.4. Postdelivery maintenance
is discussed in Section 3.8, and retirement in Section 3.9. The relationship between the work-
fl ows and the phases of the Unifi ed Process is analyzed in Section 3.10, and a detailed descrip-
tion is given of the four phases of the Unifi ed Process: the inception phase (Section 3.10.1), the
elaboration phase (Section 3.10.2), the construction phase (Section 3.10.3), and the transition
phase (Section 3.10.4). The importance of two-dimensional life-cycle models is discussed in
Section 3.11.
 The last part of the chapter is devoted to software process improvement (Section 3.12). Details
are given of various national and international software improvement initiatives, including the capa-
bility maturity models (Section 3.13), and ISO 9000 and ISO/IEC 15504 (Section 3.14). The cost-
effectiveness of software process improvement is discussed in Section 3.15.

sch76183_ch03_074-106.indd 101sch76183_ch03_074-106.indd 101 04/06/10 6:35 PM04/06/10 6:35 PM

102 Part A Software Engineering Concepts

 The March–April 2003 issue of IEEE Software contains a number of articles on the software process,
including [Eickelmann and Anant, 2003], a discussion of statistical process control. Practical applications
of statistical process control are described in [Weller, 2000] and [Florac, Carleton, and Barnard, 2000].
 With regard to testing during each workfl ow, an excellent source is [Ammann and Offutt, 2008].
More specifi c references are given in Chapter 6 of this book and in the For Further Reading section
at the end of that chapter.
 A detailed description of the original SEI capability maturity model is given in [Humphrey,
1989]. Capability maturity model integration is described in [SEI, 2002]. Humphrey [1996]
describes a personal software process (PSP); results of applying the PSP appear in [Ferguson
et al., 1997]. The results of an experiment to measure the effectiveness of PSP training are pre-
sented in [Prechelt and Unger, 2000]. Extensions needed to the Unifi ed Process for it to comply
with CMM levels 2 and 3 are presented in [Manzoni and Price, 2003]. Implementing SW–CMM
in small organizations is described in [Guerrero and Eterovic, 2004] and [Dangle, Larsen, Shaw,
and Zelkowitz, 2005]. The July–August 2000 issue of IEEE Software has three papers on software
process maturity, and there are four papers on the PSP in the November–December 2000 issue of
 IEEE Software .
 A compendium of the results of many studies of process improvement appears in [Galin and
Avrahami, 2006].
 Pitterman [2000] describes how a group at Telecordia Technologies reached level 5; a study of how
a Computer Sciences Corporation group attained level 5 appears in [McGarry and Decker, 2002].
Insights into the nature of level-5 organizations appear in [Eickelmann, 2003] and [Agrawal and
Chari, 2007]. Cost–benefi t analysis of software process improvement is described in [van Solingen,
2004]. An empirical investigation of the key factors for success in software process improvement is
presented in [Dybå, 2005].
 Problems of software product improvement appear in [Conradi and Fuggetta, 2002]. The results of
18 different software process improvement initiatives conducted at Ericsson are described in [Borjes-
son and Mathiassen, 2004]. A wealth of information on the CMM is available at the SEI CMM
website www.sei.cmu.edu . An assessment of the success of the SPICE project can be found in
[Rout et al., 2007]. The ISO/IEC 15504 (SPICE) home page is at www.sei.cmu.edu/technology/
process/spice/ .
 A comparison between CMM and IEEE/EIA 12207 is given in [Ferguson and Sheard, 1998], and
a comparison between CMM and Six Sigma (another approach to process improvement) appears in
[Murugappan and Keeni, 2003]. An approach to implementing both ISO 9001 and CMMI appears
in [Yoo et al., 2006]. A repository containing the results of some 400 software improvement experi-
ments is described in [Blanco, Gutiérrez, and Satriani, 2001].

 For
Further
Reading

 Key Terms acceptance testing 86
 alpha release 86
 ambiguity 81
 analysis workfl ow 80
 application domain 78
 architectural design 82
 beta release 86
 budget 82
 business case 79

 business model 89
 capability maturity model

(CMM) 95
 class 82
 code artifact 83
 component 83
 concept exploration 79
 construction phase 92
 contradiction 81

 core workfl ow 78
 cost 79
 deadline 79
 defi ned level 96
 deliverable 82
 design workfl ow 82
 detailed design 82
 domain 78
 elaboration phase 91

sch76183_ch03_074-106.indd 102sch76183_ch03_074-106.indd 102 04/06/10 6:35 PM04/06/10 6:35 PM

www.sei.cmu.edu
www.sei.cmu.edu/technology/process/spice/
www.sei.cmu.edu/technology/process/spice/

 implementation workfl ow 83
 inception phase 89
 incompleteness 81
 initial level 95
 integration testing 86
 International Organization for

Standardization (ISO) 98
 ISO 9000-3 98
 ISO 9001 98
 ISO/IEC 15504 99
 key process area (KPA) 98

 managed level 96
 maturity 95
 milestone 82
 model 76
 module 82
 optimizing level 96
 product testing 86
 regression testing 87
 reliability 79
 repeatable level 96
 requirements workfl ow 78

 retirement 88
 SPICE 99
 test workfl ow 84
 traceability 84
 transition phase 92
 Unifi ed Modeling Language

(UML) 76
 Unifi ed Process 76
 unit testing 85

 3.1 Defi ne the terms software process and Unifi ed Process .

 3.2 In the software engineering context, what is meant by the term model ?

 3.3 What is meant by a phase of the Unifi ed Process?

 3.4 Distinguish clearly between an ambiguity, a contradiction, and incompleteness.

 3.5 Consider the requirements workfl ow and the analysis workfl ow. Would it make more sense to
combine these two activities into one workfl ow than to treat them separately?

 3.6 More testing is performed during the implementation workfl ow than in any other workfl ow.
Would it be better to divide this workfl ow into two separate workfl ows, one incorporating the
nontesting aspects, the other all the testing?

 3.7 “Correctness is the responsibility of the SQA group.” Discuss this statement.

 3.8 Maintenance is the most important activity of software production and the most diffi cult to
perform. Nevertheless, it is looked down on by many software professionals, and maintenance
programmers often are paid less than developers. Do you think that this is reasonable? If not,
how would you try to change it?

 3.9 Why do you think that, as stated in Section 3.9, true retirement is a rare event?

 3.10 Because of a fi re at Elmer’s Software, all documentation for a product is destroyed just before
it is delivered. What is the impact of the resulting lack of documentation?

 3.11 You have just purchased Antedeluvian Software Developers, an organization on the verge of
bankruptcy because the company is at maturity level 1. What is the fi rst step you will take to
restore the organization to profi tability?

 3.12 Section 3.13 states that it makes little sense to introduce CASE environments within organiza-
tions at maturity level 1 or 2. Explain why this is so.

 3.13 What is the effect of introducing CASE tools (as opposed to environments) within organiza-
tions with a low maturity level?

 3.14 Maturity level 1, the initial level, refers to an absence of good software engineering manage-
ment practices. Would it not have been better for the SEI to have labeled the initial level as
maturity level 0?

 3.15 (Term Project) What differences would you expect to fi nd if the Chocoholics Anonymous prod-
uct of Appendix A were developed by an organization at CMM level 1, as opposed to an orga-
nization at level 5?

 3.16 (Readings in Software Engineering) Your instructor will distribute copies of [Agrawal and
Chari, 2007]. Would you like to work in a level-5 organization? Explain your answer.

 Problems

Chapter 3 The Software Process 103

sch76183_ch03_074-106.indd 103sch76183_ch03_074-106.indd 103 04/06/10 6:35 PM04/06/10 6:35 PM

 [Agrawal and Chari, 2007] M. AGRAWAL AND K. CHARI, “Software Effort, Quality, and Cycle Time: A
Study of CMM Level 5 Projects,” IEEE Transactions on Software Engineering 32 (March 2007),
pp. 145–56.

 [Ammann and Offutt, 2008] P. AMMANN AND J. OFFUTT, Introduction to Software Testing, Cambridge
University Press, Cambridge, UK, 2008.

 [Blanco, Gutiérrez, and Satriani, 2001] M. BLANCO, P. GUTIÉRREZ, AND G. SATRIANI, “SPI Patterns:
Learning from Experience,” IEEE Software 18 (May–June 2001), pp. 28–35.

 [Booch, 1994] G. BOOCH, Object-Oriented Analysis and Design with Applications, 2nd ed., Benjamin/
Cummings, Redwood City, CA, 1994.

 [Booch, Rumbaugh, and Jacobson, 1999] G. BOOCH, J. RUMBAUGH, AND I. JACOBSON, The UML Users
Guide , Addison-Wesley, Reading, MA, 1999.

 [Borjesson and Mathiassen, 2004] A. BORJESSON AND L. MATHIASSEN, “Successful Process Imple-
mentation,” IEEE Software 21 (July–August 2004), pp. 36–44.

 [Brooks, 1986] F. P. BROOKS, JR., “No Silver Bullet,” in: Information Processing ’86 , H.-J. Kugler
(Editor), Elsevier North-Holland, New York, 1986; reprinted in IEEE Computer 20 (April 1987),
pp. 10–19.

 [Brooks et al., 1987] F. P. BROOKS, V. BASILI, B. BOEHM, E. BOND, N. EASTMAN, D. L. EVANS,
A. K. JONES, M. SHAW, AND C. A. ZRAKET, “Report of the Defense Science Board Task Force on
Military Software,” Department of Defense, Offi ce of the Under Secretary of Defense for Acqui-
sition, Washington, DC, September 1987.

 [CNN.com, 2003] “Russia: Software Bug Made Soyuz Stray,” edition.cnn.com/2003/TECH/
space/05/06/soyuz.landing.ap/, May 6, 2003.

 [Conradi and Fuggetta, 2002] R. CONRADI AND A. FUGGETTA, “Improving Software Process Improve-
ment,” IEEE Software 19 (July–August 2002), pp. 92–99.

 [Dangle, Larsen, Shaw, and Zelkowitz, 2005] K. C. DANGLE, P. LARSEN, M. SHAW, AND M. V. ZEL-
KOWITZ, “Software Process Improvement in Small Organizations: A Case Study,” IEEE Software
 22 (September–October 2005), pp. 68–75.

 [Dawood, 1994] M. DAWOOD, “It’s Time for ISO 9000,” CrossTalk (March 1994), pp. 26–28.

 [Deming, 1986] W. E. DEMING, Out of the Crisis , MIT Center for Advanced Engineering Study,
Cambridge, MA, 1986.

 [Diaz and Sligo, 1997] M. DIAZ AND J. SLIGO, “How Software Process Improvement Helped
Motorola,” IEEE Software 14 (September–October 1997), pp. 75–81.

 [Dion, 1993] R. DION, “Process Improvement and the Corporate Balance Sheet,” IEEE Software 10
(July 1993), pp. 28–35.

 [Dybå, 2005] T. DYBÅ, “An Empirical Investigation of the Key Factors for Success in Software Pro-
cess Improvement,” IEEE Transactions in Software Engineering 31 (May 2005), pp. 410–24.

 [Eickelmann, 2003] N. EICKELMANN, “An Insider’s View of CMM Level 5,” IEEE Software 20 (July–
August 2003), pp. 79–81.

 [Eickelmann and Anant, 2003] N. EICKELMANN AND A. ANANT, “Statistical Process Control: What
You Don’t Know Can Hurt You!” IEEE Software 20 (March–April 2003), pp. 49–51.

 [Ferguson and Sheard, 1998] J. FERGUSON AND S. SHEARD, “Leveraging Your CMM Efforts for IEEE/
EIA 12207,” IEEE Software 15 (September–October 1998), pp. 23–28.

 [Ferguson et al., 1997] P. FERGUSON, W. S. HUMPHREY, S. KHAJENOORI, S. MACKE, AND A. MAT-
VYA, “Results of Applying the Personal Software Process,” IEEE Computer 30 (May 1997),
pp. 24–31.

 References

104 Part A Software Engineering Concepts

sch76183_ch03_074-106.indd 104sch76183_ch03_074-106.indd 104 04/06/10 6:35 PM04/06/10 6:35 PM

 [Florac, Carleton, and Barnard, 2000] W. A. FLORAC, A. D. CARLETON, AND J. BARNARD, “Statisti-
cal Process Control: Analyzing a Space Shuttle Onboard Software Process,” IEEE Software 17
(July–August 2000), pp. 97–106.

 [Florida Today , 1999] “Milstar Satellite Lost during Air Force Titan 4b Launch from Cape,” Florida
Today , www.fl oridatoday.com/space/explore/uselv/titan/b32/ , June 5, 1999.

 [Galin and Avrahami, 2006] D. GALIN AND M. AVRAHAMI, “Are CMM Program Investments Benefi -
cial? Analyzing Past Studies,” IEEE Software 23 (November–December 2006), pp. 81–87.

 [Garman, 1981] J. R. GARMAN, “The ‘Bug’ Heard ’Round the World,” ACM SIGSOFT Software En-
gineering Notes 6 (October 1981), pp. 3–10.

 [Guerrero and Eterovic, 2004] F. GUERRERO AND Y. ETEROVIC, “Adopting the SW-CMM in a Small IT
Organization,” IEEE Software 21 (July–August 2004), pp. 29–35.

 [Humphrey, 1989] W. S. HUMPHREY, Managing the Software Process , Addison-Wesley, Reading,
MA, 1989.

 [Humphrey, 1996] W. S. HUMPHREY, “Using a Defi ned and Measured Personal Software Process,”
 IEEE Software 13 (May 1996), pp. 77–88.

 [Humphrey, Snider, and Willis, 1991] W. S. HUMPHREY, T. R. SNIDER, AND R. R. WILLIS, “Software
Process Improvement at Hughes Aircraft,” IEEE Software 8 (July 1991), pp. 11–23.

 [IEEE/EIA 12207.0-1996, 1998] “IEEE/EIA 12207.0-1996 Industry Implementation of Interna-
tional Standard ISO/IEC 12207:1995,” Institute of Electrical and Electronic Engineers, Electronic
Industries Alliance, New York, 1998.

 [ISO 9000-3, 1991] “ISO 9000-3, Guidelines for the Application of ISO 9001 to the Development,
Supply, and Maintenance of Software,” International Organization for Standardization, Geneva,
1991.

 [ISO 9001, 1987] “ISO 9001, Quality Systems—Model for Quality Assurance in Design/Development,
Production, Installation, and Servicing,” International Organization for Standardization, Geneva,
1987.

 [ISO/IEC 12207, 1995] “ISO/IEC 12207:1995, Information Technology—Software Life-Cycle Pro-
cesses,” International Organization for Standardization, International Electrotechnical Commis-
sion, Geneva, 1995.

 [Jacobson, Booch, and Rumbaugh, 1999] I. JACOBSON, G. BOOCH, and J. RUMBAUGH, The Unifi ed
Software Development Process, Addison-Wesley, Reading, MA, 1999.

 [Jones, 1996] C. JONES, Applied Software Measurement, McGraw-Hill, New York, 1996.

 [Juran, 1988] J. M. JURAN, Juran on Planning for Quality , Macmillan, New York, 1988.

 [Keeni, 2000] G. KEENI, “The Evolution of Quality Processes at Tata Consultancy Services,” IEEE
Software 17 (July–August 2000), pp. 79–88.

 [Manzoni and Price, 2003] L. V. MANZONI AND R. T. PRICE, “Identifying Extensions Required by RUP
(Rational Unifi ed Process) to Comply with CMM (Capability Maturity Model) Levels 2 and 3,”
 IEEE Transactions on Software Engineering 29 (February 2003), pp. 181–92.

 [McGarry and Decker, 2002] F. MCGARRY AND B. DECKER, “Attaining Level 5 in CMM Process
Maturity,” IEEE Software 19 (2002), pp. 87–96.

 [Miller, 1956] G. A. MILLER, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,” The Psychological Review 63 (March 1956), pp. 81–97.
Reprinted in: www.well.com/user/smalin/miller.html .

 [Murugappan and Keeni, 2003] M. MURUGAPPAN AND G. KEENI, “Blending CMM and Six Sigma to
Meet Business Goals,” IEEE Software 20 (March–April 2003), pp. 42–48.

Chapter 3 The Software Process 105

sch76183_ch03_074-106.indd 105sch76183_ch03_074-106.indd 105 04/06/10 6:35 PM04/06/10 6:35 PM

www.floridatoday.com/space/explore/uselv/titan/b32/
www.well.com/user/smalin/miller.html

 [Paulk, Weber, Curtis, and Chrissis, 1995] M. C. PAULK, C. V. WEBER, B. CURTIS, AND M. B. CHRISSIS,
 The Capability Maturity Model: Guidelines for Improving the Software Process , Addison-Wesley,
Reading, MA, 1995.

 [Pitterman, 2000] B. PITTERMAN, “Telecordia Technologies: The Journey to High Maturity,” IEEE
Software 17 (July–August 2000), pp. 89–96.

 [Prechelt and Unger, 2000] L. PRECHELT AND B. UNGER, “An Experiment Measuring the Effects of
Personal Software Process (PSP) Training,” IEEE Transactions on Software Engineering 27 (May
2000), pp. 465–72.

 [Rout et al., 2007] T. P. ROUT, K. EL EMAM, M. FUSANI, D. GOLDENSON, AND H.-W. JUNG, “SPICE in
Retrospect: Developing a Standard for Process Assessment,” Journal of Systems and Software 80
(September 2007), pp. 1483–93.

 [Rumbaugh et al., 1991] J. RUMBAUGH, M. BLAHA, W. PREMERLANI, F. EDDY, AND W. LORENSEN,
 Object-Oriented Modeling and Design , Prentice Hall, Englewood Cliffs, NJ, 1991.

 [SEI, 2002] “CMMI Frequently Asked Questions (FAQ),” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, June 2002.

 [van Solingen, 2004] R. VAN SOLINGEN, “Measuring the ROI of Software Process Improvement,”
 IEEE Software 21 (May–June 2004), pp. 32–38.

 [van Wijngaarden et al., 1975] A. VAN WIJNGAARDEN, B. J. MAILLOUX, J. E. L. PECK, C. H. A. KOSTER,
M. SINTZOFF, C. H. LINDSEY, L. G. L. T. MEERTENS, AND R. G. FISKER, “Revised Report on the
Algorithmic Language ALGOL 68,” Acta Informatica 5 (1975), pp. 1–236.

 [Weller, 2000] E. F. WELLER, “Practical Applications of Statistical Process Control,” IEEE Software
 18 (May–June 2000), pp. 48–55.

 [Yoo et al., 2006] C. YOO, J. YOON, B. LEE, C. LEE, J. LEE, S. HYUN, AND C.WU, “A Unifi ed Model for
the Implementation of Both ISO 9001:2000 and CMMI by ISO-Certifi ed Organizations,” Journal
of Systems and Software 79 (July 2006), pp. 954–61.

106 Part A Software Engineering Concepts

sch76183_ch03_074-106.indd 106sch76183_ch03_074-106.indd 106 04/06/10 6:35 PM04/06/10 6:35 PM

107

 Chapter 4
Teams
 Learning Objectives

 After studying this chapter, you should be able to

 • Explain the importance of a well-organized team.

 • Describe how modern hierarchical teams are organized.

 • Analyze the strengths and weaknesses of a variety of different team
organizations.

 • Appreciate the issues that arise when choosing an appropriate team organization.

107

 Without competent, well-trained software engineers, a software project is doomed to fail-
ure. However, having the right people is not enough; teams must be organized in such a
way that the team members can work productively in cooperation with one another. Team
organization is the subject of this chapter.

 4.1 Team Organization

 Most products are too large to be completed by a single software professional within the
given time constraints. As a result, the product must be assigned to a group of professionals
organized as a team . For example, consider the analysis workfl ow. To specify the target
product within 2 months, it may be necessary to assign the task to three analysis specialists
organized as a team under the direction of the analysis manager. Similarly, the design task
may be shared between members of the design team.
 Suppose now that a product has to be coded within 3 months, even though 1 person-year
of coding is involved (a person-year is the amount of work that can be done by one person
in 1 year). The solution is apparently simple: If one programmer can code the product in
1 year, four programmers can do it in 3 months.
 This, of course, does not work. In practice, the four programmers may take nearly a
year, and the quality of the resulting product may well be lower than if one programmer

sch76183_ch04_107-123.indd 107sch76183_ch04_107-123.indd 107 04/06/10 12:49 PM04/06/10 12:49 PM

108 Part A Software Engineering Concepts

had coded the entire product. The reason is that some tasks can be shared, but others must
be done individually. For instance, if one farmhand can pick a strawberry fi eld in 10 days,
the same strawberry fi eld can be picked by 10 farmhands in 1 day. On the other hand, one
elephant can produce a calf in 22 months, but this feat cannot possibly be accomplished in
1 month by 22 elephants.
 In other words, tasks like strawberry picking can be fully shared; others, like elephant
production, cannot be shared at all. Unlike elephant production, it is possible to share
implementation tasks between members of a team by distributing the coding among the
team members. However, team programming also is unlike strawberry picking in that team
members have to interact with one another in a meaningful and effective way. For example,
suppose Sheila and Harry have to code two modules, m1 and m2. A number of things can
go wrong. For instance, both Sheila and Harry may code m1 and ignore m2. Or Sheila may
code m1, and Harry may code m2. But when m1 calls m2 it passes four arguments; Harry
has coded m2 in such a way that it requires fi ve arguments. Or the order of the arguments
in m1 and m2 may be different. Or the order may be the same, but the data types may be
slightly different. Such problems usually are caused by a decision made while the design
workfl ow is performed that is not propagated throughout the development organization.
The issue has nothing whatsoever to do with the technical competency of the programmers.
Team organization is a managerial issue; management must organize the programming
teams so that each team is highly productive.
 A different type of diffi culty that arises from team development of software is shown
in Figure 4.1 . Three channels of communication exist between the three software pro-
fessionals working on the project. Now, suppose that the work is slipping, a deadline
is rapidly approaching, and the task is not nearly complete. The obvious thing to do is
to add a fourth professional to the team. But the fi rst thing that must happen when the
fourth professional joins the team is for the other three to explain in detail what has been
accomplished to date and what is still incomplete. In other words, adding personnel to
a late software project makes it even later. This principle is known as Brooks’s Law
after Fred Brooks who observed it while managing the development of OS/360 [Brooks,
1975], an operating system for IBM 360 mainframe computers.
 In a large organization, teams are used in every workfl ow of software production, but espe-
cially when the implementation workfl ow is performed; during that workfl ow, programmers
work independently on separate code artifacts. Accordingly, the implementation workfl ow is

 FIGURE 4.1
 Communication
paths between
three software
professionals
(solid lines) and
when a fourth
professional
joins them
(dashed lines).

sch76183_ch04_107-123.indd 108sch76183_ch04_107-123.indd 108 04/06/10 12:49 PM04/06/10 12:49 PM

a prime candidate for sharing the task among several software professionals. In some
smaller organizations, one individual may be responsible for the requirements, analysis,
and design, after which the implementation is done by a team of two or three program-
mers. Because teams are used most heavily when performing the implementation work-
fl ow, the problems of team organization are felt most acutely during implementation.
In the remainder of this chapter, team organization therefore is presented within the
context of implementation, even though the problems and their solutions are equally
applicable to all the other workfl ows.
 There are two extreme approaches to programming-team organization, democratic
teams and chief programmer teams. The approach taken here is to describe each of the two
approaches, highlight its strengths and weaknesses, and then suggest other ways of organiz-
ing a programming team that incorporate the best features of the two extremes.

 4.2 Democratic Team Approach
 The democratic team organization was fi rst described by Weinberg in 1971 [Weinberg,
1971]. The basic concept underlying the democratic team is egoless programming .
Weinberg points out that programmers can be highly attached to their code. Sometimes,
they even name their modules after themselves: They therefore see their modules as an
extension of themselves. The diffi culty with this is that a programmer who sees a module as
an extension of his or her ego is certainly not going to try to fi nd all the faults in “his” code
or “her” code. And, if there is a fault, it is termed a bug , like some insect that crept unasked
into the code and could have been prevented if only the code had been guarded more zeal-
ously against invasion (see Just in Case You Wanted to Know Box 4.1).
 Weinberg’s solution to the problem of programmers being too closely attached to their
own code is egoless programming. The social environment must be restructured and so
must programmer values. Every programmer must encourage the other members of the
team to fi nd faults in his or her code. The presence of a fault must not be considered some-
thing bad but a normal and accepted event; the attitude of the reviewer should be apprecia-
tion at being asked for advice, rather than ridicule of the programmer for making coding
mistakes. The team as a whole thereby develops an ethos, a group identity; and modules
belong to the team as a whole rather than to any one individual.
 A group of up to 10 egoless programmers constitutes a democratic team. Weinberg
warns that management may have diffi culty working with such a team. After all, consider
the managerial career path. When a programmer is promoted to a management position, his
or her fellow programmers are not promoted and must strive to attain the higher level at the
next round of promotions. In contrast, a democratic team is a group working for a common

 Just in Case You Wanted to Know Box 4.1
 Some 40 years ago, when software was still input on punched cards, all too many pro-
grammers regarded “bugs” in software in the same light as insects that would invade their
card deck unless prevented from doing so. This attitude was amusingly lampooned by the
marketing of an aerosol spray named Shoo-Bug . The instructions on the label solemnly
explained that spraying one’s card deck with Shoo-Bug would ensure that no bugs could
possibly infest the code. Of course, the spray can contained nothing but air.

sch76183_ch04_107-123.indd 109sch76183_ch04_107-123.indd 109 04/06/10 12:49 PM04/06/10 12:49 PM

110 Part A Software Engineering Concepts

cause with no single leader, with no programmers trying to get promoted to the next level.
What is important is team identity and mutual respect.
 Weinberg tells of a democratic team that developed an outstanding product. Manage-
ment decided to give a cash award to the team’s nominal manager (by defi nition, a demo-
cratic team has no leader). He refused to accept it personally, saying that it had to be shared
equally among all members of the team. Management thought that he was angling for more
money and that the team (and especially its nominal manager) had some rather unorthodox
ideas. Management forced the nominal manager to accept the money, which he then di-
vided equally among the team. Next, the entire team resigned and joined another company
as a team.
 The strengths and weaknesses of democratic teams are now presented.

 4.2.1 Analysis of the Democratic Team Approach
 A major strength of the democratic team approach is the positive attitude toward the fi nding
of faults. The more found, the happier are the members of a democratic team. This positive
attitude leads to more rapid detection of faults and hence to high-quality code. But there are
some major problems. As pointed out previously, managers may have diffi culty accepting
egoless programming. In addition, a programmer with, say, 15 years of experience is likely
to resent having his or her code appraised by fellow programmers, especially beginners.
 Weinberg feels that egoless teams spring up spontaneously and cannot be imposed from
outside. Little experimental research has been done on democratic programming teams, but
the experience of Weinberg is that democratic teams are enormously productive. Mantei
[1981] has analyzed the democratic team organization using arguments based on theories
of and experiments on group organization in general rather than specifi cally on program-
ming teams. She points out that decentralized groups work best when the problem is dif-
fi cult and suggests that democratic teams should function well in a research environment.
It has been my experience that a democratic team also works well in an industrial setting
when a hard problem must be solved. On a number of occasions I have been a member of
democratic teams that have sprung up spontaneously among software professionals with
research experience. But, once the task has been reduced to the implementation of a hard-
won solution, the team must then be reorganized in a more hierarchical fashion, such as the
chief programmer team approach described in Section 4.3.

 4.3 Classical Chief Programmer Team Approach
 Consider the six-person team shown in Figure 4.2 , with 15 two-person communication chan-
nels. In fact, the total number of two-, three-, four-, fi ve-, and six-person groups is 57. This
multiplicity of communication channels is the major reason why a six-person team structured
as in Figure 4.2 is unlikely to be able to perform 36 person-months of work in 6 months; many
hours are wasted in meetings involving two or more team members at a time.
 Now consider the six-person team shown in Figure 4.3 . Again, there are six program-
mers, but now only fi ve lines of communication. This is the basic concept behind what
now is termed the chief programmer team . A related idea was put forward by Brooks
[1975], who drew the analogy of a chief surgeon directing an operation. The surgeon is
assisted by other surgeons, the anesthesiologist, and a variety of nurses. In addition, when

sch76183_ch04_107-123.indd 110sch76183_ch04_107-123.indd 110 04/06/10 12:49 PM04/06/10 12:49 PM

Chapter 4 Teams 111

necessary, the team uses experts in other areas, such as cardiologists or nephrologists. This
analogy highlights two key aspects of a chief programmer team. The fi rst is specialization :
Each member of the team carries out only those tasks for which he or she has been trained.
The second aspect is hierarchy : The chief surgeon directs the actions of all the other members
of the team and is responsible for every aspect of the operation.
 The chief programmer team concept was formalized by Mills [Baker, 1972]. A classical
chief programmer team, as described by Baker some 40 years ago, is shown in Figure 4.3 .
It consisted of the chief programmer, who was assisted by the backup programmer, the
programming secretary, and from one to three programmers. When necessary, the team was
assisted by specialists in other areas, such as legal or fi nancial matters, or the job control
language (JCL) statements used to give operating system commands to the mainframe com-
puters of that era. The chief programmer was both a successful manager and a highly
skilled programmer who did the architectural design and any critical or complex sections
of the code. The other team members worked on the detailed design and the coding, under
the direction of the chief programmer. As shown in Figure 4.3 , no lines of communica-
tion existed between the programmers; all interfacing issues were handled by the chief
programmer. Finally, the chief programmer reviewed the work of the other team members,
because the chief programmer was personally responsible for every line of code.
 The position of backup programmer was necessary only because the chief program-
mer was human and could therefore become ill, fall under a bus, or change jobs. Therefore,

 FIGURE 4.2
 Communication
paths between
six software
professionals.

 FIGURE 4.3
The structure of
a classical chief
programmer
team.

ProgrammerProgrammer

Backup
programmer

Chief
programmer

Programming
secretary

Programmer

sch76183_ch04_107-123.indd 111sch76183_ch04_107-123.indd 111 04/06/10 12:49 PM04/06/10 12:49 PM

112 Part A Software Engineering Concepts

the backup programmer had to be as competent as the chief programmer in every respect
and had to know as much about the project as the chief programmer. In addition, to free
the chief programmer to concentrate on the architectural design, the backup programmer
did black-box test case planning (Section 15.11) and other tasks independent of the design
process.
 The word secretary has a number of meanings. A secretary can be a person who assists
a busy executive by answering the telephone, typing correspondence, and so on. But when
we talk about the American Secretary of State or the British Foreign Secretary, we refer
to one of the most senior members of the Cabinet. The programming secretary was
not a part-time clerical assistant but a highly skilled, well-paid, central member of a chief
programmer team. The programming secretary was responsible for maintaining the project
production library, the documentation of the project. This included source code listings,
JCL, and test data. The programmers handed their source code to the secretary, who was
responsible for its conversion to machine-readable form, compilation, linking, loading,
execution, and running test cases. Programmers therefore did nothing but program. All
other aspects of their work were handled by the programming secretary. (Because the pro-
gramming secretary maintained the project production library, some organizations used the
title librarian .)
 Recall that what is described here are Mills’s and Baker’s original ideas, dating back to
1971, when keypunches still were widely used. Coding no longer is done that way. Pro-
grammers now have their own terminals or workstations in which they enter their code, edit
it, test it, and so on. A modern version of the classical chief programmer team is described
in Section 4.4.

 4.3.1 The New York Times Project
 The chief programmer team concept was fi rst used in 1971 by IBM to automate the clip-
ping fi le (“morgue”) of The New York Times. The clipping fi le contains abstracts and full
articles from The New York Times and other publications. Reporters and other members of
the editorial staff use this information bank as a reference source.
 The facts of the project are astounding. For example, 83,000 lines of code (LOC) were
implemented in 22 calendar months, an effort of 11 person-years. After the fi rst year, only the
fi le maintenance system consisting of 12,000 LOC had been implemented. Most of the code
was implemented in the last 6 months. Only 21 faults were detected in the fi rst 5 weeks of
acceptance testing; only 25 further faults were detected in the fi rst year of operation. Principal
programmers averaged one detected fault and 10,000 LOC per person-year. The fi le main-
tenance system, delivered 1 week after coding was completed, operated 20 months before a
single fault was detected. Almost half the subprograms, usually 200 to 400 lines of PL/I, a
language developed by IBM, were correct on the fi rst compilation [Baker, 1972].
 Nevertheless, after this fantastic success, no comparable claims for the chief program-
mer team concept have been made. Yes, many successful projects have been carried out
using chief programmer teams, but the fi gures reported, although satisfactory, are not as
impressive as those obtained for The New York Times project. Why was The New York Times
project such a success, and why have similar results not been obtained on other projects?
 One possible explanation is that this was a prestige project for IBM. It was the fi rst real
trial for PL/I. An organization known for its superb software experts, IBM set up a team
comprising what can only be described as its crème de la crème from one division. Second,

sch76183_ch04_107-123.indd 112sch76183_ch04_107-123.indd 112 04/06/10 12:49 PM04/06/10 12:49 PM

Chapter 4 Teams 113

technical backup was extremely strong. PL/I compiler writers were on hand to assist the
programmers in every way they could, and JCL experts assisted with the job control lan-
guage. A third possible explanation was the expertise of the chief programmer, F. Terry
Baker. He is what is now called a superprogrammer , a programmer whose output is four
or fi ve times that of an average good programmer. In addition, Baker is a superb manager
and leader, and his skills, enthusiasm, and personality could be the reasons underlying the
success of the project.
 If the chief programmer is competent, then the chief programmer team organization
works well. Although the remarkable success of The New York Times project has not
been repeated, many successful projects have employed variants of the chief programmer
approach. The reason for the phrase variants of the approach is that the classical chief pro-
grammer team as described in [Baker, 1972] is impractical in many ways.

 4.3.2 Impracticality of the Classical Chief Programmer
Team Approach

 Consider the chief programmer, a combination of a highly skilled programmer and suc-
cessful manager. Such individuals are diffi cult to fi nd due to a shortage of highly skilled
programmers as well as a shortage of successful managers; and the job description of a
chief programmer requires both abilities. Also, the qualities needed to be a highly skilled
programmer appear to be different from those needed to be a successful manager; there-
fore, the chances of fi nding a chief programmer are small.
 If chief programmers are hard to fi nd, backup programmers are as rare as hen’s teeth.
After all, the backup programmer is expected to be as good as the chief programmer but
has to take a backseat and a lower salary while waiting for something to happen to the chief
programmer. Few top programmers or top managers would accept such a role.
 A programming secretary also is diffi cult to fi nd. Software professionals are notorious
for their aversion to paperwork, and the programming secretary is expected to do nothing
but paperwork all day.
 Therefore, chief programmer teams, at least as proposed by Baker, are impractical to
implement. Democratic teams also were shown to be impractical but for different reasons.
Furthermore, neither technique seems to be able to handle products that require 20, let
alone 120, programmers for the implementation workfl ow. What is needed is a way of
organizing programming teams that uses the strengths of democratic teams and chief pro-
grammer teams and can be extended to the implementation of larger products.

 4.4 Beyond Chief Programmer and Democratic Teams

 Democratic teams have a major strength: a positive attitude toward fi nding faults. A num-
ber of organizations use chief programmer teams in conjunction with code reviews (Sec-
tion 6.2), creating a potential pitfall. The chief programmer is personally responsible for
every line of code and, therefore, must be present during all code reviews. However, a chief
programmer also is a manager and, as explained in Chapter 6 , reviews should not be used
for any sort of performance appraisal. So, because the chief programmer is also the man-
ager responsible for the primary evaluation of the team members, it is strongly inadvisable
for that individual to be present at a code review.

sch76183_ch04_107-123.indd 113sch76183_ch04_107-123.indd 113 04/06/10 12:49 PM04/06/10 12:49 PM

114 Part A Software Engineering Concepts

 The way out of this contradiction is to remove much of the managerial role from the chief
programmer. After all, the diffi culty of fi nding one individual who is both a highly skilled
programmer and successful manager has been pointed out. Instead, the chief programmer
should be replaced by two individuals: a team leader in charge of the technical aspects
of the team’s activities and a team manager responsible for all nontechnical managerial
decisions. The structure of the resulting team is shown in Figure 4.4 . It is important to real-
ize that this organizational structure does not violate the fundamental managerial principle
that no employee should report to more than one manager. The areas of responsibility are
clearly delineated. The team leader is responsible for only technical management. Conse-
quently, budgetary and legal issues are not handled by the team leader nor are performance
appraisals. On the other hand, the team leader has sole responsibility on technical issues.
The team manager therefore has no right to promise, say, that the product will be delivered
within 4 weeks; promises of that sort have to be made by the team leader. The team leader
naturally participates in all code reviews; after all, he or she is personally responsible for
every aspect of the code. At the same time, the team manager is not permitted at a review,
because programmer performance appraisal is a function of the team manager. Instead, the
team manager acquires knowledge of the technical skills of each programmer in the team
during regularly scheduled team meetings.
 Before implementation begins, it is important to demarcate clearly those areas that
appear to be the responsibility of both the team manager and the team leader. For example,
consider the issue of annual leave. The situation can arise that the team manager approves a
leave application because leave is a nontechnical issue, only to fi nd the application vetoed
by the team leader because a deadline is approaching. The solution to this and related issues
is for higher management to draw up a policy regarding areas that both the team manager
and the team leader consider to be their responsibility.
 What about larger projects? This approach can be scaled up as shown in Figure 4.5 ,
which shows the technical managerial organizational structure; the nontechnical side is
similarly organized. Implementation of the product as a whole is under the direction of the
project leader. The programmers report to their team leaders, and the team leaders report to
the project leader. For even larger products, additional levels can be added to the hierarchy.
 Another way of drawing on the best features of both democratic and chief program-
mer teams is to decentralize the decision-making process where appropriate. The resulting
channels of communication are shown in Figure 4.6 . This scheme is useful for the sorts of

 FIGURE 4.4
 The structure
of a modern
programming
team.

Team
leader

Team
manager

ProgrammerProgrammer Programmer

Technical management
Nontechnical management

sch76183_ch04_107-123.indd 114sch76183_ch04_107-123.indd 114 04/06/10 12:49 PM04/06/10 12:49 PM

ProgrammerProgrammer Programmer ProgrammerProgrammer Programmer Programmer Programmer

Team
leader

Team
leader

Team
leader

Project
leader

Technical management

 FIGURE 4.5 The technical managerial organizational structure for larger projects.

115

sch76183_ch04_107-123.indd 115
sch76183_ch04_107-123.indd 115

04/06/10 12:49 P
M

04/06/10 12:49 P
M

Team
leader

Team
leader

Team
leader

Project
leader

ProgrammerProgrammer Programmer ProgrammerProgrammer Programmer Programmer Programmer

Technical management

 FIGURE 4.6 The decentralized decision-making version of the team organization of Figure 4.5 showing the communication channels for technical
management.

116

sch76183_ch04_107-123.indd 116
sch76183_ch04_107-123.indd 116

04/06/10 12:49 P
M

04/06/10 12:49 P
M

Chapter 4 Teams 117

problems for which the democratic approach is good, that is, in a research environment or
whenever a hard problem requires the synergistic effect of group interaction for its solu-
tion. Notwithstanding the decentralization, the arrows from level to level still point down-
ward; allowing programmers to dictate to the project leader can lead only to chaos.

 4.5 Synchronize-and-Stabilize Teams
 An alternative approach to team organization is the synchronize-and-stabilize team utilized
by Microsoft [Cusumano and Selby, 1997]. Microsoft builds large products; for example,
Windows 2000 consists of more than 30 million lines of code, built by over 3000 program-
mers and testers, reusing much of Windows NT 4.0 [Business Week Online, 1999]. Team
organization is a vital aspect of the successful construction of a product of this size.
 The synchronize-and-stabilize life-cycle model was described in Section 2.9.6. The suc-
cess of this model is largely a consequence of the way the teams are organized. Each of the
three or four sequential builds of the synchronize-and-stabilize model is constructed by a
number of small parallel teams led by a manager and consisting of between three and eight
developers together with three to eight testers who work one-to-one with the developers.
The team is provided the specifi cations of its overall task; individual team members then
are given the freedom to design and implement their portions of that task as they wish. The
reason that this does not rapidly devolve into hacker-induced chaos is the synchronization
step performed each day: The partially completed components are tested and debugged on
a daily basis. Accordingly, even though individual creativity and autonomy are nurtured,
the individual components always work together.
 The strength of this approach is that, on the one hand, individual programmers are
encouraged to be creative and innovative, a characteristic of a democratic team. On the
other hand, the daily synchronization step ensures that the hundreds of developers work
together toward a common goal without requiring the communication and coordination
characteristic of a chief programmer team (Figure 4.3).
 Microsoft developers must follow very few rules, but one of them is that they must
adhere strictly to the time laid down to enter their code into the product database for that
day’s synchronization. Cusumano and Selby [1997] liken this to telling children that
they can do what they like all day but have to be in bed by 9 P.M. Another rule is that, if
a developer’s code prevents the product from being compiled for that day’s synchroni-
zation, the problem must be fi xed immediately so that the rest of the team can test and
debug that day’s work.
 Will use of the synchronize-and-stabilize model and associated team organization guar-
antee that every other software organization will be as successful as Microsoft? This is
extremely unlikely. Microsoft, Inc., is more than just the synchronize-and-stabilize model.
It is an organization consisting of a highly talented set of managers and software developers
with an evolved group ethos. Merely using the synchronize-and-stabilize model does not
magically turn an organization into another Microsoft. At the same time, the use of many
of the features of the model in other organizations could lead to process improvement. On
the other hand, it has been suggested that the synchronize-and-stabilize model is simply a
way of allowing a group of hackers to develop large products and that Microsoft’s success
is due to superb marketing, rather than quality software.

sch76183_ch04_107-123.indd 117sch76183_ch04_107-123.indd 117 04/06/10 12:49 PM04/06/10 12:49 PM

118 Part A Software Engineering Concepts

 4.6 Teams for Agile Processes
 Section 2.9.5 gives an overview of agile processes [Beck et al., 2001]. In this section, we
describe how teams are organized when agile processes are used.
 A somewhat unusual feature of agile processes is that all code is implemented by a team
of two programmers sharing a single computer; this is referred to as pair programming
[Williams, Kessler, Cunningham, and Jeffries, 2000]. The reasons for this approach include:

 • As explained in Section 2.9.5, pair programmers fi rst draw up test cases and then imple-
ment that piece of code (task). As explained in Section 6.6, it is highly inadvisable for
a programmer to test his or her own code. Agile processes get around this problem by
having one pair programmer in a team draw up the test cases for a task and the other pair
programmer jointly implement the code using those test cases.

 • In a more conventional life-cycle model, when a developer leaves a project, all the
knowledge accumulated by that developer leaves as well. In particular, the software on
which that developer was working may not yet have been documented and may have to
be redeveloped from scratch. In contrast, if one member of a pair programming team
leaves, the other is suffi ciently knowledgeable to continue working on the same part of
the software with a new pair programmer. Furthermore, the presence of the test cases
assists in highlighting a fault, should the new team accidentally damage the software by
making an ill-advised modifi cation.

 • Working closely in pairs enables a less experienced software professional to acquire the
skills of the more experienced team member.

 • As mentioned in Section 2.9.5, all the computers used by the various pair teams are
placed together in the middle of a large room. This promotes group ownership of code,
a positive feature of egoless teams (Section 4.2).

 So, even though the idea of two programmers working together on the same computer
may seem somewhat unusual, the practice can have distinct advantages.
 An interesting experiment on pair programming is described in [Arisholm, Gallis, Dybå,
and Sjøberg, 2007]. A total of 295 professional programmers (99 individuals and 98 pairs)
were hired to take part in a carefully conducted one-day experiment on pair programming.
The subjects were required to perform several maintenance tasks on two Java software
products, one simple and one complex. The pair programmers required 84 percent more
effort to perform the tasks correctly. In light of this result, some software engineers may
reconsider using pair programming, and, hence, agile processes.
 Furthermore, as stated in Section 2.9.5, an analysis of 15 published studies compared
the effectiveness of individual and pair programming [Dybå et al., 2007] and came to the
conclusion that it depends on both the programmer’s expertise and the complexity of the
system and the specifi c tasks to be solved. Clearly, more research, preferably performed on
large samples of professional programmers, needs to be conducted in this area.

 4.7 Open-Source Programming Teams
 It is surprising that any open-source projects have succeeded, let alone that some of the
most successful software products ever developed used the open-source life-cycle model.
After all, open-source projects are generally staffed by teams of unpaid volunteers. They

sch76183_ch04_107-123.indd 118sch76183_ch04_107-123.indd 118 04/06/10 12:49 PM04/06/10 12:49 PM

Chapter 4 Teams 119

communicate asynchronously (i.e., via e-mail), with no team meetings and no managers—
informality reigns in every respect. Furthermore, no specifi cations or designs exist; in fact,
documentation of any kind is extremely rare, even in mature projects. But despite these
virtually insurmountable obstacles, a small number of open-source projects such as Linux
and Apache have attained the highest levels of success.
 Individuals volunteer to take part in an open-source project for two main reasons: for the
sheer enjoyment of accomplishing a worthwhile task, or for the learning experience.

 • To attract volunteers to an open-source project and keep them interested, it is essential
that at all times they view the project as “worthwhile.” Individuals are unlikely to devote
a considerable portion of their spare time to a project unless they truly believe that the
project will succeed and that the product will be widely utilized. Participants will start
to drift away if they start viewing the project as futile.

 • With regard to the second reason, many software professionals join an open-source
project to gain skills in a technology that is new to them, such as a modern programming
language or an operating system with which they are unfamiliar. They can then leverage
the knowledge they gain to obtain a promotion within their own organization or acquire
a better position in another organization. After all, employers frequently view experi-
ence gained working on a large, successful open-source project as more desirable than
acquiring additional academic qualifi cations. Conversely, there is no point in devoting
months of hard work to a project that ultimately fails.

 In other words, unless a project is viewed at all times as a winner, it will not attract and
retain volunteers to work on that project. Furthermore, the members of the open-source
team must at all times feel that they are making a contribution. For all these reasons, it
is essential that the key individual behind an open-source project be a superb motivator.
Unless this is the case, the project is doomed to inevitable failure.
 Another prerequisite for successful open-source development is the skills of the team mem-
bers. As explained in detail in Section 9.2, large differences in skill levels have been observed
between programmers. Bearing in mind the obstacles to successful open-source software pro-
duction listed in the fi rst paragraph of this section, there is virtually no way that an open-source
project can succeed unless the members of the core group (Section 2.9.4) are top-caliber indi-
viduals with fi nely honed skills of the highest order. Such top-class individuals will thrive in
almost any environment, including one as unstructured as an open-source team.
 In other words, an open-source project succeeds because of the nature of the target prod-
uct, the personality of the instigator, and the talents of the members of the core group. The
way that a successful open-source team is organized is essentially irrelevant.

 4.8 People Capability Maturity Model
 The people capability maturity model (P–CMM) describes best practices for managing and
developing the workforce of an organization [Curtis, Hefl ey, and Miller, 2002]. As with the
software capability maturity model, SW–CMM (Section 3.13), an organization progresses
through fi ve maturity levels with the aim of continuously improving individual skills and
engendering effective teams.
 Every maturity level has its own key process areas (KPAs), each of which needs to be
addressed satisfactorily before an organization can be deemed to have attained that maturity

sch76183_ch04_107-123.indd 119sch76183_ch04_107-123.indd 119 04/06/10 12:49 PM04/06/10 12:49 PM

120 Part A Software Engineering Concepts

level. For example, for level 2, the managed level, the KPAs are staffi ng, communication and
coordination, work environment, performance management, training and development, and
compensation. In contrast, the KPAs for level 5, the optimizing level, are continuous capability
improvement, organizational performance alignment, and continuous workforce innovation.
 The SW–CMM is a framework for improving an organization’s software process—no
specifi c process or methodology is recommended. In the same way, the P–CMM is a frame-
work for improving an organization’s processes for managing and developing its work-
force, and no specifi c approach to team organization is put forward.

 4.9 Choosing an Appropriate Team Organization
 A comparison of the various types of team organization appears in Figure 4.7 , which
also shows the section in which each team organization is described. Unfortunately, no
one solution solves the problem of programming team organization or, by extension, the

 Team Organization Strengths Weaknesses

 Democratic teams High-quality code as Experienced staff resent
 (Section 4.2) consequence of positive their code being appraised
 attitude to fi nding faults by beginners
 Particularly good with Cannot be externally
 hard problems imposed

 Classical chief Major success of The New Impractical
 programmer teams York Times project
 (Section 4.3)

 Modifi ed chief Many successes No successes comparable to The
 programmer teams New York Times project
 (Section 4.3.1)

 Modern hierarchical Team manager/team leader Problems can arise unless
 programming teams structure obviates need areas of responsibility of
 (Section 4.4) for chief programmer the team manager and the
 Scales up team leader are clearly
 Supports decentralization delineated
 when needed

 Synchronize-and- Encourages creativity No evidence so far that this
 stabilize teams Ensures that a huge number method can be utilized
 (Section 4.5) of developers can work outside Microsoft
 toward a common goal

 Agile process teams Programmers do not test Still too little evidence regarding
 (Section 4.6) their own code effi cacy
 Knowledge is not lost if one
 programmer leaves
 Less-experienced programmers
 can learn from others
 Group ownership of code

 Open-source teams A few projects are extremely Narrowly applicable
 (Section 4.7) successful Must be led by a superb

 motivator

 Requires top-caliber participants

 FIGURE 4.7
Comparison
of approaches
to team
organization
and the section
in this chapter
in which each is
described.

sch76183_ch04_107-123.indd 120sch76183_ch04_107-123.indd 120 04/06/10 12:49 PM04/06/10 12:49 PM

Chapter 4 Teams 121

problem of organizing teams for all the other workfl ows. The optimal way of organiz-
ing a team depends on the product to be built, previous experience with various team
structures, and most important, the culture of the organization. For example, if senior
management is uncomfortable with decentralized decision making, then it will not be
implemented.
 In practice, most teams are currently organized as described in Section 4.4. That is,
some variant of the chief programmer team is the usual practice.
 Not much research has been done on software development team organization, and
many of the generally accepted principles are based on research on group dynamics in
general and not on software development teams. Even when studies on software teams have
been conducted, the sample sizes have generally been small, so the results have not been
convincing.
 Until experimental results on team organization have been obtained within the soft-
ware industry, it will not be easy to determine the optimal team organization for a spe-
cifi c product.

 Chapter
Review
 The issue of team organization (Section 4.1) is approached by fi rst considering democratic teams

(Section 4.2) and chief programmer teams (Section 4.3). The success of The New York Times
project (Section 4.3.1) is contrasted with the impracticality of classic chief programmer teams
(Section 4.3.2). A team organization that uses the strengths of both approaches is suggested in
Section 4.4. Synchronize-and-stabilize teams (used by Microsoft) are described in Section 4.5.
Teams for agile processes are discussed in Section 4.6 and for open-source software in Section
4.7. The people capability maturity model (P–CMM) is described in Section 4.8. Finally, Sec-
tion 4.9 describes the factors involved in choosing the optimal team organization for a given
project.

 For
Further
Reading

 The classic works on team organization are [Weinberg, 1971], [Baker, 1972], and [Brooks, 1975].
Newer books on the subject include [DeMarco and Lister, 1987] and [Cusumano and Selby, 1995].
An interesting description of how team interactions evolve is found in [Mackey, 1999]. Chapter 11
of [Royce, 1998] contains useful information on the roles played by team members. A promising
approach is the use of personality type analysis in selecting team members; see, for example, [Gorla
and Lam, 2004].
 Synchronize-and-stabilize teams are outlined in [Cusumano and Selby, 1997] and described in
detail in [Cusumano and Selby, 1995]. Extreme programming teams are described in [Beck, 2000].
The May–June 2003 issue of IEEE Software includes a number of papers on extreme programming,
especially [Reifer, 2003] and [Murru, Deias, and Mugheddue, 2003].
 Views on agile processes are expressed in [Boehm, 2002] and [DeMarco and Boehm, 2002], and
in the May–June 2005 issue of IEEE Software . Williams, Kessler, Cunningham, and Jeffries [2000]
describes an experiment on pair programming, one component of extreme programming. Pair pro-
gramming is evaluated in [Drobka, Noftz, and Raghu, 2004], [Flor, 2006], and [Lui, Chan, and Nosek,
2008]. The results of [Arisholm, Gallis, Dybå, and Sjøberg, 2007] regarding the possible benefi ts of
pair programming should be studied in detail.
 P–CMM is described in [Curtis, Hefl ey, and Miller, 2002]. Globally distributed (remote) pair
programming is put forward in [Flor, 2006].

sch76183_ch04_107-123.indd 121sch76183_ch04_107-123.indd 121 04/06/10 12:49 PM04/06/10 12:49 PM

122 Part A Software Engineering Concepts

 backup programmer 111
 Brooks’s Law 108
 chief programmer 111
 chief programmer team 110
 democratic team 109
 egoless programming 109

 hierarchy 111
 key process area (KPA) 119
 librarian 112
 pair programming 118
 programmer 112
 programming secretary 112

 specialization 111
 superprogrammer 113
 task 118
 team 107
 team leader 114
 team manager 114

 Key Terms

 Problems 4.1 How would you organize a team to develop a payroll project? Explain your answer.

 4.2 How would you organize a team for developing state-of-the-art military communications soft-
ware? Explain your answer.

 4.3 State Brooks’s Law. Explain why it holds.

 4.4 You have just started a new software company. All your employees are recent college gradu-
ates; this is their fi rst programming job. Is it possible to implement democratic teams in your
organization, and if so, how?

 4.5 A student programming team is organized as a democratic team. What can be deduced about
the students in the team?

 4.6 A student programming team is organized as a chief programming team. What can be deduced
about the students in the team?

 4.7 To compare two different team organizations, TO 1 and TO 2 , within a large software company,
the following experiment is proposed. The same software product will be built by two different
teams, one organized according to TO 1 and the other according to TO 2 . The company estimates
that each team will take about 18 months to build the product. Give three reasons why this
experiment is impractical and unlikely to yield meaningful results.

 4.8 The company you own has just taken over a smaller competitor, and you discover that one of
their programmers is a superprogrammer. How do you ensure that she does not leave and take
a job in another company?

 4.9 Why do teams for agile processes have to share a computer?

 4.10 What are the differences between a democratic team and an open-source team?

 4.11 How would you organize an open-source team?

 4.12 Would you like to work in an organization that uses synchronize-and-stabilize teams? Explain
your answer.

 4.13 Which team organizations conform to P–CMM?

 4.14 You are the vice president for software development in a large company. How would you imple-
ment P–CMM in your company?

 4.15 (Term Project) What type of team organization would be appropriate for developing the Choco-
holics Anonymous product described in Appendix A?

 4.16 (Readings in Software Engineering) Your instructor will distribute copies of [Arisholm, Gallis,
Dybå, and Sjøberg, 2007]. What are the implications of this paper for agile processes?

 [Arisholm, Gallis, Dybå, and Sjøberg, 2007] E. ARISHOLM, H. GALLIS, T. DYBÅ, AND D. I. K. SJØBERG,
“Evaluating Pair Programming with Respect to System Complexity and Programmer Expertise,”
 IEEE Transactions on Software Engineering 33 (February 2007), pp. 65–86.

 [Baker, 1972] F. T. BAKER, “Chief Programmer Team Management of Production Programming,”
 IBM Systems Journal 11 (No. 1, 1972), pp. 56–73.

 [Beck, 2000] K. BECK, Extreme Programming Explained: Embrace Change, Addison-Wesley Long-
man, Reading, MA, 2000.

 References

sch76183_ch04_107-123.indd 122sch76183_ch04_107-123.indd 122 04/06/10 12:49 PM04/06/10 12:49 PM

Chapter 4 Teams 123

 [Beck et al., 2001] K. BECK, M. BEEDLE, A. COCKBURN, W. CUNNINGHAM, M. FOWLER, J. GRENNING, J.
HIGHSMITH, A. HUNT, R. JEFFRIES, J. KERN, B. MARICK, R. C. MARTIN, S. MELLOR, K. SCHWABER,
J. SUTHERLAND, D. THOMAS, AND A. VAN BENNEKUM, “Manifesto for Agile Software Develop-
ment,” agilemanifesto.org, 2001.

 [Boehm, 2002] B. W. BOEHM, “Get Ready for Agile Methods, with Care,” IEEE Computer 35 (January
2002), pp. 64–69.

 [Brooks, 1975] F. P. BROOKS, JR., The Mythical Man-Month: Essays in Software Engineering, Addison-
Wesley, Reading, MA, 1975; Twentieth Anniversary Edition, Addison-Wesley, Reading, MA, 1995.

 [Business Week Online, 1999] Business Week Online , www.businessweek.com/1999/99_08/
b3617025.htm , February 2, 1999.

 [Curtis, Hefl ey, and Miller, 2002] B. CURTIS, W. E. HEFLEY, AND S. A. MILLER, The People Capability
Maturity Model: Guidelines for Improving the Workforce , Addison-Wesley, Reading, MA, 2002.

 [Cusumano and Selby, 1995] M. A. CUSUMANO AND R. W. SELBY, Microsoft Secrets: How the World’s
Most Powerful Software Company Creates Technology, Shapes Markets, and Manages People ,
The Free Press/Simon and Schuster, New York, 1995.

 [Cusumano and Selby, 1997] M. A. CUSUMANO AND R. W. SELBY, “How Microsoft Builds Software,”
 Communications of the ACM 40 (June 1997), pp. 53–61.

 [DeMarco and Boehm, 2002] T. DEMARCO AND B. BOEHM, “The Agile Methods Fray,” IEEE Com-
puter 35 (June 2002), pp. 90–92.

 [DeMarco and Lister, 1987] T. DEMARCO AND T. LISTER, Peopleware: Productive Projects and Teams,
Dorset House, New York, 1987.

 [Drobka, Noftz, and Raghu, 2004] J. DROBKA, D. NOFTZ, AND R. RAGHU, “Piloting XP on Four
Mission-Critical Projects,” IEEE Software 21 (November–December 2004), pp. 70–75.

 [Dybå et al., 2007] T. DYBÅ, E. ARISHOLM, D. I. K. SJØBERG, J. E. HANNAY, AND F. SHULL, “Are Two
Heads Better than One? On the Effectiveness of Pair Programming,” IEEE Software 24 (November–
December 2007), pp. 12–15.

 [Flor, 2006] N. V. FLOR. “Globally Distributed Software Development and Pair Programming,” Com-
munications of the ACM 49 (October 2006), pp. 57–58.

 [Gorla and Lam, 2004] N. GORLA AND Y. W. LAM, “Who Should Work with Whom?” Communica-
tions of the ACM 47 (June 2004), pp. 79–82.

 [Lui, Chan, and Nosek, 2008] K. M. LUI, K. C. C. CHAN, AND J. T. NOSEK, “The Effect of Pairs in Program
Design Tasks,” IEEE Transactions on Software Engineering 34 (March–April 2008), pp. 197–211.

 [Mackey, 1999] K. MACKEY, “Stages of Team Development,” IEEE Software 16 (July–August 1999),
pp. 90–91.

 [Mantei, 1981] M. MANTEI, “The Effect of Programming Team Structures on Programming Tasks,”
 Communications of the ACM 24 (March 1981), pp. 106–13.

 [Murru, Deias, and Mugheddue, 2003] O. MURRU, R. DEIAS, AND G. MUGHEDDUE, “Assessing XP at
a European Internet Company,” IEEE Software 20 (May–June 2003), pp. 37–43.

 [Reifer, 2003] D. REIFER, “XP and the CMM,” IEEE Software 20 (May–June 2003), pp. 14–15.

 [Royce, 1998] W. ROYCE, Software Project Management: A Unifi ed Framework , Addison-Wesley,
Reading, MA, 1998.

 [Weinberg, 1971] G. M. WEINBERG, The Psychology of Computer Programming , Van Nostrand
Reinhold, New York, 1971.

 [Williams, Kessler, Cunningham, and Jeffries, 2000] L. WILLIAMS, R. R. KESSLER, W. CUNNINGHAM,
AND R. JEFFRIES, “Strengthening the Case for Pair Programming,” IEEE Software 17 (July–August
2000), pp. 19–25.

sch76183_ch04_107-123.indd 123sch76183_ch04_107-123.indd 123 04/06/10 12:49 PM04/06/10 12:49 PM

www.businessweek.com/1999/99_08/b3617025.htm
www.businessweek.com/1999/99_08/b3617025.htm

 Chapter 5
The Tools of
the Trade
 Learning Objectives

 After studying this chapter, you should be able to

 • Appreciate the importance of stepwise refi nement and utilize it in practice.

 • Understand divide-and-conquer.

 • Appreciate the importance of separation of concerns.

 • Apply cost–benefi t analysis.

 • Select appropriate software metrics.

 • Discuss the scope and taxonomy of CASE.

 • Describe version-control tools, confi guration-control tools, and build tools.

 • Understand the importance of CASE.

124

 Software engineers need two types of tools. First are the analytical tools used in software devel-
opment, such as stepwise refi nement and cost–benefi t analysis. Then come the software tools,
that is, products that assist the teams of software engineers in developing and maintaining soft-
ware. These usually are termed CASE tools (CASE is an acronym for Computer-Aided Software
Engineering). This chapter is devoted to these two types of tools of the trade, fi rst theoretical
(analytical) tools and then software (CASE) tools. We begin with stepwise refi nement.

 5.1 Stepwise Refi nement
 Stepwise refi nement, introduced in Section 2.5, is a problem-solving technique that
underlies many software engineering techniques. Stepwise refi nement can be defi ned
as a means to postpone decisions on details until as late as possible to concentrate on the

sch76183_ch05_124-153.indd 124sch76183_ch05_124-153.indd 124 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 125

important issues. As a consequence of Miller’s Law (Section 2.5), we can concentrate on
only approximately seven chunks (units of information) at a time. Accordingly, we use
stepwise refi nement to defer nonessential decisions until later while focusing on the key
issues.
 As will be seen during the course of this book, stepwise refi nement underlies many anal-
ysis techniques, design and implementation techniques, and even testing and integration
techniques. Stepwise refi nement is of critical importance within the context of the object-
oriented paradigm, because the underlying life-cycle model is iterative and incremental.
 The following mini case study illustrates how stepwise refi nement can be used in the
design of a product.

 Stepwise Refi nement Mini Case Study

 The mini case study presented in this section may seem almost trivial in that it involves
updating a sequential master fi le, a common operation in many application areas.
This choice of a simple, familiar problem is to enable you to concentrate on stepwise
refi nement rather than on the application domain.
 Design a product to update the sequential master fi le containing name and address
data for the monthly magazine True Life Software Disasters . There are three types
of transactions: insertions, modifi cations, and deletions, with transaction codes 1, 2,
and 3, respectively. The transaction types are

 Type 1: INSERT (a new subscriber into the master fi le)
 Type 2: MODIFY (an existing subscriber record)
 Type 3: DELETE (an existing subscriber record)

 Transactions are sorted into alphabetical order by name of subscriber. If more than
one transaction is performed for a given subscriber, the transactions for that subscriber
are sorted so that insertions occur before modifi cations and modifi cations before
deletions.
 The fi rst step in designing a solution is to set up a typical fi le of input transactions,
such as that shown in Figure 5.1 . The fi le contains fi ve records: DELETE Brown, INSERT
Harris, MODIFY Jones, DELETE Jones, and INSERT Smith. (It is not unusual to perform
both a modifi cation and a deletion of the same subscriber in one run.)

C Mini ase Study

5.1.15.1.1

 FIGURE 5.1
 Input transaction
records for
the sequential
master fi le
update.

 Transaction Type Name Address

 3 Brown

 1 Harris 2 Oak Lane, Townsville

 2 Jones Box 345, Tarrytown

 3 Jones

 1 Smith 1304 Elm Avenue, Oak City

sch76183_ch05_124-153.indd 125sch76183_ch05_124-153.indd 125 04/06/10 6:42 PM04/06/10 6:42 PM

126 Part A Software Engineering Concepts

 The problem may be represented as shown in Figure 5.2 . There are two input fi les:

 1. Old master fi le name and address records
 2. Transaction fi le

 and three output fi les:

 3. New master fi le name and address records
 4. Exception report
 5. Summary and end-of-job message

 To begin the design process, the starting point is the single box update master fi le
shown in Figure 5.3 . This box can be decomposed into three boxes, input, process,
and output. The assumption is that, when process requires a record, our level of
competence is such that the correct record can be produced at the right time. Similarly,
we are capable of writing the correct record to the correct fi le at the right time. There-
fore, the technique is to separate out the input and output aspects and concentrate on
the process. What is this process? To determine what it does, consider the example
shown in Figure 5.4 . The key of the fi rst transaction record (Brown) is compared with
the key of the fi rst old master fi le record (Abel). Because Brown comes after Abel,
the Abel record is written to the new master fi le, and the next old master fi le record

 FIGURE 5.2
A representation
of the sequential
master fi le
update.

update
master

file

Transaction
file

Old
master

file

New
master

file

Exception
report

Summary and
end-of-job
message

 FIGURE 5.3
 First refi nement
of the design.

update
master file

input process output

sch76183_ch05_124-153.indd 126sch76183_ch05_124-153.indd 126 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 127

(Brown) is read. In this case, the key of the transaction record matches the key of the
old master fi le record, and because the transaction type is 3 (DELETE), the Brown record
must be deleted. This is implemented by not copying the Brown record onto the new
master fi le. The next transaction record (Harris) and old master fi le record (James) are
read, overwriting the Brown records in their respective buffers. Harris comes before
James and, therefore, is inserted into the new master fi le; the next transaction record
(Jones) is read. Because Jones comes after James, the James record is written to the
new master fi le, and the next old master fi le record is read; this is Jones. As can be
seen from the transaction fi le, the Jones record is to be modifi ed and then deleted, so
the next transaction record (Smith) and the next old master fi le record (also Smith)
are read. Unfortunately, the transaction type is 1 (INSERT), but Smith already is in
the master fi le. So there is an error of some sort in the data, and the Smith record is
written to the exception report. To be more precise, the Smith transaction record is
written to the exception report, and the Smith old master fi le record is written to the
new master fi le.
 Now that the process is understood, it may be represented as in Figure 5.5 . Next,
the process box of Figure 5.3 may be refi ned, resulting in the second refi nement
shown in Figure 5.6 . The dashed lines to the input and output boxes denote that
decisions as to how to handle input and output have been deferred until a later
refi nement. The remainder of the fi gure is the fl owchart of the process, or rather,

Old master file New master file

Townsend
Smith
Jones
James
Brown
Abel

Smith
James
Harris
Abel

Townsend

Exception report

Smith

Transaction file

1 Smith
3 Jones
2 Jones
1 Harris
3 Brown

 FIGURE 5.4
 The transaction
fi le, old master
fi le, new
master fi le,
and exception
report.

 Transaction record key 1. INSERT: Print error message
 = old master fi le record key 2. MODIFY: Change master fi le record
 3. DELETE: * Delete master fi le record

 Transaction record key Copy old master fi le record
 > old master fi le record key to new master fi le

 Transaction record key 1. INSERT: Write transaction
 < old master fi le record key record to new master fi le
 2. MODIFY: Print error message
 3. DELETE: Print error message

 * Deletion of a master fi le record is implemented by not copying the record onto the new
master fi le.

 FIGURE 5.5
A diagrammatic
representation of
the process.

sch76183_ch05_124-153.indd 127sch76183_ch05_124-153.indd 127 04/06/10 6:42 PM04/06/10 6:42 PM

128 Part A Software Engineering Concepts

an early refi nement of the fl owchart. As already pointed out, input and output have
been deferred. Also, there is no provision for an end-of-fi le condition, nor has it
yet been specifi ed what to do when an error condition is encountered. The strength
of stepwise refi nement is that these and similar problems can be solved in later
refi nements.
 The next step is to refi ne the input and output boxes of Figure 5.6 , resulting in
 Figure 5.7 . End-of-fi le conditions still have not been handled nor has the writing of
the end-of-job message. Again, these can be done at a later iteration. What is critical,
however, is that the design of Figure 5.7 has a major fault. To see this, consider the
situation with regard to the data of Figure 5.4 when the current transaction is 2 Jones,
that is, modify Jones, and the current old master fi le record is Jones. In the design of
 Figure 5.7 , because the key of the transaction record is the same as the key of the old
master fi le record, the leftmost path is followed to the test transaction type deci-
sion box. Because the current transaction type is MODIFY, the old master fi le record is
modifi ed and written to the new master fi le, and the next transaction record is read.
This record is 3 Jones, that is, delete Jones. But the modifi ed Jones record has already
been written to the new master fi le.
 The reader may wonder why an incorrect refi nement is deliberately presented. The
point is that, when using stepwise refi nement, it is necessary to check each successive
refi nement before proceeding to the next. If a particular refi nement turns out to be

 FIGURE 5.6 The second refi nement of the design.

error perform
modification

perform
deletion

perform
insertion error error

A

A

write
new

master file
record

AAA

INSERT MODIFY DELETE INSERT MODIFY DELETE

test
transaction

type

test
transaction

type

compare
transaction record key,
master file record keyinput output

update master file

�
� �

sch76183_ch05_124-153.indd 128sch76183_ch05_124-153.indd 128 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 129

faulty, it is not necessary to restart the process from the beginning but merely to go
back to the previous refi nement and proceed from there. In this instance, the second
refi nement (Figure 5.6) is correct, so it may be used as the basis for another attempt
at a third refi nement. This time, the design uses level-1 lookahead ; that is, a transac-
tion record is processed only after the next transaction record has been analyzed. The
details are left as an exercise; see Problem 5.1.
 In the fourth refi nement, details that have been ignored up to now, such as opening
and closing fi les, have to be introduced. With stepwise refi nement, such details are
handled last, after the logic of the design has been fully developed. Obviously, it is

 FIGURE 5.7 The third refi nement of the design (the design has a major fault).

A

write new
master file

record

perform
error

routine

perform
error

routine

INSERT MODIFY DELETE

read
transaction

file

A

A

perform
error

routine

write new
master file

record

update master file

test
transaction

type

test
transaction

type

compare
transaction record key,
master file record key

A

write
end-of-job
message

write new
master file

record

read old
master file

record

�

� �

INSERT MODIFY DELETE

read old master
file, read

transaction file

read
transaction

file

sch76183_ch05_124-153.indd 129sch76183_ch05_124-153.indd 129 04/06/10 6:42 PM04/06/10 6:42 PM

130 Part A Software Engineering Concepts

impossible to execute the product without opening and closing fi les. However, what is
important here is the stage in the design process at which such details as fi le openings
and closings are handled. While the design is being developed, the seven or so chunks
on which the designer can concentrate at once should not include details like open-
ing and closing fi les. File openings and closings have nothing to do with the design
itself; they are merely implementation details that are part of any design. However, in
later refi nements, opening and closing fi les becomes vital. In other words, stepwise
refi nement can be considered a technique for setting the priorities of the various prob-
lems that have to be solved within a workfl ow. Stepwise refi nement ensures that every
problem is solved and each is solved at the appropriate time, without having to handle
more than 7 ± 2 chunks at any one time.

 The term stepwise refi nement was fi rst introduced by Wirth [1971]. In the preceding
mini case study, stepwise refi nement was applied to a fl owchart, whereas Wirth applied
the technique to pseudocode. The specifi c representation to which stepwise refi nement is
applied is not important; stepwise refi nement is a general technique that can be used for
every workfl ow and with almost every representation.
 Miller’s Law is a fundamental restriction on the mental powers of humans. Because we
cannot fi ght our nature, we must live with it, accepting our limitations and doing the best
we can under the circumstances.
 The power of stepwise refi nement is that it helps the software engineer to concentrate on
the relevant aspects of the current development task and ignore details that, although essen-
tial in the overall scheme, need not be considered, and in fact should be ignored, until later.
Unlike divide-and-conquer (Section 5.3), in which the problem as a whole is decomposed
into subproblems of essentially equal importance, in stepwise refi nement, the importance
of a particular aspect of the problem changes from refi nement to refi nement. Initially, a
particular issue may be irrelevant, but later that same issue is of critical importance. The
challenge with stepwise refi nement is deciding which issues must be handled in the current
refi nement and which can be postponed until a later refi nement.
 Like stepwise refi nement, cost–benefi t analysis is a fundamental theoretical software
engineering technique used throughout the software life cycle. This technique is described
in Section 5.2.

 5.2 Cost–Benefi t Analysis
 One way of determining whether a possible course of action would be profi table is to com-
pare estimated future benefi ts against projected future costs. This is termed cost–benefi t
analysis . As an example of cost–benefi t analysis within the computer context, consider
how Krag Central Electric Company (KCEC) decided in 1965 whether or not to computer-
ize its billing system. Billing was being done manually by 80 clerks who mailed bills every
2 months to KCEC customers. Computerization would require KCEC to buy or lease the
necessary software and hardware, including data-capture equipment for recording the input
data on punch cards or magnetic tape.
 One advantage of computerization would be that bills could be mailed monthly in-
stead of every 2 months, improving the company’s cash fl ow considerably. Furthermore,

sch76183_ch05_124-153.indd 130sch76183_ch05_124-153.indd 130 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 131

the 80 billing clerks would be replaced by 11 data-capture clerks. As shown in Figure 5.8 ,
salary savings over the next 7 years were estimated to be $1.575 million, and improved
cash fl ow was projected to be worth $875,000. The total benefi ts therefore were estimated
at $2.45 million. On the other hand, a complete data processing department would have
to be set up, staffed by well-paid computer professionals. Over a 7-year period, costs
were estimated as follows: The cost of hardware and software, including postdelivery
maintenance, was estimated to be $1.25 million. In the fi rst year, there would be a con-
version cost of $350,000, and the cost of explaining the new system to customers was
estimated at an additional $125,000. Total costs were estimated at $1.725 million, about
$750,000 less than the estimated benefi ts for that 7-year period. KCEC immediately de-
cided to computerize.
 Cost–benefi t analysis is not always straightforward. On the one hand, a management
consultant can estimate salary savings, an accountant can project cash fl ow improvements,
net present value (NPV) can be used to handle the change in the cost of money, and a soft-
ware engineering consultant can estimate the costs of hardware, software, and conversion.
But how are we to determine the cost of dealing with customers trying to adjust to com-
puterization? How can we measure the benefi ts of inoculating an entire population against
measles? And how can we make estimates regarding a market window, that is, the benefi t
of being fi rst on the market with a new product or the cost of not being the fi rst (and hence
losing customers)?
 The point is that tangible benefi ts are easy to measure, but intangible benefi ts can be
hard to quantify directly. A practical way of assigning a dollar value to intangible benefi ts
is to make assumptions . These assumptions always must be stated in conjunction with
the resulting estimates of the benefi ts. After all, managers have to make decisions. If no
data are available, then making assumptions from which such data can be determined
usually is the best that can be done under the circumstances. This approach has the fur-
ther advantage that, if someone else reviewing the data and the underlying assumptions
can come up with better assumptions, then better data can be produced and the associated
intangible benefi ts can be computed more accurately. The same technique can be used for
intangible costs.
 Cost–benefi t analysis is a fundamental technique in deciding whether a client should
computerize his or her business, and if so, in what way. The costs and benefi ts of various
alternative strategies are compared. For example, a product for storing the results of drug
trials can be implemented in a number of different ways, including fl at fi les and various
database management systems. For each possible strategy, the costs and benefi ts are com-
puted, and the one for which the difference between benefi ts and costs is the largest is
selected as the optimal strategy.

 Benefi ts Costs

 Salary savings (7 years) 1,575,000 Hardware and software (7 years) 1,250,000

 Improved cash fl ow (7 years) 875,000 Conversion cost (fi rst year only) 350,000

 Explanations to customers 125,000
 (fi rst year only)

 Total benefi ts $2,450,000 Total costs $1,725,000

 FIGURE 5.8
Cost–benefi t
analysis data for
KCEC.

sch76183_ch05_124-153.indd 131sch76183_ch05_124-153.indd 131 04/06/10 6:42 PM04/06/10 6:42 PM

132 Part A Software Engineering Concepts

 5.3 Divide-and-Conquer
 Divide-and-conquer is probably the oldest analytical tool in this book (see Just in Case
You Wanted to Know Box 5.1). The idea is to break up a large problem that is hard to solve
into smaller subproblems that hopefully will be easier to solve.
 This approach is used in the Unifi ed Process to handle a large, complex system. As
explained in Section 14.9, during the analysis workfl ow we partition the software product
into analysis packages. Each package consists of a set of related classes that can be imple-
mented as a single unit.
 The technique of divide-and-conquer is carried forward to the design workfl ow. Here, the
objective is to break up the upcoming implementation workfl ow into manageable pieces, termed
subsystems. The subsystems are then implemented in the chosen programming language(s).
 A problem with divide-and-conquer is that the approach does not tell us how to break up
a software product into appropriate smaller components.
 The next theoretical tool is separation of concerns.

 5.4 Separation of Concerns

 Separation of concerns was fi rst put forward by Dijkstra in a 1974 paper, which was
republished in [Dijkstra, 1982]. It is the process of breaking a software product into com-
ponents that overlap as little as possible with regard to functionality. When separation of
concerns is achieved, regression faults are minimized; if functionality is localized to a single
component, changing that functionality cannot affect any other component.
 Also, when concerns are adequately separated, components can be reused in future
products. Conversely, suppose that object A contains an invocation of a method of object B.
In this situation, object A cannot be reused without reusing object B as well. To maximize
reuse, it is important to minimize interactions between components.

 Just in Case You Wanted to Know Box 5.1
 The phrase divide and conquer has been widely attributed to Phillip II of Macedon (382–336
B.C.E). Unfortunately, there is no evidence that he said it. Then, despite the vigorous claims
on the Internet, the phrase divide et impera (“divide and rule”) does not appear in Book VII
of Caesar’s Commentarii de Bello Gallico (“Commentaries on the Gallic War”), nor, for that
matter, anywhere else in the works of Julius Caesar (100–44 B.C.E.). Also, notwithstanding
equally strong assertions, it also does not appear in the works of Vegetius (Publius Flavius
Vegetius Renatus, who lived in the fourth century C.E.). The phrase has been widely attrib-
uted to the diplomat and political philosopher Niccolò Machiavelli (1469–1527), but it does
not appear anywhere in his writings, either.
 In fact, the phrase probably fi rst appeared only about 330 years ago, in a collection of
commentaries on Tacitus [Publius (or Gaius) Cornelius Tacitus, the Roman historian, ca.
56–ca. 117 C.E.] by Traiano Boccalini, an Italian satirist who lived from 1556–1613. The book
was published posthumously in 1677. It was entitled Comentarii di Traiano Boccalini Romano
sopra Cornelio Tacito, Come Sono Stati Lasciati dall’ Autore. Opera Non Ancora Stampata &
Grandemente Desiderata da Tutti li Virtuosi (“Commentaries by Traiano Boccalini, of Rome,
on Cornelius Tacitus, as left by the author. The work has not previously been printed and is
greatly desired by all virtuous men”).

sch76183_ch05_124-153.indd 132sch76183_ch05_124-153.indd 132 04/06/10 6:42 PM04/06/10 6:42 PM

 In Chapter 7 , we discuss composite/structured design [Stevens, Myers, and Constantine,
1974], a technique for achieving modularization of a software product with maximum interac-
tion within each module (“high cohesion”) and minimum interaction between modules (“low
coupling”). Both high cohesion and low coupling are instances of separation of concerns.
 In Section 1.9, information hiding (or physical independence) was discussed. This, too,
is an instance of separation of concerns; isolating implementation details within a compo-
nent minimizes the interaction between that component and the rest of the software prod-
uct. Information hiding is described in greater detail in Section 7.6.
 Encapsulation or conceptual independence was also discussed in Section 1.9. Encapsulation
is yet another instance of separation of concerns. Data encapsulation is discussed in Section 7.4.
 The three-tier architecture of Section 8.5.4 is yet another instance of separation of con-
cerns. So is the model-view-controller (MVC) architecture pattern, also in that section.
 It is clear that separation of concerns underlies much of software engineering. Some-
times, however, it is not possible to separate concerns adequately. One way of dealing with
this situation is to use aspect-oriented programming, described in Section 18.1.
 The fi nal theoretical tool described in this chapter is software metrics.

 5.5 Software Metrics
 As explained in Section 3.13, without measurements (or metrics) it is impossible to detect
problems early in the software process, before they get out of hand. Metrics therefore can
serve as an early warning system for potential problems. A wide variety of metrics can be
used. For example, lines of code (LOC) is one way of measuring the size of a product (see
Section 9.2.1). If LOC measurements are taken at regular intervals, they provide a measure
of how fast the project is progressing. In addition, the number of faults per 1000 lines of
code is a measure of software quality. After all, it is of little use if a programmer consis-
tently turns out 2000 lines of code a month but half of them have to be thrown away because
they are unacceptable. Accordingly, LOC in isolation is not a meaningful metric.
 Once the product has been installed on the client’s computer, a metric such as mean time
between failures provides management an indication of its reliability. If a certain product
fails every other day, its quality is clearly lower than that of a similar product that on aver-
age runs for 9 months without a failure.
 Certain metrics can be applied throughout the software process. For example, for each
workfl ow, we can measure the effort in person-months (1 person-month is the amount of
work done by one person in 1 month). Staff turnover is another important metric. High
turnover adversely affects current projects because it takes time for a new employee to
learn the relevant facts about the project (see Section 4.1). In addition, new employees
may have to be trained in aspects of the software process; if new employees are less edu-
cated in software engineering than the individuals they replace, then the process as a whole
may suffer. Of course, cost is an essential metric that must also be monitored continually
throughout the entire process.
 A number of different metrics are described in this book. Some are product metrics ;
they measure some aspect of the product itself, such as its size or its reliability. Others are
 process metrics used by the developers to deduce information about the software pro-
cess. A typical metric of this kind is the effi ciency of fault detection during development,

Chapter 5 The Tools of the Trade 133

sch76183_ch05_124-153.indd 133sch76183_ch05_124-153.indd 133 04/06/10 6:42 PM04/06/10 6:42 PM

134 Part A Software Engineering Concepts

that is, the ratio of the number of faults detected during development to the total number of
faults detected in the product over its lifetime.
 Many metrics are specifi c to a given workfl ow. For example, lines of code cannot be
used before the implementation workfl ow, and the number of faults detected per hour in
reviewing specifi cations is relevant to only the analysis workfl ow. In subsequent chapters
describing each of the various workfl ows of the software process, the metrics relevant to
that workfl ow are discussed.
 A cost is involved in gathering the data needed to compute the values of metrics. Even
if the data gathering is fully automated, the CASE tool (Section 5.6) that accumulates the
required information is not free, and interpreting the output from the tool consumes human
resources. Bearing in mind that hundreds (if not thousands) of metrics have been put for-
ward, an obvious question is, What should a software organization measure? There are fi ve
essential, fundamental metrics:

 1. Size (in lines of code or, better, in a more meaningful metric, such as those of Section
9.2.1).

 2. Cost (in dollars).
 3. Duration (in months).
 4. Effort (in person-months).
 5. Quality (number of faults detected).

 Each of these metrics must be measured by workfl ow (metrics for the specifi cation, analy-
sis, design, and implementation workfl ows are described in Sections 11.17, 13.21, 14.15, and
15.26, respectively). On the basis of the data from these fundamental metrics, management can
identify problems within the software organization, such as high fault rates during the design
workfl ow or code output that is well below the industry average. Once problem areas have been
highlighted, a strategy to correct these problems can be considered. To monitor the success of
this strategy, more-detailed metrics can be introduced. For example, it may be deemed appropri-
ate to collect data on the fault rates of each programmer or to conduct a survey of user satisfac-
tion. Consequently, in addition to the fi ve fundamental metrics, more-detailed data gathering
and analysis should be performed only toward a specifi c objective.
 Finally, one aspect of metrics is still fairly controversial. Questions have been raised as to the
validity of some popular metrics; these issues are discussed in Section 15.13.2. Although it is
agreed that we cannot control the software process unless we can measure it, there is still some
disagreement as to precisely what should be measured.
 We now turn from theoretical tools to software (CASE) tools.

5.65.6
C ase Study

 CASE
 During the development of a software product, a number of very different operations
have to be carried out. Typical activities include estimating resource requirements,
drawing up the specifi cation document, performing integration testing, and writing

sch76183_ch05_124-153.indd 134sch76183_ch05_124-153.indd 134 04/06/10 6:42 PM04/06/10 6:42 PM

the user manual. Unfortunately, none of these activities, nor the others in the soft-
ware process, can be fully automated and performed by a computer without human
intervention.
 However, computers can assist every step of the way. The title of this section,
“CASE,” stands for computer-aided (or computer-assisted) software engineering
(but see Just in Case You Wanted to Know Box 5.2). Computers can help by carrying
out much of the drudge work associated with software development, including the
creation and organization of artifacts of all kinds, such as plans, contracts, speci-
fi cations, designs, source code, and management information. Documentation is
essential for software development and maintenance, but the majority of individuals
involved in software development are not fond of creating or updating documenta-
tion. Maintaining diagrams on the computer is especially useful as it allows changes
to be made with ease.
 But CASE is not restricted to assisting with documentation. In particular, com-
puters can help software engineers to cope with the complexity of software develop-
ment, especially in managing all the details. CASE involves all aspects of computer
support for software engineering. At the same time, it is important to remember that
CASE stands for computer- aided software engineering, and not computer- automated
software engineering—no computer can yet replace a human with respect to devel-
opment or maintenance of software. For the foreseeable future at least, the computer
must remain a tool of the software professional.

 5.7 Taxonomy of CASE
 The simplest form of CASE is the software tool , a product that assists in just one aspect
of the production of software. CASE tools currently are being used with every workfl ow of
the life cycle. For example, a variety of tools are on the market, many of them for use with
personal computers, that assist in the construction of graphical representations of software
products, such as fl owcharts and UML diagrams. CASE tools that help the developer dur-
ing the earlier workfl ows of the process (the requirements, analysis, and design workfl ows)
sometimes are termed upperCASE or front-end tools, whereas those that assist with the

 Just in Case You Wanted to Know Box 5.2
 As explained in Section 1.11, for software engineers the term system is frequently used to
mean a software–hardware combination. The fi eld of systems engineering spans a wide
range of activities, starting with defi ning the client’s needs and requirements until they have
been fully implemented in the constructed system. Subsequently, after the system has been
delivered to the client, following successful acceptance tests, it undergoes extensive modi-
fi cations throughout its entire life cycle, to remove defects or add needed improvements or
adaptations [Tomer and Schach, 2002].
 Accordingly, there are strong similarities between systems engineering and software
engineering. It is therefore not surprising that, for systems engineers, the acronym CASE
stands for “computer-aided systems engineering.” Because of the major role often played
by software in systems engineering, within the context of systems engineering it is some-
times hard to determine which version of the CASE acronym is meant.

sch76183_ch05_124-153.indd 135sch76183_ch05_124-153.indd 135 04/06/10 6:42 PM04/06/10 6:42 PM

implementation workfl ow and postdelivery maintenance are termed lowerCASE or back-
end tools (see Just in Case you Wanted to Know Box 5.3). For example, Figure 5.9 (a)
represents a CASE tool that assists with part of the requirements workfl ow.
 An important class of CASE tools is the data dictionary , a computerized list of all
data defi ned within the product. A large product contains tens (if not hundreds) of thou-
sands of data items, and the computer is ideal for storing information such as variable
names and types, and the location where each is defi ned, as well as procedure names and
parameters and their types. An important part of every data dictionary entry is a descrip-
tion of the item; for example, This procedure takes as input the body weight of the
newborn infant and computes the appropriate dosage of the drug or List of aircraft
arrival times sorted with earliest times fi rst.
 The power of a data dictionary can be enhanced by combining it with a consistency
checker , a tool to check that every data item in the specifi cation document is refl ected in
the design and, conversely, every item in the design has been defi ned in the specifi cation
document.
 Another use of a data dictionary is to provide the data for report generators and screen
generators. A report generator is used to generate the code needed for producing a
report. A screen generator is used to assist the software developer in producing the code
for a data capture screen. Suppose that a screen is being designed to enter the weekly sales
at each branch of a chain of bookstores. The branch number is a four-digit integer in the
range 1000–4500 or 8000–8999, entered on the screen three lines from the top. This infor-
mation is given to the screen generator. The screen generator then automatically generates

 Just in Case You Wanted to Know Box 5.3

 When typesetting was done by hand, each character was cast in relief on a piece of metal
called a sort . The sorts were combined to make words, then sentences, paragraphs, and so
on. All the A’s were stored in one box, all the B’s in another, and so on. The capital letters
or majuscules were kept in upper boxes of a desk or in the upper case , whereas the more
frequently used minuscule letters were closer at hand in the lower case . That is why capital
letters are referred to as uppercase letters, and similarly for lowercase letters. The terms
 upperCASE tool and lowerCASE tool are therefore puns.

 FIGURE 5.9
A representation
of (a) a tool, (b)
a workbench,
and (c) an
environment.

Implementation
workflow

Design
workflow

Analysis
workflow

Postdelivery
maintenance

Requirements
workflow

Implementation
workflow

Postdelivery
maintenance

Design
workflow

Analysis
workflow

Requirements
workflow

Implementation
workflow

Postdelivery
maintenance

Design
workflow

Analysis
workflow

Requirements
workflow

(a) (b) (c)

sch76183_ch05_124-153.indd 136sch76183_ch05_124-153.indd 136 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 137

code to display the string BRANCH NUMBER _ _ _ _ three lines from the top and position
the cursor at the fi rst underline character. As the user enters each digit, it is displayed; and
the cursor moves on to the next underline. The screen generator also generates code for
checking that the user enters only digits and that the resulting four-digit integer is in the
specifi ed range. If the data entered are invalid or the user presses the ? key, help information
is displayed.
 Use of such generators can result in the implementation being quickly constructed. Fur-
thermore, a graphical representation tool combined with a data dictionary, consistency
checker, report generator, and screen generator constitute a requirements, analysis, and
design workbench that supports the fi rst three core workfl ows. An example of a commer-
cial workbench that incorporates all these features is Software through Pictures. 1
 Another class of workbench is a requirements management workbench. Such a work-
bench allows systems analysts to organize and track the requirements of a software devel-
opment project. RequisitePro is a commercial example of such a workbench.
 A CASE workbench therefore is a collection of tools that together support one or two
activities, whereas an activity is a related collection of tasks. For example, the coding
activity includes editing, compiling, linking, testing, and debugging. An activity is not the
same as a workfl ow of a life-cycle model. In fact, the tasks of an activity can even cross
workfl ow boundaries. For example, a project management workbench is used for every
workfl ow of the project, and a coding workbench can be used for building a proof-of-
concept prototype, as well as for the implementation workfl ow and postdelivery mainte-
nance. Figure 5.9 (b) represents a workbench of upperCASE tools. The workbench includes
the requirements workfl ow tool of Figure 5.9 (a), as well as tools for parts of the analysis
and design workfl ows.
 Continuing the progression of CASE technology from tools to workbenches, the next
item is the CASE environment. Unlike the workbench, which supports one or two activi-
ties, an environment supports the complete software process or, at the very least, a large
portion of the software process [Fuggetta, 1993]. Figure 5.9 (c) depicts an environment
that supports all aspects of all workfl ows of the life cycle. Environments are discussed in
greater detail in Chapter 15 .
 Having set up a CASE taxonomy (tools, workbenches, and environments), we now con-
sider the scope of CASE.

 5.8 Scope of CASE
 As mentioned previously, the need to have accurate and up-to-date documentation available
at all times is a primary reason for implementing CASE technology. For example, suppose
that specifi cations are produced manually. A member of the development team has no way
of telling whether a particular specifi cation document is the current version or an older
version. There is no way of knowing if the handwritten changes on that document are part
of the current specifi cation or merely a suggestion later rejected. On the other hand, if the

 1 The fact that a specifi c CASE tool is cited in this book in no way implies any form of endorsement of that
CASE tool by the author or publisher. Each CASE tool mentioned in this book has been included because it is a
typical example of the class of CASE tools of which it is an instance.

sch76183_ch05_124-153.indd 137sch76183_ch05_124-153.indd 137 04/06/10 6:42 PM04/06/10 6:42 PM

138 Part A Software Engineering Concepts

specifi cations of the product are produced using a CASE tool, then at any time there is
only one copy of the specifi cations, the online version accessed via the CASE tool. Then,
if the specifi cations are changed, members of the development team can easily access the
document and be sure that they are seeing the current version. In addition, the consistency
checker will fl ag any design changes without corresponding changes to the specifi cation
document.
 Programmers also need online documentation . For example, online help informa-
tion must be provided for the operating system, editor, programming language, and so on.
In addition, programmers have to consult manuals of many kinds, such as editor manuals
and programming manuals. It is highly desirable that, wherever possible, these manuals
be available online. Apart from the convenience of having everything at one’s fi ngertips,
it is generally quicker to query by computer than to try to fi nd the appropriate manual and
plow through it to fi nd the needed item. In addition, it usually is much easier to update an
online manual than to try to fi nd all hard-copy versions of a manual within an organization
and make the necessary page changes. As a result, online documentation is likely to be more
accurate than hard-copy versions of the same material—another reason for providing online
documentation to programmers. An example of such online documentation is the UNIX
 manual pages [Sobell, 1995]. CASE also can assist with communication among team mem-
bers. E-mail is as much a part of an offi ce today as a computer or a fax machine. There are
many advantages to e-mail. From the viewpoint of software production, storing copies of all
e-mail relevant to a specifi c project in a particular mailbox provides a written record of the
decisions made during the project. This can be used to resolve confl icts that may arise later.
Many CASE environments and some CASE workbenches now incorporate e-mail systems.
In other organizations, the e-mail system is implemented via a World Wide Web browser
such as Chrome or Firefox. Other tools that are equally essential are spreadsheets and
 word processors .
 The term coding tools refers to CASE tools such as text editors, debuggers, and pretty
printers designed to simplify the programmer’s task, reduce the frustration many program-
mers experience in their work, and increase programmer productivity. Before discussing
such tools, three defi nitions are required. Programming-in-the-small refers to software
development at the level of the code of a single module, whereas programming-in-the-
large is software development at the module level [DeRemer and Kron, 1976]. The latter
includes aspects such as architectural design and integration. Programming-in-the-
many refers to software production by a team. At times, the team works at the module
level; at times, at the code level. Accordingly, programming-in-the-many incorporates
aspects of both programming-in-the-large and programming-in-the-small.
 A structure editor is a text editor that “understands” the implementation language. That
is, a structure editor can detect a syntax fault as soon as it has been keyed in by the programmer,
speeding the implementation because time is not wasted on futile compilations. Structure edi-
tors exist for a wide variety of languages, operating systems, and hardware. Because a structure
editor has knowledge of the programming language, it is easy to incorporate a pretty printer
(or formatter) into the editor to ensure that the code always has a good visual appearance.
For example, a pretty printer for C++ ensures that each } is indented the same amount as its
corresponding {. Reserved words are automatically put in boldface so that they stand out, and
indentation has been designed to aid readability. Nowadays, structure editors of this kind form
part of numerous programming workbenches, such as Visual C++ and JBuilder.

sch76183_ch05_124-153.indd 138sch76183_ch05_124-153.indd 138 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 139

 Now consider the problem of invoking a method within the code, only to discover at
linkage time that either the method does not exist or it has been wrongly specifi ed in some
way. What is needed is for the structure editor to support online interface checking .
That is, just as the structure editor has information regarding the name of every variable
declared by the programmer, so it must also know the name of every method defi ned within
the product. For example, if the programmer enters a call such as

 average = dataArray.computeAverage (numberOfValues);

 but method computeAverage has not yet been defi ned, then the editor immediately
responds with a message such as

 Method computeAverage not known

 At this point, the programmer is given two choices, either to correct the name of the
method or to declare a new method named computeAverage. If the second option is
chosen, the programmer also must specify the arguments of the new method. Argument
types must be supplied when declaring a new method because the major reason for having
online interface checking is precisely to be able to check full interface information, not just
the names of methods. A common fault is for method p to call method q passing, say, four
arguments, whereas method q has been specifi ed with fi ve arguments. It is more diffi cult to
detect the fault when the call correctly uses four arguments, but two of the arguments are
transposed. For example, the declaration of method q might be

 void q (fl oat fl oatVar, int intVar, string s1, string s2)

 whereas the call is

 q (intVar, fl oatVar, s1, s2);

 The fi rst two arguments have been transposed in the call statement. Java compilers and
linkers detect this fault but only when they are invoked later. In contrast, an online inter-
face checker immediately detects this and similar faults. In addition, if the editor has a
help facility, the programmer can request online information as to the precise arguments
of method q before attempting to code the call to q. Better yet, the editor should generate
a template for the call, showing the type of each argument. The programmer merely has to
replace each formal argument with an actual argument of the correct type.
 A major advantage of online interface checking is that hard-to-detect faults caused by
calling methods with the wrong number of arguments or arguments of the wrong type
are immediately fl agged. Online interface information is important for the effi cient pro-
duction of high-quality software, particularly when the software is produced by a team
(programming-in-the-many). It is essential that online interface information regarding all
code artifacts be available to all programming team members at all times. Furthermore, if
one programmer changes the interface of method vaporCheck, perhaps by changing the
type of one argument from int to fl oat or by adding an additional argument, then every
component that calls vaporCheck must automatically be disabled until the relevant call
statements have been altered to refl ect the new state of affairs.
 Even with a syntax-directed editor incorporating an online interface checker, the
programmer still has to exit from the editor and invoke the compiler and linker. Clearly,
there can be no compilation faults, but the compiler still has to be invoked to perform code

sch76183_ch05_124-153.indd 139sch76183_ch05_124-153.indd 139 04/06/10 6:42 PM04/06/10 6:42 PM

140 Part A Software Engineering Concepts

generation. Then the linker has to be called. Again, the programmer can be sure that all
external references will be satisfi ed as a consequence of the presence of the online interface
checker, but the linker is still needed to link the product. The solution to this is to incorporate
an operating system front end within the editor. That is, a programmer should be able to
give operating system commands from within the editor. To cause the editor to invoke the
compiler, linker, loader, and any other system software needed to cause the code artifact to
be executed, the programmer should be able to type a single command, named go or run,
or use the mouse to choose the appropriate icon or menu selection. In UNIX, this can be
achieved by using the make command (Section 5.11) or by invoking a shell script [Sobell,
1995]. Such front ends can be implemented in other operating systems, as well.
 One of the most frustrating computing experiences is for a product to execute for a sec-
ond or so, and then terminate abruptly, printing a message such as

 Overfl ow at 506

 The programmer is working in a high-level language such as Java or C++, not a low-
level language like assembler or machine code. But when debugging support is of the
Overfl ow at 506 variety, the programmer is forced to examine machine code core dumps,
assembler listings, linker listings, and a variety of similar low-level documentation, thereby
destroying the whole advantage of programming in a high-level language. A similar situa-
tion arises when the only information provided is the infamous UNIX message

 Core dumped

 or the equally uninformative

 Segmentation fault

 Here again, the user is forced to examine low-level information.
 In the event of a failure, the message shown in Figure 5.10 is a great improvement over
the earlier terse error messages. The programmer immediately can see that the method
failed because of an attempt to divide by 0. Even more useful is for the operating system to
enter edit mode and automatically display the line at which the failure was detected, line 6,
together with the preceding and following four or fi ve lines. The programmer probably can
then see what caused the failure and make the necessary changes.
 Another type of source-level debugging is tracing. Before the advent of CASE tools,
programmers had to insert appropriate print statements into their code by hand that, at
execution time, would indicate the line number and the values of relevant variables. This
now can be done by giving commands to a source-level debugger that automatically
causes trace output to be produced. Even better is an interactive source-level debugger .

OVERFLOW ERROR

 Class: cyclotronEnergy

 Method: performComputation

 Line 6: newValue = (oldValue + tempValue) / tempValue;
 oldValue = 3.9583 tempValue = 0.0000

 FIGURE 5.10
 Output from
a source-level
debugger.

sch76183_ch05_124-153.indd 140sch76183_ch05_124-153.indd 140 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 141

Suppose that the value of variable escapeVelocity seems to be incorrect and that method
computeTrajectory seems to be faulty. Using the interactive source-level debugger, the
programmer can set breakpoints in the code. When a breakpoint is reached, execution stops
and debugging mode is entered. The programmer now asks the debugger to trace the vari-
able escapeVelocity and the method computeTrajectory. That is, every time the value of
escapeVelocity subsequently is either used or changed, execution again halts. The program-
mer then has the option of entering further debugging commands, for example, to request
that the value of a specifi c variable be displayed. Alternatively, the programmer may choose
to continue execution in debugging mode or return to normal execution mode. The program-
mer similarly can interact with the debugger whenever the method computeTrajectory is
entered or exited. Such an interactive source-level debugger offers almost every conceivable
type of assistance to the programmer when a product fails. The UNIX debugger dbx is an
example of such a CASE tool.
 As has been pointed out many times, it is essential that documentation of all kinds be
available online. In the case of programmers, all documentation they might need should be
accessible from within the editor.
 What has now been described—a structure editor with online interface checking capa-
bilities, operating system front end, source-level debugger, and online documentation—
constitutes an adequate and effective programming workbench.
 This sort of workbench is by no means new. All these features were supported by the
FLOW software development workbench as far back as 1980 [Dooley and Schach, 1985].
Therefore, what has been put forward as a minimal but essential programming workbench
does not require many years of research before a prototype can be tentatively produced.
Quite the contrary, the necessary technology has been in place for over 30 years, and it is
somewhat surprising that there are programmers who still implement code the “old-fash-
ioned way,” instead of using a workbench like Sun ONE Studio.
 An essential tool, especially when software is developed by a team, is a version-control tool.

 5.9 Software Versions
 Whenever a product is maintained, there will be at least two versions of the product: the
old version and the new version. Because a product is composed of code artifacts, there will
also be two or more versions of each of the component artifacts that have been changed.
 Version control is described fi rst within the context of postdelivery maintenance, and
then broadened to include earlier parts of the process.

 5.9.1 Revisions
 Suppose a product has been installed at a number of different sites. If a fault is found in an
artifact, then that artifact has to be fi xed. After appropriate changes have been made, there
will be two versions of the artifact, the old version and the new version intended to replace it.
The new version is termed a revision . The presence of multiple versions apparently is easy to
solve—any old versions should be thrown away, leaving just the correct one. But that would be
most unwise. Suppose that the previous version of the artifact was revision n, and that the new
version is revision n + 1. First, there is no guarantee that revision n + 1 is any more correct than
revision n. Even though revision n + 1 may have been thoroughly tested by the software quality

sch76183_ch05_124-153.indd 141sch76183_ch05_124-153.indd 141 04/06/10 6:42 PM04/06/10 6:42 PM

142 Part A Software Engineering Concepts

assurance group, both in isolation and linked to the rest of the product, there may be disastrous
consequences when the new version of the product is run by the user on actual data. Revision
n must be kept for a second reason. The product may have been distributed to a variety of sites,
and not all of them may have installed revision n + 1. If a fault report is received from a site
still using revision n, then to analyze this new fault, it is necessary to confi gure the product in
exactly the same way it is confi gured at the user’s site, that is, incorporating revision n of the
artifact. It therefore is necessary to retain a copy of every revision of each artifact.
 As described in Section 1.3, perfective maintenance is performed to extend the functional-
ity of a product. In some instances, new artifacts are implemented; in other cases, existing
artifacts are changed to incorporate this additional functionality. These new versions also
are revisions of existing artifacts. So are artifacts that are changed when performing adaptive
maintenance—that is, when changes are made to the product in response to changes in the
environment in which the product operates. As with corrective maintenance, all previous ver-
sions must be retained because issues arise not just during postdelivery maintenance but from
implementation onward. After all, once an artifact has been coded, it continually undergoes
changes as a consequence of faults being detected and corrected. As a result, there are numer-
ous versions of every artifact, and it is vital to have some sort of control to ensure that every
member of the development team knows which is the current version of a given artifact. Before
we can present a solution to this problem, a further complication must be taken into account.

 5.9.2 Variations
 Consider the following example. Most computers support more than one type of printer.
For example, a personal computer may support an ink-jet printer and a laser printer. The
operating system therefore must contain two variations of the printer driver, one for each
type of printer. Unlike revisions, each of which is implemented specifi cally to replace its
predecessor, variations are designed to coexist. Another situation where variations are
needed is when a product is to be ported to a variety of different operating systems and
hardware. A different variation of many of the artifacts may have to be produced for each
operating system–hardware combination.
 Versions are schematically depicted in Figure 5.11 , which shows both revisions and
variations. To complicate matters further, in general, there are multiple revisions of each

 FIGURE 5.11
 A schematic
representation
of multiple
versions of
artifacts,
showing
(a) revisions and
(b) variations.

(a)

Revision n � 1
Revision n � 2

Revision n

Revision n � 3

(b)

Variation A Variation B Variation C

sch76183_ch05_124-153.indd 142sch76183_ch05_124-153.indd 142 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 143

variation. For a software organization to avoid drowning in a morass of multiple versions,
a CASE tool is needed.

 5.10 Confi guration Control
 The code for every artifact exists in three forms. First is the source code, nowadays gener-
ally implemented in a high-level language like C++ or Java. Next comes the object code,
produced by compiling the source code. In this book, because of possible confusion of the
word object , we refer to object code as compiled code . Finally, the compiled code for each
artifact is combined with run-time routines to produce an executable load image. This is
shown in Figure 5.12 . The programmer can use various different versions of each artifact.
The specifi c version of each artifact from which a given version of the complete product is
built is called the confi guration of that version of the product.
 Suppose that a programmer is given a test report from the SQA group stating that an
artifact failed on a specifi c set of test data. One of the fi rst things to do is attempt to
re-create the failure. But how can the programmer determine which revisions of which
variations went into the version of the product that crashed? Unless a confi guration-control
tool (described in the following discussion) is used, the only way to pinpoint the cause of
the failure is to look at the executable load image, in octal or hexadecimal format, and com-
pare it to the compiled code, also in octal or hexadecimal. Specifi cally, the various versions
of the source code have to be compiled and compared to the compiled code that went into
the executable load image. Although this can be done, it can take a long time, particularly
if the product has dozens (if not hundreds) of code artifacts, each with multiple versions.
Therefore, two problems must be solved when dealing with multiple versions. First, we
must distinguish between versions so that the correct version of each code artifact is com-
piled and linked to the product. Second, there is the inverse problem: Given an executable
load image, determine which version of each of its components went into it.
 The fi rst item needed to solve this problem is a version-control tool. Many operating sys-
tems, particularly for mainframe computers, support version control. But many do not, in

 FIGURE 5.12
 Components of
an executable
load image.

Executable load image

Compiled
 file 1

Compiled
 file 2

Compiled
 file 3

Compiled
 file n

Source
file 1

Source
file 2

Source
file 3

Run-time
routines

Source
file n

…

…

sch76183_ch05_124-153.indd 143sch76183_ch05_124-153.indd 143 04/06/10 6:42 PM04/06/10 6:42 PM

144 Part A Software Engineering Concepts

which case a separate version-control tool is needed. A common technique used in version
control is for the name of each fi le to consist of two pieces, the fi le name itself and the revi-
sion number. For example, an artifact that acknowledges receipt of a message has revisions
acknowledgeMessage/1, acknowledgeMessage/2, and so on, as depicted in Figure 5.13 (a).
A programmer then can specify exactly which revision is needed for a given task.
 With regard to multiple variations (slightly changed versions that fulfi ll the same role in
different situations), one useful notation is to have a basic fi le name, followed by a variation
name in parentheses [Babich, 1986]. Accordingly, two printer drivers are given the names
printerDriver (inkJet) and printerDriver (laser).
 Of course, there will be multiple revisions of each variation, such as printerDriver
(laser)/12, printerDriver (laser)/13, and printerDriver (laser)/14. This is depicted in
 Figure 5.13 (b).
 A version-control tool is the fi rst step toward being able to manage multiple versions.
Once it is in place, a detailed record (or derivation) of every version of the product must
be kept. The derivation contains the name of each source code element, including the varia-
tion and revision, the versions of the various compilers and linkers used, the name of the
person who constructed the product, and of course, the date and the time at which it was
constructed.
 Version control is a great help in managing multiple versions of artifacts and the product
as a whole. But more than just version control is needed, because of additional problems
associated with maintaining multiple variations.
 Consider the two variations printerDriver (inkJet) and printerDriver (laser). Suppose
that a fault is found in printerDriver (inkJet) and suppose that the fault occurs in a part of
the artifact common to both variations. Then it is necessary to fi x not only printerDriver
(inkJet) but also printerDriver (laser). In general, if there are v variations of an artifact, all
 v of them have to be fi xed. Not only that, they have to be fi xed in exactly the same way.

 FIGURE 5.13 Multiple revisions and variations. (a) Four revisions of artifact acknowledgeMessage. (b) Two
variations of artifact printerDriver, with three revisions of variation printerDriver (laser).

(a)

acknowledgeMessage�2
acknowledgeMessage�3

acknowledgeMessage�1

acknowledgeMessage�4

(b)

printerDriver (laser)/12
printerDriver (laser)/13

printerDriver (laser)/14

printerDriver (inkJet)

sch76183_ch05_124-153.indd 144sch76183_ch05_124-153.indd 144 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 145

 One solution to this problem is to store just one variation, say, printerDriver (inkJet).
Then any other variation is stored in terms of the list of changes that have to be made to go
from the original to that variation. The list of differences is termed a delta. What is stored
is one variation and v – 1 deltas. Variation printerDriver (laser) is retrieved by accessing
printerDriver (inkJet) and applying the delta. A change made just to printerDriver (laser)
is implemented by changing the appropriate delta. However, any change made to printer-
Driver (inkJet), the original variation, automatically applies to all the other variations.
 A confi guration-control tool can automatically manage multiple variations. But
 confi guration control goes beyond multiple variations. A confi guration-control tool
can also handle problems caused by development and maintenance by teams, as described
in Section 5.10.1.

 5.10.1 Confi guration Control during Postdelivery Maintenance
 All sorts of diffi culties can arise when more than one programmer simultaneously main-
tains a product. For example, suppose each of two programmers is assigned a different
fault report on a Monday morning. By coincidence, both localize the fault they are to fi x to
different parts of the same artifact mDual. Each programmer makes a copy of the current
version of the artifact, mDual/16, and they start to work on the faults. The fi rst program-
mer fi xes the fi rst fault, has the changes approved, and replaces the artifact, now called
mDual/17. A day later the second programmer fi xes the second fault, has the changes
approved, and installs artifact mDual/18. Unfortunately, revision 17 contains the changes
of only the fi rst programmer, whereas revision 18 contains those of only the second pro-
grammer. None of the changes of the fi rst programmer are in mDual/18, because the
second programmer made changes to mDual/16, instead of to mDual/17.
 Although the idea of each programmer making individual copies of an artifact is far
better than both working together on the same piece of software, clearly it is inadequate for
maintenance by a team. What is needed is some mechanism that allows only one user at a
time to change an artifact.

 5.10.2 Baselines
 The maintenance manager must set up a baseline , a confi guration (set of versions) of all
the artifacts in the product. When trying to fi nd a fault, a maintenance programmer puts
copies of any needed artifacts into his or her private workspace . In this private work-
space, the programmer can change anything at all without having an impact on any other
programmer in any way, because all changes are made to the programmer’s private copy;
the baseline version is left untouched.
 Once it has been decided which artifact has to be changed to fi x the fault, the program-
mer freezes the current version of the artifact he or she is going to alter. No other pro-
grammer may make changes to any frozen version. After the maintenance programmer
has made changes and they have been tested, the new version of the artifact is installed,
thereby modifying the baseline. The previous version, now frozen, is retained because
it may be needed in the future, as explained previously, but it cannot be altered. Once a
new version has been installed, any other maintenance programmer can freeze the new
version and make changes to it. The resulting artifact, in turn, becomes the next baseline
version. A similar procedure is followed if two or more artifacts have to be changed
simultaneously.

sch76183_ch05_124-153.indd 145sch76183_ch05_124-153.indd 145 04/06/10 6:42 PM04/06/10 6:42 PM

146 Part A Software Engineering Concepts

 This scheme solves the problem with artifact mDual. Both programmers make private
copies of mDual/16 and use those copies to analyze the respective faults that they have been
assigned to fi x. The fi rst programmer decides what changes to make, freezes mDual/16
and makes those changes to repair the fi rst fault. After the changes have been tested, the
resulting revision, mDual/17, becomes the baseline version. In the meantime, the second
programmer has found the second fault by experimenting with a private copy of mDual/16.
However, changes cannot now be made to mDual/16 because it was frozen by the fi rst
programmer. Once mDual/17 becomes the baseline, it is frozen by the second programmer
whose changes are made to mDual/17. The resulting artifact now is installed as mDual/18,
a version that incorporates the changes of both programmers. Revisions mDual/16 and
mDual/17 are retained for possible future reference, but they can never be altered.

 5.10.3 Confi guration Control during Development
 While an artifact is in the process of being coded, versions are changing too rapidly for con-
fi guration control to be helpful. Once coding of the artifact has been completed, it should
immediately be tested informally by its programmer, as described in Section 6.6. During
this informal testing, the artifact again passes through numerous versions. When the pro-
grammer is satisfi ed, the artifact is handed over to the SQA group for methodical testing.
As soon as the artifact has been passed by the SQA group, it is ready to be integrated into
the product. From then on, it should be subject to the same confi guration-control proce-
dures as those of postdelivery maintenance. Any change to an integrated artifact can have
an impact on the product as a whole in the same way as a change made during postdeliv-
ery maintenance. Therefore, confi guration control is needed not only during postdelivery
maintenance but also during implementation. Furthermore, management cannot monitor
the development process adequately unless every artifact is subject to confi guration control
as soon as is reasonable, that is, after it has been passed by the SQA group. When confi gu-
ration control is properly applied, management is aware of the status of every artifact and
can take early corrective action if project deadlines seem to be slipping.
 Two major UNIX version-control tools are sccs (source code control system) [Rochkind,
1975] and rcs (revision control system) [Tichy, 1985]. PVCS is a popular, commercially
available confi guration-control tool. Microsoft SourceSafe is a confi guration-control tool
for personal computers. CVS (concurrent versions system) [Loukides and Oram, 1997]
and Subversion are open-source confi guration management tools (open-source software is
described in Section 1.11).

 5.11 Build Tools
 If a software organization does not wish to purchase a complete confi guration-control tool,
then at the very least, a version-control tool must be used in conjunction with a build tool ,
that is, a tool that assists in selecting the correct version of each compiled-code artifact to
be linked to form a specifi c version of the product. At any time, multiple variations and
revisions of each artifact are in the product library. All version-control tools assist users in
distinguishing among different versions of artifacts of source code. But keeping track of
compiled code is more diffi cult, because some version-control tools do not attach revision
numbers to compiled versions.

sch76183_ch05_124-153.indd 146sch76183_ch05_124-153.indd 146 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 147

 To cope with this, some organizations automatically compile the latest version of each
artifact every night, thereby ensuring that all the compiled code is up to date. Although
this technique works, it can be extremely wasteful of computer time because frequently a
large number of unnecessary compilations are performed. The UNIX tool make can solve
this problem [Feldman, 1979]. For each executable load image, the programmer sets up a
Makefi le specifying the hierarchy of source and compiled fi les that go into that particular
confi guration; such a hierarchy is shown in Figure 5.12 . More complex dependencies, such
as included fi les in C or C++, also can be handled by make . When invoked by a program-
mer, the tool works as follows: UNIX, like virtually every other operating system, attaches
a date and time stamp to each fi le. Suppose that the stamp on a source fi le is Friday, June 6,
at 11:24 A.M., whereas the stamp on the corresponding compiled fi le is Friday, June 6, at
11:40 A.M. Then it is clear that the source fi le has not been changed since the compiled fi le
was created by the compiler. On the other hand, if the date and time stamp on the source
fi le is later than that on the compiled fi le, then make calls the appropriate compiler or as-
sembler to create a version of the compiled fi le that corresponds to the current version of
the source fi le.
 Next, the date and time stamp on the executable load image is compared to those on
every compiled fi le in that confi guration. If the executable load image was created later
than all the compiled fi les, then there is no need to relink. But if a compiled fi le has a later
stamp than that of the load image, then the load image does not incorporate the latest ver-
sion of that compiled fi le. In this case, make calls the linker and constructs an updated load
image.
 In other words, make checks whether the load image incorporates the current version
of every artifact. If so, then nothing further is done and no CPU time is wasted on needless
compilations and linkage. If not, then make calls the relevant system software to create an
up-to-date version of the product.
 In addition, make simplifi es the task of building a compiled fi le. The user need not
specify each time what artifacts are to be used and how they are to be connected, because
this information already is in the Makefi le. Therefore, a single make command is all that is
needed to build a product with hundreds of artifacts and ensure that the complete product
is put together correctly.
 Tools like make have been incorporated into an endless variety of programming envi-
ronments, including Visual Java and Visual C++. An open-source version of make is Ant
(a product of the Apache project).

 5.12 Productivity Gains with CASE Technology

 Reifer (as reported in [Myers, 1992]) conducted an investigation into productivity gains as
a consequence of introducing CASE technology. He collected data from 45 companies in
10 industries. Half the companies were in the fi eld of information systems, 25 percent in
scientifi c areas, and 25 percent in real-time aerospace. Average annual productivity gains
varied from 9 percent (real-time aerospace) to 12 percent (information systems). If only
productivity gains are considered, then these fi gures do not justify the cost of $125,000 per
user of introducing CASE technology. However, the companies surveyed felt that the justi-
fi cation for CASE was not merely increased productivity but also shorter development time

sch76183_ch05_124-153.indd 147sch76183_ch05_124-153.indd 147 04/06/10 6:42 PM04/06/10 6:42 PM

148 Part A Software Engineering Concepts

and improvement in software quality. In other words, the introduction of CASE environ-
ments boosted productivity, although less than some proponents of CASE technology have
claimed. Nevertheless, other, equally important reasons were given for introducing CASE
technology into a software organization, such as faster development, fewer faults, better
usability, easier maintenance, and improved morale.
 Newer results on the effectiveness of CASE technology from over 100 development
projects at 15 Fortune 500 companies refl ect the importance of training and the software
process [Guinan, Cooprider, and Sawyer, 1997]. When teams using CASE were given train-
ing in application development in general as well as tool-specifi c training, user satisfaction
increased and development schedules were met. However, when training was not provided,
software was delivered late and users were less satisfi ed. Also, performance increased by
50 percent when teams used CASE tools in conjunction with a structured methodology.
These results support the assertion in Section 3.13 that CASE environments should not be
used by groups at maturity levels 1 or 2. To put it bluntly, a fool with a tool is still a fool
[Guinan, Cooprider, and Sawyer, 1997]. The fi nal fi gure in this chapter, Figure 5.14 , is an
alphabetical list of the theoretical tools and CASE tools described in this chapter, together
with the section in which each is described.

Analytical Tools
Cost–benefi t analysis (Section 5.2)
Divide-and-conquer (Section 5.3)
Metrics (Section 5.5)
Separation of concerns (Section 5.4)
Stepwise refi nement (Section 5.1)

CASE Taxonomy
Environment (Section 5.7)
LowerCASE tool (Section 5.7)
UpperCASE tool (Section 5.7)
Workbench (Section 5.7)

CASE Tools
Build tool (Section 5.11)
Coding tool (Section 5.8)
Confi guration-control tool (Section 5.10)
Consistency checker (Section 5.7)
Data dictionary (Section 5.7)
E-mail (Section 5.8)
Interface checker (Section 5.8)
Online documentation (Section 5.8)
Operating system front end (Section 5.8)
Pretty printer (Section 5.8)
Report generator (Section 5.7)
Screen generator (Section 5.7)
Source-level debugger (Section 5.8)
Spreadsheet (Section 5.8)
Structure editor (Section 5.8)
Version-control tool (Section 5.9)
Word processor (Section 5.8)
World Wide Web browser (Section 5.8)

 FIGURE 5.14
Summary of
the theoretical
(analytical)
tools and
software
(CASE) tools
presented in
this chapter and
the sections in
which each is
described.

sch76183_ch05_124-153.indd 148sch76183_ch05_124-153.indd 148 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 149

 First, a number of analytical tools are presented. Stepwise refinement, based on Miller’s Law,
is described in Section 5.1 and illustrated by means of an example in Section 5.1.1. Another
analytical tool, cost–benefit analysis, is presented in Section 5.2. Separation of concerns is
described in Section 5.3, and divide-and-conquer in Section 5.4. Software metrics are intro-
duced in Section 5.5.
 Computer-aided software engineering (CASE) is defined in Section 5.6, and the taxon-
omy and scope of CASE are described in Sections 5.7 and 5.8, respectively. A variety of
CASE tools are next described. When large products are constructed, version-control tools,
configuration-control tools, and build tools are essential; these are presented in Sections
5.9 through 5.11. Productivity gains, as a consequence of the use of CASE technology, are
described in Section 5.12.

 Chapter
Review

 For
Further
Reading

 For further information regarding Miller’s Law and his theory of how the brain operates on chunks,
consult [Tracz, 1979] as well as Miller’s original paper [Miller, 1956].
 Wirth’s [1971] paper on stepwise refi nement is a classic of its kind and deserves detailed study.
Equally signifi cant from the viewpoint of stepwise refi nement are the books by Dijkstra [1976] and
Wirth [1975].
 The extent to which CASE is used in the software industry is described in [Sharma and Rai,
2000]. A tool that supports incremental software development while ensuring consistency between
the artifacts is described in [Reiss, 2006]. Experiences with open-source software engineering tools
are described in [Toth, 2006].
 In this book, CASE tools for the separate workfl ows of the software process are described in the
chapters on each workfl ow. For information on workbenches or CASE environments, consult the For
Further Reading section of Chapter 15 .
 An introduction to version control in general and CVS in particular is given in [Louridas, 2006].
Articles on confi guration management include [van der Hoek, Carzaniga, Heimbigner, and Wolf,
2002], [Mens, 2002], and [Walrad and Strom, 2002]. The interaction between confi guration manage-
ment and traceability is discussed in [Mohan, Xu, and Ramesh, 2008]. Refactoring poses problems
for software confi guration management tools; a solution is put forward in [Dig, Manzoor, Johnson, and
Nguyen, 2008]. The proceedings of the International Workshops on Software Confi guration Manage-
ment are a useful source of information.
 CASE tools for refactoring are presented in [Black and Murphy-Hill, 2008].
 There are many excellent books on cost–benefi t analysis, including [Gramlich, 1997]. Cost–
benefi t analysis of software product lines (Section 8.5.4) is discussed in [Bockle et al., 2004]. Van
Solingen [2004] presents a cost–benefi t analysis of software process improvement.
 Jones [1994] highlights unworkable and invalid metrics that nevertheless continue to be men-
tioned in the literature. The validity of object-oriented metrics is discussed in [El Emam, Benlarbi,
Goel, and Rai, 2001] and [Alshayeb and Li, 2003]. Kilpi [2001] describes how a metrics program
was implemented at Nokia. Metrics for COTS-based systems are presented in [Sedigh-Ali and Paul,
2001]. Metrics for measuring the success of a website are put forward in [Belanger et al., 2006]. The
May 2008 issue of the Journal of Systems and Software contains a number of articles on process and
product metrics.
 A number of articles from the Seventh International Software Metrics Symposium appear in the
November 2001 issue of IEEE Transactions on Software Engineering; of particular interest is [Briand
and Wüst, 2001].

sch76183_ch05_124-153.indd 149sch76183_ch05_124-153.indd 149 04/06/10 6:42 PM04/06/10 6:42 PM

150 Part A Software Engineering Concepts

 activity 137
 assumptions 131
 back-end tool 136
 baseline 145
 browser 138
 build tool 146
 CASE 124
 coding tool 138
 confi guration 143
 confi guration control 145
 confi guration-control tool 145
 consistency checker 136
 cost–benefi t analysis 130
 data dictionary 136
 derivation 144
 divide-and-conquer 132
 e-mail 138
 environment 137

 formatter 138
 freeze 145
 front-end tool 135
 interactive source-level

debugger 140
 lookahead 129
 lowerCASE tool 136
 metrics 133
 online documentation 138
 online interface checker 139
 operating system front end 140
 pretty printer 138
 private workspace 145
 process metric 133
 product metric 133
 programming-in-the-large 138
 programming-in-the-many 138
 programming-in-the-small 138

 report generator 136
 revision 141
 screen generator 136
 separation of concerns 132
 source-level debugger 140
 spreadsheet 138
 stepwise refi nement 124
 structure editor 138
 syntax-directed editor 139
 systems engineering 135
 tool 135
 upperCASE tool 135
 variation 142
 version 141
 word processor 138
 workbench 137

 Key Terms

 Problems 5.1 Consider the effect of introducing lookahead to the design of the corrected third refi nement
of the sequential master fi le update problem. That is, before processing a transaction the next
transaction must be read. If both transactions apply to the same master fi le record, then the deci-
sion regarding the processing of the current transaction depends on the type of the next trans-
action. Draw up a 3 × 3 table with the rows labeled by the type of the current transaction and
the columns labeled by the type of the next transaction and fi ll in the action to be taken in each
instance. For example, two successive insertions of the same record clearly are an error. But
two modifi cations may be perfectly valid; for example, a subscriber can change address more
than once in a given month. Now develop a fl owchart for the third refi nement that incorporates
lookahead.

 5.2 Check whether your answer to Problem 5.1 can correctly handle a modifi cation transaction fol-
lowed by a deletion transaction, both transactions being applied to the same master fi le record.
If not, modify your answer.

 5.3 Check whether your answer to Problem 5.1 also can correctly handle an insertion followed by
a modifi cation followed by a deletion, all applied to the same master fi le record. If not, modify
your answer.

 5.4 Check whether your answer to Problem 5.1 can also handle correctly n insertions, modifi-
cations, or deletions, n > 2, all applied to the same master file record. If not, modify your
answer.

 5.5 The last transaction record has no successor. Check whether your fl owchart for Problem 5.1
takes this into account and processes the last transaction record correctly. If not, modify your
answer.

 5.6 In some applications, an alternative to lookahead can be achieved by cleverly ordering the trans-
actions. For example, the original problem caused by a modifi cation followed by a deletion of
the same master fi le record could have been solved by processing a deletion before a modifi ca-
tion. This would have resulted in the master fi le being written correctly and an error message
appearing in the exception report. Investigate whether there is an ordering of the transactions
that can solve all the diffi culties listed in Problems 5.2 through 5.4.

 5.7 Is separation of concerns a special case of divide-and-conquer?

sch76183_ch05_124-153.indd 150sch76183_ch05_124-153.indd 150 04/06/10 6:42 PM04/06/10 6:42 PM

Chapter 5 The Tools of the Trade 151

 5.8 Carefully distinguish between duration and effort .

 5.9 What can you deduce if the rate of fault detection during design inspections doubles?

 5.10 Why are the fi ve fundamental metrics measured for each workfl ow, and not for the product as a
whole?

 5.11 A new form of gastrointestinal disease is sweeping the country of Concordia. Like histoplas-
mosis, it is transmitted as an airborne fungus. Although the disease is almost never fatal, an
attack is extremely painful and the sufferer is unable to work for about 2 weeks. The govern-
ment of Concordia wishes to determine how much money, if any, to spend on attempting to
eradicate the disease. The committee charged with advising the Department of Public Health
is considering four aspects of the problem: health care costs (Concordia provides free health
care to all its citizens), loss of earnings (and hence loss of taxes), pain and discomfort, and
gratitude toward the government. Explain how cost–benefi t analysis can assist the commit-
tee. For each benefi t or cost, suggest how a dollar estimate for that benefi t or cost could be
obtained.

 5.12 Does a one-person software production organization need a version-control tool, and if so, why?

 5.13 Does a one-person software production organization need a confi guration-control tool, and if
so, why?

 5.14 You are the manager in charge of the software that controls the navigation system for a midget
submarine. Three different user-reported faults have to be fi xed, and you assign one each to
Paul, Quentin, and Rachel. A day later you learn that, to implement each of the three fi xes, the
same four artifacts must be changed. However, your confi guration-control tool is inoperative,
so you will have to manage the changes yourself. How will you do it?

 5.15 Which of the case tools listed in Figure 5.14 promote stepwise refi nement during software
development? Justify your answer.

 5.16 Is it possible to interface an upperCASE workbench to a lowerCASE workbench to create a
CASE environment?

 5.17 (Term Project) What types of CASE tools would be appropriate for developing the Chocoholics
Anonymous product described in Appendix A?

 5.18 (Readings in Software Engineering) Your instructor will distribute copies of [Mohan, Xu, and
Ramesh, 2008]. What is your view regarding the interplay of confi guration management and
traceability?

 References [Alshayeb and Li, 2003] M. ALSHAYEB, AND W. LI, “An Empirical Validation of Object-Oriented Met-
rics in Two Different Iterative Software Processes,” IEEE Transactions on Software Engineering
 29 (November 2003), pp. 1043–49.

 [Babich, 1986] W. A. BABICH, Software Confi guration Management: Coordination for Team Produc-
tivity , Addison-Wesley, Reading, MA, 1986.

 [Belanger et al., 2006] F. BELANGER, W. FAN, L. C. SCHAUPP, A. KRISHEN, J. EVERHART, D. POTEET,
AND K. NAKAMOTO, “Web Site Success Metrics: Addressing the Duality of Goals,” Communica-
tions of the ACM 49 (December 2006), pp. 114–16.

 [Black and Murphy-Hill, 2008] E. BLACK AND A. P. MURPHY-HILL, “Refactoring Tools: Fitness for
Purpose,” IEEE Software 25 (September–October 2008), pp. 38–44.

 [Bockle et al., 2004] G. BOCKLE, P. CLEMENTS, J. D. MCGREGOR, D. MUTHIG, AND K. SCHMID, “Calculating
ROI for Software Product Lines,” IEEE Software 21 (May–June 2004), pp. 23–31.

 [Briand and Wüst, 2001] L. C. BRIAND AND J. WÜST, “Modeling Development Effort in Object-
Oriented Systems Using Design Properties,” IEEE Transactions on Software Engineering 27
(November 2001), pp. 963–86.

sch76183_ch05_124-153.indd 151sch76183_ch05_124-153.indd 151 04/06/10 6:42 PM04/06/10 6:42 PM

152 Part A Software Engineering Concepts

 [DeRemer and Kron, 1976] F. DEREMER AND H. H. KRON, “Programming-in-the-Large versus
Programming-in-the-Small,” IEEE Transactions on Software Engineering SE-2 (June 1976),
pp. 80–86.

 [Dig, Manzoor, Johnson, and Nguyen, 2008] D. DIG, K. MANZOOR, R. E. JOHNSON, AND T. N. NGUYEN,
“Effective Software Merging in the Presence of Object-Oriented Refactorings,” IEEE Transac-
tions on Software Engineering 34 (May–June 2008), pp. 321–35.

 [Dijkstra, 1976] E. W. DIJKSTRA, A Discipline of Programming, Prentice Hall, Englewood Cliffs, NJ,
1976.

 [Dijkstra, 1982] E. W. DIJKSTRA, “On the Role of Scientifi c Thought,” in: Dijkstra, Edsger W., Selected
Writings on Computing: A Personal Perspective, Springer-Verlag, New York, pp. 60–66.

 [Dooley and Schach, 1985] J. W. M. DOOLEY AND S. R. SCHACH, “FLOW: A Software Development
Environment Using Diagrams,” Journal of Systems and Software 5 (August 1985), pp. 203–19.

 [El Emam, Benlarbi, Goel, and Rai, 2001] K. EL EMAM, S. BENLARBI, N. GOEL, AND S. N. RAI, “The
Confounding Effect of Class Size on the Validity of Object-Oriented Metrics,” IEEE Transactions
on Software Engineering 27 (July 2001), pp. 630–50.

 [Feldman, 1979] S. I. FELDMAN, “Make—A Program for Maintaining Computer Programs,”
 Software—Practice and Experience 9 (April 1979), pp. 225–65.

 [Fuggetta, 1993] A. FUGGETTA, “A Classifi cation of CASE Technology,” IEEE Computer 26 (Decem-
ber 1993), pp. 25–38.

 [Gramlich, 1997] E. M. GRAMLICH, A Guide to Benefi t–Cost Analysis , 2nd ed., Waveland Books,
Prospect Heights, IL, 1997.

 [Guinan, Cooprider, and Sawyer, 1997] P. J. GUINAN, J. G. COOPRIDER, AND S. SAWYER, “The Effec-
tive Use of Automated Application Development Tools,” IBM Systems Journal 36 (No. 1, 1997),
pp. 124–39.

 [Jones, 1994] C. JONES, “Software Metrics: Good, Bad, and Missing,” IEEE Computer 27 (September
1994), pp. 98–100.

 [Kilpi, 2001] T. KILPI, “Implementing a Software Metrics Program at Nokia,” IEEE Software 18
(November–December 2001), pp. 72–76.

 [Loukides and Oram, 1997] M. K. LOUKIDES AND A. ORAM, Programming with GNU Software ,
O’Reilly and Associates, Sebastopol, CA, 1997.

 [Louridas, 2006] P. LOURIDAS, “Version Control,” IEEE Software 23 (January–February 2006),
pp. 104–107.

 [Mens, 2002] T. MENS, “A State-of-the-Art Survey on Software Merging,” IEEE Transactions on
Software Engineering 28 (May 2002), pp. 449–62.

 [Miller, 1956] G. A. MILLER, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,” The Psychological Review 63 (March 1956), pp. 81–97.
Reprinted in: www.well.com/user/smalin/miller.html .

 [Mohan, Xu, and Ramesh, 2008] K. MOHAN, P. XU, AND B. RAMESH, “Improving the Change-
Management Process,” Communications of the ACM 51 (May 2008), pp. 59–64.

 [Myers, 1992] W. MYERS, “Good Software Practices Pay off—or Do They?” IEEE Software 9 (March
1992), pp. 96–97.

 [Reiss, 2006] S. P. REISS, “Incremental Maintenance of Software Artifacts,” IEEE Transactions on
Software Engineering 32 (September 2006), pp. 682–97.

 [Rochkind, 1975] M. J. ROCHKIND, “The Source Code Control System,” IEEE Transactions on Soft-
ware Engineering SE-1 (October 1975), pp. 255–65.

sch76183_ch05_124-153.indd 152sch76183_ch05_124-153.indd 152 04/06/10 6:42 PM04/06/10 6:42 PM

www.well.com/user/smalin/miller.html

Chapter 5 The Tools of the Trade 153

 [Sedigh-Ali and Paul, 2001] S. SEDIGH-ALI AND R. A. PAUL, “Software Engineering Metrics for
COTS-Based Systems,” IEEE Computer 34 (May 2001), pp. 44–50.

 [Sharma and Rai, 2000] S. SHARMA AND A. RAI, “CASE Deployment in IS Organizations,” Commu-
nications of the ACM 43 (January 2000), pp. 80–88.

 [Sobell, 1995] M. G. SOBELL, A Practical Guide to the UNIX System , 3rd ed., Benjamin/Cummings,
Menlo Park, CA, 1995.

 [Stevens, Myers, and Constantine, 1974] W. P. STEVENS, G. J. MYERS, AND L. L. CONSTANTINE, “Struc-
tured Design,” IBM Systems Journal 13 (No. 2, 1974), pp. 115–39.

 [Tichy, 1985] W. F. TICHY, “RCS—A System for Version Control,” Software—Practice and Experi-
ence 15 (July 1985), pp. 637–54.

 [Tomer and Schach, 2002] A. TOMER AND S. R. SCHACH, “A Three-Dimensional Model for System
Design Evolution,” Systems Engineering 5 (No. 4, 2002), pp. 264–73.

 [Toth, 2006] K. TOTH, “Experiences with Open Source Software Engineering Tools,” IEEE Software
 23 (November–December 2006), pp. 44–52.

 [Tracz, 1979] W. J. TRACZ, “Computer Programming and the Human Thought Process,” Software—
Practice and Experience 9 (February 1979), pp. 127–37.

 [van der Hoek, Carzaniga, Heimbigner, and Wolf, 2002] A. VAN DER HOEK, A. CARZANIGA, D. HEIM-
BIGNER, AND A. L. WOLF, “A Testbed for Confi guration Management Policy Programming,” IEEE
Transactions on Software Engineering 28 (January 2002), pp. 79–99.

 [van Solingen, 2004] R. VAN SOLINGEN, “Measuring the ROI of Software Process Improvement,”
 IEEE Software 21 (May–June 2004), pp. 32–38.

 [Walrad and Strom, 2002] C. WALRAD AND D. STROM, “The Importance of Branching Models in
SCM,” IEEE Computer 35 (September 2002), pp. 31–38.

 [Wirth, 1971] N. WIRTH, “Program Development by Stepwise Refi nement,” Communications of the
ACM 14 (April 1971), pp. 221–27.

 [Wirth, 1975] N. WIRTH, Algorithms + Data Structures = Programs, Prentice Hall, Englewood Cliffs,
NJ, 1975.

sch76183_ch05_124-153.indd 153sch76183_ch05_124-153.indd 153 04/06/10 6:42 PM04/06/10 6:42 PM

 Chapter 6
Testing
 Learning Objectives

 After studying this chapter, you should be able to

 • Describe quality assurance issues.

 • Describe how to perform non-execution-based testing (inspections) of artifacts.

 • Describe the principles of execution-based testing.

 • Explain what needs to be tested.

154

 Classical software life-cycle models all too frequently include a separate testing phase,
after integration and before postdelivery maintenance. Nothing could be more dangerous
from the viewpoint of trying to achieve high-quality software. Testing is an integral com-
ponent of the software process and an activity that must be carried out throughout the
life cycle: During the requirements workfl ow, the requirements must be checked; during
the analysis workfl ow, the specifi cations must be checked; and the software production
management plan must undergo similar scrutiny. The design workfl ow requires meticulous
checking at every stage. During the implementation workfl ow, each code artifact certainly
must be tested; and the product as a whole needs testing when it has been fully integrated.
After passing the acceptance test, the product is installed and postdelivery maintenance
begins. And hand in hand with maintenance goes repeated checking of modifi ed versions
of the product.
 In other words, it is not suffi cient to test the product of a workfl ow merely at the end
of that workfl ow. For example, consider the design workfl ow. The members of the design
team must consciously and conscientiously check the design while they develop it. It is
not much use for the team to develop the complete design artifacts only to fi nd, weeks or
months later, that a mistake made early in the process necessitates redesigning almost the
entire product. Therefore, continual testing must be carried out by the development team
while it performs each workfl ow, in addition to more methodical testing at the end of each
workfl ow.

sch76183_ch06_154-182.indd 154sch76183_ch06_154-182.indd 154 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 155

 The terms verifi cation and validation were introduced in Section 1.7. Verifi cation
refers to the process of determining whether a workfl ow has been correctly carried out;
this takes place at the end of each workfl ow. On the other hand, validation is the intensive
evaluation process that takes place just before the product is delivered to the client. Its
purpose is to determine whether the product as a whole satisfi es its specifi cations. Even
though both terms are defi ned in the IEEE software engineering glossary [IEEE 610.12,
1990] in this way, and notwithstanding the common usage of the term V & V to denote
testing, the words verifi cation and validation are used as little as possible in this book.
One reason is that, as explained in Section 6.5, the word verifi cation has another meaning
within the context of testing. A second reason is that the phrase verifi cation and validation
(or V & V) implies that the process of checking a workfl ow can wait until the end of that
workfl ow. On the contrary, it is essential that this checking be carried out in parallel with
all software development and maintenance activities. Therefore, to avoid the undesirable
implications of the phrase V & V , the term testing is used. A second reason why we use
the word testing is that this is the terminology of the Unifi ed Process. For example, the fi fth
core workfl ow is the test workfl ow .
 Essentially there are two types of testing: execution-based testing and non-execution-
based testing. For example, it is impossible to execute a written specifi cation document;
the only alternatives are to review it as carefully as possible or subject it to some form of
analysis. However, once there is executable code, it becomes possible to run test cases,
that is, to perform execution-based testing. Nevertheless, the existence of code does not
preclude non-execution-based testing, because as will be explained, methodically review-
ing code can uncover as many faults as running test cases. In this chapter, the principles
of both execution-based and non-execution-based testing are described. These principles
are applied in Chapters 11 through 16, where a description is given of each workfl ow of
the process model and the specifi c testing practices applicable to it. The fi rst two faults
described in Just in Case You Wanted to Know Box 1.1 led to fatal consequences. For-
tunately, in most cases, the result of delivering software with residual faults is consider-
ably less catastrophic. Nevertheless, the importance of testing cannot be stressed too
strongly.

 6.1 Quality Issues

 We begin this section by expanding on the defi nitions of Section 1.11 that relate to testing.
A fault is injected into the software when a human makes a mistake [IEEE 610.12, 1990].
One mistake on the part of a software professional may cause several faults; conversely,
various mistakes may cause the identical fault. A failure is the observed incorrect behavior
of the software product as a consequence of a fault, and the error is the amount by which a
result is incorrect [IEEE 610.12, 1990]. A specifi c failure may be caused by several faults,
and some faults may never cause a failure. The word defect is a generic term for a fault,
failure, or error.
 Now we turn to quality issues. The term quality frequently is misunderstood when used
within the software context. After all, quality implies excellence of some sort, but this
unfortunately is seldom the meaning intended by software engineers. To put it bluntly, all
that many software development organizations can achieve is merely to get the software

sch76183_ch06_154-182.indd 155sch76183_ch06_154-182.indd 155 04/06/10 1:28 PM04/06/10 1:28 PM

to function correctly—excellence is an order of magnitude more than what is generally
possible for organizations at CMM level 1 (Section 3.13).
 The quality of software is the extent to which the product satisfi es its specifi cations
(see Just in Case You Wanted to Know Box 6.1). However, this is not enough. For example,
to ensure that a product can be easily maintained, the product must be well designed and
meticulously coded. Therefore, it is necessary that software have high quality, but this is by
no means suffi cient.
 The task of every software professional is to ensure high-quality software at all times.
That is, each developer and maintainer is personally responsible for checking that his or her
work is correct. Quality is not something added afterward by the software quality assur-
ance (SQA) group but rather must be built in by the developers from the very beginning.
One role of the SQA group is to ensure that the developers are indeed doing high-quality
work. The SQA group has additional responsibilities, too, as described in Section 6.1.1.

 6.1.1 Software Quality Assurance
 As previously stated, one aspect of the role of the SQA group is to test that the developers’
product is correct. More precisely, once the developers have completed a workfl ow and
carefully checked their work, members of the SQA group have to ensure that the workfl ow
has indeed been carried out correctly. Also, when the product is complete and the develop-
ers are confi dent that the product as a whole is correct, the SQA group has to make sure
that this is so. However, software quality assurance goes further than just testing at the end
of a workfl ow or the end of the development process. SQA applies to the software process
itself. For example, the responsibilities of the SQA group include the development of the
various standards to which the software must conform as well as the establishment of the
monitoring procedures for ensuring compliance with those standards. In brief, the role of
the SQA group is to ensure the quality of the software process and thereby ensure the quality
of the product.

 6.1.2 Managerial Independence
 It is important to have managerial independence between the development team and
the SQA group. That is, development should be under one manager, SQA under a different
manager, and neither manager should be able to overrule the other. The reason is that, all

 Just in Case You Wanted to Know Box 6.1
 The use of the term quality to denote “adheres to specifi cations” (as opposed to “excellent”
or “luxurious”) is the practice in fi elds such as engineering and manufacturing. Consider, for
example, the quality control manager at a Coca-Cola bottling plant. The job of that quality
control manager is to ensure that every bottle or can that leaves the production line satisfi es
the specifi cations for Coca-Cola in every way. There is no attempt to produce “excellent”
Coca-Cola or “luxurious” Coca-Cola; the sole aim is to be certain that each bottle or can
of Coca-Cola stringently adheres to the company’s formula (specifi cations) for that carbon-
ated beverage.
 The word quality is used identically in the automobile industry. Quality Is Job One is a
former slogan of the Ford Motor Company. In other words, the aim of Ford is to ensure
that every car that comes off a Ford production line adheres rigorously to the specifi ca-
tions for that car; in common software engineering parlance, the car must be “bug free”
in every way.

sch76183_ch06_154-182.indd 156sch76183_ch06_154-182.indd 156 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 157

too frequently, serious defects are found in a product as the delivery deadline approaches.
The software organization must now choose between two unsatisfactory options. Either the
product can be released on time but full of faults, leaving the client to struggle with faulty
software, or the developers can fi x the software but deliver it late. No matter what, the
client probably will lose confi dence in the software organization. The decision to deliver
faulty software on time should not be made by the manager responsible for development,
nor should the SQA manager be able to make the decision to perform further testing and
deliver the product late. Instead, both managers should report to a more senior manager
who can decide which choice would be in the best interests of both the software develop-
ment organization and the client.
 At fi rst sight, having a separate SQA group would appear to add considerably to the cost
of software development, but this is not so. The additional cost is relatively small compared
to the resulting benefi t—higher-quality software. Without an SQA group, every member of
the software development organization would have to be involved to some extent with quality
assurance activities. Suppose an organization has 100 software professionals and each devotes
about 30 percent of his or her time to quality assurance activities. Instead, the 100 individuals
should be divided into two groups, with 70 individuals performing software development and
the other 30 people responsible for SQA. The same amount of time is devoted to SQA, the
only additional expense being a manager to lead the SQA group. Quality assurance now can
be performed by an independent group of specialists, leading to products of higher quality
than when SQA activities are performed throughout the organization.
 In the case of a very small software company (four employees or fewer), it may simply
not be economically viable to have a separate SQA group. The best that can be done under
such circumstances is to ensure that the analysis artifacts are checked by someone other
than the person responsible for producing those artifacts and similarly for the design arti-
facts, code artifacts, and so on. The reason for this is explained in Section 6.2.

 6.2 Non-Execution-Based Testing
 Testing software without running test cases is termed non-execution-based testing .
Examples of non-execution-based testing methods include reviewing software (carefully
reading through it) and analyzing software mathematically (Section 6.5).
 It is not a good idea for the person responsible for drawing up a document to be the
only one responsible for reviewing it. Almost everyone has blind spots that allow faults to
creep into the document, and those same blind spots prevent the faults from being detected
on review. Therefore, the review task must be assigned to someone other than the original
author of the document. In addition, having only one reviewer may not be adequate; we all
have had the experience of reading through a document many times while failing to detect
a blatant spelling mistake that a second reader picks up almost immediately. This is one
principle underlying review techniques like walkthroughs or inspections. In both types of
review, a document (such as a specifi cation document or design document) is painstakingly
checked by a team of software professionals with a broad range of skills. The strength of
a review by a team of experts is that the different skills of the participants increase the
chances of fi nding a fault. In addition, a team of skilled individuals working together often
generates a synergistic effect.

sch76183_ch06_154-182.indd 157sch76183_ch06_154-182.indd 157 04/06/10 1:28 PM04/06/10 1:28 PM

158 Part A Software Engineering Concepts

 Walkthroughs and inspections are two types of reviews. The fundamental difference
between them is that walkthroughs have fewer steps and are less formal than inspections.

 6.2.1 Walkthroughs
 A walkthrough team should consist of four to six individuals. An analysis walkthrough
team should include at least one representative from the team responsible for drawing up
the specifi cations, the manager responsible for the analysis workfl ow, a client representa-
tive, a representative of the team that will perform the next workfl ow of the development
(in this instance the design team), and a representative of the software quality assurance
group. For reasons that will be explained in Section 6.2.2, the SQA group member should
chair the walkthrough.
 The members of the walkthrough team should, as far as possible, be experienced senior
technical staff members because they tend to fi nd the important faults. That is, they detect
the faults that would have a major negative impact on the project [R. New, personal com-
munication, 1992].
 The material for the walkthrough must be distributed to the participants well in advance
to allow for thorough preparation. Each reviewer should study the material and develop
two lists: a list of items the reviewer does not understand and a list of items the reviewer
believes are incorrect.

 6.2.2 Managing Walkthroughs
 The walkthrough should be chaired by the SQA representative because the SQA represen-
tative has the most to lose if the walkthrough is performed poorly and faults slip through. In
contrast, the representative responsible for the analysis workfl ow may be eager to have the
specifi cation document approved as quickly as possible to start some other task. The client
representative may decide that any faults not detected at the review probably will show up
during acceptance testing and be fi xed at that time at no cost to the client organization. But
the SQA representative has the most at stake: The quality of the product is a direct refl ec-
tion of the professional competence of the SQA group.
 The person leading the walkthrough guides the other members of the walkthrough team
through the document to uncover any faults. It is not the task of the team to correct faults,
but merely to record them for later correction. There are four reasons for this:

 1. A correction produced by a committee (that is, the walkthrough team) within the time
constraints of the walkthrough is likely to be lower in quality than a correction produced
by an individual trained in the necessary techniques.

 2. A correction produced by a walkthrough team of fi ve individuals takes at least as much
time as a correction produced by one person and, therefore, costs fi ve times as much
when the salaries of the fi ve participants are considered.

 3. Not all items fl agged as faults actually are incorrect. In accordance with the dictum, “If
it ain’t broke, don’t fi x it,” it is better for faults to be analyzed methodically and cor-
rected only if there really is a problem, rather than have a team attempt to “fi x” some-
thing that is completely correct.

 4. There simply is not enough time in a walkthrough to both detect and correct faults. No
walkthrough should last longer than 2 hours. The time should be spent detecting and
recording faults, not correcting them.

sch76183_ch06_154-182.indd 158sch76183_ch06_154-182.indd 158 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 159

 There are two ways of conducting a walkthrough. The fi rst is participant driven.
Participants present their lists of unclear items and items they think are incorrect. The rep-
resentative of the analysis team must respond to each query, clarifying what is unclear to
the reviewer and either agreeing that indeed there is a fault or explaining why the reviewer
is mistaken.
 The second way of conducting a review is document driven. A person responsible for
the document, either individually or as part of a team, walks the participants through that
document, with the reviewers interrupting either with their prepared comments or com-
ments triggered by the presentation. This second approach is likely to be more thorough.
In addition, it generally leads to the detection of more faults because the majority of faults
at a document-driven walkthrough are spontaneously detected by the presenter. Time
after time, the presenter will pause in the middle of a sentence, his or her face will light
up, and a fault, one that has lain dormant through many readings of the document, sud-
denly becomes obvious. A fruitful fi eld for research by a psychologist would be to deter-
mine why verbalization so often leads to fault detection during walkthroughs of all kinds,
including requirements walkthroughs, analysis walkthroughs, design walkthroughs, plan
walkthroughs, and code walkthroughs. Not surprisingly, the more thorough document-
driven review is the technique prescribed in the IEEE Standard for Software Reviews
[IEEE 1028, 1997].
 The primary role of the walkthrough leader is to elicit questions and facilitate discussion.
A walkthrough is an interactive process; it is not supposed to be one-sided instruction by
the presenter. It also is essential that the walkthrough not be used as a means of evaluating
the participants. If that happens, the walkthrough degenerates into a point-scoring session
and does not detect faults, no matter how well the session leader tries to run it. It has been
suggested that the manager who is responsible for the document being reviewed should be
a member of the walkthrough team. If this manager also is responsible for the annual evalu-
ations of the members of the walkthrough team (and particularly of the presenter), the fault
detection capabilities of the team will be compromised, because the primary motive of the
presenter will be to minimize the number of faults that show up. To prevent this confl ict of
interests, the person responsible for a given workfl ow should not also be directly respon-
sible for evaluating any member of the walkthrough team for that workfl ow.

 6.2.3 Inspections
 Inspections were fi rst proposed by Fagan [1976] for testing designs and code. An inspec-
tion goes far beyond a walkthrough and has fi ve formal steps.

 1. An overview of the document to be inspected (requirements, specifi cation, design,
code, or plan) is given by one of the individuals responsible for producing that document.
At the end of the overview session, the document is distributed to the participants.

 2. In the preparation , the participants try to understand the document in detail. Lists of
fault types found in recent inspections, with the fault types ranked by frequency, are
excellent aids. These lists help team members concentrate on the areas where the most
faults have occurred.

 3. To begin the inspection, one participant walks through the document with the inspec-
tion team, ensuring that every item is covered and that every branch is taken at least
once. Then fault fi nding commences. As with walkthroughs, the purpose is to fi nd

sch76183_ch06_154-182.indd 159sch76183_ch06_154-182.indd 159 04/06/10 1:28 PM04/06/10 1:28 PM

160 Part A Software Engineering Concepts

and document the faults, not to correct them. Within one day the leader of the inspec-
tion team (the moderator) must produce a written report of the inspection to ensure
meticulous follow-through.

 4. In the rework , the individual responsible for the document resolves all faults and prob-
lems noted in the written report.

 5. In the follow-up , the moderator must ensure that every issue raised has been resolved
satisfactorily, by either fi xing the document or clarifying items incorrectly fl agged as
faults. All fi xes must be checked to ensure that no new faults have been introduced [Fagan,
1986]. If more than 5 percent of the material inspected has been reworked, then the team
must reconvene for a 100 percent reinspection.

 The inspection should be conducted by a team of four. For example, in the case of a
design inspection, the team consists of a moderator, designer, implementer, and tester. The
moderator is both manager and leader of the inspection team. There must be a representa-
tive of the team responsible for the current workfl ow as well as a representative of the team
responsible for the next workfl ow. The designer is a member of the team that produced the
design, whereas the implementer is responsible, either individually or as part of a team, for
translating the design into code. Fagan suggests that the tester be any programmer respon-
sible for setting up test cases; it is, of course, preferable that the tester be a member of the
SQA group. The IEEE standard recommends a team of between three and six participants
[IEEE 1028, 1997]. Special roles are played by the moderator, the reader who leads the
team through the design, and the recorder responsible for producing a written report of
the detected faults.
 An essential component of an inspection is the checklist of potential faults. For example,
the checklist for a design inspection should include items such as these: Is each item of
the specifi cation document adequately and correctly addressed? For each interface, do the
actual and formal arguments correspond? Have error-handling mechanisms been adequately
identifi ed? Is the design compatible with the hardware resources or does it require more
hardware than actually is available? Is the design compatible with the software resources;
for example, does the operating system stipulated in the analysis artifacts have the func-
tionality required by the design?
 An important component of the inspection procedure is the record of fault statistics.
Faults must be recorded by severity (major or minor; an example of a major fault is one that
causes premature termination or damages a database) and fault type. In the case of a design
inspection, typical fault types include interface faults and logic faults. This information can
be used in a number of useful ways:

 • The number of faults in a given product can be compared with averages of faults detected
at the same stage of development in comparable products, giving management an early
warning that something is amiss and allowing timely corrective action to be taken.

 • If inspecting two or three code artifacts results in the discovery of a disproportionate
number of faults of a particular type, management can begin checking other code arti-
facts for faults of that type, and take corrective action if necessary.

 • If the inspection of a particular code artifact reveals far more faults than were found in
any other code artifact in the product, there is usually a strong case for redesigning that
artifact from scratch and implementing the new design.

sch76183_ch06_154-182.indd 160sch76183_ch06_154-182.indd 160 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 161

 • Information regarding the number and types of faults detected at an inspection of a
design artifact aids the team performing the code inspection of the implementation of
that artifact at a later stage.

 The fi rst experiment of Fagan [1976] was performed on a systems product. One hundred
person-hours were devoted to inspections, at a rate of two 2-hour inspections per day by a
four-person team. Of all the faults found during the development of the product, 67 percent
were located by inspections before unit testing was started. Furthermore, during the fi rst
7 months after the product was installed, 38 percent fewer faults were detected in the
inspected product than in a comparable product reviewed using informal walkthroughs.
 Fagan [1976] conducted another experiment on an application product and found that
82 percent of all detected faults were discovered during design and code inspections. A useful
side effect of the inspections was that programmer productivity rose because less time had to be
spent on unit testing. Using an automated estimating model, Fagan determined that, as a result
of the inspection process, the savings on programmer resources were 25 percent despite the time
that had to be devoted to the inspections. In a different experiment Jones [1978] found that over
70 percent of detected faults could be detected by conducting design and code inspections.
 Subsequent studies have produced equally impressive results. In a 6000-line business
data-processing application, 93 percent of all detected faults were found during inspections
[Fagan, 1986]. As reported in [Ackerman, Buchwald, and Lewski, 1989], the use of inspec-
tions rather than testing during the development of an operating system decreased the cost of
detecting a fault by 85 percent; in a switching system product, the decrease was 90 percent
[Fowler, 1986]. At the Jet Propulsion Laboratory (JPL), on average, each 2-hour inspection
exposed 4 major faults and 14 minor faults [Bush, 1990]. Translated into dollar terms, this
meant a saving of approximately $25,000 per inspection . Another JPL study [Kelly, Sherif,
and Hops, 1992] showed that the number of faults detected decreased exponentially by clas-
sical phase. In other words, with the aid of inspections, faults can be detected early in the
software process. The importance of this early detection is refl ected in Figure 1.6 .
 One advantage that code inspections have over running test cases (execution-based test-
ing) is that the testers need not deal with failures. It frequently happens that, when a product
under test is executed, it fails. The fault that caused the failure must now be located and
fi xed before execution-based testing can continue. In contrast, a fault found in the code
during non-execution-based testing is logged and the review continues.
 A risk of the inspection process is that, like the walkthrough, it might be used for perfor-
mance appraisal. The danger is particularly acute in the case of inspections because of the
detailed fault information available. Fagan dismisses this fear by stating that, over a period
of 3 years, he knew of no IBM manager who used such information against a programmer,
or as he put it, no manager tried to “kill the goose that lays the golden eggs” [Fagan, 1976].
However, if inspections are not conducted properly, they may not be as wildly successful as
they have been at IBM. Unless top management is aware of the potential problem, misuse
of inspection information is a distinct possibility.

 6.2.4 Comparison of Inspections and Walkthroughs
 Superfi cially, the difference between an inspection and a walkthrough is that the inspection team
uses a checklist of queries to aid it in fi nding the faults. But the difference goes deeper than that.
A walkthrough is a two-step process: preparation followed by team analysis of the document.

sch76183_ch06_154-182.indd 161sch76183_ch06_154-182.indd 161 04/06/10 1:28 PM04/06/10 1:28 PM

162 Part A Software Engineering Concepts

An inspection is a fi ve-step process: overview, preparation, inspection, rework, and follow-up;
and the procedure to be followed in each step is formalized. Examples of such formalization are
the methodical categorization of faults and the use of that information in the inspection of the
documents of the succeeding workfl ows as well as in inspections of future products.
 The inspection process takes much longer than a walkthrough. Is inspection worth the
additional time and effort? The data of Section 6.2.3 clearly indicate that inspections are a
powerful, cost-effective tool to detect faults.

 6.2.5 Strengths and Weaknesses of Reviews
 There are two major strengths of a review (walkthrough or inspection). First, a review is an
effective way to detect a fault; second, faults are detected early in the software process, that is,
before they become expensive to fi x. For example, design faults are detected before implementa-
tion commences, and coding faults are found before the artifact is integrated into the product.
 However, the effectiveness of a review can be reduced if the software process is inadequate.

• First, large-scale software is extremely hard to review unless it consists of smaller,
largely independent components. A strength of the object-oriented paradigm is that, if
correctly carried out, the resulting product consists of largely independent pieces.

 • Second, a design review team sometimes has to refer to the analysis artifacts; a code
review team often needs access to the design documents. Unless the documentation of
the previous workfl ows is complete, updated to refl ect the current version of the project,
and available online, the effectiveness of review teams is severely hampered.

 6.2.6 Metrics for Inspections
 To determine the effectiveness of inspections, a number of different metrics can be used.
The fi rst is the inspection rate . When specifi cations and designs are inspected, the num-
ber of pages inspected per hour can be measured; for code inspections, an appropriate
metric is lines of code inspected per hour. A second metric is the fault density , measured
in faults per page inspected or faults per 1000 lines of code (KLOC) inspected. This metric
can be subdivided into major faults per unit of material and minor faults per unit of mate-
rial. Another useful metric is the fault detection rate , that is, the number of major and
minor faults detected per hour. A fourth metric is the fault detection effi ciency , that is,
the number of major and minor faults detected per person-hour.
 Although the purpose of these metrics is to measure the effectiveness of the inspection
process, the results instead may refl ect defi ciencies of the development team. For example,
if the fault detection rate suddenly rises from 20 faults per thousand lines of code to 30, this
does not necessarily mean that the inspection team has suddenly become 50 percent more
effi cient. Another explanation could be that the quality of code has decreased and there
simply are more faults to be detected.
 Having discussed non-execution-based testing, we now move on to execution-based testing.

 6.3 Execution-Based Testing
 It has been claimed that testing is a demonstration that faults (“bugs”) are not present.
Even though some organizations spend up to 50 percent of their software budget on testing,
delivered “tested” software is notoriously unreliable.

sch76183_ch06_154-182.indd 162sch76183_ch06_154-182.indd 162 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 163

 The reason for this contradiction is simple. As Dijkstra put it, “Program testing can be a
very effective way to show the presence of bugs, but it is hopelessly inadequate for show-
ing their absence” [Dijkstra, 1972]. What Dijkstra is saying is that, if a product is executed
with test data and the output is wrong, then the product defi nitely contains a fault. But, if
the output is correct, then there still may be a fault in the product; the only information that
can be deduced from that particular test is that the product runs correctly on that particular
set of test data.

 6.4 What Should Be Tested?
 To be able to describe what properties should be tested, it is fi rst necessary to give a pre-
cise description of execution-based testing. According to Goodenough [1979], execution-
based testing is a process of inferring certain behavioral properties of a product based, in
part, on the results of executing the product in a known environment with selected inputs.
This defi nition has three troubling implications.

 1. First, the defi nition states that testing is an inferential process. The tester takes the prod-
uct, runs it with known input data, and examines the output. The tester has to infer what,
if anything, is wrong with the product. From this viewpoint, testing is comparable to
trying to fi nd the proverbial black cat in a dark room, but without knowing whether or
not a cat is in the room in the fi rst place. The tester has few clues to help fi nd any faults:
perhaps 10 or 20 sets of inputs and corresponding outputs, possibly a user fault report,
and thousands of lines of code. From this, the tester has to deduce if there is a fault and,
if so, what it is.

 2. A problem with the defi nition arises from the phrase in a known environment . We never
really can know our environment, either the hardware or the software. We never can be
certain that the operating system is functioning correctly or that the run-time routines
are correct. An intermittent hardware fault may lie in the main memory of the computer.
So what is observed as the behavior of the product in fact may be a correct product
interacting with a faulty compiler or faulty hardware or some other faulty component of
the environment.

 3. Another worrisome part of the defi nition of execution-based testing is the phrase with
selected inputs . In the case of a real-time system, frequently no control is possible over
the inputs to the system. Consider avionics software. The fl ight control system has two
types of inputs. The fi rst type of input is what the pilot wants the aircraft to do. If the
pilot pulls back on the joystick to climb or opens the throttle to increase the speed of
the aircraft, these mechanical motions are transformed into digital signals sent to the
fl ight control computer. The second type of input is the current physical state of the
aircraft, such as its altitude, speed, and the elevation of the wing fl aps. The fl ight control
software uses the values of such quantities to compute what signals should be sent to
the components of the aircraft, such as the wing fl aps and the engines, to implement
the pilot’s directives. Whereas the pilot’s inputs can easily be set to any desired values
simply by setting the aircraft’s controls appropriately, the inputs corresponding to the
current physical state of the aircraft cannot be manipulated so easily. In fact, there is no
way one can force the aircraft to provide “selected inputs.”

sch76183_ch06_154-182.indd 163sch76183_ch06_154-182.indd 163 04/06/10 1:28 PM04/06/10 1:28 PM

164 Part A Software Engineering Concepts

 How then can such a real-time system be tested? The answer is to use a simulator.
A simulator is a working model of the environment in which the product, in this case the fl ight
control software, executes. The fl ight control software can be tested by causing the simulator
to send selected inputs to the fl ight control software. The simulator has controls that allow the
operator to set an input variable to any selected value. If the purpose of the test is to determine
how the fl ight control software performs if one engine catches fi re, then the controls of the simu-
lator are set so that the inputs sent to the fl ight control software are indistinguishable from the
inputs that would be sent if an engine of the actual aircraft were on fi re. The output is analyzed
by examining the output signals sent from the fl ight control software to the simulator. But, at
best, a simulator can be a good approximation of a faithful model of some aspect of the system;
it never can be the system itself. Using a simulator means that, whereas there indeed is a “known
environment,” there is little likelihood that this known environment is in every way identical to
the actual environment in which the product will be installed.
 The preceding defi nition of testing speaks of “behavioral properties.” What behavioral
properties must be tested? An obvious answer is, Test whether the product functions cor-
rectly. But, as will be shown, correctness is neither necessary nor suffi cient. Before discuss-
ing correctness, four other behavioral properties are considered: utility, reliability, robust-
ness, and performance [Goodenough, 1979].

 6.4.1 Utility
 Utility is the extent to which a user’s needs are met when a correct product is used under
conditions permitted by its specifi cations. In other words, a product that is functioning
correctly is now subjected to inputs that are valid in terms of the specifi cations. The user
may test, for example, how easy the product is to use, whether the product performs use-
ful functions, and whether the product is cost effective compared to competing products.
Irrespective of whether the product is correct or not, these vital issues have to be tested. If
the product is not cost effective, then there is no point in buying it. And unless the product
is easy to use, it will not be used at all or it will be used incorrectly. Therefore, when con-
sidering buying an existing product (including shrink-wrapped software), the utility of the
product should be tested fi rst, and if the product fails on that score, testing should stop.

 6.4.2 Reliability
 Another aspect of a product that must be tested is its reliability. Reliability is a measure
of the frequency and criticality of product failure; recall that a failure is an unacceptable
effect or behavior, under permissible operating conditions, that occurs as a consequence of
a fault. In other words, it is necessary to know how often the product fails (mean time
between failures) and how bad the effects of that failure can be. When a product fails, an
important issue is how long it takes, on average, to repair it (mean time to repair). But,
often more important is how long it takes to repair the results of the failure. This last point
frequently is overlooked. Suppose that the software running on a communications front
end fails, on average, only once every 6 months; but when it fails, it completely wipes out
a database. At best, the database can be reinitialized to its status when the last checkpoint
dump was taken, and the audit trail can then be used to put the database into a state that
is virtually up to date. But, if this recovery process takes the better part of 2 days, during
which time the database and communications front end are inoperative, then the reliability
of the product is low, notwithstanding that the mean time between failures is 6 months.

sch76183_ch06_154-182.indd 164sch76183_ch06_154-182.indd 164 04/06/10 1:28 PM04/06/10 1:28 PM

 6.4.3 Robustness
 Another aspect of every product that requires testing is its robustness. Although it is
diffi cult to come up with a precise defi nition, robustness essentially is a function of a
number of factors, such as the range of operating conditions, the possibility of unaccept-
able results with valid input, and the acceptability of effects when the product is given
invalid input. A product with a wide range of permissible operating conditions is more
robust than a more-restrictive product. A robust product should not yield unacceptable
results when the input satisfi es its specifi cations; for example, giving a valid command
should not have disastrous consequences. A robust product should not crash when the
product is not used under permissible operating conditions. To test for this aspect of
robustness, test data that do not satisfy the input specifi cations are deliberately entered,
and the tester determines how badly the product reacts. For example, when the product
solicits a name, the tester may reply with a stream of unacceptable characters, such as
control-A escape-% ?$#@. If the computer responds with a message such as Incorrect
data—Try again or, better, informs the user as to why the data do not conform to what
was expected, it is more robust than a product that crashes whenever the data deviate even
slightly from what is required.

 6.4.4 Performance
 Performance is another aspect of the product that must be tested. For example, it is
essential to know the extent to which the product meets its constraints with regard
to response time or space requirements. For an embedded computer system such as an
onboard computer in a handheld antiaircraft missile, the space constraints of the system
may be such that only 128 megabytes (MB) of main memory are available for the software.
No matter how excellent the software may be, if it needs 256 MB of main memory, then it
cannot be used at all. (For more information on embedded software, see Just in Case You
Wanted to Know Box 6.2.)
 Real-time software is characterized by hard time constraints, that is, time constraints
of such a nature that, if a constraint is not met, information is lost. For example, a nuclear
reactor control system may have to sample the temperature of the core and process the
data every 10th of a second. If the system is not fast enough to handle interrupts from
the temperature sensor every 10th of a second, then data are lost, and there is no way of
ever recovering the data; the next time the system receives temperature data, it will be the

 Just in Case You Wanted to Know Box 6.2
 An embedded computer is an integral part of a larger system whose primary purpose is
not computation. The function of embedded software is to control the device in which
the computer is embedded. Military examples include a network of avionics computers on
board a warplane or a computer built into an intercontinental ballistic missile. The embed-
ded computer in the nose cone of a missile controls only that missile; it cannot be used, say,
for printing the payroll checks for the soldiers on the missile base.
 More familiar examples are the computer chip in a digital watch or a washing machine.
Again, the chip in a washing machine is used exclusively to control the washing machine.
There is no way that the owner of that washing machine could use the chip to balance a
checkbook.

sch76183_ch06_154-182.indd 165sch76183_ch06_154-182.indd 165 04/06/10 1:28 PM04/06/10 1:28 PM

166 Part A Software Engineering Concepts

current temperature, not the reading that was missed. If the reactor is on the point of a melt-
down, then it is critical that all relevant information be both received and processed as laid
down in the specifi cations. With all real-time systems, the performance must meet every
time constraint listed in the specifi cations.

 6.4.5 Correctness
 Finally, a defi nition of correctness can be given. A product is correct if it satisfi es its
output specifi cations, independent of its use of computing resources, when operated under
permitted conditions [Goodenough, 1979]. In other words, if input that satisfi es the input
specifi cations is provided and the product is given all the resources it needs, then the prod-
uct is correct if the output satisfi es the output specifi cations.
 This defi nition of correctness , like the defi nition of testing itself, has worrisome
implications. Suppose a product has been tested successfully against a broad variety of test
data. Does this mean that the product is acceptable? Unfortunately, it does not. If a product
is correct, all that means is that it satisfi es its specifi cations. But what if the specifi cations
themselves are incorrect? To illustrate this diffi culty, consider the specifi cation shown in
 Figure 6.1 . The specifi cations state that the input to the sort is an array p of n integers,
whereas the output is another array q sorted in nondecreasing order. Superfi cially, the spec-
ifi cations seem perfectly correct. But consider method trickSort shown in Figure 6.2 . In
that method, all n elements of array q are set to 0. The method satisfi es the specifi cations
of Figure 6.1 and is therefore correct.
 What happened? Unfortunately, the specifi cations of Figure 6.1 are wrong. What has
been omitted is a statement that the elements of q, the output array, are a permutation (rear-
rangement) of the elements of the input array p. An intrinsic aspect of sorting is that it is a
rearrangement process. And the method of Figure 6.2 capitalizes on this specifi cation fault.
In other words, the method trickSort is correct, but the specifi cations of Figure 6.1 are
wrong. Corrected specifi cations appear in Figure 6.3 . From this example, it is clear that the
consequences of specifi cation faults are nontrivial. After all, the correctness of a product is
meaningless if its specifi cations are incorrect.
 The fact that a product is correct is not suffi cient , because the specifi cations in terms of
which it was shown to be correct may be wrong. But is it necessary ? Consider the follow-
ing example. A software organization has acquired a superb new C++ compiler. The new

 FIGURE 6.1
Incorrect
specifi cations
for a sort.

Input specification: p : array of n integers, n � 0.

Output specification: q : array of n integers such that
 q[0] � q[1] � … � q[n � 1]

 FIGURE 6.2
 Method
trickSort, which
satisfi es the
specifi cations of
Figure 6.1.

void trickSort (int p[], int q[])
{

int i;
for (i � 0; i � n; i��)

q[i] � 0;
}

sch76183_ch06_154-182.indd 166sch76183_ch06_154-182.indd 166 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 167

compiler can translate twice as many lines of source code per second as the old compiler,
the object code runs nearly 45 percent faster, and the size of the object code is about 20 per-
cent smaller. In addition, the error messages are much clearer and the cost of postdelivery
maintenance and updates is less than half of that of the old compiler. There is one problem,
however; the fi rst time that a for statement appears in any class, the compiler prints a spu-
rious error message. The compiler therefore is not correct, because the specifi cations for a
compiler implicitly or explicitly require that error messages be printed if, and only if, there
is a fault in the source code. It is certainly possible to use the compiler—in fact, in every
way but one the compiler is absolutely ideal. Furthermore, it is reasonable to expect that
this minor fault will be corrected in the next release. In the meantime, the programmers
learn to ignore the spurious error message. Not only can the organization live with the in-
correct compiler, but if anyone were to suggest replacing it with the old correct compiler,
there would be an outcry. Therefore, the correctness of a product is neither necessary nor
suffi cient.
 Both preceding examples admittedly are somewhat artifi cial. But they do make the point
that correctness simply means that the product is a correct implementation of its specifi ca-
tions. In other words, there is more to testing than just showing that the product is correct.
 With all the diffi culties associated with execution-based testing, computer scientists
have tried to come up with other ways of ensuring that a product does what it is supposed
to do. One such non-execution-based alternative that has received considerable attention
for more than 50 years is correctness proving.

 6.5 Testing versus Correctness Proofs
 A correctness proof is a mathematical technique for showing that a product is correct,
in other words, that it satisfi es its specifi cations. The technique is sometimes termed verifi -
cation . However, as previously pointed out, the term has another meaning within the test-
ing context. In addition, verifi cation is also often used to denote all non-execution-based
techniques, not only correctness proving. For clarity, this mathematical procedure will be
termed correctness proving , to remind the reader that it is a mathematical proof process.

 6.5.1 Example of a Correctness Proof
 To see how correctness is proven, consider the code fragment shown in Figure 6.4 . The
fl owchart equivalent to the code is given in Figure 6.5 . We now show that the code frag-
ment is correct—after the code has been executed, the variable s will contain the sum of

 FIGURE 6.3
Corrected
specifi cations
for the sort.

Input specification: p : array of n integers, n � 0.

Output specification: q : array of n integers such that
 q[0] � q[1] � … � q[n � 1]

The elements of array q are a permutation of the
elements of array p, which are unchanged.

sch76183_ch06_154-182.indd 167sch76183_ch06_154-182.indd 167 04/06/10 1:28 PM04/06/10 1:28 PM

168 Part A Software Engineering Concepts

the n elements of the array y. In Figure 6.6 , an assertion is placed before and after each
statement, at the places labeled with the letters A through H ; that is, a claim has been made
at each place that a certain mathematical property holds there. The correctness of each
assertion is now proven.
 The input specifi cation, the condition that holds at A before the code is executed, is that
the variable n is a positive integer; that is,

 A : n ∈ {1, 2, 3, . . .} (6.1)

 An obvious output specifi cation is that, if control reaches point H , the value of s contains
the sum of the n values stored in array y, that is,

 H : s � y[0] + y[1] + . . . + y[n − 1] (6.2)

 In fact, the code fragment can be proven correct with respect to a stronger output
specifi cation:

 H: k � n and s � y[0] + y[1] + . . . + y[n − 1] (6.3)

 FIGURE 6.4
A code
fragment to be
proven correct.

 FIGURE 6.5
The fl owchart
of Figure 6.4.

int k, s;
int y[n];
k � 0;
s � 0;
while (k � n)
{

s � s � y[k];
k � k � 1;

}

Yes

No

is
k � n?

k 0

s 0

s s � y[k]

k k � 1

sch76183_ch06_154-182.indd 168sch76183_ch06_154-182.indd 168 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 169

 A natural reaction to the last sentence is to ask, From where did output specifi cation
(6.3) come? By the end of the proof, we hope you have the answer to that question.
 In addition to the input and output specifi cations, a third aspect of the proof process is to
provide an invariant for the loop. That is, a mathematical expression must be provided that
holds at point D irrespective of whether the loop has been executed 0, 1, or many times. The
 loop invariant that will be proven to hold is

 D: k � n and s � y[0] + y[1] + . . . + y[k − 1] (6.4)

 Now it will be shown that if input specifi cation (6.1) holds at point A , then output speci-
fi cation (6.3) will hold at point H ; that is, the code fragment will be proven to be correct.
 First, the assignment statement k R 0 is executed. Control now is at point B , where the
following assertion holds:

 B: k � 0 (6.5)

 To be more precise, at point B , the assertion should read k � 0 and n ∈ {1, 2, 3, . . .}.
However, the input specifi cation (6.1) holds at all points in the fl owchart. For brevity, the
and n ∈ {1, 2, 3, . . .} therefore is omitted from now on.
 At point C , as a consequence of the second assignment statement, s R 0, the following
assertion is true:

 C: k � 0 and s � 0 (6.6)

 Now the loop is entered. It will be proven by induction that the loop invariant (6.4) in-
deed is correct. Just before the loop is executed for the fi rst time, assertion (6.6) holds; that

 FIGURE 6.6
Figure 6.5
with input
specifi cation,
output
specifi cation,
loop invariant,
and assertions
added.

n � {1, 2, 3, ...}
 (Input specification)

k � 0

k � 0 and s � 0

k � n and s � y[0] � y[1] � … � y[k � 1]
(Loop invariant)

k � n and s � y[0] � y[1] � … � y[n � 1]
(Output specification)

k � n and s � y[0] � y[1] � … � y[k]

k � n and s � y[0] � y[1] � … � y[k � 1]

k � n and s � y[0] � y[1] � … � y[k � 1]

Yes

No

is
k � n?

A

B

C

D

E

H

F

G

k 0

s 0

s s � y[k]

k k � 1

sch76183_ch06_154-182.indd 169sch76183_ch06_154-182.indd 169 04/06/10 1:28 PM04/06/10 1:28 PM

170 Part A Software Engineering Concepts

is, k � 0, and s � 0. Now consider loop invariant (6.4). Because k � 0 by assertion (6.6)
and n � 1 from input specifi cation (6.1), it follows that k � n as required. Furthermore,
because k � 0, it follows that k − 1 � −1, so the sum in (6.4) is empty and s � 0 as re-
quired. Loop invariant (6.4) therefore is true just before the fi rst time the loop is entered.
 Next, the inductive hypothesis step is performed. Assume that, at some stage during the
execution of the code fragment, the loop invariant holds. That is, for k equal to some value
k 0 , 0 � k 0 � n, execution is at point D , and the assertion that holds is

 D: k 0 � n and s � y[0] + y[1] + . . . + y[k 0 − 1] (6.7)

 Control now passes to the test box. If k 0 � n, then because k 0 � n by hypothesis, it
follows that k 0 � n. By inductive hypothesis (6.7), this implies that

 H: k 0 � n and s � y[0] + y[1] + . . . + y[n − 1] (6.8)

 which is precisely the output specifi cation (6.3).
 On the other hand, if the test is k 0 � n? fails, then control passes from point D to point
 E . Because k 0 is not greater than or equal to n, k 0 � n and (6.7) becomes

 E: k 0 � n and s � y[0] + y[1] + . . . + y[k 0 − 1] (6.9)

 The statement s R s + y[k 0] now is executed, so from assertion (6.9), at point F, the fol-
lowing assertion must hold:

 F: k 0 � n and s � y[0] + y[1] + . . . + y[k 0 − 1] + y[k 0]

 � y[0] + y[1] + . . . + y[k 0] (6.10)

 The next statement to be executed is k 0 R k 0 + 1. To see the effect of this statement,
suppose that the value of k 0 before executing this statement is 17. Then the last term in the
sum in (6.10) is y[17]. Now the value of k 0 is increased by 1 to 18. The sum s is unchanged,
so the last term in the sum still is y[17], which is now y[k 0 − 1]. Also, at point F , k 0 � n.
Increasing the value of k 0 by 1 means that if the inequality is to hold at point G, then k 0 � n.
Therefore, the effect of increasing k 0 by 1 is that the following assertion holds at point G :

 G: k 0 � n and s � y[0] + y[1] + . . . + y[k 0 − 1] (6.11)

 Assertion (6.11) that holds at point G is identical to assertion (6.7) that, by assumption,
holds at point D. But point D is topologically identical to point G. In other words, if (6.7)
holds at D for k � k 0 , then it again will hold at D with k � k 0 + 1. It has been shown that
the loop invariant holds for k � 0. By induction, it follows that loop invariant (6.4) holds
for all values of k, 0 � k � n.
 All that remains is to prove that the loop terminates. Initially, by assertion (6.6), the value
of k is equal to 0. Each iteration of the loop increases the value of k by 1 when the statement
k R k + 1 is executed. Eventually, k must reach the value n, at which time the loop is exited
and the value of s is given by assertion (6.8), thereby satisfying output specifi cation (6.3).
 To review, given the input specifi cation (6.1), it was proven that loop invariant (6.4)
holds whether the loop has been executed 0, 1, or more times. Furthermore, it was proven
that after n iterations the loop terminates; and when it does, the values of k and s satisfy
the output specifi cation (6.3). In other words, the code fragment of Figure 6.4 has been
mathematically proven to be correct.

sch76183_ch06_154-182.indd 170sch76183_ch06_154-182.indd 170 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 171

C
6.5.26.5.2

 Mini ase Study

 Correctness Proof Mini Case Study

 An important aspect of correctness proofs is that they should be done in conjunction
with design and coding. As Dijkstra put it, “The programmer should let the program
proof and program grow hand in hand” [Dijkstra, 1972]. For example, when a loop
is incorporated into the design, a loop invariant is put forward; and as the design is
refi ned stepwise, so is the invariant. Developing a product in this way gives the pro-
grammer confi dence that the product is correct and tends to reduce the number of
faults. Quoting Dijkstra again, “The only effective way to raise the confi dence level
of a program signifi cantly is to give a convincing proof of its correctness” [Dijkstra,
1972]. But even if a product is proven to be correct, it must be thoroughly tested as
well. To illustrate the necessity for testing in conjunction with correctness proving,
consider the following.
 In 1969, Naur reported on a technique for constructing and proving a product correct
[Naur, 1969]. The technique was illustrated by what Naur termed a line-editing problem ;
today this would be considered a text-processing problem. It may be stated as follows:

 Given a text consisting of words separated by blank characters or by newline (new line)
characters, convert it to line-by-line form in accordance with the following rules:

 1. Line breaks must be made only where the given text contains a blank or newline;

 2. Each line is fi lled as far as possible, as long as

 3. No line will contain more than maxpos characters.

 Naur constructed a procedure using his technique and informally proved its cor-
rectness. The procedure consisted of approximately 25 lines of code. The paper then
was reviewed by Leavenworth in Computing Reviews [Leavenworth, 1970]. The re-
viewer pointed out that, in the output of Naur’s procedure, the fi rst word of the fi rst
line is preceded by a blank unless the fi rst word is exactly maxpos characters long.
Although this may seem a trivial fault, it is a fault that surely would have been de-
tected had the procedure been tested, that is, executed with test data rather than only
proven correct. But worse was to come. London [1971] detected three additional
faults in Naur’s procedure. One is that the procedure does not terminate unless a word
longer than maxpos characters is encountered. Again, this fault is likely to have been
detected if the procedure had been tested. London then presented a corrected version
of the procedure and proved formally that the resulting procedure was correct; recall
that Naur had used only informal proof techniques.
 The next episode in this saga is that Goodenough and Gerhart [1975] found three
faults that London had not detected, despite his formal “proof.” These included the
fact that the last word is not output unless it is followed by a blank or newline. Yet
again, a reasonable choice of test data would have detected this fault without much
diffi culty. In fact, of the total of seven faults collectively detected by Leavenworth,
London, and Goodenough and Gerhart, four could have been detected simply by
running the procedure on test data, such as the illustrations given in Naur’s original
paper. The lesson from this saga is clear. Even if a product has been proven correct,
it still must be tested thoroughly.

sch76183_ch06_154-182.indd 171sch76183_ch06_154-182.indd 171 04/06/10 1:28 PM04/06/10 1:28 PM

172 Part A Software Engineering Concepts

 The example in Section 6.5.1 showed that proving the correctness of even a small code
fragment can be a lengthy process. Furthermore, the mini case study of this section showed
that it is a diffi cult, error-prone process, even for a 25-line procedure. The following issue
therefore must be put forward: Is correctness proving just an interesting research idea or
is it a powerful software engineering technique whose time has come? This is answered in
Section 6.5.3.

 6.5.3 Correctness Proofs and Software Engineering
 A number of software engineering practitioners have put forward reasons why correctness
proving should not be viewed as a standard software engineering technique. First, it is
claimed that software engineers lack adequate mathematical training. Second, it is sug-
gested that proving is too expensive to be practical; and third, proving is too hard. Each of
these reasons will be shown to be an oversimplifi cation:

 1. Although the proof given in Section 6.5.1 can be understood with hardly more than
high school algebra, nontrivial proofs require that input specifi cations, output specifi ca-
tions, and loop invariants be expressed in fi rst- or second-order predicate calculus or
its equivalent. Not only does this make the proof process simpler for a mathematician,
it allows correctness proving to be done by a computer. To complicate matters further,
predicate calculus now is somewhat outdated. To prove the correctness of concurrent
products, techniques using temporal or other modal logics are required [Manna and
Pnueli, 1992]. There is no doubt that correctness proving requires training in mathemati-
cal logic. Fortunately, most computer science majors today either take courses in the
requisite material or have the background to learn correctness-proving techniques on
the job. Therefore, colleges now are turning out computer science graduates with suf-
fi cient mathematical skills for correctness proving. The claim that practicing software
engineers lack the necessary mathematical training may have been true in the past, but
it no longer applies in the light of the thousands of computer science majors joining the
industry each year.

 2. The claim that proving is too expensive for use in software development also is false.
On the contrary, the economic viability of correctness proving can be determined on
a project-by-project basis using cost–benefi t analysis (Section 5.2). For example, con-
sider the software for the international space station. Human lives are at stake, and if
something goes wrong, a space shuttle rescue mission may not arrive in time. The cost
of proving life-critical space station software correct is large. But the potential cost
of a software fault that might be overlooked if correctness proving is not performed is
even larger.

 3. Despite the claim that correctness proving is too hard, many nontrivial products have
successfully been proven correct, including operating system kernels, compilers, and
communications systems [Landwehr, 1983], [Berry and Wing, 1985]. Furthermore,
many tools such as theorem provers assist in correctness proving. A theorem prover
takes as input a product, its input and output specifi cations, and loop invariants. The
theorem prover then attempts to prove mathematically that the product, when given
input data satisfying the input specifi cations, produces output data satisfying the output
specifi cations.

sch76183_ch06_154-182.indd 172sch76183_ch06_154-182.indd 172 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 173

 At the same time, there are some diffi culties with correctness proving:

 • For example, how can we be sure that a theorem prover is correct? If the theorem prover
prints out This product is correct, can we believe it? To take an extreme case, consider
the so-called theorem prover shown in Figure 6.7 . No matter what code is submitted to this
theorem prover, it will print out This product is correct. In other words, what reliability
can be placed on the output of a theorem prover? One suggestion is to submit a theorem
prover to itself and see whether it is correct. Apart from the philosophical implications,
a simple way of seeing that this will not work is to consider what would happen if the
theorem prover of Figure 6.7 were submitted to itself for proving. As always, it would
print out This product is correct, thereby “proving” its own correctness.

 • A further diffi culty is fi nding the input and output specifi cations, and especially the loop
invariants or their equivalents in other logics such as modal logic. Suppose a product is
correct. Unless a suitable invariant for each loop can be found, there is no way of prov-
ing the product correct. Yes, tools do exist to assist in this task. But even with state-of-
the-art tools, a software engineer simply may not be able to come up with a correctness
proof. One solution to this problem is to develop the product and proof in parallel, as ad-
vocated in Section 6.5.2. When a loop is designed, an invariant for that loop is specifi ed
at the same time. With this approach, it is somewhat easier to prove that a code artifact
is correct.

 • Worse than not being able to fi nd loop invariants, what if the specifi cations themselves
are incorrect? An example of this is method trickSort (Figure 6.2). A good theorem
prover, when given the incorrect specifi cations of Figure 6.1 , undoubtedly will declare
that the method shown in Figure 6.2 is correct.

 Manna and Waldinger [1978] stated that, “We can never be sure that the specifi ca-
tions are correct” and “We can never be certain that a verifi cation system is correct.”
These statements from two leading experts in the fi eld encapsulate the various points
made previously.
 Does all this mean that there is no place for correctness proofs in software engineering?
Quite the contrary. Proving products correct is an important, and sometimes vital, software
engineering tool. Proofs are appropriate where human lives are at stake or where other-
wise indicated by cost–benefi t analysis. If the cost of proving software correct is less than
the probable cost if the product fails, then the product should be proven. However, as the
text-processing mini case study shows, proving alone is not enough. Instead, correctness
proving should be viewed as an important component of the set of techniques that must be
utilized together to check that a product is correct. Because the aim of software engineering
is the production of quality software, correctness proving is indeed an important software
engineering technique.
 Even when a full formal proof is not justifi ed, the quality of software can be mark-
edly improved through the use of informal proofs. For example, a proof similar to that

 FIGURE 6.7
 “Theorem
prover.”

 void theoremProver ()
{
 print “This product is correct”;
}

sch76183_ch06_154-182.indd 173sch76183_ch06_154-182.indd 173 04/06/10 1:28 PM04/06/10 1:28 PM

of Section 6.5.1 assists in checking that a loop is executed the correct number of times.
A second way of improving software quality is to insert assertions such as those of Figure
6.6 into the code. Then, if at execution time an assertion does not hold, the product is halted
and the software team can investigate whether the assertion that terminated execution is
incorrect or whether indeed a fault in the code was detected by triggering the assertion.
Languages such as Java (from version 1.4 onward) support assertions directly by means of
an assert statement. Suppose that an informal proof requires that the value of variable xxx
be positive at a particular point in the code. Even though the members of the design team
may be convinced that there is no way for xxx to be negative, for additional reliability they
may specify that the statement

 assert (xxx > 0)

 must appear at that point in the code. If xxx is less than or equal to 0, execution terminates,
and the situation can be investigated by the software team. Unfortunately, Assert in C++ is
a debugging statement, similar to assert in C; it is not part of the language itself.
 Once the users are confi dent that the product works correctly, they have the option of
switching off assertion checking. This speeds up execution, but any fault that would have
been detected by an assertion may not be found if assertion checking is switched off. There-
fore, there is a trade-off between run-time effi ciency and continuing assertion checking
even after the product has been installed on the client’s computer. (Just in Case You Wanted
to Know Box 6.3 gives an interesting insight on this issue.)
 Model checking is a new technology that may eventually take the place of correctness
proving of software. Model checking is outlined in Section 18.11.
 A fundamental issue in execution-based testing is which members of the software devel-
opment team should be responsible for carrying it out. This is discussed in Section 6.6.

 Just in Case You Wanted to Know Box 6.3
 One feature of languages such as Java (but not C or C++) is bounds checking. An example
of bounds checking is examining every array index during execution to ensure that it is
within its declared range.
 Hoare suggested that using bounds checking while developing a product but turning it
off once the product is working correctly can be likened to learning to sail on dry land wear-
ing a life jacket and then taking the life jacket off when actually at sea. In his Turing Award
lecture, Hoare [1981] described a compiler he developed in 1961. When users later were
offered the opportunity to turn off bounds checking after the fi nal version of the compiler
had been installed, they unanimously refused, because they had experienced so many inci-
dents of values out of range during test runs of earlier versions of the compiler.
 Bounds checking can be viewed as a special case of a more general concept, assertion
checking. Hoare’s life jacket analogy is equally applicable to turning off assertion checking
once the fi nal version has been installed.
 Hoare’s remarks were sadly prophetic. Today, a major technique used by hackers to
penetrate computers is to send a long stream of data to an operating system to deliberately
cause a buffer to overfl ow and overwrite a portion of the operating system with malicious
executable code. This technique can work only if the programmers neglected to include
bounds checking in the code for reading data into the buffer of an operating system imple-
mented in C or C++, or turned off bounds checking.

sch76183_ch06_154-182.indd 174sch76183_ch06_154-182.indd 174 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 175

 6.6 Who Should Perform Execution-Based Testing?
 Suppose a programmer is asked to test a code artifact he or she has implemented. Test-
ing has been described by Myers [1979] as the process of executing a product with the
intention of fi nding faults. Testing therefore is a destructive process. On the other hand,
the programmer doing the testing ordinarily does not wish to destroy his or her work.
If the fundamental attitude of the programmer toward the code is the usual protective
one, then the chances of that programmer using test data that will highlight faults is
considerably lower than if the major motivation were truly destructive. A successful
test fi nds faults. This, too, poses a diffi culty. It means that, if the code artifact passes
the test, then the test has failed. Conversely, if the code artifact does not perform
according to specifi cations, then the test succeeds. A programmer who is asked to test
a code artifact he or she has implemented is being asked to execute the code artifact
in such a way that a failure (incorrect behavior) ensues. This goes against the creative
instincts of programmers.
 An inescapable conclusion is that programmers should not test their own code artifacts.
After a programmer has been con structive and built a code artifact, testing that code arti-
fact requires the creator to perform a de structive act and attempt to destroy that creation.
A second reason why execution-based testing should be done by someone else is that the
programmer may have misunderstood some aspect of the design or specifi cations. If testing
is done by someone else, such faults may be discovered. Nevertheless, debugging (fi nding
the cause of the failure and correcting the fault) is best done by the original programmer,
the person most familiar with the code.
 The statement that a programmer should not test his or her own code must not be taken
too far. Consider the programming process. The programmer begins by reading the detailed
design of the code artifact; this may be in the form of a fl owchart or, more likely, pseudo-
code. But, whatever technique is used, the programmer must certainly desk check the
code artifact before entering it into the computer. That is, the programmer must try out
the fl owchart or pseudocode with various test cases, tracing through the detailed design to
check that each test case is executed correctly. Only when the programmer is satisfi ed that
the detailed design is correct should the text editor be invoked to code the artifact.
 Once the code artifact is in machine-readable form, it undergoes a series of tests. Test
data are used to determine that the code artifact works successfully, probably the same test
data used to desk check the detailed design. Next, if the code artifact executes correctly
when correct test data are used, then the programmer tries out incorrect data to test the
robustness of the code artifact. When the programmer is satisfi ed that the code artifact
operates correctly, systematic testing commences. This systematic testing should not be
performed by the programmer.
 If the programmer is not to perform this systematic testing, who is to do it? As stated
in Section 6.1.2, independent testing must be performed by the SQA group. The key word
here is independent . Only if the SQA group truly is independent of the development team
can its members fulfi ll their mission of ensuring that the product indeed satisfi es its specifi -
cations, without software development managers applying pressures such as product dead-
lines that might hamper their work. SQA personnel must report to their own manager and
thereby protect their independence.

sch76183_ch06_154-182.indd 175sch76183_ch06_154-182.indd 175 04/06/10 1:28 PM04/06/10 1:28 PM

176 Part A Software Engineering Concepts

 How is systematic testing performed? An essential part of a test case is a statement
of the expected output before the test is executed. It is a complete waste of time for the
tester to sit at a terminal, execute the code artifact, enter haphazard test data, and then
peer at the screen and say, “I guess that looks right.” Equally futile is for the tester to
plan test cases with great care and execute each test case in turn, look at the output, and
say, “Yes, that certainly looks right.” It is far too easy to be fooled by plausible results. If
programmers are allowed to test their own code, then there is always the danger that the
programmer will see what he or she wants to see. The same danger can occur even when
the testing is done by someone else. The solution is for management to insist that, before
a test is performed, both the test data and the expected results of that test be recorded.
After the test has been performed, the actual results should be recorded and compared
with the expected results.
 Even in small organizations and with small products, it is important that this record-
ing be done in machine-readable form, because test cases should never be thrown away.
The reason for this is postdelivery maintenance. While the product is being maintained,
 regression testing must be performed. Stored test cases that the product has previously
executed correctly must be rerun to ensure that the modifi cations made to add new func-
tionality to the product have not destroyed the product’s existing functionality. This is dis-
cussed further in Chapter 16 .

 6.7 When Testing Stops
 After a product has been successfully maintained for many years, it eventually may lose
its usefulness and be superseded by a totally different product, in much the same way that
electronic valves were replaced by transistors. Alternatively, a product still may be useful,
but the cost of porting it to new hardware or running it under a new operating system may
be more than the cost of constructing a new product, using the old one as a prototype. So,
fi nally, the software product is decommissioned and removed from service. Only at that
point, when the software has been irrevocably discarded, is it time to stop testing.
 Now that all the necessary background material has been covered, objects can be exam-
ined in greater detail. This is the subject of Chapter 7 .

 Chapter
Review
 A key theme of this chapter is that testing must be carried out in parallel with all activities of the

software process. The chapter begins with a description of quality issues (Section 6.1). Next, non-
execution-based testing is described (Section 6.2), with a careful discussion of walkthroughs and
inspections. This is followed by a defi nition of execution-based testing (Sections 6.3 and 6.4) and
a discussion of behavioral properties of a product that must be tested, including utility, reliability,
robustness, performance, and correctness (Sections 6.4.1 through 6.4.5). In Section 6.5, correct-
ness proving is introduced and an example of such a proof is given in Section 6.5.1. The role of
correctness proofs in software engineering then is analyzed (Sections 6.5.2 and 6.5.3). Another
important issue is that systematic execution-based testing must be performed by the independent
SQA group and not by the programmer (Section 6.6). Finally, the issue of when testing can fi nally
stop is discussed in Section 6.7.

sch76183_ch06_154-182.indd 176sch76183_ch06_154-182.indd 176 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 177

 For
Further
Reading

 The attitude of software producers to the testing process has changed over the years, from view-
ing testing as a means of showing that a product runs correctly to the modern attitude that testing
should be used to prevent requirements, analysis, design, and implementation faults. This progression
is described in [Gelperin and Hetzel, 1988]. The nature of software testing and the reasons why it is
so hard are discussed in [Whittaker, 2000]. The pervasiveness of faults is described in [Lieberman and
Fry, 2001]. Ways to reduce the number of faults appear in [Boehm and Basili, 2001].
 Whittaker and Voas [2000] present an interesting theory of reliability. Having an effective require-
ments workfl ow can have a positive impact on software quality; this is shown in [Damian and Chisan,
2006]. The quality of open-source software is reviewed in [Aberdour, 2007].
 A standard technique of correctness proving uses the so-called Hoare logic, as described in [Hoare,
1969]. An alternative approach to ensuring that products satisfy their specifi cations is to construct the
product stepwise, checking that each step preserves correctness. This is described in [Dijkstra, 1968]
and [Wirth, 1971]. An important article regarding acceptance of correctness proofs by the software
engineering community is [DeMillo, Lipton, and Perlis, 1979]. Interesting views on correctness prov-
ing are given in [Hinchey et al., 2008].
 The IEEE Standard for Software Reviews [IEEE 1028, 1997] is an excellent source of information
on non-execution-based testing. Experiments evaluating inspections of a large-scale software product
are described in [Perry et al., 2002]. Vitharana and Ramamurthy [2003] suggest that inspections should
be anonymous and computer mediated. The impact of group process support on inspections is presented
in [Tyran and George, 2002]. The selection of inspection team members is discussed in [Miller and Yin,
2004]. A review of inspections is given in [Parnas and Lawford, 2003], and the state of the practice is de-
scribed in [Ciolkowski, Laitenberger, and Biffl , 2003]. Object-oriented code inspections are discussed
in [Dunsmore, Roper, and Wood, 2003]. The cost-effectiveness of inspections is presented in [Freimut,
Briand, and Vollei, 2005]. Tailoring inspections to an organization’s needs is described in [Denger and
Shull, 2007]. Design and code reviews conducted over the Internet are presented in [Meyer, 2008]. An
experiment to test the value of the checklists is described in [Hatton, 2008].
 The classic work on execution-based testing is [Myers, 1979], a work that has had a signifi cant
impact on the fi eld of testing. [DeMillo, Lipton, and Sayward, 1978] remains an excellent source of
information on selection of test data. [Beizer, 1990] is a compendium on testing, a true handbook on
the subject. [Ammann and Offutt, 2008] is strongly recommended as an introduction to testing.
 Turning specifi cally to the object-oriented paradigm, [Kung, Hsia, and Gao, 1998] is a book on
object-oriented testing, and so is [Sykes and McGregor, 2000].
 The proceedings of the IEEE International Symposium on Software Testing and Analysis cover
a similar broad spectrum of testing issues. The April 2005 of IEEE Transactions on Software Engi-
neering contains a variety of papers from the 2004 Symposium. Two articles of particular interest are
[Ostrand, Weyuker, and Bell, 2005], which describes a method for predicting the location and number
of faults in large software products, and [Fu, Milanova, Ryder, Wonnacott, 2005] on the robustness
testing of Java server applications. The July–August 2006 issue of IEEE Software contains a wide
variety of papers on testing.

 Key Terms correctness 166
 correctness proof 167
 defect 155
 desk check 175
 error 155
 execution-based testing 163

 failure 155
 fault 155
 fault density 162
 fault detection effi ciency 162
 fault detection rate 162
 follow-up 160

 inspection 159
 inspection rate 162
 loop invariant 169
 managerial independence 156
 mean time between

failures 164

sch76183_ch06_154-182.indd 177sch76183_ch06_154-182.indd 177 04/06/10 1:28 PM04/06/10 1:28 PM

178 Part A Software Engineering Concepts

 mean time to repair 164
 mistake 155
 model checking 174
 moderator 160
 non-execution-based testing

157
 overview 159
 performance 165
 preparation 159

 quality 156
 reader 160
 recorder 160
 regression testing 176
 reliability 164
 rework 160
 robustness 165
 simulator 164

 software quality assurance
(SQA) 156

 systematic testing 175
 test workfl ow 155
 testing 155
 utility 164
 V & V 155
 validation 155
 verifi cation 155

 Problems 6.1 How are the terms correctness proving, verifi cation, and validation used in this book?

 6.2 A software development organization currently employs 91 software professionals, includ-
ing 18 managers, all of whom develop as well as test software. The latest fi gures show that
26 percent of their time is spent on testing activities. The average annual cost to the company of
a manager is $162,000, whereas nonmanagerial professionals cost $121,000 a year on average;
both fi gures include overhead. Use cost–benefi t analysis to determine whether a separate SQA
group should be set up within the organization.

 6.3 Repeat the cost–benefi t analysis of Problem 6.2 for a fi rm with only eight software profession-
als, including three managers. Assume that the other fi gures remain unchanged.

 6.4 You have been testing a code artifact for 11 days and found two faults. What does this tell you
about the existence of other faults?

 6.5 What are the similarities between a walkthrough and an inspection? What are the differences?

 6.6 You are a member of the SQA group at Ye Olde Fashioned Software. You suggest to your man-
ager that inspections be introduced. He responds that he sees no reason why four people should
waste their time looking for faults when one person can run test cases on the same piece of
code. How do you respond?

 6.7 You are the SQA manager at Farm and Field, a national chain of 1539 farm supply stores. Your
organization is considering buying a stock-control package for use throughout the organization.
Before authorizing the purchase of the package, you decide to test it thoroughly. What proper-
ties of the package do you investigate?

 6.8 All 1539 stores in the Farm and Field organization are now to be connected by a communica-
tions network. A sales representative is offering you a 6-week free trial to experiment with the
communications package he is trying to sell you. What sort of software tests would you perform
and why?

 6.9 You are a rear admiral in the Valerian Navy in charge of developing the software for controlling
the ship-to-ship missile of Problem 1.4. The software has been delivered to you for acceptance
testing. What properties of the software do you test?

 6.10 Consider the following code fragment:

 k = 0;
g = 1;
 while (k < n)
{
 k = k + 1;
 g = g * k;
}

sch76183_ch06_154-182.indd 178sch76183_ch06_154-182.indd 178 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 179

 Prove that this code fragment correctly computes g = n! if n is a positive integer.

 6.11 Consider the following code fragment:

 m = 1;
q = 2;
 while (m < n)
{
 m = m + 1;
 q = q * 2;
}

 Prove that this code fragment correctly computes q = 2n if n ∈ {1, 2, 3, . . . }.
 6.12 Can correctness proving solve the problem that the product as delivered to the client may not be

what the client really needs? Give reasons for your answer.

 6.13 How should Dijkstra’s statement (Section 6.3) be changed to apply to correctness proofs rather
than testing? Bear in mind the mini case study of Section 6.5.2.

 6.14 Design and implement a solution to the Naur text-processing problem (Section 6.5.2) using
the language specifi ed by your instructor. Execute it against test data and record the number of
faults you fi nd and the cause of each fault (e.g., logic fault, loop counter fault). Do not correct
any of the faults you detect. Now exchange products with a fellow student and see how many
faults each of you fi nds in the other’s product and whether or not they are new faults. Again
record the cause of each fault and compare the fault types found by each of you. Tabulate the
results for the class as a whole.

 6.15 Why is there a need to distinguish between a fault, a failure, and an error? Surely the use of the
umbrella term defect simplifi es matters?

 6.16 Give an example of a software product that has been successfully maintained for many years,
but has lost its usefulness and has been superseded by a totally different product.

 6.17 (Term Project) Explain how you would test the utility, reliability, robustness, performance, and
correctness of the Chocoholics Anonymous product in Appendix A.

 6.18 (Readings in Software Engineering) Your instructor will distribute copies of [Ostrand, Weyuker,
and Bell, 2005]. What is your view on using regression models to predict fault numbers and
locations? Justify your answer.

 References [Aberdour, 2007] M. ABERDOUR, “Achieving Quality in Open-Source Software,” IEEE Software 24
(January–February 2007), pp. 58–64.

 [Ackerman, Buchwald, and Lewski, 1989] A. F. ACKERMAN, L. S. BUCHWALD, AND F. H. LEWSKI,
“Software Inspections: An Effective Verifi cation Process,” IEEE Software 6 (May 1989),
pp. 31–36.

 [Ammann and Offutt, 2008] P. AMMANN AND J. OFFUTT, Introduction to Software Testing, Cambridge
University Press, Cambridge, UK, 2008.

 [Beizer, 1990] B. BEIZER, Software Testing Techniques, 2nd ed., Van Nostrand Reinhold, New
York, 1990.

 [Berry and Wing, 1985] D. M. BERRY AND J. M. WING, “Specifying and Prototyping: Some Thoughts
on Why They Are Successful,” in: Formal Methods and Software Development, Proceedings of
the International Joint Conference on Theory and Practice of Software Development , Vol. 2,
Springer-Verlag, Berlin, 1985, pp. 117–28.

sch76183_ch06_154-182.indd 179sch76183_ch06_154-182.indd 179 04/06/10 1:28 PM04/06/10 1:28 PM

180 Part A Software Engineering Concepts

 [Boehm and Basili, 2001] B. BOEHM AND V. R. BASILI, “Software Defect Reduction Top Ten List,”
 IEEE Computer 34 (January 2001), pp. 135–37.

 [Bush, 1990] M. BUSH, “Improving Software Quality: The Use of Formal Inspections at the Jet Pro-
pulsion Laboratory,” Proceedings of the 12th International Conference on Software Engineering ,
Nice, France, March 1990, IEEE, pp. 196–99.

 [Ciolkowski, Laitenberger, and Biffl , 2003] M. CIOLKOWSKI, O. LAITENBERGER, S. BIFFL, “Software
Reviews, the State of the Practice,” IEEE Software 20 (November–December 2003), pp. 46–51.

 [Damian and Chisan, 2006] D. DAMIAN AND J. CHISAN, “An Empirical Study of the Complex Rela-
tionships between Requirements Engineering Processes and Other Processes that Lead to Payoffs
in Productivity, Quality, and Risk Management,” IEEE Transactions on Software Engineering 32
(July 2006), pp. 433–53.

 [DeMillo, Lipton, and Perlis, 1979] R. A. DEMILLO, R. J. LIPTON, AND A. J. PERLIS, “Social Pro-
cesses and Proofs of Theorems and Programs,” Communications of the ACM 22 (May 1979),
pp. 271–80.

 [DeMillo, Lipton, and Sayward, 1978] R. A. DEMILLO, R. J. LIPTON, AND F. G. SAYWARD, “Hints
on Test Data Selection: Help for the Practicing Programmer,” IEEE Computer 11 (April 1978),
pp. 34–43.

 [Denger and Shull, 2007] C. DENGER AND F. SHULL, “A Practical Approach for Quality-Driven In-
spections,” IEEE Software 24 (March–April 2007), pp. 79–86.

 [Dijkstra, 1968] E. W. DIJKSTRA, “A Constructive Approach to the Problem of Program Correctness,”
 BIT 8 (No. 3, 1968), pp. 174–86.

 [Dijkstra, 1972] E. W. DIJKSTRA, “The Humble Programmer,” Communications of the ACM 15
(October 1972), pp. 859–66.

 [Dunsmore, Roper, and Wood, 2003] A. DUNSMORE, M. ROPER, AND M. WOOD, “The Development
and Evaluation of Three Diverse Techniques for Object-Oriented Code Inspection,” IEEE Trans-
actions on Software Engineering 29 (August 2003), pp. 677–86.

 [Fagan, 1976] M. E. FAGAN, “Design and Code Inspections to Reduce Errors in Program Develop-
ment,” IBM Systems Journal 15 (No. 3, 1976), pp. 182–211.

 [Fagan, 1986] M. E. FAGAN, “Advances in Software Inspections,” IEEE Transactions on Software
Engineering SE-12 (July 1986), pp. 744–51.

 [Fowler, 1986] P. J. FOWLER, “In-Process Inspections of Workproducts at AT&T,” AT&T Technical
Journal 65 (March–April 1986), pp. 102–12.

 [Freimut, Briand, and Vollei, 2005] B. FREIMUT, L. C. BRIAND, AND F. VOLLEI, “Determining Inspec-
tion Cost-Effectiveness by Combining Project Data and Expert Opinion,” IEEE Transactions on
Software Engineering 31 (December 2005), pp. 1074–92.

 [Fu, Milanova, Ryder, Wonnacott, 2005] C. FU, A. MILANOVA, B. G. RYDER, AND D. G. WONNACOTT,
“Robustness Testing of Java Server Applications,” IEEE Transactions on Software Engineering
 31 (April 2005), pp. 292–311.

 [Gelperin and Hetzel, 1988] D. GELPERIN AND B. HETZEL, “The Growth of Software Testing,” Com-
munications of the ACM 31 (June 1988), pp. 687–95.

 [Goodenough, 1979] J. B. GOODENOUGH, “A Survey of Program Testing Issues,” in: Research
Directions in Software Technology , P. Wegner (Editor), The MIT Press, Cambridge, MA, 1979,
pp. 316–40.

 [Goodenough and Gerhart, 1975] J. B. GOODENOUGH AND S. L. GERHART, “Toward a Theory of Test
Data Selection,” Proceedings of the Third International Conference on Reliable Software , Los
Angeles, 1975, pp. 493–510; also published in IEEE Transactions on Software Engineering SE-1

sch76183_ch06_154-182.indd 180sch76183_ch06_154-182.indd 180 04/06/10 1:28 PM04/06/10 1:28 PM

Chapter 6 Testing 181

(June 1975), pp. 156–73. Revised version: J. B. Goodenough and S. L. Gerhart, “Toward a Theory
of Test Data Selection: Data Selection Criteria,” in: Current Trends in Programming Methodology,
Vol. 2, R. T. Yeh (Editor), Prentice Hall, Englewood Cliffs, NJ, 1977, pp. 44–79.

 [Hatton, 2008] L. HATTON, “Testing the Value of Checklists in Code Inspections,” IEEE Software 25
(July–August 2008), pp. 82–88.

 [Hinchey et al., 2008] M. HINCHEY, M. JACKSON, P. COUSOT, B. COOK, J. P. BOWEN, AND T. MARGARIA,
“Software Engineering and Formal Methods,” Communications of the ACM 51 (September 2008),
pp. 54–59.

 [Hoare, 1969] C. A. R. HOARE, “An Axiomatic Basis for Computer Programming,” Communications
of the ACM 12 (October 1969), pp. 576–83.

 [Hoare, 1981] C. A. R. HOARE, “The Emperor’s Old Clothes,” Communications of the ACM 24
(February 1981), pp. 75–83.

 [IEEE 610.12, 1990] “A Glossary of Software Engineering Terminology,” IEEE 610.12-1990, Insti-
tute of Electrical and Electronic Engineers, New York, 1990.

 [IEEE 1028, 1997] Standard for Software Reviews , IEEE 1028, Institute of Electrical and Electronic
Engineers, New York, 1997.

 [Jones, 1978] T. C. JONES, “Measuring Programming Quality and Productivity,” IBM Systems Journal
 17 (No. 1, 1978), pp. 39–63.

 [Kelly, Sherif, and Hops, 1992] J. C. KELLY, J. S. SHERIF, AND J. HOPS, “An Analysis of Defect Den-
sities Found during Software Inspections,” Journal of Systems and Software 17 (January 1992),
pp. 111–17.

 [Kung, Hsia, and Gao, 1998] D. C. KUNG, P. HSIA, AND J. GAO, Testing Object-Oriented Software ,
IEEE Computer Society Press, Los Alamitos, CA, 1998.

 [Landwehr, 1983] C. E. LANDWEHR, “The Best Available Technologies for Computer Security,” IEEE
Computer 16 (July 1983), pp. 86–100.

 [Leavenworth, 1970] B. LEAVENWORTH, Review #19420, Computing Reviews 11 (July 1970),
pp. 396–97.

 [Lieberman and Fry, 2001] H. LIEBERMAN AND C. FRY, “Will Software Ever Work?” Communications
of the ACM 44 (March 2001), pp. 122–24.

 [London, 1971] R. L. LONDON, “Software Reliability through Proving Programs Correct,” Proceed-
ings of the IEEE International Symposium on Fault-Tolerant Computing, IEEE, March 1971.

 [Manna and Pnueli, 1992] Z. MANNA AND A. PNUELI, The Temporal Logic of Reactive and Concurrent
Systems, Springer-Verlag, New York, 1992.

 [Manna and Waldinger, 1978] Z. MANNA AND R. WALDINGER, “The Logic of Computer Program-
ming,” IEEE Transactions on Software Engineering SE-4 (1978), pp. 199–229.

 [Meyer, 2008] B. MEYER, “Design and Code Reviews in the Age of the Internet,” Communications of
the ACM 51 (September 2008), pp. 66–71.

 [Miller and Yin, 2004] J. MILLER AND Z. YIN, “A Cognitive-Based Mechanism for Constructing
Software Inspection Teams,” IEEE Transactions on Software Engineering 30 (November 30),
pp. 811–25.

 [Myers, 1979] G. J. MYERS, The Art of Software Testing , John Wiley and Sons, New York, 1979.

 [Naur, 1969] P. NAUR, “Programming by Action Clusters,” BIT 9 (No. 3, 1969), pp. 250–58.

 [Ostrand, Weyuker, and Bell, 2005] T. J. OSTRAND, E. J. WEYUKER, AND R. M. BELL, “Predicting
the Location and Number of Faults in Large Software Systems,” IEEE Transactions on Software
Engineering 31 (April 2005), pp. 340–55.

sch76183_ch06_154-182.indd 181sch76183_ch06_154-182.indd 181 04/06/10 1:28 PM04/06/10 1:28 PM

182 Part A Software Engineering Concepts

 [Parnas and Lawford, 2003] D. L. PARNAS AND M. LAWFORD, “The Role of Inspection in Software
Quality Assurance,” IEEE Transactions on Software Engineering 29 (August 2003), pp. 674–76.

 [Perry et al., 2002] D. E. PERRY, A. PORTER, M. W. WADE, L. G. VOTTA, AND J. PERPICH, “Reducing
Inspection Interval in Large-Scale Software Development,” IEEE Transactions on Software Engi-
neering 28 (July 2002), pp. 695–705.

 [Sykes and McGregor, 2000] D. A. SYKES AND J. D. MCGREGOR, Practical Guide to Testing Object-
Oriented Software , Addison-Wesley, Reading, MA, 2000.

 [Tyran and George, 2002] C. K. TYRAN AND J. F. GEORGE, “Improving Software Inspections with
Group Process Support,” Communications of the ACM 45 (September 2002), pp. 87–92.

 [Vitharana and Ramamurthy, 2003] P. VITHARANA AND K. RAMAMURTHY, “Computer-Mediated
Group Support, Anonymity and the Software Inspection Process: An Empirical Investigation,”
 IEEE Transactions on Software Engineering 29 (March 2003), pp. 167–80.

 [Whittaker, 2000] J. A. WHITTAKER, “What Is Software Testing? And Why Is It So Hard?” IEEE Soft-
ware 17 (January–February 2000), pp. 70–79.

 [Whittaker and Voas, 2000] J. A. WHITTAKER AND J. VOAS, “Toward a More Reliable Theory of Soft-
ware Reliability,” IEEE Computer 33 (December 2000), pp. 36–42.

 [Wirth, 1971] N. WIRTH, “Program Development by Stepwise Refi nement,” Communications of the
ACM 14 (April 1971), pp. 221–27.

sch76183_ch06_154-182.indd 182sch76183_ch06_154-182.indd 182 04/06/10 1:28 PM04/06/10 1:28 PM

183

 Chapter 7
From Modules
to Objects
 Learning Objectives

 After studying this chapter, you should be able to

 • Design modules and classes with high cohesion and low coupling.

 • Understand the need for information hiding.

 • Describe the software engineering implications of inheritance, polymorphism,
and dynamic binding.

 • Distinguish between generalization, aggregation, and association.

 • Discuss the object-oriented paradigm in greater depth than before.

 Some of the more lurid computer magazines seem to suggest that the object-oriented para-
digm was a sudden, dramatic new discovery of the mid-1980s, a revolutionary alternative
to the then-popular classical paradigm.That is not the case. Instead, the theory of modu-
larity underwent steady progress during the 1970s and 1980s, and objects were simply an
evolutionary development within the theory of modularity (but see Just in Case You Wanted
to Know Box 7.1). This chapter describes objects within the context of modularity.
 This approach is taken because it is extremely diffi cult to use objects correctly without
understanding why the object-oriented paradigm is superior to the classical paradigm. And,
to do that, it is necessary to appreciate that an object is merely the next logical step in the
body of knowledge that begins with the concept of a module.

 7.1 What Is a Module?
 When a large product consists of a single monolithic block of code, maintenance is a night-
mare. Even for the author of such a monstrosity, attempting to debug the code is extremely
diffi cult; for another programmer to understand it is virtually impossible. The solution is

sch76183_ch07_183-224.indd 183sch76183_ch07_183-224.indd 183 04/06/10 1:40 PM04/06/10 1:40 PM

184 Part A Software Engineering Concepts

to break the product into smaller pieces, called modules . What is a module? Is the way a
product is broken into modules important in itself or is it important only to break a large
product into smaller pieces of code?
 Stevens, Myers, and Constantine [1974] made an early attempt to describe modules.
They defi ned a module as “a set of one or more contiguous program statements having a
name by which other parts of the system can invoke it, and preferably having its own dis-
tinct set of variable names.” In other words, a module consists of a single block of code that
can be invoked in the way that a procedure, function, or method is invoked. This defi nition
seems to be extremely broad. It includes procedures and functions of all kinds, whether
internal or separately compiled. It includes COBOL paragraphs and sections, even though
they cannot have their own variables, because the defi nition states that the property of pos-
sessing a distinct set of variable names is merely “preferable.” It also includes modules
nested inside other modules. But, broad as it is, the defi nition does not go far enough. For
example, an assembler macro is not invoked and therefore, by the preceding defi nition, is
not a module. In C and C++, a header fi le of declarations that is #included in a product
similarly is not invoked. In short, this defi nition is too restrictive.
 Yourdon and Constantine [1979] give a broader defi nition: “A module is a lexically
contiguous sequence of program statements, bounded by boundary elements, having an
aggregate identifi er.” Examples of boundary elements are begin . . . end pairs in a block-
structured language like Pascal or {. . .} pairs in C++ or Java. This defi nition not only
includes all the cases excluded by the previous defi nition but is broad enough to be used
throughout this book. In particular, procedures and functions of the classical paradigm are
modules. In the object-oriented paradigm, an object is a module and so is a method within
an object.
 To understand the importance of modularization, consider the following somewhat fan-
ciful example. John Fence is a highly incompetent computer architect. He still has not
discovered that both NAND gates and NOR gates are complete; that is, every circuit can
be built with only NAND gates or with only NOR gates. John therefore decides to build
arithmetic logic unit (ALU), shifter, and 16 registers using AND , OR , and NOT gates. The
resulting computer is shown in Figure 7.1 . The three components are connected in a simple
fashion. Now, our architect friend decides that the circuit should be fabricated on three sili-
con chips, so he designs the three chips shown in Figure 7.2 . One chip has all the gates of
the ALU, a second contains the shifter, and the third is for the registers. At this point John
vaguely recalls that someone in a bar told him that it is best to build chips so that they have

 Just in Case You Wanted to Know Box 7.1
 Object-oriented concepts were introduced as early as 1966 in the simulation language
Simula 67 [Dahl and Nygaard, 1966]. However, at that time, the technology was too radical
for practical use, so it lay dormant until the early 1980s, when it essentially was reinvented
within the context of the theory of modularity.
 This chapter includes other examples of the way leading-edge technology lies dormant
until the world is ready for it. For example, information hiding (Section 7.6) was fi rst pro-
posed in 1971 within the software context by Parnas [1971], but the technology was not
widely adopted until about 10 years later, when encapsulation and abstract data types had
become part of software engineering.
 We humans seem to adopt new ideas only when we are ready to use them, not neces-
sarily when they are fi rst presented.

sch76183_ch07_183-224.indd 184sch76183_ch07_183-224.indd 184 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 185

only one kind of gate, so he redesigns his chips. On chip 1 he puts all the AND gates, on
chip 2 all the OR gates, and all the NOT gates go onto chip 3. The resulting “work of art”
is shown schematically in Figure 7.3 .
 Figures 7.2 and 7.3 are functionally equivalent; that is, they do exactly the same thing.
But the two designs have markedly different properties:

 1. Figure 7.3 is considerably harder to understand than Figure 7.2 . Almost anyone with
a knowledge of digital logic immediately knows that the chips in Figure 7.2 form an
ALU, a shifter, and a set of registers. However, even a leading hardware expert would
have trouble understanding the function of the various AND , OR, and NOT gates in
 Figure 7.3 .

Registers

ALU

Shifter

 FIGURE 7.1 The design of a computer.

Registers

ALU

Shifter

Chip 2

Chip 3

Chip 1

 FIGURE 7.2 The computer of
Figure 7.1 fabricated on three chips.

AND gates OR gates

NOT gates

Chip 2

Chip 3

Chip 1 FIGURE 7.3
 The computer
of Figure 7.1
fabricated on
three other
chips.

sch76183_ch07_183-224.indd 185sch76183_ch07_183-224.indd 185 04/06/10 1:40 PM04/06/10 1:40 PM

186 Part A Software Engineering Concepts

 2. Corrective maintenance of the circuits shown in Figure 7.3 is diffi cult. Should the com-
puter have a design fault—and anyone capable of coming up with Figure 7.3 is undoubt-
edly going to make lots and lots of mistakes—it would be diffi cult to determine where
the fault is located. On the other hand, if the design of the computer in Figure 7.2 has
a fault, it can be localized by determining whether it appears to be in the way the ALU
works, the way the shifter works, or the way the registers work. Similarly, if the com-
puter of Figure 7.2 breaks down, it is relatively easy to determine which chip to replace;
if the computer in Figure 7.3 breaks down, it is probably best to replace all three chips.

 3. The computer of Figure 7.3 is diffi cult to extend or enhance . If a new type of ALU is
needed or faster registers are required, it is back to the drawing board. But the design
of the computer of Figure 7.2 makes it easy to replace the appropriate chip. Perhaps
worst of all, the chips of Figure 7.3 cannot be reused in any new product. There is no
way that those three specifi c combinations of AND , OR, and NOT gates can be utilized
for any product other than the one for which they were designed. In all probability, the
three chips of Figure 7.2 can be reused in other products that require an ALU, a shifter,
or registers.

 The point here is that software products have to be designed to look like Figure 7.2 ,
where there is a maximal relationship within each chip and a minimal relationship between
chips. A module can be likened to a chip, in that it performs an operation or series of
operations and is connected to other modules. The functionality of the product as a whole
is fi xed; what has to be determined is how to break the product into modules. Composite/
structured design [Stevens, Myers, and Constantine, 1974] provides a rationale for break-
ing a product into modules as a way to reduce the cost of maintenance, the major com-
ponent of the total software budget, as pointed out in Chapter 1 . The maintenance effort,
whether corrective, perfective, or adaptive, is reduced when there is maximal interaction
within each module and minimal interaction between modules. In other words, the aim
of composite/structured design (C/SD) is to ensure that the module decomposition of the
product resembles Figure 7.2 rather than Figure 7.3 . As explained in Section 5.4, C/SD is
an example of separation of concerns.
 Myers [1978b] quantifi ed the ideas of module cohesion , the degree of interaction
within a module, and module coupling , the degree of interaction between two modules.
To be more precise, Myers used the term strength rather than cohesion . However, cohe-
sion is preferable because modules can have high strength or low strength, and something
is inherently contradictory in the expression low strength —something that is not strong is
weak. To prevent terminological inexactitude, C/SD now uses the term cohesion . Some
authors have used the term binding in place of coupling . Unfortunately, binding also is
used in other contexts in computer science, such as binding values to variables. But coupling
has none of these overtones and therefore is preferable.
 It is necessary at this point to distinguish between the operation of a module, the logic
of a module, and the context of a module. The operation of a module is what it does, that
is, its behavior. For example, the operation of module m is to compute the square root of its
argument. The logic of a module is how the module performs its operation; in the case of
module m, the specifi c way of computing the square root is Newton’s method [Gerald and
Wheatley, 1999]. The context of a module is the specifi c use of that module. For example,
module m is used to compute the square root of a double-precision integer. A key point in

sch76183_ch07_183-224.indd 186sch76183_ch07_183-224.indd 186 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 187

C/SD is that the name assigned a module is its operation and not its logic or its context.
Therefore, in C/SD, module m should be named compute_square_root; 1 its logic and its
context are irrelevant from the viewpoint of its name.

 7.2 Cohesion
 Myers [1978b] defi ned seven categories or levels of cohesion. In the light of modern theo-
retical computer science, Myers’s fi rst two levels need to be interchanged because, as will
be shown, informational cohesion supports reuse more strongly than functional cohesion.
The resulting ranking is shown in Figure 7.4 . This is not a linear scale of any sort. It is
merely a relative ranking, a way of determining which types of cohesion are high (good)
and which are low (bad).
 To understand what constitutes a module with high cohesion, it is necessary to start at
the other end and consider the lower cohesion levels.

 7.2.1 Coincidental Cohesion
 A module has coincidental cohesion if it performs multiple, completely unrelated oper-
ations. An example of a module with coincidental cohesion is a module named print_the_
next_line, reverse_the_string_of_characters_comprising_the_second_argument,
add_7_to_the_fi fth_argument, convert_the_fourth_argument_to_fl oating_point.
An obvious question is, How can such modules possibly arise in practice? The most com-
mon cause is as a consequence of rigidly enforcing rules such as “every module shall
consist of between 35 and 50 executable statements.” If a software organization insists
that modules must be neither too big nor too small, then two undesirable things happen.
First, two or more otherwise ideal smaller modules are lumped together to create a larger
module with coincidental cohesion. Second, pieces hacked from well-designed modules
that management considers too large are combined, again resulting in modules with coin-
cidental cohesion.

 1 For added clarity, the underscore is used in function names like compute_square_root to highlight that the
structured paradigm is used in this and the following sections. When the object-oriented paradigm is used (from
Section 7.4.2 onward), the corresponding method would be named computeSquareRoot.

7. Informational cohesion (Good)

6. Functional cohesion

5. Communicational cohesion

4. Procedural cohesion

3. Temporal cohesion

2. Logical cohesion

1. Coincidental cohesion (Bad)

 FIGURE 7.4
 Levels of
cohesion.

sch76183_ch07_183-224.indd 187sch76183_ch07_183-224.indd 187 04/06/10 1:40 PM04/06/10 1:40 PM

188 Part A Software Engineering Concepts

 Why is coincidental cohesion so bad? Modules with coincidental cohesion suffer from
two serious drawbacks. First, such modules degrade the maintainability of the product,
both corrective maintenance and enhancement. From the viewpoint of trying to understand
a product, modularization with coincidental cohesion is worse than no modularization at
all [Shneiderman and Mayer, 1975]. Second, these modules are not reusable. It is extremely
unlikely that the module with coincidental cohesion in the fi rst paragraph of this section
could be reused in any other product.
 Lack of reusability is a serious drawback. The cost of building software is so great that
it is essential to try to reuse modules wherever possible. Designing, coding, document-
ing, and above all, testing a module are time consuming and hence costly processes. If an
existing well-designed, thoroughly tested, and properly documented module can be used in
another product, then management should insist that the existing module be reused. But
there is no way that a module with coincidental cohesion can be reused, and the money
spent to develop it can never be recouped. (Reuse is discussed in detail in Chapter 8 .)
 It is generally easy to rectify a module with coincidental cohesion—because it per-
forms multiple operations, break the module into smaller modules that each perform
one operation.

 7.2.2 Logical Cohesion
 A module has logical cohesion when it performs a series of related operations, one of
which is selected by the calling module. All the following are examples of modules with
logical cohesion.
 Example 1 Module new_operation, which is invoked as follows:

 function_code = 7;
 new_operation (function_code, dummy_1, dummy_2, dummy_3);
 // dummy_1, dummy_2, and dummy_3 are dummy variables,
 // not used if function_code is equal to 7

 In this example, new_operation is called with four arguments, but as stated in the comment
lines, three of them are not needed if function_code is equal to 7 . This degrades readability, with
the usual implications for maintenance, both corrective and enhancement.

 Example 2 An object that performs all input and output.

 Example 3 A module that edits insertions, deletions, and modifi cations of master fi le records.

 Example 4 A module with logical cohesion in an early version of OS/VS2 that performed 13 dif-
ferent operations; its interface contained 21 pieces of data [Myers, 1978b].

 Two problems occur when a module has logical cohesion. First, the interface is diffi cult
to understand (Example 1 is a case in point), and comprehensibility of the module as a
whole may suffer as a result. Second, the code for more than one operation may be inter-
twined, leading to severe maintenance problems. For instance, a module that performs all
input and output may be structured as shown in Figure 7.5 . If a new tape unit is installed, it
may be necessary to modify the sections numbered 1, 2, 3, 4, 6, 9, and 10. These changes
may adversely affect other forms of input–output, such as laser printer output, because the
laser printer is affected by changes to sections 1 and 3. This intertwined property is charac-
teristic of modules with logical cohesion. A further consequence of intertwining is that it is
diffi cult to reuse such a module in other products.

sch76183_ch07_183-224.indd 188sch76183_ch07_183-224.indd 188 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 189

 7.2.3 Temporal Cohesion
 A module has temporal cohesion when it performs a series of operations related in
time. An example of a module with temporal cohesion is one named open_old_master_
fi le, new_master_fi le, transaction_fi le, and print_fi le; initialize_sales_region_table;
read_fi rst_transaction_record_and_fi rst_old_master_fi le_record. In the bad old days
before C/SD, such a module would be called perform_initialization.
 The operations of this module are related weakly to one another but more strongly to
operations in other modules. Consider, for example, the sales_region_table . It is ini-
tialized in this module, but operations such as update_sales_region_table and print_
sales_region_table are located in other modules. Therefore, if the structure of the
 sales_region_table is changed, perhaps because the organization is expanding into areas
of the country where it previously had not done business, a number of modules have to be
changed. Not only is there more chance of a regression fault (a fault caused by a change
made to an apparently unrelated part of the product), but if the number of affected modules
is large, one or two modules are likely to be overlooked. It is much better to have all the
operations on the sales_region_table in one module, as described in Section 7.2.7. These
operations then can be invoked, when needed, by other modules. In addition, a module with
temporal cohesion is unlikely to be reusable in a different product.

 7.2.4 Procedural Cohesion
 A module has procedural cohesion if it performs a series of operations related by the
sequence of steps to be followed by the product. An example of a module with proce-
dural cohesion is read_part_number_from_database_and_update_repair_record_
on_maintenance_fi le .
 This clearly is better than temporal cohesion—at least the operations are related proce-
durally to one another. Even so, the operations are still weakly connected, and again the
module is unlikely to be reusable in another product. The solution is to break a module with
procedural cohesion into separate modules, each performing one operation.

1. Code for all input and output

2. Code for input only

3. Code for output only

4. Code for disk and tape I/O

5. Code for disk I/O

6. Code for tape I/O

7. Code for disk input

8. Code for disk output

9. Code for tape input

10. Code for tape output

37. Code for keyboard input

. .
 .

. .
 .

. .
 .

 FIGURE 7.5
 A module
that performs
all input and
output.

sch76183_ch07_183-224.indd 189sch76183_ch07_183-224.indd 189 04/06/10 1:40 PM04/06/10 1:40 PM

190 Part A Software Engineering Concepts

 7.2.5 Communicational Cohesion
 A module has communicational cohesion if it performs a series of operations related
by the sequence of steps to be followed by the product and if all the operations are per-
formed on the same data. Two examples of modules with communicational cohesion are
 update_record_in_database_and_write_ it _to_the_audit_trail , and calculate_new_
trajectory_and_send_ it _to_the_printer . This is better than procedural cohesion because
the operations of the module are more closely connected, but it still has the same drawback
as coincidental, logical, temporal, and procedural cohesion, namely, that the module can-
not be reused. Again the solution is to break such a module into separate modules, each
performing one operation.
 In passing, it is interesting to note that Dan Berry [personal communication, 1978] uses the
term fl owchart cohesion to refer to temporal, procedural, and communicational cohesion,
because the operations performed by such modules are adjacent in the product fl owchart.
The operations are adjacent in the case of temporal cohesion because they are performed
at the same time. They are adjacent in procedural cohesion because the algorithm requires
the operations to be performed in series. They are adjacent in communicational cohesion
because, in addition to being performed in series, the operations are performed on the same
data, and therefore it is natural that these operations should be adjacent in the fl owchart.

 7.2.6 Functional Cohesion
 A module that performs exactly one operation or achieves a single goal has functional
cohesion . Examples of such modules are get_temperature_of_furnace , compute_
orbital_of_electron , write_to_diskette , and calculate_sales_commission.
 A module with functional cohesion often can be reused because the one operation it
performs often needs to be performed in other products. A properly designed, thoroughly
tested, and well-documented module with functional cohesion is a valuable (economic and
technical) asset to any software organization and should be reused as often as possible.
However, as explained in Section 8.4, a module with functional cohesion is not self-
contained and independent, because it has to operate on data. If we wish to reuse a module
with functional cohesion, then we also have to reuse the data on which it is to operate. If the
data in the new product are not identical to those in the original, then either the data have
to be changed or the module with functional cohesion has to be changed. In other words,
contrary to what was claimed when C/SD was fi rst put forward in 1974, a module with
functional cohesion is by no means an ideal candidate for reuse.
 Maintenance is easier to perform on a module with functional cohesion. First, functional
cohesion leads to fault isolation. If it is clear that the temperature of the furnace is not being
read correctly, then the fault almost certainly is in module get_temperature_of_furnace.
Similarly, if the orbital of an electron is computed incorrectly, then the fi rst place to look is
in compute_orbital_of_electron.
 Once the fault has been localized to a single module, the next step is to make the required
changes. Because a module with functional cohesion performs only one operation, such a
module generally is easier to understand than a module with lower cohesion. This ease
in understanding also simplifi es the maintenance. Finally, when the change is made, the
chance of that change affecting other modules is slight, especially if the coupling between
modules is low (Section 7.3).

sch76183_ch07_183-224.indd 190sch76183_ch07_183-224.indd 190 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 191

 Functional cohesion also is valuable when a product has to be extended. For example,
suppose that a personal computer has a 120-gigabyte hard drive but the manufacturer now
wishes to market a more powerful model of the computer with a 240-gigabyte hard drive
instead. Reading through the list of modules, the maintenance programmer fi nds a module
named write_to_hard_drive. The obvious thing to do is to replace that module with a new
one called write_to_larger_hard_drive.
 In passing, it should be pointed out that the three “modules” of Figure 7.2 have functional
cohesion, and the arguments made in Section 7.1 for favoring the design of Figure 7.2 over
that of Figure 7.3 are precisely those made in the preceding discussion for favoring func-
tional cohesion.

 7.2.7 Informational Cohesion
 A module has informational cohesion if it performs a number of operations, each with
its own entry point, with independent code for each operation, all performed on the same
data structure. An example is given in Figure 7.6 . This does not violate the tenets of struc-
tured programming; each piece of code has exactly one entry point and one exit point.
A major difference between logical cohesion and informational cohesion is that the vari-
ous operations of a module with logical cohesion are intertwined, whereas in a module
with informational cohesion the code for each operation is completely independent.
 A module with informational cohesion is an example of separation of concerns; see
Section 5.4.
 A module with informational cohesion essentially is an implementation of an abstract
data type, as explained in Section 7.5, and all the advantages of using an abstract data type
are gained when a module with informational cohesion is used. Because an object essen-
tially is an instantiation (instance) of an abstract data type (Section 7.7), an object, too, is a
module with informational cohesion. 2

 7.2.8 Cohesion Example
 For further insight into cohesion, consider the example shown in Figure 7.7 . Two modules in
particular merit comment. It may seem somewhat surprising that the modules initialize_ sums_
and_open_fi les and close_fi les_and_print_average_temperatures have been labeled as

Entry

Entry

Entry

Exit

Exit

Exit

initialize_sales_region_table

update_sales_region_table

print_sales_region_table

Definition of
sales_region_table

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

 FIGURE 7.6
 A module with
informational
cohesion.

 2 The discussion in this paragraph assumes that the abstract data type or object is well designed. If the methods
of an object perform completely unrelated operations, then the object has coincidental cohesion.

sch76183_ch07_183-224.indd 191sch76183_ch07_183-224.indd 191 04/06/10 1:40 PM04/06/10 1:40 PM

192 Part A Software Engineering Concepts

having coincidental cohesion rather than temporal cohesion. First, consider module initialize_
sums_and_open_fi les. It performs two operations related in time, in that both have to be
done before any calculations can be performed, and therefore it seems that the module has
temporal cohesion. Although the two operations of initialize_sums_and_open_fi les indeed
are performed at the beginning of the calculation, another factor is involved. Initializing
the sums is related to the problem, but opening fi les is a hardware issue that has nothing
to do with the problem itself. The rule when two or more different levels of cohesion can be
assigned to a module is to assign the lowest possible level. Consequently, because initialize_
sums_and_open_fi les could have either temporal or coincidental cohesion, the lower of
the two levels of cohesion (coincidental) is assigned that module. That also is the reason
why close_fi les_and_print_average_temperatures has coincidental cohesion.

 7.3 Coupling

 Recall that cohesion is the degree of interaction within a module. Coupling is the degree
of interaction between two modules. As before, a number of levels can be distinguished, as
shown in Figure 7.8 . To highlight good coupling, the various levels are described in order
from the worst to the best.

 7.3.1 Content Coupling
 Two modules are content coupled if one directly references the contents of the other. All
the following are examples of content coupling:
 Example 1. Module p modifi es a statement of module q .

initialize_sums_
and_

open_files

create_new_
temperature_

record

compute_average_
daily_temperatures_

at_various_sites

store_
temperature_

record

close_files_and_
print_average_
temperatures

read_in_site_
time_and_

temperature

store_record_
for_specific_

site

edit_site_time_
or_temperature_

field

Coincidental Functional CoincidentalFunctional

Functional Functional

Logical

Functional

 FIGURE 7.7 A module interconnection diagram showing the cohesion of each module.

sch76183_ch07_183-224.indd 192sch76183_ch07_183-224.indd 192 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 193

 This practice is not restricted to assembly language programming. The alter verb, now
mercifully removed from COBOL, did precisely that: It modifi ed another statement.
 Example 2. Module p refers to local data of module q in terms of some numerical displacement
within q .

 Example 3. Module p branches to a local label of module q .

 Suppose that module p and module q are content coupled. One of the many dangers is
that almost any change to q , even recompiling q with a new compiler or assembler, requires
a change to p . Furthermore, it is impossible to reuse module p in some new product with-
out reusing module q as well. When two modules are content coupled, they are inextricably
interlinked.

 7.3.2 Common Coupling
 Two modules are common coupled if both have access to the same global data. The
situation is depicted in Figure 7.9 . Instead of communicating with one another by passing
arguments, modules cca and ccb can access and change the value of global_variable. The
most common situation in which this arises is when both cca and ccb have access to the
same database and can read and write the same record. For common coupling, it is neces-
sary that both modules can read and write to the database; if the database access mode is
read-only, then this is not common coupling. But there are other ways of implementing
common coupling, including use of the C++ or Java modifi er public .
 This form of coupling is undesirable for a number of reasons:

 1. It contradicts the spirit of structured programming in that the resulting code is virtu-
ally unreadable. Consider the code fragment shown in Figure 7.10 . If global_variable
is a global variable, then its value may be changed by module_3 , module_4 , or any
module called by them. Determining under what conditions the loop terminates is a

 FIGURE 7.8
 Levels of
coupling.

5. Data coupling (Good)

4. Stamp coupling

3. Control coupling

2. Common coupling

1. Content coupling (Bad)

global_variable

cca ccb

 FIGURE 7.9 An example of common coupling.

 whlle (global_variable �� 0)
 {
 if (argument_xyz � 25)
 module_3 ();
 else
 module_4 ();
 }

 FIGURE 7.10 A pseudocode
fragment refl ecting common
coupling.

sch76183_ch07_183-224.indd 193sch76183_ch07_183-224.indd 193 04/06/10 1:40 PM04/06/10 1:40 PM

194 Part A Software Engineering Concepts

nontrivial question; if a run-time failure occurs, it may be diffi cult to reconstruct what
happened, because any of a number of modules could have changed the value of global_
variable .

 2. Consider the call edit_this_transaction (record_7) . If there is common coupling, this
call could change not just the value of record_7 but any global variable that can be
accessed by that module. In short, the entire module must be read to fi nd out precisely
what it does.

 3. If a maintenance change is made in one module to the declaration of a global variable,
then every module that can access that global variable has to be changed. Furthermore,
all changes must be consistent.

 4. Another problem is that a common-coupled module is diffi cult to reuse because the
identical list of global variables has to be supplied each time the module is reused.

 5. Common coupling possesses the unfortunate property that the number of instances of
common coupling between a module p and the other modules in a product can change
drastically, even if module p itself never changes; this is termed clandestine common
coupling [Schach et al., 2003a]. For example, if both module p and module q can mod-
ify global variable gv , then there is one instance of common coupling between module p
and the other modules in the software product. But if 10 new modules are designed and
implemented, all of which can modify global variable gv , then the number of instances
of common coupling between module p and the other modules increases to 11, even
though module p itself has not been changed in any way. For example, between 1993
and 2000, there were nearly 400 releases of Linux; 5332 versions of the 17 Linux kernel
modules were unchanged between successive releases. In more than half of the 5332
versions, the number of instances of common coupling between each of those kernel
modules and the rest of Linux increased or decreased, even though the kernel module
itself did not change. Considerably more modules exhibited clandestine common cou-
pling in an upward direction (2482) than downward (379) [Schach et al., 2003a].

 6. This problem is potentially the most dangerous. As a consequence of common coupling,
a module may be exposed to more data than it needs. This defeats any attempts to control
data access and ultimately may lead to computer crime. Many types of computer crime
need some form of collusion. Properly designed software should not allow any one
programmer access to all the data and modules needed to commit a crime. For example,
a programmer writing the check printing part of a payroll product needs to have access
to employee records; but, in a well-designed product, such access is exclusively in read-
only mode, preventing the programmer from making unauthorized changes to his or her
monthly salary. To make such changes, the programmer has to fi nd another dishonest
employee, one with access to the relevant records in update mode. But if the product has
been badly designed and every module can access the payroll database in update mode,
then an unscrupulous programmer acting alone can make unauthorized changes to any
record in the database.

 Although we hope that these arguments will dissuade all but the most daring of readers
from using common coupling, in some situations, common coupling might seem to be pref-
erable to the alternatives. Consider, for example, a product that performs computer-aided
design of petroleum storage tanks [Schach and Stevens-Guille, 1979]. A tank is specifi ed

sch76183_ch07_183-224.indd 194sch76183_ch07_183-224.indd 194 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 195

by a large number of descriptors such as height, diameter, maximum wind speed to which
the tank will be subjected, and insulation thickness. The descriptors have to be initialized
but do not change in value thereafter, and most of the modules in the product need access to
the values of the descriptors. Suppose that there are 55 tank descriptors. If all these descrip-
tors are passed as arguments to every module, then the interface to each module will consist
of at least 55 arguments and the potential for faults is huge. Even in a language like Ada,
which requires strict type checking of arguments, two arguments of the same type still can
be interchanged, a fault that would not be detected by a type checker.
 One solution is to put all the tank descriptors in a database and design the product in such
a way that one module initializes the values of all the descriptors, whereas all the other mod-
ules access the database exclusively in read-only mode. However, if the database solution is
impractical, perhaps because the specifi ed implementation language cannot be interfaced
with the available database management system, then an alternative is to use common cou-
pling but in a controlled way. That is, the product should be designed so that the 55 descrip-
tors are initialized by one module, but none of the other modules changes the value of a
descriptor. This programming style has to be enforced by management, unlike the database
solution, where enforcement is imposed by the software. Therefore, in situations where there
is no good alternative to the use of common coupling, close supervision by management can
reduce some of the risks. A better solution, however, is to obviate the presence of common
coupling by using information hiding, as described in Section 7.6.

 7.3.3 Control Coupling
 Two modules are control coupled if one passes an element of control to the other mod-
ule; that is, one module explicitly controls the logic of the other. For example, control is
passed when a function code is passed to a module with logical cohesion (Section 7.2.2).
Another example of control coupling is when a control switch is passed as an argument.
 If module p calls module q and q passes back a fl ag to p that says, “I am unable to com-
plete my task,” then q is passing data . But if the fl ag means, “I am unable to complete my
task; accordingly, display error message ABC123 ,” then p and q are control coupled. In other
words, if q passes information back to p and p decides what action to take as a consequence of
receiving that information, then q is passing data. But, if q not only passes back information
but also informs module p as to what action p must take, then control coupling is present.
 The major diffi culty that arises as a consequence of control coupling is that the two
modules are not independent; module q , the called module, has to be aware of the internal
structure and logic of module p . As a result, the possibility of reuse is reduced. In addi-
tion, control coupling generally is associated with modules that have logical cohesion and
includes the diffi culties associated with logical cohesion.

 7.3.4 Stamp Coupling
 In some programming languages, only simple variables, such as part_number , satellite_
altitude, or degree_of_multiprogramming, can be passed as arguments. But many lan-
guages also support passing data structures, such as records or arrays, as arguments. In such
languages, valid arguments include part_record , satellite_coordinates, or segment_table .
Two modules are stamp coupled if a data structure is passed as an argument, but the called
module operates on only some of the individual components of that data structure.

sch76183_ch07_183-224.indd 195sch76183_ch07_183-224.indd 195 04/06/10 1:40 PM04/06/10 1:40 PM

 Consider, for example, the call calculate_withholding (employee_record). It is
not clear, without reading the entire calculate_withholding module, which fi elds of the
 employee_record the module accesses or changes. Passing the employee’s salary obvi-
ously is essential for computing the withholding, but it is diffi cult to see how the employee’s
home telephone number is needed for this purpose. Instead, only those fi elds that it actually
needs for computing the withholding should be passed to module calculate_withholding .
Not only is the resulting module, and particularly its interface, easier to understand, it is
likely to be reusable in a variety of other products that also need to compute withholding.
(See Just in Case You Wanted to Know Box 7.2 for another perspective on this.)
 Perhaps even more important, because the call calculate_withholding (employee_
record) passes more data than strictly necessary, the problems of uncontrolled data access,
and conceivably computer crime, once again arise. This issue is discussed in Section 7.3.2.
 Nothing is at all wrong with passing a data structure as an argument, provided all
the components of the data structure are used by the called module. For example, calls
like invert_matrix (original_matrix, inverted_matrix) or print_inventory_record
(warehouse_record) pass a data structure as an argument, but the called modules oper-
ate on all the components of that data structure. Stamp coupling is present when a data
structure is passed as an argument but only some of the components are used by the
called module.
 A subtle form of stamp coupling can occur in languages like C or C++ when a pointer to a
record is passed as an argument. Consider the call check_altitude (pointer_to_position_
record). At fi rst sight, what is being passed is a simple variable. But the called module has
access to all the fi elds in the position_record pointed to by pointer_to_position_record .
Because of the potential problems, it is a good idea to examine the coupling closely when-
ever a pointer is passed as an argument.

 7.3.5 Data Coupling
 Two modules are data coupled if all arguments are homogeneous data items. That is,
every argument is either a simple argument or a data structure in which all elements are
used by the called module. Examples include display_time_of_arrival (fl ight_number) ,

 Just in Case You Wanted to Know Box 7.2
 Passing four or fi ve different fi elds to a module may be slower than passing a complete
record. This situation leads to a larger issue: What should be done when optimization issues
(such as response time or space constraints) clash with what is generally considered to be
good software engineering practice?
 In my experience, this question frequently turns out to be irrelevant. The recommended
approach may slow down the response time, but by only a millisecond or so, far too small
to be detected by users. Therefore, in accordance with Knuth’s [1974] First Law of Opti-
mization: Don’t! —rarely is there a need for optimization of any kind, including for perfor-
mance reasons.
 But what if optimization really is required? In this case, Knuth’s Second Law of Opti-
mization applies. The Second Law (labeled for experts only) is Not yet! In other words, fi rst
complete the entire product using appropriate software engineering techniques. Then, if
optimization really is required, make only the necessary changes, meticulously document-
ing what is being changed and why. If at all possible, this optimization should be done by
an experienced software engineer.

sch76183_ch07_183-224.indd 196sch76183_ch07_183-224.indd 196 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 197

 compute_product (fi rst_number, second_number, result), and determine_job_with_
highest_priority (job_queue) .
 Data coupling is an example of separation of concerns—see Section 5.4.
 Data coupling is a desirable goal. To put it in a negative way, if a product exhibits data cou-
pling exclusively, then the diffi culties of content, common, control, and stamp coupling are not
present. From a more positive viewpoint, if two modules are data coupled, then maintenance is
easier, because a change to one module is less likely to cause a regression fault in the other.
 The following example clarifi es certain aspects of coupling.

 7.3.6 Coupling Example
 Consider the example shown in Figure 7.11 . The numbers on the arcs represent interfaces
that are defi ned in greater detail in Figure 7.12 . For example, when module p calls module
 q (interface 1), it passes one argument, the type of the aircraft. When q returns control to
 p , it passes back a status fl ag. Using the information in Figures 7.11 and 7.12 , the coupling
between every pair of modules can be deduced. The results are shown in Figure 7.13 .

 FIGURE 7.11
 Module
interconnection
diagram for
a coupling
example.

p

q

s

u

r

t

p, t, and u access
the same database
in update mode.

1

2

3 4

5 6

 FIGURE 7.12
 The interface
description for
Figure 7.11.

 Number In Out

 1 aircraft_type status_fl ag
 2 list_of_aircraft_parts —
 3 function_code —
 4 list_of_aircraft_parts —
 5 part_number part_manufacturer
 6 part_number part_name

 FIGURE 7.13
 Coupling
between pairs
of modules of
Figure 7.11.

 q r s t u

 p Data — Data or Common Common
 stamp
 q Control Data or — —
 stamp
 r — Data —
 s — Data
 t Common

{
{

sch76183_ch07_183-224.indd 197sch76183_ch07_183-224.indd 197 04/06/10 1:40 PM04/06/10 1:40 PM

198 Part A Software Engineering Concepts

 Some of the entries in Figure 7.13 are obvious. For instance, the data coupling between
 p and q (interface 1 in Figure 7.11), between r and t (interface 5), and between s and u
(interface 6) is a direct consequence of the fact that a simple variable is passed in each
direction. The coupling between p and s (interface 2) is data coupling if all the elements of
the list of parts passed from p to s are used or updated, but it is stamp coupling if s operates
on only certain elements of the list. The coupling between q and s (interface 4) is similar.
Because the information in Figures 7.11 and 7.12 does not completely describe the func-
tion of the various modules, there is no way of determining whether the coupling is data or
stamp. The coupling between q and r (interface 3) is control coupling, because a function
code is passed from q to r .
 Perhaps somewhat surprising are the three entries marked common coupling in Figure
7.13 . The three module pairs that are farthest apart in Figure 7.11 — p and t , p and u,
and t and u —at fi rst appear not to be coupled in any way. After all, no interface connects
them, so the very idea of coupling between them, let alone common coupling, requires
some explanation. The answer lies in the annotation on the right-hand side of Figure 7.11 ,
namely, that p , t, and u all access the same database in update mode. The result is that a
number of global variables can be changed by all three modules, and hence they are pair-
wise common coupled.

 7.3.7 The Importance of Coupling
 Coupling is an important metric. If module p is tightly coupled to module q , then a change
to module p may require a corresponding change to module q . If this change is made, as
required, during integration or postdelivery maintenance, then the resulting product func-
tions correctly; however, progress at that stage is slower than would have been the case had
the coupling been looser. On the other hand, if the required change is not made to module
 q at that time, then the fault manifests itself later. In the best case, the compiler or linker
informs the team right away that something is amiss or a failure will occur while testing the
change to module p . What usually happens, however, is that the product fails either during
subsequent integration testing or after the product has been installed on the client’s com-
puter. In both cases, the failure occurs after the change to module p has been completed.
There no longer is any apparent link between the change to module p and the overlooked
corresponding change to module q . The fault therefore may be hard to fi nd.
 It has been shown that the stronger (more undesirable) the coupling, the greater the
fault-proneness [Briand, Daly, Porter, and Wüst, 1998]. A major reason underlying this
phenomenon is that dependencies within the code lead to regression faults. Furthermore,
if a module is fault-prone, then it will have to undergo repeated maintenance, and these
frequent changes are likely to compromise its maintainability. Furthermore, these frequent
changes will not always be restricted to the fault-prone module itself; it is not uncommon to
have to modify more than one module to fi x a single fault. Accordingly, the fault-proneness
of one module can adversely affect the maintainability of a number of other modules. In
other words, it is easy to believe that strong coupling can have a deleterious effect on main-
tainability [Yu, Schach, Chen, and Offutt, 2004].
 Given that a design in which modules have high cohesion and low coupling is a good
design, the obvious question is, How can such a design be achieved? Because this chap-
ter is devoted to theoretical concepts surrounding design, the answer to the question is
presented in Chapter 14 . In the meantime, those qualities that identify a good design are

sch76183_ch07_183-224.indd 198sch76183_ch07_183-224.indd 198 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 199

examined further and refi ned. For convenience, the key defi nitions in this chapter appear
in Figure 7.14 , together with the section in which each defi nition appears.

 7.4 Data Encapsulation
 Consider the problem of designing an operating system for a large mainframe computer.
According to the specifi cations, any job submitted to the computer is classifi ed as high pri-
ority, medium priority, or low priority. The task of the operating system is to decide which
job to load into memory next, which of the jobs in memory gets the next time slice and how
long that time slice should be, and which of the jobs that require disk access has highest
priority. In performing this scheduling, the operating system must consider the priority of
each job; the higher the priority, the sooner that job should be assigned the resources of
the computer. One way of achieving this is to maintain separate job queues for each job-
priority level. The job queues have to be initialized, and facilities must exist for adding a
job to a job queue when the job requires memory, CPU time, or disk access as well as for
removing a job from a queue when the operating system decides to allocate the required
resource to that job.
 To simplify matters, consider the restricted problem of batch jobs queuing up for memory
access. There are three queues for incoming batch jobs, one for each priority level. When sub-
mitted by a user, a job is added to the appropriate queue; and when the operating system decides
that a job is ready to be run, it is removed from its queue and memory is allocated to it.
 This portion of the product can be built in a number of different ways. One possible
design, shown in Figure 7.15 , depicts modules for manipulating one of the three job queues.
A C-like pseudocode is used to highlight some of the problems that can arise in the classical
paradigm. In Section 7.7, these problems are solved using the object-oriented paradigm.
 Consider Figure 7.15 . Function initialize_job_queue in module m_1 is responsible for
the initialization of the job queue, and functions add_job_to_queue and remove_job_
from_queue in modules m_2 and m_3, respectively, are responsible for the addition and

Abstract data type: a data type together with the operations performed on
instantiations of that data type (Section 7.5)

Abstraction: a means of achieving stepwise refinement by suppressing unnecessary
details and accentuating relevant details (Section 7.4.1)

Class: an abstract data type that supports inheritance (Section 7.7)

Cohesion: the degree of interaction within a module (Section 7.1)

Coupling: the degree of interaction between two modules (Section 7.1)

Data encapsulation: a data structure together with the operations performed on
that data structure (Section 7.4)

Encapsulation: the gathering together into one unit of all aspects of the real-world
entity modeled by that unit (Section 7.4.1)

Information hiding: structuring the design so that the resulting implementation
details are hidden from other modules (Section 7.6)

Object: an instantiation of a class (Section 7.7)

 FIGURE 7.14
 Key defi nitions
of this chapter,
and the sections
in which they
appear.

sch76183_ch07_183-224.indd 199sch76183_ch07_183-224.indd 199 04/06/10 1:40 PM04/06/10 1:40 PM

200 Part A Software Engineering Concepts

deletion of jobs. Module m_123 contains invocations of all three functions in order to
manipulate the job queue. To concentrate on data encapsulation, issues such as underfl ow
(trying to remove a job from an empty queue) and overfl ow (trying to add a job to a full
queue) have been suppressed here, as well as in the remainder of this chapter.
 The modules of the design of Figure 7.15 have low cohesion, because operations
on the job queue are spread all over the product. If a decision is made to change the
way job_queue is implemented (for example, as a linked list of records instead of as a

Definition of
job_queue

{

}

add_job_to_queue (job j)

m_2

Definition of
job_queue

{

}

remove_job_from_queue (job j)

m_3

initialize_job_queue ();

remove_job_from_queue (job_b);

add_job_to_queue (job_a);

job job_a, job_b;
{

}

Definition of
job_queue

m_123

Definition of
job_queue

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

{

}

initialize_job_queue ()

m_1 FIGURE 7.15
 One possible
design of the job
queue portion
of the operating
system.

sch76183_ch07_183-224.indd 200sch76183_ch07_183-224.indd 200 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 201

linear list), then modules m_1 , m_2 , and m_3 have to be drastically revised. Module
 m_123 also has to be changed; at the very least, the data structure defi nition has to be
changed.
 Now suppose that the design of Figure 7.16 is chosen instead. The module on the
right-hand side of the fi gure has informational cohesion (Section 7.2.7), in that it per-
forms a number of operations on the same data structure. Each operation has its own entry
point and exit point and independent code. Module m_encapsulation in Figure 7.16 is
an implementation of data encapsulation , that is, a data structure, in this case the job
queue, together with the operations to be performed on that data structure. Again, this is an
example of separation of concerns—see Section 5.4.
 An obvious question to ask at this point is, What is the advantage of designing a product
using data encapsulation? This will be answered in two ways, from the viewpoint of devel-
opment and from the viewpoint of maintenance.

 7.4.1 Data Encapsulation and Development
 Data encapsulation is an example of abstraction . Returning to the job queue example, a
data structure (the job queue) has been defi ned, together with three associated operations
(initialize the job queue, add a job to the queue, and delete a job from the queue). The
developer can conceptualize the problem at a higher level, the level of jobs and job queues,
rather than at the lower level of records or arrays.
 The basic theoretical concept behind abstraction, once again, is stepwise refi nement.
First, a design for the product is produced in terms of high-level concepts such as jobs, job

initialize_job_queue ();

remove_job_from_queue (job_b);

add_job_to_queue (job_a);

job job_a, job_b;
{

}

m_123

{

}

initialize_job_queue ()

{

}

add_job_to_queue (job j)

m_encapsulation

Implementation of
job_queue

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

{

}

remove_job_from_queue (job j)

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

 FIGURE 7.16
 A design of
the job queue
portion of
the operating
system
using data
encapsulation.

sch76183_ch07_183-224.indd 201sch76183_ch07_183-224.indd 201 04/06/10 1:40 PM04/06/10 1:40 PM

202 Part A Software Engineering Concepts

queues, and the operations performed on job queues. At this stage, it is entirely irrelevant
how the job queue is implemented. Once a complete high-level design has been obtained,
the second step is to design the lower-level components in terms of which the data struc-
ture and operations on the data structure are implemented. In C, for example, the data
structure (the job queue) is implemented in terms of records (structures) or arrays; the
three operations (initialize the job queue, add a job to the queue, and remove a job from
the queue) are implemented as functions. The key point is that, while this lower level is
being designed, the designer totally ignores the intended use of the jobs, job queue, and
operations. Therefore, during the fi rst step, the existence of the lower level is assumed,
even though at this stage no thought has been given to that level; during the second step
(the design of the lower level), the existence of the higher level is ignored. At the higher
level, the concern is with the behavior of the data structure, the job queue; at the lower
level, the implementation of that behavior is the primary concern. Of course, a larger
product has many levels of abstraction.
 Different types of abstraction exist. Consider Figure 7.16 . That fi gure has two types of
abstraction. Data encapsulation (that is, a data structure together with the operations to be
performed on that data structure) is an example of data abstraction ; the C functions
themselves are an example of procedural abstraction . Abstraction , to summarize, sim-
ply is a means of achieving stepwise refi nement by suppressing unnecessary details and
accentuating relevant details. Encapsulation now can be defi ned as the gathering into one
unit of all aspects of the real-world entity modeled by that unit; this was termed conceptual
independence in Section 1.9.
 Data abstraction allows the designer to think at the level of the data structure and the
operations performed on it and only later be concerned with the details of how the data
structure and operations are implemented. Turning now to procedural abstraction, con-
sider the result of defi ning a C function, initialize_job_queue . The effect is to extend
the language by supplying the developer with another function, one that is not part of the
language as originally defi ned. The developer can use initialize_job_queue in the same
way as sqrt or abs .
 The implications of procedural abstraction for design are as powerful as those of data
abstraction. The designer can conceptualize the product in terms of high-level operations.
These operations can be defi ned in terms of lower-level operations, until the lowest level
is reached. At this level, the operations are expressed in terms of the predefi ned constructs
of the programming language. At each level, the designer is concerned only with express-
ing the product in terms of operations appropriate to that level. The designer can ignore
the level below, which will be handled at the next level of abstraction, that is, the next
refi nement step. The designer also can ignore the level above, a level irrelevant from the
viewpoint of designing the current level.

 7.4.2 Data Encapsulation and Maintenance
 Approaching data encapsulation from the viewpoint of maintenance, a basic issue is to iden-
tify the aspects of a product likely to change and design the product to minimize the effects
of future changes. Data structures as such are unlikely to change; if a product includes job
queues, for instance, then future versions are likely to incorporate them. At the same time,
the specifi c way that job queues are implemented may well change, and data encapsulation
provides a means of coping with that change.

sch76183_ch07_183-224.indd 202sch76183_ch07_183-224.indd 202 04/06/10 1:40 PM04/06/10 1:40 PM

 Figure 7.17 depicts an implementation in C++ of the job queue data structure as a
 JobQueueClass ; Figure 7.18 is the corresponding Java implementation. (Just in Case
You Wanted to Know Box 7.3 has comments on the programming style in Figures 7.17
and 7.18 , as well as in the subsequent code examples in this chapter.) In Figures 7.17 and
 7.18 , the queue is implemented as an array of up to 25 job numbers; the fi rst element is
 queue[0] and the 25th is queue[24] . Each job number is represented as an integer. The
reserved word public allows queueLength and queue to be visible everywhere in the
operating system. The resulting common coupling is extremely poor practice and is cor-
rected in Section 7.6.
 Because they are public , the methods in JobQueueClass may be invoked from any-
where in the operating system. In particular, Figure 7.19 shows how JobQueueClass
may be used by method queueHandler using C++, and Figure 7.20 is the correspond-
ing Java implementation. Method queueHandler invokes methods initializeJobQueue,
addJobToQueue , and removeJobFromQueue of JobQueueClass without having any
knowledge as to how the job queue is implemented; the only information needed to use
 JobQueueClass is interface information regarding the three methods.
 Now suppose that the job queue currently is implemented as a linear list of job numbers,
but a decision has been made to reimplement it as a two-way linked list of job records. Each
job record will have three components: the job number as before, a pointer to the job record
in front of it in the linked list, and a pointer to the job record behind it. This is specifi ed in
C++ as shown in Figure 7.21 and in Java as shown in Figure 7.22 . What changes must be
made to the software product as a whole as a consequence of this modifi cation to the way
the job queue is implemented? In fact, only JobQueueClass itself has to be changed.
 Figure 7.23 shows the outline of a C++ implementation of JobQueueClass using the
two-way linked list of Figure 7.21 . Implementation details have been suppressed to high-
light that the interface between JobQueueClass and the rest of the product (including
method queueHandler) has not changed (but see Problem 7.17). That is, the three methods

 Just in Case You Wanted to Know Box 7.3
 I deliberately implemented the code examples of Figures 7.17 and 7.18 as well as the sub-
sequent code examples in this chapter in such a way as to highlight data abstraction issues
at the cost of good programming practice. For example, the number 25 in the defi nition
of JobQueueClass in Figures 7.17 and 7.18 certainly should be coded as a parameter, that
is, as a const in C++ or a public static fi nal variable in Java. Also, for simplicity, I omitted
checks for conditions such as underfl ow (trying to remove an item from an empty queue) or
overfl ow (trying to add an item to a full queue). In any real product, it is absolutely essential
to include such checks.
 In addition, language-specifi c features have been minimized. For instance, a C++ pro-
grammer usually uses the construct

 queueLength++;

 to increment the value of queueLength by 1 , rather than

 queueLength = queueLength + 1;

 Similarly, use of constructors and destructors has been minimized.
 In summary, I implemented the code in this chapter for pedagogic purposes only. It
should not be utilized for any other purpose.

sch76183_ch07_183-224.indd 203sch76183_ch07_183-224.indd 203 04/06/10 1:40 PM04/06/10 1:40 PM

204 Part A Software Engineering Concepts

 FIGURE 7.17
 A C++
implementation
of JobQueue-
Class .
(Problems
caused by
 public
attributes will
be solved in
Section 7.6.)

 //
// Warning:
// This code has been implemented in such a way as to be accessible to readers
// who are not C ++ experts, as opposed to using good C ++ style. Also, vital
// features such as checks for overfl ow and underfl ow have been omitted for simplicity.
// See Just in Case You Wanted to Know Box 7.3 for details.
//
 class JobQueueClass
{
 // attributes
 public:
 int queueLength; // length of job queue
 int queue[25]; // queue can contain up to 25 jobs

 // methods
 public:
 void initializeJobQueue ()
 /*
 * an empty job queue has length 0
 */
 {
 queueLength = 0;
 }

 void addJobToQueue (int jobNumber)
 /*
 * add the job to the end of the job queue
 */
 {
 queue[queueLength] = jobNumber;
 queueLength = queueLength + 1;
 }

 int removeJobFromQueue ()
 /*
 * set jobNumber equal to the number of the job stored at the head of the queue,
 * remove the job at the head of the job queue, move up the remaining jobs,
 * and return jobNumber
 */
 {
 int jobNumber = queue[0];
 queueLength = queueLength − 1;
 for (int k = 0; k < queueLength; k++)
 queue[k] = queue[k + 1];
 return jobNumber;
 }
}// class JobQueueClass

sch76183_ch07_183-224.indd 204sch76183_ch07_183-224.indd 204 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 205

 FIGURE 7.18
 A Java
implementation
of Class
 JobQueue .
(Problems
caused by
 public
attributes will
be solved in
Section 7.6.)

 //
// Warning:
// This code has been implemented in such a way as to be accessible to readers
// who are not Java experts, as opposed to using good Java style.
// Also, vital features such as checks for overfl ow and underfl ow
// have been omitted for simplicity.
// See Just in Case You Wanted to Know Box 7.3 for details.
//
 class JobQueueClass
{
 // attributes
 public int queueLength; // length of job queue
 public int queue[] = new int [25]; // queue can contain up to 25 jobs

 // methods
 public void initializeJobQueue ()
 /*
 * an empty job queue has length 0
 */
 {
 queueLength = 0;
 }

 public void addJobToQueue (int jobNumber)
 /*
 * add the job to the end of the job queue
 */
 {
 queue[queueLength] = jobNumber;
 queueLength = queueLength + 1;
 }

 public int removeJobFromQueue ()
 /*
 * set jobNumber equal to the number of the job stored at the head of the queue,
 * remove the job at the head of the job queue, move up the remaining jobs,
 * and return jobNumber
 */
 {
 int jobNumber = queue[0];
 queueLength = queueLength − 1;
 for (int k = 0; k < queueLength; k++)
 queue[k] = queue[k + 1];
 return jobNumber;
 }
}// class JobQueueClass

sch76183_ch07_183-224.indd 205sch76183_ch07_183-224.indd 205 04/06/10 1:40 PM04/06/10 1:40 PM

206 Part A Software Engineering Concepts

 initializeJobQueue , addJobToQueue , and removeJobFromQueue are invoked in
exactly the same way as before. Specifi cally, when method addJobToQueue is invoked,
it still passes an integer value , and removeJobFromQueue still returns an integer value,
even though the job queue itself has been implemented in an entirely different way.
Consequently, the source code of method queueHandler (Figure 7.19) need not be changed
at all. Accordingly, data encapsulation supports the implementation of data abstraction in a
way that simplifi es maintenance and reduces the chance of a regression fault.

 FIGURE 7.19 A C++ implementation of
 queueHandler .

 class SchedulerClass
{
 . . .
 public:
 void queueHandler ()
 {
 int jobA, jobB;
 JobQueueClass jobQueueJ;

 // various statements
 jobQueueJ.initializeJobQueue ();
 // more statements
 jobQueueJ.addJobToQueue (jobA);
 // still more statements
 jobB = jobQueueJ.removeJobFromQueue ();
 // further statements
 }// queueHandler
 . . .
}// class SchedulerClass

 FIGURE 7.20 A Java implementation of queueHandler.

 class SchedulerClass
{
 . . .
 public void queueHandler ()
 {
 int jobA, jobB;
 JobQueueClass jobQueueJ; = new JobQueueClass ();

 // various statements
 jobQueueJ.initializeJobQueue ();
 // more statements
 jobQueueJ.addJobToQueue (jobA);
 // still more statements
 jobB = jobQueueJ.removeJobFromQueue ();
 // further statements
 }// queueHandler
 . . .
}// class SchedulerClass

 FIGURE 7.21 A C++ implementation of a two-way linked JobRecordClass .
(Problems caused by public attributes will be solved in Section 7.6.)

 class JobRecordClass
{
 public :
 int jobNo; // number of the job (integer)
 JobRecordClass *inFront; // pointer to the job record in front
 JobRecordClass *inRear; // pointer to the job record behind
}// class JobRecordClass

 FIGURE 7.22 A Java implementation of a two-way linked JobRecordClass .
(Problems caused by public attributes will be solved in Section 7.6.)

 class JobRecordClass
{
 public int jobNo; // number of the job (integer)
 public JobRecordClass inFront; // reference to the job record in front
 public JobRecordClass inRear; // reference to the job record behind
} // class JobRecordClass

sch76183_ch07_183-224.indd 206sch76183_ch07_183-224.indd 206 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 207

 Comparing Figures 7.17 and 7.18 and Figures 7.19 and 7.20 , it is clear that, in these
instances, the differences between the C++ and Java implementations essentially are syn-
tactic. In the remainder of this chapter, we give only one implementation, together with a
description of the syntactic differences in the other implementation. Specifi cally, the rest of
the job queue code is in C++ and all the other code examples are in Java.

 7.5 Abstract Data Types
 Figure 7.17 (equivalently, Figure 7.18) is an implementation of a job queue class , that is,
a data type together with the operations to be performed on instantiations of that data type.
Such a construct is called an abstract data type .

 FIGURE 7.23
 Outline
of a C++
implementation
of JobQueue-
Class using a
two-way linked
list.

 class JobQueueClass
{
 public:
 JobRecordClass *frontOfQueue; // pointer to the front of the queue
 JobRecordClass *rearOfQueue; // pointer to the rear of the queue

 void initializeJobQueue ()
 {
 /*
 * initialize the job queue by setting frontOfQueue and rearOfQueue to NULL
 */
 }

 void addJobToQueue (int JobNumber)
 {
 /*
 * Create a new job record,
 * place jobNumber in its jobNo fi eld,
 * set its inFront fi eld to point to the current rearOfQueue
 * (thereby linking the new record to the rear of the queue),
 * and set its inRear fi eld to NULL.
 * Set the inRear fi eld of the record pointed to by the current rearOfQueue
 * to point to the new record (thereby setting up a two-way link), and
 * fi nally, set rearOfQueue to point to this new record.
 */
 }

 int removeJobFromQueue ()
 {
 /*
 * set jobNumber equal to the jobNo fi eld of the record at the front of the queue
 * update frontOfQueue to point to the next item in the queue,
 * set the inFront fi eld of the record that is now the head of the queue to NULL,
 * and return jobNumber
 */
 }
}// class JobQueueClass

sch76183_ch07_183-224.indd 207sch76183_ch07_183-224.indd 207 04/06/10 1:40 PM04/06/10 1:40 PM

208 Part A Software Engineering Concepts

 Figure 7.24 shows how this abstract data type may be utilized in C++ for the three job
queues of the operating system. Three job queues are instantiated: highPriorityQueue,
 mediumPriorityQueue, and lowPriorityQueue . (The Java version differs only in the
syntax of the data declarations of the three job queues.) The statement highPriorityQueue.
initializeJobQueue () means “apply method initializeJobQueue to data structure high-
PriorityQueue ,” and similarly for the other two statements.
 Abstract data types are a widely applicable design tool. For example, suppose that
a product is to be implemented in which a large number of operations have to be
performed on rational numbers, that is, numbers that can be represented in the form
 n/d , where n and d are integers, d � 0 . Rational numbers can be represented in a
variety of ways, such as two elements of a one-dimensional array of integers or two
attributes of a class. To implement rational numbers in terms of an abstract data type,
a suitable representation for the data structure is chosen. In Java, it could be defined
as shown in Figure 7.25 , together with the various operations that are performed on
rational numbers, such as constructing a rational number from two integers, adding
two rational numbers, or multiplying two rational numbers. (The problems induced by
 public attributes such as numerator and denominator in Figure 7.25 will be fixed
in Section 7.6.) The corresponding C++ implementation differs in the placement of
the reserved word public . Also, an ampersand is needed when an argument is passed
by reference.
 Abstract data types support both data abstraction and procedural abstraction (Section
7.4.1). In addition, when a product is modifi ed, it is unlikely that the abstract data types will
be changed; at worst, additional operations may have to be added to an abstract data type.
Therefore, from both the development and the maintenance viewpoints, abstract data types
are an attractive tool for software producers.

 FIGURE 7.24
 C++ method
queueHandler
implemented
using the
abstract data
type of
Figure 7.17.

 class SchedulerClass
{
 . . .
 public:
 void queueHandler ()
 {
 int job1, job2;
 JobQueueClass highPriorityQueue;
 JobQueueClass mediumPriorityQueue;
 JobQueueClass lowPriorityQueue;

 // some statements
 highPriorityQueue.initializeJobQueue ();
 // some more statements
 mediumPriorityQueue.addJobToQueue (job1);
 // still more statements
 job2 = lowPriorityQueue.removeJobFromQueue ();
 // even more statements
 }// queueHandler
 . . .
}// class SchedulerClass

sch76183_ch07_183-224.indd 208sch76183_ch07_183-224.indd 208 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 209

 7.6 Information Hiding
 The two types of abstraction discussed in Section 7.4.1 (data abstraction and procedural
abstraction) are in turn instances of a more general design concept put forward by Parnas,
 information hiding [Parnas, 1971, 1972a, 1972b]. Parnas’s ideas are directed toward
future maintenance. Before a product is designed, a list should be made of implementa-
tion decisions likely to change in the future. Modules then should be designed so that the
implementation details of the resulting design are hidden from other modules. As a result,
each future change is localized to one specifi c module. Because the details of the original
implementation decision are not visible to other modules, changing the design clearly can-
not affect any other module. As explained in Section 5.4, information hiding is an example
of separation of concerns. (See Just in Case You Wanted to Know Box 7.4 for a further
insight into information hiding.)
 To see how these ideas can be used in practice, consider Figure 7.24 , which uses the
abstract data type implementation of Figure 7.17 . A primary reason for using an abstract
data type is to ensure that the contents of a job queue can be changed only by invoking one
of the three methods of Figure 7.17 . Unfortunately, the nature of that implementation is
such that job queues can be changed in other ways as well. Attributes queueLength and
 queue are both declared public in Figure 7.17 and therefore accessible inside queue-
Handler . As a result, in Figure 7.24 , it is perfectly legal C++ (or Java) to use an assignment
statement such as

 highPriorityQueue.queue[7] = –5678;

 anywhere in queueHandler to change highPriorityQueue . In other words, the contents of a
job queue can be changed without using any of the three operations of the abstract data type.

 FIGURE 7.25
 Java abstract
data type
implementation
of a rational
number.
(Problems
caused by
 public
attributes will
be solved in
Section 7.6.)

 class RationalClass
{
 public int numerator;
 public int denominator;

 public void sameDenominator (RationalClass r, RationalClass s)
 {
 // code to reduce r and s to the same denominator
 }

 public boolean equal (RationalClass t, RationalClass u)
 {
 RationalClass v, w;
 v = t;
 w = u;
 sameDenominator (v, w);
 return (v.numerator == w.numerator);
 }

 // methods to add, subtract, multiply, and divide two rational numbers

}// class RationalClass

sch76183_ch07_183-224.indd 209sch76183_ch07_183-224.indd 209 04/06/10 1:40 PM04/06/10 1:40 PM

In addition to the implications this might have with regard to lowering cohesion and increas-
ing coupling, management must recognize that the product may be vulnerable to computer
crime as described in Section 7.3.2.
 Fortunately, there is a way out. The designers of both C++ and Java provided for infor-
mation hiding within a class specifi cation. This is shown in Figure 7.26 for C++ (the Java
syntactic differences are as before). Other than changing the visibility modifi er for the
attributes from public to private , Figure 7.26 is identical to Figure 7.17 . Now the only
information visible to other modules is that JobQueueClass is a class and that three
operations with specifi ed interfaces can operate on the resulting job queues. But the exact
way job queues are implemented is private , that is, invisible to the outside. The diagram
in Figure 7.27 shows how a class with private attributes enables a C++ or Java user to
implement an abstract data type with full information hiding.
 Information hiding techniques also can be used to obviate common coupling, as
mentioned at the end of Section 7.3.2. Consider again the product described in that
section, a computer-aided design tool for petroleum storage tanks specifi ed by 55
descriptors. If the product is implemented with private operations for initializing
a descriptor and public operations for obtaining the value of a descriptor, then there

 Just in Case You Wanted to Know Box 7.4
 The term information hiding is somewhat of a misnomer. A more accurate description
would be “details hiding,” because what is hidden is not information but implementation
details.

 FIGURE 7.26
 A C++ abstract
data type
implementation
with information
hiding,
correcting the
problem of
Figures 7.17,
7.18, 7.21, 7.22,
and 7.25.

 class JobQueueClass
{
 // attributes
 private:
 int queueLength; // length of job queue
 int queue[25]; // queue can contain up to 25 jobs

 // methods
 public:
 void initializeJobQueue ()
 {
 // body of method unchanged from Figure 7.17
 }

 void addJobToQueue (int jobNumber)
 {
 // body of method unchanged from Figure 7.17
 }

 int removeJobFromQueue ()
 {
 // body of method unchanged from Figure 7.17
 }
}// class JobQueueClass

sch76183_ch07_183-224.indd 210sch76183_ch07_183-224.indd 210 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 211

is no common coupling. This type of solution is characteristic of the object-oriented
paradigm, because as described in Section 7.7, objects support information hiding.
This is another strength of object technology.

 7.7 Objects
 As stated at the beginning of this chapter, objects simply are the next step in the progres-
sion shown in Figure 7.28 . Nothing is special about objects; they are as ordinary as abstract
data types or modules with informational cohesion. The importance of objects is that they
have all the properties possessed by their predecessors in Figure 7.28 , as well as additional
properties of their own.
 An incomplete defi nition of an object is that an object is an instantiation (instance) of
an abstract data type. That is, a product is designed in terms of abstract data types, and
the variables (objects) of the product are instantiations of the abstract data types. But
defi ning an object as an instantiation of an abstract data type is too simplistic. Something
more is needed, namely, inheritance , a concept fi rst introduced in Simula 67 [Dahl
and Nygaard, 1966]. Inheritance is supported by all object-oriented programming lan-
guages, such as Smalltalk [Goldberg and Robson, 1989], C++ [Stroustrup, 2003], and
Java [Flanagan, 2005]. The basic idea behind inheritance is that new data types can be
defi ned as extensions of previously defi ned types, rather than having to be defi ned from
scratch [Meyer, 1986].
 In an object-oriented language, a class can be defi ned as an abstract data type that sup-
ports inheritance. An object then is an instantiation of a class. To see how classes are used,

highPriorityQueue.initializeJobQueue ();

job2 = lowPriorityQueue.removeJobFromQueue ();

mediumPriorityQueue.addJobToQueue (job1);

{

}

SchedulerClass

Implementation details of
int job1, job2;

JobQueueClass

Interface information regarding

initializeJobQueue
addJobToQueue

removeJobFromQueue

queue
queueLength

initializeJobQueue
addJobToQueue

removeJobFromQueue

Visible outside JobQueueClassInvisible outside JobQueueClass

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

 FIGURE 7.27 Representation of an abstract data type with information hiding achieved via private attributes
(Figure 7.26 with Figure 7.24).

sch76183_ch07_183-224.indd 211sch76183_ch07_183-224.indd 211 04/06/10 1:40 PM04/06/10 1:40 PM

212 Part A Software Engineering Concepts

consider the following example. Defi ne Human Being Class to be a class and Joe to be
an object, an instance of that class. Every instance of Human Being Class has certain
attributes such as age and height, and values can be assigned to those attributes when
describing the object Joe . Now suppose that Parent Class is defi ned to be a subclass
(or derived class) of Human Being Class . This means that an instance of a Parent
has all the attributes of an instance of Human Being Class and, in addition, may have
attributes of his or her own such as name of oldest child and number of children. This is
depicted in Figure 7.29 . In object-oriented terminology, a Parent isA Human Being . That
is why the arrow in Figure 7.29 seems to be going in the wrong direction. In fact, the arrow

Objects (Section 7.7)

Information hiding (Section 7.6)

Abstract data types (Section 7.5)

Data encapsulation (Section 7.4)

Modules with high cohesion and low coupling (Sections 7.2 and 7.3)

Modules (Section 7.1)

 FIGURE 7.28
 The major
concepts of
Chapter 7 and
the section in
which each is
described.

inherits from (“isA”)

(Base class)

(Derived class)

Parent Class

Derived
part

Incremental
part

Human Being Class FIGURE 7.29
 UML diagram
showing derived
types and
inheritance.

sch76183_ch07_183-224.indd 212sch76183_ch07_183-224.indd 212 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 213

depicts the isA relationship and therefore points from the derived class to the base class.
(The use of the open arrowhead to denote inheritance is a UML convention; another is
that class names appear in boldface with the fi rst letter of each word capitalized. Finally,
the open rectangle with the turned-over corner is a UML note . UML is discussed in more
detail in Part B, especially in Chapter 17 .)
 Parent Class inherits all the attributes of Human Being Class , because Parent
Class is a derived class (or subclass) of base class Human Being Class . If Fred is
an object (instance) of Parent Class , then Fred has all the attributes of an instance of
 Parent Class and also inherits all the attributes of an instance of Human Being Class .
A Java implementation is shown in Figure 7.30 . The C++ version differs in the placement
of the private and public modifi ers. Also, the Java syntax extends is replaced in C++
by : public in this example.
 The property of inheritance is an essential feature of all object-oriented programming
languages. However, neither inheritance nor the concept of a class is supported by classical
languages such as C or LISP. Therefore, the object-oriented paradigm cannot be directly
implemented in these languages (but see Section 8.11.4).
 In the terminology of the object-oriented paradigm, there are two other ways of looking
at the relationship between Parent Class and Human Being Class in Figure 7.29 .
We can say that Parent Class is a specialization of Human Being Class or that
 Human Being Class is a generalization of Parent Class . In addition to specializa-
tion and generalization, classes have two other basic relationships [Blaha, Premerlani, and
Rumbaugh, 1988]: aggregation and association. Aggregation refers to the components
of a class. For example, class Personal Computer Class might consist of compo-
nents CPU Class , Monitor Class , Keyboard Class , and Printer Class . This is
depicted in Figure 7.31 ; the use of a diamond to denote aggregation is another UML con-
vention. Nothing is new about this; it occurs whenever a language supports records, such
as a struct in C. Within the object-oriented context, however, it is used to group related
items, resulting in a reusable class (Section 8.1).

 FIGURE 7.30
 Java
implementation
of Figure 7.29.

 class HumanBeingClass
{
 private int age;
 private fl oat height;

 // public declarations of operations on HumanBeingClass

}// class HumanBeingClass

 class ParentClass extends HumanBeingClass
{
 private String nameOfOldestChild;
 private int numberOfChildren;

 // public declarations of operations on ParentClass

}// class ParentClass

sch76183_ch07_183-224.indd 213sch76183_ch07_183-224.indd 213 04/06/10 1:40 PM04/06/10 1:40 PM

214 Part A Software Engineering Concepts

 Association refers to a relationship of some kind between two apparently unrelated
classes. For example, there seems to be no connection between a radiologist and a lawyer,
but a radiologist may consult a lawyer for advice regarding a contract for leasing a new
MRI machine. Association is depicted using UML in Figure 7.32 . The nature of the asso-
ciation in this instance is indicated by the word consults . In addition, the solid triangle
(termed a navigation triangle in UML) indicates the direction of the association; after
all, a lawyer with a broken ankle might consult a radiologist.
 In passing, one aspect of Java and C++ notation, like that of other object-oriented lan-
guages, explicitly refl ects the equivalence of operation and data. First, consider a classical
language that supports records; C, for example. Suppose that record_1 is a struct (record)
and fi eld_2 is a fi eld within the class. Then, the fi eld is referred to as record_1.fi eld_2.
That is, the period . denotes membership within the record. If function_3 is a function
within a C module, then function_3 () denotes an invocation of that function.
 In contrast, suppose that AClass is a class , with attribute attributeB and method
 methodC . Suppose further that ourObject is an instance of AClass . Then the fi eld is
referred to as ourObject.attributeB . Furthermore, ourObject.methodC () denotes an
invocation of the method. Hence, the period is used to denote membership within an object,
whether the member is an attribute or a method.
 The advantages of using objects (or, rather, classes) are precisely those of using abstract
data types, including data abstraction and procedural abstraction. In addition, the inheri-
tance aspects of classes provide a further layer of data abstraction, leading to easier and less
fault-prone product development. Yet another strength follows from combining inheritance
with polymorphism and dynamic binding, the subject of Section 7.8.

Monitor ClassCPU Class Printer ClassKeyboard Class

Personal Computer Class

 FIGURE 7.31 UML aggregation example.

Radiologist Class Lawyer Class

consults

 FIGURE 7.32
 UML
association
example.

sch76183_ch07_183-224.indd 214sch76183_ch07_183-224.indd 214 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 215

 7.8 Inheritance, Polymorphism, and Dynamic Binding
 Suppose that the operating system of a computer is called on to open a fi le. That fi le could
be stored on a number of different media. For example, it could be a disk fi le, a tape fi le,
or a diskette fi le. Using the classical paradigm, there would be three differently named
functions, open_disk_fi le , open_tape_fi le , and open_diskette_fi le ; this is shown in
 Figure 7.33(a) . If my_fi le is declared to be a fi le, then at run time, it is necessary to
test whether it is a disk fi le, a tape fi le, or a diskette fi le to determine which function to
invoke. The corresponding classical code is shown in Figure 7.34(a) .
 In contrast, when the object-oriented paradigm is used, a class named File Class is
defi ned, with three derived classes: Disk File Class , Tape File Class , and Diskette
File Class . This is shown in Figure 7.33(b) ; recall that the UML open arrowhead denotes
inheritance.
 Now, suppose that method open were defi ned in parent class File Class and inherited
by the three derived classes. Unfortunately, this would not work, because different opera-
tions need to be carried out to open the three different types of fi les.
 The solution is as follows: In parent class File Class , a dummy method open is
declared. In Java, such a method is declared to be abstract ; in C++, the reserved word
 virtual is used instead. A specifi c implementation of the method appears in each of the
three derived classes and each method is given an identical name, that is, open , as shown
in Figure 7.33(b) . Again, suppose that myFile is declared to be a fi le. At run time, the
message

 myFile.open ()

function open_tape_filefunction open_disk_file function open_diskette_file

(b)

(a)

Implementation of
method open

for a diskette file

Diskette File Class

Implementation of
method open
for a tape file

Tape File Class

abstract method
open

File Class

Implementation of
method open
for a disk file

Disk File Class

 FIGURE 7.33 Operations needed to open a fi le. (a) Classical implementation. (b) Object-oriented
fi le class hierarchy using UML notation.

sch76183_ch07_183-224.indd 215sch76183_ch07_183-224.indd 215 04/06/10 1:40 PM04/06/10 1:40 PM

216 Part A Software Engineering Concepts

 is sent. The object-oriented system now determines whether myFile is a disk fi le, a tape
fi le, or a diskette fi le and invokes the appropriate version of open . That is, the system
determines at run time whether object myFile is an instance of Disk File Class , Tape
File Class , or Diskette File Class and automatically invokes the correct method.
Because this has to be done at run time (dynamically) and not at compile time (stati-
cally), the act of connecting an object to the appropriate method is termed dynamic
binding . Furthermore, because the method open can be applied to objects of differ-
ent classes, it is termed polymorphic , which means “of many shapes.” Just as carbon
crystals come in many different shapes, including hard diamonds and soft graphite, so
the method open comes in three different versions. In Java, these versions are denoted
 DiskFileClass.open, TapeFileClass.open , and DisketteFileClass.open. (In C++, the
period is replaced by two colons, and the methods are denoted DiskFileClass::open,
TapeFileClass::open , and DisketteFileClass::open.) However, because of dynamic
binding, it is not necessary to determine which method to invoke to open a specifi c fi le.
Instead, at run time, it is necessary to send only the message myFile.open () and the
system will determine the type (class) of myFile and invoke the correct method; this is
shown in Figure 7.34(b) .
 These ideas are applicable to more than just abstract (virtual) methods. Consider a
hierarchy of classes, as shown in Figure 7.35 . All classes are derived by inheritance from
the Base class. Suppose method checkOrder (b : Base) takes as an argument an instance
of class Base . Then, as a consequence of inheritance, polymorphism, and dynamic bind-
ing, it is valid to invoke checkOrder with an argument not just of class Base but also of
any subclass of class Base , that is, any class derived from Base . All that is needed is to
invoke checkOrder and everything is taken care of at run time. This technique is extremely
powerful, in that the software professional need not be concerned about the precise type of
an argument at the time that a message is sent.

 FIGURE 7.34
 (a) Classical
code to
open a fi le,
corresponding
to Figure
7.33(a).
(b) Object-
oriented code
to open a fi le,
corresponding
to Figure
7.33(b).

 switch (fi le_type)
{
 case 1:
 open_disk_fi le (); // fi le_type 1 corresponds to a disk fi le
 break ;
 case 2:
 open_tape_fi le (); // fi le_type 2 corresponds to a tape fi le
 break ;
 case 3:
 open_diskette_fi le (); // fi le_type 3 corresponds to a diskette fi le
 break ;
}

(a)

myFile.open ();

(b)

sch76183_ch07_183-224.indd 216sch76183_ch07_183-224.indd 216 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 217

 However, polymorphism and dynamic binding also have major weaknesses.

 1. It generally is not possible to determine at compilation time which version of a specifi c
polymorphic method will be invoked at run time. Accordingly, the cause of a failure can
be extremely diffi cult to determine.

 2. Polymorphism and dynamic binding can have a negative impact on maintenance. The fi rst
task of a maintenance programmer usually is to try to understand the product (as explained
in Chapter 16 , the maintainer rarely is the person who developed that code). However, this
can be laborious if there are multiple possibilities for a specifi c method. The programmer
has to consider all the possible methods that could be invoked dynamically at a specifi c
place in the code, a time-consuming task.

 Accordingly, polymorphism and dynamic binding add both strengths and weaknesses to
the object-oriented paradigm.
 We conclude this chapter with a discussion of the object-oriented paradigm.

 7.9 The Object-Oriented Paradigm
 There are two ways of looking at every software product. One way is to consider just the
data, including local and global variables, arguments, dynamic data structures, and fi les.
Another way of viewing a product is to consider just the operations performed on the data,
that is, the procedures and the functions. In terms of this division of software into data and
operations, the classical techniques essentially fall into two groups. Operation-oriented
techniques primarily consider the operations of the product. The data are of secondary

Base
 FIGURE 7.35
 A hierarchy of
classes.

sch76183_ch07_183-224.indd 217sch76183_ch07_183-224.indd 217 04/06/10 1:40 PM04/06/10 1:40 PM

218 Part A Software Engineering Concepts

importance, considered only after the operations of the product have been analyzed in
depth. Conversely, data-oriented techniques stress the data of the product; the operations
are examined only within the framework of the data.
 A fundamental weakness of both the data- and operation-oriented approaches is that
data and operation are two sides of the same coin; a data item cannot change unless an
operation is performed on it, and operations without associated data are equally mean-
ingless. Therefore, techniques that give equal weight to data and operations are needed.
It should not come as a surprise that the object-oriented techniques do this. After all, an
object comprises both data and operations. Recall that an object is an instance of an abstract
data type (more precisely, of a class). It therefore incorporates both data and the operations
performed on those data, and the data and the operations are present in objects as equal
partners. Similarly, in all the object-oriented techniques, data and operations are considered
of the same importance; neither takes precedence over the other.
 It is inaccurate to claim that data and operations are considered simultaneously in the
techniques of the object-oriented paradigm. From the material on stepwise refi nement
(Section 5.1), it is clear that sometimes data have to be stressed and other times operations
are more critical. Overall, however, data and operations are given equal importance during
the workfl ows of the object-oriented paradigm.
 Many reasons are given in Chapter 1 and this chapter as to why the object-oriented
paradigm is superior to the classical paradigm. Underlying all these reasons is that a well-
designed object, that is, an object with high cohesion and low coupling, models all the
aspects of one physical entity. That is, there is a clear mapping between a real-world entity
and the object that models it.
 The details of how this is implemented are hidden; the only communication with an
object is via messages sent to that object. As a result, objects essentially are independent
units with a well-defi ned interface. Consequently, they can be maintained easily and safely;
the chance of a regression fault is reduced. Furthermore, as will be explained in Chapter
8 , objects are reusable, and this reusability is enhanced by the property of inheritance.
Turning now to development using objects, it is safer to construct a large-scale product by
combining these fundamental building blocks of software than to use the classical para-
digm. Because objects essentially are independent components of a product, development
of the product, as well as management of that development, is easier and hence less likely
to induce faults.
 All these aspects of the superiority of the object-oriented paradigm raise a question: If the
classical paradigm is so inferior to the object-oriented paradigm, why has the classical para-
digm had so much success? This can be explained by realizing that the classical paradigm
was adopted at a time when software engineering was not widely practiced. Instead, soft-
ware was simply “written.” For managers, the most important thing was for programmers to
churn out lines of code. Little more than lip service was paid to the requirements and analy-
sis (systems analysis) of a product, and design was almost never performed. The code-and-
fi x model (Section 2.9.1) was typical of the techniques of the 1970s. Therefore, use of the
classical paradigm exposed the majority of software developers to methodical techniques
for the fi rst time. Small wonder, then, that the so-called structured techniques of the classi-
cal paradigm led to major improvements in the software industry worldwide. However, as
software products grew in size, inadequacies of the structured techniques started to become
apparent, and the object-oriented paradigm was proposed as a better alternative.

sch76183_ch07_183-224.indd 218sch76183_ch07_183-224.indd 218 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 219

 This, in turn, leads to another question: How do we know for certain that the object-
oriented paradigm is superior to all other present-day techniques? No data are available
that prove beyond all doubt that object-oriented technology is better than anything else
currently available, and it is hard to imagine how such data could be obtained. The best we
can do is to rely on the experiences of organizations that have adopted the object-oriented
paradigm. Although not all reports are favorable, the majority (if not the overwhelming
majority) attest that using the object-oriented paradigm is a wise decision.
 For example, IBM has reported on three totally different projects that were devel-
oped using object-oriented technology [Capper, Colgate, Hunter, and James, 1994]. In
almost every respect, the object-oriented paradigm greatly outperformed the classical
paradigm. Specifi cally, there were major decreases in the number of faults detected,
far fewer change requests during both development and postdelivery maintenance that
were not the result of unforeseeable business changes, and signifi cant increases in
both adaptive and perfective maintainability. Also improvement in usability was found,
although not as large as the previous four improvements, and no meaningful difference
in performance.
 A survey of 150 experienced U.S. software developers was undertaken to determine
their attitudes toward the object-oriented paradigm [Johnson, 2000]. The sample consisted
of 96 developers who used the object-oriented paradigm and 54 who still used the clas-
sical paradigm to develop software. Both groups felt that the object-oriented paradigm
was superior, although the positive attitude of the object-oriented group was signifi cantly
stronger. Both groups essentially discounted the various weaknesses of the object-oriented
paradigm.
 Notwithstanding the many strengths of the object-oriented paradigm, some diffi culties
and problems indeed have been reported. A frequently reported problem concerns develop-
ment effort and size. The fi rst time anything new is done, it takes longer than on subsequent
occasions; this initial period is sometimes referred to as the learning curve . But when
the object-oriented paradigm is used for the fi rst time by an organization, it often takes
longer than anticipated, even allowing for the learning curve, because the size of the prod-
uct is larger than when structured techniques are used. This is particularly noticeable when
the product has a graphical user interface (GUI) (see Section 11.14). Thereafter, things
improve greatly. First, postdelivery maintenance costs are lower, reducing the overall life-
time cost of the product. Second, the next time that a new product is developed, some of the
classes from the previous project can often be reused, further reducing software costs. This
has been especially signifi cant when a GUI has been used for the fi rst time; much of the
effort that went into the GUI can be recouped in subsequent products.
 Problems of inheritance are harder to solve.

 1. A major reason for using inheritance is to create a new subclass that differs slightly
from its parent class without affecting the parent class or any other ancestor class in the
inheritance hierarchy. Conversely, however, once a product has been implemented, any
change to an existing class directly affects all its descendants in the inheritance hierar-
chy; this often is referred to as the fragile base class problem . At the very least, the
affected units have to be recompiled. In some cases, the methods of the relevant objects
(instantiations of the affected subclasses) have to be recoded; this can be a nontrivial
task. To minimize this problem, it is important that all classes be meticulously designed

sch76183_ch07_183-224.indd 219sch76183_ch07_183-224.indd 219 04/06/10 1:40 PM04/06/10 1:40 PM

220 Part A Software Engineering Concepts

during the development process. This will reduce the ripple effect induced by a change
to an existing class.

 2. A second problem can result from a cavalier use of inheritance. Unless explicitly pre-
vented, a subclass inherits all the attributes of its parent class(es). Usually, subclasses
have additional attributes of their own. As a consequence, objects lower in the inheri-
tance hierarchy quickly can get large, with resulting storage problems [Bruegge, Blythe,
Jackson, and Shufelt, 1992]. One way to prevent this is to change the dictum “use in-
heritance wherever possible” to “use inheritance wherever appropriate.” In addition, if a
descendent class does not need an attribute of an ancestor, then that attribute should be
explicitly excluded.

 3. A third group of problems stem from polymorphism and dynamic binding. These were
described in Section 7.8.

 4. Fourth, it is possible to code badly in any language. However, it is easier to code badly
in an object-oriented language than in a classical language because object-oriented lan-
guages support a variety of constructs that, when misused, add unnecessary complexity
to a software product. Therefore, when using the object-oriented paradigm, extra care
needs to be taken to ensure that the code is always of the highest quality.

 One fi nal question is this: Someday might there be something better than the object-
oriented paradigm? That is, in the future will a new technology appear in the space above
the topmost arrow in Figure 7.28 ? Even its strongest proponents do not claim that the
object-oriented paradigm is the ultimate answer to all software engineering problems.
Furthermore, today’s software engineers are looking beyond objects to the next major
breakthrough. After all, in few fi elds of human endeavor are the discoveries of the past
superior to anything that is being put forward today. The object-oriented paradigm is sure
to be superseded by the methodologies of the future. It has been suggested that aspect-
oriented programming (AOP) (Section 18.1) may play a role. It remains to be seen
whether AOP will indeed be the next major concept in future versions of Figure 7.28 or
whether some other technology will be widely adopted as the successor to the object-
oriented paradigm. The important lesson is that, based on today’s knowledge, the object-
oriented paradigm appears to be better than the alternatives.

 The chapter begins with a description of a module (Section 7.1). The next two sections analyze what
constitutes a well-designed module in terms of module cohesion and module coupling (Sections 7.2
and 7.3). Specifi cally, a module should have high cohesion and low coupling. A description is given of
the different types of cohesion and coupling. Various types of abstraction are presented in Sections 7.4
through 7.7. In data encapsulation (Section 7.4), a module comprises a data structure and the actions
performed on that data structure. An abstract data type (Section 7.5) is a data type, together with the
actions performed on instances of that type. Information hiding (Section 7.6) consists of designing a
module in such a way that implementation details are hidden from other modules. The progression
of increasing abstraction culminates in the description of a class, an abstract data type that supports
inheritance (Section 7.7). An object is an instance of a class. Inheritance, polymorphism, and dynamic
binding are the subjects of Section 7.8. The chapter concludes with a discussion of the object-oriented
paradigm (Section 7.9).

 Chapter
Review

sch76183_ch07_183-224.indd 220sch76183_ch07_183-224.indd 220 04/06/10 1:40 PM04/06/10 1:40 PM

Chapter 7 From Modules to Objects 221

 Objects were fi rst described in [Dahl and Nygaard, 1966]. Many of the ideas in this chapter originally
were put forward by Parnas [1971, 1972a, 1972b]. The use of abstract data types in software develop-
ment was put forward in [Liskov and Zilles, 1974]; another important early paper is [Guttag, 1977].
 The primary source on cohesion and coupling is [Stevens, Myers, and Constantine, 1974]. The
ideas of composite/structured design have been extended to objects [Binkley and Schach, 1997]. The
importance of abstraction is discussed in [Kramer, 2007].
 The proceedings of the annual Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA) include a wide selection of research papers as well as reports
describing successful object-oriented projects. The successful use of the object-oriented paradigm in
three IBM projects is described in [Capper, Colgate, Hunter, and James, 1994]. A survey of attitudes
toward the object-oriented paradigm appears in [Johnson, 2000]. Metrics for measuring the quality
of modularization of large-scale object-oriented software are presented in [Sarkar, Kak, and Rama,
2008]. Issue no. 2, 2005, of the IBM Systems Journal contains articles on object technology.
 Eleven articles on aspect-oriented programming appear in the October 2001 issue of the Com-
munications of the ACM ; [Elrad et al., 2001] and [Murphy et al., 2001] are of particular interest.
Weaknesses of aspect-oriented programming are discussed in [R. Alexander, 2003].
 An investigation of the impact of inheritance on fault densities appears in [Cartwright and Shep-
perd, 2000].

 For
Further
Reading

 7.1 Choose any programming language with which you are familiar. Consider the two defi nitions
of modularity given in Section 7.1. Determine which of the two defi nitions includes what you
intuitively understand to constitute a module in the language you have chosen.

 7.2 Determine the cohesion of the following modules:

 editProfi tAndTaxRecord

 editProfi tRecordAndTaxRecord

 readDeliveryRecordAndCheckSalaryPayments

 computeTheOptimalCostUsingAksen’sAlgorithm

 measureVaporPressureAndSoundAlarmIfNecessary

 Problems

 abstract data type 207
 abstraction 201
 aggregation 213
 aspect-oriented programming

(AOP) 230
 association 214
 binding 186
 class 211
 cohesion 186
 coincidental cohesion 187
 common coupling 193
 communicational

cohesion 190
 content coupling 192
 context 186
 control coupling 195

 coupling 186
 data abstraction 202
 data coupling 196
 data encapsulation 201
 dynamic binding 216
 encapsulation 202
 fl owchart cohesion 190
 fragile base class

problem 219
 functional cohesion 190
 generalization 213
 information hiding 209
 informational cohesion 191
 inheritance 211
 isA relationship 213
 learning curve 219

 logic 186
 logical cohesion 188
 module 184
 navigation triangle 214
 note 213
 object 211
 operation 186
 polymorphism 216
 procedural

abstraction 202
 procedural cohesion 189
 specialization 213
 stamp coupling 195
 strength 186
 subclass 212
 temporal cohesion 189

 Key Terms

sch76183_ch07_183-224.indd 221sch76183_ch07_183-224.indd 221 04/06/10 1:40 PM04/06/10 1:40 PM

 7.3 You are a software engineer involved in product development. Your manager asks you to inves-
tigate ways of ensuring that modules designed by your group will be as reusable as possible.
What do you tell her?

 7.4 Your manager now asks you to determine how existing modules can be reused. Your fi rst sug-
gestion is to break each module with coincidental cohesion into separate modules with func-
tional cohesion. Your manager correctly points out that the separate modules have not been
tested nor have they been documented. What do you say now?

 7.5 What is the infl uence of cohesion on maintenance?

 7.6 What is the infl uence of coupling on maintenance?

 7.7 Which of the seven levels of cohesion described in Section 7.2 promote reuse?

 7.8 Which of the fi ve levels of coupling described in Section 7.3 promote reuse?

 7.9 Module p does not invoke module q . Nevertheless, modules p and q are coupled. How can this
happen?

 7.10 Distinguish between data encapsulation and abstract data types.

 7.11 Distinguish between abstraction and information hiding.

 7.12 Is inheritance a subset of association?

 7.13 Distinguish between polymorphism and dynamic binding.

 7.14 What happens if we use polymorphism without dynamic binding?

 7.15 What happens if we use dynamic binding without polymorphism?

 7.16 Can we implement dynamic binding in a language that does not support inheritance?

 7.17 Convert the comments in Figure 7.23 to C++ or Java, as specifi ed by your instructor. Make sure
that the resulting module executes correctly.

 7.18 It has been suggested that C++ and Java support implementation of abstract data types but only
at the cost of giving up information hiding. Discuss this claim.

 7.19 As pointed out in Just in Case You Wanted to Know Box 7.1, objects were fi rst put forward in
1966. Only after essentially being reinvented nearly 20 years later did objects begin to receive
widespread acceptance. Can you explain this phenomenon?

 7.20 Your instructor will distribute a classical software product. Analyze the modules from the view-
points of information hiding, levels of abstraction, coupling, and cohesion.

 7.21 Your instructor will distribute an object-oriented software product. Analyze the modules from
the viewpoints of information hiding, levels of abstraction, coupling, and cohesion. Compare
your answer with that of Problem 7.20.

 7.22 What are the strengths and weaknesses of inheritance?

 7.23 (Term Project) Suppose that the Chocoholics Anonymous product of Appendix A was devel-
oped using the classical paradigm. Give examples of modules of functional cohesion that you
would expect to fi nd. Now suppose that the product was developed using the object-oriented
paradigm. Give examples of classes that you would expect to fi nd.

 7.24 (Readings in Software Engineering) Your instructor will distribute copies of [Kramer, 2007].
Do you agree that abstraction is indeed as important as claimed in that paper?

 [R. Alexander, 2003] R. ALEXANDER, “The Real Costs of Aspect-Oriented Programming,” IEEE Soft-
ware 20 (November–December 2003), pp. 92–93.

 [Binkley and Schach, 1997] A. B. BINKLEY AND S. R. SCHACH, “Toward a Unifi ed Approach to Object-
Oriented Coupling,” Proceedings of the 35th Annual ACM Southeast Conference , Murfreesboro,
TN, April 2–4, 1997, ACM, pp. 91–97.

 References

222 Part A Software Engineering Concepts

sch76183_ch07_183-224.indd 222sch76183_ch07_183-224.indd 222 04/06/10 1:40 PM04/06/10 1:40 PM

 [Blaha, Premerlani, and Rumbaugh, 1988] M. R. BLAHA, W. J. PREMERLANI, AND J. E. RUMBAUGH,
“Relational Database Design Using an Object-Oriented Methodology,” Communications of the
ACM 31 (April 1988), pp. 414–27.

 [Briand, Daly, Porter, and Wüst, 1998] L. C. BRIAND, J. DALY, V. PORTER, AND J. WÜST, “A Compre-
hensive Empirical Validation of Design Measures for Object-Oriented Systems,” Proceedings of
the Fifth International Metrics Symposium, Bethesda, MD, IEEE, November 1998, pp. 246–57.

 [Bruegge, Blythe, Jackson, and Shufelt, 1992] B. BRUEGGE, J. BLYTHE, J. JACKSON, AND J. SHUFELT,
“Object-Oriented Modeling with OMT,” Proceedings of the Conference on Object-Oriented Pro-
gramming, Languages, and Systems, OOPSLA ’92, ACM SIGPLAN Notices 27 (October 1992),
pp. 359–76.

 [Capper, Colgate, Hunter, and James, 1994] N. P. CAPPER, R. J. COLGATE, J. C. HUNTER, AND M. F.
JAMES, “The Impact of Object-Oriented Technology on Software Quality: Three Case Histories,”
 IBM Systems Journal 33 (No. 1, 1994), pp. 131–57.

 [Cartwright and Shepperd, 2000] M. CARTWRIGHT AND M. SHEPPERD, “An Empirical Investigation of
an Object-Oriented Software System,” IEEE Transactions on Software Engineering 26 (August
2000), pp. 786–95.

 [Dahl and Nygaard, 1966] O.-J. DAHL AND K. NYGAARD, “SIMULA—An ALGOL-Based Simulation
Language,” Communications of the ACM 9 (September 1966), pp. 671–78.

 [Elrad et al., 2001] T. ELRAD, M. AKSIT, G. KICZALES, K. LIEBERHERR, AND H. OSSHER, “Discussing
Aspects of AOP,” Communications of the ACM 44 (October 2001), pp. 33–38.

 [Flanagan, 2005] D. FLANAGAN, Java in a Nutshell: A Desktop Quick Reference , 5th ed., O’Reilly and
Associates, Sebastopol, CA, 2005.

 [Gerald and Wheatley, 1999] C. F. GERALD AND P. O. WHEATLEY, Applied Numerical Analysis , 6th ed.,
Addison-Wesley, Reading, MA, 1999.

 [Goldberg and Robson, 1989] A. GOLDBERG AND D. ROBSON, Smalltalk-80: The Language, Addison-
Wesley, Reading, MA, 1989.

 [Guttag, 1977] J. GUTTAG, “Abstract Data Types and the Development of Data Structures,” Commu-
nications of the ACM 20 (June 1977), pp. 396–404.

 [Johnson, 2000] R. A. JOHNSON, “The Ups and Downs of Object-Oriented System Development,”
 Communications of the ACM 43 (October 2000), pp. 69–73.

 [Knuth, 1974] D. E. KNUTH, “Structured Programming with go to Statements,” ACM Computing
Surveys 6 (December 1974), pp. 261–301.

 [Kramer, 2007] J. KRAMER, “Is Abstraction the Key to Computing?” Communications of the ACM ,
50 (April 2007), pp. 36–42.

 [Liskov and Zilles, 1974] B. LISKOV AND S. ZILLES, “Programming with Abstract Data Types,” ACM
SIGPLAN Notices 9 (April 1974), pp. 50–59.

 [Meyer, 1986] B. MEYER, “Genericity versus Inheritance,” Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applications , ACM SIGPLAN Notices 21
(November 1986), pp. 391–405.

 [Murphy et al., 2001] G. C. MURPHY, R. J. WALKER, E. L. A. BANNIASSAD, M. P. ROBILLARD, A. LIA,
AND M. A. KERSTEN, “Does Aspect-Oriented Programming Work?” Communications of the ACM
44 (October 2001), pp. 75–78.

 [Myers, 1978b] G. J. MYERS, Composite/Structured Design , Van Nostrand Reinhold, New York,
1978.

 [Parnas, 1971] D. L. PARNAS, “Information Distribution Aspects of Design Methodology,” Proceed-
ings of the IFIP Congress , Ljubljana, Yugoslavia, 1971, IFIP, pp. 339–44.

Chapter 7 From Modules to Objects 223

sch76183_ch07_183-224.indd 223sch76183_ch07_183-224.indd 223 04/06/10 1:40 PM04/06/10 1:40 PM

 [Parnas, 1972a] D. L. PARNAS, “A Technique for Software Module Specifi cation with Examples,”
 Communications of the ACM 15 (May 1972), pp. 330–36.

 [Parnas, 1972b] D. L. PARNAS, “On the Criteria to Be Used in Decomposing Systems into Modules,”
 Communications of the ACM 15 (December 1972), pp. 1053–58.

 [Sarkar, Kak, and Rama, 2008] S. SARKAR, A. C. KAK, AND G. M. RAMA, “Metrics for Measuring
the Quality of Modularization of Large-Scale Object-Oriented Software,” IEEE Transactions on
Software Engineering 34 (September–October 2008), pp. 700–20.

 [Schach and Stevens-Guille, 1979] S. R. SCHACH AND P. D. STEVENS-GUILLE, “Two Aspects of
Computer-Aided Design,” Transactions of the Royal Society of South Africa 44 (Part 1, 1979),
123–26.

 [Schach et al., 2003a] S. R. SCHACH, B. JIN, DAVID R. WRIGHT, G. Z. HELLER, AND J. OFFUTT, “Qual-
ity Impacts of Clandestine Common Coupling,” Software Quality Journal 11 (July 2003), pp.
211–18.

 [Shneiderman and Mayer, 1975] B. SHNEIDERMAN AND R. MAYER, “Towards a Cognitive Model of
Programmer Behavior,” Technical Report TR-37, Indiana University, Bloomington, 1975.

 [Stevens, Myers, and Constantine, 1974] W. P. STEVENS, G. J. MYERS, AND L. L. CONSTANTINE, “Struc-
tured Design,” IBM Systems Journal 13 (No. 2, 1974), pp. 115–39.

 [Stroustrup, 2003] B. STROUSTRUP, The C++ Standard: Incorporating Technical Corrigendum No. 1 ,
2nd ed., John Wiley and Sons, New York, 2003.

 [Yourdon and Constantine, 1979] E. YOURDON AND L. L. CONSTANTINE, Structured Design: Funda-
mentals of a Discipline of Computer Program and Systems Design , Prentice Hall, Englewood
Cliffs, NJ, 1979.

 [Yu, Schach, Chen, and Offutt, 2004] L. YU, S. R. SCHACH, K. CHEN, AND J. OFFUTT, “Categoriza-
tion of Common Coupling and Its Application to the Maintainability of the Linux Kernel,” IEEE
Transactions on Software Engineering 30 (October 2004), pp. 694–706.

224 Part A Software Engineering Concepts

sch76183_ch07_183-224.indd 224sch76183_ch07_183-224.indd 224 04/06/10 1:40 PM04/06/10 1:40 PM

 Chapter 8
Reusability and
Portability
 Learning Objectives

 After studying this chapter, you should be able to

 • Explain why reuse is so important.

 • Appreciate the obstacles to reuse.

 • Describe techniques for achieving reuse during the various workfl ows.

 • Appreciate the importance of design patterns.

 • Discuss the impact of reuse on maintainability.

 • Explain why portability is essential.

 • Understand the obstacles to achieving portability.

 • Develop portable software.

 If reinventing the wheel were a criminal offense, many software professionals would today
be languishing in jail. For example, there are tens of thousands (if not hundreds of thou-
sands) of different COBOL payroll programs, all doing essentially the same thing. Surely,
the world needs just one payroll program that can run on a variety of hardware and be
tailored, if necessary, to cater to the specifi c needs of an individual organization. However,
instead of utilizing previously developed payroll programs, myriad organizations all over
the world have built their own payroll programs from scratch. In this chapter, we investigate
why software engineers delight in continually reinventing the wheel, and what can be done
to achieve portable software built using reusable components. We begin by distinguishing
between portability and reusability.

225

sch76183_ch08_225-267.indd 225sch76183_ch08_225-267.indd 225 04/06/10 6:41 PM04/06/10 6:41 PM

226 Part A Software Engineering Concepts

 8.1 Reuse Concepts
 A product is portable if it is signifi cantly easier to modify the product as a whole to run
it on another compiler–hardware–operating system confi guration than to recode it from
scratch. In contrast, reuse refers to using components of one product to facilitate the
development of a different product with a different functionality. A reusable component
need not necessarily be a module or a code fragment—it could be a design, a part of a
manual, a set of test data, or a duration and cost estimate. (For a different view on reuse,
see Just in Case You Wanted to Know Box 8.1.)
 There are two types of reuse, opportunistic reuse and deliberate reuse. If the developers
of a new product realize that a component of a previously developed product can be reused
in the new product, then this is opportunistic reuse , sometimes referred to as accidental
reuse . On the other hand, utilization of software components constructed specifi cally for
possible future reuse is systematic reuse or deliberate reuse . A potential advantage
of systematic reuse over opportunistic reuse is that components specially constructed

 Reuse is not restricted to software. For example, lawyers nowadays rarely draft wills from
scratch. Instead, they use a word processor to store wills they have previously drafted, and
then make appropriate changes to an existing will. Other legal documents, like contracts,
are usually drafted in the same way from existing documents.
 Classical composers frequently reused their own music. For example, in 1823 Franz
Schubert wrote an entr’acte for Helmina von Chezy’s play, Rosamunde, Fürstin von Zypern
(Rosamunde, Princess of Cyprus) and the following year he reused that material in the slow
movement of his String Quartet No. 13. Ludwig van Beethoven’s Opus 66, “Variations for
Cello on Mozart’s Ein Mädchen oder Weibchen ,” is a good example of one great composer
reusing the music of another great composer; Beethoven simply took the aria “A Girlfriend
or Little Wife” from Scene 22 of Wolfgang Amadeus Mozart’s opera Der Zauberfl öte (The
Magic Flute) and wrote a series of seven variations on that aria for the cello with piano
accompaniment.
 In my opinion, the greatest reuser of all time was William Shakespeare. His genius lay
in reusing the plots of others—I cannot think of a single story line he made up himself.
For example, his historical plays heavily reused parts of Raphael Holinshed’s 1577 work,
 Chronicles of England, Scotland and Ireland . Then, Shakespeare’s Romeo and Juliet (1594) is
borrowed, on an almost line-for-line basis, from Arthur Brooke’s lengthy poem The Tragicall
Historye of Romeus and Iuliet published in 1562, two years before Shakespeare was born.
 But this reuse saga didn’t begin there. In fact, the earliest known version appeared around
200 C.E. in Ephesiaka (Ephesian tale) by the Greek novelist Xenophon of Ephesus. In 1476,
Tommaso Guardati (more commonly known as Masuccio Salernitano) reused Xenophon’s
tale in novella 33 in his collection of 50 novellas, Il Novellino . In 1530, Luigi da Porto reused
that story in Historia Novellamente Ritrovata di Due Nobili Amanti (A Newly Found Story of
Two Noble Lovers), for the fi rst time setting it in Verona, Italy. Brooke’s poem reuses parts of
 Giulietta e Romeo (1554) by Matteo Bandello, a reuse of da Porto’s version.
 And this reuse saga didn’t end with Romeo and Juliet , either. In 1957, West Side Story
opened on Broadway. The musical, with book by Arthur Laurents, lyrics by Stephen Sond-
heim, and score by Leonard Bernstein, reused Shakespeare’s version of the story. The
Broadway musical was then reused in a Hollywood movie, which won 10 Academy Awards
in 1961.

 Just in Case You Wanted to Know Box 8.1

sch76183_ch08_225-267.indd 226sch76183_ch08_225-267.indd 226 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 227

for use in future products are more likely to be easy and safe to reuse; such components
generally are robust, well documented, and thoroughly tested. In addition, they usually dis-
play a uniformity of style that makes maintenance easier. The other side of the coin is that
implementing systematic reuse within a company can be expensive. It takes time to specify,
design, implement, test, and document a software component. However, there can be no
guarantee that such a component will be reused and thereby recoup the money invested in
developing the potentially reusable component.
 When computers were fi rst constructed, nothing was reused. Every time a product was
developed, items such as multiplication routines, input–output routines, or routines for
computing sines and cosines were constructed from scratch. Quite soon, however, it was
realized that this was a considerable waste of effort, and subroutine libraries were con-
structed. Programmers then simply could invoke square root or sine functions whenever
they wished. These subroutine libraries have become more and more sophisticated and
developed into run-time support routines. Therefore, when a programmer calls a C++ or
Java method, there is no need to write code to manage the stack or pass the arguments
explicitly; it is handled automatically by calling the appropriate run-time support routines.
The concept of subroutine libraries has been extended to large-scale statistical libraries
such as SPSS [Norušis, 2005] and numerical analysis libraries like NAG [2003]. Class
libraries also play a major role in assisting users of object-oriented languages. For example,
the success of Smalltalk is due at least partly to the wide variety of items in the Smalltalk
library together with the presence of a browser, a CASE tool that helps the user to scan a
class library. With regard to C++, a large number of different libraries are available, many
in the public domain. One example is the C++ Standard Template Library (STL) [Musser
and Saini, 1996].
 An application programming interface (API) generally is a set of operating sys-
tem calls that facilitate programming. For example, Win32 is an API for Microsoft operat-
ing systems such as Windows 2000 and Windows XP; and Cocoa is an API for Mac OS X,
a Macintosh operating system. Although an API usually is implemented as a set of operat-
ing system calls, to the programmer the routines constituting the API can be viewed as a
subroutine library. For example, the Java Application Programming Interface consists of a
number of packages (libraries).
 No matter how high the quality of a software product may be, it will not sell if it takes
2 years to get it onto the market when a competitive product can be delivered in only 1 year.
The length of the development process is critical in a market economy. All other criteria as
to what constitutes a “good” product are irrelevant if the product cannot compete timewise.
For a corporation that has repeatedly failed to get a product to market fi rst, software reuse
offers a tempting technique. After all, if an existing component is reused, then there is no
need to specify, design, implement, test, and document that component. The key point is
that, on average, only about 15 percent of any software product serves a truly original pur-
pose [Jones, 1984]. The other 85 percent of the product in theory could be standardized and
reused in future products.
 The fi gure of 85 percent is essentially a theoretical upper limit for the reuse rate; nev-
ertheless, reuse rates on the order of 40 percent can be achieved in practice. This leads
to an obvious question: If such reuse rates are attainable in practice and reuse is by no
means a new idea, why do so few organizations employ reuse to shorten the develop-
ment process?

sch76183_ch08_225-267.indd 227sch76183_ch08_225-267.indd 227 10/06/10 2:17 PM10/06/10 2:17 PM

228 Part A Software Engineering Concepts

 8.2 Impediments to Reuse
 There are a number of impediments to reuse:

 • All too many software professionals would rather rewrite a routine from scratch than
reuse a routine implemented by someone else, the implication being that a routine can-
not be any good unless they implemented it themselves, otherwise known as the not
invented here (NIH) syndrome [Griss, 1993]. NIH is a management issue, and,
if management is aware of the problem, it can be solved, usually by offering fi nancial
incentives to promote reuse.

 • Many developers would be willing to reuse a routine provided they could be sure
that the routine in question would not introduce faults into the product. This atti-
tude toward software quality is perfectly easy to understand. After all, every software
professional has seen faulty software implemented by others. The solution here is to
subject potentially reusable routines to exhaustive testing before making them avail-
able for reuse.

 • A large organization may have hundreds of thousands of potentially useful components.
How should these components be stored for effective later retrieval? For example, a
reusable components database might consist of 20,000 items, 125 of which are sort rou-
tines. The database must be organized so that the designer of a new product can quickly
determine which (if any) of those 125 sort routines is appropriate for the new product.
Solving the storage/retrieval problem is a technical issue for which a wide variety of
solutions have been proposed.

 • Reuse can be expensive. Tracz [1994] has stated that three costs are involved: the
cost of making something reusable, the cost of reusing it, and the cost of defin-
ing and implementing a reuse process. He estimates that just making a component
reusable increases its cost by at least 60 percent. Some organizations have reported
cost increases of 200 percent and even up to 480 percent, whereas the cost of mak-
ing a component reusable was only 11 percent in one Hewlett-Packard reuse proj-
ect [Lim, 1994].

 • Legal issues can arise with contract software. In terms of the type of contract usually
drawn up between a client and a software development organization, the software
product belongs to the client. Therefore, if the software developer reuses a compo-
nent of one client’s product in a new product for a different client, this essentially
constitutes a violation of the fi rst client’s copyright. For internal software, that is,
when the developers and client are members of the same organization, this problem
does not arise.

 • Another impediment arises when commercial off-the-shelf (COTS) components are
reused. Rarely are developers given the source code of a COTS component, so software
that reuses COTS components has limited extensibility and modifi ability.

 The fi rst four impediments can be overcome, at least in principle. So, other than certain
legal issues and problems with COTS components, essentially no major impediments pre-
vent implementing reuse within a software organization (but see Just in Case You Wanted
to Know Box 8.2).

sch76183_ch08_225-267.indd 228sch76183_ch08_225-267.indd 228 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 229

 8.3 Reuse Case Studies
 Many published case studies show how reuse has been successfully achieved in practice;
reuse case studies that have had a major impact include [Matsumoto, 1984, 1987]; [Selby,
1989]; and [Lim, 1994]. Here, we analyze two case studies. The fi rst, which describes
a reuse project that took place between 1976 and 1982, is important because the reuse
mechanism used then for COBOL designs is the same as the reuse mechanism used today
in object-oriented application frameworks (Section 8.5.2). This case study therefore serves
to clarify modern reuse practices.

 Just in Case You Wanted to Know Box 8.2
The World Wide Web is a great source of “urban myths,” that is, apparently true stories that
somehow just do not stand up under scrutiny when they are investigated closely. One such
urban myth concerns code reuse.
 The story is told that the Australian Air Force set up a virtual reality training simulator
for helicopter combat training. To make the scenarios as realistic as possible, programmers
included detailed landscapes and (in the Northern Territory) herds of kangaroos. After all,
the dust from a herd disturbed by a helicopter might reveal the position of that helicopter
to the enemy.
 The programmers were instructed to model both the movements of the kangaroos and
their reaction to helicopters. To save time, the programmers reused code originally used to
simulate the reaction of infantry to attack by a helicopter. Only two changes were made:
They changed the icon from a soldier to a kangaroo, and they increased the speed of move-
ment of the fi gures.
 One fi ne day, a group of Australian pilots wanted to demonstrate their prowess with the
fl ight simulator to some visiting American pilots. They “buzzed” (fl ew very low over) the
virtual kangaroos. As expected, the kangaroos scattered, and then reappeared from behind
a hill and launched Stinger missiles at the helicopter. The programmers had forgotten to
remove that part of the code when they reused the virtual infantry implementation.
 However, as reported in The Risks Digest , it appears that the story is not totally an urban
myth—much of it actually happened [Green, 2000]. Dr. Anne-Marie Grisogono, head of
the Simulation Land Operations Division at the Australian Defence Science and Technology
Organisation, told the story at a meeting in Canberra, Australia, on May 6, 1999. Although
the simulator was designed to be as realistic as possible (it even included over 2 million
virtual trees, as indicated on aerial photographs), the kangaroos were included for fun.
The programmers indeed reused Stinger missile detachments so that the kangaroos could
detect the arrival of helicopters, but the behavior of the kangaroos was set to “retreat” so
that the kangaroos, correctly, would fl ee if a helicopter approached. However, when the
software team tested their simulator in their laboratory (not in front of visitors), they discov-
ered that they had forgotten to remove both the weapons and “fi re” behavior. Also, they
had not specifi ed what weapons were to be used by the simulated fi gures, so when the
kangaroos fi red on the helicopters, they fi red the default weapon, which happened to be
large multicolored beach balls.
 Grisogono confi rmed that the kangaroos were immediately disarmed and therefore it is
now safe to fl y over Australia. But notwithstanding this happy ending, software profession-
als still must take care when reusing code not to reuse too much of it.

sch76183_ch08_225-267.indd 229sch76183_ch08_225-267.indd 229 04/06/10 6:41 PM04/06/10 6:41 PM

230 Part A Software Engineering Concepts

 8.3.1 Raytheon Missile Systems Division
In 1976, a study was undertaken at Raytheon’s Missile Systems Division to determine
whether systematic reuse of designs and code was feasible within the context of busi-
ness applications [Lanergan and Grasso, 1984]. Over 5000 COBOL products in use were
analyzed and classifi ed. The researchers determined that only six basic operations are
performed in a business application product. As a result, between 40 and 60 percent of
business application designs and modules could be standardized and reused. The basic
operations were found to be sort data, edit or manipulate data, combine data, explode data,
update data, and report on data. For the next 6 years, a concerted attempt was made to reuse
both design and code wherever possible.
 The Raytheon approach employed reuse in two ways, what the researchers termed func-
tional modules and COBOL program logic structures . In Raytheon’s terminology a func-
tional module is a COBOL code fragment designed and coded for a specifi c purpose, such
as an edit routine, database procedure division call, tax computation routine, or date aging
routine for accounts receivable. Use of the 3200 reusable modules resulted in applications
that, on average, consisted of 60 percent reused code. Functional modules were carefully
designed, tested, and documented. Products that used these functional modules were found
to be more reliable, and less testing of the product as a whole was needed.
 The modules were stored in a standard copy library and obtained with the copy verb.
That is, the code was not physically present within the application product but included by
the COBOL compiler at compilation time, a mechanism similar to # include in C or C++.
The resulting source code therefore was shorter than if the copied code were physically
present. As a consequence, maintenance was easier.
 The Raytheon researchers also used what they termed a COBOL program logic
structure . This is a framework that has to be fl eshed out into a complete product. One
example of a logic structure is the update logic structure. This is used to perform a sequen-
tial update, such as the mini case study in Section 5.1.1. Error handling is built in, as is
sequence checking. The logic structure is 22 paragraphs (units of a COBOL program) in
length. Many of the paragraphs can be fi lled in by using functional modules such as get-
transaction, print-page-headings , and print-control-totals . Figure 8.1 is a symbolic

 FIGURE 8.1
A symbolic
representation
of the Raytheon
Missile Systems
Division reuse
mechanism.

COBOL program
logic structure

Functional module

sch76183_ch08_225-267.indd 230sch76183_ch08_225-267.indd 230 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 231

depiction of the framework of a COBOL program logic structure with the paragraphs fi lled
in by functional modules.
 The use of such templates has many advantages. It makes the design and coding of a
product quicker and easier, because the framework of the product already is present; all that
is needed is to fi ll in the details. Fault-prone areas such as end-of-fi le conditions already
have been tested. In fact, testing as a whole is easier. But Raytheon believed that the major
advantage would occur when the users requested modifi cations or enhancements. Once a
maintenance programmer was familiar with the relevant logic structure, it was almost as if
he or she had been a member of the original development team.
 By 1983, logic structures had been used over 5500 times in developing new products.
About 60 percent of the code consisted of functional modules, that is, reusable code. This
meant that design, coding, module testing, and documentation time also was reduced by
60 percent, leading to an estimated 50 percent increase in productivity in software product
development. But, for Raytheon, the real benefi t of the technique lay in the hope that the
readability and understandability resulting from the consistent style would reduce the cost
of maintenance by between 60 and 80 percent. Unfortunately, Raytheon closed the division
before the necessary maintenance data could be obtained.
 The second reuse case study is a cautionary tale, rather than a success story.

 8.3.2 European Space Agency
 On June 4, 1996, the European Space Agency launched the Ariane 5 rocket for the fi rst
time. As a consequence of a software fault, the rocket crashed about 37 seconds after liftoff.
The cost of the rocket and payload was about $500 million [Jézéquel and Meyer, 1997].
 The primary cause of the failure was an attempt to convert a 64-bit integer into a 16-bit
unsigned integer. The number being converted was larger than 2 16 , so an Ada exception
(run-time failure) occurred. Unfortunately, there was no explicit exception handler in the
code to deal with this exception, so the software crashed. This caused the onboard comput-
ers to crash which, in turn, caused the Ariane 5 rocket to crash.
 Ironically, the conversion that caused the failure was unnecessary. Certain computa-
tions are performed before liftoff to align the inertial reference system. These computations
should stop 9 seconds before liftoff. However, if there is a subsequent hold in the count-
down, resetting the inertial reference system after the countdown has recommenced can
take several hours. To prevent that happening, the computations continue for 50 seconds
after the start of fl ight mode, that is, well into the fl ight (notwithstanding that, once liftoff
has occurred, there is no way to align the inertial reference system). This futile continuation
of the alignment process caused the failure.
 The European Space Agency uses a careful software development process that
incorporates an effective software quality assurance component. Then, why was there
no exception handler in the Ada code to handle the possibility of such an overfl ow? To
prevent overloading the computer, conversions that could not possibly result in over-
fl ow were left unprotected. The code in question was 10 years old. It had been reused,
unchanged and without any further testing, from the software controlling the Ariane
4 rocket (the precursor of the Ariane 5). Mathematical analysis had proven that the com-
putation in question was totally safe for the Ariane 4. However, the analysis was per-
formed on the basis of certain assumptions that were true for the Ariane 4 but not for the
Ariane 5. Therefore, the analysis no longer was valid, and the code needed the protection

sch76183_ch08_225-267.indd 231sch76183_ch08_225-267.indd 231 04/06/10 6:41 PM04/06/10 6:41 PM

232 Part A Software Engineering Concepts

of an exception handler to cater to the possibility of an overfl ow. Were it not for the
performance constraint, there surely would have been exception handlers throughout the
Ariane 5 Ada code. Alternatively, the use of the assert pragma both during testing
and after the product had been installed (Section 6.5.3), could have prevented the Ariane
5 crash if the relevant module had included an assertion that the number to be converted
was smaller than 2 16 [Jézéquel and Meyer, 1997].
 The major lesson of this reuse experience is that software developed in one context must
be retested when reused in another context. That is, a reused software module does not need
to be retested by itself, but it must be retested after it has been integrated into the product
in which it is reused. Another lesson is that it is unwise to rely exclusively on the results of
mathematical proofs, as discussed in Section 6.5.2.
 We now examine the impact of the object-oriented paradigm on reuse.

 8.4 Objects and Reuse
 When the theory of composite/structured design fi rst was put forward about 30 years ago,
the claim was made that an ideal module has functional cohesion (Section 7.2.6). That is,
if a module performed only one operation, it was thought to be an exemplary candidate
for reuse, and maintenance of such a module was expected to be easy. The fl aw in this
reasoning is that a module with functional cohesion is not self-contained and independent.
Instead, it has to operate on data. If such a module is reused, then the data on which it is to
operate must be reused, too. If the data in the new product are not identical to those in the
original, then either the data have to be changed or the module with functional cohesion
has to be changed. Therefore, contrary to what we used to believe, functional cohesion is
not ideal for reuse.
 According to classical C/SD, the next best type of module is one with informational
cohesion (Section 7.2.7). Nowadays, we appreciate that such a module essentially is an
object, that is, an instance of a class. A well-designed object is the fundamental building
block of software because it models all aspects of a particular real-world entity (concep-
tual independence, or encapsulation) but conceals the implementation of both its data and
the operations that operate on the data (physical independence, or information hiding).
Therefore, when the object-oriented paradigm is utilized correctly, the resulting modules
(objects) have informational cohesion, and this promotes reuse.

 8.5 Reuse during Design and Implementation
 Dramatically different types of reuse are possible during design. The reused material
can vary from just one or two artifacts to the architecture of the complete software
product. We now examine various types of design reuse, some of which carry over into
implementation.

 8.5.1 Design Reuse
When designing a product, a member of the design team may realize that a class from an
earlier design can be reused in the current project, with or without minor modifi cations.
This type of reuse is particularly common in an organization that develops software in

sch76183_ch08_225-267.indd 232sch76183_ch08_225-267.indd 232 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 233

one specifi c application domain, such as banking or air traffi c control systems. The orga-
nization can promote this type of reuse by setting up a repository of design components
likely to be reused in the future and encouraging designers to reuse them, perhaps by a
cash bonus for each such reuse. This type of reuse, limited though it may be, has two
advantages.

 • First, tested designs are incorporated into the product. The overall design therefore can
be produced more quickly and is likely to have a higher quality than when the entire
design is produced from scratch.

 • Second, if the design of a class can be reused, then it is likely that the implementation of
that class also can be reused, if not the actual code then at least conceptually.

 This approach can be extended to library reuse, depicted in Figure 8.2(a) . A library
is a set of related reusable routines. For example, developers of scientifi c software rarely
write the methods to perform such common tasks as matrix inversion or fi nding eigen-
values. Instead, a scientifi c class library such as LAPACK++ [2000] is purchased. Then,
whenever possible, the classes in the scientifi c library are utilized in future software.
 Another example is a library for a graphical user interface. Instead of writing the GUI
methods from scratch, it is far more convenient to use a GUI class library or toolkit , that
is, a set of classes that can handle every aspect of the GUI. Many GUI toolkits of this kind
are available, including the Java Abstract Windowing Toolkit [Flanagan, 2005].
 A problem with library reuse is that libraries frequently are presented in the format of
a set of reusable code artifacts rather than reusable designs. Toolkits, too, generally pro-
mote code reuse rather than design reuse. This problem can be alleviated with the help of
a browser, that is, a CASE tool for displaying the inheritance tree. The designer then can
traverse the inheritance tree of the library, examine the fi elds of the various classes, and
determine which class is applicable to the current design.

 FIGURE 8.2 A symbolic representation of four types of design reuse. Shading denotes design reuse within (a) a
library or a toolkit, (b) a framework, (c) a design pattern, and (d) a software architecture comprising a framework, a
toolkit, and three design patterns.

(a) (b) (c) (d)

sch76183_ch08_225-267.indd 233sch76183_ch08_225-267.indd 233 04/06/10 6:41 PM04/06/10 6:41 PM

234 Part A Software Engineering Concepts

 A key aspect of library and toolkit reuse is that, as depicted in Figure 8.2(a) , the designer
is responsible for the control logic of the product as a whole. The library or toolkit contrib-
utes to the software development process by supplying parts of the design that incorporate
the specifi c operations of the product.
 On the other hand, an application framework is the converse of a library or toolkit in that
it supplies the control logic; the developers are responsible for the design of the specifi c
operations. This is described in Section 8.5.2.

 8.5.2 Application Frameworks
As shown in Figure 8.2(b) , an application framework incorporates the control logic of a
design. When a framework is reused, the developers have to design the application-specifi c
operations of the product being built. The places where the application-specifi c operations
are inserted frequently are referred to as hot spots .
 The term framework nowadays usually refers to an object-oriented application frame-
work. For example, in [Gamma, Helm, Johnson, and Vlissides, 1995], a framework is
defi ned as a “set of cooperating classes that make up a reusable design for a specifi c class
of software.” However, consider the Raytheon Missile Systems Division case study of
Section 8.3.1. Figure 8.1 is identical to Figure 8.2(b) . In other words, the Raytheon COBOL
program logic structure of the 1970s is a classical precursor of today’s object-oriented
application framework.
 An example of an application framework is a set of classes for the design of a compiler.
The design team merely has to provide classes specifi c to the language and desired target
machine. These classes then are inserted into the framework, as depicted by the white boxes
in Figure 8.2(b) . Another example of a framework is a set of classes for the software con-
trolling an ATM. Here, the designers need to provide the classes for the specifi c banking
services offered by the ATMs of that banking network.
 Reusing a framework results in faster product development than reusing a toolkit,
for two reasons. First, more of the design is reused with a framework, so there is less to
design from scratch. Second, the portion of the design that is reused with a framework
(the control logic) generally is harder to design than the operations, so the quality of the
resulting design also is likely to be higher than when a toolkit is reused. As with library
or toolkit reuse, often the implementation of the framework can be reused as well. The
developers probably have to use the names and calling conventions of the framework,
but that is a small price to pay. Also, the resulting product is likely to be maintained
easily because the control logic has been tested in other products that reuse the applica-
tion framework and the maintainer previously may have maintained another product that
reused that same framework.
 IBM’s WebSphere (formerly known as e-Components , and originally as San Francisco)
is a framework for building online information systems in Java. It utilizes Enterprise
JavaBeans, that is, classes that provide services for clients distributed throughout a
network.
 In addition to application frameworks, many code frameworks are available. One of
the fi rst commercially successful code frameworks was MacApp, a framework for writing
application software on the Macintosh. Borland’s Visual Component Library (VCL) is an
object-oriented set of frameworks for building GUIs in Windows-based applications. VCL
applications can perform standard windowing operations, such as moving and resizing

sch76183_ch08_225-267.indd 234sch76183_ch08_225-267.indd 234 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 235

windows, processing input via dialog boxes, and handling events like mouse clicks or menu
selections.
 We now consider design patterns.

 8.5.3 Design Patterns
Christopher Alexander (see Just in Case You Wanted to Know Box 8.3) said, “Each pat-
tern describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice” [Alexander et
al., 1977]. Although he was writing within the context of patterns in buildings and other
architectural objects, his remarks are equally applicable to design patterns.
 A design pattern is a solution to a general design problem in the form of a set of
interacting classes that have to be customized to create a specifi c design. This is depicted
in Figure 8.2(c) . The shaded boxes connected by lines denote the interacting classes. The
white boxes inside the shaded boxes denote that these classes must be customized for a
specifi c design.
 To understand how patterns can assist with software development, consider the follow-
ing example. Suppose that a software engineer wishes to reuse two existing classes, P and
 Q , say, but that their interfaces are incompatible. For example, when P sends a message to
 Q , it passes four parameters, but Q’s interface is such that it expects only three parameters.
Changing the interface of P or Q would create a whole host of incompatibility problems
in all the applications that currently incorporate P or Q . Instead, a class A needs to be con-
structed that accepts a message from P with four parameters, and sends a message to Q
with only three parameters. (A class of this kind is sometimes called a wrapper .)
 What we have described is a specifi c solution to a more general problem, namely, enabling
any two incompatible classes to work together. Instead of designing this one solution, we
need a design pattern, the adapter pattern. Just as an instance of a class is an object, an
instance of the adapter pattern is a solution to the incompatibility problem tailored to the
two classes involved. This pattern is described in more detail in Section 8.6.2.

 Just in Case You Wanted to Know Box 8.3
One of the most infl uential individuals in the fi eld of object-oriented software engineering
is Christopher Alexander, a world-famous architect who freely admits to knowing little or
nothing about objects or software engineering. In his books, and especially in [Alexander
et al., 1977], he describes a pattern language for architecture, that is, for describing towns,
buildings, rooms, gardens, and so on. His ideas were adopted and adapted by object-
oriented software engineers, especially the so-called Gang of Four (Erich Gamma, Rich-
ard Helm, Ralph Johnson, and John Vlissides). Their best-selling book on design patterns
[Gamma, Helm, Johnson, and Vlissides, 1995] resulted in Alexander’s ideas being widely
accepted by the object-oriented community.
 Patterns occur in other contexts as well. For example, when approaching an airport,
pilots have to know the appropriate landing pattern, that is, the sequence of directions,
altitudes, and turns needed to land the plane on the correct runway. Also, a dressmaking
pattern is a series of shapes that can be used repeatedly to create a particular dress. The
concept of a pattern itself is by no means novel. What is new is the application of patterns
to software development and especially design.

sch76183_ch08_225-267.indd 235sch76183_ch08_225-267.indd 235 04/06/10 6:41 PM04/06/10 6:41 PM

236 Part A Software Engineering Concepts

 Patterns can interact with other patterns. This is represented symbolically in Figure
8.2(d) where the bottom-left block of the middle pattern again is a pattern. A case study of
a document editor in [Gamma, Helm, Johnson, and Vlissides, 1995] contains eight interact-
ing patterns. That is what happens in practice; it is unusual for the design of a product to
contain only one pattern.
 As with toolkits and frameworks, if a design pattern is reused, then an implementation
of that pattern probably also can be reused. In addition, analysis patterns can assist with
the analysis workfl ow [Fowler, 1997]. Finally, in addition to patterns, there are antipatterns;
these are described in Just in Case You Wanted to Know Box 8.4.
 Because of the importance of design patterns, we return to this topic in Section 8.6, after
we have concluded our overview of reuse in design and implementation.

 8.5.4 Software Architecture
The architecture of a cathedral might be described as Romanesque, Gothic, or Baroque.
Similarly, the architecture of a software product might be described as object-oriented,
pipes and fi lters (UNIX components), or client–server (with a central server providing fi le
storage and computing facilities for a network of client computers). Figure 8.2(d) sym-
bolically depicts an architecture composed of a toolkit, a framework, and three design
patterns.
 Because it applies to the design of a product as a whole, the fi eld of software archi-
tecture encompasses a variety of design issues, including the organization of the product
in terms of its components; product-level control structures; issues of communication and
synchronization; databases and data access; the physical distribution of the components;
performance; and choice of design alternatives [Shaw and Garlan, 1996]. Accordingly,
software architecture is a considerably more wide-ranging concept than design patterns.
 In fact, Shaw and Garlan [1996] state, “Abstractly, software architecture involves the
description of elements from which systems are built, interactions among those elements,
 patterns that guide their composition, and constraints on those patterns ” [emphasis added].
Consequently, in addition to the many items listed in the previous paragraph, software
architecture includes patterns as a subfi eld. This is one reason why Figure 8.2(d) shows
three design patterns as components of a software architecture.
 The many strengths of design reuse are even greater when a software architecture is
reused. One way that reuse of architectures is achieved in practice is with a software prod-
uct line [Clements and Northrop, 2002]. A software product line is a set of software
products in the same application domain that are built by reusing core assets (that is,
common software artifacts that are available for acquisition as building blocks for specifi c
products), together with other artifacts [Tomer et al., 2004].

 Just in Case You Wanted to Know Box 8.4
An antipattern is a practice that can cause a project to fail, such as “analysis paralysis”
(spending far too much time and effort on the analysis workfl ow) or designing an object-
oriented product in which just one object does almost all the work. A major motivation for
writing the fi rst antipattern book was that, in 1998, nearly one-third of all software projects
were canceled, two-thirds of all software projects encountered cost overruns in excess of
200 percent, and over 80 percent of all software projects were deemed failures [Brown
et al., 1998].

sch76183_ch08_225-267.indd 236sch76183_ch08_225-267.indd 236 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 237

 The idea is to develop a software architecture common to a number of software
products and instantiate this architecture when developing a new product. For example,
Hewlett-Packard manufactures a broad variety of printers, and new models constantly
are being developed. Hewlett-Packard now has a fi rmware architecture that is instanti-
ated for each new printer model. The results have been impressive. For example, between
1995 and 1998, the number of person-hours to develop the fi rmware for a new printer
model decreased by a factor of 4 and the time to develop the fi rmware decreased by a
factor of 3. Also, reuse has increased. For more recent printers, over 70 percent of the
components of the fi rmware are reused, almost unchanged, from earlier products [Toft,
Coleman, and Ohta, 2000].
 Architecture patterns are another way of achieving architectural reuse. One popular
architecture pattern is the model-view-controller (MVC) architecture pattern . As
shown in Section 5.1, a traditional way of designing software is to decompose it into three
pieces: input, processing, and output. The MVC pattern can be viewed as an extension
of the input–processing–output architecture to the GUI domain. The correspondence is
shown in Figure 8.3 . The view(s) and the controller provide the GUI. The decomposition
of the architecture into model, view, and controller allows each of the components to be
changed independently of the other two, thereby enhancing the reusability.
 Another popular architectural pattern is the three-tier architecture . The presenta-
tion logic tier accepts user input and generates user output—this tier corresponds to the
GUI. The business logic tier incorporates the processing of the business rules. The data
access logic tier communicates with the underlying database. Again, this architectural
pattern permits each of the three components to be changed independently of the other two
(see Problem 8.14). This independence is a major reason why the three-tier architecture
promotes reuse.

 8.5.5 Component-Based Software Engineering
The goal of component-based software engineering is to construct a standard col-
lection of reusable components. This emerging technology is outlined in Section 18.3.

 8.6 More on Design Patterns
 Because of the importance of design patterns in object-oriented software engineering, we
now examine design patterns in greater detail. We begin with a mini case study that illus-
trates the adapter design pattern (Section 8.5.3).

 FIGURE 8.3 The correspondence between the components of the MVC model and
the input–processing–output model.

 MVC component Description Corresponds to

 Model Core functionality, data Processing
 View Displays information Output
 Controller Handles user input Input

sch76183_ch08_225-267.indd 237sch76183_ch08_225-267.indd 237 04/06/10 6:41 PM04/06/10 6:41 PM

238 Part A Software Engineering Concepts

C Mini ase Study

8.6.18.6.1 FLIC Mini Case Study

Until recently, premiums at Flintstock Life Insurance Company (FLIC) depended on
both the age and the gender of the person applying for insurance. FLIC has recently
decided that certain policies will now be gender-neutral, that is, the premium for
those policies will depend solely on the age of the applicant.
 Up to now, premiums have been computed by sending a message to method com-
putePremium of class Applicant , passing the age and gender of the applicant.
Now, however, a different computation has to be made, based solely on the applicant’s
gender. A new class is written, Neutral Applicant , and premiums are computed
by sending a message to method computeNeutralPremium in that class. However,
there has not been enough time to change the whole system. The situation is therefore
as shown in Figure 8.4 .
 There are serious interfacing problems. First, an Insurance object passes a mes-
sage to an object of type Applicant , instead of Neutral Applicant . Second, the
message is sent to method computePremium instead of method computeNeutral-
Premium . Third, parameters age and gender are passed, instead of just age . The
three question marks on the lower arrow in Figure 8.4 represent these three interfac-
ing problems.
 To solve these problems, we need to interpose class Wrapper , as shown in
 Figure 8.5 . An object of class Insurance sends the same message computePre-
mium passing the same two parameters (age and gender), but now the message
is sent to an object of type Wrapper . This object then sends message compute-
NeutralPremium to an object of class Neutral Applicant , passing only age as a
parameter. The three interfacing problems have been solved.

 FIGURE 8.4
UML diagram
showing
interfacing
problems
between
classes.

{

}

determinePremium ()

Insurance

applicant.computePremium (age, gender);

Neutral Applicant

computeNeutralPremium (age)

Client

???

sch76183_ch08_225-267.indd 238sch76183_ch08_225-267.indd 238 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 239

 8.6.2 Adapter Design Pattern
 Generalizing the solution of Figure 8.5 leads to the adapter design pattern shown in
 Figure 8.6 [Gamma, Helm, Johnson, and Vlissides, 1995]. In this fi gure, the names of
abstract classes and their abstract (virtual) methods are in sans serif italics . (An abstract
class is a class that cannot be instantiated, although it can be used as a base class. An
abstract class usually contains at least one abstract method , that is, a method with an
interface but without an implementation.) Method request is defi ned as an abstract method
of class Abstract Target . It is then implemented in (concrete) class Adapter to send
message specifi cRequest to an object of class Adaptee . This solves the implementation
incompatibilities. Class Adapter is a concrete subclass of abstract class Abstract Target ,
as refl ected by the open arrow denoting inheritance in Figure 8.6 .
 Figure 8.6 depicts a general solution to the problem of permitting communication
between two objects with incompatible interfaces. In fact, the adapter design pattern is
even more powerful than that. It provides a way for an object to permit access to its internal
implementation in such a way that clients are not coupled to the structure of that internal

 FIGURE 8.5 Wrapper solution to the
interfacing problems of Figure 8.4.

 FIGURE 8.6 The adapter design pattern.

{

}

computePremium (age, gender)

Wrapper

neutralApplicant.computeNeutralPremium (age);

{

}

determinePremium ()

Insurance

wrapper.computePremium (age, gender);

Neutral Applicant

computeNeutralPremium (age)

Client

Adaptee

specificRequest ()

Abstract Target

abstract request ()

Client

{

}

request ()

Adapter

adaptee.specificRequest ();

Inheritance References

sch76183_ch08_225-267.indd 239sch76183_ch08_225-267.indd 239 04/06/10 6:41 PM04/06/10 6:41 PM

240 Part A Software Engineering Concepts

implementation. That is, it provides all the advantages of information hiding (Section 7.6)
without having to actually hide the implementation details.
 We now turn to the bridge design pattern.

 8.6.3 Bridge Design Pattern
The aim of the bridge design pattern is to decouple an abstraction from its implemen-
tation so that the two can be changed independently of one another. The bridge pattern is
sometimes called a driver (for example, a printer driver or video driver).
 Suppose that part of a design is hardware-dependent, but the rest is not. The design
then consists of two pieces. Those parts of the design that are hardware-dependent are
put on one side of the bridge, the hardware-independent pieces on the other side. In
this way, the abstract operations are uncoupled from the hardware-dependent parts;
there is a “bridge” between the two parts. Now, if the hardware changes, the modifi ca-
tions to the design and the code are localized to only one side of the bridge. The bridge
design pattern can therefore be viewed as a way of achieving information hiding via
encapsulation.
 This is shown in Figure 8.7 . The implementation-independent piece is in classes
 Abstract Conceptualization and Refi ned Conceptualization , and the imple-
mentation-dependent piece is in classes Abstract Implementation and Concrete
Implementation .

 FIGURE 8.7 The bridge design pattern.

Inheritance References

Refined Conceptualization

Client

{

}

operation ()

Abstract Conceptualization

impl.operationImplementation ();

Abstract Implementation

abstract operationImplementation ()

Concrete Implementation

operationImplementation ()

sch76183_ch08_225-267.indd 240sch76183_ch08_225-267.indd 240 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 241

 The bridge design pattern is also useful for decoupling operating system-dependent
pieces or compiler-dependent pieces, thereby supporting multiple implementations. This is
shown in Figure 8.8 .

 8.6.4 Iterator Design Pattern
An aggregate object (or container or collection) is an object that contains other objects
grouped together as a unit. Examples include a linked list and a hash table. An iterator is a
programming construct that allows a programmer to traverse the elements of an aggregate
object without exposing the implementation of that aggregate. An iterator is frequently
referred to as a cursor , especially within a database context.
 An iterator may be viewed as a pointer with two main operations: element access ,
or referencing a specifi c element in the collection; and element traversal , or modifying
itself so it points to the next element in the collection.
 A well-known example of an iterator is a television remote control. Every remote con-
trol has a key (often labeled Up or ▲) that increases the channel number by one, and a key
(often labeled Down or ▼) that decreases the channel number by one. The remote control
increases or decreases the channel number without the viewer having to specify (or even
having to know) the current channel number, let alone the program that is being carried on
that channel. That is, the device implements element traversal without exposing the imple-
mentation of the aggregate.
 The iterator design pattern is shown in Figure 8.9 . A Client object deals with only
the Abstract Aggregate and Abstract Iterator (essentially an interface). The Client
object asks the Abstract Aggregate object to create an iterator for the Concrete
Aggregate object, and then utilizes the returned Concrete Iterator to traverse the
contents of the aggregate. The Abstract Aggregate object has to have an abstract method,
 createIterator , as a way of returning an iterator to the Client object within the application
program, whereas the Abstract Iterator interface needs to defi ne only the basic four
abstract traversal operations, fi rst , next , isDone , and currentItem . Implementation of these
fi ve methods is achieved at the next level of abstraction, in Concrete Aggregate (cre-
ateIterator) and Concrete Iterator (fi rst , next , isDone , and currentItem).
 The key aspect of the iterator design pattern is that implementation details of the ele-
ments are hidden from the iterator itself. Accordingly, we can use an iterator to process
every element in a collection, independently of the implementation of the container of the
elements.
 Furthermore, the pattern allows different traversal methods. It even allows multiple
traversals to be in progress concurrently, and these traversals can be achieved without hav-
ing the specifi c operations listed in the interface. Instead, we have one uniform interface,
namely, the four abstract operations fi rst , next , isDone , and currentItem in Abstract
Iterator , with the specifi c traversal method(s) implemented in Concrete Iterator .

 8.6.5 Abstract Factory Design Pattern
 Suppose that a software organization wishes to build a widget generator, a tool that assists
developers in constructing a graphical user interface. Instead of having to develop the vari-
ous widgets (such as windows, buttons, menus, sliders, and scroll bars) from scratch, a
developer can use the set of classes created by the widget generator that defi ne the widgets
to be utilized within the application program.

sch76183_ch08_225-267.indd 241sch76183_ch08_225-267.indd 241 04/06/10 6:41 PM04/06/10 6:41 PM

 FIGURE 8.8 Using the bridge design pattern to support multiple implementations.

Inheritance References

Refined Conceptualization

Client

{

}

operation ()

Abstract Conceptualization

impl.operationImplementation ();

Abstract Implementation

abstract operationImplementation ()

Concrete Implementation A

operationImplementation ()

Concrete Implementation B

operationImplementation ()

242

sch76183_ch08_225-267.indd 242
sch76183_ch08_225-267.indd 242

04/06/10 6:41 P
M

04/06/10 6:41 P
M

 FIGURE 8.9 The iterator design pattern.

Client

{

}

createIterator ()

Concrete Aggregate

return new concreteIterator (this);

Concrete Iterator

 first ()
 next ()
 isDone () : Boolean
 currentItem () : Item

Abstract Iterator

abstract first ()
abstract next ()
abstract isDone () : Boolean
abstract currentItem () : Item

Abstract Aggregate

abstract createIterator () : Iterator

Inheritance Creates References

243

sch76183_ch08_225-267.indd 243
sch76183_ch08_225-267.indd 243

04/06/10 6:41 P
M

04/06/10 6:41 P
M

244 Part A Software Engineering Concepts

 The problem is that the application program (and, therefore, the widgets) may have to run
under many different operating systems, including Linux, Mac OS, and Windows. The widget
generator is to support all three operating systems. However, if the widget generator hard-codes
routines that run under one specifi c system into an application program, it will be diffi cult to
modify that application program in the future, replacing the generated routines with different
routines that run under a different operating system. For example, suppose that the application
program is to run under Linux. Then, every time a menu is to be generated, message create
Linux menu is sent. However, if that application program now needs to run under Mac OS,
every instance of create Linux menu must be replaced by create Mac OS menu . For a large
application program, such a conversion from Linux to Mac OS is laborious and fault prone.
 The solution is to design the widget generator in such a way that the application program
is uncoupled from the specifi c operating system. This can be achieved using the abstract
factory design pattern [Gamma, Helm, Johnson, and Vlissides, 1995]. Figure 8.10
shows the resulting design of the graphical user interface toolkit. Again, the names of
abstract classes and their abstract (virtual) methods are in sans serif italics . At the top
of Figure 8.10 is abstract class Abstract Widget Factory . This abstract class contains
numerous abstract methods; for simplicity, only two are shown here: create menu and cre-
ate window . Moving down in the fi gure, Linux Widget Factory , Mac OS Widget
Factory , and Windows Widget Factory are concrete subclasses of Abstract Wid-
get Factory . Each class contains the specifi c methods for creating widgets that run under
a given operating system. For example, create menu within Linux Widget Factory
causes a menu object to be created that will run under Linux.
 There are also abstract classes for each widget. Two are shown here, Abstract Menu
and Abstract Window . Each has concrete subclasses, one for each of the three operating
systems. For example, Linux Menu is one concrete subclass of Abstract Menu . Method
 create menu within concrete subclass Linux Widget Factory causes an object of type
 Linux Menu to be created.
 To create a window, a Client object within the application program need only send a mes-
sage to abstract method create window of Abstract Widget Factory and polymorphism
ensures that the correct widget is created. Suppose that the application program has to run under
Linux. First, an object Widget Factory of type (class) Linux Widget Factory is created.
Then a message to virtual (abstract) method create window of Abstract Widget Factory
passing Linux as a parameter is interpreted as a message to method create window within con-
crete subclass Linux Widget Factory . Method create window in turn sends a message to
create a Linux Window ; this is indicated by the leftmost vertical dashed line in Figure 8.10 .
 The critical aspect of this fi gure is that the three interfaces between the Client within
the application program and the widget generator, classes Abstract Widget Factory ,
 Abstract Menu , and Abstract Window , all are abstract classes. None of these inter-
faces is specifi c to any one operating system because the methods of the abstract classes
are abstract (virtual in C++). Consequently, the design of Figure 8.10 indeed has
uncoupled the application program from the operating system.
 The design of Figure 8.10 is an instance of the abstract factory design pattern shown in
 Figure 8.11 . To use this pattern, specifi c classes replace the generic names like Concrete
Factory 2 and Product B3 . That is why Figure 8.2(c) , the symbolic representation of a
design pattern, contains white rectangles within the shaded rectangles; the white rectangles
represent the details that have to be supplied to reuse this pattern in a design.

sch76183_ch08_225-267.indd 244sch76183_ch08_225-267.indd 244 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 245

 8.7 Categories of Design Patterns
 The defi nitive list of 23 design patterns given in [Gamma, Helm, Johnson, and Vlis-
sides, 1995] is presented in Figure 8.12 . The patterns are divided into three categories:
creational patterns, structural patterns, and behavioral patterns. Creational design
patterns solve design problems by creating objects; the abstract factory pattern (Sec-
tion 8.6.5) is an example. Structural design patterns solve design problems by

 FIGURE 8.10
Design of
graphical user
interface toolkit.
The names of
abstract classes
and their virtual
functions are
italicized.

Abstract Widget Factory

abstract create menu ()
abstract create window ()

Abstract Menu

Mac OS MenuLinux Menu
Client

Windows Menu

Mac OS WindowLinux Window Windows Window

Abstract Window

Windows
Widget Factory

create menu ()
create window ()

Mac OS Widget
Factory

create menu ()
create window ()

Linux Widget
Factory

create menu ()
create window ()

Inheritance Creates References

sch76183_ch08_225-267.indd 245sch76183_ch08_225-267.indd 245 04/06/10 6:41 PM04/06/10 6:41 PM

246 Part A Software Engineering Concepts

identifying a simple way to realize relationships between entities. Examples include
the adapter pattern (Section 8.6.2) and the bridge pattern of Section 8.6.3. Finally,
 behavioral design patterns solve design problems by identifying common com-
munication patterns between objects. An example of this type of design pattern is the
 iterator pattern (Section 8.6.4).
 Many other lists of design patterns, organized into a variety of different categories, have
been put forward. These categories are either for design patterns in general, or for specifi c

 FIGURE 8.11
 Abstract
factory
design pattern.
The names
of abstract
classes and
their virtual
functions are
italicized.

Abstract Widget Factory

abstract create product A ()
abstract create product B ()

Abstract Product A

Product A2Product A1
Client

Product A3

Product B2Product B1 Product B3

Abstract Product B

Concrete
Factory 3

Concrete
Factory 2

Concrete
Factory 1

create product A ()
create product B ()

create product A ()
create product B ()

create product A ()
create product B ()

Inheritance Creates References

sch76183_ch08_225-267.indd 246sch76183_ch08_225-267.indd 246 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 247

domains, such as design patterns for Web pages or computer games. However, these alter-
native lists of patterns have not been widely accepted.

 8.8 Strengths and Weaknesses of Design Patterns
 Design patterns have many strengths:

 1. As pointed out in Section 8.5.3, design patterns promote reuse by solving a general
design problem. The reusability of a design pattern can be enhanced by careful incorpo-
ration of features that can be used to further enhance reuse, such as inheritance.

 2. A design pattern provides high-level documentation of the design, because patterns
specify design abstractions.

 3. Implementations of many design patterns exist. In such cases, there is no need to code
or document those parts of a program that implement design patterns. (Testing of those
parts of the program is still essential, of course.)

 4. If a maintenance programmer is familiar with design patterns, it will be easier to com-
prehend a program that incorporates design patterns, even if he or she has never seen
that specifi c program before.

 5. Research into automated detection of design patterns is starting to produce results.

 FIGURE 8.12
The 23 design
patterns listed in
[Gamma, Helm,
Johnson, and
Vlissides, 1995].

 Creational patterns
 Abstract factory Creates an instance of several families of classes (Section 8.6.5)
 Builder Allows the same construction process to create different representations
 Factory method Creates an instance of several possible derived classes
 Prototype A class to be cloned
 Singleton Restricts instantiation of a class to a single instance

 Structural patterns
 Adapter Matches interfaces of different classes (Section 8.6.2)
 Bridge Decouples an abstraction from its implementation (Section 8.6.3)
 Composite A class that is a composition of similar classes
 Decorator Allows additional behavior to be dynamically added to a class
 Façade A single class that provides a simplifi ed interface
 Flyweight Uses sharing to support large numbers of fi ne-grained classes effi ciently
 Proxy A class functioning as an interface

 Behavioral patterns
 Chain-of-responsibility A way of processing a request by a chain of classes
 Command Encapsulates an action within a class
 Interpreter A way to implement specialized language elements
 Iterator Sequentially access the elements of a collection (Section 8.6.4)
 Mediator Provides a unifi ed interface to a set of interfaces
 Memento Captures and restores an object’s internal state
 Observer Allows the observation of the state of an object at run time
 State Allows an object to partially change its type at run time
 Strategy Allows an algorithm to be dynamically selected at run time
 Template method Defers implementations of an algorithm to its subclasses
 Visitor Adds new operations to a class without changing it

sch76183_ch08_225-267.indd 247sch76183_ch08_225-267.indd 247 04/06/10 6:41 PM04/06/10 6:41 PM

248 Part A Software Engineering Concepts

 However, design patterns have a number of weaknesses, too:

 1. The use of the 23 standard design patterns in [Gamma, Helm, Johnson, and Vlissides,
1995] in a software product may be an indication that the language we are using is not
powerful enough. Norwig [1996] examined the C++ implementations of those patterns,
and found that 16 out of the 23 have simpler implementations in Lisp or Dylan than in
C++, for at least some uses of each pattern.

 2. A major problem is that there is as yet no systematic way to determine when and how to
apply design patterns. Design patterns are still described informally, using natural lan-
guage text. Accordingly, we have to decide manually when to apply a pattern; a CASE
tool (Chapter 5) cannot yet be used.

 3. To obtain maximal benefi t from design patterns, multiple interacting patterns are
employed. For example, as stated in Section 8.5.3, a case study of a document editor in
[Gamma, Helm, Johnson, and Vlissides, 1995] contains eight interacting patterns. As
pointed out in paragraph 2 of this section, we do not yet have a systematic way of know-
ing when and how to use one pattern, let alone multiple interacting patterns.

 4. When performing maintenance on a software product built using the classical paradigm,
it is essentially impossible to retrofi t classes and objects. It is similarly all but impossible
to retrofi t patterns to an existing software product, whether classical or object oriented.

 However, the weaknesses of design patterns are outweighed by their strengths. Further-
more, once current research efforts to formalize and hence automate design patterns have
succeeded, patterns will be much easier to use than at present.

 8.9 Reuse and the World Wide Web
 When a programmer is particularly proud of a piece of code that he or she has written, the
programmer may decide to post the code on the World Wide Web. There is now a plethora of
code of all kinds, ranging from a student’s fi rst programming exercise to intricate code imple-
mented by professional programmers. The Web has code in a wide variety of programming
languages, for an impressively broad range of application areas. Designs and patterns are also
available on the Web for reuse, but in much smaller numbers than code segments.
 As a result, the Web supports code reuse on a previously unimagined scale. Anyone can
download this code from the Web and use it, free of charge and with no restrictions (although,
as a courtesy, the programmer should acknowledge the source of any code he or she has
downloaded and reused). However, there are two problems with reusing code from the Web.

 • First, the quality of the code varies widely. There is no guarantee that code that has been
posted on the Web can even be successfully compiled, let alone that it is correct; and
reuse of incorrect code is clearly unproductive.

 • Second, when a code segment is reused within an organization, a record is kept of that
reuse instance so that, if a fault is later found in the original code, the reused code can
also be fi xed. Now suppose that a fault is found in a code segment that has been posted
on the Web and downloaded many times. In general, there is no way for the author of
that code to determine who downloaded the code, and whether or not it was actually
reused after downloading.

sch76183_ch08_225-267.indd 248sch76183_ch08_225-267.indd 248 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 249

 Consequently, on the one hand, the World Wide Web promotes widespread reuse of
code and, to a much lesser extent, of designs and patterns. On the other hand, however, the
quality of the downloaded material may be abysmal, and the consequences of reuse may be
severe.

 8.10 Reuse and Postdelivery Maintenance
 The traditional reason for promoting reuse is that it can shorten the development process.
For example, a number of major software organizations are trying to halve the time needed
to develop a new product, and reuse is a primary strategy in these endeavors. However, as
refl ected in Figure 1.3, for every $1 spent on developing a product, $2 or more are spent on
maintaining that product. Therefore, a second important reason for reuse is to reduce the
time and cost of maintaining a product. In fact, reuse has a greater impact on postdelivery
maintenance than on development.
 Suppose now that 40 percent of a product consists of components reused from earlier
products and this reuse is evenly distributed across the entire product. That is, 40 percent
of the specifi cation document consists of reused components, 40 percent of the design,
40 percent of the code artifacts, 40 percent of the manuals, and so on. Unfortunately, this
does not mean that the time to develop the product as a whole will be 40 percent less than
it would have been without reuse. First, some of the components have to be tailored to the
new product. Suppose that one-quarter of the reused components are changed. If a compo-
nent has to be changed, then the documentation for that component also has to be changed.
Furthermore, the changed component has to be tested. Second, if a code artifact is reused
unchanged, then unit testing of that code artifact is not required. However, integration test-
ing of that code artifact still is needed. So, even if 30 percent of a product consists of com-
ponents reused unchanged and a further 10 percent are reused changed, the time needed to
develop the complete product at best is only about 27 percent less [Schach, 1992]. Suppose
that, as in Figure 1.3(a), 33 percent of a software budget is devoted to development. Then,
if reuse reduces development costs by about 27 percent, the overall cost of that product over
its 12- to 15-year lifetime is reduced by only about 9 percent as a consequence of reuse; this
is refl ected in Figure 8.13 .
 Similar but lengthier arguments can be applied to the postdelivery maintenance compo-
nent of the software process [Schach, 1994]. Under the assumptions of the previous para-
graph, the effect of reuse on postdelivery maintenance is an overall cost saving of about
18 percent, as shown in Figure 8.13 . Clearly, the major impact of reuse is on postdelivery

 FIGURE 8.13 Average percentage cost savings under the assumption that 40 percent of a new
product consists of reused components, three-quarters of which are reused unchanged.

 Percentage of Total Cost Percentage Savings over
 Activity over Product Lifetime Product Lifetime due to Reuse

 Development 33% 9.3%
 Postdelivery maintenance 67 17.9

sch76183_ch08_225-267.indd 249sch76183_ch08_225-267.indd 249 04/06/10 6:41 PM04/06/10 6:41 PM

250 Part A Software Engineering Concepts

maintenance rather than development. The underlying reason is that reused components
generally are well designed, thoroughly tested, and comprehensively documented, thereby
simplifying all three types of postdelivery maintenance.
 If the actual reuse rates in a given product are lower (or higher) than assumed in this
section, then the benefi ts of reuse are different. But the overall result is still the same: Reuse
affects postdelivery maintenance more than it does development.
 We turn now to portability.

 8.11 Portability
 The ever-rising cost of software makes it imperative that some means be found to contain
costs. One way is to ensure that the product as a whole can be adapted easily to run on a
variety of different hardware–operating system combinations. Some of the cost of imple-
menting the product may then be recouped by selling versions that run on other computers.
But, the most important reason for developing software that can be implemented easily on
other computers is that, every 4 years or so, the client organization purchases new hard-
ware, and all its software then must be converted to run on the new hardware. A product
is considered portable if it is signifi cantly less expensive to adapt the product to run on the
new computer than to implement a new product from scratch [Mooney, 1990].
 More precisely, portability may be defi ned as follows: Suppose a product P is compiled
by compiler C and then runs on the source computer , namely, hardware confi guration H
under operating system O . A product P � is needed that functionally is equivalent to P but
must be compiled by compiler C � and run on the target computer , namely, hardware
confi guration H � under operating system O� . If the cost of converting P into P � is signifi -
cantly less than the cost of coding P � from scratch, then P is said to be portable .
 Overall, the problem of porting software is nontrivial because of incompatibilities
among different hardware confi gurations, operating systems, and compilers. Each of these
aspects is examined in turn.

 8.11.1 Hardware Incompatibilities
Product P currently running on hardware confi guration H is to be installed on hardware
confi guration H �. Superfi cially, this is simple; copy P from the hard drive of H onto DAT
tape and transfer it to H �. However, this will not work if H � uses a Zip drive for backup;
DAT tape cannot be read on a Zip drive.
 Suppose now that the problem of physically copying the source code of product P to com-
puter H� has been solved. There is no guarantee that H � can interpret the bit patterns created
by H . A number of different character codes exist, the most popular of which are Extended
Binary Coded Decimal Interchange Code (EBCDIC) and American Standard Code for Infor-
mation Interchange (ASCII), the American version of the 7-bit ISO code [Mackenzie, 1980].
If H uses EBCDIC but H � uses ASCII, then H � will treat P as so much garbage.
 Although the original reason for these differences is historical (that is, researchers work-
ing independently for different manufacturers developed different ways of doing the same
thing), there are defi nite economic reasons for perpetuating them. To see this, consider the
following imaginary situation. MCM Computer Manufacturers has sold thousands of its
MCM-1 computer. MCM now wishes to design, manufacture, and market a new computer,

sch76183_ch08_225-267.indd 250sch76183_ch08_225-267.indd 250 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 251

the MCM-2, which is more powerful in every way than the MCM-1 but costs considerably
less. Suppose further that the MCM-1 uses ASCII code and has 36-bit words consisting
of four 9-bit bytes. Now, the chief computer architect of MCM decides that the MCM-2
should employ EBCDIC and have 16-bit words consisting of two 8-bit bytes. The sales
force then has to tell current MCM-1 owners that the MCM-2 is going to cost them $35,000
less than any competitor’s equivalent machine but will cost them up to $200,000 to convert
existing software and data from MCM-1 format to MCM-2 format. No matter how good
the scientifi c reasons for designing the MCM-2, marketing considerations will ensure that
the new computer is compatible with the old one. A salesperson then can point out to an
existing MCM-1 owner that, not only is the MCM-2 computer $35,000 less expensive than
any competitor’s machine, but any customer ill-advised enough to buy from a different
manufacturer will be spending $35,000 too much and also will have to pay some $200,000
to convert existing software and data to the format of the non-MCM machine.
 Moving from the preceding imaginary situation to the real world, the most successful
line of computers to date has been the IBM System/360-370 series [Gifford and Spector,
1987]. The success of this line of computers is due largely to full compatibility between
machines; a product that runs on an IBM System/360 Model 30 built in 1964 runs un-
changed on an IBM System z10 EC built in 2009. However, the product that runs on the
IBM System/360 Model 30 under OS/360 may require considerable modifi cation before it
can run on a totally different 2009 machine, such as a Sun Fire E2900 server under Solaris.
Part of the diffi culty may be due to hardware incompatibilities. But part may be caused by
operating system incompatibilities.

 8.11.2 Operating System Incompatibilities
The job control languages (JCL) of any two computers usually are vastly different. Some of
the difference is syntactic—the command for executing an executable load image might be
 @xeq on one computer, //xqt on another, and .exc on a third. When porting a product to
a different operating system, syntactic differences are relatively straightforward to handle
by simply translating commands from the one JCL into the other. But other differences can
be more serious. For example, some operating systems support virtual memory. Suppose
that a certain operating system allows products to be up to 1024 MB in size, but the actual
area of main memory allocated to a particular product may be only 64 MB. What happens
is that the user’s product is partitioned into pages 2048 KB in size, and only 32 of these
pages can be in main memory at any one time. The rest of the pages are stored on disk and
swapped in and out as needed by the virtual memory operating system. As a result, prod-
ucts can be implemented with no effective constraints as to size. But, if a product that has
been successfully implemented under a virtual memory operating system is to be ported to
an operating system with physical constraints on product size, the entire product may have
to be reimplemented and then linked using overlay techniques to ensure that the size limit
is not exceeded.

 8.11.3 Numerical Software Incompatibilities
When a product is ported from one machine to another or even compiled using a different
compiler, the results of performing arithmetic may differ. On a 16-bit machine, that is,
a computer with a word size of 16 bits, an integer ordinarily is represented by one word
(16 bits) and a double-precision integer by two adjacent words (32 bits). Unfortunately,

sch76183_ch08_225-267.indd 251sch76183_ch08_225-267.indd 251 04/06/10 6:41 PM04/06/10 6:41 PM

 Just in Case You Wanted to Know Box 8.5
In 1991, James Gosling of Sun Microsystems developed Java. While developing the lan-
guage, he frequently stared out the window at a large oak tree outside his offi ce. In fact,
he did this so often that he decided to name his new language Oak . However, his choice of
name was unacceptable to Sun because it could not be trademarked, and without a trade-
mark Sun would lose control of the language.
 After an intensive search for a name that could be trademarked and was easy to remember,
Gosling’s group came up with Java . During the 18th century, much of the coffee imported
into England was grown in Java, the most populous island in the Dutch East Indies (now
Indonesia). As a result, Java now is a slang word for coffee, the third most popular bever-
age among software engineers. Unfortunately, the names of the Big Two carbonated cola
beverages are already trademarked.
 To understand why Gosling designed Java, it is necessary to appreciate the source of
the weaknesses he perceived in C++. And, to do that, we have to go back to C, the parent
language of C++.
 In 1972, the programming language C was developed by Dennis Ritchie at AT&T Bell
Laboratories (now Alcatel-Lucent Technologies) for use in systems software. The language
was designed to be extremely fl exible. For example, it permits arithmetic on pointer variables,
that is, on variables used to store memory addresses. From the viewpoint of the average
programmer, this poses a distinct danger; the resulting programs can be extremely insecure
because control can be passed to anywhere in the computer. Also, C does not embody arrays
as such. Instead, a pointer to the address of the beginning of the array is used. As a result,
the concept of an out-of-range array subscript is not intrinsic to C. This is a further source of
possible insecurity.
 These and other insecurities were no problem at Bell Labs. After all, C was designed by an
experienced software engineer for use by other experienced software engineers at Bell Labs.
These professionals could be relied on to use the powerful and fl exible features of C in a secure
way. A basic philosophy in the design of C was that the person using C knows exactly what he
or she is doing. Software failures that occurred when C was used by less competent or inex-
perienced programmers should not be blamed on Bell Labs; there never was any intent that C
should be widely employed as a general-purpose programming language, as it is today.

some language implementations do not include double-precision integers. Therefore, a
product that functions perfectly on a compiler–hardware–operating system confi guration
in which integers are represented using 32 bits may fail to run correctly when ported to
a computer in which integers are represented by only 16 bits. The obvious solution—
representing integers larger than 2 16 by fl oating-point numbers (type real)—does not
work because integers are represented exactly whereas fl oating-point numbers in general
are only approximated using a mantissa (fraction) and exponent.
 This problem can be solved in Java, because each of the eight primitive data types has
been carefully specifi ed. For example, type int always is implemented as a signed 32-bit
two’s complement integer, and type fl oat always occupies 32 bits and satisfi es ANSI/
IEEE (Standard) 754 [1985] for fl oating-point numbers. The problem of ensuring that a
numerical computation is performed correctly on every target hardware–operating system
therefore cannot arise in Java. (For more insights into the design of Java, see Just in Case
You Wanted to Know Box 8.5.) However, where a numerical computation is performed
in a language other than Java, it is important, but often diffi cult, to ensure that numerical
computations are performed correctly on the target hardware–operating system.

sch76183_ch08_225-267.indd 252sch76183_ch08_225-267.indd 252 04/06/10 6:41 PM04/06/10 6:41 PM

 8.11.4 Compiler Incompatibilities
Portability is diffi cult to achieve if a product is implemented in a language for which few
compilers exist. If the product has been implemented in a specialized language such as
CLU [Liskov, Snyder, Atkinson, and Schaffert, 1977], it may be necessary to reimplement
it in a different language if the target computer has no compiler for that language. On the
other hand, if a product is implemented in a popular language such as COBOL, Fortran,
Lisp, C, C++, or Java, the chances are good that a compiler or interpreter for that language
can be found for a target computer.
 Suppose that a product is implemented in a popular high-level language such as standard
Fortran. In theory, there should be no problem in porting the product from one machine to
another—after all, standard Fortran is standard Fortran. Regrettably, that is not the case; in
practice, there is no such thing as standard Fortran. Even though there is an ISO/IEC Fortran
standard, Fortran 2003 [ISO/IEC 1539–1, 2004], there is no reason for a compiler writer
to adhere to it (see Just in Case You Wanted to Know Box 8.6 for more on the name For-
tran 2003). For example, a decision may be made to support additional features not usually
found in Fortran so that the marketing division can tout a “new, extended Fortran compiler.”

 With the rise of the object-oriented paradigm, a number of object-oriented program-
ming languages based on C were developed, including Object C, Objective C, and C++.
The idea behind these languages was to embed object-oriented constructs within C, which
by then was a popular programming language. It was argued that it would be easier for
programmers to learn a language based on a familiar language than to learn a totally new
syntax. However, only one of the many C-based object-oriented languages became widely
accepted, C++, developed by Bjarne Stroustrup, also of AT&T Bell Laboratories.
 It has been suggested that the reason behind the success of C++ was the enormous
fi nancial clout of AT&T (now part of SBC Communications). However, if corporate size and
fi nancial strength were relevant features in promoting a programming language, today
we would all be using PL/I, a language developed and strongly promoted by IBM. The
reality is that PL/I, notwithstanding the prestige of IBM, has retreated into obscurity. The
real reason for the success of C++ is that it is a true superset of C. That is, unlike any of the
other C-based object-oriented programming languages, virtually any C program is also
valid C++. Therefore, organizations realized that they could switch from C to C++ without
changing any of their existing C software. They could advance from the classical paradigm
to the object-oriented paradigm without disruption. A remark frequently encountered in
the Java literature is, “Java is what C++ should have been.” The implication is that, if only
Stroustrup had been as smart as Gosling, C++ would have turned out to be Java. On the
contrary, if C++ had not been a true superset of C, it would have gone the way of all other
C-based object-oriented programming languages; that is, it essentially would have disap-
peared. Only after C++ had taken hold as a popular language was Java designed in reaction
to perceived weaknesses in C++. Java is not a superset of C; for example, Java has no pointer
variables. Therefore, it would be more accurate to say that, “Java is what C++ could not
possibly have been.”
 Finally, it is important to realize that Java, like every other programming language, has
weaknesses of its own. In addition, in some areas (such as access rules), C++ is superior
to Java [Schach, 1997]. It will be interesting to see, in the coming years, whether C++
continues to be the predominant object-oriented programming language or whether it is
supplanted by Java or some other language.

sch76183_ch08_225-267.indd 253sch76183_ch08_225-267.indd 253 04/06/10 6:41 PM04/06/10 6:41 PM

Conversely, a microcomputer compiler may not be a full Fortran implementation. Also, with
a deadline to produce a compiler, management may decide to bring out a less-than-complete
implementation, intending to support the full standard in a later revision. Suppose that the
compiler on the source computer supports a superset of Fortran 2003. Suppose further that
the target computer has an implementation of standard Fortran 2003. When a product imple-
mented on that source computer is ported to the target, any portions of the product that use
nonstandard Fortran 2003 constructs from the superset have to be recoded. Therefore, to
ensure portability, programmers should use only standard Fortran language features.
 Early COBOL standards were developed by the COnference on DAta SYstems Lan-
guages (CODASYL), a committee of American computer manufacturers and government
and private users. Joint Technical Committee 1 of Subcommittee 22 of the International
Organization for Standardization (ISO) and the International Electrotechnical Commis-
sion (IEC) now are responsible for COBOL standards [Schricker, 2000]. Unfortunately,
COBOL standards do not promote portability. A COBOL standard has an offi cial life of
5 years, but each successive standard is not necessarily a superset of its predecessor. In fact,
COBOL 85 was incompatible with the earlier standard, COBOL 74.
 Equally worrisome is that many features are left to the individual implementer, subsets
may be termed standard COBOL , and there is no restriction on extending the language to
form a superset. COBOL 2002, the language of the current COBOL standard, is object-
oriented [ISO/IEC 1989, 2002], as is Fortran 2003 [ISO/IEC 1539–1, 2004].
 The American National Standards Institute (ANSI) approved a standard for the program-
ming language C [ANSI X3.159, 1989]. The standard was approved by the ISO in 1990.
Most C compilers adhere quite closely to the original language specifi cation [Kernighan
and Ritchie, 1978]. This is because almost all C compiler writers use the standard front
end of the portable C compiler, pcc [Johnson, 1979]; as a result, the language accepted by
the vast majority of compilers is identical. C products, in general, are easily ported from
one implementation to another. An aid to C portability is the lint processor, which can be
used to determine implementation-dependent features as well as constructs that may lead
to diffi culties when the product is ported to a target computer. Unfortunately, lint checks
only the syntax and the static semantics and therefore is not foolproof. However, it can be

 Just in Case You Wanted to Know Box 8.6
Names of programming languages are spelled in uppercase when the name is an acro-
nym. Examples include ALGOL (ALGOrithmic Language), COBOL (COmmon Business
Oriented Language), and FORTRAN (FORmula TRANslator). Conversely, all other pro-
gramming languages begin with an uppercase letter and the remaining letters in the
name (if any) are in lowercase. Examples include Ada, C, C++, Java, and Pascal. Ada is
not an acronym; the language was named after Ada, Countess of Lovelace (1815–1852).
Daughter of the poet Lord Alfred Byron, Ada was the world’s fi rst programmer by virtue
of her work on Charles Babbage’s difference engine. Pascal is not an acronym either—
this language was named after the French mathematician and philosopher, Blaise Pascal
(1623–1662). And I am sure that you have read all about the name Java in Just in Case
You Wanted to Know Box 8.5.
 There is one exception: Fortran. The FORTRAN Standards Committee decided that,
effective with the 1990 version, the name of the language would thenceforth be written
 Fortran .

sch76183_ch08_225-267.indd 254sch76183_ch08_225-267.indd 254 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 255

of considerable help in reducing future problems. For example, in C, it is legal to assign an
integer value to a pointer and vice versa, but this is forbidden by lint . In some implementa-
tions, the size (number of bits) of an integer and a pointer are the same, but the sizes may
be different on other implementations; this sort of potential future portability problem can
be fl agged by lint and obviated by recoding the offending portions.
 The standard for C++ [ISO/IEC 14882, 1998] was unanimously approved by the various
national standards committees (including ANSI) in November 1997. The standard received
fi nal ratifi cation in 1998.
 The only truly successful language standard so far has been the Ada 83 standard, embodied
in the Ada Reference Manual [ANSI/MIL-STD-1815A, 1983]. (For background information
on Ada, see Just in Case You Wanted to Know Box 8.6.) Until the end of 1987, the name Ada
was a registered trademark of the U.S. government, Ada Joint Program Offi ce (AJPO). As
owner of the trademark, the AJPO stipulated that the name Ada legally could be used only for
language implementations that complied exactly with the standard; subsets and supersets were
expressly forbidden. A mechanism was set up for validating Ada compilers, and only a compiler
that successfully passed the validation process could be called an Ada compiler. Accordingly,
the trademark was used as a means of enforcing standards and hence portability.
 Now that the name Ada no longer is a trademark, enforcement of the standard is being
achieved via a different mechanism. There is little or no market for an Ada compiler
that has not been validated. Therefore, strong economic forces encourage Ada compiler
developers to have their compilers validated and hence certifi ed as conforming to the Ada
standard. This has applied to compilers for both Ada 83 [ANSI/MIL-STD-1815A, 1983]
and Ada 95 [ISO/IEC 8652, 1995].
 For Java to be a totally portable language, it is essential for the language to be stan-
dardized and to ensure that the standard is strictly obeyed. Sun Microsystems, like the
Ada Joint Program Offi ce, uses the legal system to achieve standardization. As mentioned
in Just in Case You Wanted to Know Box 8.5, Sun chose a name for its new language
that could be copyrighted so that Sun could enforce its copyright and bring legal action
against alleged violators (which happened when Microsoft developed nonstandard Java
classes). After all, portability is one of the most powerful features of Java. If multiple ver-
sions of Java are permitted, the portability of Java suffers; Java can be truly portable only
if every Java program is handled identically by every Java compiler. To try to infl uence
public opinion, in 1997 Sun ran a “Pure Java” advertising campaign.
 Version 1.0 of Java was released early in 1997. A series of revised versions followed in
response to comments and criticisms. The latest version at the time of writing is Java J2SE
(Java 2 Platform, Standard Edition), version 6. This process of stepwise refi nement of Java
will continue. When the language eventually stabilizes, it is likely that a standards organi-
zation such as ANSI or ISO will publish a draft standard and elicit comments from all over
the world. These comments will be used to put together the offi cial Java standard.

 8.12 Why Portability?
 In the light of the many barriers to porting software, the reader might well wonder if it is
worthwhile to port software at all. An argument in favor of portability stated in Section 8.10
is that the cost of software may be partially recouped by porting the product to a different

sch76183_ch08_225-267.indd 255sch76183_ch08_225-267.indd 255 04/06/10 6:41 PM04/06/10 6:41 PM

256 Part A Software Engineering Concepts

hardware–operating system confi guration. However, selling multiple variants of the software
may not be possible. The application may be highly specialized, and no other client may need
the software. For instance, a management information system developed for one major car
rental corporation may simply be inapplicable to the operations of other car rental corpora-
tions. Alternatively, the software itself may give the client a competitive advantage, and sell-
ing copies of the product would be tantamount to economic suicide. In the light of all this, is
it not a waste of time and money to engineer portability into a product when it is designed?
 The answer to this question is an emphatic No . The major reason why portability is
essential is that the life of a software product generally is longer than the life of the hard-
ware for which it was fi rst implemented. Good software products can have a life of 15 years
or more, whereas hardware frequently is changed every 4 years. Therefore, good software
can be implemented, over its lifetime, on three or more different hardware confi gurations.
 One way to solve this problem is to buy upwardly compatible hardware. The only expense
is the cost of the hardware; the software need not be changed. Nevertheless, in some cases
it may be economically more sound to port the product to different hardware entirely. For
example, the fi rst version of a product may have been implemented 7 years ago on a main-
frame. Although it may be possible to buy a new mainframe on which the product can run
with no changes, it may be considerably less expensive to implement multiple copies of the
product on a network of personal computers, one on the desk of each user. In this instance,
if the software has been implemented in a way that would promote portability, then porting
the product to the personal computer network makes good fi nancial sense.
 But there are other kinds of software. For example, many organizations that develop
software for personal computers make their money by selling multiple copies of COTS
software. For instance, the profi t on a spreadsheet package is small and cannot possibly
cover the cost of development. To make a profi t, 50,000 (or even 500,000) copies may have
to be sold. After this point, additional sales are pure profi t. So, if the product can be ported
to additional types of hardware with ease, even more money can be made.
 Of course, as with all software, the product is not just the code but also the documen-
tation, including the manuals. Porting the spreadsheet package to other hardware means
changing the documentation as well. Therefore, portability also means being able to change
the documentation easily to refl ect the target confi guration, instead of having to write new
documentation from scratch. Considerably less training is needed if a familiar, existing
product is ported to a new computer than if a completely new product were to be imple-
mented. For this reason, too, portability is to be encouraged.
 Techniques to facilitate portability now are described.

 8.13 Techniques for Achieving Portability
 One way to try to achieve portability is to forbid programmers to use constructs that might
cause problems when ported to another computer. For example, an obvious principle would
seem to be this: Implement all software in a standard version of a high-level programming
language. But how is a portable operating system to be implemented? After all, it is incon-
ceivable that an operating system could be implemented without at least some assembler
code. Similarly, a compiler has to generate object code for a specifi c computer. Here, too,
it is impossible to avoid all implementation-dependent components.

sch76183_ch08_225-267.indd 256sch76183_ch08_225-267.indd 256 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 257

 8.13.1 Portable System Software
 Instead of forbidding all implementation-dependent aspects, which would prevent almost
all system software from being implemented, a better technique is to isolate any necessary
implementation-dependent pieces. An example of this technique is the way the original
UNIX operating system was constructed [Johnson and Ritchie, 1978]. About 9000 lines
of the operating system were implemented in C. The remaining 1000 lines constituted the
kernel. The kernel was implemented in assembler and had to be reimplemented for each
implementation. About 1000 lines of the C code consisted of device drivers; this code, too,
had to be reimplemented each time. However, the remaining 8000 lines of C code remained
largely unchanged from implementation to implementation.
 Another useful technique for increasing the portability of system software is to use
levels of abstraction (Section 7.4.1). Consider, for example, graphical display routines for
a workstation. A user inserts a command such as drawLine into his or her source code.
The source code is compiled and then linked with graphical display routines. At run time,
 drawLine causes the workstation to draw a line on the screen as specifi ed by the user. This
can be implemented using two levels of abstraction. The upper level, implemented in a
high-level language, interprets the user’s command and calls the appropriate lower-level
code artifact to execute that command. If the graphical display routines are ported to a new
type of workstation, then no changes need be made to the user’s code or the upper level of
the graphical display routines. However, the lower-level code artifacts of the routines have
to be reimplemented, because they interface with the actual hardware, and the hardware
of the new workstation is different from that of the workstation on which the package
was previously implemented. This technique also has been used successfully for porting
communications software that conforms to the seven levels of abstraction of the ISO-OSI
model [Tanenbaum, 2002].

 8.13.2 Portable Application Software
 With regard to application software, rather than system software such as operating systems
and compilers, it generally is possible to implement the product in a high-level language.
Section 15.1 points out that frequently no choice can be made with regard to implementa-
tion language, but that when it is possible to select a language, the choice should be made
on the basis of cost–benefi t analysis (Section 5.2). One factor that must enter into the
cost–benefi t analysis is the impact on portability.
 At every stage in the development of a product, decisions can be made that result in a
more portable product. For example, some compilers distinguish between uppercase and
lowercase letters. For such a compiler, This_Is_A_Name and this_is_a_name are different
variables. But other compilers treat the two names the same. A product that relies on dif-
ferences between uppercase letters and lowercase letters can lead to hard-to-discover faults
when the product is ported.
 Just as frequently no choice can be made of programming language; also no choice
may be allowed in the operating system. However, if at all possible, the operating system
under which the product runs should be a popular one. This is an argument in favor of the
UNIX operating system. UNIX has been implemented on a wide range of hardware. In
addition, UNIX, or more precisely, UNIX-like operating systems, have been implemented
on top of mainframe operating systems such as IBM VM/370 and VAX/VMS. For personal

sch76183_ch08_225-267.indd 257sch76183_ch08_225-267.indd 257 04/06/10 6:41 PM04/06/10 6:41 PM

258 Part A Software Engineering Concepts

computers, it remains to be seen whether Linux will overtake Windows as the most widely
used operating system. Just as use of a widely implemented programming language pro-
motes portability, so too does use of a widely implemented operating system.
 To facilitate the moving of software from one UNIX-based system to another, the Por-
table Operating System Interface for Computer Environments (POSIX) was developed
[NIST 151, 1988]. POSIX standardizes the interface between an application program and
a UNIX operating system and has been implemented on a number of non-UNIX operating
systems as well, broadening the number of computers to which application software can be
ported with little or no problem.
 Language standards can play their part in achieving portability. If the coding standards
of a development organization stipulate that only standard constructs may be used, then the
resulting product is more likely to be portable. To this end, programmers must be provided
a list of nonstandard features supported by the compiler but whose use is forbidden without
prior managerial approval. Like other sensible coding standards, this one can be checked by
machine.
 Graphical user interfaces similarly are becoming portable via the introduction of stan-
dard GUI languages. Examples of these include Motif and X11. The standardization of
GUI languages is in reaction to the growing importance of GUIs, and the resulting need for
portability of human–computer interfaces.
 It is also necessary to plan for potential lack of compatibility between the operating
system under which the product is being constructed and any future operating systems to
which the product may be ported. If at all possible, operating system calls should be local-
ized to one or two code artifacts. In any event, every operating system call must be care-
fully documented. The documentation standard for operating system calls should assume
that the next programmer to read the code will have no familiarity with the current operat-
ing system, often a reasonable assumption.
 Documentation in the form of an installation manual should be provided to assist with
future porting. That manual points out what parts of the product have to be changed when
porting the product and what parts may have to be changed. In both instances, a careful
explanation must be provided of what has to be done and how to do it. Finally, lists of
changes that have to be made in other manuals, such as the user manual or the operator
manual, also must appear in the installation manual.

 8.13.3 Portable Data
 The problem of portability of data can be vexing. Problems of hardware incompatibili-
ties were pointed out in Section 8.11.1. But, even after such problems have been solved,
software incompatibilities remain. For instance, the format of an indexed-sequential fi le is
determined by the operating system; a different operating system generally implies a dif-
ferent format. Many fi les require headers containing information such as the format of the
data in that fi le. The format of a header almost always is unique to the specifi c compiler and
operating system under which that fi le was created. The situation can be even worse when
database management systems are used.
 The safest way of porting data is to construct an unstructured (sequential) fi le, which can
then be ported with minimal diffi culty to the target machine. From this unstructured fi le,
the desired structured fi le can be reconstructed. Two special conversion routines have to be
implemented, one running on the source machine to convert the original structured fi le into

sch76183_ch08_225-267.indd 258sch76183_ch08_225-267.indd 258 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 259

sequential form and one running on the target machine to reconstruct the structured fi le from
the ported sequential fi le. Although this solution seems simple enough, the two routines are
nontrivial when conversions between complex database models have to be performed.

 8.13.4 Model-Driven Architecture
 The model-driven architecture (MDA) is an emerging technology that achieves por-
tability by entirely decoupling the functionality of a software product from its implementa-
tion. MDA is outlined in Section 18.2.
 We conclude this chapter with a summary of the strengths of and impediments to reuse
and portability (Figure 8.14); the section in which each item is discussed is stated.

 FIGURE 8.14
Strengths
of and
impediments
to reuse and
portability,
and the
section in
which the
topic is
discussed.

 Strengths Impediments

 Reuse
 Shorter development time (Section 8.1) NIH syndrome (Section 8.2)
 Lower development cost (Section 8.1) Potential quality issues (Section 8.2)
 Higher-quality software (Section 8.1) Retrieval issues (Section 8.2)
 Shorter maintenance time (Section 8.10) Cost of making a component reusable
Lower maintenance cost (Section 8.10) (opportunistic reuse) (Section 8.2)
 Cost of making a component for future
 reuse (systematic reuse) (Section 8.2)
 Legal issues (contract software only)
 (Section 8.2)
 Lack of source code for COTS
 components (Section 8.2)
 Portability
 Software has to be ported to new Potential incompatibilities:
 hardware every 4 years or so Hardware (Section 8.11.1)
 (Section 8.12) Operating systems (Section 8.11.2)
 More copies of COTS software can be Numerical software (Section 8.11.3)
 sold (Section 8.12) Compilers (Section 8.11.4)
 Data formats (Section 8.13.3)

 Chapter
Review
 Reuse is described in Section 8.1. Various impediments to reuse are described in Section 8.2. Two

reuse case studies are presented in Section 8.3. The impact of the object-oriented paradigm on reuse
is analyzed in Section 8.4. Reuse during design and implementation is the subject of Section 8.5; the
topics covered include frameworks, patterns, software architecture, and component-based software
engineering. Design patterns are then described in greater detail in Section 8.6. In Section 8.7, catego-
ries of designs are presented. The strengths and weaknesses of design patterns are analyzed in Section
8.8. The impact of the World Wide Web on reuse is discussed in Section 8.9, and the impact of reuse
on postdelivery maintenance in Section 8.10.
 Portability is discussed in Section 8.11. Portability can be hampered by incompatibilities caused by
hardware (Section 8.11.1), operating systems (Section 8.11.2), numerical software (Section 8.11.3),
or compilers (Section 8.11.4). Nevertheless, it is extremely important to try to make all products as
portable as possible (Section 8.12). Ways of facilitating portability include using popular high-level lan-
guages, isolating the nonportable pieces of a product (Section 8.13.1), adhering to language standards
(Section 8.13.2), portable data (Section 8.13.3), and model-driven architecture (Section 8.13.4).

sch76183_ch08_225-267.indd 259sch76183_ch08_225-267.indd 259 04/06/10 6:41 PM04/06/10 6:41 PM

260 Part A Software Engineering Concepts

 For
Further
Reading

 A variety of reuse case studies can be found in [Lanergan and Grasso, 1984]; [Matsumoto, 1984,
1987]; [Selby, 1989]; [Lim, 1994]; [Jézéquel and Meyer, 1997]; and [Toft, Coleman, and Ohta, 2000].
Successful reuse experiences at four European companies are described in [Morisio, Tully, and Ezran,
2000].
 Factors that affect the success of reuse programs are presented in [Morisio, Ezran, and Tully, 2002].
Reuse strategies are discussed in [Ravichandran and Rothenberger, 2003]. A comprehensive model for
evaluating software reuse alternatives is presented in [Tomer et al., 2004]. Ways of achieving reuse in
the development of large-scale systems are described in [Selby, 2005]. The status of research into reuse
is outlined in [Frakes and Kang, 2005]. When code is replicated, that is, reused via copy-and-paste, mul-
tiple copies of faults will be present; this problem is analyzed in [Li, Lu, Myagmar, and Zhou, 2006].
The utilization of wikis to support reuse is described in [Rech, Bogner, and Haas, 2007].
 The October 2000 issue of Communications of the ACM includes articles on component-based
frameworks, including [Fingar, 2000] and [Kobryn, 2000], which describes how to model compo-
nents and frameworks using UML. Achieving reuse via frameworks and patterns is described in
[Fach, 2001].
 Design patterns were put forward by Alexander within the context of architecture, as described
in [Alexander et al., 1977]. A fi rst-hand account of the origins of pattern theory appears in [Alex-
ander, 1999]. The primary work on software design patterns is [Gamma, Helm, Johnson, and Vlis-
sides, 1995]. Analysis patterns are described in [Fowler, 1997], and requirements patterns in [Hagge
and Lappe, 2005]. Design patterns for managing product life-cycle information are described in
[Främling, Ala-Risku, Kärkkäinen, and Holmström, 2007]. Extraction of design patterns is presented
in [Tsantalis, Chatzigeorgiou, Stephanides, and Halkidis, 2006] and [Guéhéneuc and Antoniol, 2008],
and visualization of design patterns in [Jing, Sheng, and Kang, 2007]. The quality of design patterns
is the subject of [Hsueh, Chu, and Chu, 2008].
 Experiments to assess the impact of design pattern documentation on maintenance are described
in [Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002]. Antipatterns are described in [Brown
et al., 1998]. Patterns for designing embedded systems are discussed in [Pont and Banner, 2004].
Vokac [2004] describes the impact of patterns on fault rates in a 500-KLOC product.
 The primary source of information on software architectures is [Shaw and Garlan, 1996]. Newer
works on software architectures include [Bosch, 2000] and [Bass, Clements, and Kazman, 2003]. An
approach to the analysis and design of architectures is given in [Kazman, Bass, and Klein, 2006]. The
March–April 2006 issue of IEEE Software contains several papers on software architecture, especially
[Kruchten, Obbink, and Stafford, 2006], [Shaw and Clements, 2006], and [Lange, Chaudron, and
Muskens, 2006]. Articles on software architecture in the September 2008 issue of the Journal of
Systems and Software include [Bass et al., 2008] and [Ferrari and Madhavji, 2008].
 Software product lines are described in [Clements and Northrop, 2002]. The state of the practice
of software product lines is discussed in [Birk et al., 2003]. Cost–benefi t analysis of software product
lines is presented in [Bockle et al., 2004]. The management of software product lines is described in
[Clements, Jones, Northrop, and McGregor, 2005]. Testing of software product lines is presented in [Pohl
and Metzger, 2006]. The December 2006 issue of the Communications of the ACM contains 13 articles
on software product lines. A variety of articles on agile software product line engineering can be found
in the June 2008 issue of the Journal of Systems and Software , including [Hanssen and Fægri, 2008].
 Brereton and Budgen [2000] discuss the key issues in component-based software products.
Articles on experiences with component-based software engineering include [Sparling, 2000] and
[Baster, Konana, and Scott, 2001]. Strengths and weaknesses of component-based software engineer-
ing are discussed in [Vitharana, 2003]. The underlying software component models are described in
[Lau and Wang, 2007].
 Strategies for achieving portability can be found in [Mooney, 1990]. Portability of C and UNIX is
discussed in [Johnson and Ritchie, 1978].

sch76183_ch08_225-267.indd 260sch76183_ch08_225-267.indd 260 04/06/10 6:41 PM04/06/10 6:41 PM

 Key Terms abstract class 239
 abstract factory design pattern

244
 abstract method 239
 accidental reuse 226
 adapter design pattern 239
 aggregate 241
 application framework 234
 application programming

interface (API) 227
 architecture pattern 237
 behavioral design patterns 246
 bridge design pattern 240
 business logic tier 237
 COBOL program logic

structure 230
 collection 241
 component-based software

engineering 237

 container 241
 core asset 236
 creational design patterns 245
 cursor 241
 data access logic tier 237
 deliberate reuse 226
 design pattern 235
 driver 240
 element access 241
 element traversal 241
 framework 234
 functional module 230
 hot spot 234
 iterator 241
 iterator design pattern 241
 model-driven architecture

(MDA) 259
 model-view-controller (MVC)

architecture pattern 237

 not invented here (NIH)
syndrome 228

 opportunistic reuse 226
 portable 226
 presentation logic tier 237
 reuse 226
 software architecture 236
 software product line 236
 source computer 250
 structural design patterns 245
 systematic reuse 226
 target computer 250
 three-tier architecture 237
 toolkit 233
 widget 241
 wrapper 235

 Problems 8.1 Explain in detail the differences between reusability and portability.

 8.2 A code artifact is reused, unchanged, in a new product. In what ways does this reuse reduce the
overall cost of the product? In what ways is the cost unchanged?

 8.3 Suppose that a code artifact is reused with one change, an addition operation is changed to a
subtraction. What impact does this minor change have on the savings of Problem 8.2?

 8.4 What is the infl uence of cohesion on reusability?

 8.5 What is the infl uence of coupling on reusability?

 8.6 You have just joined a large organization that manufactures a variety of pollution control prod-
ucts. The organization has hundreds of software products consisting of some 95,000 different
Fortran modules. You have been hired to come up with a plan for reusing as many of these
modules as possible in future products. What is your proposal?

 8.7 Consider an automated library circulation system. Every book has a bar code, and every bor-
rower has a card bearing a bar code. When a borrower wishes to check out a book, the librarian
scans the bar codes on the book and the borrower’s card, and enters C at the computer terminal.
Similarly, when a book is returned, it is again scanned and the librarian enters R . Librarians can
add books (+) to the library collection or remove them (−). Borrowers can go to a terminal and
determine all the books in the library by a particular author (the borrower enters A= followed by
the author’s name), all the books with a specifi c title (T= followed by the title), or all the books
in a particular subject area (S= followed by the subject area). Finally, if a borrower wants a book
currently checked out, the librarian can place a hold on the book so that, when it is returned,
it will be held for the borrower who requested it (H= followed by the number of the book).
Explain how you would ensure a high percentage of reusable code artifacts.

 8.8 You are required to build a product for determining whether a bank statement is correct. The
data needed include the balance at the beginning of the month; the number, date, and amount
of each check; the date and amount of each deposit; and the balance at the end of the month.
Explain how you would ensure that as many code artifacts as possible from this product can be
reused in future products.

Chapter 8 Reusability and Portability 261

sch76183_ch08_225-267.indd 261sch76183_ch08_225-267.indd 261 04/06/10 6:41 PM04/06/10 6:41 PM

262 Part A Software Engineering Concepts

 8.9 Consider an automated teller machine (ATM). The user puts a card into a slot and enters a
four-digit personal identifi cation number (PIN). If the PIN is incorrect, the card is ejected. Oth-
erwise, the user may perform the following operations on up to four different bank accounts:

 (i) Deposit any amount. A receipt is printed showing the date, amount deposited, and account
number.

 (ii) Withdraw up to $200 in units of $20 (the account may not be overdrawn). In addition to the
money, the user is given a receipt showing the date, amount withdrawn, account number,
and account balance after the withdrawal.

 (iii) Determine the account balance. This is displayed on the screen.

 (iv) Transfer funds between two accounts. Again, the account from which the funds are trans-
ferred must not be overdrawn. The user is given a receipt showing the date, amount trans-
ferred, and the two account numbers.

 (v) Quit. The card is ejected.

 Explain how you would ensure that as many code artifacts as possible from this product can be
reused in future products.

 8.10 How early in the software life cycle could the developers have caught the fault in the Ari-
ane 5 software (Section 8.3.2)?

 8.11 Section 8.5.2 states that “the Raytheon COBOL program logic structure of the 1970s is a clas-
sical precursor of today’s object-oriented application framework.” What are the implications of
this for technology transfer?

 8.12 What is the difference between a framework and a software product line ?

 8.13 Compare the output from a software product line with the output from an automobile assembly
line. (Hint: A modern automobile assembly line does not produce multiple instances of the
identical automobile.)

 8.14 Of which theoretical tool in Chapter 5 is the three-tier architecture an instance?

 8.15 Of which theoretical tool in Chapter 5 is the model-view-controller (MVC) architecture pattern
an instance?

 8.16 Of which theoretical tool in Chapter 5 are the design patterns of Section 8.6 an instance?

 8.17 Explain the role played by the abstract class Abstract Widget Factory in the design pattern
of Figure 8.10 .

 8.18 Explain how you would ensure that the automated library circulation system (Problem 8.7) is as
portable as possible.

 8.19 Explain how you would ensure that the product that checks whether a bank statement is correct
(Problem 8.8) is as portable as possible.

 8.20 Explain how you would ensure that the software for the automated teller machine (ATM) of
Problem 8.9 is as portable as possible.

 8.21 Your organization is developing a real-time control system for a new type of laser that will be
used in cancer therapy. You are in charge of implementing two assembler modules. How will
you instruct your team to ensure that the resulting code will be as portable as possible?

 8.22 You are responsible for porting a 750,000-line COBOL product to your company’s new com-
puter. You copy the source code to the new machine but discover when you try to compile it that
every one of the over 15,000 input–output statements has been implemented in a nonstandard
COBOL syntax that the new compiler rejects. What do you do now?

 8.23 In what ways does the object-oriented paradigm promote portability and reusability?

 8.24 (Term Project) Suppose that the Chocoholics Anonymous product of Appendix A is developed
using the classical paradigm. What parts of the product could be reused in future products?

sch76183_ch08_225-267.indd 262sch76183_ch08_225-267.indd 262 04/06/10 6:41 PM04/06/10 6:41 PM

Now suppose that the product is developed using the object-oriented paradigm. What parts of
the product could be reused in future products?

 8.25 (Readings in Software Engineering) Your instructor will distribute copies of [Tomer et al.,
2004]. What data would you need to accumulate to use the model?

 References [Alexander, 1999] C. ALEXANDER, “The Origins of Pattern Theory,” IEEE Software 16 (September–
October 1999), pp. 71–82.

 [Alexander et al., 1977] C. ALEXANDER, S. ISHIKAWA, M. SILVERSTEIN, M. JACOBSON, I. FIKSDAHL-
KING, AND S. ANGEL, A Pattern Language , Oxford University Press, New York, 1977.

 [ANSI X3.159, 1989] The Programming Language C , ANSI X3.159-1989, American National Stan-
dards Institute, New York, 1989.

 [ANSI/IEEE 754, 1985] Standard for Binary Floating Point Arithmetic , ANSI/IEEE 754, American
National Standards Institute, Institute of Electrical and Electronic Engineers, New York, 1985.

 [ANSI/MIL-STD-1815A, 1983] Reference Manual for the Ada Programming Language , ANSI/
MIL-STD-1815A, American National Standards Institute, United States Department of Defense,
Washington, DC, 1983.

 [Bass, Clements, and Kazman, 2003] L. BASS, P. CLEMENTS, AND R. KAZMAN, Software Architecture
in Practice, 2nd ed., Addison-Wesley, Reading, MA, 2003.

 [Bass et al., 2008] L. BASS, R. NORD, W. WOOD, D. ZUBROW, AND I. OZKAYA, “Architectural Knowl-
edge Discovery with Latent Semantic Analysis: Constructing a Reading Guide for Software Prod-
uct Audits,” Journal of Systems and Software 81 (September 2008), pp. 1443–55.

 [Baster, Konana, and Scott, 2001] G. BASTER, P. KONANA, AND J. E. SCOTT, “Business Components:
A Case Study of Bankers Trust Australia Limited,” Communications of the ACM 44 (May 2001),
pp. 92–98.

 [Birk et al., 2003] A. BIRK, G. HELLER, I. JOHN, K. SCHMID, T. VON DER MASSEN, AND K. MULLER,
“Product Line Engineering, the State of the Practice,” IEEE Software 20 (November–December
2003), pp. 52–60.

 [Bockle et al., 2004] G. BOCKLE, P. CLEMENTS, J. D. MCGREGOR, D. MUTHIG, AND K. SCHMID, “Calcu-
lating ROI for Software Product Lines,” IEEE Software 21 (May–June 2004), pp. 23–31.

 [Bosch, 2000] J. BOSCH, Design and Use of Software Architectures, Addison-Wesley, Reading, MA,
2000.

 [Brereton and Budgen, 2000] P. BRERETON AND D. BUDGEN, “Component-Based Systems: A Clas-
sifi cation of Issues,” IEEE Computer 33 (November 2000), pp. 54–62.

 [Brown et al., 1998] W. J. BROWN, R. C. MALVEAU, W. H. BROWN, H. W. MCCORMICK III, AND T. J.
MOWBRAY, AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, John Wiley
and Sons, New York, 1998.

 [Clements and Northrop, 2002] P. CLEMENTS AND L. NORTHROP, Software Product Lines: Practices
and Patterns , Addison-Wesley, Reading, MA, 2002.

 [Clements, Jones, Northrop, and McGregor, 2005] P. C. CLEMENTS, L. G. JONES, L. M. NORTHROP,
AND J. D. MCGREGOR, “Project Management in a Software Product Line Organization,” IEEE
Software 22 (September–October 2005), pp. 54–62.

 [Fach, 2001] P. W. FACH, “Design Reuse through Frameworks and Patterns,” IEEE Software 18 (Sep-
tember–October 2001), pp. 71–76.

 [Ferrari and Madhavji, 2008] R. FERRARI AND N. H. MADHAVJI, “Software Architecting without
Requirements Knowledge and Experience: What Are the Repercussions?” Journal of Systems
and Software 81 (September 2008), pp. 1470–90.

Chapter 8 Reusability and Portability 263

sch76183_ch08_225-267.indd 263sch76183_ch08_225-267.indd 263 10/06/10 2:17 PM10/06/10 2:17 PM

264 Part A Software Engineering Concepts

 [Fingar, 2000] P. FINGAR, “Component-Based Frameworks for e-Commerce,” Communications of the
ACM 43 (October 2000), pp. 61–66.

 [Flanagan, 2005] D. FLANAGAN, Java in a Nutshell: A Desktop Quick Reference , 5th ed., O’Reilly and
Associates, Sebastopol, CA, 2005.

 [Fowler, 1997] M. FOWLER, Analysis Patterns: Reusable Object Models , Addison-Wesley, Reading,
MA, 1997.

 [Frakes and Kang, 2005] W. B. FRAKES AND K. KANG, “Software Reuse Research: Status and Future,”
 IEEE Transactions on Software Engineering 31 (July 2005), pp. 529–536.

 [Främling, Ala-Risku, Kärkkäinen, and Holmström, 2007] K. FRÄMLING, T. ALA-RISKU, M. KÄRK-
KÄINEN, AND J. HOLMSTRÖM, “Design Patterns for Managing Product Life Cycle Information,”
 Communications of the ACM 50 (June 2007), pp. 75–79.

 [Gamma, Helm, Johnson, and Vlissides, 1995] E. GAMMA, R. HELM, R. JOHNSON, AND J. VLISSIDES, Design
Patterns: Elements of Reusable Object-Oriented Software , Addison-Wesley, Reading, MA, 1995.

 [Gifford and Spector, 1987] D. GIFFORD AND A. SPECTOR, “Case Study: IBM’s System/360-370
Architecture,” Communications of the ACM 30 (April 1987), pp. 292–307.

 [Green, 2000] P. GREEN, “FW: Here’s an Update to the Simulated Kangaroo Story,” The Risks Digest
 20 (January 23, 2000), catless.ncl.ac.uk/Risks/20.76.html.

 [Griss, 1993] M. L. GRISS, “Software Reuse: From Library to Factory,” IBM Systems Journal 32 (No.
4, 1993), pp. 548–66.

 [Guéhéneuc and Antoniol, 2008] Y.-G. GUÉHÉNEUC AND G. ANTONIOL, “DeMIMA: A Multilayered
Approach for Design Pattern Identifi cation,” IEEE Transactions on Software Engineering 34
(September–October 2008), pp. 667–84.

 [Hagge and Lappe, 2005] L. HAGGE AND K. LAPPE, “Sharing Requirements Engineering Experience
Using Patterns,” IEEE Software 22 (January–February 2005), pp. 24–31.

 [Hanssen and Fægri, 2008] G. K. HANSSEN AND T. E. FÆGRI, “Process Fusion: An Industrial Case
Study on Agile Software Product Line Engineering,” Journal of Systems and Software 81 (April
2008), pp. 502–16.

 [Hsueh, Chu, and Chu, 2008] N. HSUEH, P. CHU, AND W. CHU, “A Quantitative Approach for Eval-
uating the Quality of Design Patterns,” Journal of Systems and Software 81 (August 2008),
pp. 1430–39.

 [ISO/IEC 1539–1, 2004] Information Technology—Programming Languages—Fortran—Part 1:
Base Language , ISO/IEC 1539–1, International Organization for Standardization, International
Electrotechnical Commission, Geneva, 2004.

 [ISO/IEC 1989, 2002] Information Technology—Programming Language COBOL , ISO 1989:2002,
International Organization for Standardization, International Electrotechnical Commission,
Geneva, 2002.

 [ISO/IEC 8652, 1995] Programming Language Ada: Language and Standard Libraries , ISO/IEC
8652, International Organization for Standardization, International Electrotechnical Commission,
Geneva, 1995.

 [ISO/IEC 14882, 1998] Programming Language C++ , ISO/IEC 14882, International Organization
for Standardization, International Electrotechnical Commission, Geneva, 1998.

 [Jézéquel and Meyer, 1997] J.-M. JÉZÉQUEL AND B. MEYER, “Put It in the Contract: The Lessons of
Ariane,” IEEE Computer 30 (January 1997), pp. 129–30.

 [Jing, Sheng, and Kang, 2007] D. JING, Y. SHENG, AND Z. KANG, “Visualizing Design Patterns in Their
Applications and Compositions,” IEEE Transactions on Software Engineering 32 (July 2007),
pp. 433–53.

sch76183_ch08_225-267.indd 264sch76183_ch08_225-267.indd 264 04/06/10 6:41 PM04/06/10 6:41 PM

Chapter 8 Reusability and Portability 265

 [Johnson, 1979] S. C. JOHNSON, “A Tour through the Portable C Compiler,” 7th ed., UNIX Program-
mer’s Manual, Bell Laboratories, Murray Hill, NJ, January 1979.

 [Johnson and Ritchie, 1978] S. C. JOHNSON AND D. M. RITCHIE, “Portability of C Programs and the
UNIX System,” Bell System Technical Journal 57 (No. 6, Part 2, 1978), pp. 2021–48.

 [Jones, 1984] T. C. JONES, “Reusability in Programming: A Survey of the State of the Art,” IEEE
Transactions on Software Engineering SE-10 (September 1984), pp. 488–94.

 [Kazman, Bass, and Klein, 2006] R. KAZMAN, L. BASS, AND M. KLEIN, “The Essential Components
of Software Architecture Design and Analysis,” Journal of Systems and Software 79 (August
2006), pp. 1207–16.

 [Kernighan and Ritchie, 1978] B. W. KERNIGHAN AND D. M. RITCHIE, The C Programming Language ,
Prentice Hall, Englewood Cliffs, NJ, 1978.

 [Kobryn, 2000] C. KOBRYN, “Modeling Components and Frameworks with UML,” Communications
of the ACM 43 (October 2000), pp. 31–38.

 [Kruchten, Obbink, and Stafford, 2006] P. KRUCHTEN, H. OBBINK, AND J. STAFFORD, “The Past, Pres-
ent, and Future for Software Architecture,” IEEE Software 23 (March–April 2006), pp. 22–30.

 [Lanergan and Grasso, 1984] R. G. LANERGAN AND C. A. GRASSO, “Software Engineering with Reus-
able Designs and Code,” IEEE Transactions on Software Engineering SE-10 (September 1984),
pp. 498–501.

 [Lange, Chaudron, and Muskens, 2006] C. F. J. LANGE, M. R. V. CHAUDRON, AND J. MUSKENS, “In
Practice: UML Software Architecture and Design Description,” IEEE Software 23 (March–April
2006), pp. 40–46.

 [LAPACK++, 2000] “LAPACK++: Linear Algebra Package in C++,” at math.nist.gov/lapack++, 2000.

 [Lau and Wang, 2007] K.-K. LAU AND Z. WANG, “Software Component Models,” IEEE Transactions
on Software Engineering 33 (October 2007), pp. 709–24.

 [Li, Lu, Myagmar, and Zhou, 2006] Z. LI, S. LU, S. MYAGMAR, AND Y. ZHOU, “CP-Miner: Finding
Copy-Paste and Related Bugs in Large-Scale Software Code,” IEEE Transactions on Software
Engineering 32 (March 2006), pp. 176–92.

 [Lim, 1994] W. C. LIM, “Effects of Reuse on Quality, Productivity, and Economics,” IEEE Software
 11 (September 1994), pp. 23–30.

 [Liskov, Snyder, Atkinson, and Schaffert, 1977] B. LISKOV, A. SNYDER, R. ATKINSON, AND C.
SCHAFFERT, “Abstraction Mechanisms in CLU,” Communications of the ACM 20 (August 1977),
pp. 564–76.

 [Mackenzie, 1980] C. E. MACKENZIE, Coded Character Sets: History and Development , Addison-
Wesley, Reading, MA, 1980.

 [Matsumoto, 1984] Y. MATSUMOTO, “Management of Industrial Software Production,” IEEE Com-
puter 17 (February 1984), pp. 59–72.

 [Matsumoto, 1987] Y. MATSUMOTO, “A Software Factory: An Overall Approach to Software Produc-
tion,” in: Tutorial: Software Reusability , P. Freeman (Editor), Computer Society Press, Washing-
ton, DC, 1987, pp. 155–78.

 [Mooney, 1990] J. D. MOONEY, “Strategies for Supporting Application Portability,” IEEE Computer
 23 (November 1990), pp. 59–70.

 [Morisio, Ezran, and Tully, 2002] M. MORISIO, M. EZRAN, AND C. TULLY, “Success and Failure
Factors in Software Reuse,” IEEE Transactions on Software Engineering 28 (April 2002),
pp. 340–57.

 [Morisio, Tully, and Ezran, 2000] M. MORISIO, C. TULLY, AND M. EZRAN, “Diversity in Reuse Pro-
cesses,” IEEE Software 17 (July–August 2000), pp. 56–63.

sch76183_ch08_225-267.indd 265sch76183_ch08_225-267.indd 265 04/06/10 6:41 PM04/06/10 6:41 PM

266 Part A Software Engineering Concepts

 [Musser and Saini, 1996] D. R. MUSSER AND A. SAINI, STL Tutorial and Reference Guide: C++ Pro-
gramming with the Standard Template Library , Addison-Wesley, Reading, MA, 1996.

 [NAG, 2003] “NAG The Numerical Algorithms Group Ltd,” at www.nag.co.uk, 2003.

 [NIST 151, 1988] “POSIX: Portable Operating System Interface for Computer Environments,”
Federal Information Processing Standard 151, National Institute of Standards and Technology,
Washington, DC, 1988.

 [Norušis, 2005] M. J. NORUšIS, SPSS 13.0 Guide to Data Analysis, Prentice Hall, Upper Saddle River,
NJ, 2005.

 [Norwig, 1996] P. NORWIG, “Design Patterns in Dynamic Programming,” norvig.com/design-patterns/
ppframe.htm/, 1996.

 [Pohl and Metzger, 2006] K. POHL AND A. METZGER, “Software Product Line Testing,” Communica-
tions of the ACM 49 (December 2006), pp. 78–81.

 [Pont and Banner, 2004] M. J. PONT AND M. P. BANNER, “Designing Embedded Systems Using Pat-
terns: A Case Study,” Journal of Systems and Software 71 (May 2004), pp. 201–13.

 [Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002] L. PRECHELT, B. UNGER-LAMPRECHT, M.
PHILIPPSEN, AND W. F. TICHY, “Two Controlled Experiments in Assessing the Usefulness of Design
Pattern Documentation in Program Maintenance,” IEEE Transactions on Software Engineering
 28 (June 2002), pp. 595–606.

 [Ravichandran and Rothenberger, 2003] T. RAVICHANDRAN AND M. A. ROTHENBERGER, “Software
Reuse Strategies and Component Markets,” Communications of the ACM 46 (August 2003),
pp. 109–14.

 [Rech, Bogner, and Haas, 2007] J. RECH, C. BOGNER, AND V. HAAS, “Using Wikis to Tackle Reuse in
Software Projects,” IEEE Software 24 (November–December 2007), pp. 99–104.

 [Schach, 1992] S. R. SCHACH, Software Reuse: Past, Present, and Future , videotape, 150 min, US-
VHS format, IEEE Computer Society Press, Los Alamitos, CA, November 1992.

 [Schach, 1994] S. R. SCHACH, “The Economic Impact of Software Reuse on Maintenance,” Journal
of Software Maintenance—Research and Practice 6 (July–August 1994), pp. 185–96.

 [Schach, 1997] S. R. SCHACH, Software Engineering with Java , Richard D. Irwin, Chicago, 1997.

 [Schricker, 2000] D. SCHRICKER, “Cobol for the Next Millennium,” IEEE Software 17 (March–April
2000), pp. 48–52.

 [Selby, 1989] R. W. SELBY, “Quantitative Studies of Software Reuse,” in: Software Reusability, Vol.
2, Applications and Experience , T. J. Biggerstaff and A. J. Perlis (Editors), ACM Press, New York,
1989, pp. 213–33.

 [Selby, 2005] R. W. SELBY, “Enabling Reuse-Based Software Development of Large-Scale Systems,”
 IEEE Transactions on Software Engineering 31 (June 2005), pp. 495–510.

 [Shaw and Clements, 2006] M. SHAW AND P. CLEMENTS, “The Golden Age of Software Architecture,”
 IEEE Software 23 (March–April 2006), pp. 31–39.

 [Shaw and Garlan, 1996] M. SHAW AND D. GARLAN, Software Architecture: Perspectives on an
Emerging Discipline , Prentice Hall, Upper Saddle Valley, NJ, 1996.

 [Sparling, 2000] M. SPARLING, “Lessons Learned through Six Years of Component-Based Develop-
ment,” Communications of the ACM 43 (October 2000), pp. 47–53.

 [Tanenbaum, 2002] A. S. TANENBAUM, Computer Networks, 4th ed., Prentice Hall, Upper Saddle
River, NJ, 2002.

 [Toft, Coleman, and Ohta, 2000] P. TOFT, D. COLEMAN, AND J. OHTA, “A Cooperative Model for
Cross-Divisional Product Development for a Software Product Line,” in: Software Product Lines:

sch76183_ch08_225-267.indd 266sch76183_ch08_225-267.indd 266 04/06/10 6:41 PM04/06/10 6:41 PM

www.nag.co.uk

Chapter 8 Reusability and Portability 267

Experience and Research Directions , P. Donohoe (Editor), Kluwer Academic Publishers, Boston,
2000, pp. 111–32.

 [Tomer et al., 2004] A. TOMER, L. GOLDIN, T. KUFLIK, E. KIMCHI, AND S. R. SCHACH, “Evaluating
Software Reuse Alternatives: A Model and Its Application to an Industrial Case Study,” IEEE
Transactions on Software Engineering 30 (September 2004), 601–12.

 [Tracz, 1994] W. TRACZ, “Software Reuse Myths Revisited,” Proceedings of the 16th International
Conference on Software Engineering , Sorrento, Italy, May 1994, pp. 271–72.

 [Tsantalis, Chatzigeorgiou, Stephanides, and Halkidis, 2006] N. TSANTALIS, A. CHATZIGEORGIOU, G.
STEPHANIDES, AND S. T. HALKIDIS, “Design Pattern Detection Using Similarity Scoring,” IEEE
 Transactions on Software Engineering 32 (November 2006), pp. 896–909.

 [Vitharana, 2003] P. VITHARANA, “Risks and Challenges of Component-Based Software Develop-
ment,” Communications of the ACM 46 (August 2003), pp. 67–72.

 [Vokac, 2004] M. VOKAC, “Defect Frequency and Design Patterns: An Empirical Study of Industrial
Code,” IEEE Transactions on Software Engineering 30 (December 2004), pp. 904–17.

sch76183_ch08_225-267.indd 267sch76183_ch08_225-267.indd 267 04/06/10 6:41 PM04/06/10 6:41 PM

 Chapter 9
Planning and
Estimating
 Learning Objectives

 After studying this chapter, you should be able to

 • Explain the importance of planning.

 • Estimate the size and cost of building a software product.

 • Appreciate the importance of updating and tracking estimates.

 • Draw up a project management plan that conforms to the IEEE standard.

268

 The challenges of constructing a software product have no easy solution. To put together
a large software product takes time and resources. And, like any other large construction
project, careful planning at the beginning of the project perhaps is the single most impor-
tant factor that distinguishes success from failure. This initial planning, however, by no
means is enough. Planning, like testing, must continue throughout the software develop-
ment and maintenance process. Notwithstanding the need for continual planning, these
activities reach a peak after the specifi cations have been drawn up but before design activi-
ties commence. At this point in the process, meaningful duration and cost estimates are
computed and a detailed plan for completing the project produced.
 In this chapter, we distinguish these two types of planning , the planning that proceeds
throughout the project and the intense planning that must be carried out once the specifi ca-
tions are complete.

 9.1 Planning and the Software Process
Ideally, we would like to plan the entire software project at the very beginning of the pro-
cess, and then follow that plan until the target software fi nally has been delivered to the
client. This is impossible, however, because we lack enough information during the initial

sch76183_ch09_268-298.indd 268sch76183_ch09_268-298.indd 268 04/06/10 2:00 PM04/06/10 2:00 PM

workfl ows to be able to draw up a meaningful plan for the complete project. For example,
during the requirements workfl ow, any sort of planning (other than just for the require-
ments workfl ow itself) is futile.
 There is a world of difference between the information at the developers’ disposal at the
end of the requirements workfl ow and at the end of the analysis workfl ow, analogous to the
difference between a rough sketch and a detailed blueprint. By the end of the requirements
workfl ow, the developers at best have an informal understanding of what the client needs.
In contrast, by the end of the analysis workfl ow, at which time the client signs a document
stating precisely what is going to be built, the developers have a detailed appreciation of
most (but usually still not all) aspects of the target product. This is the earliest point in the
process at which accurate duration and cost estimates can be determined.
 Nevertheless, in some situations, an organization may be required to produce duration
and cost estimates before the specifi cations can be drawn up. In the worst case a client may
insist on a bid on the basis of an hour or two of preliminary discussion. Figure 9.1 shows
how problematic this can be. Based on a model in [Boehm et al., 2000], it depicts the rela-
tive range of cost estimates for the various workfl ows of the life cycle. For example, suppose
that, when a product passes its acceptance test at the end of the implementation workfl ow
and is delivered to the client, its cost is found to be $1 million. If a cost estimate had
been made midway through the requirements workfl ow, it is likely that it would have been
somewhere in the range ($0.25 million, $4 million), as shown in Figure 9.2 . Similarly, if
the cost estimate had been made midway through the analysis workfl ow, the range of likely
estimates would have shrunk to ($0.5 million, $2 million). Furthermore, if the cost estimate
had been made at the end of the analysis workfl ow, that is, at the appropriate time, the result
probably would have been in the still relatively wide range of ($0.67 million, $1.5 million).
All four points are marked on the upper and lower bound lines in Figure 9.2 , which has a
logarithmic scale on the vertical axis. This model is called the cone of uncertainty . It is

Requirements Analysis Design Implementation

Re
la

tiv
e

ra
ng

e
of

 c
os

t
es

tim
at

e

Workflow during which the cost estimate is made

4

3

2

1

 FIGURE 9.1
 A model for
estimating
the relative
range of a cost
estimate for
each life-cycle
workfl ow.

Chapter 9 Planning and Estimating 269

sch76183_ch09_268-298.indd 269sch76183_ch09_268-298.indd 269 04/06/10 2:00 PM04/06/10 2:00 PM

270 Part A Software Engineering Concepts

clear from Figures 9.1 and 9.2 that cost estimation is not an exact science; reasons for this
are given in Section 9.2.
 The data on which the cone of uncertainty model is based are old, including fi ve pro-
posals submitted to the U.S. Air Force Electronic Systems Division [Devenny, 1976], and
estimation techniques have improved since that time. Nevertheless, the overall shape of the
curve in Figure 9.1 probably has not changed overmuch. Consequently, a premature dura-
tion or cost estimate, that is, an estimate made before the specifi cations have been signed
off on by the client, is likely to be considerably less accurate than an estimate made when
suffi cient data have accumulated.
 We now examine techniques for estimating duration and cost. The assumption through-
out the remainder of this chapter is that the analysis workfl ow has been completed; that is,
meaningful estimating and planning now can be carried out.

 9.2 Estimating Duration and Cost
The budget is an integral part of any software project management plan. Before design
commences, the client needs to know how much he or she will have to pay for the product.
If the development team underestimates the actual cost, the development organization can
lose money on the project. On the other hand, if the development team overestimates, then
the client may decide that, on the basis of cost–benefi t analysis or return on investment,
there is no point in having the product built. Alternatively, the client may give the job to
another development organization whose estimate is more reasonable. Either way, it is clear
that accurate cost estimation is critical.

Requirements Analysis Design Implementation

C
os

t
es

tim
at

e
(in

 m
ill

io
ns

 o
f d

ol
la

rs
)

Workflow during which the cost estimate is made

4.00

3.00

2.00

0
0.25

0.67
0.50

1.00

1.50

Upper bound

Lower bound

 FIGURE 9.2
 Range of cost
estimates for
a software
product that cost
$1 million to
build.

sch76183_ch09_268-298.indd 270sch76183_ch09_268-298.indd 270 04/06/10 2:00 PM04/06/10 2:00 PM

 In fact, two types of costs are associated with software development. The fi rst is the
 internal cost , the cost to the developers; the second is the external cost , the price that
the client will pay. The internal cost includes the salaries of the development teams, manag-
ers, and support personnel involved in the project; the cost of the hardware and software
for developing the product; and the cost of overhead such as rent, utilities, and salaries of
senior management. Although the price generally is based on the cost plus a profi t margin,
in some cases economic and psychological factors are important. For example, developers
who desperately need the work may be prepared to charge the client at cost. A different
situation arises when a contract is to be awarded on the basis of bids. The client may reject
a bid that is signifi cantly lower than all the other bids on the grounds that the quality of the
resulting product probably also would be signifi cantly lower. A development team therefore
may try to come up with a bid that will be slightly, but not signifi cantly, lower than what it
believes will be the competitors’ bids.
 Another important part of any plan is estimating the duration of the project. The client
certainly wants to know when the fi nished product will be delivered. If the development
organization is unable to keep to its schedule, then at best the organization loses credibility,
at worst penalty clauses are invoked. In all cases, the managers responsible for the software
project management plan have a lot of explaining to do. Conversely, if the development
organization overestimates the time needed to build the product, then there is a good chance
that the client will go elsewhere.
 Unfortunately, it is by no means easy to obtain an accurate cost estimate and duration
estimate . Too many variables are involved to be able to get an accurate handle on either
cost or duration. One big diffi culty is the human factor. Over 40 years ago, Sackman and
coworkers observed differences of up to 28 to 1 between pairs of programmers [Sackman,
Erikson, and Grant, 1968]. It is easy to try to brush off their results by saying that experi-
enced programmers always outperform beginners, but Sackman and his colleagues compared
matched pairs of programmers. They observed, for example, two programmers with 10 years
of experience on similar types of projects and measured the time it took them to perform
tasks like coding and debugging. Then they observed, say, two beginners who had been in the
profession for the same short length of time and had similar educational backgrounds. Com-
paring worst and best performances, they observed differences of 6 to 1 in product size, 8 to
1 in product execution time, 9 to 1 in development time, 18 to 1 in coding time, and 28 to 1 in
debugging time. A particularly alarming observation is that the best and worst performances
on one product were by two programmers, each of whom had 11 years of experience. Even
when the best and worst cases were removed from Sackman et al.’s sample, observed differ-
ences were still on the order of 5 to 1. On the basis of these results, clearly, we cannot hope
to estimate software cost or duration with any degree of accuracy (unless we have detailed
information regarding all the skills of all the employees, which would be most unusual). It
has been argued that, on a large project, differences among individuals tend to cancel out,
but this perhaps is wishful thinking; the presence of one or two very good (or very bad) team
members can cause marked deviations from schedules and signifi cantly affect the budget.
 Another human factor that can affect estimation is that, in a free country, there is no way
of ensuring that a critical staff member will not resign during the project. Time and money
then are spent attempting to fi ll the vacated position and integrate the replacement into the
team, or in reorganizing the remaining team members to compensate for the loss. Either
way, schedules slip and estimates come unstuck.

Chapter 9 Planning and Estimating 271

sch76183_ch09_268-298.indd 271sch76183_ch09_268-298.indd 271 04/06/10 2:00 PM04/06/10 2:00 PM

272 Part A Software Engineering Concepts

 Underlying the cost estimation problem is another issue: How is the size of a product to
be measured?

 9.2.1 Metrics for the Size of a Product
 The most common metric for the size of a product is the number of lines of code. Two units
commonly are used: lines of code (LOC) and thousand delivered source instruc-
tions (KDSI). Many problems are associated with the use of lines of code [van der Poel and
Schach, 1983].

• Creation of source code is only a small part of the total software development effort.
It seems somewhat far-fetched that the time required for the requirements, analysis,
design, implementation, and testing workfl ows (which include planning and documen-
tation activities) can be expressed solely as a function of the number of lines of code in
the fi nal product.

• Implementing the same product in two different languages results in versions with dif-
ferent numbers of lines of code. Also, with languages such as Lisp or with many non-
procedural 4GLs (Section 15.2), the concept of a line of code is not defi ned.

• It often is unclear exactly how to count lines of code. Should only executable lines of
code be counted or data defi nitions as well? And should comments be counted? If not,
there is a danger that programmers will be reluctant to spend time on what they perceive
to be “nonproductive” comments, but if comments are counted, then the opposite danger
is that programmers will write reams of comments in an attempt to boost their apparent
productivity. Also, what about counting job control language statements? Another prob-
lem is how changed lines or deleted lines are counted—in the course of enhancing a prod-
uct to improve its performance, sometimes the number of lines of code is decreased.
Reuse of code (Section 8.1) also complicates line counting: If reused code is modifi ed,
how is it counted? And, what if code is inherited from a parent class (Section 7.8)? In
short, the apparently straightforward metric of lines of code is anything but straightfor-
ward to count.

• Not all the code implemented is delivered to the client. It is not uncommon for half the
code to consist of tools needed to support the development effort.

• Suppose that a software developer uses a code generator, such as a report generator,
a screen generator, or a graphical user interface (GUI) generator. After a few minutes
of design activity on the part of the developer, the tool may generate many thousands
of lines of code.

• The number of lines of code in the fi nal product can be determined only when the
product is completely fi nished. Therefore, basing cost estimation on lines of code is
doubly dangerous. To start the estimation process, the number of lines of code in the
fi nished product must be estimated. Then, this estimate is used to estimate the cost of
the product. Not only is there uncertainty in every costing technique, but if the input to
an uncertain cost estimator itself is uncertain (that is, the number of lines of code in a
product that has not yet been built), then the reliability of the resulting cost estimate is
unlikely to be very high.

 Because the number of lines of code is so unreliable, other metrics must be considered.
An alternative approach to estimating the size of a product is the use of metrics based on

sch76183_ch09_268-298.indd 272sch76183_ch09_268-298.indd 272 04/06/10 2:00 PM04/06/10 2:00 PM

Chapter 9 Planning and Estimating 273

measurable quantities that can be determined early in the software process. For example,
van der Poel and Schach [1983] put forward the FFP metric for cost estimation of medium-
scale data-processing products. The three basic structural elements of a data-processing
product are its fi les, fl ows, and processes; the name FFP is an acronym formed from the
initial letters of those elements. A fi le is defi ned as a collection of logically or physically
related records permanently resident in the product; transaction and temporary fi les are
excluded. A fl ow is a data interface between the product and the environment, such as a
screen or a report. A process is a functionally defi ned logical or arithmetic manipulation of
data; examples include sorting, validating, or updating. Given the number of fi les Fi , fl ows
 Fl , and processes Pr in a product, its size S and cost C are given by

 S � Fi � Fl � Pr (9.1)

 C � d � S (9.2)

 where d is a constant that varies from organization to organization. Constant d is a mea-
sure of the effi ciency (productivity) of the software development process within that
organization. The size of a product simply is the sum of the number of fi les, fl ows, and
processes, a quantity that can be determined once the architectural design is complete. The
cost then is proportional to the size, the constant of proportionality d being determined by
a least-squares fi t to cost data relating to products previously developed by that organiza-
tion. Unlike metrics based on the number of lines of code, the cost can be estimated before
coding begins.
 The validity and reliability of the FFP metric were demonstrated using a purposive
sample that covered a range of medium-scale data-processing applications. Unfortunately,
the metric was never extended to include databases, an essential component of many data-
processing products.
 A similar, but independently developed, metric for the size of a product was developed
by Albrecht [1979] based on function points; Albrecht’s metric is based on the number of
input items Inp , output items Out , inquiries Inq , master fi les Maf , and interfaces Inf . In its
simplest form the number of function points FP is given by the equation

 FP � 4 � Inp � 5 � Out � 4 � Inq � 10 � Maf � 7 � Inf (9.3)

 Because this is a measure of the product’s size, it can be used for cost estimation and
productivity estimation.
 Equation (9.3) is an oversimplifi cation of a three-step calculation. First, the unadjusted
function points are computed:

 1. Each of the components of a product— Inp , Out , Inq , Maf , and Inf— must be classifi ed
as simple, average, or complex (see Figure 9.3).

 2. Each component is assigned a number of function points depending on its level. For
example, an average input is assigned four function points, as refl ected in equation (9.3),
but a simple input is assigned only three, whereas a complex input is assigned six func-
tion points. The data needed for this step appear in Figure 9.3 .

 3. The function points assigned to each component are then summed, yielding the unad-
justed function points (UFP).

sch76183_ch09_268-298.indd 273sch76183_ch09_268-298.indd 273 04/06/10 2:00 PM04/06/10 2:00 PM

274 Part A Software Engineering Concepts

 Second, the technical complexity factor (TCF) is computed. This is a measure of
the effect of 14 technical factors, such as high transaction rates, performance criteria (for
example, throughput or response time), and online updating; the complete set of factors is
shown in Figure 9.4 . Each of these 14 factors is assigned a value from 0 (“not present or
no infl uence”) to 5 (“strong infl uence throughout”). The resulting 14 numbers are summed,
yielding the total degree of infl uence (DI). The TCF is then given by

 TCF � 0.65 � 0.01 � DI (9.4)

 Because DI can vary from 0 to 70, TCF varies from 0.65 to 1.35.
 Third, FP , the number of function points, is given by

 FP � UFP � TCF (9.5)

 Experiments to measure software productivity rates have shown a better fi t using func-
tion points than using KDSI. For example, Jones [1987] has stated that he observed errors

 FIGURE 9.3
Table of
function point
values.

 Level of Complexity

 Component Simple Average Complex

 Input item 3 4 6
 Output item 4 5 7
 Inquiry 3 4 6
 Master fi le 7 10 15
 Interface 5 7 10

1. Data communication

2. Distributed data processing

3. Performance criteria

4. Heavily utilized hardware

5. High transaction rates

6. Online data entry

7. End-user efficiency

8. Online updating

9. Complex computations

10. Reusability

11. Ease of installation

12. Ease of operation

13. Portability

14. Maintainability

 FIGURE 9.4
 Technical
factors for
function point
computation.

sch76183_ch09_268-298.indd 274sch76183_ch09_268-298.indd 274 04/06/10 2:00 PM04/06/10 2:00 PM

Chapter 9 Planning and Estimating 275

in excess of 800 percent counting KDSI, but only [emphasis added] 200 percent in count-
ing function points, a most revealing remark.
 To show the superiority of function points over lines of code, Jones [1987] cites the
example shown in Figure 9.5 . The same product was coded both in assembler and in Ada
and the results compared. First, consider KDSI per person-month. This metric tells us that
coding in assembler is apparently 60 percent more effi cient than coding in Ada, which
is patently false. Third-generation languages like Ada have superseded assembler simply
because it is much more effi cient to code in a third-generation language. Now consider the
second metric, cost per source statement. Note that one Ada statement in this product is
equivalent to 2.8 assembler statements. Use of cost per source statement as a measure of
effi ciency again implies that it is more effi cient to code in assembler than in Ada. However,
when function points per person-month is taken as the metric of programming effi ciency,
the superiority of Ada over assembler is refl ected clearly.
 On the other hand, both function points and the FFP metric of equations (9.1) and (9.2)
suffer from the same weakness: Product maintenance often is inaccurately measured. When
a product is maintained, major changes to the product can be made without changing the
number of fi les, fl ows, and processes or the number of inputs, outputs, inquiries, master
fi les, and interfaces. Lines of code is no better in this respect. To take an extreme case, it is
possible to replace every line of a product with a completely different line without chang-
ing the total number of lines of code.
 At least 40 variants of and extensions to Albrecht’s function points have been proposed
[Maxwell and Forselius, 2000]. Mk II function points were put forward by Symons [1991]
to provide a more accurate way of computing the unadjusted function points (UFP). The
software is decomposed into a set of component transactions, each consisting of an input,
a process, and an output. The value of UFP then is computed from these inputs, processes,
and outputs. Mk II function points are widely used all over the world.

 9.2.2 Techniques of Cost Estimation
Notwithstanding the diffi culties with estimating size, it is essential that software developers
simply do the best they can to obtain accurate estimates of both project duration and proj-
ect cost, while taking into account as many as possible of the factors that can affect their
estimates. These include the skill levels of the personnel, the complexity of the project, the
size of the project (cost increases with size but much more than linearly), familiarity of the
development team with the application area, the hardware on which the product is to be

 FIGURE 9.5
A comparison
of assembler and
Ada products
[Jones, 1987].
(© 1987 IEEE.)

 Assembler Version Ada Version

 Source code size 70 KDSI 25 KDSI
 Development costs $1,043,000 $590,000
 KDSI per person-month 0.335 0.211
 Cost per source statement $14.90 $23.60
 Function points per person-month 1.65 2.92
 Cost per function point $3,023 $1,170

sch76183_ch09_268-298.indd 275sch76183_ch09_268-298.indd 275 04/06/10 2:00 PM04/06/10 2:00 PM

276 Part A Software Engineering Concepts

run, and availability of CASE tools. Another factor is the deadline effect. If a project has to
be completed by a certain time, the effort in person-months is greater than if no constraint
is placed on completion time; hence, the greater the cost. This shows that duration and cost
are not independent; the shorter the deadline, the greater the effort and, hence, the greater
the cost.
 From the preceding list, which is by no means comprehensive, clearly estimation is a
diffi cult problem. A number of approaches have been used, with greater or lesser success.

 1. Expert Judgment by Analogy
 In the expert judgment by analogy technique, a number of experts are consulted. An
expert arrives at an estimate by comparing the target product to completed products with
which the expert was actively involved and noting the similarities and differences. For ex-
ample, an expert may compare the target product to a similar product developed 2 years ago
for which the data were entered in batch mode, whereas the target product is to have online
data capture. Because the organization is familiar with the type of product to be developed,
the expert reduces development time and effort by 15 percent. However, the graphical user
interface is somewhat complex; this increases time and effort by 25 percent. Finally, the
target product has to be developed in a language with which most of the team members
are unfamiliar, thereby increasing time by 15 percent and effort by 20 percent. Combining
these three fi gures, the expert decides that the target product will take 25 percent more
time and 30 percent more effort than the previous one. Because the previous product took
12 months to complete and required 100 person-months, the target product is estimated to
take 15 months and consume 130 person-months.
 Two other experts within the organization compare the same two products. One con-
cludes that the target product will take 13.5 months and 140 person-months. The other
comes up with the fi gures of 16 months and 95 person-months. How can the predictions
of these three experts be reconciled? One technique is the Delphi technique : It allows
experts to arrive at a consensus without having group meetings, which can have the un-
desirable side effect of one persuasive member swaying the group. In this technique, the
experts work independently. Each produces an estimate and a rationale for that estimate.
These estimates and rationales then are distributed to all the experts, who now produce a
second estimate. This process of estimation and distribution continues until the experts
can agree within an accepted tolerance. No group meetings take place during the iteration
process.
 Valuation of real estate frequently is done on the basis of expert judgment by analogy. An
appraiser arrives at a valuation by comparing a house with similar houses that have been sold
recently. Suppose that house A is to be valued, house B next door has just sold for $205,000,
and house C on the next street sold 3 months ago for $218,000. The appraiser may reason
as follows: House A has one more bathroom than house B, and the yard is 5000 square feet
larger. House C is approximately the same size as house A, but its roof is in poor condition.
On the other hand, house C has a Jacuzzi. After careful thought, the appraiser may arrive at a
fi gure of $215,000 for house A.
 In the case of software products, expert judgment by analogy is less accurate than real
estate valuation. Recall that our fi rst software expert claimed that using an unfamiliar lan-
guage would increase time by 15 percent and effort by 20 percent. Unless the expert has

sch76183_ch09_268-298.indd 276sch76183_ch09_268-298.indd 276 04/06/10 2:00 PM04/06/10 2:00 PM

Chapter 9 Planning and Estimating 277

some validated data from which the effect of each difference can be determined (a highly
unlikely possibility), errors induced by what can be described only as guesses will result
in hopelessly incorrect cost estimates. In addition, unless the experts are blessed with total
recall (or have kept detailed records), their recollections of completed products may be
suffi ciently inaccurate as to invalidate their predictions. Finally, experts are human and,
therefore, have biases that may affect their predictions. At the same time, the results of
estimation by a group of experts should refl ect their collective experience; if this is broad
enough, the result well may be accurate.

 2. Bottom-Up Approach
 One way of trying to reduce the errors resulting from evaluating a product as a whole is to
break the product into smaller components. Estimates of duration and cost are made for
each component separately and combined to provide an overall fi gure. This bottom-up
approach has the advantage that estimating costs for several smaller components gener-
ally is quicker and more accurate than for one large one. In addition, the estimation process
is likely to be more detailed than with one large, monolithic product. The weakness of this
approach is that a product is more than the sum of its components.
 With the object-oriented paradigm, the independence of the various classes helps the
bottom-up approach. However, interactions among the various objects in the product com-
plicate the estimation process.

 3. Algorithmic Cost Estimation Models
 In this approach, a metric, such as function points or the FFP metric, is used as input to
a model for determining product cost. The estimator computes the value of the metric;
duration and cost estimates then can be computed using the model. On the surface, an
 algorithmic cost estimation model is superior to expert opinion, because a human
expert, as pointed out previously, is subject to biases and may overlook certain aspects of
both the completed and target products. In contrast, an algorithmic cost estimation model
is unbiased; every product is treated the same way. The danger with such a model is that
its estimates are only as good as the underlying assumptions. For example, underlying
the function point model is the assumption that every aspect of a product is embodied in
the fi ve quantities on the right-hand side of equation (9.3) and the 14 technical factors.
A further problem is that a signifi cant amount of subjective judgment often is needed in
deciding what values to assign to the parameters of the model. For example, frequently it
is unclear whether a specifi c technical factor of the function point model should be rated
a 3 or a 4.
 Many algorithmic cost estimation models have been proposed. Some are based on math-
ematical theories as to how software is developed. Other models are statistically based;
large numbers of projects are studied and empirical rules determined from the data. Hybrid
models incorporate mathematical equations, statistical modeling, and expert judgment.
The most important hybrid model is Boehm’s COCOMO, which is described in detail in
Section 9.2.3. (See Just in Case You Wanted to Know Box 9.1 for a discussion of the
acronym COCOMO.)

sch76183_ch09_268-298.indd 277sch76183_ch09_268-298.indd 277 04/06/10 2:00 PM04/06/10 2:00 PM

 9.2.3 Intermediate COCOMO
 COCOMO actually is a series of three models, ranging from a macroestimation model that
treats the product as a whole to a microestimation model that treats the product in detail. In
this section, a description is given of intermediate COCOMO, which has a middle level of
complexity and detail. COCOMO is described in detail in [Boehm, 1981]; an overview is
presented in [Boehm, 1984].
 Computing development time using intermediate COCOMO is done in two stages. First,
a rough estimate of the development effort is provided. Two parameters have to be esti-
mated: the length of the product in KDSI and the product’s development mode, a measure
of the intrinsic level of diffi culty of developing that product. There are three modes: organic
(small and straightforward), semidetached (medium sized), and embedded (complex).
 From these two parameters, the nominal effort can be computed. For example, if the
project is judged to be essentially straightforward (organic), then the nominal effort (in
person-months) is given by the equation

 Nominal effort � 3.2 � (KDSI) 1.05 person-months (9.6)

 The constants 3.2 and 1.05 are the values that best fi tted the data on the organic mode
products used by Boehm to develop intermediate COCOMO.
 For example, if the product to be built is organic and estimated to be 12,000 delivered
source statements (12 KDSI), then the nominal effort is

 3.2 � (12) 1.05 � 43 person-months

 (but read Just in Case You Wanted to Know Box 9.2 for a comment on this value).
 Next, this nominal value must be multiplied by 15 software development effort
multipliers . These multipliers and their values are given in Figure 9.6 . Each multiplier
can have up to six values. For example, the product complexity multiplier is assigned the
values 0.70, 0.85, 1.00, 1.15, 1.30, or 1.65, according to whether the developers rate the
project complexity as very low, low, nominal (average), high, very high, or extra high. As
can be seen from Figure 9.6 , all 15 multipliers take on the value 1.00 when the correspond-
ing parameter is nominal.
 Boehm provides guidelines to help the developer determine whether the parameter
should indeed be rated nominal or whether the rating is lower or higher. For example,
consider again the module complexity multiplier. If the control operations of the module
essentially consist of a sequence of the constructs of structured programming (such as
if - then - else , do - while , case), then the complexity is rated very low . If these operators are
nested, then the rating is low . Adding intermodule control and decision tables increases the
rating to nominal . If the operators are highly nested, with compound predicates, and queues
and stacks, then the rating is high. The presence of reentrant and recursive coding and

 Just in Case You Wanted to Know Box 9.1
 COCOMO is an acronym formed from the fi rst two letters of each word in COnstructive
COst MOdel. Any connection with Kokomo, Indiana, is purely coincidental.
 The MO in COCOMO stands for “model,” so the phrase COCOMO model should not be
used. That phrase falls into the same category as “ATM machine” and “PIN number,” both
of which were dreamed up by the Department of Redundant Information Department.

sch76183_ch09_268-298.indd 278sch76183_ch09_268-298.indd 278 04/06/10 2:00 PM04/06/10 2:00 PM

fi xed-priority interrupt handling pushes the rating to very high . Finally, multiple resource
scheduling with dynamically changing priorities and microcode-level control ensures that
the rating is extra high. These ratings apply to control operations. A module also has to be
evaluated from the viewpoint of computational operations, device-dependent operations,
and data management operations. For details on the criteria for computing each of the
15 multipliers, refer to [Boehm, 1981].
 To see how this works, Boehm [1984] gives the example of microprocessor-based com-
munications processing software for a highly reliable new electronic funds transfer net-
work, with performance, development schedule, and interface requirements. This prod-
uct fi ts the description of embedded mode and is estimated to be 10,000 delivered source
instructions (10 KDSI) in length, so the nominal development effort is given by

 Nominal effort � 2.8 � (KDSI) 1.20 (9.7)

 FIGURE 9.6 Intermediate COCOMO software development effort multipliers [Boehm, 1984]. (© 1984 IEEE)

 Rating

 Cost Drivers Very Low Low Nominal High Very High Extra High

 Product Attributes
 Required software reliability 0.75 0.88 1.00 1.15 1.40
 Database size 0.94 1.00 1.08 1.16
 Product complexity 0.70 0.85 1.00 1.15 1.30 1.65

 Computer Attributes
 Execution time constraint 1.00 1.11 1.30 1.66
 Main storage constraint 1.00 1.06 1.21 1.56
 Virtual machine volatility* 0.87 1.00 1.15 1.30
 Computer turnaround time 0.87 1.00 1.07 1.15

 Personnel Attributes
 Analyst capabilities 1.46 1.19 1.00 0.86 0.71
 Applications experience 1.29 1.13 1.00 0.91 0.82
 Programmer capability 1.42 1.17 1.00 0.86 0.70
 Virtual machine experience* 1.21 1.10 1.00 0.90
 Programming language experience 1.14 1.07 1.00 0.95

 Project Attributes
 Use of modern programming practices 1.24 1.10 1.00 0.91 0.82
 Use of software tools 1.24 1.10 1.00 0.91 0.83
 Required development schedule 1.23 1.08 1.00 1.04 1.10

 *For a given software product, the underlying virtual machine is the complex of hardware and software (operating system, database
management system) it calls on to accomplish its task.

 Just in Case You Wanted to Know Box 9.2
One reaction to the value of the nominal effort might be, “If 43 person-months of effort are
needed to produce 12,000 delivered source instructions, then on average each program-
mer is turning out fewer than 300 lines of code a month—I have implemented more than
that in one night!”
 A 300-line product usually is just that: 300 lines of code. In contrast, a maintainable
12,000-line product has to go through all the workfl ows of the life cycle. In other words,
the total effort of 43 person-months is shared among many activities, including coding.

sch76183_ch09_268-298.indd 279sch76183_ch09_268-298.indd 279 04/06/10 2:00 PM04/06/10 2:00 PM

280 Part A Software Engineering Concepts

 (Again, the constants 2.8 and 1.20 are the values that best fi tted the data on embedded
products.) Because the project is estimated to be 10 KDSI in length, the nominal effort is

 2.8 � (10) 1.20 � 44 person-months

 The estimated development effort is obtained by multiplying the nominal effort by the
15 software development effort multipliers. The ratings of these multipliers and their val-
ues are given in Figure 9.7 . Using these values, the product of the multipliers is found to be
1.35, so the estimated effort for the project is

 1.35 � 44 � 59 person-months

 This number is then used in additional formulas to determine dollar costs, development
schedules, phase and activity distributions, computer costs, annual maintenance costs, and
other related items; for details, see [Boehm, 1981]. Intermediate COCOMO is a complete
algorithmic cost estimation model, giving the user virtually every conceivable assistance in
project planning.
 Intermediate COCOMO has been validated with respect to a broad sample of 63 proj-
ects covering a wide variety of application areas. The results of applying intermediate
COCOMO to this sample are that the actual values come within 20 percent of the predicted
values about 68 percent of the time. Attempts to improve on this accuracy make little sense
because in most organizations, the input data for intermediate COCOMO generally are
accurate to within only about 20 percent. Nevertheless, the accuracy obtained by expe-
rienced estimators placed intermediate COCOMO at the cutting edge of cost estimation
research during the 1980s; no other technique was consistently as accurate.

 FIGURE 9.7
Intermediate
COCOMO
effort multiplier
ratings for
microprocessor
communications
software
[Boehm, 1984].
(© 1984 IEEE)

 Effort
 Cost Drivers Situation Rating Multiplier

 Required software reliability Serious fi nancial consequences High 1.15
 of software fault

 Database size 20,000 bytes Low 0.94

 Product complexity Communications processing Very high 1.30

 Execution time constraint Will use 70% of available time High 1.11

 Main storage constraint 45K of 64K store (70%) High 1.06

 Virtual machine volatility Based on commercial Nominal 1.00
 microprocessor hardware

 Computer turnaround time 2 hour average turnaround time Nominal 1.00

 Analyst capabilities Good senior analysts High 0.86

 Applications experience 3 years Nominal 1.00

 Programmer capability Good senior programmers High 0.86

 Virtual machine experience 6 months Low 1.10

 Programming language experience 12 months Nominal 1.00

 Use of modern programming Most techniques in use over High 0.91
 practices 1 year

 Use of software tools At basic minicomputer Low 1.10
 tool level

 Required development schedule 9 months Nominal 1.00

sch76183_ch09_268-298.indd 280sch76183_ch09_268-298.indd 280 04/06/10 2:00 PM04/06/10 2:00 PM

Chapter 9 Planning and Estimating 281

 The major problem with intermediate COCOMO is that its most important input is the
number of lines of code in the target product. If this estimate is incorrect, then every single
prediction of the model may be incorrect. Because of the possibility that the predictions of
intermediate COCOMO or any other estimation technique may be inaccurate, management
must monitor all predictions throughout software development.

 9.2.4 COCOMO II
 COCOMO was put forward in 1981. At that time, the only life-cycle model in use was the
waterfall model. Most software was run on mainframes. Technologies such as client–server
and object orientation essentially were unknown. Accordingly, COCOMO did not incor-
porate any of these factors. However, as newer technologies began to become accepted
software engineering practice, COCOMO started to become less accurate.
 COCOMO II [Boehm et al., 2000] is a major revision of the 1981 COCOMO.
COCOMO II can handle a wide variety of modern software engineering techniques, including
object-orientation, the various life-cycle models described in Chapter 2 , rapid prototyping
(Section 11.13), fourth-generation languages (Section 15.2), reuse (Section 8.1), and COTS
software (Section 1.11). COCOMO II is both fl exible and sophisticated. Unfortunately, to
achieve this goal, COCOMO II is considerably more complex than the original COCOMO.
Accordingly, the reader who wishes to utilize COCOMO II should study [Boehm et al., 2000]
in detail; only an overview of the major differences between COCOMO II and intermediate
COCOMO is given here.
 First, intermediate COCOMO consists of one overall model based on lines of code
(KDSI). On the other hand, COCOMO II consists of three different models. The application
composition model , based on object points (similar to function points), is applied at the
earliest workfl ows, when minimal knowledge is available regarding the product to be built.
Then, as more knowledge becomes available, the early design model is used; this model is
based on function points. Finally, when the developers have maximal information, the post-
architecture model is used. This model uses function points or lines of code (KDSI). The
output from intermediate COCOMO is a cost and size estimate; the output from each of the
three models of COCOMO II is a range of cost and size estimates. Accordingly, if the most
likely estimate of the effort is E , then the application composition model returns the range
(0.50 E , 2.0 E), and the postarchitecture model returns the range (0.80 E , 1.25 E). This refl ects
the increasing accuracy of the progression of models of COCOMO II.
 A second difference lies in the effort model underlying COCOMO:

 Effort � a � (size) b (9.8)

 where a and b are constants. In intermediate COCOMO, the exponent b takes on three dif-
ferent values, depending on whether the mode of the product to be built is organic (b = 1.05),
semidetached (b = 1.12), or embedded (b = 1.20). In COCOMO II, the value of b varies
between 1.01 and 1.26, depending on a variety of parameters of the model. These include
familiarity with products of that type, process maturity level (Section 3.13), extent of risk
resolution (Section 2.7), and degree of team cooperation (Section 4.1).
 A third difference is the assumption regarding reuse. Intermediate COCOMO assumes
that the savings due to reuse are directly proportional to the amount of reuse. COCOMO II
takes into account that small changes to reused software incur disproportionately large
costs (because the code has be understood in detail for even a small change and the cost of
testing a modifi ed module is relatively large).

sch76183_ch09_268-298.indd 281sch76183_ch09_268-298.indd 281 04/06/10 2:00 PM04/06/10 2:00 PM

282 Part A Software Engineering Concepts

 Fourth, there now are 17 multiplicative cost drivers, instead of 15 in intermediate
COCOMO. Seven of the cost drivers are new, such as required reusability in future products,
annual personnel turnover, and whether the product is being developed at multiple sites.
 COCOMO II has been calibrated using 83 projects from a variety of different domains.
The model still is too new for there to be many results regarding its accuracy and, in par-
ticular, the extent to which it is an improvement over its predecessor, the original (1981)
COCOMO.

 9.2.5 Tracking Duration and Cost Estimates
 While the product is being developed, the actual development effort must constantly be
compared against predictions. For example, suppose that the estimation metric used by
the software developers predicted that the duration of the analysis workfl ow would last
3 months and require 7 person-months of effort. However, 4 months have gone by and
10 person-months of effort have been expended, yet the specifi cations are by no means
complete. Deviations of this kind can serve as an early warning that something has gone
wrong and corrective action must be taken. The problem could be that the size of the prod-
uct was seriously underestimated or the development team is not as competent as it was
thought to be. Whatever the reason, there are going to be serious duration and cost over-
runs, and management must take appropriate action to minimize the effects.
 Careful tracking of predictions must be done throughout the development process, irre-
spective of the techniques by which the predictions were made. Deviations could be due to
metrics that are poor predictors, ineffi cient software development, a combination of both,
or some other reason. The important thing is to detect deviations early and take immediate
corrective action. In addition, it is essential to continually update predictions in the light of
additional information as it becomes available.
 Now that metrics for estimating duration and cost have been discussed, the components
of the software project management plan are described.

 9.3 Components of a Software Project Management Plan
A software project management plan has three main components: the work to be done, the
resources with which to do it, and the money to pay for it all. In this section, these three
ingredients of the plan are discussed. The terminology is taken from [IEEE 1058, 1998],
which is discussed in greater detail in Section 9.4.
 Software development requires resources . The major resources required are the people
who will develop the software, the hardware on which the software is run, and the support
software such as operating systems, text editors, and version control software (Section 5.9).
 Use of resources such as personnel varies with time. Norden [1958] has shown that
for large projects, the Rayleigh distribution is a good approximation of the way that
resource consumption, Rc , varies with time, t , that is,

 Rc �
t
 —
k 2

 e�t 2/ 2k 2 0 � t � � (9.9)

 Parameter k is a constant, the time at which consumption is at its peak, and e = 2.71828. . . ,
the base of Naperian (natural) logarithms. A typical Rayleigh curve is shown in Figure 9.8 .

sch76183_ch09_268-298.indd 282sch76183_ch09_268-298.indd 282 04/06/10 2:00 PM04/06/10 2:00 PM

Chapter 9 Planning and Estimating 283

Resource consumption starts small, climbs rapidly to a peak, and then decreases at a slower
rate. Putnam [1978] investigated the applicability of Norden’s results to software develop-
ment and found that personnel and other resource consumption was modeled with some
degree of accuracy by the Rayleigh distribution.
 It therefore is insuffi cient in a software plan merely to state that three senior program-
mers with at least 5 years of experience are required. What is needed is something like the
following:

 Three senior programmers with at least 5 years of experience in real-time programming are
needed, two to start 3 months after the project commences, the third to start 6 months after
that. Two will be phased out when product testing commences, the third when postdelivery
maintenance begins.

 The fact that resource needs depend on time applies not only to personnel but also
to computer time, support software, computer hardware, offi ce facilities, and even travel.
Consequently, the software project management plan is a function of time.
 The work to be done falls into two categories. First is work that continues throughout the
project and does not relate to any specifi c workfl ow of software development. Such work
is termed a project function . Examples are project management and quality control.
Second is work that relates to a specifi c workfl ow in the development of the product; such
work is termed an activity or a task . An activity is a major unit of work that has precise
beginning and ending dates; consumes resources, such as computer time or person-days;
and results in work products , such as a budget, design documents, schedules, source
code, or a user’s manual. An activity, in turn, comprises a set of tasks, a task being the
smallest unit of work subject to management accountability. There are therefore three kinds
of work in a software project management plan: project functions carried on throughout the
project, activities (major units of work), and tasks (minor units of work).

 FIGURE 9.8
Rayleigh
curve showing
how resource
consumption
varies with time.

Re
so

ur
ce

 c
on

su
m

p
tio

n

Time
k

sch76183_ch09_268-298.indd 283sch76183_ch09_268-298.indd 283 04/06/10 2:00 PM04/06/10 2:00 PM

284 Part A Software Engineering Concepts

 A critical aspect of the plan concerns completion of work products. The date on which
a work product is deemed completed is termed a milestone . To determine whether a work
product indeed has reached a milestone, it must fi rst pass a series of reviews performed by
fellow team members, management, or the client. A typical milestone is the date on which
the design is completed and passes review. Once a work product has been reviewed and
agreed on, it becomes a baseline and can be changed only through formal procedures, as
described in Section 5.10.2.
 In reality, there is more to a work product than merely the product itself. A work pack-
age defi nes not just the work product but also the staffi ng requirements, duration, resources,
name of the responsible individual, and acceptance criteria for the work product. Money of
course is a vital component of the plan. A detailed budget must be worked out and the money
allocated, as a function of time, to the project functions and activities.
 The issue of how to draw up a plan for software production is addressed next.

 9.4 Software Project Management Plan Framework
 There are many ways of drawing up a project management plan. One of the best is IEEE
Standard 1058 [1998]. The components of the plan are shown in Figure 9.9 .

• The standard was drawn up by representatives of numerous major organizations
involved in software development. Input came from both industry and universi-
ties, and the members of the working group and reviewing teams had many years of
experience in drawing up project management plans. The standard incorporates this
experience.

• The IEEE project management plan is designed for use with all types of software prod-
ucts. It does not impose a specifi c life-cycle model or prescribe a specifi c methodology.
The plan essentially is a framework, the contents of which are tailored by each organiza-
tion for a particular domain, development team, or technique.

• The IEEE project management plan framework supports process improvement. For
example, many of the sections of the framework refl ect CMM key process areas
(Section 3.13) such as confi guration management and metrics.

• The IEEE project management plan framework is ideal for the Unifi ed Process. For
instance, one section of the plan is devoted to requirements control and another to risk
management, both central aspects of the Unifi ed Process.

 On the other hand, although the claim is made in IEEE Standard 1058 [1998] that the
IEEE project management plan is applicable to software projects of all sizes, some of
the sections are not relevant to small-scale software. For example, section 7.7 of the plan
framework is headed “Subcontractor Management Plan,” but it is all but unheard of for
subcontractors to be used in small-scale projects.
 Accordingly, we now present the plan framework in two different ways. First, the full
framework is described in Section 9.5. Second, a slightly abbreviated version of the frame-
work is used in Appendix F for a management plan for a small-scale project, the MSG
Foundation case study.

sch76183_ch09_268-298.indd 284sch76183_ch09_268-298.indd 284 04/06/10 2:00 PM04/06/10 2:00 PM

Chapter 9 Planning and Estimating 285

 FIGURE 9.9
The IEEE
project
management
plan framework.

 1 Overview
 1.1 Project summary
 1.1.1 Purpose, scope, and objectives
 1.1.2 Assumptions and constraints
 1.1.3 Project deliverables
 1.1.4 Schedule and budget summary
 1.2 Evolution of the project management plan

 2 Reference materials

 3 Defi nitions and acronyms

 4 Project organization
 4.1 External interfaces
 4.2 Internal structure
 4.3 Roles and responsibilities

 5 Managerial process plans
 5.1 Start-up plan
 5.1.1 Estimation plan
 5.1.2 Staffi ng plan
 5.1.3 Resource acquisition plan
 5.1.4 Project staff training plan
 5.2 Work plan
 5.2.1 Work activities
 5.2.2 Schedule allocation
 5.2.3 Resource allocation
 5.2.4 Budget allocation
 5.3 Control plan
 5.3.1 Requirements control plan
 5.3.2 Schedule control plan
 5.3.3 Budget control plan
 5.3.4 Quality control plan
 5.3.5 Reporting plan
 5.3.6 Metrics collection plan
 5.4 Risk management plan
 5.5 Project close-out plan

 6 Technical process plans
 6.1 Process model
 6.2 Methods, tools, and techniques
 6.3 Infrastructure plan
 6.4 Product acceptance plan

 7 Supporting process plans
 7.1 Confi guration management plan
 7.2 Testing plan
 7.3 Documentation plan
 7.4 Quality assurance plan
 7.5 Reviews and audits plan
 7.6 Problem resolution plan
 7.7 Subcontractor management plan
 7.8 Process improvement plan

 8 Additional plans

sch76183_ch09_268-298.indd 285sch76183_ch09_268-298.indd 285 04/06/10 2:00 PM04/06/10 2:00 PM

286 Part A Software Engineering Concepts

 9.5 IEEE Software Project Management Plan
 The IEEE software project management plan (SPMP) framework itself now is described
in detail. The numbers and headings in the text correspond to the entries in Figure 9.9 . The
various terms used have been defi ned in Section 9.3.

 1 Overview.
 1.1 Project summary.
 1.1.1 Purpose, scope, and objectives. A brief description is given of the purpose
and scope of the software product to be delivered, as well as project objectives. Business
needs are included in this subsection.
 1.1.2 Assumptions and constraints. Any assumptions underlying the project are
stated here, together with constraints, such as the delivery date, budget, resources, and
artifacts to be reused.
 1.1.3 Project deliverables. All the items to be delivered to the client are listed here,
together with the delivery dates.
 1.1.4 Schedule and budget summary. The overall schedule is presented here,
together with the overall budget.
 1.2 Evolution of the project management plan. No plan can be cast in concrete.
The project management plan, like any other plan, requires continual updating in the light of
experience and change within both the client organization and the software development or-
ganization. In this section, the formal procedures and mechanisms for changing the plan are
described, including the mechanism for placing the project management plan itself under con-
fi guration control.
 2 Reference materials. All documents referenced in the project management plan
are listed here.
 3 Defi nitions and acronyms. This information ensures that the project management
plan will be understood the same way by everyone.
 4 Project organization.
 4.1 External interfaces. No project is constructed in a vacuum. The project members
have to interact with the client organization and other members of their own organization.
In addition, subcontractors may be involved in a large project. Administrative and manage-
rial boundaries between the project and these other entities must be laid down.
 4.2 Internal structure. In this section, the structure of the development organization
itself is described. For example, many software development organizations are divided into
two types of groups: development groups that work on a single project and support groups
that provide support functions, such as confi guration management and quality assurance,
on an organization-wide basis. Administrative and managerial boundaries between the
project group and the support groups also must be defi ned clearly.
 4.3 Roles and responsibilities. For each project function, such as quality assurance,
and for each activity, such as product testing, the individual responsible must be identifi ed.
 5 Managerial process plans.
 5.1 Start-up plan.

sch76183_ch09_268-298.indd 286sch76183_ch09_268-298.indd 286 04/06/10 2:00 PM04/06/10 2:00 PM

Chapter 9 Planning and Estimating 287

 5.1.1 Estimation plan. The techniques used to estimate project duration and cost are
listed here, as well as the way these estimates are tracked and, if necessary, modifi ed while
the project is in progress.
 5.1.2 Staffi ng plan. The numbers and types of personnel required are listed, together
with the durations for which they are needed.
 5.1.3 Resource acquisition plan. The way of acquiring the necessary resources,
including hardware, software, service contracts, and administrative services, is given here.
 5.1.4 Project staff training plan. All training needed for successful completion of
the project is listed in this subsection.
 5.2 Work plan.
 5.2.1 Work activities. In this subsection, the work activities are specifi ed, down to the
task level if appropriate.
 5.2.2 Schedule allocation. In general, the work packages are interdependent and
further dependent on external events. For example, the implementation workfl ow follows
the design workfl ow and precedes product testing. In this subsection, the relevant depen-
dencies are specifi ed.
 5.2.3 Resource allocation. The various resources previously listed are allocated to
the appropriate project functions, activities, and tasks.
 5.2.4 Budget allocation. In this subsection, the overall budget is broken down at the
project function, activity, and task levels.
 5.3 Control plan.
 5.3.1 Requirements control plan. As described in Part B of this book, while a
software product is being developed, the requirements frequently change. The mechanisms
used to monitor and control the changes to the requirements are given in this section.
 5.3.2 Schedule control plan. In this subsection, mechanisms for measuring prog-
ress are listed, together with a description of the actions to be taken if actual progress lags
behind planned progress.
 5.3.3 Budget control plan. It is important that spending should not exceed the bud-
geted amount. Control mechanisms for monitoring when actual cost exceeds budgeted cost,
as well as the actions to be taken should this happen, are described in this subsection.
 5.3.4 Quality control plan. The ways in which quality is measured and controlled
are described in this subsection.
 5.3.5 Reporting plan. To monitor the requirements, schedule, budget, and quality,
reporting mechanisms need to be in place. These mechanisms are described in this subsection.
 5.3.6 Metrics collection plan. As explained in Section 5.5, it is not possible to
manage the development process without measuring relevant metrics. The metrics to be
collected are listed in this subsection.
 5.4 Risk management plan. Risks have to be identifi ed, prioritized, mitigated, and
tracked. All aspects of risk management are described in this section.
 5.5 Project close-out plan. The actions to be taken once the project is completed,
including reassignment of staff and archiving of artifacts, are presented here.
 6 Technical process plans.

sch76183_ch09_268-298.indd 287sch76183_ch09_268-298.indd 287 04/06/10 2:00 PM04/06/10 2:00 PM

288 Part A Software Engineering Concepts

 6.1 Process model. In this section, a detailed description is given of the life-cycle
model to be used.
 6.2 Methods, tools, and techniques. The development methodologies and pro-
gramming languages to be used are described here.
 6.3 Infrastructure plan. Technical aspects of hardware and software are described in
detail in this section. Items that should be covered include the computing systems (hard-
ware, operating systems, network, and software) to be used for developing the software
product, as well as the target computing systems on which the software product will be run
and CASE tools to be employed.
 6.4 Product acceptance plan. To ensure that the completed software product passes
its acceptance test, acceptance criteria must be drawn up, the client must agree to the criteria
in writing, and the developers must then ensure that these criteria are indeed met. The way that
these three stages of the acceptance process will be carried out is described in this section.
 7 Supporting process plans.
 7.1 Confi guration management plan. In this section, a detailed description is
given of the means by which all artifacts are put under confi guration management.
 7.2 Testing plan. Testing, like all other aspects of software development, needs careful
planning.
 7.3 Documentation plan. A description of documentation of all kinds, whether or
not to be delivered to the client at the end of the project, is included in this section.
 7.4 Quality assurance plan. All aspects of quality assurance, including testing,
standards, and reviews, are encompassed by this section.
 7.5 Reviews and audits plan. Details as to how reviews are conducted are presented
in this section.
 7.6 Problem resolution plan. In the course of developing a software product, prob-
lems are all but certain to arise. For example, a design review may bring to light a critical
fault in the analysis workfl ow that requires major changes to almost all the artifacts already
completed. In this section, the way such problems are handled is described.
 7.7 Subcontractor management plan. This section is applicable when subcon-
tractors are to supply certain work products. The approach to selecting and managing sub-
contractors then appears here.
 7.8 Process improvement plan. Process improvement strategies are included in
this section.
 8 Additional plans. For certain projects, additional components may need to appear
in the plan. In terms of the IEEE framework, they appear at the end of the plan. Additional
components may include security plans, safety plans, data conversion plans, installation
plans, and the software project postdelivery maintenance plan.

 9.6 Planning Testing
One component of the SPMP frequently overlooked is test planning . Like every other
activity of software development, testing must be planned. The SPMP must include
resources for testing, and the detailed schedule must explicitly indicate the testing to be
done during each workfl ow.

sch76183_ch09_268-298.indd 288sch76183_ch09_268-298.indd 288 04/06/10 2:00 PM04/06/10 2:00 PM

Chapter 9 Planning and Estimating 289

 Without a test plan, a project can go awry in a number of ways. For example, during prod-
uct testing (Section 3.7.4), the SQA group must check that every aspect of the specifi cation
document, as signed off on by the client, has been implemented in the completed product. A
good way of assisting the SQA group in this task is to require that the development be trace-
able (Section 3.7). That is, it must be possible to connect each statement in the specifi cation
document to a part of the design, and each part of the design must be refl ected explicitly in
the code. One technique for achieving this is to number each statement in the specifi cation
document and ensure that these numbers are refl ected in both the design and the resulting
code. However, if the test plan does not specify that this is to be done, it is highly unlikely that
the analysis, design, and code artifacts will be labeled appropriately. Consequently, when the
product testing fi nally is performed, it will be extremely diffi cult for the SQA group to deter-
mine that the product is a complete implementation of the specifi cations. In fact, traceabil-
ity should start with the requirements; each statement in the requirements artifacts (or each
portion of the rapid prototype) must be connected to part of the analysis artifacts.
 One powerful aspect of inspections is the detailed list of faults detected during an inspec-
tion. Suppose that a team is inspecting the specifi cations of a product. As explained in Section
6.2.3, the list of faults is used in two ways. First, the fault statistics from this inspection must
be compared with the accumulated averages of fault statistics from previous specifi cation
inspections. Deviations from previous norms indicate problems within the project. Second,
the fault statistics from the current specifi cation inspection must be carried forward to the
design and code inspections of the product. After all, if there is a large number of faults of a
particular type, it is possible that not all of them were detected during the inspection of the
specifi cations, and the design and code inspections provide an additional opportunity for
locating any remaining faults of this type. However, unless the test plan states that details of
all faults have to be carefully recorded, it is unlikely that this task will be done.
 An important way of testing code modules is so-called black-box testing (Section 15.11)
in which the code is executed with test cases based on the specifi cations. Members of the
SQA group read through the specifi cations and draw up test cases to check whether the code
obeys the specifi cation document. The best time to draw up black-box test cases is at the end
of the analysis workfl ow, when the details of the specifi cation document still are fresh in the
minds of the members of the SQA group that inspected them. However, unless the test plan
explicitly states that the black-box test cases are to be selected at this time, in all probability
only a few black-box test cases will be hurriedly thrown together later. That is, a limited
number of test cases will be rapidly assembled only when pressure starts mounting from the
programming team for the SQA group to approve its modules so that they can be integrated
into the product as a whole. As a result, the quality of the product as a whole suffers.
 Therefore, every test plan must specify what testing is to be performed, when it is to be
performed, and how it is to be performed. Such a test plan is an essential part of section 7.2
of the SPMP. Without it, the quality of the overall product undoubtedly will suffer.

 9.7 Planning Object-Oriented Projects
Suppose the classical paradigm is used. From a conceptual viewpoint, the resulting product
generally is one large unit, even though it is composed of separate modules. In contrast, use
of the object-oriented paradigm results in a product consisting of a number of relatively

sch76183_ch09_268-298.indd 289sch76183_ch09_268-298.indd 289 04/06/10 2:00 PM04/06/10 2:00 PM

290 Part A Software Engineering Concepts

independent smaller components, namely, the classes. This makes planning considerably
easier, in that cost and duration estimates can be computed more easily and more accurately
for smaller units. Of course, the estimates must take into account that a product is more
than just the sum of its parts. The separate components are not totally independent; they can
invoke one another, and these effects must not be overlooked.
 Are the techniques for estimating cost and duration described in this chapter applica-
ble to the object-oriented paradigm? COCOMO II (Section 9.2.4) was designed to handle
modern software technology, including object orientation, but what about earlier metrics
such as function points (Section 9.2.1) and intermediate COCOMO (Section 9.2.3)? In the
case of intermediate COCOMO, minor changes to some of the cost multipliers are required
[Pittman, 1993]. Other than that, the estimation tools of the classical paradigm appear to
work reasonably well on object-oriented projects—provided that there is no reuse. Reuse
enters the object-oriented paradigm in two ways: reuse of existing components during
development and the deliberate production (during the current project) of components to be
reused in future products. Both forms of reuse affect the estimating process. Reuse during
development clearly reduces the cost and duration. Formulas have been published showing
the savings as a function of this reuse [Schach, 1994], but these results relate to the classical
paradigm. At present, no information is available as to how the cost and duration change
when reuse is utilized in the development of an object-oriented product.
 We turn now to the goal of reusing parts of the current project. It can take about
three times as long to design, implement, test, and document a reusable component as
a similar nonreusable component [Pittman, 1993]. Cost and duration estimates must be
modifi ed to incorporate this additional labor, and the SPMP as a whole must be adjusted
to incorporate the effect of the reuse endeavor. Therefore, the two reuse activities work in
opposite directions. Reuse of existing components reduces the overall effort in develop-
ing an object-oriented product, whereas designing components for reuse in future prod-
ucts increases the effort. It is expected that, in the long term, the savings due to reuse of
classes will outweigh the costs of the original developments, and already some evidence
supports this [Lim, 1994].

 9.8 Training Requirements
 When the subject of training is raised in discussions with the client, a common response
is, “We don’t need to worry about training until the product is fi nished, then we can train the
users.” This is a somewhat unfortunate remark, implying as it does that only users require
training. In fact, training also may be needed by members of the development team, start-
ing with training in software planning and estimating. When new software development
techniques, such as new design techniques or testing procedures, are used, training must be
provided to every member of the team using the new technique.
 Introduction of the object-oriented paradigm has major training consequences. The
introduction of hardware or software tools such as workstations or an integrated environment
(see Section 15.24.2) also requires training. Programmers may need training in the operat-
ing system of the machine to be used for product development as well as in the implemen-
tation language. Documentation preparation training frequently is overlooked, as evidenced
by the poor quality of so much documentation. Computer operators certainly require some

sch76183_ch09_268-298.indd 290sch76183_ch09_268-298.indd 290 04/06/10 2:00 PM04/06/10 2:00 PM

Chapter 9 Planning and Estimating 291

sort of training to be able to run the new product; they also may require additional training
if new hardware is utilized.
 The required training can be obtained in a number of ways. The easiest and least dis-
ruptive is in-house training, by either fellow employees or consultants. Many companies
offer a variety of training courses, and colleges often offer training courses in the evenings.
World Wide Web–based courses are another alternative.
 Once the training needs have been determined and the training plan drawn up, the plan
must be incorporated into the SPMP.

 9.9 Documentation Standards
The development of a software product is accompanied by a wide variety of documen-
tation . Jones found that 28 pages of documentation were generated per 1000 instruc-
tions (KDSI) for an IBM internal commercial product around 50 KDSI in size, and about
66 pages per KDSI for a commercial software product of the same size. Operating system
IMS/360 Version 2.3 was about 166 KDSI in size, and 157 pages of documentation per
KDSI were produced. The documentation was of various types, including planning, con-
trol, fi nancial, and technical [Jones, 1986a]. In addition to these types of documentation,
the source code itself is a form of documentation; comments within the code constitute
further documentation.
 A considerable portion of the software development effort is absorbed by documen-
tation. A survey of 63 development projects and 25 postdelivery maintenance projects
showed that, for every 100 hours spent on activities related to code, 150 hours were spent
on activities related to documentation [Boehm, 1981]. For large TRW products, the propor-
tion of time devoted to documentation-related activities rose to 200 hours per 100 code-
related hours [Boehm et al., 1984].
 Standards are needed for every type of documentation. For instance, uniformity in
design documentation reduces misunderstandings between team members and aids the
SQA group. Although new employees have to be trained in the documentation standards,
no further training is needed when existing employees move from project to project within
the organization. From the viewpoint of postdelivery maintenance, uniform coding stan-
dards assist maintenance programmers in understanding source code. Standardization is
even more important for user manuals, because these have to be read by a wide variety of
individuals, few of whom are computer experts. The IEEE has developed a standard for
user manuals (IEEE Standard 1063 for Software User Documentation).
 As part of the planning process, standards must be established for all documentation to
be produced during software production. These standards are incorporated in the SPMP.
 Where an existing standard is to be used, such as the ANSI/IEEE Standard for Software
Test Documentation [ANSI/IEEE 829, 1991], the standard is listed in section 2 of the
SPMP (reference materials). If a standard is specially written for the development effort,
then it appears in section 6.2 (methods, tools, and techniques).
 Documentation is an essential aspect of the software production effort. In a very real
sense, the product is the documentation, because without documentation the product cannot
be maintained. Planning the documentation effort in every detail, and then ensuring that the
plan is adhered to, is a critical component of successful software production.

sch76183_ch09_268-298.indd 291sch76183_ch09_268-298.indd 291 04/06/10 2:00 PM04/06/10 2:00 PM

 Weinberg’s four-volume work [Weinberg, 1992; 1993; 1994; 1997] provides detailed information on
many aspects of software management, as do [Bennatan, 2000] and [Reifer, 2000]. The September–
October 2005 issue of IEEE Software contains a number of articles on software management, especially
[Royce, 2005] and [Venugopal, 2005]; there are additional articles in the May–June 2008 issue. The way

 The main theme of this chapter is the importance of planning in the software process (Section 9.1).
A vital component of any software project management plan is estimating the duration and the cost
(Section 9.2). Several metrics are put forward for estimating the size of a product, including function
points (Section 9.2.1). Next, various metrics for cost estimation are described, especially intermediate
COCOMO (Section 9.2.3) and COCOMO II (Section 9.2.4). As described in Section 9.2.5, it is essential
to track all estimates. The three major components of a software project management plan—the work
to be done, the resources with which to do it, and the money to pay for it—are explained in Section 9.3.
One particular SPMP, the IEEE standard, is outlined in Section 9.4 and described in detail in Section 9.5.
Next follow sections on planning testing (Section 9.6), planning object-oriented projects (Section 9.7),
and training requirements and documentation standards and their implications for the planning process
(Sections 9.8 and 9.9). CASE tools for planning and estimating are described in Section 9.10. The chapter
concludes with material on testing the software project management plan (Section 9.11).

 9.10 CASE Tools for Planning and Estimating
 A number of tools are available that automate intermediate COCOMO and COCOMO II. For
speed of computation when the value of a parameter is modifi ed, several implementations of
intermediate COCOMO have been implemented in spreadsheet languages such as Lotus 1-2-3
and Excel. For developing and updating the plan itself, a word processor is essential.
 Management information tools also are useful for planning. For example, suppose that
a large software organization has 150 programmers. A scheduling tool can help planners
keep track of which programmers already are assigned to specifi c tasks and which are
available for the current project.
 More general types of management information also are needed. A number of commer-
cially available management tools can be used both to assist with the planning and estimat-
ing process and to monitor the development process as a whole. These include MacProject
and Microsoft Project.

 9.11 Testing the Software Project Management Plan
As pointed out at the beginning of this chapter, a fault in the software project manage-
ment plan can have serious fi nancial implications for the developers. It is critical that the
development organization neither overestimate nor underestimate the cost of the project or
its duration. For this reason, the entire SPMP must be checked by the SQA group before
estimates are given to the client. The best way to test the plan is by a plan inspection.
 The plan inspection team must review the SPMP in detail, paying particular attention to
the cost and duration estimates. To reduce risks even further, irrespective of the metrics used,
the duration and cost estimates should be computed independently by a member of the SQA
group as soon as the members of the planning team have determined their estimates.

 Chapter
Review

 For
Further
Reading

292 Part A Software Engineering Concepts

sch76183_ch09_268-298.indd 292sch76183_ch09_268-298.indd 292 04/06/10 2:00 PM04/06/10 2:00 PM

managers defi ne success is explained in [Procaccino and Verner, 2006]. The mechanisms used by proj-
ect managers to monitor and control software development projects are discussed in [McBride, 2008].
 For further information on IEEE Standard 1058 for Software Project Management Plans, the stan-
dard itself should be read carefully [IEEE 1058, 1998]. The need for careful planning is described in
[McConnell, 2001].
 Sackman’s classic work is described in [Sackman, Erikson, and Grant, 1968]. A more detailed
source is [Sackman, 1970]. The impact of programmer expertise on pair programming is described in
[Arisholm, Gallis, Dybå, and Sjøberg, 2007].
 A careful analysis of function points, as well as suggested improvements, appears in [Symons,
1991]. Strengths and weaknesses of function points are presented in [Furey and Kitchenham, 1997].
Class points, an extension of function points to classes, are introduced in [Costagliola, Ferrucci,
Tortora, and Vitiello, 2005].
 The theoretical justifi cation for intermediate COCOMO, together with full details for imple-
menting it, appears in [Boehm, 1981]. COCOMO II is described in [Boehm et al., 2000]. Ways of
enhancing COCOMO predictions are presented in [Smith, Hale, and Parrish, 2001]. An extension of
COCOMO to software product lines appears in [In, Baik, Kim, Yang, and Boehm, 2006].
 Briand and Wüst [2001] describe how to estimate the development effort for object-oriented
products. Estimating both the size and defects of object-oriented software products is described in
[Cartwright and Shepperd, 2000].
 Software productivity data for a variety of business data-processing products are presented in
[Maxwell and Forselius, 2000]; the unit of productivity utilized is function points per hour. Other
measures of productivity are discussed in [Kitchenham and Mendes, 2004]. Errors in estimating soft-
ware effort are analyzed in [Jorgensen and Moløkken-Østvold, 2004]. A critique of a frequently used
research procedure for comparing estimation models is given in [Myrtveit, Stensrud, and Shepperd,
2005]. A probabilist model for predicting software development effort appears in [Pendharkar, Sub-
ramanian, and Rodger, 2005]. An analysis of cost overruns for software products constructed with
various life-cycle models appears in [Moløkken-Østvold and Jorgensen, 2005]. Having an effective
requirements workfl ow can have a positive impact on productivity; this is shown in [Damian and
Chisan, 2006]. The impact of the cone of uncertainty on schedule estimate is analyzed in [Little,
2006]. A comprehensive review of 304 development cost estimation studies in 76 journals is pre-
sented in [Jorgensen and Shepperd, 2007]. An evidence-based approach to selecting an appropriate
cost-estimation model for a given project is described in [Menzies and Hihn, 2006].

 activity 283
 algorithmic cost estimation

model 277
 application composition

model 281
 baseline 284
 bottom-up approach 277
 COCOMO 278
 COCOMO II 281
 cone of uncertainty 269
 cost 271
 cost estimate 271
 Delphi technique 276

 documentation 291
 duration 282
 duration estimate 271
 early design model 281
 effi ciency 273
 expert judgment by analogy 276
 external cost 271
 FFP metric 273
 function point (FP) 273
 IEEE software project

management plan 286
 internal cost 271
 lines of code (LOC) 272

 milestone 284
 money 284
 nominal effort 278
 planning 268
 postarchitecture model 281
 price 271
 productivity 273
 project function 283
 Rayleigh distribution 282
 resources 282
 review 284
 software development effort

multipliers (SPMP) 278

 Key Terms

Chapter 9 Planning and Estimating 293

sch76183_ch09_268-298.indd 293sch76183_ch09_268-298.indd 293 04/06/10 2:00 PM04/06/10 2:00 PM

 Problems

 task 283
 technical complexity factor

(TCF) 274
 test planning 288

 thousand delivered
source instructions
(KDSI) 272

 training 290

 unadjusted function points
(UFP) 273

 work package 284
 work product 283

 9.1 Why do you think that some cynical software organizations refer to milestones as millstones ?
(Hint: Look up the fi gurative meaning of millstone in a dictionary.)

 9.2 You are a software engineer at Pretoriuskop Software Developers. A year ago, your manager
announced that your next product would comprise 8 fi les, 48 fl ows, and 91 processes.

 (i) Using the FFP metric, determine its size.

 (ii) For Pretoriuskop Software Developers, the constant d in equation (9.2) has been deter-
mined to be $1021. What cost estimate did the FFP metric predict?

 (iii) The product recently was completed at a cost of $135,200. What does this tell you about
the productivity of your development team?

 9.3 A target product has 8 simple inputs, 3 average inputs, and 11 complex inputs. There are 57 aver-
age outputs, 9 simple inquiries, 13 average master fi les, and 18 complex interfaces. Determine
the unadjusted function points (UFP).

 9.4 If the total degree of infl uence for the product of Problem 9.3 is 47, determine the number of
function points.

 9.5 Why do you think that, despite its drawbacks, lines of code (LOC or KDSI) is so widely used
as a metric of product size?

 9.6 You are in charge of developing a 62-KDSI embedded product that is nominal except that
the database size is rated very high and the use of software tools is low. Using intermediate
COCOMO, what is the estimated effort in person-months?

 9.7 You are in charge of developing two 31-KDSI organic-mode products. Both are nominal in
every respect except that product P1 has extra-high complexity and product P2 has extra-low
complexity. To develop the product, you have two teams at your disposal. Team A has very high
analyst capability, applications experience, and programmer capability. Team A also has high
virtual machine experience and programming language experience. Team B is rated very low
on all fi ve attributes.

 (i) What is the total effort (in person-months) if team A develops product P1 and team B
develops product P2?

 (ii) What is the total effort (in person-months) if team B develops product P1 and team A
develops product P2?

 (iii) Which of the two preceding staffi ng assignments makes more sense? Is your intuition
backed by the predictions of intermediate COCOMO?

 9.8 You are in charge of developing a 48-KDSI organic-mode product that is nominal in every
respect.

 (i) Assuming a cost of $10,100 per person-month, how much is the project estimated to
cost?

 (ii) Your entire development team resigns at the start of the project. You are fortunate enough
to be able to replace the nominal team with a very highly experienced and capable team,
but the cost per person-month will rise to $13,400. How much money do you expect to
gain (or lose) as a result of the personnel change?

 9.9 You are in charge of developing the software for a product that uses a set of newly devel-
oped algorithms to compute the most cost-effective routes for a large trucking company. Using

294 Part A Software Engineering Concepts

sch76183_ch09_268-298.indd 294sch76183_ch09_268-298.indd 294 04/06/10 2:00 PM04/06/10 2:00 PM

[Albrecht, 1979] A. J. ALBRECHT, “Measuring Application Development Productivity,” Proceedings
of the IBM SHARE/GUIDE Applications Development Symposium , Monterey, CA, October 1979,
pp. 83–92.

 [ANSI/IEEE 829, 1991] Software Test Documentation , ANSI/IEEE 829-1991, American National
Standards Institute, Institute of Electrical and Electronic Engineers, New York, 1991.

 [Arisholm, Gallis, Dybå, and Sjøberg, 2007] E. ARISHOLM, H. GALLIS, T. DYBÅ, AND D. I. K. SJØBERG,
“Evaluating Pair Programming with Respect to System Complexity and Programmer Expertise,”
 IEEE Transactions on Software Engineering 33 (February 2007), pp. 65–86.

 [Bennatan, 2000] E. M. BENNATAN, On Time within Budget: Software Project Management Practices
and Techniques , 3rd ed., John Wiley and Sons, New York, 2000.

 [Boehm, 1981] B. W. BOEHM, Software Engineering Economics, Prentice Hall, Englewood Cliffs,
NJ, 1981.

 [Boehm, 1984] B. W. BOEHM, “Software Engineering Economics,” IEEE Transactions on Software
Engineering SE-10 (January 1984), pp. 4–21.

 [Boehm et al., 1984] B. W. BOEHM, M. H. PENEDO, E. D. STUCKLE, R. D. WILLIAMS, AND A. B. PYSTER,
“A Software Development Environment for Improving Productivity,” IEEE Computer 17 (June
1984), pp. 30–44.

 [Boehm et al., 2000] B. W. BOEHM, C. ABTS, A. W. BROWN, S. CHULANI, B. K. CLARK, E. HOROWITZ,
R. MADACHY, D. REIFER, AND B. STEECE, Software Cost Estimation with COCOMO II , Prentice
Hall, Upper Saddle River, NJ, 2000.

 [Briand and Wüst, 2001] L. C. BRIAND AND J. WÜST, “Modeling Development Effort in Object-
Oriented Systems Using Design Properties,” IEEE Transactions on Software Engineering 27
(November 2001), pp. 963–86.

 [Cartwright and Shepperd, 2000] M. CARTWRIGHT AND M. SHEPPERD, “An Empirical Investigation of
an Object-Oriented Software System,” IEEE Transactions on Software Engineering 26 (August
2000), pp. 786–95.

 [Costagliola, Ferrucci, Tortora, and Vitiello, 2005] G. COSTAGLIOLA, F. FERRUCCI, G. TORTORA, AND
G. VITIELLO, “Class Point: An Approach for the Size Estimation of Object-Oriented Systems,”
 IEEE Transactions on Software Engineering 31 (January 2005), pp. 52–74.

intermediate COCOMO, you determine that the cost of the product will be $470,000. However,
as a check, you ask a member of your team to estimate the effort using function points. She
reports that the function point metric predicts a cost of $985,000, more than twice as large as
your COCOMO prediction. What do you do now?

 9.10 Show that the Rayleigh distribution [equation (9.9)] attains its maximum value when t = k . Find
the corresponding resource consumption.

 9.11 A product postdelivery maintenance plan is considered an “additional component” of an IEEE
software project management plan. Bearing in mind that every nontrivial product is maintained
and that the cost of postdelivery maintenance, on average, is about twice or three times the cost
of developing the product, how can this be justifi ed?

 9.12 Why do software development projects generate so much documentation?

 9.13 (Term project) Consider the Chocoholics Anonymous project described in Appendix A. Why
is it not possible to estimate the cost and duration purely on the basis of the information in
Appendix A?

 9.14 (Readings in Software Engineering) Your instructor will distribute copies of [Costagliola, Ferrucci,
Tortora, and Vitiello, 2005]. Are you convinced by the empirical validation of class points?

 References

Chapter 9 Planning and Estimating 295

sch76183_ch09_268-298.indd 295sch76183_ch09_268-298.indd 295 04/06/10 2:00 PM04/06/10 2:00 PM

 [Damian and Chisan, 2006] D. DAMIAN AND J. CHISAN, “An Empirical Study of the Complex Rela-
tionships between Requirements Engineering Processes and Other Processes That Lead to Payoffs
in Productivity, Quality, and Risk Management,” IEEE Transactions on Software Engineering 32
(July 2006), pp. 433–53.

 [Devenny, 1976] T. DEVENNY, “An Exploratory Study of Software Cost Estimating at the Electronic
Systems Division,” Thesis No. GSM/SM/765–4, Air Force Institute of Technology, Dayton, OH,
1976.

 [Furey and Kitchenham, 1997] S. FUREY AND B. KITCHENHAM, “Function Points,” IEEE Software 14
(March–April 1997), pp. 28–32.

 [IEEE 1058, 1998] “IEEE Standard for Software Project Management Plans.” IEEE Std. 1058-1998,
Institute of Electrical and Electronic Engineers, New York, 1998.

 [In, Baik, Kim, Yang, and Boehm, 2006] H. P. IN, J. BAIK, S. KIM, Y. YANG, AND B. BOEHM, “A Quality-
Based Cost Estimation Model for the Product Line Life Cycle,” Communications of the ACM 49
(December 2006), pp. 85–88.

 [Jones, 1986a] C. JONES, Programming Productivity, McGraw-Hill, New York, 1986.

 [Jones, 1987] C. JONES, Letter to the Editor, IEEE Computer 20 (December 1987), p. 4.

 [Jorgensen and Moløkken-Østvold, 2004] M. JORGENSEN and K. MOLØKKEN-ØSTVOLD, “Reasons for
Software Effort Estimation Error: Impact of Respondent Role, Information Collection Approach,
and Data Analysis Method,” IEEE Transactions on Software Engineering 30 (December 2004),
pp. 993–1007.

 [Jorgensen and Shepperd, 2007] M. JORGENSEN AND M. SHEPPERD, “A Systematic Review of Software
Development Cost Estimation Studies,” IEEE Transactions on Software Engineering 32 (January
2007), pp. 33–53.

 [Kitchenham and Mendes, 2004] B. KITCHENHAM AND E. MENDES, “Software Productivity Measure-
ment Using Multiple Size Measures,” IEEE Transactions on Software Engineering 30 (December
2004), pp. 1023–35.

 [Lim, 1994] W. C. LIM, “Effects of Reuse on Quality, Productivity, and Economics,” IEEE Software
 11 (September 1994), pp. 23–30.

 [Little, 2006] T. LITTLE, “Schedule Estimation and Uncertainty Surrounding the Cone of Uncer-
tainty,” IEEE Software 23 (May–June 2006), pp. 48–54.

 [Maxwell and Forselius, 2000] K. D. MAXWELL AND P. FORSELIUS, “Benchmarking Software Devel-
opment Productivity,” IEEE Software 17 (January–February 2000), pp. 80–88.

 [McBride, 2008] T. MCBRIDE, “The Mechanisms of Project Management of Software Development,”
 Journal of Systems and Software 81 (December 2008), pp. 2386–95.

 [McConnell, 2001] S. MCCONNELL, “The Nine Deadly Sins of Project Planning,” IEEE Software 18
(November–December 2001), pp. 5–7.

 [Menzies and Hihn, 2006] T. MENZIES AND J. HIHN, “Evidence-Based Cost Estimation for Better-
Quality Software,” IEEE Software 23 (July–August 2006), pp. 64–66.

 [Moløkken-Østvold and Jorgensen, 2005] K. MOLØKKEN-ØSTVOLD AND M. JORGENSEN, “A Com-
parison of Software Project Overruns—Flexible versus Sequential Development Models,” IEEE
Transactions on Software Engineering 31 (September 2005), pp. 754–66.

 [Myrtveit, Stensrud, and Shepperd, 2005] I. MYRTVEIT, E. STENSRUD, AND M. SHEPPERD, “Reliability
and Validity in Comparative Studies of Software Prediction Models,” IEEE Transactions on Software
Engineering 31 (May 2005), pp. 380–91.

 [Norden, 1958] P. V. NORDEN, “Curve Fitting for a Model of Applied Research and Development
Scheduling,” IBM Journal of Research and Development 2 (July 1958), pp. 232–48.

296 Part A Software Engineering Concepts

sch76183_ch09_268-298.indd 296sch76183_ch09_268-298.indd 296 04/06/10 2:00 PM04/06/10 2:00 PM

 [Pendharkar, Subramanian, and Rodger, 2005] P. C. PENDHARKAR, G. H. SUBRAMANIAN, AND J. A.
RODGER, “A Probabilistic Model for Predicting Software Development Effort,” IEEE Transac-
tions on Software Engineering 31 (July 2005), pp. 615–24.

 [Pittman, 1993] M. PITTMAN, “Lessons Learned in Managing Object-Oriented Development,” IEEE
Software 10 (January 1993), pp. 43–53.

 [Procaccino and Verner, 2006] J. D. PROCACCINO AND J. M. VERNER, “How Agile Are Industrial
Software Development Practices?” Journal of Systems and Software 79 (November 2006),
pp. 1541–51.

 [Putnam, 1978] L. H. PUTNAM, “A General Empirical Solution to the Macro Software Sizing and
Estimating Problem,” IEEE Transactions on Software Engineering SE-4 (July 1978), pp. 345–61.

 [Reifer, 2000] D. J. REIFER, “Software Management: The Good, the Bad, and the Ugly,” IEEE Soft-
ware 17 (March–April 2000), pp. 73–75.

 [Royce, 2005] W. ROYCE, “Successful Software Management Style: Steering and Balance,” IEEE
Software 22 (September–October 2005), pp. 40–47.

 [Sackman, 1970] H. SACKMAN, Man–Computer Problem Solving: Experimental Evaluation of Time-
Sharing and Batch Processing, Auerbach, Princeton, NJ, 1970.

 [Sackman, Erikson, and Grant, 1968] H. SACKMAN, W. J. ERIKSON, AND E. E. GRANT, “Exploratory
Experimental Studies Comparing Online and Offl ine Programming Performance,” Communica-
tions of the ACM 11 (January 1968), pp. 3–11.

 [Schach, 1994] S. R. SCHACH, “The Economic Impact of Software Reuse on Maintenance,” Journal
of Software Maintenance: Research and Practice 6 (July–August 1994), pp. 185–96.

 [Smith, Hale, and Parrish, 2001] R. K. SMITH, J. E. HALE, AND A. S. PARRISH, “An Empirical Study
Using Task Assignment Patterns to Improve the Accuracy of Software Effort Estimation,” IEEE
Transactions on Software Engineering 27 (March 2001), pp. 264–71.

 [Symons, 1991] C. R. SYMONS, Software Sizing and Estimating: Mk II FPA , John Wiley and Sons,
Chichester, UK, 1991.

 [van der Poel and Schach, 1983] K. G. VAN DER POEL AND S. R. SCHACH, “A Software Metric for Cost
Estimation and Effi ciency Measurement in Data Processing System Development,” Journal of
Systems and Software 3 (September 1983), pp. 187–91.

 [Venugopal, 2005] C. VENUGOPAL, “Single Goal Set: A New Paradigm for IT Megaproject Success,”
 IEEE Software 22 (September–October 2005), pp. 48–53.

 [Weinberg, 1992] G. M. WEINBERG, Quality Software Management: Systems Thinking , Vol. 1, Dorset
House, New York, 1992.

 [Weinberg, 1993] G. M. WEINBERG, Quality Software Management: First-Order Measurement , Vol.
2, Dorset House, New York, 1993.

 [Weinberg, 1994] G. M. WEINBERG, Quality Software Management: Congruent Action , Vol. 3, Dorset
House, New York, 1994.

 [Weinberg, 1997] G. M. WEINBERG, Quality Software Management: Anticipating Change , Vol. 4,
Dorset House, New York, 1997.

Chapter 9 Planning and Estimating 297

sch76183_ch09_268-298.indd 297sch76183_ch09_268-298.indd 297 04/06/10 2:00 PM04/06/10 2:00 PM

This page intentionally left blank

 The Workfl ows
of the Software
Life Cycle

Part

B
 In Part B, the workfl ows of the software life cycle are described in depth. For each
workfl ow, the activities, CASE tools, metrics, and testing techniques appropriate to that
workfl ow are presented, as well as the challenges of that workfl ow.
 As explained in the Preface, Chapter 10 , “Key Material from Part A,” is taught when
students start their team-based projects at the same time as they take their software
engineering course. The material in Chapter 10 enables them to understand the material of
Part B, that is, the techniques of software engineering, without covering the whole of Part A.
 Chapter 11 , “Requirements,” examines the requirements workfl ow. The aim of this
workfl ow is to determine the client’s real needs. Various requirements analysis techniques
are examined.
 Once the requirements have been determined, the next step is to draw up the specifi ca-
tions. The classical approach is described in Chapter 12 , “Classical Analysis.” Three basic
approaches to specifi cations are presented: informal, semiformal, and formal. Instances of
each approach are described. Techniques described in depth and illustrated by case studies
include structured systems analysis, fi nite state machines, Petri nets, and Z. A comparison
of the various techniques is presented.
 All the analysis techniques in Chapter 12 are from the classical paradigm. The object-
oriented approach is described in Chapter 13 , “Object-Oriented Analysis.” This object-
oriented technique is presented as an alternative to the classical analysis techniques of the
previous chapter.
 In Chapter 14 , “Design,” a variety of design techniques are compared, including clas-
sical techniques like data fl ow analysis and transaction analysis as well as object-oriented
design. Particular attention is paid to object-oriented design, including case studies.
Again, the emphasis is on comparison and contrast.
 Implementation issues are discussed in Chapter 15 , “Implementation.” Areas covered
include implementation, integration, good programming practice, and programming
standards.

sch76183_ch10_299-312.indd 299sch76183_ch10_299-312.indd 299 04/06/10 2:05 PM04/06/10 2:05 PM

 Chapter 16 is entitled “Postdelivery Maintenance.” Topics covered in this chapter
include the importance and challenges of postdelivery maintenance. The management of
postdelivery maintenance is considered in some detail.
 In Chapter 17 , “More on UML,” additional information is provided about the Unifi ed
Modeling Language.
 By the end of Part B, you should have a clear understanding of all the workfl ows of the
software process, the challenges associated with each workfl ow, and how to meet those
challenges.

300 Part B The Workfl ows of the Software Life Cycle

sch76183_ch10_299-312.indd 300sch76183_ch10_299-312.indd 300 04/06/10 2:05 PM04/06/10 2:05 PM

301

 Chapter

 As previously explained, this chapter contains material that is needed for the student to
understand Part B (and start his or her team-based term project), without covering Part A.
The material in this chapter has been kept to a bare minimum, because the broader issues
will be discussed when the instructor has completed Part B and then teaches Part A.
 There are no references in this summary chapter, nor are its contents indexed. Instead,
there are footnotes connecting each section in this chapter to the corresponding section(s)
in Part A, should further information be needed.

 10.1 Software Development: Theory versus Practice 1
 In an ideal world, a software product would be developed as described in Chapter 1 . As depicted
schematically in Figure 10.1 , the system is developed from scratch; Ø denotes the empty set.
First the client’s Requirements are determined, and then the Analysis is performed. When the
analysis artifacts are complete, the Design is produced. This is followed by the Implementa-
tion of the complete software product, which is then installed on the client’s computer. (The
model depicted in Figure 10.1 is a simplifi ed waterfall life-cycle model .)
 There are two reasons why this is a life-cycle model (that is, a theoretical description
of how to build software), rather than a life cycle (the actual series of steps followed in the

10
Key Material
from Part A
 Learning Objective

 After studying this chapter, you should be able to

 • Understand Part B of this book.

 1 This section summarizes key points of Sections 2.1 and 2.4.

sch76183_ch10_299-312.indd 301sch76183_ch10_299-312.indd 301 04/06/10 2:05 PM04/06/10 2:05 PM

302 Part B The Workfl ows of the Software Life Cycle

building of a specifi c product). First, software professionals are human and therefore make
mistakes. It is common for the development team to start the design, but discover a major fault in
the requirements or specifi cations that has to be fi xed before development can proceed. During
implementation, design fl aws often come to light, as well as omissions, ambiguities, or contradic-
tions in the specifi cations. In short, “to err is human” applies to all software professionals. When
a defect comes to light, the current phase or workfl ow has to be suspended. The team now has to
return to the defective phase or workfl ow and make the necessary corrections before continuing
development. When this occurs, the linear life-cycle model of Figure 10.1 breaks down.
 The second reason why software cannot be developed as shown in Figure 10.1 is that a
software product is a model of the real world, and the real world is continually changing. In
particular, the client’s requirements frequently change while the software is being developed.
There can be many reasons why the requirements charge. For example, the client may be
expanding into new markets and need additional functionality; the client company may be
losing money and can now afford only a scaled-back version of the software previously
requested; or the decision maker may keep changing his or her mind. These are all instances
of the so-called moving-target problem , that is, changes to the requirements before the
product is complete. And whenever the requirements change, the partially developed product
has to be changed and, again, the model of Figure 10.1 breaks down.

 10.2 Iteration and Incrementation 2
 As a consequence of both the moving-target problem and the need to correct the inevitable
mistakes made while a software product is being developed, the life cycle of actual software
cannot be linear, but has to keep returning to earlier phases or workfl ows. Accordingly, it
makes little or no sense to talk about (say) “ the design workfl ow.” Instead, the operations of
the design workfl ow are spread out over the life cycle.

 FIGURE 10.1
 Idealized
software
development.

Development

Requirements

Implementation

Analysis

Design

�

 2 This section summarizes key points of Section 2.5.

sch76183_ch10_299-312.indd 302sch76183_ch10_299-312.indd 302 04/06/10 2:05 PM04/06/10 2:05 PM

Chapter 10 Key Material from Part A 303

 Consider successive versions of an artifact, for example, the specifi cation document or
a code module. From this viewpoint, the basic process is iterative. That is, we produce the
fi rst version of the artifact, then we revise it and produce the second version, and so on. Our
intent is that each version is closer to our target than its predecessor and fi nally we con-
struct a version that is satisfactory. Iteration is an intrinsic aspect of software engineering,
and iterative life-cycle models have been used for over 30 years.
 A second aspect of developing real-world software is the restriction imposed on us by
 Miller’s Law . In 1956, George Miller, a professor of psychology, showed that, at any one
time, we humans are capable of concentrating on only approximately seven chunks (units
of information). However, a typical software artifact has far more than seven chunks. For
example, a code artifact is likely to have considerably more than seven variables, and a
requirements document is likely to have many more than seven requirements. One way
we humans handle this restriction on the amount of information we can handle at any one
time is to use stepwise refi nement . That is, we concentrate on those aspects that are
currently the most important and postpone until later those aspects that are currently less
critical. In other words, every aspect is eventually handled but in order of current impor-
tance. This means that we start off by constructing an artifact that solves only a small part
of what we are trying to achieve. Then, we consider further aspects of the problem and add
the resulting new pieces to the existing artifact. For example, we might construct a require-
ments document by considering the seven requirements we consider the most important.
Then, we would consider the seven next most important requirements, and so on. This is an
incremental process. Incrementation is also an intrinsic aspect of software engineering;
incremental software development is over 45 years old.
 In practice, iteration and incrementation are used in conjunction with one another. That
is, an artifact is constructed piece by piece (incrementation), and each increment goes
through multiple versions (iteration). Another way of looking at iteration and incrementa-
tion is that incrementation adds functionality, whereas iteration improves the quality of an
increment.
 These ideas are illustrated in Figure 10.2 , which refl ects the basic concepts underlying
the iterative-and-incremental life-cycle model . The fi gure shows the development of
a software product in four increments, labeled Increment A, Increment B, Increment C,
and Increment D . The horizontal axis is time, and the vertical axis is person-hours (one
person-hour is the amount of work that one person can do in 1 hour), so the shaded area
under each curve is the total effort for that increment.
 It is important to appreciate that Figure 10.2 depicts just one possible way a software
product can be decomposed into increments. Another software product may be constructed
in just 2 increments, whereas a third may require 13. Furthermore, the fi gure is not intended
to be an accurate representation of precisely how a software product is developed. Instead,
it shows how the emphasis changes from iteration to iteration.
 The sequential phases of Figure 10.1 are artifi cial constructs. Instead, as explicitly
refl ected in Figure 10.2 , we must acknowledge that different workfl ows (activities) are
performed over the entire life cycle. There are fi ve core workfl ows , the requirements
workfl ow , analysis workfl ow , design workfl ow , implementation workfl ow , and
 test workfl ow and, as stated in the previous sentence, all fi ve are performed over the life
cycle of a software product. However, there are times when one workfl ow predominates
over the other four.

sch76183_ch10_299-312.indd 303sch76183_ch10_299-312.indd 303 04/06/10 2:05 PM04/06/10 2:05 PM

304 Part B The Workfl ows of the Software Life Cycle

 For example, at the beginning of the life cycle, the software developers extract an initial
set of requirements. In other words, at the beginning of the iterative-and-incremental life
cycle, the requirements workfl ow predominates. These requirements artifacts are extended
and modifi ed during the remainder of the life cycle. During that time, the other four work-
fl ows (analysis, design, implementation, and test) predominate. In other words, the require-
ments workfl ow is the major workfl ow at the beginning of the life cycle, but its relative
importance decreases thereafter. Conversely, the implementation and test workfl ows oc-
cupy far more of the time of the members of the software development team toward the end
of the life cycle than they do at the beginning.
 Planning and documentation activities are performed throughout the iterative-and-in-
cremental life cycle. Furthermore, testing is a major activity during each iteration, and
particularly at the end of each iteration. In addition, the software as a whole is thoroughly
tested once it has been completed; at that time, testing and then modifying the implemen-
tation in the light of the outcome of the various tests is virtually the sole activity of the
software team. This is refl ected in the test workfl ow of Figure 10.2 .
 Figure 10.2 shows four increments. Consider Increment A , depicted by the column on
the left. At the beginning of this increment, the requirements team members determine the
client’s requirements. Once most of the requirements have been determined, the fi rst ver-
sion of part of the analysis can be started. When suffi cient progress has been made with
the analysis, the fi rst version of the design can be started. Even some coding is often done
during this fi rst increment, perhaps to test the feasibility of part of the proposed software
product. Finally, as previously mentioned, planning, testing, and documentation activities
start on Day One and continue from then on, until the software product is fi nally delivered
to the client.

Increment A Increment DIncrement CIncrement B

Requirements
workflow

Analysis
workflow

Design
workflow

Implementation
workflow

Test
workflow

Pe
rs

on
-h

ou
rs

Time

 FIGURE 10.2 The construction of a software product in four increments.

sch76183_ch10_299-312.indd 304sch76183_ch10_299-312.indd 304 04/06/10 2:05 PM04/06/10 2:05 PM

Chapter 10 Key Material from Part A 305

 Similarly, the primary concentration during Increment B is on the require-
ments and analysis workfl ows, and then on the design workfl ow. The emphasis during
 Increment C is fi rst on the design workfl ow, and then on the implementation workfl ow
and test workfl ow. Finally, during Increment D , the implementation workfl ow and test
workfl ow dominate.
 As refl ected in Figure 1.4, about one-fi fth of the total effort is devoted to the require-
ments and analysis workfl ows (together), another one-fi fth to the design workfl ow, and
about three-fi fths to the implementation workfl ow. The relative total sizes of the shaded
areas in Figure 10.2 refl ect these values.
 There is iteration during each increment of Figure 10.2 . This is shown in Figure 10.3 ,
which depicts three iterations during Increment B . (Figure 10.3 is an enlarged view of the
second column of Figure 10.2 .) As shown in Figure 10.3 , each iteration involves all fi ve
workfl ows but again in varying proportions.
 Again, it must be stressed that Figure 10.3 is not intended to show that every increment
involves exactly three iterations. The number of iterations varies from increment to incre-
ment. The purpose of Figure 10.3 is to show the iteration within each increment and to
repeat that all fi ve workfl ows (requirements, analysis, design, implementation, and testing,
together with planning and documentation) are carried out during almost every iteration,
although in varying proportions each time.
 As previously explained, Figure 10.2 refl ects the incrementation intrinsic to the develop-
ment of every software product. Figure 10.3 explicitly displays the iteration that underlies
incrementation. Specifi cally, Figure 10.3 depicts three consecutive iterative steps, as
opposed to one large incrementation. In more detail, Iteration B .1 consists of requirements,

 FIGURE 10.3
 The three
iterations of
Increment B of
the iterative-
and-incremental
life-cycle model
of Figure 10.2 .

Increment B

Requirements
workflow

Analysis
workflow

Design
workflow

Implementation
workflow

Iteration B.1 Iteration B.2 Iteration B.3

Test
workflow

Pe
rs

on
-h

ou
rs

Time

Baseline

sch76183_ch10_299-312.indd 305sch76183_ch10_299-312.indd 305 04/06/10 2:05 PM04/06/10 2:05 PM

306 Part B The Workfl ows of the Software Life Cycle

analysis, design, implementation, and test workfl ows, represented by the leftmost dashed
rectangle with rounded corners. The iteration continues until the artifacts of each of the fi ve
workfl ows are satisfactory.
 Next, all fi ve sets of artifacts are iterated in Iteration B .2. This second iteration is simi-
lar in nature to the fi rst. That is, the requirements artifacts are improved, which in turn trig-
gers improvements to the analysis artifacts, and so on, as refl ected in the second iteration
of Figure 10.3 , and similarly for the third iteration.
 The process of iteration and incrementation starts at the beginning of Increment A and
continues until the end of Increment D . The completed software product is then installed
on the client’s computer.
 The iterative-and-incremental model has many strengths; these are described in detail
in Section 2.7. But the most important reason why the iterative-and-incremental life-cycle
model is used in this book is because it models the way that software is actually developed
in the real world.

 10.3 The Unifi ed Process 3
 The software process is the way we produce software. It incorporates the methodology
(Section 1.11) with its underlying software life-cycle model (Section 2.1) and techniques,
the tools we use (Sections 5.6 through 5.12), and most important of all, the individuals
building the software.
 Different organizations have different software processes. Some use processes that are
documentation intensive, whereas other organizations consider the software they produce
to be self-documenting, that is, the product can be understood simply by reading the source
code. Some organizations test intensively; others rely on users to test the product after it
has been delivered. Some organizations do only development and no maintenance, whereas
others concentrate almost exclusively on maintenance. However, in all cases the software
development process is structured around the fi ve workfl ows of Figure 10.2 : requirements,
analysis (specifi cation), design, implementation, and testing.
 The major object-oriented methodology used in the software industry today is the Uni-
fi ed Process. Despite its name, the Unifi ed Process is actually a methodology—see Just in
Case You Wanted to Know Box 3.2. Bearing in mind the vast variety of different processes
in use today, no single “one size fi ts all” methodology could possibly exist. In fact, the Uni-
fi ed Process is not a specifi c series of steps that, if followed, result in the construction of a
software product. Instead, the Unifi ed Process can be viewed as an adaptable methodology.
That is, it is modifi ed for the specifi c software product to be developed. In Part B of this
book, a version of the Unifi ed Process is presented that can be used to develop most small-
and medium-scale software.
 The Unifi ed Process uses a graphical language, the Unifi ed Modeling Language
(UML) to represent the software being developed. The object-oriented paradigm uses mod-
eling throughout. A model is a set of UML diagrams that represent one or more aspects
of the software product to be developed. That is, UML is the tool that we use to represent
(model) the target software product. UML diagrams, being a graphical representation, enable

 3 This section summarizes key points of Sections 3.1 and 3.2.

sch76183_ch10_299-312.indd 306sch76183_ch10_299-312.indd 306 04/06/10 2:05 PM04/06/10 2:05 PM

Chapter 10 Key Material from Part A 307

software professionals to communicate with one another more quickly and more accurately
than if only verbal descriptions were used.
 The object-oriented paradigm is an iterative-and-incremental methodology. Each work-
fl ow consists of a number of steps, and to carry out that workfl ow, the steps of the workfl ow
are repeatedly performed until the members of the development team are satisfi ed that they
have an accurate UML model of the software product they want to develop. In other words,
initially the best possible UML diagrams are drawn in the light of the knowledge available
at the beginning of the workfl ow. Then, as more knowledge about the real-world system
being modeled is gained, the diagrams are made more accurate (iteration) and extended
(incrementation). Accordingly, no matter how experienced and skillful a software engineer
may be, he or she repeatedly iterates and increments until he or she is satisfi ed that the
UML diagrams are an accurate representation of the software product to be developed.

 10.4 Workfl ow Overview 4
 In this section, key aspects of the fi ve core workfl ows are listed.

 • The aim of the requirements workfl ow is to determine exactly what the client needs.
One aspect of this is to fi nd out from the client what constraints exist, such as the dead-
line for completing the product and the required reliability.

 • The aim of the analysis workfl ow is to analyze and refi ne the requirements to achieve
the detailed understanding of the requirements essential for developing a software prod-
uct correctly and maintaining it easily.

 • The specifi cations of a product spell out what the product is to do; the design shows how
the product is to do it. Accordingly, the aim of the design workfl ow is to refi ne the
artifacts of the analysis workfl ow until the material is in a form that can be implemented
by the programmers.

 • The aim of the implementation workfl ow is to implement the target software prod-
uct in the chosen implementation language(s).

 • With regard to the test workfl ow , in the Unifi ed Process testing is carried out in paral-
lel with the other workfl ows, starting from the beginning; this is shown in Figure 10.2 .
There are two major aspects to testing: First, every developer and maintainer is person-
ally responsible for ensuring that his or her work is correct. Therefore, a software profes-
sional has to test and retest each artifact he or she develops or maintains. Second, once
the software professional is convinced that an artifact is correct, it is handed over to the
software quality assurance group for independent testing, as described in Chapter 6 .

 10.5 Teams 5
 Nowadays, most software products are too large (or too complex) to be built by one soft-
ware engineering professional within the given time constraints. Consequently, the work
has to be shared among a group of professionals organized as a team . The team approach

 4 This section summarizes key points of Sections 3.3 through 3.9.

 5 This section summarizes key points of Section 4.1.

sch76183_ch10_299-312.indd 307sch76183_ch10_299-312.indd 307 04/06/10 2:05 PM04/06/10 2:05 PM

308 Part B The Workfl ows of the Software Life Cycle

is used throughout the life cycle, that is, for each of the workfl ows. In larger organizations
there are specialized teams; the requirements workfl ow of a product will be handled by a
requirements team, the analysis workfl ow by an analysis team, and so on.

 10.6 Cost–Benefi t Analysis 6
 One way of determining whether a possible course of action would be profi table is to compare
estimated future benefi ts against projected future costs. This is termed cost–benefi t analysis.
 Cost–benefi t analysis is a fundamental technique in deciding whether a client should
computerize his or her business, and if so, in what way. The costs and benefi ts of various
alternative strategies are compared. For each possible strategy, the costs and benefi ts are
computed, and the one for which the difference between benefi ts and costs is the largest is
selected as the optimal strategy.

 10.7 Metrics 7
 Without measurements (or metrics), there is no way to detect problems early in the soft-
ware process, before they get out of hand. Accordingly, during software development and
maintenance we continually take measurements.
 There are fi ve fundamental metrics, each of which must be measured and monitored for
each workfl ow:

 1. Size (in lines of code or, better, in a more meaningful metric, such as those of Section 9.2.1).
 2. Cost (in dollars).
 3. Duration (in months).
 4. Effort (in person-months).
 5. Quality (number of faults detected).
 Metrics serve as an early warning system for potential problems. Management uses the
fundamental metrics to identify problems, such as high fault rates during the design work-
fl ow or code output that is well below the industry average. More specialized metrics can
then be utilized to analyze these problems in greater depth.

 10.8 CASE 8

 The term CASE is an acronym that stands for computer-aided software engineering ,
that is, software that assists with software development and maintenance.
 The simplest form of CASE is the software tool , a product that assists in just one aspect
of the production of software. Examples include: a tool that draws UML diagrams; a data
dictionary , a computerized list of all items defi ned within a product; a report generator ,
which generates the code needed for producing a report; and a screen generator , which
assists the software developer in producing the code for a data capture screen.

 6 This section summarizes key points of Section 5.2.

 7 This section summarizes key points of Section 5.5.

 8 This section summarizes key points of Sections 5.6 and 5.7.

sch76183_ch10_299-312.indd 308sch76183_ch10_299-312.indd 308 04/06/10 2:05 PM04/06/10 2:05 PM

Chapter 10 Key Material from Part A 309

 A CASE workbench is a collection of tools that together support one or two activities.
One example is a requirements, analysis, and design workbench that incorporates a
UML diagram tool and a consistency checker; another is a project management work-
bench that is used in every workfl ow.
 Finally, a CASE environment supports the complete software process.

 10.9 Versions and Confi gurations 9
 Whenever an artifact is changed, whether during development or maintenance, there will
be two versions of the artifact: the old version and the new version. Because a product
is composed of code artifacts, there will also be two or more versions of each of the com-
ponent artifacts that have been changed. Because the new version of an artifact may be
less correct than the previous version, it is necessary to keep all versions of all artifacts;
a CASE tool that does this is called a version control tool .
 The set of specifi c versions of each artifact from which a given version of the com-
plete product is built is called the confi guration of that version of the product. A
 confi guration-control tool can handle problems caused by development and mainte-
nance by teams, in particular, when more than one person attempts to change the same ar-
tifact. A key concept is a baseline , a confi guration of all the artifacts in the product. After
each group of changes has been made to the artifacts, a new baseline is attained.
 If a software organization does not wish to purchase a complete confi guration-control
tool, then, at the very least, a version-control tool must be used in conjunction with a build
tool , that is, a tool that assists in selecting the correct version of each compiled-code arti-
fact to be linked to form a specifi c version of the product. Build tools, such as make , have
been incorporated into a wide variety of programming environments.

 10.10 Testing Terminology 10
 A fault is injected into a software product when a human makes a mistake . A failure is
the observed incorrect behavior of the software product as a consequence of a fault, and
the error is the amount by which a result is incorrect. The word defect is a generic term
for a fault, failure, or error.
 The quality of software is the extent to which the product satisfi es its specifi cations.
Within a software organization, the primary task of the software quality assurance
(SQA) group is to test that the developers’ product is correct.

 10.11 Execution-Based and Non-Execution-Based Testing 11
 There are two basic forms of testing: execution-based testing (running test cases), and non-
execution-based testing (carefully reading through an artifact). In a review (a less formal
 walkthrough or a more formal inspection) , a team of software professionals with a

 9 This section summarizes key points of Sections 5.9 through 5.11.

 10 This section summarizes key points of Section 6.1.

 11 This section summarizes key points of Section 6.2.

sch76183_ch10_299-312.indd 309sch76183_ch10_299-312.indd 309 04/06/10 2:05 PM04/06/10 2:05 PM

broad range of skills painstakingly checks through a document, such as a specifi cation
document, a design document, or a code artifact.
 Clearly, non-execution-based testing has to be used when testing artifacts of the require-
ments, analysis, and design workfl ows; execution-based testing can be applied only to the
code of the implementation workfl ow. Surprisingly, non-execution-based testing of code
(code review) has been shown to be as effective as execution-based testing (running test
cases).

 10.12 Modularity 12
 A module is a lexically contiguous sequence of program statements, bounded by boundary
elements, having an aggregate identifi er. An example of boundary elements is {. . .} pairs in
C++ or Java. Procedures and functions of the classical paradigm are modules. In the object-
oriented paradigm, an object is a module and so is a method within an object. A design
objective is to ensure that the coupling (degree of interaction between two modules) is as
low as possible. Ideally, we would like the entire product to exhibit only data coupling ;
that is, every argument is either a simple argument or a data structure for which all elements
are used by the called module. Furthermore, we want the cohesion (degree of interaction
within a module) to be as high as possible.
 Furthermore, we wish to maximize information hiding , that is, ensuring that im-
plementation details are not visible outside the module in which they are declared; in
the object-oriented paradigm, this can be achieved by careful use of the private and
 protected visibility modifi ers.

 10.13 Reuse 13
 Reuse refers to using components of one product to facilitate the development of a differ-
ent product with a different functionality. A reusable component need not necessarily be a
module, a class, or a code fragment—it could be a design, a part of a manual, a set of test
data, a contract, or a duration and cost estimate.
 The reason why reuse is so important is that it takes time (= money) to specify, design, im-
plement, test, and document a software component. If a component is reused, it will be neces-
sary to retest the component in its new context, but the other tasks need not be repeated.

 10.14 Software Project Management Plan 14

 A software project management plan has three main components: the work to
be done, the resources with which to do it, and the money to pay for it all. The major
 resources required are the people who will develop the software, the hardware on which
the software is run, and the support software such as operating systems, text editors, and
version control software.

 12 This section summarizes key points of Sections 7.1 to 7.3 and 7.6.

 13 This section summarizes key points of Section 8.1.

 14 This section summarizes key points of Section 9.3.

310 Part B The Workfl ows of the Software Life Cycle

sch76183_ch10_299-312.indd 310sch76183_ch10_299-312.indd 310 04/06/10 2:05 PM04/06/10 2:05 PM

Chapter 10 Key Material from Part A 311

 Use of resources varies with time. Consequently, the software project management plan
is a function of time.
 The work to be done falls into two categories. First is work that continues throughout
the project and does not relate to any specifi c workfl ow of software development. Such
work is termed a project function . Examples are project management and quality control.
Second is work that relates to a specifi c workfl ow in the development of the product; such
work is termed an activity or a task . An activity is a major unit of work that has precise be-
ginning and ending dates; consumes resources, such as computer time or person-days; and
results in work products , such as a budget, design documents, schedules, source code, or
a user’s manual. An activity, in turn, comprises a set of tasks, a task being the smallest unit
of work subject to management accountability. There are therefore three kinds of work in
a software project management plan: project functions carried on throughout the project,
activities (major units of work), and tasks (minor units of work).
 A critical aspect of the plan concerns completion of work products. The date on which
a work product is deemed completed is termed a milestone . To determine whether a work
product indeed has reached a milestone, it must fi rst pass a series of reviews performed by
fellow team members, management, or the client. A typical milestone is the date on which
the design is completed and passes review. Once a work product has been reviewed and
agreed on, it becomes a baseline and can be changed only through formal procedures.
 In reality, there is more to a work product than merely the product itself. A work
package defi nes not just the work product but also the staffi ng requirements, duration,
resources, name of the responsible individual, and acceptance criteria for the work product.
 Money of course is a vital component of the plan. A detailed budget must be worked out
and the money allocated, as a function of time, to the project functions and activities. Key
components of the plan include the cost estimate and duration estimate .

 This chapter contains a summary of material on theory versus practice of software development
(Section 10.1); iteration and incrementation (Section 10.2); the Unifi ed Process (Section 10.3);
workfl ows (Section 10.4); teams (Section 10.5); cost–benefi t analysis (Section 10.6); metrics
(Section 10.7); CASE (Section 10.8); versions and confi gurations (Section 10.9); testing terminol-
ogy (Section 10.10); execution-based and non-execution-based testing (Section 10.11); modularity
(Section 10.12); reuse (Section 10.13); and the software project management plan (Section 10.14).

Chapter
Review

 Key Terms activity 311
 analysis workfl ow 303, 307
 baseline 309
 build tool 309
 CASE 308
 cohesion 310
 computer-aided software

engineering 308
 confi guration 309
 confi guration-control tool 309
 core workfl ows 303

 cost estimate 311
 cost–benefi t analysis 308
 coupling 310
 data coupling 310
 data dictionary 308
 defect 309
 design workfl ow 303, 307
 duration estimate 311
 environment 309
 error 309
 failure 309

 fault 309
 implementation

workfl ow 303, 307
 incrementation 303
 information hiding 310
 inspection 309
 iteration 303
 iterative-and-incremental

life-cycle model 303
 life cycle 301
 life-cycle model 301

sch76183_ch10_299-312.indd 311sch76183_ch10_299-312.indd 311 04/06/10 2:05 PM04/06/10 2:05 PM

 10.1 Distinguish between a life cycle and a life-cycle model.

 10.2 Why is the moving target problem so prevalent?

 10.3 Distinguish between iteration and incrementation.

 10.4 What are the fi ve core workfl ows of the iterative-and-incremental life-cycle model?

 10.5 What is the aim of each of the fi ve core workfl ows?

 10.6 Distinguish between the Unifi ed Process and the Unifi ed Modeling Language.

 10.7 In the software engineering context, what is meant by a model?

 10.8 Why are most software products developed by teams?

 10.9 What is meant by cost–benefi t analysis?

 10.10 List the fi ve fundamental metrics of the software process.

 10.11 Distinguish between a CASE tool, a CASE workbench, and a CASE environment.

 10.12 Distinguish between a version and a confi guration.

 10.13 Distinguish between a mistake, a fault, a failure, an error, and a defect.

 10.14 What is meant by software quality?

 10.15 Distinguish between execution-based and non-execution-based testing.

 10.16 Distinguish between coupling and cohesion.

 10.17 Defi ne reuse.

 10.18 What are the three main components of a software project management plan?

 metric 308
 milestone 311
 Miller’s Law 303
 mistake 309
 model 306
 money 311
 moving-target problem 302
 project function 311
 project management

workbench 309
 quality 309
 report generator 308
 requirements

workfl ow 303, 307

 requirements, analysis, and
design workbench 309

 resources 310
 reuse 310
 review 309
 reviews 311
 screen generator 308
 software project management

plan 310
 software quality assurance

 (SQA) 309
 stepwise refi nement 303
 task 311
 team 307

 test workfl ow 303, 307
 tool 308
 Unifi ed Modeling Language

(UML) 306
 Unifi ed Process 306
 versions 309
 version control tool 309
 walkthrough 309
 waterfall life-cycle model 301
 work 311
 work package 311
 work product 311
 workbench 309
 workfl ow 303

 Problems

312 Part B The Workfl ows of the Software Life Cycle

sch76183_ch10_299-312.indd 312sch76183_ch10_299-312.indd 312 04/06/10 2:05 PM04/06/10 2:05 PM

 Chapter 11
Requirements
 Learning Objectives

 After studying this chapter, you should be able to

 • Perform the requirements workfl ow.

 • Draw up the initial business model.

 • Draw up the requirements.

 • Construct a rapid prototype.

 The chances of a product being developed on time and within budget are somewhat slim
unless the members of the software development team agree on what the software product is
to do. The fi rst step in achieving this unanimity is to analyze the client’s current situation as
precisely as possible. For example, it is inadequate to say, “The client needs a computer-aided
design system because they claim their manual design system is lousy.” Unless the develop-
ment team knows exactly what is wrong with the current manual system, there is a high
probability that aspects of the new computerized system will be equally “lousy.” Similarly, if
a personal computer manufacturer is contemplating development of a new operating system,
the fi rst step is to evaluate the fi rm’s current operating system and analyze carefully exactly
why it is unsatisfactory. To take an extreme example, it is vital to know whether the problem
exists only in the mind of the sales manager who blames the operating system for poor sales,
or whether users of the operating system are thoroughly disenchanted with its functionality
and reliability. Only after a clear picture of the present situation has been gained can the team
attempt to answer the critical question, What must the new product be able to do? The process
of answering this question is the primary objective of the requirements workfl ow.

 11.1 Determining What the Client Needs
 A commonly held misconception is that, during the requirements workfl ow, the developers
must determine what software the client wants . On the contrary, the real objective of the
requirements workfl ow is to determine what software the client needs . One problem is that

313

sch76183_ch11_313-359.indd 313sch76183_ch11_313-359.indd 313 07/06/10 11:38 AM07/06/10 11:38 AM

many clients do not know what they need. Furthermore, even a client who has a good idea
of what is needed may have diffi culty in accurately conveying these ideas to the developers
because most clients are less computer literate than the members of the development team.
(For more insight into this issue, see Just in Case You Wanted to Know Box 11.1.)
 Another problem is that the client may not appreciate what is going on in his or her own
organization. For example, it is no use for a client to ask for a faster software product when
the real reason why the current software product has such a long response time is that the
database is badly designed. What needs to be done is to reorganize and improve the way that
data are stored in the current software product, otherwise a new software product will be just
as slow. Or, if the client operates an unprofi table chain of retail stores, the client may ask for a
fi nancial management information system that refl ects such items as sales, salaries, accounts
payable, and accounts receivable. Such an information system will be of little use if the real
reason for the losses is shrinkage (shoplifting and theft by employees). If that is the case, then
a stock control system rather than a fi nancial management information system is required.
 At fi rst sight, determining what the client needs is straightforward—the members of the
development team simply ask him or her. However, there are two reasons why this direct
approach usually does not work very well.
 First, as has just been stated, the client may not appreciate what is going on in his or her
own organization. But the major reason why a client so often asks for the wrong software
product is that software is complex. It is diffi cult enough for a software engineer to visual-
ize a software product and its functionality—the problem is far worse for the client, who
usually is not an expert in software engineering.
 Without the assistance of a skilled software development team, the client may be a poor source
of information regarding what needs to be developed. On the other hand, unless there is face-
to-face communication with the client, there is no way of fi nding out what really is needed.
 The classical attempt at solving this challenge is described in Section 11.12. The object-
oriented approach is to obtain initial information from the client and future users of the target
product and to use this initial information as an input to the requirements workfl ow of the
Unifi ed Process [Jacobson, Booch, and Rumbaugh, 1999]. This is described in Section 11.2.

 11.2 Overview of the Requirements Workfl ow
 The overall aim of the requirements workfl ow is for the development organization
to determine the client’s needs. The fi rst step toward this goal is to gain an understanding
of the application domain (or domain , for short), that is, the specifi c environment

 S. I. Hayakawa (1906–1992), U.S. Senator from California, once told a group of reporters,
“I know you believe you understood what you think I said, but I am not sure you realize
that what you heard is not what I meant.” This excuse applies equally well to the issue of
requirements analysis. The software engineers hear their client’s requests, but what they
hear is not what the client should be saying.
 That quotation has been wrongly attributed to former U.S. presidential candidate George
Romney (1907–1995) who once announced at a press conference, “I didn’t say that I didn’t
say it. I said that I didn’t say I said it. I want to make that very clear.” Romney’s “clarifi cation”
highlights another challenge of requirements analysis—it is easy to misunderstand what the
client says.

 Just in Case You Wanted to Know Box 11.1

sch76183_ch11_313-359.indd 314sch76183_ch11_313-359.indd 314 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 315

in which the target product is to operate. The domain could be banking, space explora-
tion, automobile manufacturing, or telemetry. Once the members of the development team
understand the domain to a suffi cient depth, they can build a business model, that is, use
UML diagrams to describe the client’s business processes. The business model is used to
determine what the client’s initial requirements are. Then iteration is applied.
 In other words, the starting point is an initial understanding of the domain. This information
is used to build the initial business model. The initial business model is utilized to draw up an
initial set of the client’s requirements. Then, in the light of what has been learned about the client’s
requirements, a deeper understanding of the domain is gained; and this knowledge is utilized in
turn to refi ne the business model and hence the client’s requirements. This iteration continues
until the team is satisfi ed with the set of requirements. At this point, the iteration stops.
 The term requirements engineering is sometimes used to describe what is performed
during the requirements workfl ow. The process of discovering the client’s requirements is
termed requirements elicitation (or requirements capture). Once the initial set of
requirements has been drawn up, the process of refi ning and extending them is termed
 requirements analysis .
 We now examine each of these steps in detail.

 11.3 Understanding the Domain
 To elicit the client’s needs, the members of the requirements team must be familiar with the
application domain, that is, the general area in which the target product is to be used. For
example, it is not easy to ask meaningful questions of a banker or a neurosurgeon without
fi rst acquiring some familiarity with banking or neurosurgery. Therefore, an initial task of
each member of the requirements analysis team is to acquire familiarity with the applica-
tion domain, unless he or she already has experience in that general area. It is particularly
important to use correct terminology when communicating with the client and potential users
of the target software. After all, it is hard to be taken seriously by a person working in a spe-
cifi c domain unless the interviewer uses the nomenclature appropriate for that domain. More
important, use of an inappropriate word may lead to a misunderstanding, eventually resulting
in a faulty product being delivered. The same problem can arise if the members of the require-
ments team do not understand the subtleties of the terminology of the domain. For example,
to a layperson words like brace, beam, girder, and strut may appear to be synonyms, but to a
civil engineer they are distinct terms. If a developer does not appreciate that a civil engineer
is using these four terms in a precise way and if the civil engineer assumes that the developer
is familiar with the distinctions among the terms, the developer may treat the four terms as
equivalent; the resulting computer-aided bridge design software may contain faults that result
in a bridge collapsing. Computer professionals hope that the output of every program will be
scrutinized carefully by a human before decisions are made based on that program, but the
growing popular faith in computers means that it is distinctly unwise to rely on the likelihood
of such a check being made. So, it is by no means far-fetched that a misunderstanding in ter-
minology could lead to the software developers being sued for negligence.
 One way to address the problem with terminology is to construct a glossary , a list of
technical words used in the domain, together with their meanings. The initial entries are
inserted into the glossary while the team members are busy learning as much as they can

sch76183_ch11_313-359.indd 315sch76183_ch11_313-359.indd 315 07/06/10 11:38 AM07/06/10 11:38 AM

316 Part B The Workfl ows of the Software Life Cycle

about the application domain. Then, the glossary is updated whenever the members of the
requirements team encounter new terminology. Every so often, the glossary can be printed
out and distributed to team members or downloaded to a PDA (such as a Palm Pilot or Black-
Berry). Not only does such a glossary reduce confusion between client and developers, it also
is useful in lessening misunderstandings between the members of the development team.
 Once the requirements team has acquired familiarity with the domain, the next step is to
build the business model.

 11.4 The Business Model
 A business model is a description of the business processes of an organization. For
example, some of the business processes of a bank include accepting deposits from clients,
loaning money to clients, and making investments.
 The reason for building a business model fi rst is that the business model provides an
understanding of the client’s business as a whole. With this knowledge, the developers can
advise the client as to which portions of the client’s business to computerize. Alternatively,
if the task is to extend an existing software product, the developers have to understand the
existing business as a whole to determine how to incorporate the extension and to learn
what parts, if any, of the existing product need to be modifi ed to add the new piece.
 To build a business model, a developer needs to obtain a detailed understanding of the
various business processes. These processes are now refi ned , that is, analyzed in greater
detail. A number of different techniques can be used to obtain the information needed to
build the business model, primarily interviewing.

 11.4.1 Interviewing
 The members of the requirements team meet with members of the client organization until
they are convinced that they have elicited all relevant information from the client and future
users of the target software product.
 There are two basic types of questions. A closed-ended question requires a specifi c
answer. For example, the client might be asked how many salespeople the company employs
or how fast a response time is required. Open-ended questions are asked to encourage the
person being interviewed to speak out. For instance, asking the client, “Why is your current
software product unsatisfactory?” may explain many aspects of the client’s approach to
business. Some of these facts might not come to light if the question were closed ended.
 Similarly, there are two basic types of interviews, structured and unstructured. In a
 structured interview , specifi c preplanned questions are asked, frequently closed ended.
In an unstructured interview , the interviewer may start with one or two prepared closed-
ended questions, but subsequent questions are posed in response to the answers he or she
receives from the person being interviewed. Many of these subsequent questions are likely
to be open ended in nature to provide the interviewer with wide-ranging information.
 At the same time, it is not a good idea if the interview is too unstructured. Saying to
the client, “Tell me about your business” is unlikely to yield much relevant knowledge. In
other words, questions should be posed in such a way as to encourage the person being
interviewed to give wide-ranging answers but always within the context of the specifi c
information needed by the interviewer.
 Conducting a good interview is not always easy. First, the interviewer must be fully
familiar with the application domain. Second, there is no point in interviewing a member

sch76183_ch11_313-359.indd 316sch76183_ch11_313-359.indd 316 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 317

of the client organization if the interviewer has already made up his or her mind regarding
the client’s needs. No matter what the interviewer has previously been told or what he or
she has learned by other means, the interviewer must approach every interview with the
intention of listening carefully to what the person being interviewed has to say, while fi rmly
suppressing any preconceived notions regarding the client company or the needs of the
client and the potential users of the target product to be developed.
 After the interview is concluded, the interviewer must prepare a written report outlining the
results of the interview. It is strongly advisable to give a copy of the report to the person who
was interviewed; he or she may want to clarify certain statements or add overlooked items.

 11.4.2 Other Techniques
 Interviewing is the primary technique for obtaining information for the business model. This
section describes some other techniques that may be used in conjunction with interviewing.
 One way of gaining knowledge about the activities of the client organization is to send a
 questionnaire to the relevant members of the client organization. This technique is useful
when the opinions of, say, hundreds of individuals need to be determined. Furthermore, a
carefully thought-out written answer from an employee of the client organization may be
more accurate than an immediate verbal response to a question posed by an interviewer.
However, an unstructured interview conducted by a methodical interviewer who listens
carefully and poses questions that elicit amplifi cations of initial responses usually yields far
better information than a thoughtfully worded questionnaire. Because questionnaires are
preplanned, there is no way that a question can be posed in response to an answer.
 A different way of eliciting requirements is to examine the various forms used by the
business. For example, a form in a printing works might refl ect press number, paper roll
size, humidity, ink temperature, paper tension, and so on. The various fi elds in this form
shed light on the fl ow of print jobs and the relative importance of the steps in the printing
process. Other documents, such as operating procedures and job descriptions, also can be
powerful tools for fi nding out exactly what is done and how. If a software product is being
used, the user manuals should also be carefully studied. A comprehensive set of different
types of data regarding how the client currently does business can be extraordinarily help-
ful in determining the client’s needs. Therefore, a good software professional carefully
studies client documentation, treating it as a valuable potential source of information that
can lead to an accurate assessment of the client’s needs.
 Another way of obtaining such information is by direct observation of the users,
that is, by members of the requirements team observing and writing down the actions of
the employees while they perform their duties. A modern version of this technique is to set
up videotape cameras within the workplace to record (with the prior written permis-
sion of those being observed) exactly what is being done. One diffi culty of this technique
is that it can take a long time to analyze the tapes. In general, one or more members of
the requirements team has to spend an hour playing back the tape for every hour that the
cameras record. This time is in addition to what is needed to assess what was observed.
More seriously, this technique has been known to backfi re badly because employees may
view the cameras as an unwarranted invasion of privacy. It is important that members of the
requirements team have the full cooperation of all employees; it can be extremely diffi cult
to obtain the necessary information if people feel threatened or harassed. The possible risks
should be considered carefully before introducing cameras or, for that matter, taking any
other action that has the potential to annoy or even anger employees.

sch76183_ch11_313-359.indd 317sch76183_ch11_313-359.indd 317 07/06/10 11:38 AM07/06/10 11:38 AM

318 Part B The Workfl ows of the Software Life Cycle

 11.4.3 Use Cases
 As stated in Section 3.2, a model is a set of UML diagrams that represent one or more
aspects of the software product to be developed (recall that the ML in UML stands
for “modeling language”). A primary UML diagram used in business modeling is the
use case.
 A use case models an interaction between the software product itself and the users
of that software product (actors). For example, Figure 11.1 depicts a use case from a
banking software product. There are two actors, represented by the UML stick fi gures, the
 Customer and the Teller . The label inside the oval describes the business activity rep-
resented by the use case, in this instance Withdraw Money .
 Another way of looking at a use case is that it shows the interaction between the soft-
ware product and the environment in which the software product operates. That is, an actor
is a member of the world outside the software product, whereas the rectangle in the use case
represents the software product itself.
 It is usually easy to identify an actor.

 • An actor is frequently a user of the software product. In the case of a banking software
product, the users of that software product are the customers of the bank and the staff of
the bank, including tellers and managers.

 • In general, an actor plays a role with regard to the software product. This role may be as
a user of the software product. However, an initiator of a use case or someone who plays
a critical part in a use case is also playing a role and is therefore regarded as an actor,
irrespective of whether that person is also a user of the software product. An example of
this is given in Section 11.7.

 A user of the system can play more than one role. For example, a customer of the
bank can be a Borrower (when he or she takes out a loan) or a Lender (when he or
she deposits money in the bank—a bank makes much of its profi t by investing the
money deposited by customers). Conversely, one actor can participate in multiple use cases.
For example, a Borrower may be an actor in the Borrow Money use case, the Pay
Interest on Loan use case, and the Repay Loan Principal use case. Also, the
actor Borrower may stand for many thousands of bank customers.
 An actor need not be a human. Recall that an actor is a user of a software product, and in
many cases another software product can be a user. For example, an e-commerce informa-
tion system that allows purchasers to pay with credit cards has to interact with the credit
card company information system. That is, the credit card company information system is
an actor from the viewpoint of the e-commerce company information system. Similarly, the
e-commerce information system is an actor from the viewpoint of the credit card company
information system.

 FIGURE 11.1
 The Withdraw
Money use case
of the banking
software
product.

Banking Software
Product

Withdraw Money

Customer Teller

sch76183_ch11_313-359.indd 318sch76183_ch11_313-359.indd 318 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 319

 As previously stated, identifi cation of actors is easy. Generally, the only diffi culty that
arises in this part of the paradigm is that an overzealous software professional sometimes
identifi es overlapping actors. For example, in a hospital software product, having a use
case with actor Nurse and a different use case with actor Medical Staff is not a good
idea, because all nurses are medical staff, but some medical staff (such as physicians) are
not nurses. It would be better to have actors Physician and Nurse . Alternatively, actor
 Medical Staff can be defi ned with two specializations, Physician and Nurse . This is
depicted in Figure 11.2 . In Section 7.7, it was pointed out that inheritance is a special case
of generalization. Generalization was applied to classes in Section 7.7. Figure 11.2 shows
how generalization can be applied to actors, too.

 11.5 Initial Requirements
 To determine the client’s requirements, initial requirements are drawn up based on the
initial business model. Then, as the understanding of the domain and the business model is
refi ned on the basis of further discussions with the client, the requirements are refi ned.
 The requirements are dynamic. That is, there are frequent changes not just to the require-
ments themselves but also to the attitudes of the development team, client, and future users
toward each requirement. For example, a particular requirement may fi rst appear to the
development team to be optional. After further analysis, that requirement may now seem
to be critically important. However, after discussion with the client, the requirement is
rejected. A good way to handle these frequent changes is to maintain a list of likely require-
ments, together with use cases of the requirements that have been agreed to by the members
of the development team and approved by the client.
 It is important to bear in mind that the object-oriented paradigm is iterative and the
glossary, the business model, or the requirements therefore may have to be modifi ed at any
time. In particular, additions to the requirements list, modifi cations to items already on the
list, and removal of items from the list can be triggered by a wide variety of events, ranging
from a casual remark made by a user to a suggestion from the client at a formal meeting of
the systems analysts on the requirements team. Any such change may trigger correspond-
ing changes to the business model.

Medical Staff

Physician Nurse

 FIGURE 11.2
Generalization
of medical staff.

sch76183_ch11_313-359.indd 319sch76183_ch11_313-359.indd 319 07/06/10 11:38 AM07/06/10 11:38 AM

320 Part B The Workfl ows of the Software Life Cycle

 Requirements fall into two categories, functional and nonfunctional. A functional
requirement specifi es an action that the target product must be able to perform. Func-
tional requirements are often expressed in terms of inputs and outputs: Given a spe-
cifi c input, the functional requirement stipulates what the output must be. Conversely, a
 nonfunctional requirement (or quality requirement) specifi es properties of the tar-
get product itself, such as platform constraints (“The software product shall run under
Linux”), response times (“On average, queries of Type 3B shall be answered within 2.5
seconds”), or reliability (“The software product shall run 99.5 percent of the time”).
 Functional requirements are handled while the requirements and analysis workfl ows
are being performed, whereas some nonfunctional requirements may have to wait until the
design workfl ow. The reason is that, to be able to handle certain nonfunctional requirements,
detailed knowledge about the target software product may be needed, and this knowledge
is usually not available until the requirements and analysis workfl ows have been completed
(see Problems 11.1 and 11.2). However, wherever possible, nonfunctional requirements
should also be handled during the requirements and analysis workfl ows.
 The requirements workfl ow is now illustrated by a running case study.

 Initial Understanding of the Domain:
The MSG Foundation Case Study
 When Martha Stockton Greengage died at the age of 87, she left her entire $2.3 billion
fortune to charity. Specifi cally, her will set up the Martha Stockton Greengage (MSG)
Foundation to assist young couples in purchasing their own homes by providing low-
cost loans.
 To reduce operating expenses, the trustees of the MSG Foundation are investigat-
ing computerization. Because none of the trustees has any experience with comput-
ers, they decide to commission a small software development organization to imple-
ment a pilot project, namely, a software product that will perform the calculations
needed to determine how much money is available each week to purchase homes.
 The fi rst step, as always, is to understand the application domain, home mortgages
in this instance. Not many people can afford to pay cash to buy a home. Instead, they
pay a small percentage of the purchase price out of their own savings and borrow the
rest of the money. This type of loan, where real estate is pledged as security for the
loan, is termed a mortgage (see Just in Case You Wanted to Know Box 11.2).
 For example, suppose that someone wishes to buy a house for $100,000. (Many
houses nowadays cost much more than that, particularly in the larger cities, but the round
number makes the arithmetic easier.) The person buying the house pays a deposit of
(say) 10 percent, or $10,000, and borrows the remaining $90,000 from a fi nancial insti-
tution such as a bank or a savings and loan company in the form of a mortgage for that
amount. Accordingly, the principal (or capital) borrowed is $90,000.
 Suppose that the terms of the mortgage are that the loan is to be repaid in monthly
installments over 30 years at an interest rate of 7.5 percent per annum (or 0.625 percent

Case Study
11.611.6

sch76183_ch11_313-359.indd 320sch76183_ch11_313-359.indd 320 07/06/10 11:38 AM07/06/10 11:38 AM

per month). Each month, the borrower pays the fi nance company $629.30. Part of
this amount is the interest on the outstanding balance; the rest is used to reduce the
principal. This monthly payment is therefore often referred to as P & I (principal
and interest). For example, in the fi rst month the outstanding balance is $90,000.
Monthly interest at 0.625 percent on $90,000 is $562.50. The remainder of the P & I
payment of $629.30, namely $66.80, is used to reduce the principal. Consequently, at
the end of the fi rst month, after the fi rst payment has been made, only $89,933.20 is
owed to the fi nance company.
 The interest for the second month is 0.625 percent of $89,933.20, or $562.08.
The P & I payment is $629.30, as before, and the balance of the P & I payment (now
$67.22) again is used to reduce the principal, this time to $89,865.98.
 After 15 years (180 months), the monthly P & I payment is still $629.30, but now
the principal has been reduced to $67,881.61. The monthly interest on $67,881.61 is
$424.26, so the remaining $205.04 of the P & I payment is used to reduce the princi-
pal. After 30 years (360 months), the entire loan will have been repaid.
 The fi nance company wants to be certain that it will be repaid the $90,000 it is
owed, plus interest. It ensures this in a number of different ways.

 • First, the borrower signs a legal document (the mortgage deed) that states that, if
the monthly payments are not made, the fi nance company may sell the house and
use the proceeds to pay off the outstanding balance of the loan.

 • Second, the fi nance company requires the borrower to insure the house, so that
if (say) the house burns down, the insurance company will cover the loss and
the check from the insurance company will then be used to repay the loan. The
insurance premium is usually paid once a year by the fi nance company. To obtain
the money for the premium from the borrower, the fi nance company requires the
borrower to pay monthly insurance installments. It deposits the installments in an
 escrow account , essentially a savings account managed by the fi nance com-
pany. When the annual insurance premium is due, the money is taken from the
escrow account. Real-estate taxes paid on a home are treated the same way; that
is, monthly installments are deposited in the escrow account and the annual real-
estate tax payment is made from that account.

 • Third, the fi nance company wants to be sure that the borrower can afford to pay
for the mortgage. Typically, a mortgage will not be granted if the total monthly

 Just in Case You Wanted to Know Box 11.2
 Have you ever wondered why the word mortgage is pronounced “more gidge” with the accent on the fi rst syl-
lable? The word, which was fi rst used in Middle English in the fourteenth century, comes from the Old French
word mort meaning “dead” and the Germanic word gage meaning “a pledge,” that is, a promise to forfeit
property if the debt is not paid. Strangely enough, a mortgage is a “dead pledge” in two different senses. If
the loan is not repaid, the property is forfeited, or “dead” to the borrower, forever. And if the loan is repaid,
then the promise to repay is dead. This two-way explanation was fi rst given by the English judge Sir Edward
Coke (1552–1634).
 And the strange pronunciation? The fi nal letter in a French word like mort is silent—hence the “more.”
And the suffi x -age is frequently pronounced “idge” in English. Examples include the words carriage, marriage,
disparage, and encourage.

sch76183_ch11_313-359.indd 321sch76183_ch11_313-359.indd 321 07/06/10 11:38 AM07/06/10 11:38 AM

322 Part B The Workfl ows of the Software Life Cycle

payment (P & I plus insurance plus real-estate taxes) exceeds 28 percent of the
borrower’s total income.

 In addition to the monthly payments, the fi nance company almost always wants to
be paid a lump sum up front in return for lending the money to the borrower. Typi-
cally, the fi nance company will want 2 percent of the principal (“2 points ”). In the
case of the $90,000 loan, this amounts to $1800.
 Finally, there are other costs involved in buying a house, such as legal costs and
various taxes. Consequently, when the contract to buy the $100,000 house is signed
(when the deal is “closed”), the closing costs (legal costs, taxes, and so on) plus the
points can easily amount to $7000.
 The initial glossary of the MSG Foundation domain is shown in Figure 11.3 .
 The initial business model of the MSG Foundation case study is now constructed.

 Initial Business Model: The MSG Foundation
Case Study
 Members of the development organization interview various managers and staff
members of the MSG Foundation and discover the way the Foundation operates.
At the start of each week, the MSG Foundation estimates how much money will be

Balance: the amount of the loan still owing

Capital: synonym for principal

Closing costs: other costs involved in buying a house, such as legal costs and various

taxes

Deposit: an initial installment toward the total cost of the house

Escrow account: a savings account managed by the finance company into which the

weekly installments toward the annual insurance premium and annual real-estate tax

payment are deposited, and from which the annual insurance premium and the

annual real-estate tax payment are paid

Interest: a cost of borrowing money, computed as a fraction of the amount owing

Mortgage: a loan in which real estate is pledged as security for the loan

P & I: abbreviation for “principal and interest“

Points: a cost of borrowing money, computed as a fraction of the total amount

borrowed

Principal: the lump sum borrowed

Principal and interest: an installment payment consisting of the interest plus the

fraction of the principal for that installment

 FIGURE 11.3 The initial glossary of the MSG Foundation case study.

Case Study
11.711.7

sch76183_ch11_313-359.indd 322sch76183_ch11_313-359.indd 322 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 323

available that week to fund mortgages. Couples whose income is too low to afford a
standard mortgage to buy a home can apply at any time to the MSG Foundation for
a mortgage. An MSG Foundation staff member fi rst determines whether the couple
qualifi es for an MSG mortgage and then determines whether the MSG Foundation
still has suffi cient funds on hand that week to purchase the home. If so, the mortgage
is granted and the weekly mortgage repayment is computed according to the MSG
Foundation’s rules. This repayment amount may vary from week to week, depending
on the couple’s current income.
 The corresponding part of the business model consists of three use cases: Esti-
mate Funds Available for Week , Apply for an MSG Mortgage ,
and Compute Weekly Repayment Amount . These use cases are shown in
 Figures 11.4 , 11.5 , and 11.6 , respectively, and the corresponding initial use-case
descriptions appear in Figures 11.7 , 11.8 , and 11.9 , respectively.
 Consider the use case Apply for an MSG Mortgage (Figure 11.5). The actor
on the right is Applicants . But is Applicants really an actor? Recall from Section
11.4.3 that an actor is a user of a software product. However, applicants do not use the
software product. They fi ll in a form. Their answers are then entered into the software
product by an MSG staff member. In addition, they may ask questions of the staff mem-
ber or answer questions put to them by the staff member. But regardless of their interac-
tions with MSG staff members, applicants never interact with the software product. 1
 However,

 • First, the Applicants initiate the use case. That is, if a couple does not apply for
a mortgage, this use case never occurs.

 • Second, the information that the MSG Staff Member gives to the software
product is provided by the Applicants .

 • Third, in a sense, the real actor is the Applicants ; the MSG Staff Member is
merely an agent of the Applicants .

 For all these reasons, Applicants is indeed an actor.
 Now consider Figure 11.6 , which depicts the use case Compute Weekly
Repayment Amount . The actor on the right is now Borrowers . Once an

 FIGURE 11.4 The Estimate Funds
Available for Week use case of the initial
business model of the MSG Foundation case study.

MSG Foundation
Information System

Estimate Funds
Available for

Week

MSG Staff
Member

 1 This will change if the MSG Foundation ever decides to accept applications over the Web. Specifi cally,
 Applicants will then become the only actor in Figure 10.6; MSG Staff Member will no longer
play a role.

sch76183_ch11_313-359.indd 323sch76183_ch11_313-359.indd 323 07/06/10 11:38 AM07/06/10 11:38 AM

324 Part B The Workfl ows of the Software Life Cycle

application has been granted, the couple who applied for the mortgage (the
 Applicants) become Borrowers . But even as borrowers they do not interact
with the software product. As before, only MSG staff members can enter informa-
tion into the software product. Nevertheless, again the use case is initiated by actor
 Borrowers and again the information entered by the MSG Staff Member is
supplied by the Borrowers . Accordingly, Borrowers is indeed an actor in the
use case shown in Figure 11.6 .
 Another aspect of the MSG Foundation business model concerns the investments
of the MSG Foundation. At this initial stage details are not yet known regarding the

 FIGURE 11.5 The Apply for an MSG Mortgage use case
of the initial business model of the MSG Foundation case study.

MSG Foundation
Information System

Apply for an
MSG Mortgage

MSG Staff
Member

Applicants

 FIGURE 11.6 The Compute Weekly Repayment
Amount use case of the initial business model of the MSG
Foundation case study.

MSG Foundation
Information System

Compute Weekly
Repayment Amount

MSG Staff
Member

Borrowers

 FIGURE 11.7 The description of the Estimate Funds
Available for Week use case of the initial business model of the
MSG Foundation case study.

 Brief Description

 The Estimate Funds Available for Week use case
enables an MSG Foundation staff member to estimate how
much money the Foundation has available that week to fund
mortgages.

 Step-by-Step Description

 Not applicable at this initial stage.

sch76183_ch11_313-359.indd 324sch76183_ch11_313-359.indd 324 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 325

buying and selling of investments or how investment income becomes available for
mortgages, but it is certainly clear that the use case Manage an Investment
shown in Figure 11.10 is an essential part of the initial business model. The initial
description appears in Figure 11.11 ; in a future iteration, details of how investments
are handled will be inserted.
 For conciseness, the four use cases of Figures 11.4 , 11.5 , 11.6 , and 11.10 are com-
bined into the use-case diagram of Figure 11.12 .
 Now the initial requirements have to be drawn up.

MSG Foundation
Information System

Manage an
Investment

MSG Staff
Member

 FIGURE 11.10 The Manage an
Investment use case of the initial business
model of the MSG Foundation case study.

 FIGURE 11.8 The description of the Apply for an MSG Mortgage use case of the initial
business model of the MSG Foundation case study.

 Brief Description

 When a couple applies for a mortgage, the Apply for an MSG Mortgage use case
enables an MSG Foundation staff member to determine whether they qualify for an
MSG mortgage and, if so, whether funds are currently available for the mortgage.

 Step-by-Step Description

 Not applicable at this initial stage.

 FIGURE 11.9 The description of the Compute Weekly
Repayment Amount use case of the initial business model of the
MSG Foundation case study.

 Brief Description

 The Compute Weekly Repayment Amount use case
enables an MSG Foundation staff member to compute how
much borrowers have to repay each week.

 Step-by-Step Description

 Not applicable at this initial stage.

sch76183_ch11_313-359.indd 325sch76183_ch11_313-359.indd 325 07/06/10 11:38 AM07/06/10 11:38 AM

326 Part B The Workfl ows of the Software Life Cycle

 FIGURE 11.12 The use-case diagram of the initial business model of
the MSG Foundation case study.

MSG Foundation
Information System

Estimate Funds
Available for

Week

Apply for an
MSG Mortgage

Compute Weekly
Repayment
Amount

Manage an
Investment

MSG Staff
Member

Borrowers

Applicants

 FIGURE 11.11 The description of the Manage an Investment
use case of the initial business model of the MSG Foundation case study.

 Brief Description

 The Manage an Investment use case enables an MSG
Foundation staff member to buy and sell investments and
manage the investment portfolio.

 Step-by-Step Description

 Not applicable at this initial stage.

 Initial Requirements: The MSG Foundation
Case Study
The four use cases of Figure 11.12 comprise the business model of the MSG
Foundation. However, it is not immediately obvious whether they are all require-
ments of the MSG Foundation software product that is to be developed. Recall that
what the client wants is “a pilot project, namely, a software product that will perform

Case Study
11.811.8

sch76183_ch11_313-359.indd 326sch76183_ch11_313-359.indd 326 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 327

the calculations needed to determine how much money is available each week to
purchase homes.” As always, the task of the developers is to determine, with the aid
of the client, what the client needs . At this early stage, however, there is not enough
information at the analysts’ disposal to be able to decide whether just this “pilot proj-
ect” will be what is needed. In situations like this, the best way to proceed is to draw
up the initial requirements on the basis of what the client wants, and then iterate.
 Accordingly, each of the use cases of Figure 11.12 in turn is considered. Use case
 Estimate Funds Available for Week is obviously part of the initial
requirements. On the other hand, Apply for an MSG Mortgage does not
seem to have anything to do with the pilot project, so it is excluded from the initial
requirements. At fi rst sight, the third use case, Compute Weekly Repayment
Amount , seems equally irrelevant to the pilot project. However, the pilot project
deals with the “money that is available each week to purchase homes.” Part of that
money surely comes from the weekly repayment of existing mortgages, so the third
use case is indeed part of the initial requirements. The fourth use case, Manage an
Investment , is also part of the initial requirements for a similar reason—income
from investments also must be used to fund new mortgages.
 The initial requirements then consist of three use cases and their descriptions,
namely, Estimate Funds Available for Week (Figures 11.4 and 11.7),
 Compute Weekly Repayment Amount (Figures 11.6 and 11.9), and Manage
an Investment (Figures 11.10 and 11.11). These three use cases appear in
 Figure 11.13 .
 The next step is to iterate the requirements workfl ow; that is, the steps are per-
formed again to obtain a better model of the client’s needs.

 FIGURE 11.13 The use-case diagram of the initial requirements of
the MSG Foundation case study.

MSG Foundation
Information System

Estimate Funds
Available for

Week

Manage an
Investment

MSG Staff
Member

Compute Weekly
Repayment
Amount

Borrowers

sch76183_ch11_313-359.indd 327sch76183_ch11_313-359.indd 327 07/06/10 11:38 AM07/06/10 11:38 AM

328 Part B The Workfl ows of the Software Life Cycle

 Continuing the Requirements Workfl ow:
The MSG Foundation Case Study
 Armed with domain knowledge and familiarity with the initial business model, mem-
bers of the development team now interview the MSG Foundation managers and staff
in greater depth. They discover the following information.
 The MSG Foundation grants a 100 percent mortgage to buy a home under the fol-
lowing conditions:

 • The couple has been married for at least 1 year but not more than 10 years.
 • Both husband and wife are gainfully employed. Specifi cally, proof must be provided

that both were employed full time for at least 48 weeks of the preceding year.
 • The price of the home must be below the published median price for homes in that

area for the past 12 months.
 • The installments on a fi xed-rate, 30-year, 90 percent mortgage would exceed

28 percent of their combined gross income and/or they do not have suffi cient savings
to pay 10 percent of the cost of the home plus $7000. (The $7000 is an estimate of
the additional costs involved, including closing costs and points.)

 • The Foundation has suffi cient funds to purchase the home; this is described later in
more detail.

 If the application is approved, then the amount that the couple should pay the
MSG Foundation every week for the next 30 years is the total of the principal and
interest payment, which never changes over the life of the mortgage, and the escrow
payment, which is 1—

52
 nd of the sum of the annual real-estate tax and the annual

homeowner’s insurance premium. If this total is greater than 28 percent of the couple’s
gross weekly income, then the MSG Foundation will pay the difference in the form
of a grant. Consequently, the mortgage is paid in full each week, but the couple will
never have to pay more than 28 percent of their combined gross income.
 The couple must provide a copy of their income tax return each year so that the
MSG Foundation has proof of their previous year’s income. In addition, the couple
may fi le copies of pay slips as proof of current gross income. The amount the couple
has to pay for their mortgage may therefore vary from week to week.
 The MSG Foundation uses the following algorithm to determine whether it has
the funds to approve a mortgage application:

 1. At the beginning of each week, the estimated annual income from its investments
is computed and divided by 52.

 2. The estimated annual MSG Foundation operating expenses are divided by 52.
 3. The total of the estimated mortgage payments for that week is computed.
 4. The total of the estimated grants for that week is computed.
 5. The amount available at the beginning of the week is then (Item 1) � (Item 2) �

(Item 3) � (Item 4).

Case Study
11.911.9

sch76183_ch11_313-359.indd 328sch76183_ch11_313-359.indd 328 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 329

 6. During the week, if the cost of the home is no more than the amount available for
mortgages, then the MSG Foundation deems that it has the funds needed to pur-
chase the home; the amount available for mortgages that week is reduced by the
cost of that home.

 7. At the end of each week, the MSG Foundation investment advisors invest any
unspent funds.

 To keep the cost of the pilot project as low as possible, the developers are told
that only those data items needed for the weekly funds computation should be
incorporated into the software product. The rest can be added later if the MSG
Foundation decides to computerize all aspects of its operation. Therefore, only
three types of data are needed, namely, investment data, operating expenses data,
and mortgage data.
 With regard to investments, the following data are required:

 Item number.
 Item name.
 Estimated annual return. (This fi gure is updated whenever new information
becomes available. On average, this occurs about four times a year.)
 Date estimated annual return was last updated.

 With regard to operating expenses, the following data are required:

 Estimated annual operating expenses. (This fi gure is currently determined four
times a year.)
 Date estimated annual operating expenses were last updated.

 For each mortgage, the following data are required:

 Account number.
 Last name of mortgagees.
 Original purchase price of home.
 Date mortgage was issued.
 Weekly principal and interest payment.
 Current combined gross weekly income.
 Date combined gross weekly income was last updated.
 Annual real-estate tax.
 Date annual real-estate tax was last updated.
 Annual homeowner’s insurance premium.
 Date annual homeowner’s insurance premium was last updated.

 In the course of further discussions with MSG managers, the developers learn that
three types of reports are needed:

 The results of the funds computation for the week.
 A listing of all investments (to be printed on request).
 A listing of all mortgages (to be printed on request).

sch76183_ch11_313-359.indd 329sch76183_ch11_313-359.indd 329 07/06/10 11:38 AM07/06/10 11:38 AM

330 Part B The Workfl ows of the Software Life Cycle

 Revising the Requirements: The MSG
Foundation Case Study
 Recall that the initial requirements model (Section 11.8) includes three use cases,
namely, Estimate Funds Available for Week , Compute Weekly
Repayment Amount , and Manage an Investment . These use cases are
shown in Figure 11.13 . Now, in the light of the additional information that has been
received, the initial requirements can be revised.
 The formula given in Section 11.9 for determining how much money is available
at the beginning of a week is as follows:

 1. The estimated annual income from investments is computed and divided by 52.
 2. The estimated annual MSG Foundation operating expenses are divided by 52.
 3. The total of the estimated mortgage payments for that week is computed.
 4. The total of the estimated grants for that week is computed.
 5. The amount available is then (Item 1) � (Item 2) � (Item 3) � (Item 4).

 Consider each of these items in turn.

 1. Estimated annual income from investments . For each investment in turn, sum the
estimated annual return on each investment, and divide the result by 52. To do this,
an additional use case is needed, namely, Estimate Investment Income
for Week . (Use case Manage an Investment is still needed for adding,
deleting, and modifying investments.) This new use case is depicted in Figure 11.14
and described in Figure 11.15 . In Figure 11.14 , the dashed line with the open
arrowhead labeled «include » denotes that use case Estimate Investment
Income for Week is part of use case Estimate Funds Available
for Week . The resulting fi rst iteration of the revised use-case diagram is shown
in Figure 11.16 with the new use case shaded.

 2. Estimated annual operating expenses . Up to now, the estimated annual operating
expenses have not been considered. To incorporate these expenses, two additional

Case Study
11.1011.10

 FIGURE 11.14 The Estimate Investment Income for Week use case of
the revised requirements of the MSG Foundation case study.

«include»

MSG Foundation
Information System

MSG Staff
Member

Estimate
Investment
Income for

Week

Estimate Funds
Available for

Week

sch76183_ch11_313-359.indd 330sch76183_ch11_313-359.indd 330 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 331

use cases are needed. Use case Update Estimated Annual Operating
Expenses models adjustments to the value of the estimated annual operating
expenses, and use case Estimate Operating Expenses for Week
provides the estimate of the operating expenses that is required. The use cases
are shown in Figures 11.17 through 11.20 . In Figure 11.19 , use case Estimate
Operating Expenses for Week is similarly part of use case Estimate
Funds Available for Week , as indicated by the dashed line with the open
arrowhead labeled «include » . The resulting second iteration of the revised
use-case diagram is shown in Figure 11.21 . The two new use cases, Estimate
Operating Expenses for Week and Update Estimated Annual
Operating Expenses , are shaded.

 3. Total estimated mortgage payments for the week . (See item 4.)

 FIGURE 11.15 The description of the Estimate Investment Income for Week use
case of the revised requirements of the MSG Foundation case study.

 Brief Description

 The Estimate Investment Income for Week use case enables the Estimate
Funds Available for Week use case to estimate how much investment income is
available for this week.

 Step-by-Step Description

 1. For each investment, extract the estimated annual return on that investment.
 2. Sum the values extracted in Step 1 and divide the result by 52.

 FIGURE 11.16 The fi rst iteration of the use-case diagram of the revised requirements of the
MSG Foundation case study. The new use case is shaded.

Manage an
Investment

Compute Weekly
Repayment
Amount

MSG Foundation
Information System

MSG Staff
Member

Borrowers

«include»
Estimate
Investment
Income for

Week

Estimate Funds
Available for

Week

sch76183_ch11_313-359.indd 331sch76183_ch11_313-359.indd 331 07/06/10 11:38 AM07/06/10 11:38 AM

332 Part B The Workfl ows of the Software Life Cycle

 4. Total estimated grant payments for the week . The weekly repayment amount from
use case Compute Weekly Repayment Amount is the total estimated
mortgage payment less the estimated total grant payment. In other words, use case
 Compute Weekly Repayment Amount models the computation of both
the estimated mortgage payment and the estimated grant payment for each mort-
gage separately. Summing these separate quantities will yield the total estimated
mortgage payments for the week as well as the total estimated grant payments for

MSG Foundation
Information System

Update
Estimated

Annual Operating
Expenses

MSG Staff
Member

 FIGURE 11.17 The Update Estimated
Annual Operating Expenses use case of
the revised requirements of the MSG Foundation
case study.

«include»

MSG Foundation
Information System

MSG Staff
Member

Estimate Funds
Available for

Week

Estimate
Operating

Expenses for
Week

 FIGURE 11.19 The Estimate Operating Expenses for Week use case of
the revised requirements of the MSG Foundation case study.

 FIGURE 11.18 The description of the Update Estimated
Annual Operating Expenses use case of the revised
requirements of the MSG Foundation case study.

 Brief Description

 The Update Estimated Annual Operating Expenses
use case enables an MSG Foundation staff member to update
the estimated annual operating expenses.

 Step-by-Step Description

 1. Update the estimated annual operating expenses.

sch76183_ch11_313-359.indd 332sch76183_ch11_313-359.indd 332 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 333

the week. However, Compute Weekly Repayment Amount also models the
borrowers changing the amount of their weekly income. Accordingly, Compute
Weekly Repayment Amount needs to be split into two separate use cases,
namely, Estimate Payments and Grants for Week and Update
Borrowers’ Weekly Income . The two new use cases are described in

 FIGURE 11.20 The description of the Estimate Operating
Expenses for Week use case of the revised requirements of the
MSG Foundation case study.

 Brief Description

 The Estimate Operating Expenses for Week use case
enables the Estimate Funds Available for Week use
case to estimate the operating expenses for the week.

 Step-by-Step Description

 1. Divide the estimated annual operating expenses by 52.

 FIGURE 11.21 The second iteration of the use-case diagram of the revised requirements of the
MSG Foundation case study. The two new use cases, Estimate Operating Expenses for
Week and Update Estimated Annual Operating Expenses , are shaded.

MSG Foundation
Information System

Manage an
Investment

Compute Weekly
Repayment
Amount

Estimate
Investment
Income for

Week

Estimate
Operating

Expenses for
Week

Update
Estimated

Annual Operating
Expenses

Estimate Funds
Available for

Week

MSG Staff
Member

Borrowers

«inclu
de»

«include»

sch76183_ch11_313-359.indd 333sch76183_ch11_313-359.indd 333 07/06/10 11:38 AM07/06/10 11:38 AM

334 Part B The Workfl ows of the Software Life Cycle

 Figures 11.22 through 11.25 . Once more, one of the new use cases, namely,
 Estimate Payments and Grants for Week , is part of use case Esti-
mate Funds Available for Week , as indicated by the dashed line with the
open arrowhead labeled «include » in Figure 11.22 . The resulting third iteration of
the revised use-case diagram is shown in Figure 11.26 with the two use cases derived
from use case Compute Weekly Repayment Amount shaded.

 Consider Figure 11.26 again. Use case Estimate Funds Available for
Week models the computation that uses the data obtained from three other use cases,

«include»

MSG Foundation
Information System

MSG Staff
Member

Estimate
Payments and
Grants for

Week

Estimate Funds
Available for

Week

 FIGURE 11.22 The Estimate Payments and Grants for Week use case of
the revised requirements of the MSG Foundation case study.

 FIGURE 11.23 The description of the Estimate Payments and Grants
for Week use case of the revised requirements of the MSG Foundation case study.

 Brief Description

 The Estimate Payments and Grants for Week use case enables the
 Estimate Funds Available for Week use case to estimate the total
estimated mortgage payments paid by borrowers to the MSG Foundation
for this week and the total estimated grants paid by the MSG Foundation
for this week.

 Step-by-Step Description

 1. For each mortgage:
 1.1 The amount to be paid this week is the total of the principal and

interest payment and

 1—
52

nd of the sum of the annual real-estate tax
and the annual homeowner’s insurance premium.

 1.2 Compute 28 percent of the couple’s current gross weekly income.
 1.3 If the result of Step 1.1 is greater than the result of Step 1.2, then

the mortgage payment for this week is the result of Step 1.2, and
the amount of the grant for this week is the difference between the
result of Step 1.1 and the result of Step 1.2.

 1.4 Otherwise, the mortgage payment for this week is the result of
Step 1.1 and there is no grant this week.

 2. Summing the mortgage payments of Steps 1.3 and 1.4 yields the
estimated mortgage payments for the week.

 3. Summing the grant payments of Step 1.3 yields the estimated grant
payments for the week.

sch76183_ch11_313-359.indd 334sch76183_ch11_313-359.indd 334 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 335

namely, Estimate Investment Income for Week , Estimate Oper-
ating Expenses for Week , and Estimate Payments and Grants
for Week . This is shown in Figure 11.27 , which shows the second iteration of the
use case Estimate Funds Available for Week ; this fi gure has been ex-
tracted from the use-case diagram of Figure 11.26 . Figure 11.28 is the corresponding
description of the use case.
 Why is it so important to indicate the «include» relationship in UML diagrams?
For example, Figure 11.29 shows two versions of Figure 11.22 , the correct version
on top and an incorrect version below. The top diagram correctly models use case
 Estimate Funds Available for Week as part of use case Estimate
Payments and Grants for Week . The bottom diagram of Figure 11.29
models use cases Estimate Funds Available for Week and Estimate
Payments and Grants for Week as two independent use cases. However, as
stated in Section 11.4.3, a use case models an interaction between the software product
itself and users of the software product (actors). This is fi ne for use case Estimate
Funds Available for Week . However, use case Estimate Payments
and Grants for Week does not interact with an actor and, therefore, cannot
be a use case in its own right. Instead, it is a portion of use case Estimate Funds
Available for Week , as refl ected in the top diagram of Figure 11.29 .

 FIGURE 11.24 The Update Borrowers’ Weekly
Income use case of the revised requirements of the MSG
Foundation case study.

MSG Foundation
Information System

Update
Borrowers’

Weekly Income

MSG Staff
Member

Borrowers

 FIGURE 11.25 The description of the Update Borrowers’
Weekly Income use case of the revised requirements of the MSG
Foundation case study.

 Brief Description

 The Update Borrowers’ Weekly Income use case
enables an MSG Foundation staff member to update the
weekly income of a couple who have borrowed money
from the Foundation.

 Step-by-Step Description

 1. Update the borrower’s weekly income.

sch76183_ch11_313-359.indd 335sch76183_ch11_313-359.indd 335 07/06/10 11:38 AM07/06/10 11:38 AM

336 Part B The Workfl ows of the Software Life Cycle

MSG Foundation
Information System

Estimate Funds
Available for

Week

Update
Borrowers’

Weekly Income

Manage an
Investment

Estimate
Operating

Expenses for
Week

Estimate
Investment
Income for

Week

Estimate
Payments and
Grants for

Week

Update
Estimated

Annual Operating
Expenses

MSG Staff
Member

Borrowers

«include»
«in

clu
de»

«include»

 FIGURE 11.26 The third iteration of the use-case diagram of the revised requirements of
the MSG Foundation case study. The two use cases derived from use case Compute Weekly
Repayment Amount are shaded.

MSG Foundation
Information System

Estimate Funds
Available for

Week

Estimate
Operating

Expenses for
Week

Estimate
Investment
Income for

Week

Estimate
Payments and
Grants for

Week

MSG Staff
Member

«include»
«in

clu
de»

«include»

 FIGURE 11.27 The second iteration of the Estimate Funds Available for
Week use case of the revised requirements of the MSG Foundation case study.

sch76183_ch11_313-359.indd 336sch76183_ch11_313-359.indd 336 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 337

 FIGURE 11.28 The second iteration of the description of the Estimate Funds Available
for Week use case of the revised requirements of the MSG Foundation case study.

 Brief Description

 The Estimate Funds Available for Week use case enables an MSG Foundation
staff member to estimate how much money the Foundation has available that week to
fund mortgages.

 Step-by-Step Description

 1. Determine the estimated income from investments for the week utilizing use case
 Estimate Investment Income for Week .

 2. Determine the operating expenses for the week utilizing use case Estimate
Operating Expenses for Week .

 3. Determine the total estimated mortgage payments for the week utilizing use case
 Estimate Payments and Grants for Week .

 4. Determine the total estimated grants for the week utilizing use case Estimate
Payments and Grants for Week .

 5. Add the results of Steps 1 and 3 and subtract the results of Steps 2 and 4. This is the
total amount available for mortgages for the current week.

«include»

MSG Foundation
Information System

MSG Staff
Member

MSG Foundation
Information System

MSG Staff
Member

Estimate Funds
Available for

Week

Estimate
Payments and
Grants for

Week

Estimate
Payments and
Grants for

Week

Estimate Funds
Available for

Week

 FIGURE 11.29 Correct (top) and incorrect (bottom) versions of Figure 11.22.

sch76183_ch11_313-359.indd 337sch76183_ch11_313-359.indd 337 07/06/10 11:38 AM07/06/10 11:38 AM

338 Part B The Workfl ows of the Software Life Cycle

 The Test Workfl ow: The MSG Foundation
Case Study
 A common side effect of the iterative-and-incremental life-cycle model is that details
that have been correctly postponed somehow get forgotten. That is one of the many
reasons why continual testing is essential. In this instance, the details of the use case
 Manage an Investment have been overlooked. This is remedied in Figures
11.30 and 11.31 .
 Further review brings to light the omission of use case Manage a Mortgage
to model the addition of a new mortgage, the modifi cation of an existing mort-
gage, or the removal of an existing mortgage, analogous to use case Manage an
Investment . Figures 11.32 and 11.33 correct this omission, and the fourth itera-
tion of the revised use-case diagram is shown in Figure 11.34 with the new use case,
 Manage a Mortgage , shaded.

Case Study
11.1111.11

MSG Foundation
Information System

Manage an
Investment

MSG Staff
Member

 FIGURE 11.30 The Manage an
Investment use case of the revised
requirements of the MSG Foundation case study.

 FIGURE 11.31 The description of the Manage an
Investment use case of the revised requirements of the MSG
Foundation case study.

 Brief Description

The Manage an Investment use case enables an MSG
Foundation staff member to add and delete investments
and manage the investment portfolio.

Step-by-Step Description

1. Add, modify, or delete an investment.

sch76183_ch11_313-359.indd 338sch76183_ch11_313-359.indd 338 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 339

 Furthermore, the use case for printing the various reports has also been over-
looked. Accordingly, use case Produce a Report , which models the printing of
the three reports, is added. The details of the use case appear in Figures 11.35 and
 11.36 . The fi fth iteration of the revised use-case diagram is shown in Figure 11.37
with the new use case, Produce a Report , shaded.
 The revised requirements are checked yet again, and two new problems are uncov-
ered. First, a use case has been partially duplicated. Second, two of the use cases need
to be reorganized.
 The fi rst change to be made is to remove the partially duplicated use case. Con-
sider the use case Manage a Mortgage (Figures 11.32 and 11.33). As stated in
 Figure 11.33 , one of the actions of this use case is to modify a mortgage. Now con-
sider the use case Update Borrowers’ Weekly Income (Figures 11.24 and
 11.25). The only purpose of this use case (Figure 11.25) is to update the borrowers’
weekly income. But the borrowers’ weekly income is an attribute of the mortgage.
That is, use case Manage a Mortgage already includes the use case Update
Borrowers’ Weekly Income . Accordingly, use case Update Borrowers’
Weekly Income is superfl uous and should be deleted. The result is shown in
 Figure 11.38 , the sixth iteration of the revised use-case diagram. The modifi ed use
case, Manage a Mortgage , is shaded.

MSG Foundation
Information System

Manage a
Mortgage

MSG Staff
Member

 FIGURE 11.32 The Manage a Mortgage
use case of the revised requirements of the MSG
Foundation case study.

 FIGURE 11.33 The description of the Manage a Mortgage use case
of the revised requirements of the MSG Foundation case study.

 Brief Description

 The Manage a Mortgage use case enables an MSG Foundation
staff member to add and delete mortgages and manage the
mortgage portfolio.

 Step-by-Step Description

 1. Add, modify, or delete a mortgage.

sch76183_ch11_313-359.indd 339sch76183_ch11_313-359.indd 339 07/06/10 11:38 AM07/06/10 11:38 AM

340 Part B The Workfl ows of the Software Life Cycle

MSG Foundation
Information System

Produce a Report

MSG Staff
Member

 FIGURE 11.35 The Produce a Report
use case of the revised requirements of the MSG
Foundation case study.

MSG Foundation
Information System

Estimate Funds
Available for

Week

Update
Borrowers'

Weekly Income

Manage an
Investment

Manage a
Mortgage

Estimate
Operating

Expenses for
Week

Estimate
Investment
Income for

Week

Estimate
Payments and
Grants for

Week

Update
Estimated

Annual Operating
Expenses

MSG Staff
Member

Borrowers

«include»
«in

clu
de»

«include»

 FIGURE 11.34 The fourth iteration of the use-case diagram of the revised requirements of the
MSG Foundation case study. The new use case, Manage a Mortgage , is shaded.

sch76183_ch11_313-359.indd 340sch76183_ch11_313-359.indd 340 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 341

 This is the fi rst iteration that has resulted in a decrement rather than an increment.
That is, this is the fi rst time in this book that the result of an iteration has been to
delete an artifact (the Update Borrowers’ Weekly Income use case). In
fact, deletion occurs all too often, namely, whenever a mistake is made. Sometimes
an incorrect artifact can be fi xed, but frequently an artifact has to be deleted. The key
point is that, when a fault is discovered, there is no need to abandon everything done
to date and start the whole requirements process from scratch. Instead, an attempt is

 FIGURE 11.36 The description of the Produce a Report use case of the
revised requirements of the MSG Foundation case study.

 Brief Description

 The Produce a Report use case enables an MSG Foundation
staff member to print the results of the weekly computation of funds
available for new mortgages or to print a listing of all investments or all
mortgages.

 Step-by-Step Description

 1. The following reports must be generated:
 1.1 Investments report—printed on demand:
 The information system prints a list of all investments. For each

investment, the following attributes are printed:
 Item number
 Item name
 Estimated annual return
 Date estimated annual return was last updated
 1.2 Mortgages report—printed on demand:
 The information system prints a list of all mortgages. For each

mortgage, the following attributes are printed:
 Account number
 Name of mortgagee
 Original price of home
 Date mortgage was issued
 Principal and interest payment
 Current combined gross weekly income
 Date current combined gross weekly income was last

updated
 Annual real-estate tax
 Date annual real-estate tax was last updated
 Annual homeowner’s insurance premium
 Date annual homeowner’s insurance premium was last

updated
 1.3 Results of the weekly computation—printed each week:
 The information system prints the total amount available for new

mortgages during the current week

sch76183_ch11_313-359.indd 341sch76183_ch11_313-359.indd 341 07/06/10 11:38 AM07/06/10 11:38 AM

342 Part B The Workfl ows of the Software Life Cycle

made to fi x the current iteration, as was done in this case study. If this strategy fails
(because the mistake really is serious), we backtrack to the previous iteration and try
to fi nd a better way to go forward from there.
 The second change that must be made to improve the requirements is to reorga-
nize two use cases. Consider the descriptions of the use cases Estimate Funds
Available for Week (Figure 11.28) and Produce a Report (Figure 11.36).
Suppose that an MSG staff member wants to determine the funds available for the
current week. Use case Estimate Funds Available for Week performs

MSG Foundation
Information System

Estimate Funds
Available for

Week

Update
Borrowers’

Weekly Income

Manage an
Investment

Manage a
Mortgage

Update
Estimated Annual

Operating
Expenses

Estimate
Operating

Expenses for
Week

Estimate
Investment
Income for

Week

Estimate
Payments and
Grants for

Week

Produce a Report

MSG Staff
Member

Borrowers

«include»
«in

clu
de»

«include»

 FIGURE 11.37 The fi fth iteration of the use-case diagram of the revised requirements of the
MSG Foundation case study. The new use case, Produce a Report , is shaded.

sch76183_ch11_313-359.indd 342sch76183_ch11_313-359.indd 342 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 343

the calculation, and Step 1.3 of use case Produce a Report prints out the re-
sult of the computation. This is ridiculous. After all, there is no point in estimating
the funds available unless the results are printed out.
 In other words, Step 1.3 of Produce a Report needs to be moved from the
description of that use case to the end of the description of use case Estimate
Funds Available for Week . This does not change the use cases themselves
(Figures 11.27 and 11.35) or the current use-case diagram (Figure 11.38), but the
descriptions of the two use cases (Figures 11.28 and 11.36) have to be modifi ed. The
resulting modifi ed descriptions are shown in Figures 11.39 and 11.40 .

MSG Foundation
Information System

Estimate Funds
Available for

Week

Manage an
Investment

Manage a
Mortgage

Estimate
Operating

Expenses for
Week

Estimate
Investment
Income for

Week

Estimate
Payments and
Grants for

Week

MSG Staff
Member

Borrowers
Update

Estimated
Annual Operating

Expenses

Produce a Report

«include»
«in

clu
de»

«include»

 FIGURE 11.38 The sixth iteration of the use-case diagram of the revised requirements of the
MSG Foundation case study. The modifi ed use case, Manage a Mortgage , is shaded.

sch76183_ch11_313-359.indd 343sch76183_ch11_313-359.indd 343 07/06/10 11:38 AM07/06/10 11:38 AM

 FIGURE 11.39 The second iteration of the description of the Produce a Report use case of
the revised requirements of the MSG Foundation case study.

 Brief Description

 The Produce a Report use case enables an MSG Foundation staff member to print
a listing of all investments or all mortgages.

 Step-by-Step Description

 1. The following reports must be generated:
 1.1 Investments report—printed on demand:
 The information system prints a list of all investments. For each investment, the

following attributes are printed:
 Item number
 Item name
 Estimated annual return
 Date estimated annual return was last updated
 1.2 Mortgages report—printed on demand:
 The information system prints a list of all mortgages. For each mortgage, the

following attributes are printed:
 Account number
 Name of mortgagee
 Original price of home
 Date mortgage was issued
 Principal and interest payment
 Current combined gross weekly income
 Date current combined gross weekly income was last updated

Annual real-estate tax
 Date annual real-estate tax was last updated
 Annual homeowner’s insurance premium
 Date annual homeowner’s insurance premium was last updated

 FIGURE 11.40 The third iteration of the description of the Estimate Funds Available
for Week use case of the revised requirements of the MSG Foundation case study.

 Brief Description

 The Estimate Funds Available for Week use case enables an MSG Foundation
staff member to estimate how much money the Foundation has available that week to
fund mortgages.

 Step-by-Step Description

 1. Determine the estimated income from investments for the week utilizing use case
 Estimate Investment Income for Week .

 2. Determine the operating expenses for the week utilizing use case
 Estimate Operating Expenses for Week .

 3. Determine the total estimated mortgage payments for the week utilizing use case
 Estimate Payments and Grants for Week .

 4. Determine the total estimated grants for the week utilizing use case Estimate
Payments and Grants for Week .

 5. Add the results of Steps 1 and 3 and subtract the results of Steps 2 and 4. This is the
total amount available for mortgages for the current week.

 6. Print the total amount available for new mortgages during the current week.

344

sch76183_ch11_313-359.indd 344sch76183_ch11_313-359.indd 344 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 345

 Now the use-case diagram can be improved still further. Consider the top four
use cases in Figure 11.38 . The three use cases on the right, namely, Estimate
Investment Income for Week , Estimate Operating Expenses
for Week , and Estimate Payments and Grants for Week , are part
of the use case Estimate Funds Available for Week . The usual reason
for an «include » relationship is when one use case is part of two or more other use
cases. For example, Figure 11.41 shows that use case Print Tax Form is part
of use cases Prepare Form 1040 , Prepare Form 1040A , and Prepare
Form 1040EZ , the three primary U.S. tax forms for individuals. In this situation, it
makes sense to retain Print Tax Form as an independent use case. Incorporat-
ing the operations of Print Tax Form into the other three use cases would mean
triplicating that use case.
 With regard to Figure 11.38 , however, all the included use cases are part of only
one use case, namely, Estimate Funds Available for Week —there is no
duplication. Accordingly, it makes sense to incorporate those three «include » use
cases into Estimate Funds Available for Week , as shown in Figure 11.42 ,
the seventh iteration of the use-case diagram. The resulting fourth iteration of the
description of the Estimate Funds Available for Week use case is shown
in Figure 11.43 .
 Now the requirements appear to be correct.

 • First, they correspond to what the client has requested.
 • Second, there do not seem to be any faults.
 • Third, at this stage it would seem that what the client wants coincides with what the

client needs.

MSG Foundation
Information System

Print Tax Form
«include»

Tax Preparer

«include»

«in
clu

de»

Prepare Form
1040

Prepare Form
1040A

Prepare Form
1040EZ

 FIGURE 11.41 Use case Print Tax Form is part of three other use cases.

sch76183_ch11_313-359.indd 345sch76183_ch11_313-359.indd 345 07/06/10 11:38 AM07/06/10 11:38 AM

346 Part B The Workfl ows of the Software Life Cycle

 Accordingly, the requirements workfl ow appears to be complete, for now. Nev-
ertheless, it is certainly possible that, during subsequent workfl ows, additional re-
quirements may surface. Also, it may be necessary to split one or more of the fi ve
use cases into additional use cases. For example, in a future iteration the Produce
a Report use case described in Figure 11.36 may be split into two separate use
cases, one for the investments report, the other for the mortgages report. But for now,
everything seems to be satisfactory.
 This concludes the description of the requirements workfl ow for the MSG Foun-
dation case study.

MSG Foundation
Information System

Estimate Funds
Available for

Week

Manage an
Investment

Manage a
Mortgage

Produce a Report

Update
Estimated

Annual Operating
Expenses

MSG Staff
Member

Borrowers

 FIGURE 11.42 The seventh iteration of the use-case diagram of
the revised requirements of the MSG Foundation case study. The
modifi ed use case, Estimate Funds Available for Week ,
is shaded.

sch76183_ch11_313-359.indd 346sch76183_ch11_313-359.indd 346 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 347

 11.12 The Classical Requirements Phase
 On the one hand, there is no such thing as “object-oriented requirements,” nor should there
be such a thing. The aim of the requirements workfl ow is to determine the client’s needs,
that is, what the functionality of the target system should be. The requirements workfl ow
has nothing to do with how the product is to be built. From this viewpoint, it makes no
sense to refer to the classical paradigm or the object-oriented paradigm within the context

 FIGURE 11.43 The fourth iteration of the description of the use case
 Estimate Funds Available for Week of the revised requirements
of the MSG Foundation case study.

 Brief Description

 The Estimate Funds Available for Week use case enables
an MSG Foundation staff member to estimate how much money the
Foundation has available that week to fund mortgages.

 Step-by-Step Description

 1. For each investment, extract the estimated annual return on that
investment. Summing the separate returns and dividing the result
by 52 yields the estimated investment income for the week.

 2. Determine the estimated MSG Foundation operating expenses
for the week by extracting the estimated annual MSG Foundation
operating expenses and dividing by 52.

 3. For each mortgage:
 3.1 The amount to be paid this week is the total of the principal

and interest payment and 1—
52

 nd of the sum of the annual
real-estate tax and the annual homeowner’s insurance
premium.

 3.2 Compute 28 percent of the couple’s current gross weekly
income.

 3.3 If the result of Step 3.1 is greater than the result of Step 3.2,
then the mortgage payment for this week is the result of
Step 3.2, and the amount of the grant for this week is the
difference between the result of Step 3.1 and the result of
Step 3.2.

 3.4 Otherwise, the mortgage payment for this week is the result
of Step 3.1, and there is no grant this week.

 4. Summing the mortgage payments of Steps 3.3 and 3.4 yields the
estimated total mortgage payments for the week.

 5. Summing the grant payments of Step 3.3 yields the estimated
total grant payments for the week.

 6. Add the results of Steps 1 and 4 and subtract the results of Steps
2 and 5. This is the total amount available for mortgages for the
current week.

 7. Print the total amount available for new mortgages during the
current week.

sch76183_ch11_313-359.indd 347sch76183_ch11_313-359.indd 347 07/06/10 11:38 AM07/06/10 11:38 AM

348 Part B The Workfl ows of the Software Life Cycle

of the requirements workfl ow, any more than one can refer to a classical or object-oriented
user manual. After all, the user manual describes the steps to be followed by the user when
running the software product and has nothing to do with how the product was built. In the
same way, the requirements workfl ow results in a statement of what the product is to do; the
way that the product will be built does not enter into it.
 On the other hand, the entire approach of Sections 11.2 through 11.11 is object oriented
in nature in that it is model oriented. The use cases, together with their descriptions, form
the basis of the requirements workfl ow. As is shown throughout Part B of this book, model-
ing is the essence of the object-oriented paradigm.
 However, modeling in general (and UML modeling in particular) is not part of the clas-
sical paradigm. The classical requirements phase starts with requirements elicitation fol-
lowed by requirements analysis, similarly to the object-oriented paradigm (Sections 11.3
through 11.4.2). But from that point on, the two paradigms diverge. Instead of building
models, the next step in the classical requirements phase is to draw up a list of require-
ments. The usual step after that is to build a rapid prototype that implements the key func-
tionality underlying those requirements; this is described in Section 11.13. The client and
future users of the target software product then experiment with the rapid prototype until
the requirements team members are satisfi ed that the rapid prototype exhibits the key func-
tionality of the software product the client needs.
 Building a rapid prototype for the product as a whole is not part of the object-oriented
paradigm, for the reasons given in Section 13.18. However, it is strongly advisable to build
a rapid prototype of the user interface, as will be described.

 11.13 Rapid Prototyping
 A rapid prototype is hastily built software that exhibits the key functionality of the
target product. For example, a product that helps to manage an apartment complex must
incorporate an input screen that allows the user to enter details of a new tenant and print an
occupancy report for each month. These aspects are incorporated into the rapid prototype.
However, error-checking capabilities, fi le-updating routines, and complex tax computa-
tions probably are not included. The key point is that a rapid prototype refl ects the func-
tionality the client sees, such as input screens and reports, but omits “hidden” aspects such
as fi le updating. (For a different way of looking at rapid prototypes, see Just in Case You
Wanted to Know Box 11.3.)
 The client and intended users of the product now experiment with the rapid prototype,
while members of the development team watch and take notes. Based on their hands-on
experience, users tell the developers how the rapid prototype satisfi es their needs and, more
important, identify the areas that need improvement. The developers change the rapid pro-
totype until both sides are convinced that the needs of the client are accurately encapsulated
in the rapid prototype. The rapid prototype is then used as the basis for drawing up the
specifi cations.
 An important aspect of the rapid prototyping model is embodied in the word rapid . The
whole idea is to build the rapid prototype as quickly as possible. After all, the purpose of
the rapid prototype is to provide the client an understanding of the product, and the sooner
the better. It does not matter if the rapid prototype hardly works, if it crashes every few

sch76183_ch11_313-359.indd 348sch76183_ch11_313-359.indd 348 07/06/10 11:38 AM07/06/10 11:38 AM

minutes, or if the screen layouts are less than perfect. The purpose of the rapid prototype is
to enable the client and the developers to agree as quickly as possible on what the product
is to do. Therefore, any imperfections in the rapid prototype may be ignored, provided that
they do not seriously impair the functionality of the rapid prototype and thereby give a
misleading impression of how the product behaves.
 A second major aspect of the rapid prototyping model is that the rapid prototype must
be built for change. If the fi rst version of the rapid prototype is not what the client needs,
then the prototype must be transformed rapidly into a second version that, it is hoped,
better satisfi es the client’s requirements. To achieve rapid development throughout the
rapid prototyping process, fourth-generation languages (4GL) and interpreted languages,
such as Smalltalk, Prolog, and Lisp, have been used for rapid prototyping purposes. Pop-
ular rapid prototyping languages of today include HTML and Perl. Concerns have been
expressed about the maintainability of certain interpreted languages, but from the view-
point of rapid prototyping this is irrelevant. All that counts is this: Can a given language
be used to produce a rapid prototype? And, can the rapid prototype be changed quickly?
If the answer to both questions is Yes, then that language is probably a good candidate for
rapid prototyping.
 Rapid prototyping is particularly effective when developing the user interface to a prod-
uct. This use is discussed in Section 11.14.

 11.14 Human Factors
 It is important that both the client and the future users of the product interact with the rapid
prototype of the user interface. Encouraging users to experiment with the human–computer
interface (HCI) greatly reduces the risk that the fi nished product will have to be altered.

 Just in Case You Wanted to Know Box 11.3
 The idea of constructing models to show key aspects of a product goes back a long time.
For example, a 1618 painting by Domenico Cresti (known as “Il Passignano” because he
was born in the town of Passignano in the Chianti region of Italy) shows Michelangelo
presenting a wooden model of his design for St. Peter’s (in Rome) to Pope Paul IV. Such
architectural models could be huge; a model of an earlier design proposal for St. Peter’s by
the architect Bramante is more than 20 feet long on each side.

 Architectural models were used for a number of different purposes. First, as depicted in
the Cresti painting (now hanging in Casa Buonarroti in Florence), models were used to try
to interest a client in funding a project. This is analogous to the use of a rapid prototype
to determine the client’s real needs. Second, in an age before architectural drawings, the
model showed the builder the structure of the building and indicated to the stonemasons
how the building was to be decorated. This is similar to the way we now build a rapid pro-
totype of the user interface, as described in Section 11.13.

 It is not a good idea, however, to draw too close a parallel between such architec-
tural models and software rapid prototypes. Rapid prototypes are used during the classical
requirements phase to elicit the client’s needs. Unlike architectural models, they are not
used to represent either the architectural design or the detailed design; the design is pro-
duced two phases later, that is, during the classical design phase.

sch76183_ch11_313-359.indd 349sch76183_ch11_313-359.indd 349 07/06/10 11:38 AM07/06/10 11:38 AM

350 Part B The Workfl ows of the Software Life Cycle

In particular, this experimentation helps achieve user-friendliness, a vital objective for all
software products.
 The term user-friendliness refers to the ease with which human beings can commu-
nicate with the software product. If users have diffi culty in learning how to use a product
or fi nd the screens confusing or irritating, then they will either not use the product or use
it incorrectly. To try to eliminate this problem, menu-driven products were introduced.
Instead of having to enter a command such as Perform computation or Print service rate
report , the user merely has to select from a set of possible responses, such as

 1. Perform computation
 2. Print service rate report
 3. Select view to be graphed

 In this example, the user enters 1, 2 , or 3 to invoke the corresponding command.
 Nowadays, instead of simply displaying lines of text, HCIs employ graphics. Windows,
icons, and pull-down menus are components of a graphical user interface (GUI) (see Just
in Case You Wanted to Know Box 11.4). Because of the plethora of windowing systems, stan-
dards such as X Window have evolved. Also, point-and-click selection is now the norm.
The user moves a mouse (that is, a handheld pointing device) to move the screen cursor to the
desired response (“point”), and pushes a mouse button (“click”) to select that response.
 However, even when the target product employs modern technology, the designers must
never forget that the product is to be used by human beings. In other words, the HCI design-
ers must consider human factors such as size of letters, capitalization, color, line length,
and the number of lines on the screen.
 Another example of human factors applies to the preceding menu. If the user chooses
option 3. Select view to be graphed, then another menu appears with another list of
choices. Unless a menu-driven system is thoughtfully designed, there is the danger that
users will encounter a lengthy sequence of menus to achieve even a relatively simple
operation. This delay can anger users, sometimes causing them to make inappropriate menu
selections. Also, the HCI must allow the user to change a previous selection without having
to return to the top-level menu and start again. This problem can exist even when a GUI is
used because many graphical user interfaces are essentially a series of menus displayed in
an attractive screen format.
 Sometimes it is impossible for a single user interface to cater to all users. For example,
if a product is to be used by both computer professionals and high-school dropouts with
no previous computer experience, then it is preferable that two different sets of HCIs be
designed, each carefully tailored to the skill level and psychological profi le of its intended
users. This technique can be extended by incorporating sets of user interfaces requiring var-
ied levels of sophistication. If the product deduces that the user would be more comfortable
with a less sophisticated user interface, perhaps because the user is making frequent mis-
takes or is continually invoking help facilities, then the user is automatically shown screens
that are more appropriate to his or her current skill level. But, as the user becomes more
familiar with the product, streamlined screens that provide less information are displayed,
leading to speedier completion. This automated approach reduces user frustration and leads
to increased productivity [Schach and Wood, 1986].
 Many benefi ts can accrue when human factors are taken into account during the design
of an HCI, including reduced learning times and lower error rates. Although help facilities

sch76183_ch11_313-359.indd 350sch76183_ch11_313-359.indd 350 07/06/10 11:38 AM07/06/10 11:38 AM

must always be provided, they are utilized less with a carefully designed HCI. This,
too, increases productivity. Uniformity of HCI appearance across a product or group of
products can result in users intuitively knowing how to use a screen that they have never
seen before because it is similar to other screens with which they are familiar. Designers of
Macintosh software have taken this principle into account; this is one of the many reasons
that software for the Macintosh is generally so user-friendly.
 It has been suggested that simple common sense is all that is needed to design a user-
friendly HCI. Whether or not this charge is true, it is essential that a rapid prototype of
the HCI of every product be constructed. Intended users of the product can experiment
with the rapid prototype of the HCI and inform the designers whether the target product
indeed is user-friendly, that is, whether the designers have taken the necessary human
factors into account.
 In Section 11.15, reuse is discussed within the context of rapid prototyping.

 11.15 Reusing the Rapid Prototype
 After the rapid prototype has been built, it is discarded early in the software process. An
alternate, but generally unwise, way of proceeding is to develop and refi ne the rapid pro-
totype until it becomes the product. In theory, this approach should lead to fast software
development; after all, instead of throwing away the code constituting the rapid prototype,

 Just in Case You Wanted to Know Box 11.4

 The GUI was invented at Xerox’s Palo Alto Research Centre (PARC) in the 1970s. At that
time it was called the WIMP interface, where WIMP stands for either Window, Icon, Mouse,
and Pull-down menu, or Window, Icon, Menu, and Pointing device, depending on whom
you believe. The fi rst commercial computer with a WIMP interface was the Xerox 8010
(“Star”), launched in 1981.

 The GUI achieved popularity with the release of the Apple Lisa (1983) and the Apple
Macintosh (1984). The Macintosh design team had been invited by PARC researchers to
see their WIMP interface, and several PARC employees subsequently left PARC and went to
work at Apple on the GUIs for the Lisa and the Macintosh. The Apple software engineers
considerably extended and improved the WIMP interface.

 Microsoft soon implemented a GUI of its own. But in 1988, Apple sued Microsoft for
copyright infringement of the Lisa and Macintosh GUIs, claiming that the copyright of the
“look and feel” of its GUIs had been violated. The court case lasted 4 years before almost
all of Apple’s claims were denied, primarily due to a license Apple had negotiated with
Microsoft for Windows 1.0. Ironically, midway through the case, Xerox fi led its own lawsuit
against Apple, claiming Apple had infringed the copyrights Xerox held on its GUIs. The
Xerox case was dismissed because the three-year statute of limitations had passed. Related
legal disputes between Apple and Microsoft continued until 1997. At that time, all remain-
ing copyright infringement issues were settled by negotiation. Microsoft invested $150
million in nonvoting Apple stock, and the two companies signed a patent cross-licensing
agreement.

 The GUI became the de facto user interface in 1995 with the introduction of Microsoft
Windows 95.

sch76183_ch11_313-359.indd 351sch76183_ch11_313-359.indd 351 07/06/10 11:38 AM07/06/10 11:38 AM

352 Part B The Workfl ows of the Software Life Cycle

along with the knowledge built into it, the rapid prototype is converted into the fi nal prod-
uct. The fi rst problem with this form of the rapid prototyping model follows from the fact
that, in the course of refi ning the rapid prototype, changes have to be made to a working
product. This is an expensive way to proceed, as shown in Figure 1.6. A second problem is
that a primary objective when constructing a rapid prototype is speed of building. A rapid
prototype is (correctly) hurriedly put together, rather than carefully specifi ed, designed, and
implemented. In the absence of specifi cation and design documents, the resulting code is
diffi cult and expensive to maintain. It might seem wasteful to construct a rapid prototype
and then throw it away and design the product from scratch, but it is far cheaper in both
the short term and the long term to do this rather than try to convert a rapid prototype into
production quality software [Brooks, 1975].
 Another reason for discarding the rapid prototype is the issue of performance, particu-
larly of real-time systems. To ensure that time constraints are met, it is necessary to design
the product carefully. In contrast, a rapid prototype is constructed to display key functional-
ity to the client; performance issues are not handled. As a result, if an attempt is made to
refi ne a rapid prototype into a delivered product, it is unlikely that response times and other
timing constraints will be met.
 One way of ensuring that the rapid prototype is thrown away and the product is properly
designed and implemented is to build the rapid prototype in a different language from that
of the product. For example, the client may specify that the product must be implemented
in Java. If the rapid prototype is implemented in HTML, for example, it must be discarded.
First, the rapid prototype is implemented in HTML and refi ned until the client is satisfi ed
that it does everything, or almost everything, the target product is to do. Next, the product is
designed, relying on the knowledge and skills acquired in constructing the rapid prototype.
Finally, the design is implemented in Java and the tested product handed over to the client
in the usual way.
 Nevertheless, there is one instance when it is permissible to refi ne a rapid prototype or,
more specifi cally, portions of the rapid prototype. When portions of the rapid prototype
are computer generated, those portions may be used in the fi nal product. For example, user
interfaces are often a key aspect of a rapid prototype. When CASE tools such as screen
generators and report generators (Section 5.7 and summarized in Section 10.8) have been
utilized to generate the user interfaces, those portions of the rapid prototype may indeed be
used as part of production-quality software.
 The desire not to “waste” the rapid prototype has resulted in a modifi ed version of
the rapid prototyping model being adopted by some organizations. Here, management
decides before the rapid prototype is built that portions may be utilized in the fi nal prod-
uct, provided those portions pass the same quality assurance tests as other software com-
ponents. Therefore, after the rapid prototype is complete, those sections the developers
wish to continue to use must pass design and code inspections. This approach goes
beyond rapid prototyping. For example, components that are of suffi ciently high quality to
pass design and code inspections are not usually found in a rapid prototype. Furthermore,
design documents are not part of classic rapid prototyping. Nevertheless, this hybrid
approach is attractive to some organizations hoping to recover some of the time and
money invested in the rapid prototype. However, to ensure that the quality of the code is
suffi ciently high, the rapid prototype has to be built somewhat more slowly than is cus-
tomary for a “rapid” prototype.

sch76183_ch11_313-359.indd 352sch76183_ch11_313-359.indd 352 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 353

 11.16 CASE Tools for the Requirements Workfl ow
 The many UML diagrams in this chapter refl ect the importance of having a graphical tool
to assist with the requirements workfl ow. That is, what is needed is a drawing tool that
enables the user to draw the relevant UML diagrams with ease. Such a tool has two major
strengths.

 • First, while iterating it is generally far easier to change a diagram stored in such a tool
than to redraw the diagram by hand.

 • Second, when a CASE tool of this kind is used, the details of the product are stored in
the CASE tool itself. Therefore, the documentation is always available and up to date.

 One weakness of such CASE tools is that they are not always user-friendly. A powerful
graphical workbench or environment has so much functionality that it generally has a steep
learning curve, and even experienced users sometimes have diffi culty remembering how to
achieve a particular outcome. A second weakness is that it is almost impossible to program
a computer to draw UML diagrams that are as aesthetically pleasing as diagrams drawn by
hand by humans. One alternative is to spend a considerable amount of time “tweaking” a dia-
gram created by a tool. However, this approach is sometimes as slow as drawing the diagrams
by hand. Worse, the constraints of many graphical CASE tools are such that, no matter how
much time and effort is put into a diagram, it can never look as polished as a hand-drawn
diagram. A third problem is that many CASE tools are expensive. It is not unusual to have to
pay $5000 or more per user for a comprehensive CASE tool. On the other hand, a number of
open-source CASE tools of this type can be downloaded at no cost. Overall, the two bulleted
strengths of CASE tools listed in this section outweigh these weaknesses.
 Many of the classical graphical CASE workbenches and environments, such as System
Architect and Software through Pictures, have been extended to support UML diagrams.
In addition, there are object-oriented CASE workbenches and environments, such as IBM
Rational Rose and Together. There are also open-source CASE tools of this type, including
ArgoUML.

 11.17 Metrics for the Requirements Workfl ow
 A key feature of the requirements workfl ow is how rapidly the requirements team deter-
mines the client’s real needs. So, a useful metric during this workfl ow is a measure of
requirements volatility. Keeping a record of how frequently the requirements change during
the requirements workfl ow gives management a way of determining the rate at which the
requirements team converges on the actual requirements of the product. This metric has the
further advantage that it can be applied to any requirements elicitation technique, such as
interviewing or forms analysis.
 Another measure of how well the requirements team is doing its job is the number of
requirements that change during the rest of the software development process. For each
such change in requirements, it should be recorded whether that change was initiated
by the client or the developers. If a large number of changes in requirements are initi-
ated by the developers during the analysis, design, and subsequent workfl ows, then it is
clear that the process used by the team to carry out the requirements workfl ow should

sch76183_ch11_313-359.indd 353sch76183_ch11_313-359.indd 353 07/06/10 11:38 AM07/06/10 11:38 AM

354 Part B The Workfl ows of the Software Life Cycle

be thoroughly reviewed. Conversely, if the client makes repeated changes to the require-
ments during subsequent workfl ows, then this metric can be used to warn the client that
the moving-target problem can adversely affect the project, and future changes should be
held to a minimum.

 11.18 Challenges of the Requirements Workfl ow
 Like every other workfl ow of the software development process, potential problems and
pitfalls are associated with the requirements workfl ow. First, it is essential to have the
wholehearted cooperation of the potential users of the target product from the beginning of
the process. Individuals often feel threatened by computerization, fearing that the computer
will take their jobs. There is some truth to that fear. Over the past 30 years or so, the impact
of computerization has been to reduce the need for unskilled workers but also to generate
jobs for skilled workers. Overall, the number of well-paying employment opportunities
created as a direct consequence of computerization has far exceeded the number of rela-
tively unskilled jobs made redundant, as evidenced by both decreased unemployment rates
and increased average compensation. But the unparalleled economic growth of so many
countries worldwide as a direct or indirect consequence of the so-called Computer Age in
no way can compensate for the negative impact on those individuals who lose their jobs as
a result of computerization.
 It is essential that every member of the requirements team be aware at all times that the
members of the client organization with whom they interact in all probability are deeply
concerned about the potential impact of the target software product on their jobs. In the
worst case, employees may deliberately give misleading or wrong information to try to en-
sure that the product does not meet the client’s needs and, hence, protect those employees’
jobs. But, even with no sabotage of this kind, some members of the client organization
may be less than helpful simply because they have a vague feeling of being threatened by
computerization.
 Another challenge of the requirements workfl ow is the ability to negotiate . For exam-
ple, it is often essential to scale down what the client wants. Not surprisingly, almost every
client would love to have a software product that can do everything that might conceivably
be needed. Such a product would take an unacceptably long time to build and cost far more
than the client considers reasonable. Therefore, it often is necessary to persuade the client
to accept less (sometimes far less) than he or she wants. Computing the costs and benefi ts
(see Section 5.2 and summarized in Section 10.6) of each requirement in dispute can help
in this regard.
 Another example of the negotiating skill needed is the ability to arrive at a compromise
among managers regarding the functionality of the target product. For example, a cunning
manager may attempt to extend his or her power by including a requirement that can be
implemented only by incorporating into his or her areas of responsibility certain business
functions currently the responsibility of another manager. Not surprisingly, the other man-
ager will object strongly on discovering what is going on. The requirements team must sit
down with both managers and resolve the issue.
 A third challenge of the requirements workfl ow is that, in many organizations, the
individuals who possess information the requirements team needs to elicit, simply lack the

sch76183_ch11_313-359.indd 354sch76183_ch11_313-359.indd 354 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 355

time to meet for in-depth discussions. When this happens, the team must inform the client,
who then must decide which is more important, the individuals’ current job responsibilities
or the software product to be constructed. And, if the client fails to insist that the software
product comes fi rst, the developers may have no alternative but to withdraw from a project
all but doomed to failure.
 Finally, fl exibility and objectivity are essential for requirements elicitation. It is vital
that the members of the requirements team approach each interview with no preconceived
ideas. In particular, an interviewer must never make assumptions about the requirements as
a result of earlier interviews, and then conduct subsequent interviews in the light of those
assumptions. Instead, an interviewer must consciously suppress any information gleaned
at previous interviews and conduct each interview in an impartial way. Making premature
assumptions regarding the requirements is dangerous; making any assumptions during the
requirements workfl ow regarding the software product to be built can be disastrous.
 The chapter concludes with How to Perform Box 11.1, which summarizes the steps of
the requirements workfl ow.

Box 11.1 How to Perform the Requirements Workfl ow

 • Iterate

 Obtain an understanding of the domain.

 Draw up the business model.

 Draw up the requirements.

 • Until the requirements are satisfactory.

 Chapter
Review

 The chapter begins with a description of the importance of determining the client’s needs (Section
11.1), followed by an overview of the requirements workfl ow (Section 11.2). In Section 11.3, the
need to understand the domain is described. How to draw up the business model is described in Sec-
tion 11.4. Interviewing and other techniques of requirements extraction are discussed in Sections
11.4.1 and 11.4.2. The business model is modeled using use cases, which are introduced in 11.4.3.
Drawing up the initial requirements is described in Section 11.5. The requirements workfl ow of the
MSG Foundation case study is presented in the next six sections. Obtaining an initial understanding
of the domain is described in Section 11.6; the initial business model and the initial requirements
are presented in Sections 11.7 and 11.8, respectively. The requirements are then refi ned in Sections
11.9 and 11.10. Finally, the test workfl ow for the MSG Foundation case study is described (Section
11.11). In Section 11.12, the classical requirements phase is contrasted with the requirements work-
fl ow of the Unifi ed Process. Rapid prototyping is then discussed in greater detail in Sections 11.13
and 11.14; in the latter section, the importance of constructing a rapid prototype for the user interface
is stressed. In Section 11.15, a warning is given not to reuse a rapid prototype. CASE tools for the
requirements workfl ow (Section 11.16) and metrics for the requirements workfl ow (Section 11.17)
are then discussed. The chapter concludes with a description of challenges of the requirements phase
(Section 11.18).
 An overview of the MSG Foundation case study in this chapter appears in Figure 11.44 .

sch76183_ch11_313-359.indd 355sch76183_ch11_313-359.indd 355 07/06/10 11:38 AM07/06/10 11:38 AM

356 Part B The Workfl ows of the Software Life Cycle

 For
Further
Reading

 FIGURE 11.44 Overview of the MSG Foundation case study for Chapter 11.

Initial understanding of the domain Section 11.6
 Initial glossary Figure 11.3

lnitial business model Section 11.7
 lnitial use-case diagram Figure 11.12

Initial requirements Sections 11.8, 11.9

Revised requirements Section 11.10
 Second iteration of the use-case diagram Figure 11.21
 Third iteration of the use-case diagram Figure 11.26

Test workfl ow Section 11.11
 Fourth iteration of the use-case diagram Figure 11.34
 Fifth iteration of the use-case diagram Figure 11.37
 Sixth iteration of the use-case diagram Figure 11.38
 Seventh iteration of the use-case diagram Figure 11.42

 [Jackson, 1995] is an excellent introduction to requirements analysis. [Thayer and Dorfman,
1999] is a collection of papers on requirements analysis. Berry [2004] suggests that the ripple
effect of the inevitable changes to the requirements is the reason why there cannot be a software
engineering silver bullet (Just in Case You Wanted to Know Box 3.4). The use of cost–benefi t
analysis in setting priorities among requirements is described in [Karlsson and Ryan, 1997].
Nonfunctional requirements are discussed in [Cysneiros and do Prado Leite, 2004] and [Grego-
riades and Sutcliffe, 2005].
 The requirements workfl ow of the Unifi ed Process is described in detail in Chapters 6 and 7 of
[Jacobson, Booch, and Rumbaugh, 1999]. Misuse cases (use cases that model interactions that the
software should prevent) are described in [I. Alexander, 2003].
 The importance of prototyping is described in [Schrage, 2004].
 Having an effective requirements process has a positive effect on the entire life cycle. This
is demonstrated in [Damian and Chisan, 2006] by means of a case study of a large-scale soft-
ware project. An analysis of agile approaches to requirements engineering appears in [Cao and
Ramesh, 2008].
 A variety of articles on requirements appear in the May–June 2006 issue of IEEE Software ;
[Ebert, 2006] is of particular interest. Further articles appear in the March–April 2007 issue.
The March–April 2008 issue of IEEE Software contains articles on nonfunctional requirements
(“quality requirements”), including [Blaine and Cleland-Huang, 2008], [Glinz, 2008], and
[Feather et al., 2008].
 The annual Requirements Engineering conference is an excellent source of information.
 A classic work on user interface design is [Shneiderman, 2003]. Methods for achieving good user
interfaces are described in [Holzinger, 2005]. Articles on user interfaces can be found in the June
2008 issue of Communications of the ACM . The proceedings of the Annual Conference on Human
Factors in Computer Systems (sponsored by ACM SIGCHI) are a valuable source of information on
wide-ranging aspects of human factors.

sch76183_ch11_313-359.indd 356sch76183_ch11_313-359.indd 356 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 357

 Key Terms actor 318
 application domain 314
 business model 316
 direct observation 317
 domain 314
 form 317
 functional requirement 320
 glossary 315
 graphical user interface

(GUI) 350
 human factors 350
 «include » relationship 335

 model 318
 negotiation 354
 nonfunctional requirement 320
 platform constraint 320
 point and click 350
 quality requirement 320
 questionnaire 317
 rapid prototype 348
 reliability 320
 requirements analysis 315
 requirements capture 315
 requirements elicitation 315

 requirements engineering 315
 requirements workfl ow 314
 response time 320
 structured interview 316
 unstructured interview 316
 use case 318
 use-case description 323
 use-case diagram 325
 user-friendliness 350
 videotape camera 317

 Case Study
Key Terms

 capital 320
 closing costs 322
 deposit 320

 escrow account 321
 interest 321
 mortgage 320

 P & I 321
 points 322
 principal 320

 Problems 11.1 Give a nonfunctional requirement that can be handled without having detailed knowledge
about the target software product.

 11.2 Now, give a nonfunctional requirement that can be handled only after the requirements work-
fl ow has been completed.

 11.3 Your client has stipulated that open-source software is to be used. Is this a functional or non-
functional requirement? How early in the life-cycle model can this requirement be handled?
Explain your answer.

 11.4 Your client has stipulated that all documentation has to be written in both English and isiNde-
bele. Is this a functional or nonfunctional requirement? How early in the life-cycle model can
this requirement be handled? Explain your answer.

 11.5 Distinguish between a use case and a use-case diagram .

 11.6 You have been asked to develop a logistics automation system for a ship chandler. How would
you perform the domain analysis?

 11.7 What do you consider to be the most important questions when interviewing the ship chandler
of Problem 11.6?

 11.8 Distinguish between a user and an actor .

 11.9 When performing the requirements workfl ow for a bank payroll product, why is it inadvisable
to model the product with Tellers and Employees as actors?

 11.10 Draw a fl owchart representing the requirements workfl ow.

 11.11 Why does the same couple appear as two different actors (Applicants and Borrowers) in
the use-case diagram of Figure 11.12 ?

 11.12 Noting that only MSG Foundation staff members can use the software product, why do
Applicants and Borrowers appear as actors in the use-case diagram of Figure 11.12 ?

 11.13 Use a spreadsheet to show that, at the end of 30 years, monthly installments of $629.30 will pay
off a loan for $90,000 with interest compounded monthly at an annual rate of 7.5 percent.

 11.14 Explain why annual real-estate taxes and insurance premiums are generally paid from an
escrow account, rather than directly by the borrower (mortgagee).

sch76183_ch11_313-359.indd 357sch76183_ch11_313-359.indd 357 07/06/10 11:38 AM07/06/10 11:38 AM

358 Part B The Workfl ows of the Software Life Cycle

 11.15 Suppose that the MSG Foundation decides that it wants its software product to include the
mortgage application process. Give the description of the Apply for an MSG Mort-
gage use case. Give as many details as you can.

 11.16 Sections 11.9 and 11.10 describe the restructuring of the use cases of the MSG Foundation.
How would this restructuring change if, as in Problem 11.15, the Apply for an MSG
Mortgage use case had been included in the requirements model?

 11.17 You have just joined Langfoss & Yosemite Software as a software manager. Langfoss &
Yosemite has been developing accounting software for small businesses for many years using
the waterfall model, usually with some success. On the basis of your experience, you think
that the Unifi ed Process is a far superior way of developing software. Write a report addressed
to the vice-president for software development explaining why you believe the organization
should switch to the Unifi ed Process. Remember that vice-presidents do not like reports that
are more than half a page in length.

 11.18 You are the vice-president for software development of Langfoss & Yosemite. Reply to the
report of Problem 11.17.

 11.19 What is the result if a rapid prototype is not constructed rapidly?

 11.20 Why is there an advantage to using an interpreted language for implementing a rapid proto-
type, rather than a compiled language? Is there a disadvantage?

 11.21 (Analysis and Design Project) Perform the requirements workfl ow for the automated library
circulation system of Problem 8.7.

 11.22 (Analysis and Design Project) Perform the requirements workfl ow for the product for deter-
mining whether a bank statement is correct of Problem 8.8.

 11.23 (Analysis and Design Project) Perform the requirements workfl ow for the automated teller
machine (ATM) of Problem 8.9.

 11.24 (Term Project) Perform the requirements workfl ow for the Chocoholics Anonymous project in
Appendix A.

 11.25 (Case Study) The trustees of the MSG Foundation have decided to expand their activities
by providing scholarships for higher education to children of current borrowers with a suffi -
ciently high grade-point average. Draw the use case Apply for an MSG Scholarship .
Give the description of the use case, providing as much detail as you can.

 11.26 (Case Study) A report of all scholarships awarded during the past year (Problem 11.25) has
to be generated. Modify Figures 11.35 and 11.36 appropriately to incorporate this additional
report.

 11.27 (Case Study) Using the information in Sections 11.6 through 11.11, construct a rapid prototype for
the MSG Foundation case study. Use the software and hardware specifi ed by your instructor.

 11.28 (Readings in Software Engineering) Your instructor will distribute copies of [Damian and
Chisan, 2006]. In what ways did reading this article change your views on the importance of
the requirements workfl ow?

 References [I. Alexander, 2003] I. ALEXANDER, “Misuse Cases: Use Cases with Hostile Intent,” IEEE Software
 20 (January–February 2003), pp. 58–66.

 [Berry, 2004] D. M. BERRY, “The Inevitable Pain of Software Development: Why There Is No Sil-
ver Bullet,” in: Radical Innovations of Software and Systems Engineering in the Future , Lecture
Notes in Computer Science, Vol. 2941, Springer-Verlag, Berlin, 2004, pp. 50–74.

 [Blaine and Cleland-Huang, 2008] J. D. BLAINE AND J. CLELAND-HUANG, “Software Quality
Requirements: How to Balance Competing Priorities,” IEEE Software 25 (March–April 2008),
pp. 22–24.

sch76183_ch11_313-359.indd 358sch76183_ch11_313-359.indd 358 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 11 Requirements 359

 [Brooks, 1975] F. P. BROOKS, JR., The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley, Reading, MA, 1975; Twentieth Anniversary Edition, Addison-Wesley, Reading,
MA, 1995.

 [Cao and Ramesh, 2008] L. CAO AND B. RAMESH, “Agile Requirements Engineering Practices: An
Empirical Study,” IEEE Software 25 (January–February 2008), pp. 60–67.

 [Cysneiros and do Prado Leite, 2004] L. M. CYSNEIROS AND J. C. S. DO PRADO LEITE, “Nonfunctional
Requirements: From Elicitation to Conceptual Models,” IEEE Transactions on Software Engi-
neering 30 (May 2004), pp. 328–50.

 [Damian and Chisan, 2006] D. DAMIAN AND J. CHISAN, “An Empirical Study of the Complex Rela-
tionships between Requirements Engineering Processes and Other Processes that Lead to Payoffs
in Productivity, Quality, and Risk Management,” IEEE Transactions on Software Engineering 32
(July 2006), pp. 433–53.

 [Ebert, 2006] C. EBERT, “Understanding the Product Life Cycle: Four Key Requirements Engineer-
ing Techniques,” IEEE Software 23 (May–June 2006), pp. 19–25.

 [Feather et al., 2008] M. S. FEATHER, S. L. CORNFORD, K. A. HICKS, J. D. KIPER, AND T. MENZIES,
“A Broad, Quantitative Model for Making Early Requirements Decisions,” IEEE Software 25
(March–April 2008), pp. 49–56.

 [Glinz, 2008] M. GLINZ, “A Risk-Based, Value-Oriented Approach to Quality Requirements,” IEEE
Software 25 (March–April 2008), pp. 34–41.

 [Gregoriades and Sutcliffe, 2005] A. GREGORIADES AND A. SUTCLIFFE, “Scenario-Based Assessment
of Nonfunctional Requirements,” IEEE Transactions on Software Engineering 31 (May 2005),
pp. 392–409.

 [Holzinger, 2005] A. HOLZINGER, “Usability Engineering Methods for Software Developers,” Com-
munications of the ACM 48 (January 2005), pp. 71–74.

 [Jackson, 1995] M. JACKSON, Software Requirements and Specifi cations: A Lexicon of Practice, Prin-
ciples and Prejudices, Addison-Wesley Longman, Reading, MA, 1995.

 [Jacobson, Booch, and Rumbaugh, 1999] I. JACOBSON, G. BOOCH, AND J. RUMBAUGH, The Unifi ed
Software Development Process, Addison-Wesley, Reading, MA, 1999.

 [Karlsson and Ryan, 1997] J. KARLSSON AND K. RYAN, “A Cost-Value Approach for Prioritizing
Requirements,” IEEE Software 14 (September–October 1997), pp. 67–74.

 [Schach and Wood, 1986] S. R. SCHACH AND P. T. WOOD, “An Almost Path-Free Very High-Level
Interactive Data Manipulation Language for a Microcomputer-Based Database System,”
 Software–Practice and Experience 16 (March 1986), pp. 243–68.

 [Schrage, 2004] M. SCHRAGE, “Never Go to a Client Meeting without a Prototype,” IEEE Software
 21 (2004), pp. 42–45.

 [Shneiderman, 2003] B. SHNEIDERMAN, Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 4th ed., Addison-Wesley Longman, Reading, MA, 2003.

 [Thayer and Dorfman, 1999] R. H. THAYER AND M. DORFMAN, Software Requirements Engineering ,
revised 2nd ed., IEEE Computer Society Press, Los Alamitos, CA, 1999.

sch76183_ch11_313-359.indd 359sch76183_ch11_313-359.indd 359 07/06/10 11:38 AM07/06/10 11:38 AM

Chapter 12
 Classical Analysis
 Learning Objectives

 After studying this chapter, you should be able to

 • Perform structured systems analysis.

 • Draw up formal specifi cations using fi nite state machines, Petri nets, and Z.

 • Compare and contrast methods for classical analysis.

 A specifi cation document must satisfy two mutually contradictory requirements. On the
one hand, this document must be clear and intelligible to the client, who probably is not
a computer specialist. After all, the client is paying for the product, and unless the client
believes that he or she really understands what the new product will be like, there is a good
chance that the client will either decide not to authorize the development of the product or
will ask some other software organization to build it.
 On the other hand, the specifi cation document must be complete and detailed, because this
is virtually the sole source of information available for drawing up the design. Even if the client
agrees that all needs have been determined accurately during the requirements, if the specifi ca-
tion document contains faults such as omissions, contradictions, or ambiguities, the inevitable
result will be faults in the design that are carried over into the implementation. What is needed,
therefore, are techniques for representing the target product in a format suffi ciently nontechni-
cal to be intelligible to the client yet precise enough to result in a fault-free product being deliv-
ered to the client at the end of the development cycle. These analysis (specifi cation) techniques
are the subject of this chapter and Chapter 13 . The emphasis in this chapter is on classical
(structured) analysis techniques, whereas Chapter 13 is devoted to object-oriented analysis.

 12.1 The Specifi cation Document
 The specifi cation document is a contract between client and developer. It specifi es pre-
cisely what the product must do and the constraints on the product. Virtually every speci-
fi cation document incorporates constraints that the product has to satisfy. Almost always,

360

sch76183_ch12_360-403.indd 360sch76183_ch12_360-403.indd 360 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 361

a deadline is specifi ed for delivering the product. Another common stipulation is, “The prod-
uct shall be installed in such a way that it can run in parallel with the existing product,”
until the client is satisfi ed that the new product indeed satisfi es every aspect of the specifi -
cation document. Other constraints might include portability: The product should be con-
structed to run on other hardware under the same operating system or perhaps run under a
variety of different operating systems. Reliability may be another constraint. If the product
has to monitor patients in an intensive care unit, then it is of paramount importance that it
be fully operational 24 hours a day. Rapid response time may be a requirement; a typical
constraint in this category might be “95 percent of all queries of Type 4 shall be answered
within 0.25 seconds.” Many response-time constraints have to be expressed in probabilistic
terms because the response time depends on the current load on the computer. In contrast,
so-called hard real-time constraints are expressed in absolute terms. For instance, it is useless
to develop software that informs a warplane pilot of an incoming missile within 0.25 seconds
only 95 percent of the time—the product must meet the constraint 100 percent of the time.
 A vital component of the specifi cation document is the set of acceptance criteria. It is
important from the viewpoint of both the client and the developers to spell out a series of
tests that can be used to prove to the client that the product indeed satisfi es its specifi ca-
tions and that the developer’s job is done. Some of the acceptance criteria may be restate-
ments of the constraints, whereas others address different issues. For example, the client
might supply the developer with a description of the data that the product will handle. An
appropriate acceptance criterion then would be that the product correctly processes data
of this type and fi lters out nonconforming (that is, erroneous) data. Once the development
team fully understands the problem, possible solution strategies can be suggested. A solu-
tion strategy is a general approach to building the product. For example, one possible
solution strategy for a product would be to use an online database; another would be to
use conventional fl at fi les and extract the required information using overnight batch runs.
When determining solution strategies, it often is a good idea to come up with strategies
without worrying about the constraints in the specifi cation document. Then, the various
solution strategies can be evaluated in the light of the constraints and necessary modifi ca-
tions can be made. There are a number of ways of determining whether a specifi c solution
strategy will satisfy the client’s constraints. An obvious one is prototyping, which can be
a good technique for resolving issues relating to user interfaces and timing constraints, as
previously discussed in Chapter 11 . Other techniques for determining whether constraints
will be satisfi ed include simulation [Banks, Carson, Nelson, and Nichol, 2010] and analytic
network modeling [Kleinrock and Gail, 1996].
 During this process, a number of solution strategies are put forward and then discarded.
It is important that a written record be kept of all discarded strategies and the reasons they
were rejected. This will assist the development team if it ever is called on to justify the
chosen strategy. But, more important, there is an ever-present danger during postdelivery
maintenance that the process of enhancement will be accompanied by an attempt to come
up with a new and unwise solution strategy. Having a record of why certain strategies were
rejected during development can be extremely helpful during postdelivery maintenance.
 By this point in the life cycle, the development team will have determined one or more
possible solution strategies that satisfy the constraints. A two-stage decision now has to be
made. First, should the client be advised to computerize? If so, which of the viable solution
strategies should be adopted? The answer to the fi rst question can best be decided on the

sch76183_ch12_360-403.indd 361sch76183_ch12_360-403.indd 361 07/06/10 11:39 AM07/06/10 11:39 AM

362 Part B The Workfl ows of the Software Life Cycle

basis of cost–benefi t analysis (Section 5.2). Second, if the client decides to proceed with
the project, then the client must inform the development team as to the optimization criterion
to be used, such as minimizing the total cost to the client or maximizing the return on
investment. The developers then advise the client as to which of the viable solution strate-
gies best satisfi es the optimization criterion.

 12.2 Informal Specifi cations
 In many development projects, the specifi cation document consists of page after page of
English, or some other natural language such as French or Xhosa. A typical paragraph
of such an informal specifi cation reads:

 BV.4.2.5. If the sales for the current month are below the target sales, then a report is to be
printed, unless the difference between target sales and actual sales is less than half of the dif-
ference between target sales and actual sales in the previous month or if the difference between
target sales and actual sales for the current month is under 5 percent.

 The background leading up to that paragraph is as follows: The management of a retail
chain sets a target sales fi gure for each shop for each month; and if a shop does not meet this
target, a report is to be printed. Consider the following scenario: Suppose that the January sales
target for one particular shop is $100,000, but actual sales are only $64,000, that is, 36 percent
below target. In this case, a report must be printed. Now suppose further that the February
target fi gure is $120,000 and that actual sales are only $100,000, 16.7 percent below target.
Although sales are below the target fi gure, the percentage difference for February, 16.7 percent,
is less than half of the previous month’s percentage difference, 36 percent; management believes
that an improvement has been made, and no report is to be printed. Next suppose that, in March,
the target is again $100,000 but the shop makes $98,000, only 2 percent below target. Because
the percentage difference is small, less than 5 percent, no report should be printed.
 Careful rereading of the preceding specifi cation paragraph shows some divergence from
what the retail chain’s management actually requested. Paragraph BV.4.2.5 speaks of the
“difference between target sales and actual sales”; percentage difference is not mentioned.
The difference in January was $36,000 and in February it was $20,000. The percentage
difference, which is what management wanted, dropped from 36 percent in January to 16.7
percent in February, less than half of the January percentage difference. However, the actual
difference dropped from $36,000 to $20,000, which is greater than half of $36,000. So if
the development team had faithfully implemented the specifi cation document, the report
would have been printed, which is not what management wanted. Then the last clause
speaks of a “difference . . . [of] 5 percent.” What is meant, of course, is a percentage differ-
ence of 5 percent, only the word percentage does not occur anywhere in the paragraph.
 Therefore, the specifi cation document contains a number of faults. First, the wishes
of the client have been ignored. Second, there is ambiguity—should the last clause read
“percentage difference . . . [of] 5 percent,” or “difference . . . [of] $5000,” or something else
entirely? In addition, the style is poor. What the paragraph says is, “If something happens,
print a report. However, if something else happens, don’t print it. And if a third thing hap-
pens, don’t print it either.” It would have been much clearer if the specifi cations had simply
stated when the report is to be printed. All in all, paragraph BV.4.2.5 is not a very good
example of how to write a specifi cation document.

sch76183_ch12_360-403.indd 362sch76183_ch12_360-403.indd 362 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 363

 Paragraph BV.4.2.5 is fi ctitious but, unfortunately, typical of too many specifi cation
documents. You may think that the example is unfair and this sort of problem cannot arise
if specifi cations are written with care by professional specifi cation writers. To refute this
charge, the mini case study of Chapter 6 resumes here.

 Correctness Proof Mini Case Study Redux

 Recall from Section 6.5.2 that in 1969 Naur wrote a paper on correctness proving
[Naur, 1969]. He illustrated his technique by means of a text-processing problem.
Using his technique, Naur constructed an ALGOL 60 procedure to solve the prob-
lem and informally proved the correctness of his procedure. A reviewer of Naur’s
paper [Leavenworth, 1970] pointed out one fault in the procedure. London [1971]
then detected three additional faults in Naur’s procedure, presented a corrected ver-
sion of the procedure, and proved its correctness formally. Goodenough and Gerhart
[1975] found three further faults that London had not detected. Of the total of seven
faults collectively detected by the reviewer, London, and Goodenough and Gerhart,
two can be considered analysis faults. For example, Naur’s specifi cations do not state
what happens if the input includes two successive adjacent breaks (blank or newline
characters). For this reason, Goodenough and Gerhart produced a new set of specifi ca-
tions. Their specifi cations were about four times longer than Naur’s, which are given
in Section 6.5.2.
 In 1985, Meyer wrote an article on formal specifi cation techniques [Meyer, 1985].
The main thrust of his article is that a specifi cation document written in a natural lan-
guage such as English tends to have contradictions, ambiguities, and omissions. He
recommended using mathematical terminology to express specifi cations formally.
Meyer detected some 12 faults in Goodenough and Gerhart’s specifi cations and de-
veloped a set of mathematical specifi cations to correct all the problems. Meyer then
paraphrased his mathematical specifi cations and constructed English specifi cations.
In my opinion, Meyer’s English specifi cations contain a fault. Meyer points out in his
paper that, if the maximum number of characters per line is, say, 10, and the input is,
for instance, WHO WHAT WHEN, then, in terms of both Naur’s and Goodenough
and Gerhart’s specifi cations, there are two equally valid outputs: WHO WHAT on
the fi rst line and WHEN on the second or WHO on the fi rst line and WHAT WHEN
on the second. In fact, Meyer’s paraphrased English specifi cations also contain this
ambiguity.
 The key point is that Goodenough and Gerhart’s specifi cations were constructed
with the greatest of care. After all, they were constructed to correct Naur’s specifi ca-
tions. Furthermore, Goodenough and Gerhart’s paper went through two versions,
the fi rst of which was published in the proceedings of a refereed conference and the
second in a refereed journal [Goodenough and Gerhart, 1975]. Finally, both Good-
enough and Gerhart are experts in software engineering in general and specifi cations
in particular. Therefore, if two experts with as much time as they needed carefully

C
12.2.112.2.1

 Mini ase Study

sch76183_ch12_360-403.indd 363sch76183_ch12_360-403.indd 363 07/06/10 11:39 AM07/06/10 11:39 AM

364 Part B The Workfl ows of the Software Life Cycle

produced specifi cations in which Meyer detected 12 faults, what chance does an
ordinary computer professional working under time pressure have of producing a
fault-free specifi cation document? Worse still, the text-processing problem can be
coded in 25 or 30 lines, whereas real-world products can consist of hundreds of thou-
sands or even millions of lines of source code.

 Clearly, natural language is not a good way of specifying a product. In this chapter, bet-
ter alternatives are described. The order in which the analysis techniques are presented is
from the informal to the more formal.

 12.3 Structured Systems Analysis
 The use of graphics to specify software was an important technique of the 1970s. Three
techniques using graphics became particularly popular: those of DeMarco [1978], Gane
and Sarsen [1979], and Yourdon and Constantine [1979]. All three techniques are equally
good and essentially equivalent. Gane and Sarsen’s approach is presented here because
their notation, currently, probably is the most widely used in the industry.
 As an aid to understanding the technique, consider the following mini case study.

 Sally’s Software Shop Mini Case Study

 Sally’s Software Shop buys software from various suppliers and sells it to the public.
Sally stocks popular software packages and orders others as required. Sally extends
credit to institutions, corporations, and some individuals. Sally’s Software Shop is doing
well, with a monthly turnover of 300 packages at an average retail cost of $250 each.
Despite her business success, Sally has been advised to computerize. Should she?
 The question, as stated, is inadequate. It should read: Which, if any, business
functions—accounts payable, accounts receivable, and inventory—should be com-
puterized? Even this is not enough—is the system to be batch or online? Is there to be
an in-house computer or is outsourcing to be used? But, even if the question is refi ned
further, it still misses the fundamental issue: What is Sally’s objective in computer-
izing her business?
 Only when Sally’s objectives are known can the analysis continue. For example,
if she wishes to computerize simply because she sells software, then she needs an
in-house system with a variety of sound and light effects that ostentatiously shows off
the possibilities of a computer. On the other hand, if she uses her business to launder
“hot” money, then she needs a product that keeps four or fi ve different sets of books
and leaves no audit trail.
 This example assumes that Sally wishes to computerize “to make more money.”
This does not help very much, but it is clear that cost–benefi t analysis can determine
whether to computerize each (or any) of the three sections of her business. The main
danger of many standard approaches is that one is tempted to come up with the

C Mini ase Study

12.3.112.3.1

sch76183_ch12_360-403.indd 364sch76183_ch12_360-403.indd 364 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 365

solution fi rst, for example, a Lime III computer with a 50-gigabyte hard disk and
a laser printer, and fi nd out what the problem is later. In contrast, Gane and Sarsen
[1979] use structured systems analysis , a nine-step technique, to analyze the
client’s needs. An important point is that stepwise refi nement is used in many of those
nine steps; this will be indicated as the technique is demonstrated.
 Having determined Sally’s requirements, the fi rst step in the structured systems
analysis is to determine the logical data fl ow , as opposed to the physical data fl ow
(that is, what happens, as opposed to how it happens). This is done by drawing a data
fl ow diagram (DFD). The DFD uses the four basic symbols shown in Figure 12.1 .
(Gane and Sarsen’s notation is similar, but not identical, to that of DeMarco [1978]
and Yourdon and Constantine [1979].)

 Step 1. Draw the DFD
 The DFD for any nontrivial product is likely to be large. The DFD is a pictorial repre-
sentation of all aspects of the logical data fl ow and, as such, is guaranteed to contain
considerably more than 7 � 2 elements. For this reason, the DFD must be developed
by stepwise refi nement (Section 5.1).
 A data fl ow diagram is constructed by identifying the data fl ows within the
requirements document or rapid prototype. Each fl ow of data starts and ends either
at a source or destination of data (represented by a double-square box) or at a
 data store (represented by an open-ended rectangle). The data are transformed by
one or more processes (represented by a rounded rectangle). At each successive
refi nement, either a new fl ow of data is added to the DFD or an existing fl ow of data
is refi ned by the addition of further details.
 Returning to the example, the fi rst refi nement is shown in Figure 12.2 . This diagram of
logical data fl ow can have many interpretations. Two possible implementations follow:
 In Implementation 1, data store PACKAGE_DATA consists of some 900 shrink-
wrapped boxes containing diskettes or CDs displayed on shelves, as well as a number
of catalogs in a desk drawer. Data store CUSTOMER_DATA is a collection of 5 � 7
inch cards held together by a rubber band, plus a list of customers whose payments

FIGURE 12.1
The symbols
of Gane and
Sarsen’s
structured
systems
analysis.

OPEN-ENDED
RECTANGLE

arrow

DOUBLE
SQUARE

Source or destination
of data

Process that transforms
a flow of data

Flow of data

Store of data

rounded
rectangle

sch76183_ch12_360-403.indd 365sch76183_ch12_360-403.indd 365 07/06/10 11:39 AM07/06/10 11:39 AM

366 Part B The Workfl ows of the Software Life Cycle

are overdue. Process (action) process_orders is Sally looking for the appropriate
package on the shelves, if necessary looking it up in a catalog, and then fi nding the
correct 5 � 7 card and checking that the customer’s name is not on the list of default-
ers. This implementation is totally manual and corresponds to the way Sally currently
conducts her business.
 In Implementation 2, data stores PACKAGE_DATA and CUSTOMER_DATA are
computer fi les and process_orders is Sally entering the customer’s name and the
name of the package at a terminal. This implementation corresponds to a fully com-
puterized solution with all information available online.
 The DFD of Figure 12.2 represents not only the preceding two implementations but
also an infi nity of other possibilities. The key point is that the DFD represents a fl ow of
information—the actual package that Sally’s customer wants is not important to the fl ow.
 The DFD is now refi ned stepwise. The second refi nement is depicted in Figure 12.3 .
The logical fl ow of data representing what happens when the customer requests a pack-
age Sally does not have on hand is added to the DFD. Specifi cally, details of that pack-
age are placed in the data store PENDING_ORDERS, which might be a computer fi le,
but at this stage equally well could be a manila folder. Data store PENDING_ORDERS
is scanned daily, by the computer or Sally; and if there are suffi cient orders for one sup-
plier, then a batched order is placed. Also, if an order has been waiting for 5 working
days, it is ordered, regardless of how many packages are waiting to be ordered from the
relevant supplier. This DFD does not show the logical fl ow of data when the software
package arrives from the supplier nor does it show fi nancial functions such as accounts
payable and accounts receivable. These will be added in the third refi nement.
 Only a portion of the third refi nement is shown in Figure 12.4 , because the DFD is
starting to become large. In this refi nement, the logical fl ow of data relating to accounts
receivable is added to the DFD.
 The rest of the DFD relates to accounts payable and to the software suppliers.
The fi nal DFD will be larger still, stretching over perhaps six pages. But it will be
understood easily by Sally, who will sign off on it, confi rming that it is an accurate
representation of the logical fl ow of data in her business. For a larger product, the
DFD is larger. After a certain point it becomes impractical to have just one DFD, and
a hierarchy of DFDs is needed. A single box at one level is expanded into a complete
DFD at a lower level.

FIGURE 12.2
The data fl ow
diagram for
Sally’s Software
Shop: fi rst
refi nement.

CUSTOMER_DATA

order
CUSTOMER

invoice

PACKAGE_DATA

process_
orders

package_details

credit_status

sch76183_ch12_360-403.indd 366sch76183_ch12_360-403.indd 366 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 367

 In this section, we outline the construction of the DFD for Sally’s Software Shop.
A more detailed example of the construction of a data fl ow diagram is given in
Section 12.4.

 Step 2. Decide What Sections to Computerize and How (Batch or Online)
 The choice of what to automate often depends on how much the client is prepared
to spend. Obviously, it would be nice to automate the entire operation, but the cost
of this may be prohibitive. To determine which sections to automate, cost–benefi t
analysis is applied to the various possible strategies for computerizing each section.
For example, for each section of the DFD, a decision has to be made as to whether
that group of operations should be performed in batch or online. With large volumes
to process and tight controls required, batch processing is often the answer; but with
small volumes and an in-house computer, online processing appears to be better.
Returning to the example, one alternative is to automate accounts payable in batch
and validate orders online. A second alternative is to automate everything, with the
editing of the software supplier consignment notes against orders being done online
or batch, and the rest of the operations done online. A key point is that the DFD cor-
responds to all the preceding possibilities. This is consistent with not making a com-
mitment as to how to solve the problem during the classical analysis phase but rather
waiting until the design phase.
 The next three stages of Gane and Sarsen’s technique are the stepwise refi nement
of the fl ows of data (arrows), processes (rounded rectangles), and data stores (open
rectangles).

FIGURE 12.3 The data fl ow diagram for Sally’s Software Shop: second refi nement.

CUSTOMER_DATA

order

PACKAGE_DATA

verify_
order_is_valid

credit_status

assemble_
orders

PENDING_ORDERS

place_order_
at_software_

supplier

SOFTWARE_
SUPPLIER

invoice

details_of_package_
on_hand

batched_
order

address_or_
telephone_number

package_
details details_of_package_

to_be_ordered
CUSTOMER

sch76183_ch12_360-403.indd 367sch76183_ch12_360-403.indd 367 07/06/10 11:39 AM07/06/10 11:39 AM

368 Part B The Workfl ows of the Software Life Cycle

 Step 3. Determine the Details of the Data Flows
 First, decide what data items must go into the various data fl ows. Then, refi ne each
fl ow stepwise.
 In the example, the data fl ow order can be refi ned as follows:

 order:
 order_identifi cation
 customer_details
 package_details

 Next, each of the preceding components of order is refi ned further. In the case of
a larger product, a data dictionary (Section 5.7) keeps track of all the data elements.
 Figure 12.5 shows typical information about the data elements in the computeriza-
tion of Sally’s Software Shop that would be stored in a data dictionary.

CUSTOMER_DATA

order

PACKAGE_DATA

verify_
order_is_

valid

credit_status

invoice

details_of_
package_
on_hand

package_
details

ACCOUNTS_
RECEIVABLE

address

invoice_
details

payment_details

delivery_
note

payment
details_of_package_received_

from_software_agency

details_of_package_
to_be_ordered

delivery_
details

CUSTOMER

assemble_
orders

create_
invoice

apply_
payment_
to_invoice

FIGURE 12.4 The data fl ow diagram for Sally’s Software Shop: part of third
refi nement.

sch76183_ch12_360-403.indd 368sch76183_ch12_360-403.indd 368 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 369

 Step 4. Defi ne the Logic of the Processes
 Now that the data elements within the product have been determined, it is time to
investigate what happens within each process. Suppose that the example has a pro-
cess give_educational_discount . Sally must provide the software developers with
details about the discount she gives to educational institutions, for example, 10 percent
on up to four packages, 15 percent on fi ve or more. To cope with the diffi culties of
natural language specifi cation documents, this should be translated from English into
a decision tree. Such a tree is shown in Figure 12.6 .
 A decision tree makes it easy to check that all possibilities have been taken into
account, especially in more complex cases. An example is shown in Figure 12.7 .
From this fi gure it is immediately obvious that the cost to an alumnus of a seat behind
the end zone has not been specifi ed.

 Step 5. Defi ne the Data Stores
 At this stage it is necessary to defi ne the exact contents of each store and its repre-
sentation (format). Therefore, if the product is to be implemented in COBOL, this

FIGURE 12.6
A decision tree
depicting Sally’s
Software Shop
educational
discount policy.

� 4 packages: 10%

� 4 packages: 15%
Other: 0%

Educational
institution

Give educational discount

FIGURE 12.5 Typical data dictionary entries for Sally’s Software Shop.

 Name of Data Element Description Narrative
 order Record comprising fi elds The fi elds contain all details of an order
 order_identifi cation
 customer_details
 customer_name
 customer_address
 . . .
 package_details
 package_name
 package_price
 . . .

 order_identifi cation 12-digit integer Unique number generated by procedure
 generate_order_number. The fi rst 10 digits contain
 the order number itself, the last 2 digits are check
 digits.

 verify_order_is_valid Procedure: This procedure takes order as input and
 Input parameter: checks the validity of every fi eld; for each error
 order found, an appropriate message is displayed on the
 Output parameter: screen (the total number of errors found is returned
 number_of_errors in parameter number_of_errors) .

sch76183_ch12_360-403.indd 369sch76183_ch12_360-403.indd 369 07/06/10 11:39 AM07/06/10 11:39 AM

370 Part B The Workfl ows of the Software Life Cycle

information must be provided down to the pic level; if Ada is to be used, the digits
or delta must be specifi ed. In addition, it is necessary to specify where immediate
access is required.
 The issue of immediate access depends on what queries are going to be put to
the product. For example, suppose that, in the example, it is decided to validate
orders online. A customer may order a package by name (“Do you have JBuilder
in stock?”), by function (“What accounting packages do you have?”), or by ma-
chine (“Do you have anything new for the 786?”), but rarely by price (“What do you
have for $149.50?”). Therefore, immediate access to PACKAGE DATA is required
by name, function, and machine. This is depicted in the data immediate-access
diagram (DIAD) of Figure 12.8 .

 Step 6. Defi ne the Physical Resources
 Now that the developers know what is required online and the representation (format) of
each element, a decision can be made regarding blocking factors. In addition, for each
fi le, the following can be specifi ed: fi le name, organization (sequential, indexed, etc.),
storage medium, and records, down to the fi eld level. If a database management system
(DBMS) is to be used, then the relevant information for each table is specifi ed here.

 Step 7. Determine the Input–Output Specifi cations
 The input forms must be specifi ed, at least with respect to components, if not detailed
layout. Input screens must similarly be determined. The printed output also must be
specifi ed, where possible in detail, otherwise just estimated length.

Determine football seat prices

Faculty:

Undergraduate: $2

Alumnus:

40-yard line: $20

End zone: $12

40-yard line: $40

FIGURE 12.7
A decision
tree describing
seating prices
for college
football games.

FIGURE 12.8
The data
immediate-
access diagram
for PACKAGE_
DATA.

price

function

machine

name

function machine

name

PACKAGE_DATA

sch76183_ch12_360-403.indd 370sch76183_ch12_360-403.indd 370 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 371

 Step 8. Determine the Sizing
 It is necessary to compute the numerical data that will be used in step 9 to determine
the hardware requirements. This includes the volume of input (daily or hourly), the fre-
quency of each printed report and its deadline, the size and number of records of each
type that are to pass between the CPU and mass storage, and the size of each fi le.

 Step 9. Determine the Hardware Requirements
 From the sizing information on the disk fi les determined in step 8, mass storage
requirements can be computed. In addition, mass storage requirements for backup can
be determined. From knowledge of input volumes, the needs in this area can be found.
Because the number of lines and frequency of printed reports are known, output devices
can be specifi ed. If the client already has hardware, it can be determined whether this
hardware is adequate or additional hardware has to be acquired. On the other hand, if
the client lacks suitable hardware, a recommendation can be made as to what should be
acquired and whether it should be purchased or leased. For smaller systems, advances
in technology have made hardware decisions less critical; all the hardware needed for
Sally’s Software Store can be purchased for under $1000. However, for larger systems,
the cost of hardware is nontrivial, and careful decisions need to be made.
 Determining the hardware requirements is the fi nal step of Gane and Sarsen’s
analysis technique. After approval by the client, the resulting specifi cation document
is handed to the design team, and the software process continues.

 How to Perform Box 12.1 contains an overview of the nine steps of Gane and Sarsen’s
structured systems analysis.
 Despite its many strengths, Gane and Sarsen’s technique does not provide the answer to
every question. For example, it cannot be used to determine response times. The number of
input–output channels can be gauged roughly at best. Also, CPU size and timing cannot be
estimated with any degree of accuracy. These are distinct drawbacks of Gane and Sarsen’s
technique and, to be fair, of virtually every other technique for either analysis or design.
Nonetheless, at the end of the classical analysis phase, hardware decisions have to be made,
whether or not accurate information is available. This situation is considerably better than
what was done in the past; before methodical approaches to specifying were put forward,
decisions regarding hardware were made right at the beginning of the software develop-
ment process. Gane and Sarsen’s technique has led to major improvements in the ways
products are specifi ed, and the fact that Gane and Sarsen and the authors of most competing
techniques essentially ignore time as a variable should not detract from the advantages that
these techniques have brought to the software industry.

How to Perform Structured Systems Analysis

• Draw the data fl ow diagram.

• Decide what sections to computerize and how
(batch or online).

• Determine the details of the data fl ows.

• Defi ne the logic of the processes.

• Defi ne the data stores.

• Defi ne the physical resources.

• Determine the input–output specifi cations.

• Perform the sizing.

• Determine the hardware requirements.

Box 12.1

sch76183_ch12_360-403.indd 371sch76183_ch12_360-403.indd 371 07/06/10 11:39 AM07/06/10 11:39 AM

372 Part B The Workfl ows of the Software Life Cycle

 Structured Systems Analysis: The MSG
Foundation Case Study
 The data fl ow diagram of the structured systems analysis for the MSG Foundation
case study (Section 11.6) is shown in Figure 12.9 . As refl ected in the DFD, the user
can perform three different types of operations:

 1. Update investment data, mortgage data, or operating expenses data:

 The USER enters an update_request. To update investment data, process per-
form_selected_update solicits the updated_investment_details from the USER,
and sends them to the INVESTMENT_DATA data store. Updating mortgage data or
expenses data is similar.

12.412.4
Case Study

generate_listing_
of_investments

investment_
details

updated_
investment_

details

investment_
report_
request

updated_
mortgage_

details

mortgage_
details

list_of_
mortgages

mortgage_
report_
request

generate_listing_
of_mortgages

funds_availability_
report_request

available_funds_for_week

list_of_
investments

update_
request

perform_selected_
update

INVESTMENT_DATA

updated_
annual_

operating_
expenses

EXPENSES_DATA

MORTGAGE_DATA

mortgage_
details

annual_
operating_

expenses

investment_
details

USER

compute_availability_of_funds_
and_generate_funds_report

FIGURE 12.9 The data fl ow diagram for MSG Foundation case study.

sch76183_ch12_360-403.indd 372sch76183_ch12_360-403.indd 372 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 373

 2. Print a listing of investments or mortgages:

 To print a list of investments, the USER enters an investment_report_request.
Process generate_listing_of_investments then obtains investment data from store
INVESTMENT_DATA, formats the report, and then prints the report. Printing a listing
of mortgages is similar.

 3. Print a report showing available funds for mortgages for the week:

 The USER enters a funds_availability_report_request. To determine how much money
is available for mortgages for the current week, process compute_availability_of_
funds_and_generate_funds_report obtains:

• investment_details from store INVESTMENT_DATA and computes the expected total
annual return on investments.

• mortgage_details from store MORTGAGE_DATA and computes the expected income
for the week, expected mortgage payments for the week, and expected grants for the
week.

• annual_operating_expenses from store EXPENSES_DATA and computes the expected
annual operating expenses.

 Process compute_availability_of_funds_and_generate_funds_report then uses
these results to compute available_funds_for_week, formats the report, and then prints
the report.

 The remainder of the structured systems analysis appears in Appendix D. The organi-
zation and presentation of the material in Appendix D is such that the client can rapidly
understand exactly what is going to be built.

 12.5 Other Semiformal Techniques

 Gane and Sarsen’s technique clearly is more formal than writing a specifi cation document
in a natural language. At the same time, it is less formal than many of the techniques pre-
sented in the following discussion, such as Petri nets (Section 12.8) and Z (Section 12.9).
Dart and her coworkers classify analysis and design techniques as informal, semiformal,
or formal [Dart, Ellison, Feiler, and Habermann, 1987]. In terms of this classifi cation,
Gane and Sarsen’s structured systems analysis is a semiformal specifi cation technique,
whereas the other two techniques mentioned in this paragraph are formal techniques.
 Structured systems analysis is used widely; there is a good chance you may be employed
by an organization that uses structured systems analysis or some variant of it. However, there
are many other good semiformal techniques; see, for example, the proceedings of the various
international workshops on software specifi cation and design. Because of space limitations,
all that will be given here is a brief description of a few well-known techniques.
 PSL/PSA [Teichroew and Hershey, 1977] is a computer-aided technique for specifying
information-processing products. The name comes from the two components of the tech-
nique: the problem statement language (PSL) used to describe the product and the problem
statement analyzer (PSA) that enters the PSL description into a database and produces
reports on request. PSL/PSA is still used, particularly for documenting products.

sch76183_ch12_360-403.indd 373sch76183_ch12_360-403.indd 373 07/06/10 11:39 AM07/06/10 11:39 AM

374 Part B The Workfl ows of the Software Life Cycle

 SADT [Ross, 1985] consists of two interrelated components, a box-and-arrow diagram-
ming language termed structural analysis (SA) and a design technique (DT); hence,
SADT. Stepwise refi nement underlies SADT to a greater extent than with Gane and Sars-
en’s technique; a conscious effort has been made to adhere to Miller’s Law. As Ross [1985]
puts it, “Everything worth saying, about anything worth saying something about, must be
expressed in six or fewer pieces.” SADT has been used successfully in specifying a wide
variety of products, especially complex, large-scale projects. Like many other similar semi-
formal techniques, its applicability to real-time systems is less clear.
 On the other hand, SREM (the software requirements engineering method, pronounced
“shrem”) was designed explicitly for specifying the conditions under which certain actions
are to occur [Alford, 1985]. For this reason, SREM has been particularly useful for specify-
ing real-time systems and has been extended to distributed systems. SREM consists of a
number of components. RSL is a specifi cation language. REVS is a set of tools that per-
form a variety of specifi cation-related tasks, such as translating the RSL specifi cations into
an automated database, automatically checking for data fl ow consistency (ensuring that
no data item is used before it has been assigned a value), and generating simulators from
the specifi cations that can be used to ensure that the specifi cations are correct. In addition,
SREM has a design technique, DCDS (distributed computing design system).
 The power of SREM comes from the model underlying the whole technique, a fi nite
state machine (Section 12.7). As a result of this formal model underlying SREM, it is
possible to perform the consistency checking mentioned previously and to verify that
performance constraints on the product as a whole can be met, given the performance
of individual components. SREM has been used by the U.S. Air Force to specify two
C 3 I software (command, control, communications, and intelligence) systems [Scheffer,
Stone, and Rzepka, 1985]. Although SREM proved to be of great use in the classical
analysis phase, it appears that the REVS tools employed later in the development cycle
were considered less useful.

 12.6 Entity-Relationship Modeling
 The emphasis in structured systems analysis is on the operations, rather than the data, of
the product to be built. Certainly, the data of the product are also modeled, but the data
are secondary to the operations. In contrast, entity-relationship modeling (ERM) is a
semiformal data-oriented technique for specifying a product. It has been widely used for
over 30 years specifying databases [Chen, 1976]. In that application area, the emphasis
is on the data. Of course, operations are needed to access the data, and the database must
be organized in such a way as to minimize access times. Nevertheless, the operations per-
formed on the data are less signifi cant.
 A simple entity-relationship diagram is shown in Figure 12.10 , which models the rela-
tionships between authors, novels, and readers. There are three entities: Author, Novel, and
Reader. The top relationship, writes, refl ects that an author writes a novel. This is a one-to-
many relationship, because one author can write more than one novel; this is refl ected by the
1 next to Author and the n next to Novel. The entity-relationship diagram also shows two
relationships between Novel and Reader. Both are one-to-many relationships. The relation-
ship on the left models the fact that a reader may read many novels. Similarly, as shown on the

sch76183_ch12_360-403.indd 374sch76183_ch12_360-403.indd 374 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 375

right, a reader may own many novels. Two separate relationships are shown because a reader
can read a novel without owning it, and a reader can buy a novel but not read it.
 The next example is taken from the domain of suppliers and the parts they supply.
 Figure 12.11 shows a many-to-many relationship between parts and suppliers. That is, one
supplier supplies many parts; conversely, a specifi c part can be obtained from many suppli-
ers. This many-to-many relationship is refl ected by the m next to entity Supplier and the n
next to entity Part.
 More complex relationships are possible as well. For example, as shown in Figure 12.12 ,
a Part in turn may be viewed as consisting of a number of component Parts. Also, many-
to-many-to-many relationships are possible. Consider the three entities Supplier, Part, and
Project shown in that fi gure. A particular part may be supplied by several suppliers, de-
pending on the project. Also, the various parts supplied for a specifi c project may come
from different suppliers. A many-to-many-to-many relationship is necessary to model such
a situation accurately.

Part

Supplier
m

n

is supplied by
for use in

consists of

1 n

Project
p

FIGURE 12.12
A more
complex entity-
relationship
diagram.

FIGURE 12.10
A simple entity-
relationship diagram.

n n

1 1

1

n

reads owns

writes

Reader

Novel

Author

FIGURE 12.11
A many-to-many
entity-relationship
diagram.

Part

Supplier

m

n

is supplied by

sch76183_ch12_360-403.indd 375sch76183_ch12_360-403.indd 375 07/06/10 11:39 AM07/06/10 11:39 AM

376 Part B The Workfl ows of the Software Life Cycle

 The next topic of this chapter is formal techniques. The underlying theme of the next
four sections is that employing formal specifi cation techniques can lead to more pre-
cise analysis artifacts than are possible with semiformal or informal techniques. However,
the use of formal techniques, in general, requires lengthy training, and software engineers
using formal techniques need exposure to the relevant mathematics. The following sec-
tions have been written with the mathematical content kept to a minimum. Furthermore,
wherever possible, mathematical formulations are preceded by informal presentations of
the same material. Nevertheless, the level of Sections 12.7 through 12.10 is higher than that
of the rest of the book.

 12.7 Finite State Machines
 Consider the following example, originally formulated by the M202 team at the Open Uni-
versity, United Kingdom [Brady, 1977]. A safe has a combination lock that can be in one of
three positions, labeled 1, 2, and 3. The dial can be turned left or right (L or R). Therefore,
at any time, six dial movements are possible: 1L, 1R, 2L, 2R, 3L, and 3R. The combina-
tion to the safe is 1L, 3R, 2L; any other dial movement sets off an alarm. The situation is
depicted in Figure 12.13 . There is one initial state, Safe Locked. If the input is 1L, then
the next state is A; but any other dial movement, 1R or 3L, say, brings it to the next state,
Sound Alarm, one of the two fi nal states. If the correct combination is chosen, then the
sequence of transitions is from Safe Locked to A to B to Safe Unlocked, the other fi nal
state. Figure 12.13 shows a state transition diagram (STD) of a fi nite state machine.
It is not necessary to depict an STD graphically; the same information is shown in tabular
form in Figure 12.14 . For each state other than the two fi nal states, the transition to the next
state is indicated, depending on the way the dial is moved.
 A fi nite state machine (FSM) consists of fi ve parts: a set of states, J; a set of inputs,
K; the transition function, T, that specifi es the next state given the current state and the cur-
rent input; the initial state, S; and the set of fi nal states, F. In the case of the combination
lock on the safe,

 The set of states J is {Safe Locked, A, B, Safe Unlocked, Sound Alarm}.
 The set of inputs K is {1L, 1R, 2L, 2R, 3L, 3R}.

FIGURE 12.13
A fi nite state
machine
representation
of a combina-
tion safe.

A B

Any other
dial

movement
Any other

dial movement
Any other
dial movement

Safe Locked Safe Unlocked

Sound Alarm

1L 3R 2L

Initial state

Final state

sch76183_ch12_360-403.indd 376sch76183_ch12_360-403.indd 376 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 377

 The transition function T is depicted in tabular form in Figure 12.14 .
 The initial state S is Safe Locked.
 The set of fi nal states F is {Safe Unlocked, Sound Alarm}.

 In more formal terms, a fi nite state machine is a 5-tuple (J, K, T, S, F), where

 J is a fi nite, nonempty set of states .
 K is a fi nite, nonempty set of inputs .
 T is a function from (J � F) � K into J, called the transition function .
 S ∈ J is the initial state .
 F is the set of fi nal states , F � J.

 Use of the fi nite state machine approach is widespread in computing applications. For
example, every menu-driven user interface is an implementation of a fi nite state machine.
The display of a menu corresponds to a state, and entering an input at the keyboard or
selecting an icon with the mouse is an event that causes the product to go into some other
state. For example, selecting V when the main menu appears on the screen might cause a
volumetric analysis to be performed on the current data set. A new menu then appears,
and the user may select G, P, or R. Selecting G causes the results of the calculation to be
graphed, P causes them to be printed, and R causes a return to the main menu. Each transi-
tion has the form

 current state [menu] and event [option selected] ⇒ next state (12.1)

 To specify a product, a useful extension of FSMs is to add a sixth component to the pre-
ceding 5-tuple: a set of predicates, P, where each predicate is a function of the global state,
Y, of the product [Kampen, 1987] (a predicate is something that is either true or false).
More formally, the transition function, T, is now a function from (J � F) � K � P into J.
 Transition rules now have the forms

 current state and event and predicate ⇒ next state (12.2)

 Finite state machines are a powerful formalism for specifying a product that can be
modeled in terms of states and transitions between states. To see how this formalism works
in practice, the technique is now applied to a modifi ed version of the so-called elevator
problem; see Just in Case You Wanted to Know Box 12.1 for background information on
the elevator problem.

 Table of Next States
 Current State Safe Locked A B
Dial Movement

 1L A Sound alarm Sound alarm
 1R Sound alarm Sound alarm Sound alarm
 2L Sound alarm Sound alarm Safe unlocked
 2R Sound alarm Sound alarm Sound alarm
 3L Sound alarm Sound alarm Sound alarm
 3R Sound alarm B Sound alarm

FIGURE 12.14
The transition
table for the
fi nite state
machine of
Figure 12.13.

sch76183_ch12_360-403.indd 377sch76183_ch12_360-403.indd 377 07/06/10 11:39 AM07/06/10 11:39 AM

378 Part B The Workfl ows of the Software Life Cycle
 Just in Case You Wanted to Know Box 12.1

 The elevator problem truly is a classic problem of software engineering. It fi rst appeared in
print in 1968 in the fi rst volume of Don Knuth’s landmark book, The Art of Computer Pro-
gramming [Knuth, 1968]. It is based on the single elevator in the mathematics building at
the California Institute of Technology. The example was used to illustrate coroutines in the
mythical programming language MIX.
 By the mid-1980s, the elevator problem had been generalized to n elevators; in addition,
specifi c properties of the solution had to be proven, for example, that an elevator eventually
would arrive within a fi nite time. It was now the problem for researchers working in the area
of formal specifi cation languages, and any proposed formal specifi cation language had to
work for the elevator problem.
 The problem attained broader prominence in 1986 when it was published in ACM SIG-
SOFT Software Engineering Notes in the Call for Papers for the Fourth International Workshop
on Software Specifi cation and Design [IWSSD, 1986]. The elevator problem was one of fi ve
problems to be used as examples by researchers in their submissions to the conference, held
in Monterey, California, in May 1987. In the form in which it appeared in the Call for Papers,
it was termed the lift problem and attributed to N. (Neil) Davis of STC-IDEC (a division of
Standard Telecommunications and Cable, in Stevenage, United Kingdom).
 Since then, the problem has attained even wider prominence and been used to dem-
onstrate an extensive variety of techniques within software engineering in general, not just
formal specifi cation languages. It is used in this book to illustrate every technique because,
as you soon will discover, the problem is by no means as simple as it looks.

 Finite State Machines: The Elevator
Problem Case Study
 The problem concerns the logic required to move n elevators between m fl oors ac-
cording to the following constraints:

 1. Each elevator has a set of m buttons , one for each fl oor. These illuminate when
pressed and cause the elevator to visit the corresponding fl oor. The illumination is
canceled when the corresponding fl oor is visited by the elevator.

 2. Each fl oor, except the fi rst fl oor and the top fl oor, has two buttons, one to request
an up-elevator and one to request a down-elevator. These buttons illuminate when
pressed. The illumination is canceled when an elevator visits the fl oor and then
moves in the desired direction.

 3. When an elevator has no requests, it remains at its current fl oor with its doors
closed.

 The product now is specifi ed using an extended fi nite state machine [Kam-
pen, 1987]. There are two sets of buttons in the problem. In each of the n elevators,
there is a set of m buttons, one for each fl oor. Because these n � m buttons are inside
the elevators, they are referred to as elevator buttons . Then, on each fl oor there are
two buttons, one to request an up-elevator, one to request a down-elevator. These are
referred to as fl oor buttons .

12.7.112.7.1
Case Study

sch76183_ch12_360-403.indd 378sch76183_ch12_360-403.indd 378 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 379

 The state transition diagram for an elevator button is shown in Figure 12.15 . Let EB
(e, f) denote the button in elevator e that is pressed to request fl oor f. EB (e, f) can be
in two states, with the button on (illuminated) or off. More precisely, the states are

 EBON (e, f): Elevator Button (e, f) ON

 EBOFF (e, f): Elevator Button (e, f) OFF
(12.3)

 If the button is on and the elevator has arrived at fl oor f, then the button is turned
off. Conversely, if the button is off and it is pressed, then the button comes on. Two
events are involved:

 EBP (e, f): Elevator Button (e, f) Pressed

 EHAF (e, f): Elevator e Has Arrived at Floor f
(12.4)

 To defi ne the state transition rules connecting these events and states, a predicate
V (e, f) is needed.

 V (e, f): Elevator e is Visiting (stopped at) fl oor f (12.5)

 Now, the formal transition rules can be stated. If elevator button (e, f) is off (cur-
rent state) and elevator button (e, f) is pressed (event) and elevator e is not visiting
fl oor f (predicate), then the button is turned on. In the format of transition rule (12.2)
this becomes

 EBOFF (e, f) and EBP (e, f) and not V (e, f) ⇒ EBON (e, f) (12.6)

 If the elevator is currently visiting fl oor f, nothing happens. In Kampen’s formalism,
events that do not trigger a transition indeed may occur; but if they do, then they are
ignored.
 Conversely, if the elevator has arrived at fl oor f and the elevator button is on, then
it is turned off. This is expressed as

 EBON (e, f) and EHAF (e, f) ⇒ EBOFF (e, f) (12.7)

 Next, the fl oor buttons are considered. FB (d, f) denotes the button on fl oor f that
requests an elevator traveling in direction d. The STD for fl oor button FB (d, f) is
shown in Figure 12.16 . More precisely, the states are

 FBON (d, f): Floor Button (d, f) ON

 FBOFF (d, f): Floor Button (d, f) OFF
(12.8)

 If the button is on and an elevator has arrived at fl oor f and is about to travel in the
correct direction, d, then the button is turned off. Conversely, if the button is off and
it is pressed, then the button comes on. Again, two events are involved:

EBP (e, f)

EHAF (e, f)
EBOFF (e, f) EBON (e, f)

 FIGURE 12.15 The STD for an elevator button.
 [Kampen, 1987]. (© 1987 IEEE)

sch76183_ch12_360-403.indd 379sch76183_ch12_360-403.indd 379 07/06/10 11:39 AM07/06/10 11:39 AM

380 Part B The Workfl ows of the Software Life Cycle

 FBP (d, f): Floor Button (d, f) Pressed

 EHAF (1. . n, f): Elevator 1 or . . . or n Has Arrived at Floor f
(12.9)

 Note the use of 1 . . n to denote disjunction. Throughout this section an expres-
sion such as P (a, 1 . . n, b) denotes

 P (a, 1, b) or P (a, 2, b) or . . . or P (a, n, b) (12.10)

 To defi ne the state transition rules connecting these events and states, a predicate
again is needed. In this case, it is S (d, e, f), which is defi ned as follows:

 S (d, e, f): Elevator e is visiting fl oor f and the direction
 in which it is about to move is either up (d � U), (12.11)
 down (d � D), or no requests are pending (d = N)

 This predicate actually is a state. In fact, the formalism allows both events and
states to be treated as predicates.
 Using S (d, e, f), the formal transition rules are

 FBOFF (d, f) and FBP (d, f) and not S (d, 1 . . n, f) ⇒
 FBON (d, f),
 FBON (d, f) and EHAF (1 . . n, f) and S (d, 1 . . n, f) ⇒

(12.12)

 FBOFF (d, f), d = U or D

 That is, if the fl oor button at fl oor f for motion in direction d is off and the but-
ton is pushed and none of the elevators currently is visiting fl oor f about to move in
direction d, then the fl oor button is turned on. Conversely, if the button is on and at
least one elevator has arrived at fl oor f and the elevator is about to move in direction
d, then the button is turned off. The notation 1 . . n in S (d, 1 . . n, f) and EHAF
(1 . . n, f) was defi ned in defi nition (12.10). The predicate V (e, f) of defi nition (12.5)
can be defi ned in terms of S (d, e, f) as follows:

 V (e, f) � S (U, e, f) or S (D, e, f) or S (N, e, f) (12.13)

 The states of the elevator button and fl oor button were straightforward to defi ne.
Turning to the elevators, complications arise. The state of an elevator essentially con-
sists of a number of component substates. Kampen [1987] identifi es several, such
as the elevator slowing and stopping, the door opening, the door open with a timer
running, or the door closing after a timeout . He makes the reasonable assumption
that the elevator controller (the mechanism that directs the motion of the eleva-
tor) initiates a state such as S (d, e, f) and that the controller then moves the elevator

 FIGURE 12.16 The STD for a fl oor button
 [Kampen 1987]. (© 1987 IEEE)

FBOFF (d, f) FBON (d, f)
EHAF (1.. n, f)

FBP (d, f)

sch76183_ch12_360-403.indd 380sch76183_ch12_360-403.indd 380 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 381

through the substates. Three elevator states can be defi ned, one of which, S (d, e, f),
was defi ned in defi nition (12.11) but is included here for completeness.

 M (d, e, f): Elevator e is M oving in direction d (fl oor f is next)

 S (d, e, f): Elevator e is S topped (d-bound) at fl oor f (12.14)
 W (e, f): Elevator e is W aiting at fl oor f (door closed)

 These states are shown in Figure 12.17 . Note that the three stopped states S (U, e, f),
S (N, e, f), and S (D, e, f) have been grouped into one larger state to simplify the
diagram and to reduce the overall number of states.
 The events that can trigger state transitions are DC (e, f), the closing of the door
of elevator e at fl oor f; ST (e, f), which occurs when the sensor on the elevator is
triggered as it nears fl oor f and the elevator controller must decide whether to stop
the elevator at that fl oor; and RL, which occurs whenever an elevator button or a fl oor
button is pressed and enters its ON state:

 DC (e, f): Door Closed for elevator e, at fl oor f

 ST (e, f): Sensor Triggered as elevator e nears fl oor f (12.15)
 RL: Request Logged (button pressed)

 These events are indicated in Figure 12.17 .
 Finally, the state transition rules for an elevator can be presented. They can be
deduced from Figure 12.17 , but in some cases, additional predicates are necessary.
 To be more precise, Figure 12.17 is nondeterministic; among other reasons, the
predicates are necessary to make the STD deterministic. The interested reader should

S (N, e, f)

M (U, e, f � 1)

W (e, f)

M (U, e, f)

S (U, e, f) S (D, e, f)

M (D, e, f)

M (D, e, f � 1)

RL RL

RL

RL RL

DC (e, f) DC (e, f)

DC (e, f)

ST (e, f)

ST (e, f)

 FIGURE 12.17 The STD for the elevator [Kampen, 1987]. (© 1987 IEEE)

sch76183_ch12_360-403.indd 381sch76183_ch12_360-403.indd 381 07/06/10 11:39 AM07/06/10 11:39 AM

382 Part B The Workfl ows of the Software Life Cycle

consult [Kampen, 1987] for the complete set of rules; for the sake of brevity, the only
rules presented here are those that declare what happens when the door closes. The
elevator moves up, down, or enters a wait state, depending on the current state:

 S (U, e, f) and DC (e, f) ⇒ M (U, e, f � 1)

 S (D, e, f) and DC (e, f) ⇒ M (D, e, f � 1) (12.16)
 S (N, e, f) and DC (e, f) ⇒ W (e, f)

 The fi rst rule states that, if elevator e is in state S (U, e, f), that is, stopped at fl oor
f about to go up, and the doors close, then the elevator moves up toward the next fl oor.
The second and third rules correspond to the cases of the elevator about to go down
or with no requests pending.
 The format of these rules refl ects the power of fi nite state machines for specifying
complex products. Instead of having to list a complex set of preconditions that have
to hold for the product to do something and then having to list all the conditions that
hold after the product has done it, the specifi cations take the simple form

 current state and event and predicate ⇒ next state

 This type of specifi cation is easy to write, easy to validate, and easy to convert into
a design and into code. In fact, it is straightforward to construct a CASE tool that will
translate a fi nite state machine specifi cation directly into source code. Maintenance
is achieved by replay. That is, if new states or events are needed, the specifi cations
are modifi ed and a new version of the product is generated directly from the new
specifi cations.
 The FSM approach is more precise than the graphical technique of Gane and
Sarsen presented in Section 12.3.1, but it is almost as easy to understand. It has a
drawback, in that for large systems, the number of (state, event, predicate)
triples can grow rapidly. Also, like Gane and Sarsen’s technique, timing consider-
ations are not handled in Kampen’s formalism.
 These problems can be solved using statecharts, an extension of FSMs [Harel
et al., 1990]. Statecharts are extremely powerful and are supported by a CASE work-
bench, Rhapsody. The approach has been successfully used for a number of large
real-time systems.
 Another formal technique that can handle timing issues is Petri nets.

 12.8 Petri Nets
 A major diffi culty with specifying concurrent systems is coping with timing. This diffi culty
can manifest itself in many different ways, such as synchronization problems, race condi-
tions, and deadlock [Silberschatz, Galvin, and Gagne, 2002]. Although timing problems
can arise as a consequence of a poor design or a faulty implementation, such designs and
implementations often are the consequence of poor specifi cations. If specifi cations are not
properly drawn up, there is a very real risk that the corresponding design and implemen-
tation will be inadequate. One powerful technique for specifying systems with potential
timing problems is Petri nets. A further advantage of this technique is that it can be used
for the design as well.

sch76183_ch12_360-403.indd 382sch76183_ch12_360-403.indd 382 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 383

 Petri nets were invented by Carl Adam Petri [Petri, 1962]. Originally of interest only
to automata theorists, Petri nets have found wide applicability in computer science, being
used in such fi elds as performance evaluation, operating systems, and software engineer-
ing. In particular, Petri nets have proven to be useful for describing concurrent interrelated
activities. But, before the use of Petri nets for specifi cations can be demonstrated, a brief
introduction to Petri nets is given for those readers who may be unfamiliar with them.
 A Petri net consists of four parts: a set of places, P; a set of transitions, T; an input
function, I; and an output function, O. Consider the Petri net shown in Figure 12.18 .

 The set of places, P, is {p 1 , p 2 , p 3 , p 4 }.
 The set of transitions, T, is {t 1 , t 2 }.

 The input functions for the two transitions, represented by the arrows from places to
transitions, are

 I (t 1) � {p2, p 4 }

 I (t 2) � {p 2 }

 The output functions for the two transitions, represented by the arrows from transitions
to places, are

 O (t 1) � {p 1 }

 O (t 2) � {p 3 , p 3 }

 Note the duplication of p 3 ; there are two arrows from t 2 to p 3 .
 More formally [Peterson, 1981], a Petri net structure is a 4-tuple, C = (P, T, I, O):

 P � {p 1 , p 2 , . . . , p n } is a fi nite set of places , n 	 0.
 T � {t 1 , t 2 , . . . , t m } is a fi nite set of transitions , m 	 0, with P and T disjoint.
 I : T → P
 is the input function , a mapping from transitions to bags of places.
 O : T → P
 is the output function , a mapping from transitions to bags of places.

 (A bag , or multiset , is a generalization of a set that allows for multiple instances of an
element.)

 FIGURE 12.18
 A Petri net.

p1

p2

p4

p3

t1

t2

sch76183_ch12_360-403.indd 383sch76183_ch12_360-403.indd 383 07/06/10 11:39 AM07/06/10 11:39 AM

384 Part B The Workfl ows of the Software Life Cycle

 Marking a Petri net is the assignment of tokens to that Petri net. Figure 12.19 contains
four tokens: one in p 1 , two in p 2 , none in p 3 , and one in p 4 . The marking can be represented
by the vector (1, 2, 0, 1). Transition t 1 is enabled (ready to fi re), because there are tokens in
p 2 and in p 4 ; in general, a transition is enabled if each of its input places has as many tokens
in it as there are arcs from the place to that transition. If t 1 were to fi re, one token would be
removed from p 2 and one from p 4 , and one new token would be placed in p 1 . The number
of tokens is not conserved—two tokens are removed, but only one new one is placed in p 1 .
In Figure 12.19 , transition t 2 also is enabled, because there are tokens in p 2 . If t 2 were to fi re,
one token would be removed from p 2 , and two new tokens would be placed in p 3 .
 Petri nets are nondeterministic; that is, if more than one transition can fi re, then any one
of them can be fi red. Figure 12.19 has marking (1, 2, 0, 1); both t 1 and t 2 are enabled.
Suppose that t 1 fi res. The resulting marking (2, 1, 0, 0) is shown in Figure 12.20 , where
only t 2 is enabled. It fi res, the enabling token is removed from p 2 , and two new tokens are
placed in p 3 . The marking now is (2, 0, 2, 0), as shown in Figure 12.21 .
 More formally [Peterson, 1981], a marking, M, of a Petri net, C = (P, T, I, O), is a func-
tion from the set of places, P, to the set of nonnegative integers:

 M : P → {0, 1, 2, . . . }

 A marked Petri net then is a 5-tuple (P, T, I, O, M).

p1

p2

p4

p3

t1

t2

p1

p2

p4

p3

t1

t2

 FIGURE 12.19
 A marked Petri
net.

 FIGURE 12.20
 The Petri net
of Figure 12.19
after transition
t1 fi res.

sch76183_ch12_360-403.indd 384sch76183_ch12_360-403.indd 384 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 385

 An important extension to a Petri net is an inhibitor arc . In Figure 12.22 , the inhibitor
arc is marked by a small circle rather than an arrowhead. Transition t 1 is enabled because a
token is in p 3 but no token is in p 2 . In general, a transition is enabled if at least one token is
on each of its (normal) input arcs and no tokens are on any of its inhibitor input arcs. This
extension is used in the Petri net specifi cation of the elevator problem case study of Section
12.7.1 [Guha, Lang, and Bassiouni, 1987].

 FIGURE 12.21
 The Petri net
of Figure 12.20
after transition
t 2 fi res.

p1

p2

p4

p3

t1

t2

 FIGURE 12.22
 A Petri net with
an inhibitor arc.

p1

p2

p3

t1

 Petri Nets: The Elevator Problem Case Study
 Recall that an n elevator system is to be installed in a building with m fl oors. In this
Petri net specifi cation, each fl oor in the building is represented by a place, F f , 1 � f �
m, in the Petri net; an elevator is represented by a token. A token in F f denotes that
an elevator is at fl oor f.

 First Constraint
 Each elevator has a set of m buttons, one for each fl oor. These illuminate when
pressed and cause the elevator to visit the corresponding fl oor. The illumination is
canceled when the corresponding fl oor is visited by the elevator.

12.8.112.8.1
Case Study

sch76183_ch12_360-403.indd 385sch76183_ch12_360-403.indd 385 07/06/10 11:39 AM07/06/10 11:39 AM

386 Part B The Workfl ows of the Software Life Cycle

 To incorporate this into the specifi cation, additional places are needed. The eleva-
tor button for fl oor f is represented in the Petri net by place EB f , 1 � f � m. More
precisely, because there are n elevators, the place should be denoted EB f,e with 1 �
f � m, 1 � e � n. But, for the sake of simplicity of notation, the subscript e repre-
senting the elevator is suppressed. A token in EB f denotes that the elevator button for
fl oor f is illuminated. Because the button must be illuminated the fi rst time the button
is pressed and subsequent button presses must be ignored, this is specifi ed using a
Petri net as shown in Figure 12.23 . First, suppose that button EB f is not illuminated.
Accordingly no token is in place and, because of the presence of the inhibitor arc,
transition EB f pressed is enabled. The button now is pressed. The transition fi res and
a new token is placed in EB f , as shown in Figure 12.23 . Now, no matter how many
times the button is pressed, the combination of the inhibitor arc and the presence of
the token means that transition EB f pressed cannot be enabled. Therefore, no more
than one token can ever be in place EB f .
 Furthermore, suppose that the elevator is to travel from fl oor g to fl oor f. Because
the elevator is at fl oor g, a token is in place F g , as shown in Figure 12.23 . Transition
Elevator in action is enabled and fi res. The tokens in EB f and F g are removed, turning
off button EB f , and a new token appears in F f ; the fi ring of this transition brings the
elevator from fl oor g to fl oor f.
 This motion from fl oor g to fl oor f cannot take place instantaneously. To handle
this and similar issues, such as the physical impossibility for a button to illuminate
at the very instant it is pressed, timing must be added to the Petri net model. That is,
whereas in classical Petri net theory, transitions are instantaneous, in practical situa-
tions, such as the elevator problem case study, timed Petri nets [Coolahan and Rous-
sopoulos, 1983] are needed to associate a nonzero time with a transition.

 Second Constraint
 Each fl oor, except the fi rst fl oor and top fl oor, has two buttons, one to request an
up-elevator and one to request a down-elevator. These buttons illuminate when
pressed. The illumination is canceled when an elevator visits the fl oor and then moves
in the desired direction.
 The fl oor buttons are represented by places FB u f and FB d f representing the buttons
for requesting up- and down-elevators, respectively. More precisely, fl oor 1 has a
button FB u 1 , fl oor m has a button FB d m , and the intermediate fl oors each have two
buttons, FB u f and FB d

 f , 1 � f � m. The situation when an elevator reaches fl oor f from

 FIGURE 12.23
 A Petri net
representation
of an elevator
button [Guha,
Lang, and
Bassiouni,
1987]. (© 1987
IEEE.)

Elevator in actionEBf pressed Ff

Fg

EBf

sch76183_ch12_360-403.indd 386sch76183_ch12_360-403.indd 386 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 387

fl oor g with one or both buttons illuminated is shown in Figure 12.24 . In fact, that
fi gure needs further refi nement, because if both the buttons are illuminated, one is
turned off on a nondeterministic basis. To ensure that the correct button is turned off
requires a Petri net model too complicated to present here; see, for example, [Ghezzi
and Mandrioli, 1987].

 Third Constraint
 When an elevator has no requests, it remains at its current fl oor with its doors
closed.
 This is achieved easily: If there are no requests, no Elevator in action transition
is enabled.

 Not only can Petri nets be used to represent the specifi cations, they can be used for the
design as well [Guha, Lang, and Bassiouni, 1987]. However, even at this stage of the devel-
opment of the product, it is clear that Petri nets possess the expressive power necessary for
specifying the synchronization aspects of concurrent systems.

 12.9 Z
 A formal specifi cation language gaining widely in popularity is Z [Spivey, 2001]. (For
the correct pronunciation of the name Z , see Just in Case You Wanted to Know Box 12.2.)
Use of Z requires knowledge of set theory, functions, and discrete mathematics, including
fi rst-order logic. Even for users with the necessary background (and this includes most
computer science majors), Z initially is diffi cult to learn because, in addition to the usual
set theoretic and logic symbols like ∃, �, and ⇒, it uses many unusual special symbols,
such as ⊕, , | →, and � | →.
 For insight into how Z is used to specify a product, the elevator problem case study of
Section 12.7.1 is considered again.

 FIGURE 12.24
 A Petri net
representation
of fl oor buttons.
 [Guha, Lang,
and Bassiouni,
1987]. (© 1987
IEEE.)

Fg

Elevator in action

Elevator in action

FBu
f pressed FfFBu

f

FBd
f pressed FfFBd

f

sch76183_ch12_360-403.indd 387sch76183_ch12_360-403.indd 387 07/06/10 11:39 AM07/06/10 11:39 AM

388 Part B The Workfl ows of the Software Life Cycle
 Just in Case You Wanted to Know Box 12.2

 The name Z was given to the formal specifi cation language by its inventor Jean-Raymond
Abrial in honor of the great set theorist Ernst Friedrich Ferdinand Zermelo (1871–1953).
Because it was developed at Oxford University [Abrial, 1980], the name Z is properly pro-
nounced “zed,” the way the British pronounce the 26th letter of the alphabet.
 Lately, however, moves are afoot to acknowledge that Z is named after a German math-
ematician and to pronounce it the German way, “tzet.” In response, Francophiles and Fran-
cophones point out that Abrial is a Frenchman and that the letter Z is pronounced “zed” in
French, too.
 The one totally unacceptable pronunciation is the American style, that is, “zee.” The
reason is that Z (pronounced “zee”) is the name of an American fourth-generation lan-
guage (see Section 15.2). However, we cannot trademark a single letter of the alphabet.
Furthermore, we are free to pronounce the letter Z the way we wish. Nevertheless, within
the programming language context, the pronunciation “zee” refers to the 4GL, not the
formal specifi cation language.
 Watch this space for the next round in the Z pronunciation wars.

 Z: The Elevator Problem Case Study
 In its simplest form, a Z specifi cation consists of four sections:

 1. Given sets, data types, and constants.
 2. State defi nition.
 3. Initial state.
 4. Operations.

 Each of these sections is examined in turn.

 1. Given Sets
 A Z specifi cation begins with a list of given sets , that is, sets that need not be
defi ned in detail. The names of any such sets appear in brackets. For the elevator
problem case study, the given set will be called Button, the set of all buttons. The Z
specifi cation therefore begins

 [Button]

 2. State Defi nition
 A Z specifi cation consists of a number of schemata (plural of schema). Each schema
consists of a group of variable declarations together with a list of predicates that
constrain the possible values of the variables. The format of a schema S is shown in
 Figure 12.25 .
 In the elevator problem case study, there are four subsets of Button: the fl oor
buttons, the elevator buttons, buttons (the set of all buttons in the elevator problem
case study), and pushed (the set of those buttons that have been pushed and there-
fore are on). Figure 12.26 depicts the schema Button_State , a state defi nition .

12.9.112.9.1
Case Study

sch76183_ch12_360-403.indd 388sch76183_ch12_360-403.indd 388 07/06/10 11:39 AM07/06/10 11:39 AM

The symbol P denotes the power set (the set of all subsets of a given set). The con-
straints, that is, the statements below the horizontal line, assert that the set of fl oor_
buttons and elevator_buttons are disjoint and that together they constitute the set of
buttons. (The sets fl oor_buttons and elevator_buttons are not needed in what fol-
lows; they are included in Figure 12.26 only to demonstrate the power of Z.)

 3. Initial State
 The abstract initial state describes the state when the system fi rst is turned on. The
abstract initial state for the elevator problem case study is

 Button_Init ̂= [Button_State ′ | pushed′ = ∅]

 This is a vertical schema defi nition , as opposed to a horizontal schema defi -
nition , such as Figure 12.26 . The vertical schema asserts that, when the elevator system
is fi rst turned on, the set pushed initially is empty; that is, all the buttons are off.

 4. Operations
 If a button is pushed for the fi rst time, then that button is turned on. The button is added
to the set pushed. This is depicted in Figure 12.27 , in which operation Push_Button
is defi ned. The Δ in the fi rst line of the schema denotes that this operation changes the
state of Button_State . The operation has one input variable, button?. As in various
other languages (such as CSP [Hoare, 1985]), the question mark (?) denotes an input
variable, whereas an exclamation mark (!) denotes an output variable.

S
declarations

predicates

 FIGURE 12.25
 The format of Z
schema S .

Button_State
floor_buttons, elevator_buttons : P Button
buttons : P Button
pushed : P Button

floor_buttons � elevator_buttons � �

floor_buttons � elevator_buttons � buttons

 FIGURE 12.26
 The Z schema
 Button_State .

 FIGURE 12.27
 A Z specifi ca-
tion of operation
 Push_Button .

Push_Button
Button_State
button?: Button

(button? � buttons) �
(((button? � pushed) � (pushed� � pushed � {button?})) �
((button? � pushed) � (pushed� � pushed)))

Chapter 12 Classical Analysis 389

sch76183_ch12_360-403.indd 389sch76183_ch12_360-403.indd 389 07/06/10 11:39 AM07/06/10 11:39 AM

390 Part B The Workfl ows of the Software Life Cycle

 The predicate part of an operation consists of a group of preconditions that
must hold before the operation is invoked and postconditions that must hold after the
operation has completed execution. Provided the preconditions are met, the postcon-
ditions hold after completing execution. However, if the operation is invoked without
the preconditions being satisfi ed, unspecifi ed (and therefore unpredictable) results
occur.
 The fi rst precondition of Figure 12.27 states that button? must be a member
of buttons, the set of all buttons in this elevator system. If the second precondi-
tion, button? ∉ pushed, is met (that is, if the button is not on), then the set of pushed
buttons is updated to include button?. In Z, the new value of a variable is denoted
by a prime (′). Therefore, the postcondition says that, after operation Push_Button
has been performed, button? must be added to the set pushed. There is no need
to turn on the button explicitly; it is suffi cient that button? is now an element of
pushed.
 The other possibility is that an already pushed button is pushed again. Because
button? ∈ pushed, the third precondition holds 1 and, as required, nothing happens.
This is indicated by the statement pushed′ � pushed; the new state of pushed is
the same as the old state.
 Now, suppose an elevator arrives at a fl oor. If the corresponding fl oor button is
on, then it must be turned off, and similarly for the corresponding elevator button.
That is, if button? is an element of pushed, then it must be removed from the set, as
shown in Figure 12.28 . (The symbol \ denotes set difference.) However, if a button is
not on, then set pushed is unchanged.
 The solution presented in this section is an oversimplifi cation in that it does not dis-
tinguish between up and down fl oor buttons. Nevertheless, it gives an indication how Z
can be used to specify the behavior of the buttons in the elevator problem case study.

 12.9.2 Analysis of Z
 Z has been used successfully in a wide variety of projects, including CASE tools [Hall,
1990], a real-time kernel [Spivey, 1990], and an oscilloscope [Delisle and Garlan, 1990].

 FIGURE 12.28
 A Z specifi cation
of operation
 Floor_Arrival .

Floor_Arrival
Button_State
button?: Button

(button? � buttons) �
(((button? � pushed) � (pushed� � pushed \ {button?})) �
((button? � pushed) � (pushed� � pushed)))

 1 Without the third precondition, the specifi cation would not state what is to happen if a button that has already
been pushed is pushed again. The results would then be unspecifi ed.

sch76183_ch12_360-403.indd 390sch76183_ch12_360-403.indd 390 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 391

Z has also been used to specify large portions of a release of CICS, the IBM transaction-
processing system [Nix and Collins, 1988].
 These successes perhaps are somewhat surprising, in view of the fact that, even for the
simplifi ed version of the elevator problem case study, it is clear that Z is not straightfor-
ward to use. First is the problem caused by the notation; a new user has to learn the set
of symbols and their meanings before being able to read Z specifi cations, let alone write
them. Second, not every software engineer has the required training in mathematics to be
able to use Z (although recent graduates of almost all computer science programs either
know enough mathematics to use Z or could learn what they still need to know with little
diffi culty).
 Z perhaps is the most widely used formal language of its type. Why is this, and why
has Z been so successful, especially on large-scale projects? A number of different reasons
have been put forward:

• It has been found that it is easy to fi nd faults in specifi cations written in Z, especially
during inspections of the specifi cations themselves and inspections of designs or code
against the formal specifi cations [Nix and Collins, 1988; Hall, 1990].

• Writing Z specifi cations requires the specifi er to be extremely precise; as a result of this
need for exactness, there appear to be fewer ambiguities, contradictions, and omissions
than with informal specifi cations.

• As a formal language, Z allows developers to prove specifi cations correct when neces-
sary. Accordingly, although some organizations rarely do any correctness proving of Z,
such proofs have been done, even for such practical specifi cations as the CICS storage
manager [Woodcock, 1989].

• It has been suggested that software professionals with only high-school mathematics
can be taught to write Z specifi cations in a relatively short period of time [Hall, 1990].
Clearly such individuals cannot prove the resulting specifi cations to be correct, but then
formal specifi cations do not necessarily have to be proven to be correct.

• The use of Z has decreased the cost of software development. No doubt more time has
to be spent on the specifi cations themselves than when informal techniques are used, but
the overall time for the complete development process is decreased.

• The problem that the client cannot understand specifi cations written in Z has been solved
in a number of ways, including rewriting the specifi cations in natural language. The
resulting natural language specifi cations have been found to be clearer than informal
specifi cations constructed from scratch. (This also was the experience with Meyer’s
English paraphrase of his formal specifi cation for Naur’s text-processing problem,
described in Section 12.2.1.)

 The bottom line is that, notwithstanding the arguments to the contrary, Z has been suc-
cessfully used in the software industry for a number of large-scale projects. Although the
vast majority of specifi cations continue to be written in languages considerably less formal
than Z, there is a growing global trend toward the use of formal specifi cations. The use of
such formal specifi cations traditionally has been largely a European practice. However,
more and more organizations in the United States are employing formal specifi cations of
one sort or another. The extent to which Z and similar languages will be used in the future
remains to be seen.

sch76183_ch12_360-403.indd 391sch76183_ch12_360-403.indd 391 07/06/10 11:39 AM07/06/10 11:39 AM

392 Part B The Workfl ows of the Software Life Cycle

 12.10 Other Formal Techniques
 Many other formal techniques have been proposed. These techniques are extremely varied.
For example, Anna [Luckham and von Henke, 1985] is a formal specifi cation language
for Ada. Some formal techniques are knowledge based, such as Gist [Balzer, 1985]. Gist
was designed so users could describe processes in a way as close as possible to the way
we think about processes. This was to be achieved by formalizing the constructs used in
natural languages. In practice, Gist specifi cations are as hard to read as most other formal
specifi cations, so much so that a paraphraser from Gist to English has been implemented.
 Vienna defi nition method (VDM) [Jones, 1986b] is a technique based on denota-
tional semantics [Gordon, 1979]. The VDM can be applied, not just to the specifi cations,
but also to the design and implementation. The VDM has been used successfully in a num-
ber of projects, most spectacularly in the Dansk Datamatik Center development of the
DDC Ada Compiler System [Oest, 1986].
 A different way of looking at specifi cations is to view them in terms of sequences of
events, where an event is either a simple action or a communication that transfers data into
or out of the system. For example, in the elevator problem case study, one event consists of
pushing the elevator button for fl oor f on elevator e and its resulting illumination. Another
event is elevator e leaving fl oor f in a downward direction and canceling the illumination of
the corresponding fl oor button. The language Communicating Sequential Processes
(CSP), invented by Hoare [1985], is based on the idea of describing the behavior of a
system in terms of such events. In CSP, a process is described in terms of the sequences
of events in which the process engages with its environment. Processes interact with each
other by sending messages to one another. CSP allows processes to be combined in a wide
variety of ways, such as sequentially, in parallel, or interleaved nondeterministically.
 The power of CSP lies in the executable nature of CSP specifi cations [Delisle and
Schwartz, 1987]; as a result, they can be checked for internal consistency. In addition,
CSP provides a framework for going from specifi cations to design to implementation in
a sequence of steps that preserve validity. In other words, if the specifi cations are correct
and the transformations are performed correctly, then the design and implementation are
correct as well. Going from design to implementation is particularly straightforward if the
implementation language is Ada.
 However, CSP also has its weaknesses. In particular, like Z, it is not an easy language
to learn. An attempt was made to include a CSP specifi cation for the elevator problem case
study [Schwartz and Delisle, 1987] in this book. But the quantity of essential prelimi-
nary material and the level of detail of explanation needed to describe each CSP statement
adequately were simply too great to permit inclusion in a book as general as this one.
The relationship between the power of a specifi cation language and its diffi culty of use is
expanded in Section 12.11.

 12.11 Comparison of Classical Analysis Techniques
 The main lesson of this chapter is that every development organization has to decide what
type of specifi cation language is appropriate for the product about to be developed. An
informal technique is easy to learn but lacks the power of a semiformal or formal technique.

sch76183_ch12_360-403.indd 392sch76183_ch12_360-403.indd 392 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 12 Classical Analysis 393

Conversely, each formal technique supports a variety of features that may include execut-
ability, correctness proving, or transformability to design and implementation through a
series of correctness-preserving steps. Although generally the more formal the technique,
the greater its power, formal techniques can be diffi cult to learn and use. Also, a formal
specifi cation can be diffi cult for the client to understand. In other words, there is a trade-off
between ease of use and the power of a specifi cation language.
 In some circumstances, the choice of specifi cation language type is easy. For example, if the
vast majority of the members of the development team have no training in computer science,
then it is virtually impossible to use anything other than an informal or semiformal specifi ca-
tion technique. Conversely, where a mission-critical real-time system is being built in a re-
search laboratory, the power of a formal specifi cation technique almost certainly is required.
 An additional complicating factor is that many of the newer formal techniques have not
been tested under practical conditions. Considerable risk is involved in using such a technique.
Large sums of money are needed to pay for training the relevant members of the development
team, and more money will be spent while the team adjusts from using the language in the
classroom to using it on the actual project. Furthermore, the language’s supporting software
tools might not work properly, as happened with SREM [Scheffer, Stone, and Rzepka, 1985],
resulting in additional expense and time slippage. But, if everything works and the software
project management plan takes into account the additional time and money needed when a
new technology is used on a nontrivial project for the fi rst time, huge gains are possible.
 Which analysis technique should be used for a specifi c project? It depends on the proj-
ect, the development team, the management team, and myriad other factors, such as the
client insisting that a specifi c method be used (or not used). As with so many other aspects
of software engineering, trade-offs have to be made. Unfortunately, there is no simple rule
for deciding which analysis technique to use.
 Figure 12.29 is a summary of the ideas of this section.

 12.12 Testing during Classical Analysis
 During classical analysis, the functionality of the proposed product is expressed precisely
in the specifi cation document. It is vital to verify that the specifi cation document is correct.
One way to do this is by means of a walkthrough of the document (Section 6.2.1).
 A more powerful mechanism for detecting faults in specifi cation documents is an
inspection (Section 6.2.3). A team of inspectors reviews the specifi cations against a check-
list. Typical items on a specifi cation inspection checklist are these: Have the required hard-
ware resources been specifi ed? Have the acceptance criteria been specifi ed?
 Inspections were suggested fi rst by Fagan [1976] in the context of testing the design and
the code. Fagan’s work is described in detail in Section 6.2.3. However, inspections also
have proven to be of considerable use in testing specifi cations. For example, Doolan [1992]
used inspections to validate the specifi cations of a product that, when built, consisted of
over 2 million lines of Fortran. From data on the cost of fi xing faults in the product, he
could deduce that each hour invested in inspections saved 30 hours of execution-based fault
detection and correction.
 When a specifi cation has been drawn up using a formal technique, other testing tech-
niques can be applied. For example, correctness-proving methods (Section 6.5) can be
employed. Even if formal proofs are not performed, informal proof techniques such as

sch76183_ch12_360-403.indd 393sch76183_ch12_360-403.indd 393 07/06/10 11:39 AM07/06/10 11:39 AM

394 Part B The Workfl ows of the Software Life Cycle

those used in Section 6.5.1 can be an extremely useful way of highlighting specifi cation
faults. In fact, the product and its proof should be developed in parallel. In this way, faults
are detected quickly.

 12.13 CASE Tools for Classical Analysis

 Two classes of CASE tools are particularly helpful during classical analysis. The fi rst is
a graphical tool. Whether a product is represented using data fl ow diagrams, Petri nets,
entity-relationship diagrams, or any of the many other representations omitted from this
book simply for reasons of space, drawing the entire product by hand is a lengthy process.
In addition, making substantial changes can result in having to redraw everything from
scratch. A drawing tool therefore is a great time saver. Tools of this type exist for the analy-
sis techniques described in this chapter, as well as many other graphical representations for
specifi cations. A second tool needed during this phase is a data dictionary. As described in
Section 5.7 and summarized in Section 10.8, this tool stores the name and representation
(format) of every component of every data item in the product, including data fl ows and
their components, data stores and their components, and processes (operations) and their
internal variables. (Figure 12.5 shows typical information that would be stored in a data
dictionary for Sally’s Software Shop.) Again, a wide selection of data dictionaries run on a
variety of hardware–operating system combinations.
 What really is needed is not a separate graphical tool and a separate data dictionary.
Instead, the two tools should be integrated, so that any change made to a data component is

 FIGURE 12.29
 A summary of
the classical
analysis
methods
discussed in
this chapter and
the section in
which each is
described.

 Classical Analysis Method Category Strengths Weaknesses

 Natural language Informal Easy to learn Imprecise
 (Section 12.2) Easy to use Specifi cations can be
 Easy for the client ambiguous, contradictory,
 to understand or incomplete

 Entity-relationship modeling Semiformal Can be understood by Not as precise as formal
 (Section 12.6) the client techniques
PSL/PSA (Section 12.5) More precise than Generally cannot handle
SADT (Section 12.5) informal timing
SREM (Section 12.5) techniques
Structured systems analysis
 (Section 12.3)

 Anna (Section 12.10) Formal Extremely precise Hard for the development
CSP (Section 12.10) Can reduce analysis team to learn
Extended fi nite state faults Hard to use
 machines (Section 12.7) Can reduce Almost impossible for most
Gist (Section 12.10) development cost clients to understand
Petri nets (Section 12.8) and effort
VDM (Section 12.10) Can support
Z (Section 12.9) correctness proving

sch76183_ch12_360-403.indd 394sch76183_ch12_360-403.indd 394 07/06/10 11:39 AM07/06/10 11:39 AM

refl ected automatically in the corresponding part of the specifi cation document. Among the
many examples of this type of tool are Analyst/Designer, Software through Pictures, and
System Architect. Furthermore, many such tools also incorporate an automatic consistency
checker that ensures consistency between the specifi cation document and the correspond-
ing design document. For example, it is possible to check that every item in the specifi ca-
tion document is carried forward to the design document and that everything mentioned in
the design has been declared in the data dictionary.
 An analysis technique is unlikely to receive widespread acceptance unless a tool-rich
CASE environment supports that technique. For example, SREM (Section 12.5) probably
would be used far more widely today had REVS, its associated CASE tool set, performed bet-
ter in the U.S. Air Force tests [Scheffer, Stone, and Rzepka, 1985]. It is not easy to specify a
system correctly, even for experienced software professionals. It is only reasonable to provide
specifi ers with a set of state-of-the-art CASE tools to assist them in every way possible.

 12.14 Metrics for Classical Analysis
 As in all other phases, during classical analysis it is necessary to measure the fi ve fun-
damental metrics: size, cost, duration, effort, and quality. One measure of the size of a
specifi cation is the number of pages in the specifi cation document. If the same technique is
used to specify a number of similar products, then differences in specifi cation size may be
signifi cant predictors of the effort needed to build the various products.
 Turning to quality, a vital aspect of specifi cation inspections is the record of fault statis-
tics. Noting the number of faults of each type found during an inspection is an integral part
of the inspection process. Also, the rate at which faults are detected can give a measure of
the effi ciency of the inspection process.
 Metrics for predicting the size of the target product include the number of items in the data
dictionary. Several different counts should be taken, including the number of fi les, data items,
and processes (operations). This information can give management a preliminary estimate
regarding the effort required to build the product. It is important to note that this information
is tentative at best. After all, during the classical design phase, a process in a DFD may be
broken down into a number of different modules. Conversely, a number of processes together
may constitute a single module. Nevertheless, metrics derived from the data dictionary can
give management an early clue as to the eventual size of the target product.

12.1512.15
Case Study

 Software Project Management Plan: The MSG
Foundation Case Study
 Now that the specifi cations are complete, the software project management plan
(SPMP) is drawn up, including estimates of cost and duration (see Chapter 9). Ap-
pendix F contains a software project management plan for development of the MSG
Foundation product by a small (three-person) software organization. This plan fi ts the
IEEE SPMP format (Section 9.5).

Chapter 12 Classical Analysis 395

sch76183_ch12_360-403.indd 395sch76183_ch12_360-403.indd 395 07/06/10 11:39 AM07/06/10 11:39 AM

 12.16 Challenges of Classical Analysis
 A repeated theme of this chapter is that a specifi cation document must be simultaneously
informal enough for the client to understand and formal enough for the development team
to use as the sole description of the product to be built. A major challenge of classical
analysis is to resolve this contradiction. There are no easy answers. On the contrary, a per-
manent confl ict lies between the two competing objectives, and the development team must
simply do its best to steer safely between Scylla and Charybdis.
 A second challenge of classical analysis is that the boundary line between analysis (what)
and design (how) is all too easy to cross. The specifi cation document should describe what
the product must do; it must never say how the product is to do it. For example, suppose that
the client requires a response time of no more than 0.05 seconds whenever a certain network
routing computation is performed. The specifi cation document should state exactly this—and
nothing more. In particular, the specifi cation document should not state which algorithm
must be used to achieve this response time. That is, a specifi cation document has to list all
constraints, but it must never state how those constraints are to be achieved.
 Another example of this potential pitfall arises from data fl ow diagrams (Section 12.3.1).
A box with rounded ends denotes a process; it does not denote a module. As explained in
Section 12.14, a process in a DFD may be broken down into a number of different modules
and, conversely, a number of processes may be combined into a single module. The key
point is that this refi nement of processes into modules must take place during the classical
design phase, not the classical analysis phase. The specifi cation document has to describe
the operations of the target process. It must never specify how those operations are to be
implemented, not even the modules to which each is assigned. The design team’s task is
to study the specifi cations as a whole and decide on a design that will result in an optimal
implementation of those specifi cations; this is described in Chapter 14 . Until the product
as a whole has been decomposed into modules, it is premature to try to assign operations
to specifi c modules; the result is almost certain to be suboptimal.

 Specifi cations (Section 12.1) can be expressed informally (Section 12.2), semiformally (Sections 12.3
through 12.5), or formally (Sections 12.6 through 12.10).
 The major theme of this chapter is that informal techniques are easy to use but imprecise; this is
demonstrated by a mini case study (Section 12.2.1). Conversely, formal techniques are powerful but
require a nontrivial investment in training time (Section 12.11). One semiformal technique, Gane
and Sarsen’s structured systems analysis, is described in some detail (Section 12.3), followed by its
application to the MSG Foundation case study (Section 12.4). Other semiformal techniques are then
described (Section 12.5), including entity-relationship modeling (Section 12.6). Formal techniques
presented in this chapter include fi nite state machines (Section 12.7), Petri nets (Section 12.8), and
Z (Section 12.9). Other formal techniques are outlined in Section 12.10. Material on specifi cation
reviews appears in Section 12.12. Next follows a description of CASE tools (Section 12.13) and
metrics (Section 12.14) for classical analysis. The software project management plan for the MSG
Foundation case study (Section 12.15) is presented next. The chapter ends with a discussion of the
challenges of classical analysis (Section 12.16).
 An overview of the MSG Foundation case study for Chapter 12 appears in Figure 12.30 , and for
the elevator problem in Figure 12.31 .

 Chapter
Review

396 Part B The Workfl ows of the Software Life Cycle

sch76183_ch12_360-403.indd 396sch76183_ch12_360-403.indd 396 07/06/10 11:39 AM07/06/10 11:39 AM

 The classic texts on structured systems analysis are the books by DeMarco [1978], Gane and Sarsen
[1979], and Yourdon and Constantine [1979]. These ideas have been updated in [Modell, 1996]. SADT
is described in [Ross, 1985], and PSL/PSA is described in [Teichroew and Hershey, 1977]. Two sources
of information on SREM are [Alford, 1985] and [Scheffer, Stone, and Rzepka, 1985].
 Six formal techniques are described in [Wing, 1990]. An outstanding collection of papers on
formal techniques can be found in the September 1990 issues of IEEE Transactions on Software
Engineering, IEEE Computer , IEEE Software, and ACM SIGSOFT Software Engineering Notes . Of
particular interest is [Hall, 1990]; the paper should be read in its entirety. [Bowen and Hinchey,
1995b] is a sequel to Hall’s seminal article, and [Bowen and Hinchey, 1995a] is a list of guidelines for
use of formal techniques. Additional articles on formal techniques can be found in the August 2000
issue of IEEE Transactions on Software Engineering . An empirical study comparing different types
of formal techniques is presented in [Sobel and Clarkson, 2002]. Haxthausen and Peleska [2000]
have applied formal verifi cation to a distributed railway control system. Palshikar [2001] describes
the practical use of formal specifi cations in real-world software development. Hall and Chapman
[2002] describe the construction of a commercial secure system using formal techniques. Three dif-
ferent attitudes to formal methods appear in [Hinchey et al., 2008].
 An early reference to the fi nite state machine approach is [Naur, 1964], where unfortunately it is referred
to as the Turing machine approach . Statecharts are a powerful extension of FSMs; they are described in
[Harel et al., 1990]. Object-oriented extensions of statecharts appear in [Harel and Gery, 1997].
 [Peterson, 1981] is an excellent introduction to Petri nets and their applications. The use of Petri
nets in prototyping is described in [Bruno and Marchetto, 1986]. Timed Petri nets are described in
[Coolahan and Roussopoulos, 1983].
 With regard to Z, [Diller, 1994] is a good introductory text. For the reference manual with full
details about the specifi cation language, see [Spivey, 2001]. Using the results of an experiment in
reading Z specifi cations, Finney [1996] questions whether Z specifi cations are as easy to read as has
been claimed by some Z proponents.
 The proceedings of the International Workshops on Software Specifi cation and Design are a pre-
eminent source for research ideas regarding specifi cations.

 For
Further
Reading

 FIGURE 12.30
 Overview
of the MSG
Foundation
case study for
Chapter 12.

 Structured systems analysis Section 12.4,
 Appendix D

 Data fl ow diagram Figure 12.9

 Software project management plan Section 12.15,
 Appendix F

 FIGURE 12.31
 Overview of
the elevator
problem case
study for
Chapter 12.

 Requirements Section 12.7.1

 Finite state machine analysis Section 12.7.1

 Petri net analysis Section 12.8.1

 Z analysis Section 12.9.1

Chapter 12 Classical Analysis 397

sch76183_ch12_360-403.indd 397sch76183_ch12_360-403.indd 397 07/06/10 11:39 AM07/06/10 11:39 AM

 Key Terms abstract initial state 389
 Anna 392
 bag 383
 Communicating Sequential

Processes (CSP) 392
 constraint 360
 data fl ow 365
 data fl ow diagram (DFD) 365
 data immediate-access

diagram (DIAD) 370
 data store 365
 enable 384
 entity-relationship modeling

(ERM) 374
 event 377
 extended fi nite state

machine 378
 fi nal state 377
 fi nite state machine (FSM) 376
 formal specifi cation 376
 Gist 392
 given set 388

 horizontal schema
defi nition 389

 informal specifi cation 362
 inhibitor arc 385
 initial state 377
 input 377
 input function 383
 logical data fl ow 365
 marked Petri net 384
 marking 384
 multiset 383
 natural language 362
 operation 390
 output function 383
 Petri net 383
 place 383
 predicate 377
 process 365
 PSL/PSA 373
 SADT 374
 schema 388
 semiformal specifi cation 373

 solution strategy 361
 source or destination

of data 365
 specifi cation

document 360
 SREM 374
 state 377
 state defi nition 388
 state transition

diagram (STD) 376
 structural analysis (SA) 374
 structured systems

analysis 365
 token 384
 transition 383
 transition function 377
 transition rule 377
 vertical schema

defi nition 389
 Vienna defi nition method

(VDM) 392
 Z 387

 Case Study
Key Terms

 button 378
 door 381
 elevator 378

 elevator button 378
 elevator controller 380
 fl oor button 378

 illumination 379
 timeout 380

 12.1 Why should the following constraints not appear in a specifi cation document?

 (i) The product must signifi cantly reduce transportation expenses that arise from distributing
our beer in central Queensland.

 (ii) The credit card database must be set up at a reasonable cost.

 12.2 Why is it so important that the specifi cation document should have no omissions, contradic-
tions, or ambiguities?

 12.3 Consider the following recipe for grilled pockwester. Ingredients:

 Problems

 1 large onion

 1 can of frozen orange juice

 Freshly squeezed juice of 1 lemon

 1 cup bread crumbs

 Flour

 Milk
 3 medium-sized shallots

 2 medium-sized eggplants

 1 fresh pockwester

 1/2 cup Pouilly Fuissé

 1 garlic

 Parmesan cheese

 4 free-range eggs

 The night before, take one lemon, squeeze it, strain the juice, and freeze it. Take one large onion
and three shallots, dice them, and grill them in a skillet. When clouds of black smoke start to
come off, add 2 cups of fresh orange juice. Stir vigorously. Slice the lemon into paper-thin

398 Part B The Workfl ows of the Software Life Cycle

sch76183_ch12_360-403.indd 398sch76183_ch12_360-403.indd 398 07/06/10 11:39 AM07/06/10 11:39 AM

slices and add to the mixture. In the meantime, coat the mushrooms in fl our, dip them in milk,
and then shake them in a paper bag with the bread crumbs. In a saucepan, heat 1/2 cup of
Pouilly Fuissé. When it reaches 170°, add the sugar and continue to heat. When the sugar has
caramelized, add the mushrooms. Blend the mixture for 10 minutes or until all lumps have
been removed. Add the eggs. Now take the pockwester, and kill it by sprinkling it with frobs.
Skin the pockwester, break it into bite-sized chunks, and add it to the mixture. Bring to a boil
and simmer, uncovered. The eggs previously should have been vigorously stirred with a wire
whisk for 5 minutes. When the pockwester is soft to the touch, place it on a serving platter,
sprinkle with Parmesan cheese, and broil for not more than 4 minutes.

 Determine the ambiguities, omissions, and contradictions in the preceding specifi cation.
(For the record, a pockwester is an imaginary sort of fi sh and frobs is slang for generic hors
d’oeuvres.)

 12.4 Correct the specifi cation paragraph of Section 12.2 to refl ect the client’s wishes more accurately.

 12.5 Use mathematical formulas to represent the specifi cation paragraph of Section 12.2. Compare
your answer with your answer to Problem 12.4.

 12.6 What are the strengths of informal specifi cations?

 12.7 What are the weaknesses of informal specifi cations?

 12.8 Write a precise English specifi cation for the product to determine whether a bank statement is
correct (Problem 8.8).

 12.9 Draw a data fl ow diagram for the specifi cation you drew up for Problem 12.8. Ensure that your
DFD simply refl ects the fl ow of data and that no assumptions regarding computerization have
been made.

 12.10 Consider the automated library circulation system of Problem 8.7. Write down precise speci-
fi cations for the library circulation system.

 12.11 Draw a data fl ow diagram showing the operation of the library circulation system of Problem 8.7.

 12.12 Complete the specifi cation document for the library circulation system of Problem 8.7 using
Gane and Sarsen’s technique. Where data have not been specifi ed (for example, the total num-
ber of books checked in and out each day), make your own assumptions, but make sure that
they are indicated clearly.

 12.13 A fi xed-point binary number consists of an optional sign followed by one or more bits, fol-
lowed by a binary point, followed by one or more bits. Examples of fi xed-point binary num-
bers include

 11010.1010, �0.000001, and �1101101.0

 More formally, this can be expressed as

 <fi xed-point binary> ::� [<sign>] <bitstring> <binary point> <bitstring>
 <sign> ::� � | �
 <bitstring> ::� <bit> [<bitstring>]
 <binary point> ::� .
 <bit> ::� 0 | 1
 (The notation [. . .] denotes an optional item, and a | b denotes a or b.)

 Specify a fi nite state machine that will take as input a string of characters and determine
whether or not that string constitutes a valid fi xed-point binary number.

 12.14 A fl oating-point binary number consists of an optional sign followed by one or more bits, fol-
lowed by the letter E, followed by another optional sign, followed by one or more bits. Examples
of fl oating-point binary numbers include 11010E–1010, –100101E11101, and +1E0.

Chapter 12 Classical Analysis 399

sch76183_ch12_360-403.indd 399sch76183_ch12_360-403.indd 399 07/06/10 11:39 AM07/06/10 11:39 AM

 More formally, this can be expressed as

 <fl oating-point binary> ::� [<sign>] <bitstring> E [<sign>] <bitstring>
 <sign> ::� � | �
 <bitstring> ::� <bit> [<bitstring>]
 <bit> ::� 0 | 1
 (The notation [. . .] denotes an optional item, and a | b denotes a or b.)

 Specify a fi nite state machine that will take as input a string of characters and determine
whether that string constitutes a valid fl oating-point binary number.

 12.15 Use the fi nite state machine approach to specify the library circulation system of Problem 8.7.

 12.16 Show how your solution to Problem 12.15 can be used to design and implement a menu-driven
product for the library circulation system (Problem 8.7).

 12.17 Use a Petri net to specify the circulation of a single book through the library of Problem 8.7.
Include operations H , C , and R in your specifi cation.

 12.18 You are a software engineer working for a large company that specializes in computerizing
library systems. Your manager asks you to specify the complete library circulation system of
Problem 8.7 using Z. What is your reaction?

 12.19 Why are many software organizations reluctant to use formal specifi cations?

 12.20 (Term Project) Using the technique specifi ed by your instructor, draw up a specifi cation docu-
ment for the Chocoholics Anonymous product described in Appendix A.

 12.21 (Term Project) Draw up a software project management plan for the Chocoholics Anonymous
product described in Appendix A.

 12.22 (Case Study) Draw up the requirements of the MSG Foundation product using the fi nite state
machine approach.

 12.23 (Case Study) Use the Petri net technique to specify the states through which a married couple
in the MSG Foundation product passes.

 12.24 (Case Study) Specify a portion of the MSG Foundation product using the Z constructs of
Section 12.9.

 12.25 (Case Study) The software project management plan of Section 12.15 is for a small software
engineering organization consisting of three software engineers. Modify the plan so that it is
appropriate for a medium-sized organization with over 1000 software engineers.

 12.26 (Case Study) In what way would the software project management plan of Section 12.15 have
to be modifi ed if the MSG Foundation product had to be completed in only 8 weeks?

 12.27 (Readings in Software Engineering) Your instructor will distribute copies of [Hinchey et al.,
2008]. For each of the three principal co-authors (Jackson, Cousot, and Cook), state whether
or not you agree with their views, giving careful reasons for your answers.

 [Abrial, 1980] J.-R. ABRIAL , “The Specifi cation Language Z: Syntax and Semantics,” Oxford University
Computing Laboratory, Programming Research Group, Oxford, UK, April 1980.

 [Alford, 1985] M. ALFORD , “SREM at the Age of Eight; The Distributed Computing Design System,”
 IEEE Computer 18 (April 1985), pp. 36–46.

 [Balzer, 1985] R. BALZER , “A 15 Year Perspective on Automatic Programming,” IEEE Transactions
on Software Engineering SE-11 (November 1985), pp. 1257–68.

 [Banks, Carson, Nelson, and Nichol, 2010] J. BANKS , J. S. CARSON , B. L. NELSON, AND D. M. NICHOL ,
 Discrete-Event System Simulation, 5th ed., Prentice Hall, Upper Saddle River, NJ, 2010.

 References

400 Part B The Workfl ows of the Software Life Cycle

sch76183_ch12_360-403.indd 400sch76183_ch12_360-403.indd 400 07/06/10 11:39 AM07/06/10 11:39 AM

 [Bowen and Hinchey, 1995a] J. P. BOWEN AND M. G. HINCHEY , “Ten Commandments of Formal
Methods,” IEEE Computer 28 (April 1995), pp. 56–63.

 [Bowen and Hinchey, 1995b] J. P. BOWEN AND M. G. HINCHEY , “Seven More Myths of Formal Meth-
ods,” IEEE Software 12 (July 1995), pp. 34–41.

 [Brady, 1977] J. M. BRADY , The Theory of Computer Science , Chapman and Hall, London, 1977.

 [Bruno and Marchetto, 1986] G. BRUNO AND G. MARCHETTO , “Process-Translatable Petri Nets for
the Rapid Prototyping of Process Control Systems,” IEEE Transactions on Software Engineering
 SE-12 (February 1986), pp. 346–57.

 [Chen, 1976] P. CHEN , “The Entity-Relationship Model—Towards a Unifi ed View of Data,” ACM
Transactions on Database Systems 1 (March 1976), pp. 9–36.

 [Coolahan and Roussopoulos, 1983] J. E. COOLAHAN, JR., AND N. ROUSSOPOULOS , “Timing Require-
ments for Time-Driven Systems Using Augmented Petri Nets,” IEEE Transactions on Software
Engineering SE-9 (September 1983), pp. 603–16.

 [Dart, Ellison, Feiler, and Habermann, 1987] S. A. DART , R. J. ELLISON , P. H. FEILER, AND A. N.
 HABERMANN , “Software Development Environments,” IEEE Computer 20 (November 1987),
pp. 18–28.

 [Delisle and Garlan, 1990] N. DELISLE AND D. GARLAN , “A Formal Description of an Oscilloscope,”
 IEEE Software 7 (September 1990), pp. 29–36.

 [Delisle and Schwartz, 1987] N. DELISLE AND M. SCHWARTZ , “A Programming Environment for CSP,”
Proceedings of the Second ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, ACM SIGPLAN Notices 22 (January 1987), pp. 34–41.

 [DeMarco, 1978] T. DEMARCO , Structured Analysis and System Specifi cation , Yourdon Press, New
York, 1978.

 [Diller, 1994] A. DILLER , Z: An Introduction to Formal Methods , 2nd ed., John Wiley and Sons,
Chichester, UK, 1994.

 [Doolan, 1992] E. P. DOOLAN , “Experience with Fagan’s Inspection Method,” Software—Practice and
Experience 22 (February 1992), pp. 173–82.

 [Fagan, 1976] M. E. FAGAN , “Design and Code Inspections to Reduce Errors in Program Develop-
ment,” IBM Systems Journal 15 (No. 3, 1976), pp. 182–211.

 [Finney, 1996] K. FINNEY , “Mathematical Notation in Formal Specifi cation: Too Diffi cult for the
Masses?” IEEE Transactions on Software Engineering 22 (1996), pp. 158–59.

 [Gane and Sarsen, 1979] C. GANE AND T. SARSEN , Structured Systems Analysis: Tools and Techniques ,
Prentice Hall, Englewood Cliffs, NJ, 1979.

 [Ghezzi and Mandrioli, 1987] C. GHEZZI AND D. MANDRIOLI , “On Eclecticism in Specifi cations: A
Case Study Centered around Petri Nets,” Proceedings of the Fourth International Workshop on
Software Specifi cation and Design , Monterey, CA, IEEE, 1987, pp. 216–24.

 [Goodenough and Gerhart, 1975] J. B. GOODENOUGH AND S. L. GERHART , “Toward a Theory of Test
Data Selection,” Proceedings of the Third International Conference on Reliable Software , Los
Angeles, IEEE, 1975, pp. 493–510; also published in: IEEE Transactions on Software Engineering
 SE-1 (June 1975), pp. 156–73. Revised version: J. B. Goodenough, and S. L. Gerhart, “Toward a
Theory of Test Data Selection: Data Selection Criteria,” in: Current Trends in Programming Meth-
odology, Vol. 2, R. T. Yeh (Editor), Prentice Hall, Englewood Cliffs, NJ, 1977, pp. 44–79.

 [Gordon, 1979] M. J. C. GORDON , The Denotational Description of Programming Languages: An
Introduction , Springer-Verlag, New York, 1979.

 [Guha, Lang, and Bassiouni, 1987] R. K. GUHA , S. D. LANG, AND M. BASSIOUNI , “Software Specifi ca-
tion and Design Using Petri Nets,” Proceedings of the Fourth International Workshop on Software
Specifi cation and Design , Monterey, CA, IEEE, April 1987, pp. 225–30.

Chapter 12 Classical Analysis 401

sch76183_ch12_360-403.indd 401sch76183_ch12_360-403.indd 401 07/06/10 11:39 AM07/06/10 11:39 AM

 [Hall, 1990] A. HALL , “Seven Myths of Formal Methods,” IEEE Software 7 (September 1990), pp.
11–19.

 [Hall and Chapman, 2002] A. HALL AND R. CHAPMAN , “Correctness by Construction: Developing a
Commercial Secure System,” IEEE Software 19 (January–February 2002), pp. 18–25.

 [Harel and Gery, 1997] D. HAREL AND E. GERY , “Executable Object Modeling with Statecharts,”
 IEEE Computer 30 (July 1997), pp. 31–42.

 [Harel et al., 1990] D. HAREL , H. LACHOVER , A. NAAMAD , A. PNUELI , M. POLITI , R. SHERMAN , A.
 SHTULL-TRAURING, AND M. TRAKHTENBROT , “STATEMATE: A Working Environment for the De-
velopment of Complex Reactive Systems,” IEEE Transactions on Software Engineering 16 (April
1990), pp. 403–14.

 [Haxthausen and Peleska, 2000] A. E. HAXTHAUSEN AND J. PELESKA , “Formal Development and Veri-
fi cation of a Distributed Railway Control System,” IEEE Transactions on Software Engineering
 26 (August 2000), pp. 687–701.

 [Hinchey et al., 2008] M. HINCHEY , M. JACKSON , P. COUSOT , B. COOK , J. P. BOWEN, AND T. MARGARIA ,
“Software Engineering and Formal Methods,” Communications of the ACM 51 (September 2008),
pp. 54–59.

 [Hoare, 1985] C. A. R. HOARE , Communicating Sequential Processes , Prentice Hall International,
Englewood Cliffs, NJ, 1985.

 [IWSSD, 1986] Call for Papers, Fourth International Workshop on Software Specifi cation and
Design, ACM SIGSOFT Software Engineering Notes 11 (April 1986), pp. 94–96.

 [Jones, 1986b] C. B. JONES , Systematic Software Development Using VDM , Prentice Hall, Englewood
Cliffs, NJ, 1986.

 [Kampen, 1987] G. R. KAMPEN , “An Eclectic Approach to Specifi cation,” Proceedings of the Fourth
International Workshop on Software Specifi cation and Design , Monterey, CA, April 1987,
pp. 178–82.

 [Kleinrock and Gail, 1996] L. KLEINROCK AND R. GAIL , Queuing Systems: Problems and Solutions ,
John Wiley and Sons, New York, 1996.

 [Knuth, 1968] D. E. KNUTH , The Art of Computer Programming, Vol. I , Fundamental Algorithms ,
Addison-Wesley, Reading, MA, 1968.

 [Leavenworth, 1970] B. LEAVENWORTH , Review #19420, Computing Reviews 11 (July 1970), pp.
396–97.

 [London, 1971] R. L. LONDON , “Software Reliability through Proving Programs Correct,” Proceed-
ings of the IEEE International Symposium on Fault-Tolerant Computing, Pasadena, CA, March
1971.

 [Luckham and von Henke, 1985] D. C. LUCKHAM AND F. W. VON HENKE , “An Overview of Anna, a
Specifi cation Language for Ada,” IEEE Software 2 (March 1985), pp. 9–22.

 [Meyer, 1985] B. MEYER , “On Formalism in Specifi cations,” IEEE Software 2 (January 1985),
pp. 6–26.

 [Modell, 1996] M. E. MODELL , A Professional’s Guide to Systems Analysis , 2nd ed., McGraw-Hill,
New York, 1996.

 [Naur, 1964] P. NAUR , “The Design of the GIER ALGOL Compiler,” in: Annual Review in Automatic
Programming, Vol. 4, Pergamon Press, Oxford, UK, 1964, pp. 49–85.

 [Naur, 1969] P. NAUR , “Programming by Action Clusters,” BIT 9 (No. 3, 1969), pp. 250–58.

 [Nix and Collins, 1988] C. J. NIX AND B. P. COLLINS , “The Use of Software Engineering, Includ-
ing the Z Notation, in the Development of CICS,” Quality Assurance 14 (September 1988), pp.
103–10.

402 Part B The Workfl ows of the Software Life Cycle

sch76183_ch12_360-403.indd 402sch76183_ch12_360-403.indd 402 07/06/10 11:39 AM07/06/10 11:39 AM

 [Oest, 1986] O. N. OEST , “VDM from Research to Practice,” Proceedings of the IFIP Congress,
Information Processing ’86, IFIP, 1986, pp. 527–33.

 [Palshikar, 2001] G. K. PALSHIKAR , “Applying Formal Specifi cations to Real-World Software Devel-
opment,” IEEE Software 18 (November–December 2001), pp. 89–97.

 [Peterson, 1981] J. L. PETERSON , Petri Net Theory and the Modeling of Systems , Prentice Hall, Englewood
Cliffs, NJ, 1981.

 [Petri, 1962] C. A. PETRI , “Kommunikation mit Automaten,” Ph.D. Dissertation, University of Bonn,
Germany, 1962. [In German.]

 [Ross, 1985] D. T. ROSS , “Applications and Extensions of SADT,” IEEE Computer 18 (April 1985),
pp. 25–34.

 [Scheffer, Stone, and Rzepka, 1985] P. A. SCHEFFER , A. H. STONE III, AND W. E. RZEPKA , “A Case
Study of SREM,” IEEE Computer 18 (April 1985), pp. 47–54.

 [Schwartz and Delisle, 1987] M. D. SCHWARTZ AND N. M. DELISLE , “Specifying a Lift Control Sys-
tem with CSP,” Proceedings of the Fourth International Workshop on Software Specifi cation and
Design , Monterey, CA, April 1987, pp. 21–27.

 [Silberschatz, Galvin, and Gagne, 2002] A. SILBERSCHATZ , P. B. GALVIN, AND G. GAGNE , Operating
System Concepts, 6th ed., Addison-Wesley, Reading, MA, 2002.

 [Sobel and Clarkson, 2002] A. E. K. SOBEL AND M. R. CLARKSON , “Formal Methods Application:
An Empirical Tale of Software Development,” IEEE Transactions on Software Engineering 28
(March 2002), pp. 308–20.

 [Spivey, 1990] J. M. SPIVEY , “Specifying a Real-Time Kernel,” IEEE Software 7 (September 1990),
pp. 21–28.

 [Spivey, 2001] J. M. SPIVEY , The Z Notation: A Reference Manual , 3rd ed., spivey.oriel.ox.ac.uk/
∼mike/zrm/, 2001.

 [Teichroew and Hershey, 1977] D. TEICHROEW AND E. A. HERSHEY III, “PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information Processing Systems,” IEEE
Transactions on Software Engineering SE-3 (January 1977), pp. 41–48.

 [Wing, 1990] J. WING , “A Specifi er’s Introduction to Formal Methods,” IEEE Computer 23 (September
1990), pp. 8–24.

 [Woodcock, 1989] J. WOODCOCK , “Calculating Properties of Z Specifi cations,” ACM SIGSOFT Soft-
ware Engineering Notes 14 (July 1989), pp. 43–54.

 [Yourdon and Constantine, 1979] E. YOURDON AND L. L. CONSTANTINE , Structured Design: Funda-
mentals of a Discipline of Computer Program and Systems Design , Prentice Hall, Englewood

Cliffs, NJ, 1979.

Chapter 12 Classical Analysis 403

sch76183_ch12_360-403.indd 403sch76183_ch12_360-403.indd 403 07/06/10 11:39 AM07/06/10 11:39 AM

Chapter 13
 Object-Oriented
Analysis
 Learning Objectives

 After studying this chapter, you should be able to

 • Perform the analysis workfl ow.

 • Extract the boundary, control, and entity classes.

 • Perform functional modeling.

 • Perform class modeling.

 • Perform dynamic modeling.

 • Perform use-case realization.

 In Chapter 12 , we examined various classical analysis techniques. This chapter is the
object-oriented counterpart of Chapter 12 .
 Object-oriented analysis (OOA) is a semiformal analysis technique for the object-
oriented paradigm. In Chapter 12 , we pointed out that a number of different techniques
are used for structured systems analysis, all essentially equivalent. Similarly, well over 60
different techniques have been put forward for OOA. Again, all the techniques are largely
equivalent. The “For Further Reading” section of this chapter includes references to a wide
variety of techniques, as well as to published comparisons of different techniques.
 However, as explained in Section 3.1, today the Unifi ed Process [Jacobson, Booch, and
Rumbaugh, 1999] is almost always the methodology of choice for object-oriented software
production. For this reason, the fi rst and last parts of this chapter are devoted to the analysis
workfl ow of the Unifi ed Process.
 Object-oriented analysis is a key component of the object-oriented paradigm. When this
workfl ow is performed, the classes are extracted. The use cases and the classes are the basis

404

sch76183_ch13_404-464.indd 404sch76183_ch13_404-464.indd 404 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 405

of the object-oriented software product to be developed. (For more insight into the object-
oriented paradigm, see Just in Case You Wanted to Know Box 13.1.)

 13.1 The Analysis Workfl ow
 The analysis workfl ow of the Unifi ed Process [Jacobson, Booch, and Rumbaugh, 1999] has
two overall aims. From the viewpoint of the requirements workfl ow (the preceding workfl ow),
the aim of the analysis workfl ow is to obtain a deeper understanding of the requirements. Con-
versely, from the viewpoint of the design and implementation workfl ows (the workfl ows that
follow the analysis workfl ow), the aim of the analysis workfl ow is to describe those require-
ments in such a way that the resulting design and implementation are easy to maintain.
 The Unifi ed Process is use-case driven. During the analysis workfl ow, the use cases are
described in terms of the classes of the software product. The Unifi ed Process has three
types of classes: entity classes, boundary classes, and control classes. An entity class
models information that is long lived. In the case of a banking software product, Account
Class is an entity class because information on accounts has to stay in the software prod-
uct. For the MSG Foundation software product, Investment Class is an entity class;
again, information on investments has to be long lived.
 A boundary class models the interaction between the software product and its actors.
Boundary classes are generally associated with input and output. For example, in the MSG

 Most of the major advances in the object-oriented paradigm were made between 1990 and
1995. Because it usually takes some 15 years for new technology to become accepted, wide-
spread adoption of the object-oriented paradigm should have started no sooner than 2005.
However, the millennium bug or Y2K problem changed the expected timetable.
 In the 1960s, when computers fi rst started to be used for business on a widespread basis,
hardware was far more expensive than it is today. As a result, the vast majority of software
products of that vintage represented a date using only the last two digits for a year; the
leading 19 was understood. The problem with this scheme is that the year 00 is then inter-
preted as 1900, not 2000.
 When hardware became cheaper in the 1970s and 1980s, few managers saw any point
in spending large sums of money rewriting existing software products with four-digit dates.
After all, by the time the year 2000 arrived, it would be someone else’s problem. As a result,
 legacy systems remained year-2000 noncompliant. However, as the deadline of January 1,
2000, neared, software organizations were forced to work against the clock to fi x their soft-
ware products; there was no way to postpone the arrival of Y2K.
 Problems facing the maintenance programmers included a lack of documentation for
many legacy software products, as well as software products implemented in program-
ming languages that were now obsolete. When modifying an existing software product was
impossible, the only alternative was to start again from scratch. Some companies decided
to use COTS technology (Section 1.11). Others decided that new custom software products
were needed. For obvious reasons, managers wanted these software products to be devel-
oped using modern technology that had already been shown to be cost effective, and that
meant using the object-oriented paradigm. The Y2K problem was therefore a signifi cant
catalyst for the widespread acceptance of the object-oriented paradigm.

 Just in Case You Wanted to Know Box 13.1

sch76183_ch13_404-464.indd 405sch76183_ch13_404-464.indd 405 10/06/10 4:30 PM10/06/10 4:30 PM

406 Part B The Workfl ows of the Software Life Cycle

Foundation software product, reports have to be printed listing the investments of the
Foundation, as well as all the mortgages currently held. This means that boundary classes
 Investments Report Class and Mortgages Report Class are needed.
 A control class models complex computations and algorithms. In the case of the MSG
Foundation software product, the algorithm for estimating the funds available for the week
is a control class, namely, Estimate Funds for Week Class .
 The UML notation for these three types of classes is shown in Figure 13.1 . These are
 stereotypes , that is, extensions of UML. A strength of UML is that it allows additional
constructs to be defi ned that are not part of UML but may be needed to model a specifi c
system accurately.
 As stated at the beginning of this section, during the analysis workflow, the use
cases are described in terms of the classes of the software product. The Unified Pro-
cess itself does not describe how classes are to be extracted because users of the
Unified Process are expected to have a background in object-oriented analysis and
design. Accordingly, this discussion of the Unified Process is temporarily suspended
so that an explanation can be given of how classes are extracted; we return to the Uni-
fied Process in Section 13.15.
 Entity classes, that is, classes that model long-lived information, are considered fi rst.

 13.2 Extracting the Entity Classes
 Entity class extraction consists of three steps that are carried out iteratively and incrementally:

 1. Functional modeling . Present scenarios of all the use cases (a scenario is an instance
of a use case).

 2. Entity class modeling . Determine the entity classes and their attributes. Then, deter-
mine the interrelationships and interactions between the entity classes. Present this
information in the form of a class diagram.

 3. Dynamic modeling . Determine the operations performed by or on each entity class
or subclass. Present this information in the form of a statechart.

 However, as with all iterative and incremental processes, the three steps are not neces-
sarily always performed in this order; a change in one model frequently triggers corre-
sponding revisions of the other two models.
 To show how this is done, we now extract the entity classes of the elevator problem
case study.

Boundary Class Control ClassEntity Class

 FIGURE 13.1 UML stereotypes (extensions of UML)
for representing an entity class, a boundary class, and a
control class.

sch76183_ch13_404-464.indd 406sch76183_ch13_404-464.indd 406 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 407

13.313.3
 Case Study

Object-Oriented Analysis:
The Elevator Problem Case Study
 The elevator problem case study is described in Chapter 12 . For ease of reference, the
problem is repeated here.
 A product is to be installed to control n elevators in a building with m fl oors. The
problem concerns the logic required to move elevators between fl oors according to
the following constraints:

 1. Each elevator has a set of m buttons, one for each fl oor. These illuminate when
pressed and cause the elevator to visit the corresponding fl oor. The illumination is
canceled when the corresponding fl oor is visited by the elevator.

 2. Each fl oor, except the fi rst fl oor and the top fl oor, has two buttons, one to request
an up-elevator and one to request a down-elevator. These buttons illuminate when
pressed. The illumination is canceled when an elevator visits the fl oor and then
moves in the desired direction.

 3. When an elevator has no requests, it remains at its current fl oor with its doors closed.

 The fi rst step in OOA is to model the use cases.

Elevator

User

Press an
Elevator Button

Press a
Floor Button

 FIGURE 13.2
 Use-case
diagram for
the elevator
problem case
study.

Functional Modeling:
The Elevator Problem Case Study
 A use case describes the interaction between the product to be constructed and
the actors , that is, the external users of that product. The only interactions pos-
sible between a user and an elevator are the user pressing an elevator button to
summon an elevator or the user pressing a fl oor button to request the elevator to
stop at a specifi c fl oor, hence, two use cases, Press an Elevator Button
and Press a Floor Button. The two use cases are shown in the use-case
diagram (Section 11.7) of Figure 13.2 .

13.413.4
 Case Study

sch76183_ch13_404-464.indd 407sch76183_ch13_404-464.indd 407 10/06/10 4:30 PM10/06/10 4:30 PM

408 Part B The Workfl ows of the Software Life Cycle

 A use case provides a generic description of the overall functionality; a scenario
is a specifi c instantiation of a use case, just as an object is an instantiation of a class.
In general, there are a large number of scenarios, each representing one specifi c set
of interactions. In this section, we consider the scenario of Figure 13.3 , which incor-
porates instantiations of both use cases.
 Figure 13.3 depicts a normal scenario ; that is, a set of interactions between
users and elevators that corresponds to the way we understand elevators should be
used. Figure 13.3 was constructed after carefully observing different users interact-
ing with elevators (or, more precisely, with elevator buttons and fl oor buttons). The
15 numbered events describe in detail the two interactions between User A and the
buttons of the elevator system (event 1 and event 6) and the operations performed
by the components of the elevator system (events 2 through 5 and 7 through 15).
Two items, User A enters the elevator and User A exits from the elevator , are
unnumbered. Such items essentially are comments; User A does not interact with the
components of the elevator when entering or leaving an elevator.
 In contrast, Figure 13.4 is an exception scenario . It depicts what happens when
a user presses the Up button at fl oor 3 but actually wants to go down to fl oor 1. This
scenario, too, was constructed by observing the actions of many users in elevators;
it is unlikely that someone who has never used an elevator would realize that users
sometimes press the wrong button.
 There is a serious mistake throughout Figures 13.3 and 13.4 . Recall that, as stated
in Section 1.9, responsibility-driven design is a feature of the object-oriented
paradigm. From the very beginning of the life cycle, that is, from the requirements

1. User A presses the Up floor button at floor 3 to request an elevator. User A wishes
to go to floor 7.

2. The Up floor button is turned on.
3. An elevator arrives at floor 3. It contains User B, who has entered the elevator at

floor 1 and pressed the elevator button for floor 9.
4. The elevator doors open.
5. The timer starts.

User A enters the elevator.
6. User A presses the elevator button for floor 7.
7. The elevator button for floor 7 is turned on.
8. The elevator doors close after a timeout.

 9. The Up floor button is turned off.
10. The elevator travels to floor 7.
11. The elevator button for floor 7 is turned off.
12. The elevator doors open to allow User A to exit from the elevator.
13. The timer starts.

User A exits from the elevator.
14. The elevator doors close after a timeout.
15. The elevator proceeds to floor 9 with User B.

 FIGURE 13.3 The fi rst iteration of a normal scenario (the missing responsibilities and the use
of the passive voice will be corrected in the next iteration).

sch76183_ch13_404-464.indd 408sch76183_ch13_404-464.indd 408 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 409

workfl ow onward, it is essential to specify the responsibility for each action. Consider
event 2 in Figure 13.3 , The Up fl oor button is turned on . This statement does not
specify who is responsible for turning on the button. Instead, the scenario should
have stated, “The system turns on the Up fl oor button.” Similarly, event 4 states, The
elevator doors open . But who or what is responsible for opening the doors? Is it a
manual elevator in which the users have to open and close the doors? Or is it an auto-
matic elevator in which the system is responsible for opening and closing the doors?
Accordingly, in use cases and scenarios (instantiations of use cases), the responsibil-
ity for each action must be explicitly stated.
 Furthermore, it is bad practice to use the passive voice in a use case, a scenario,
or in any other UML diagram that specifi es actions. For example, event 2, The
Up fl oor button is turned on , should not be in the passive voice. A use case
describes an inter action between the software product and the user; for clarity, an
action should be described in the active voice. Furthermore, a use case should be
written from the user’s perspective, that is, what the user does and how the software
product responds. Finally, it should be written in the present tense, to give a sense
of immediacy.
 In summary, statements in a use case or scenario should take the form, “A user
does this and the software product responds by doing that.” In view of the fact that
the use cases will eventually be refi ned into the run-time behavior of the product,
statements in that form are easy to test, easy to document, and easy to modify. The
mistakes in the scenarios of Figures 13.3 and 13.4 are corrected in a subsequent itera-
tion, in Section 13.7.

1. User A presses the Up floor button at floor 3 to request an elevator. User A wishes
to go to floor 1.

2. The Up floor button is turned on.
3. An elevator arrives at floor 3. It contains User B, who has entered the elevator at

floor 1 and pressed the elevator button for floor 9.
4. The elevator doors open.
5. The timer starts.

User A enters the elevator.
6. User A presses the elevator button for floor 1.
7. The elevator button for floor 1 is turned on.
8. The elevator doors close after a timeout.

 9. The Up floor button is turned off.
10. The elevator travels to floor 9.
11. The elevator button for floor 9 is turned off.
12. The elevator doors open to allow User B to exit from the elevator.
13. The timer starts.

User B exits from the elevator.
14. The elevator doors close after a timeout.
15. The elevator proceeds to floor 1 with User A.

 FIGURE 13.4 An exception scenario (the missing responsibilities and the use of the passive
voice will be corrected in the next iteration).

sch76183_ch13_404-464.indd 409sch76183_ch13_404-464.indd 409 10/06/10 4:30 PM10/06/10 4:30 PM

410 Part B The Workfl ows of the Software Life Cycle

 The scenarios of Figures 13.3 and 13.4 , plus innumerable others, are specifi c
instances of the use cases shown in Figure 13.2 . The OOA team should study suf-
fi cient scenarios to gain a comprehensive insight into the behavior of the system
being modeled. This information is used in the next step, entity class modeling, to
determine the entity classes.

13.513.5
 Case Study

Entity Class Modeling:
The Elevator Problem Case Study
 In this step, the entity classes and their attributes are extracted and represented in
a UML class diagram (see Just in Case You Wanted to Know Box 13.2). Only the
attributes of an entity class are determined at this time, not the methods; the latter are
assigned to the classes during the object-oriented design (OOD) workfl ow.
 A characteristic of the whole object-oriented paradigm is that the various steps
rarely are easy to carry out. Fortunately, the benefi ts of using objects make the effort
worthwhile. So it should not come as a surprise that the fi rst part of the analysis
workfl ow, extracting entity classes and their attributes, usually is diffi cult to get right
the fi rst time.
 One method of determining the entity classes is to deduce them from the use cases.
That is, the developers carefully study all the scenarios, both normal and exception,
and identify the components that play a role in the use cases. From just the scenarios
of Figures 13.3 and 13.4 , candidate entity classes are elevator buttons, fl oor buttons,
elevators, doors, and timers. As we will see, these candidate entity classes are close to
the actual classes extracted during entity class modeling. In general, however, there
are many scenarios and, consequently, a large number of potential classes. An inex-
perienced developer may be tempted to infer too many candidate entity classes from
the scenarios. This has a deleterious effect on the entity class modeling, because it is
easier to add a new entity class than to remove a candidate entity class that should not
have been included.
 Another approach to determining the entity classes, which is effective when the
developers have domain expertise, is CRC cards (Section 13.5.2). However, if the
developers have little or no experience in the application domain, then it is advisable
to use noun extraction, described in Section 13.5.1.

 As explained at the beginning of Chapter 7 , the object-oriented paradigm did not suddenly
appear out of nowhere. Instead, it evolved out of the classical paradigm, in response to
perceived shortcomings in the classical paradigm.
 Entity class modeling is an example of this evolution. It is an extension of the classical
technique of entity-relationship modeling. As described in Section 12.6, entity-relationship
modeling has been used for database modeling since 1976.

 Just in Case You Wanted to Know Box 13.2

sch76183_ch13_404-464.indd 410sch76183_ch13_404-464.indd 410 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 411

 13.5.1 Noun Extraction
 For developers with no domain expertise, a good way to proceed is to use the fol-
lowing two-stage noun-extraction method to extract candidate entity classes and
then to refi ne the solution:

 Stage 1. Describe the Software Product in a Single Paragraph.
 One possible way to do this for the elevator problem case study is as follows:

 Buttons in elevators and on the fl oors control the movement of n elevators in a build-
ing with m fl oors. Buttons illuminate when pressed to request the elevator to stop at a
specifi c fl oor; the illumination is canceled when the request has been satisfi ed. When
an elevator has no requests, it remains at its current fl oor with its doors closed.

 Stage 2. Identify the Nouns.
 Identify the nouns in the informal strategy (excluding those that lie outside the problem
boundary); then use these nouns as candidate entity classes. The informal strategy is
now reproduced, but this time with the identifi ed nouns printed in a sans serif typeface.

 Buttons in elevators and on the fl oors control the movement of n elevators in a
 building with m fl oors. Buttons illuminate when pressed to request an elevator to stop
at a specifi c fl oor ; the illumination is canceled when the request has been satisfi ed.
When an elevator has no requests , it remains at its current fl oor with its doors closed.

 There are eight different nouns: button, elevator, fl oor, movement, build-
ing, illumination, request, and door . Three of these nouns— fl oor, building, and
 door —lie outside the problem boundary and therefore may be ignored. Three of the
remaining nouns— movement, illumination , and request —are abstract nouns ;
that is, they identify things that have no physical existence. A useful rule of thumb is
that abstract nouns rarely end up corresponding to classes. Instead, they frequently
are attributes of classes. For example, illumination is an attribute of button.
 This leaves two nouns and, therefore, two candidate entity classes: Elevator
Class and Button Class . (The UML convention is to use boldface for class names
and capitalize the initial letter of each word in a class name.)
 The resulting class diagram is shown in Figure 13.5 . Button Class has the
Boolean attribute illuminated to model events 2, 7, 9, and 11 of the scenarios of
 Figures 13.3 and 13.4 . The problem specifi es two types of buttons, so two subclasses
of Button Class are defi ned: Elevator Button Class and Floor Button
Class (the open triangle denotes inheritance in UML). Each instance of Elevator
Button Class and Floor Button Class communicates with the instance of
 Elevator Class . The latter class has the Boolean attribute doors open to model
events 4, 8, 12, and 14 of the two scenarios.
 Unfortunately, this is not a good beginning. In a real elevator, the buttons do not
directly communicate with the elevators; some sort of elevator controller is needed,
if only to decide which elevator to dispatch in response to a particular request.
However, the problem statement makes no mention of a controller, so it was not
selected as an entity class during the noun-extraction process. In other words, the
technique of this section for fi nding candidate entity classes provides a starting point
but certainly should not be relied on to do more than that.

sch76183_ch13_404-464.indd 411sch76183_ch13_404-464.indd 411 10/06/10 4:30 PM10/06/10 4:30 PM

412 Part B The Workfl ows of the Software Life Cycle

 Adding the Elevator Controller Class to Figure 13.5 yields Figure 13.6 .
This certainly makes more sense. Furthermore, there are now one-to-many relation-
ships in Figure 13.6 , as opposed to the hard to model many-to-many relationship of
 Figure 13.5 . It therefore seems reasonable to go on to stage 3 at this point, bearing
in mind that it is possible to return to entity class modeling at any time, even as

Elevator Button Class Floor Button Class

Button Class

illuminated : Boolean

n

communicates
with

communicates
with

1

m 2m � 2

Elevator Class

doors open : Boolean

 FIGURE 13.5
 The fi rst
iteration of the
class diagram
for the elevator
problem case
study.

Elevator Button Class

Elevator Controller Class

Floor Button Class

Button Class

illuminated : Boolean

Elevator Class

doors open : Boolean

mn

controls controls

1 1

1

n

2m � 2

controls

 FIGURE 13.6
 The second
iteration of the
class diagram
for the elevator
problem case
study.

sch76183_ch13_404-464.indd 412sch76183_ch13_404-464.indd 412 10/06/10 4:30 PM10/06/10 4:30 PM

late as the implementation workfl ow. However, before proceeding with the dynamic
modeling, a different technique for entity class modeling is considered.

 13.5.2 CRC Cards
 For a number of years, class–responsibility–collaboration (CRC) cards have
been utilized during the object-oriented analysis workfl ow [Wirfs-Brock, Wilkerson,
and Wiener, 1990]. For each class, the software development team fi lls in a card
showing the name of the class, its functionality (responsibility), and a list of the other
classes it invokes to achieve that functionality (collaboration).
 This approach subsequently has been extended. First, a CRC card often explicitly
contains the attributes and methods of the class, rather than just its “responsibility”
expressed in some natural language. Second, the technology has changed. Instead of
using cards, some organizations put the names of the classes on Post-it notes, which
they move around on a white board; lines are drawn between the Post-it notes to denote
collaboration. Nowadays the whole process can be automated; CASE tools like System
Architect include components for creating and updating CRC “cards” on the screen.
 The strength of CRC cards is that, when utilized by a team, the interaction among
the members can highlight missing or incorrect fi elds in a class, whether attributes
or methods. Also, the relationships between classes are clarifi ed when CRC cards are
used. One especially powerful technique is to distribute the cards among the team
members, who then act out the responsibilities of their classes. Consequently, some-
one might say, “I am the Date Class , and my responsibility is to create new date
objects.” Another team member might then interject that he or she needs additional
functionality from the Date Class , such as converting a date from the conven-
tional format to an integer, the number of days from January 1, 1900, so that fi nding
the number of days between any two dates can be computed easily by subtracting
the corresponding two integers (see Just in Case You Wanted to Know Box 13.3).
Accordingly, acting out the responsibilities of CRC cards is an effective means of
verifying that the class diagram is complete and correct.

 How do we fi nd the number of days between February 21, 1999, and August 16, 2007?
Such subtractions are needed in many fi nancial computations, such as calculating an inter-
est payment or determining the present value of a future cash fl ow. The usual way this is
done is to convert each date into an integer, the number of days since a specifi ed starting
date. The problem is that we cannot agree what starting date to use.
 Astronomers use Julian days, the number of days since noon GMT on January 1, 4713,
B.C.E. This system was invented in 1582 by Joseph Scaliger, who named it for his father,
Julius Caesar Scaliger. (If you really, really have to know why January 1, 4713 B.C.E. was
chosen, consult [USNO, 2000].)
 A Lilian date is the number of days since October 15, 1582, the fi rst day of the Gregorian
calendar, introduced by Pope Gregory XIII. Lilian dates are named for Luigi Lilio, a leading
proponent of the Gregorian calendar reform. Lilio was responsible for deriving many of the
algorithms of the Gregorian calendar, including the rule for leap years.
 Turning to software, COBOL intrinsic functions use January 1, 1600, as the starting date
for integer dates. Almost all spreadsheets, however, use January 1, 1900, following the lead
of Lotus 1-2-3.

 Just in Case You Wanted to Know Box 13.3

sch76183_ch13_404-464.indd 413sch76183_ch13_404-464.indd 413 10/06/10 4:30 PM10/06/10 4:30 PM

414 Part B The Workfl ows of the Software Life Cycle414 Part B The Workfl ows of the Software Life Cycle

Dynamic Modeling:
The Elevator Problem Case Study
 The aim of dynamic modeling is to produce a statechart , a description of the target
product similar to a fi nite state machine, for each class. First, consider Elevator
Controller Class . For simplicity, only one elevator is considered. The relevant
statechart for Elevator Controller Class is in Figure 13.7 .
 The notation is somewhat similar to that of the fi nite state machine (FSM) of
Section 12.7, but there is a signifi cant difference. An FSM as presented in Chapter 12
is an example of a formal technique. The state transition diagrams themselves are not
a complete representation of the product to be built. Instead, the model consists of a
set of transition rules of the form given in equation (12.2):

 current state and event and predicate ⇒ next state

 Formality is achieved by presenting the model in the form of a set of mathematical
rules.
 In contrast, the representation of a UML statechart is somewhat less formal. The
three aspects of a state machine (state, event, and predicate) are distributed over the
UML diagram. For example, the state Going Into Wait State in Figure 13.7
is entered if the present state is Elevator Event Loop and the event elevator
stopped, no requests pending is true. When the state Going Into Wait State
has been entered, operation Close elevator doors after timeout is to be carried
out. Current versions of OOA are semiformal (graphical) techniques, and the intrin-
sic lack of formality of the statechart accordingly is no problem. However, when
the object-oriented paradigm matures, it is likely that more formal versions will be
developed and the corresponding dynamic models will be somewhat closer to fi nite
state machines.
 To see the equivalence of the statechart of Figure 13.7 and the STDs of Figures
12.15 through 12.17 , consider various scenarios. For example, consider the fi rst
part of the scenario of Figure 13.3 . Event 1 is User A presses the Up fl oor button at
fl oor 3.
 First consider the STD of Figure 12.16 . If the fl oor button is off, then the button
is turned on. Now consider the statechart of Figure 13.7 . The solid circle denotes the
start state, which takes the system into state Elevator Event Loop . Following the
leftmost vertical line, if the button was turned off when it is pushed, the system enters

13.613.6
 Case Study

 A weakness of CRC cards is that this approach generally is not a good way of identify-
ing entity classes unless the team members have considerable experience in the relevant
application domain. On the other hand, once the developers have determined many of the
classes and have a good idea of their responsibilities and collaborations, CRC cards can be
an excellent way of completing the process and making sure that everything is correct. This
is described in Section 13.7. First, however, we need to perform the dynamic modeling.

sch76183_ch13_404-464.indd 414sch76183_ch13_404-464.indd 414 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 415

state Processing New Request of Figure 13.7 , and the button is turned on. The
following state is Elevator Event Loop .
 Next, the elevator nears fl oor 3. First consider the STD approach. In Figure 12.17 ,
the elevator goes into state S (U, 3) ; that is, it stops at fl oor 3, about to go up.
(Because the simplifying assumption has been made of only one elevator, the argu-
ment e in Figure 12.17 is suppressed here.) Now the doors close (Figure 12.17), the
 Up fl oor button is turned off (Figure 12.16), and the elevator starts to move toward
fl oor 4.
 Returning to the statechart of Figure 13.7 , consider what happens when the
elevator nears fl oor 3. Because the elevator is in motion, the next state entered is
 Determining If Stop Requested . The requests are checked and, because User A

button
pushed,
button

turned off

no request
to stop at

floor f

user has
requested stop

at floor f
floor button
turned on

floor
button

turned off

elevator
moving in

direction d,
floor f is next

elevator
stopped,
request(s)
pending

elevator
stopped,

no requests
pending,

Processing New Request
Turn on button
Update requests

Closing Elevator Doors
Close elevator doors after
timeout

Turning Off
Floor Button
Turn off floor
button

elevator button
turned on

elevator
button
turned

offTurning Off
Elevator Button
Turn off
elevator button

Stopping At Floor
Stop elevator
Open doors and
start timer
Update requests

Processing Next
Request

Move elevator one
floor in direction
of next request

Continuing
Moving

Move elevator
one floor in
direction d

Going Into Wait State
Close elevator doors after
timeout

Determining If Stop Requested
Check requests

Elevator Event Loop

button pushed,
button turned on

no requests pending,
doors closed

 FIGURE 13.7 The fi rst iteration of the statechart for the Elevator Controller Class.

sch76183_ch13_404-464.indd 415sch76183_ch13_404-464.indd 415 10/06/10 4:30 PM10/06/10 4:30 PM

416 Part B The Workfl ows of the Software Life Cycle

has requested the elevator to stop there, the next state is Stopping At Floor . The
elevator stops at fl oor 3, the doors open, and the timer starts. The elevator button for
fl oor 3 has not been pressed, so state Elevator Event Loop is next.
 User A enters and presses the elevator button for fl oor 7. Therefore, the next state
is again Processing New Request , followed again by Elevator Event Loop .
The elevator has stopped and two requests are pending, so state Closing Elevator
Doors is next and the doors close after a timeout. The fl oor button at fl oor 3 was
pressed by User A, so Turning Off Floor Button is the following state, and the
fl oor button is turned off. State Processing Next Request is next, and the eleva-
tor starts to move toward fl oor 4. The relevant aspects of the corresponding diagrams
clearly are equivalent with respect to this scenario; you may wish to consider other
possible scenarios as well.
 From the preceding discussion, it should come as no surprise to learn that Figure
13.7 was constructed from the scenarios. More precisely, the specifi c events of the
scenarios were generalized. For example, consider the fi rst event of the scenario of
 Figure 13.3 , User A presses the Up fl oor button at fl oor 3 . This specifi c event
is generalized to an arbitrary button (fl oor button or elevator button) being pushed.
Then, there are two possibilities. Either the button already is turned on (in which case
nothing happens) or the button is turned off (in which case action must be taken to
process the user’s request).
 To model this event, the Elevator Event Loop state is drawn in Figure 13.7.
The case of an already turned on button is modeled by the do-nothing loop with
event button pushed, button turned on in the top left-hand corner of Figure 13.7 .
The other case, a turned-off button, is modeled by the arrow labeled with the event
 button pushed, button turned off leading to state Processing New Request .
From event 2 of the scenario it is clear that the operation Turn on button is needed
in this state. Furthermore, the purpose of the user’s action of pressing an arbitrary
button is to request an elevator (fl oor button) or request an elevator to move to a spe-
cifi c fl oor (elevator button), so operation Update requests also must be carried out
in the state Processing New Request .
 Now consider event 3 of the scenario, An elevator arrives at fl oor 3 . This was
generalized to the concept of an arbitrary elevator moving between fl oors. The motion
of the elevator is modeled by the event elevator moving in direction d, fl oor f is
next and the state Determining If Stop Requested . But there again are two
possibilities, either a request to stop at fl oor f or no such request. In the former case,
corresponding to event no request to stop at fl oor f, the elevator simply must be
in the state of Continuing Moving one more fl oor in direction d . In the latter
case (corresponding to event user has requested stop at fl oor f), from the sce-
nario of Figure 13.3 it is clear that it is necessary to Stop elevator (from event 3),
and then Open doors and start timer (from events 4 and 5); state Stopping At
Floor is needed to perform these actions. Also, similar to the Processing New
Request state, it becomes apparent that it is necessary also to Update requests in
state Stopping At Floor . In addition, generalizing event 9 of the scenario leads to
the realization that the fl oor button has to be turned off if it is turned on. This is mod-
eled by state Turning Off Floor Button , together with the two events above the
box representing that state. Similarly, generalizing event 11 of the scenario implies

sch76183_ch13_404-464.indd 416sch76183_ch13_404-464.indd 416 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 417

that the elevator button has to be turned off if it is turned on. This is modeled by state
 Turning Off Elevator Button , together with the two events above the box rep-
resenting that state.
 Generalizing event 8 of the scenario of Figure 13.3 yields state Closing Elevator
Doors ; generalizing event 10 yields state Processing Next Request . However,
the need for the state Going Into Wait State and the event no requests pend-
ing, doors closed is deduced by generalizing an event of a different scenario, one in
which the user exits from the elevator but no buttons remain turned on.

 13.7 The Test Workfl ow: Object-Oriented Analysis
 At this point, the functional, entity class, and dynamic models appear to be complete and
the test workfl ow resumes. The next step is to review the analysis workfl ow to date. One
component of this review, as suggested in Section 13.5.2, is to use CRC cards.
 Accordingly, CRC cards are fi lled in for each of the entity classes, Button Class,
Elevator Button Class, Floor Button Class, Elevator Class , and Elevator
Controller Class . The CRC card for Elevator Controller Class , shown in
 Figure 13.8 , is deduced from the class diagram of Figure 13.5 and the statechart of
 Figure 13.6 . In more detail, the RESPONSIBILITY of Elevator Controller Class
is obtained by listing all the operations in the statechart for Elevator Controller
Class (Figure 13.7). The COLLABORATION of the Elevator Controller Class
is determined by examining the class diagram of Figure 13.6 and noting that classes
 Elevator Button Class, Floor Button Class , and Elevator Class interact with
class Elevator Controller Class .

1. Turn on elevator button
2. Turn off elevator button
3. Turn on floor button
4. Turn off floor button
5. Move elevator up one floor
6. Move elevator down one floor
7. Open elevator doors and start timer
8. Close elevator doors after timeout
9. Check requests

10. Update requests

CLASS
Elevator Controller Class

COLLABORATION
1. Elevator Button Class
2. Floor Button Class
3. Elevator Class

RESPONSIBILITY

 FIGURE 13.8
 The fi rst
iteration of the
CRC card for
the Elevator
Controller
Class.

sch76183_ch13_404-464.indd 417sch76183_ch13_404-464.indd 417 10/06/10 4:30 PM10/06/10 4:30 PM

418 Part B The Workfl ows of the Software Life Cycle

 This CRC card highlights two major problems with the fi rst iteration of the object-
oriented analysis.

 1. Consider responsibility 1. Turn on elevator button. This command is totally out
of place in the object-oriented paradigm. From the viewpoint of responsibility-driven
design (Section 1.9), objects (instances) of Elevator Button Class are respon-
sible for turning themselves on or off. Also, from the viewpoint of information hiding
(Section 7.6), the Elevator Controller Class should not have the knowledge of
the internals of Elevator Button Class needed to turn on a button. The correct
responsibility is this: Send a message to Elevator Button Class to turn itself on.
Similar changes are needed for responsibilities 2 through 6 in Figure 13.8 . These six
corrections are refl ected in Figure 13.9 , the second iteration of the CRC card for the
 Elevator Controller Class .

 2. A class has been overlooked. Returning to Figure 13.8 , consider responsibility 7. Open
elevator doors and start timer. The key concept here is the notion of state . The attri-
butes of a class sometimes are termed state variables . The reason for this terminology is
that, in most object-oriented implementations, the state of the product is determined by the
values of the attributes of the various component objects. The statechart has many features
in common with a fi nite state machine. Accordingly, it is not surprising that the concept
of state plays an important role in the object-oriented paradigm. This concept can be used
to help determine whether a component should be modeled as a class. If the component
in question possesses a state that is changed during execution of the implementation, then
it probably should be modeled as a class. Clearly, the doors of the elevator possess a state
(open or closed), and Elevator Doors Class therefore should be a class.

CLASS
Elevator Controller Class

1. Send message to Elevator Button Class to turn on button
2. Send message to Elevator Button Class to turn off button
3. Send message to Floor Button Class to turn on button
4. Send message to Floor Button Class to turn off button
5. Send message to Elevator Class to move up one floor
6. Send message to Elevator Class to move down one floor
7. Send message to Elevator Doors Class to open
8. Start timer
9. Send message to Elevator Doors Class to close after timeout

10. Check requests
11. Update requests

COLLABORATION
1. Elevator Button Class (subclass)
2. Floor Button Class (subclass)
3. Elevator Doors Class
4. Elevator Class

RESPONSIBILITY

 FIGURE 13.9
 The second
iteration of the
CRC card for
the Elevator
Controller
Class.

sch76183_ch13_404-464.indd 418sch76183_ch13_404-464.indd 418 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 419

 There is another reason why Elevator Doors Class should be a class. The object-
oriented paradigm allows the state to be hidden within an object and hence protected from
unauthorized change. If there is an Elevator Doors Class object, the only way that
the doors of the elevator can be opened or shut is by sending a message to that Elevator
Doors Class object. Serious accidents can be caused by opening or closing the doors of
an elevator at the wrong time; see Just in Case You Wanted to Know Box 13.4. Therefore,
for certain types of products, safety considerations should be added to the other strengths
of objects listed in Chapters 7 and 8 .
 Adding Elevator Doors Class means that responsibilities 7 and 8 in Figure 13.8
need to be changed analogously to responsibilities 1 through 6. That is, messages should be
sent to instances of the Elevator Doors Class to open and close themselves. But there
is an additional complication.
 Recall that responsibility 7 is Open elevator doors and start timer. This must be split
into two separate responsibilities. A message must indeed be sent to Elevator Doors
Class to open. However, the timer is part of the Elevator Controller Class, and start-
ing the timer therefore is the responsibility of the Elevator Controller Class itself. The
second iteration of the CRC card for Elevator Controller Class (Figure 13.9) shows
that this separation of responsibilities has been achieved satisfactorily.
 In addition to the two major problems highlighted by the CRC card of Figure 13.8 ,
responsibilities Check requests and Update requests of Elevator Controller Class
require the attribute requests be added to Elevator Controller Class . At this stage,
 requests are defi ned simply to be of type requestType ; a data structure for requests will
be chosen during the design workfl ow.
 The corrected class diagram is shown in Figure 13.10 . Having modifi ed the class
diagram, we must reexamine the use-case diagram and statecharts to see if they, too,
need further refi nement. The use-case diagram clearly is still adequate. However, the
operations in the statechart of Figure 13.7 must be modifi ed to refl ect the responsibili-
ties of Figure 13.9 (the second iteration of the CRC card) and not Figure 13.8 (the fi rst
iteration). Also, the set of statecharts must be extended to include the additional class.
The scenarios need to be updated to refl ect these changes; Figure 13.11 shows the second
iteration of the scenario of Figure 13.3 .
 There is a serious problem in Figure 13.10 , the third iteration of the class diagram. The
 Elevator Controller Class is running the entire show—this is an example of a so-
called God class, a class that is exposed to too much information and has too much control.
This type of architecture is a well-known antipattern, or pattern to be avoided (see Just
in Case You Wanted to Know Box 8.4). To solve this problem, instead of having one cen-
tral elevator controller, we distribute the control. Each of the n elevators now has its own

 Some years ago, I was on the 10th fl oor of a building, waiting impatiently for an elevator.
The doors opened, I started to step forward—only no elevator was there. What saved my
life was the total blackness I saw as I was about to step into the elevator shaft, and I instinc-
tively realized that something was wrong.
 Perhaps, if that elevator control system had been developed using the object-oriented
paradigm, the inappropriate opening of the doors on the 10th fl oor might have been
avoided.

 Just in Case You Wanted to Know Box 13.4

sch76183_ch13_404-464.indd 419sch76183_ch13_404-464.indd 419 10/06/10 4:30 PM10/06/10 4:30 PM

420 Part B The Workfl ows of the Software Life Cycle

elevator subcontroller, and each of the m fl oors has its own fl oor subcontroller. The m + n
subcontrollers all communicate with a scheduler, which processes requests. The resulting
fourth iteration of the class diagram is shown in Figure 13.12 . This diagram refl ects a dis-
tributed, decentralized architecture, characteristic of the object-oriented paradigm.
 Now, when a user presses a Floor Button Class object, the Floor Button Class
object sends a message to the corresponding Floor Subcontroller Class object inform-
ing it that the button has been pressed. The Floor Subcontroller Class object sends a
message back to the Floor Button Class object to ask whether its light is on. If not, it
sends a message to that Floor Button Class object to turn itself on, and it also informs
the Scheduler Class object of the new request that has been made by a user.
 Similarly, when a user presses an Elevator Button Class object, the Elevator
Button Class object sends a message to the corresponding Elevator Subcontroller
Class object informing it that the button has been pressed. The Elevator Subcon-
troller Class object sends a message back to the Elevator Button Class object to
ask whether its light is on. If not, it sends a message to that Elevator Button Class
object to turn itself on, and it also informs the Scheduler Class object of the new
request that has been made.
 Now, there is a sensor just above and just below each fl oor in each elevator shaft, for a
total of 2m – 2 sensors per shaft. When an Elevator Class object nears a fl oor (moving
up or down), the corresponding Sensor Class object sends an appropriate message to the
corresponding Elevator Subcontroller Class object. The Elevator Subcontroller
Class object then sends a message to the Scheduler Class object informing it that the

Elevator Button Class Floor Button Class

Button Class

illuminated : Boolean

Elevator Controller
Class

requests : requestType

Elevator Doors Class

doors open : Boolean

Elevator Class

mn

controls controls

1 1
1 n

1

n

2m � 2

controls

controls

 FIGURE 13.10
 The third
iteration of the
class diagram
for the elevator
problem case
study.

sch76183_ch13_404-464.indd 420sch76183_ch13_404-464.indd 420 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 421

 Elevator Class object is nearing that fl oor. The Scheduler Class object now checks
whether there is a request to stop at that fl oor. If not, it sends a message to the Elevator
Subcontroller Class object, which then sends a message to the appropriate Elevator
Class object to move itself one further fl oor in the same direction. But if there is a request to
stop, the Scheduler Class object informs the Elevator Subcontroller Class object
accordingly, and then updates its request list appropriately. The Elevator Subcontroller
Class object then sends a message to the relevant Elevator Button Class object to ask
whether its light is off. If not, it sends a subsequent message to that Elevator Button
Class object to turn itself off.
 When an Elevator Class object stops at a fl oor, the corresponding Elevator Sub-
controller Class object sends a message to the appropriate Elevator Doors Class
object to open itself; it then starts its timer. After a time-out, it sends the appropriate mes-
sage to that Elevator Doors Class object to close itself.

1. User A presses the Up floor button at floor 3 to request an elevator. User A wishes
to go to floor 7.

2. The floor button informs the elevator controller that the floor button has been
pushed.

3. The elevator controller sends a message to the Up floor button to turn itself on.
4. The elevator controller sends a series of messages to the elevator to move itself

up to floor 3. The elevator contains User B, who has entered the elevator at floor
1 and pressed the elevator button for floor 9.

5. The elevator controller sends a message to the elevator doors to open themselves.
6. The elevator controller starts the timer.

User A enters the elevator.
7. User A presses elevator button for floor 7.
8. The elevator button informs the elevator controller that the elevator button has

been pushed.
 9. The elevator controller sends a message to the elevator button for floor 7 to turn

itself on.
10. The elevator controller sends a message to the elevator doors to close themselves

after a timeout.
11 The elevator controller sends a message to the Up floor button to turn itself off.
12. The elevator controller sends a series of messages to the elevator to move itself

up to floor 7.
13. The elevator controller sends a message to the elevator button for floor 7 to turn

itself off.
14. The elevator controller sends a message to the elevator doors to open themselves

to allow User A to exit from the elevator.
15. The elevator controller starts the timer.

User A exits from the elevator.
16. The elevator controller sends a message to the elevator doors to close themselves

after a timeout.
17. The elevator controller sends a series of messages to the elevator to move itself

up to floor 9 with User B.

 FIGURE 13.11 The second iteration of a normal scenario for the elevator problem case study.

.

sch76183_ch13_404-464.indd 421sch76183_ch13_404-464.indd 421 10/06/10 4:30 PM10/06/10 4:30 PM

422 Part B The Workfl ows of the Software Life Cycle

 Finally, when an Elevator Class object leaves a fl oor (moving up or down), the appro-
priate Sensor Class object informs the corresponding Elevator Subcontroller Class
object that the elevator has left the fl oor. The Elevator Subcontroller Class object sends
a message to the corresponding Floor Subcontroller Class object informing it that the
elevator has left that fl oor, and the direction in which it is moving. The Floor Subcon-
troller Class object then sends a message to the corresponding Floor Button Class
object to determine if its light is on and, if so, sends a subsequent message to turn itself off.
 The various UML diagrams now need to be updated to refl ect the fourth iteration of
the class diagram of Figure 13.12 . The fi rst iteration of the statechart for the Elevator
Subcontroller Class is shown in Figure 13.13 . The fi rst iteration of the CRC card for

Floor
Subcontroller Class

Elevator
Subcontroller Class

Sensor Class

Elevator Class

m

m n

controls

controls

controlscommunicates
with

communicates
with

communicates
with

communicates
with

controls

1..2

1

1

1
1
1

1

2m � 2

11

1

Elevator Button ClassFloor Button Class

Button Class

illuminated : Boolean

Scheduler Class

requests: requestType

Elevator Doors Class
doors open : Boolean

 FIGURE 13.12 The fourth iteration of the class diagram for the elevator problem case study.

sch76183_ch13_404-464.indd 422sch76183_ch13_404-464.indd 422 10/06/10 4:30 PM10/06/10 4:30 PM

Close elevator doors
after timeout

no requests pending,
doors closed

elevator
button pushed

elevator moving
in direction d,
floor f is next

elevator
stopped,
request(s)
pending

elevator
stopped,

no requests
pending

Elevator Subcontroller Event Loop

Checking If Elevator Button Is Turned On 1 Waiting For Sensor Message

Determining If Stop Requested Processing Next Request

Processing Existing Request

Stopping At Floor

Updating Requests, Buttons

Processing New Request Continuing Moving Checking If Elevator Button Is Turned On 2

Going Into Wait State

Send message to elevator
 doors to close after
 timeout
Send message to elevator
 to move one floor in
 direction d
Wait for sensor message

Send message to elevator button
 to turn itself on
Send message to scheduler that
 a new request has been made

Send message to floor
 subcontroller that elevator
 has left floor moving in
 direction d

Send message to doors to open
Start timer

Send message to elevator
 button to turn itself off

Send message to elevator button

Send message to scheduler that elevator is nearing floor f

Send message to elevator button

Send message to
 elevator to
 move itself one
 further floor in
 direction d

elevator button
turned off

elevator button
turned on

sensor message
received

user has
requested stop

at floor f

no request
to stop at

floor f

elevator button
turned off

elevator button
turned on

sensor message
received

 FIGURE 13.13 The fi rst iteration of the statechart for the Elevator Subcontroller Class.

423

sch76183_ch13_404-464.indd 423
sch76183_ch13_404-464.indd 423

10/06/10 4:30 P
M

10/06/10 4:30 P
M

424 Part B The Workfl ows of the Software Life Cycle

the Elevator Subcontroller Class is shown in Figure 13.14 . Updating the other UML
diagrams is left as an exercise (Problems 13.1–13.5).
 Even after all these changes have been made and checked (including the modifi ed CRC
cards), it still may be necessary during the object-oriented design workfl ow to return to the
object-oriented analysis workfl ow and revise one or more of the analysis artifacts. How-
ever, at this stage it appears that the entity classes for the elevator problem case study have
been correctly extracted.

 13.8 Extracting the Boundary and Control Classes
 Unlike entity classes, boundary classes are usually easy to extract. In general, each input
screen, output screen, and printed report is modeled by its own boundary class. Recall
that a class incorporates attributes (data) and operations. The boundary class modeling
(say) a printed report incorporates all the various data items that can be included in the
report and the various operations carried out to print the report.
 Control classes are usually as easy to extract as boundary classes. In general, each non-
trivial computation is modeled by a control class.

 FIGURE 13.14
 The fi rst
iteration of the
CRC card for
the Elevator
Sub-
controller
Class .

CLASS
 Elevator Subcontroller Class

RESPONSIBILITY
 1. Send message to Elevator Button Class to check if it is turned on
 2. Send message to Elevator Button Class to turn itself on
 3. Send message to Elevator Button Class to turn itself off
 4. Send message to Elevator Doors Class to open themselves
 5. Start timer
 6. Send message to Elevator Doors Class to close themselves after

timeout
 7. Send message to Elevator Class to move itself up one fl oor
 8. Send message to Elevator Class to move itself down one fl oor
 9. Send message to Scheduler Class that a request has been made
10. Send message to Scheduler Class that a request has been satisfi ed
11. Send message to Scheduler Class to check if the elevator is to stop

at the next fl oor
12. Send message to Floor Subcontroller Class that elevator has left

fl oor

COLLABORATION
1. Elevator Button Class (subclass)
2. Sensor Class
3. Elevator Doors Class
4. Elevator Class
5. Scheduler Class
6. Floor Subcontroller Class

sch76183_ch13_404-464.indd 424sch76183_ch13_404-464.indd 424 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 425

 We now illustrate entity, boundary, and control class extraction and obtain further insights
into the Unifi ed Process by extracting the classes of the MSG Foundation case study. The
starting point is the use-case diagram of Figure 11.42 , reproduced here as Figure 13.15 .

 FIGURE 13.15
 The seventh
iteration of
the use-case
diagram of
the MSG
Foundation case
study.

MSG Foundation
Information System

Estimate Funds
Available for

Week

Manage an
Investment

Manage a
Mortgage

Produce a Report

MSG Staff
Member

Borrowers
Update

Estimated
Annual Operating

Expenses

The Initial Functional Model:
The MSG Foundation Case Study
 As described in Section 13.2, functional modeling consists of fi nding the scenarios
of the use cases. Recall that a scenario is an instance of a use case. Consider the use
case Manage a Mortgage (Figures 11.32 and 11.33). One possible scenario is
shown in Figure 13.16 . There is a change in the annual real-estate tax to be paid on
a home for which the MSG Foundation has provided a mortgage. Because the bor-
rowers pay this tax in equal weekly payments, any change in the real-estate tax must
be entered in the relevant mortgage record, so that the total weekly installment (and
perhaps the grant) can be adjusted accordingly. The normal portion of the extended
scenario models an MSG staff member accessing the relevant mortgage record and

13.913.9
 Case Study

sch76183_ch13_404-464.indd 425sch76183_ch13_404-464.indd 425 10/06/10 4:30 PM10/06/10 4:30 PM

426 Part B The Workfl ows of the Software Life Cycle

changing the annual real-estate tax. Sometimes, however, the staff member may not
be able to locate the correct mortgage stored in the software product because he or
she has entered the mortgage number incorrectly. This possibility is modeled by the
exception portion of the scenario.
 A second scenario corresponding to the Manage a Mortgage use case (Figures
11.32 and 11.33) is shown in Figure 13.17 . Here the borrowers’ weekly income has
changed. They would like this information to be refl ected in the MSG Foundation
records so that their weekly installment can be correctly computed. The normal
portion of this extended scenario shows this operation proceeding as expected. The
abnormal portion of this scenario shows two possibilities. First, as in the previous
scenario, the staff member may enter the mortgage number incorrectly. Second, the
borrowers may not bring with them adequate documentation to support their claim
regarding their income, in which case the requested change is not implemented.
 A third scenario (Figure 13.18) is an instance of use case Estimate Funds
Available for Week (Figure 11.42). This scenario is directly derived from the
description of the use case (Figure 11.43).
 The scenarios of Figures 13.19 and 13.20 are instances of use case Produce a
Report. Again, these scenarios are directly derived from the corresponding description
of the use case (Figure 11.39). The remaining scenarios are equally straightforward
and are therefore left as an exercise (Problems 13.12 and 13.13).

 FIGURE 13.16 An extended scenario of managing a mortgage.

An MSG Foundation staff member wants to update the annual real-estate tax on
a home for which the Foundation has provided a mortgage.

1. The staff member enters the new value of the annual real-estate tax.
2. The information system updates the date on which the annual real-estate tax was

last changed.

 Possible Alternative

A. The staff member enters the mortgage number incorrectly.

 FIGURE 13.17 Another extended scenario of managing a mortgage.

There is a change in the weekly income of a couple who have borrowed money
from the MSG Foundation. They wish to have their weekly income updated
in the Foundation records by an MSG staff member so that their mortgage
payments will be correctly computed.

1. The staff member enters the new value of the weekly income.
2. The information system updates the date on which the weekly income was last

changed.

 Possible Alternatives

A. The staff member enters the mortgage number incorrectly.
B. The borrowers do not bring documentation regarding their new income.

sch76183_ch13_404-464.indd 426sch76183_ch13_404-464.indd 426 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 427

 FIGURE 13.18 A scenario of the Estimate Funds Available for Week use case.

An MSG Foundation staff member wishes to determine the funds available for
mortgages this week.

1. For each investment, the information system extracts the estimated annual return
on that investment. It sums the separate returns and divides the result by 52 to
yield the estimated investment income for the week.

2. The information system then extracts the estimated annual MSG Foundation
operating expenses and divides the result by 52.

3. For each mortgage:
3.1 The information system computes the amount to be paid this week by adding

the principal and interest payment to 1_
52nd of the sum of the annual real-estate

tax and the annual homeowner’s insurance premium.
3.2 It then computes 28 percent of the couple’s current gross weekly income.
3.3 If the result of Step 3.1 is greater than the result of Step 3.2, then it determines

the mortgage payment for the week as the result of Step 3.2, and the amount
of the grant for this week as the difference between the result of Step 3.1 and
the result of Step 3.2.

3.4 Otherwise, it takes the mortgage payment for this week as the result of
Step 3.1, and there is no grant for the week.

4. The information system sums the mortgage payments of Steps 3.3 and 3.4 to yield
the estimated total mortgage payments for the week.

5. It sums the grant payments of Step 3.3 to yield the estimated total grant payments
for the week.

6. The information system adds the results of Steps 1 and 4 and subtracts the results
of Steps 2 and 5. This is the total amount available for mortgages for the current
week.

7. Finally, the software product prints the total amount available for new mortgages
during the current week.

 FIGURE 13.19 A scenario of the Produce a Report
use case.

An MSG staff member wishes to print a list of all
mortgages.

1. The staff member requests a report listing all
mortgages.

 FIGURE 13.20 Another scenario of the Produce a
Report use case.

An MSG staff member wishes to print a list of all
investments.

1. The staff member requests a report listing all
investments.

sch76183_ch13_404-464.indd 427sch76183_ch13_404-464.indd 427 10/06/10 4:30 PM10/06/10 4:30 PM

428 Part B The Workfl ows of the Software Life Cycle

Mortgage Class Investment Class

 FIGURE 13.21 The fi rst iteration of the
class diagram of the MSG Foundation case
study.

The Initial Class Diagram:
The MSG Foundation Case Study
 The second step is class modeling. The aim of this step is to extract the entity classes,
determine their interrelationships, and fi nd their attributes. The best way to start this
step is usually to use the two-stage noun extraction method (Section 13.5.1).
 In Stage 1 we describe the software product in a single paragraph. In the case of
the MSG Foundation case study, a way to do this is

 Weekly reports are to be printed showing how much money is available for mortgages.
In addition, lists of investments and mortgages must be printed on demand.

 In Stage 2 we identify the nouns in this paragraph. For clarity, the nouns are
printed in sans serif type .

 Weekly reports are to be printed showing how much money is available for mortgages .
In addition, lists of investments and mortgages must be printed on demand.

 The nouns are report, money, mortgage, list, and investment . Nouns report
and list are not long lived, so they are unlikely to be entity classes (report will surely
turn out to be a boundary class), and money is an abstract noun. This leaves two
candidate entity classes, namely, Mortgage Class and Investment Class, as
shown in Figure 13.21 , the fi rst iteration of the class diagram.
 Now we consider interactions between these two entity classes. Looking
at the descriptions of use cases Manage an Investment and Manage a
Mortgage (Figures 11.31 and 11.33 , respectively) it appears that the operations
performed on the two entity classes are likely to be very similar, namely, insertions,
deletions, and modifi cations. Also, the second iteration of the description of use
case Produce a Report (Figure 11.39) shows all the members of both entity
classes have to be printed on demand. In other words, Mortgage Class and
 Investment Class should probably be subclasses of some superclass. We will
call that superclass Asset Class , because mortgages and investments are both
assets of the MSG Foundation. The resulting second iteration of the class diagram
is shown in Figure 13.22 .

13.1013.10
 Case Study

sch76183_ch13_404-464.indd 428sch76183_ch13_404-464.indd 428 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 429

 A useful side effect of constructing this superclass is that we can once again reduce
the number of use cases. As shown in Figure 13.15 , we currently have fi ve use cases,
including Manage a Mortgage and Manage an Investment. However, if we
consider a mortgage or an investment to be a special case of an asset, we can combine
the two use cases into a single use case, Manage an Asset. The eighth iteration of
the use-case diagram is shown in Figure 13.23 . The new use case is shaded. Now the
attributes are added, as shown in Figure 13.24 .
 The phrase “iteration and in crementation” also includes the possibility of the need
for a de crementation in what has been developed to date. There are two reasons for

 FIGURE 13.22
 The second
iteration of the
class diagram
of the MSG
Foundation case
study.

Mortgage Class Investment Class

Asset Class

 FIGURE 13.23
 The eighth
iteration of
the use-case
diagram of
the MSG
Foundation
case study.
The new use
case, Manage
an Asset, is
shaded.

Manage an
Asset

MSG Foundation
Information System

Estimate Funds
Available for

Week

Produce a Report

MSG Staff
Member

Borrowers
Update

Estimated
Annual Operating

Expenses

sch76183_ch13_404-464.indd 429sch76183_ch13_404-464.indd 429 10/06/10 4:30 PM10/06/10 4:30 PM

430 Part B The Workfl ows of the Software Life Cycle

such a decrease. First, if a mistake is made, the best way to correct it may be to
 backtrack to an earlier version of the software product and fi nd a better way of
performing the step that was incorrectly carried out. When backtracking, everything
that was added in the course of the incorrect step now has to be removed. Second,
as a consequence of reorganizing the models to date, one or more artifacts may have
become superfl uous. Developing a software product is hard. It is therefore important
to remove superfl uous use cases or other artifacts as soon as possible.

Mortgage ClassInvestment Class

investmentName
estimatedAnnualReturn
dateEstimatedReturnUpdated

Asset Class

assetNumber

lastNameOfMortgagees
originalPurchasePrice
dateMortgageIssued
weeklyPrincipalAndlnterestPayment
combinedWeeklyIncome
mortgageBalance
dateCombinedWeeklyIncomeUpdated
annualRealEstateTax
dateAnnualRealEstateTaxUpdated
annualInsurancePremium
dateAnnualInsurancePremiumUpdated

 FIGURE 13.24 Attributes added to the second iteration of the class diagram of the MSG
Foundation case study.

The Initial Dynamic Model:
The MSG Foundation Case Study
 The third step in object-oriented analysis is dynamic modeling. In this step, a state-
chart is drawn that refl ects all the operations performed by or to that system, indi-
cating the events that cause the transition from state to state. The major source of
information regarding the relevant operations is the scenarios.
 The statechart of Figure 13.25 refl ects the operations of the complete MSG
Foundation case study. The solid circle on the top left represents the initial state, the
starting point of the statechart. The arrow from the initial state leads us to the state
labeled MSG Foundation Event Loop ; states other than the initial and fi nal states

13.1113.11
 Case Study

sch76183_ch13_404-464.indd 430sch76183_ch13_404-464.indd 430 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 431

are represented by rectangles with rounded corners. In state MSG Foundation
Event Loop , one of fi ve events can occur. In more detail, an MSG staff member can
issue one of fi ve commands: estimate funds for the week, manage an asset, update esti-
mated annual operating expenses, produce a report, or quit. These possibilities are indi-
cated by the fi ve events estimate funds for the week selected, manage an asset
selected, update estimated annual operating expenses selected, produce a
report selected, and quit selected . (An event causes a transition between states.)
 When the system is in state MSG Foundation Event Loop , any one of the fi ve
events may occur, depending on which option the MSG staff member selects from the
menu, shown in Figure 13.26 , that will be incorporated in the target software prod-
uct. [The C++ and Java implementations of the MSG Foundation case study given in
Appendices H and I, respectively, use a textual interface rather than a graphical user
interface (GUI). That is, instead of clicking on a box, as shown in Figure 13.26 , the
user types in a choice, as shown in Figure 13.27 . For example, the user types 1 to
 Estimate funds available for week, 2 to Manage an asset , and so on. The reason
the implementations in Appendices H and I use a textual interface, such as Figure
13.27 , is that a textual interface can be run on all computers; a GUI generally needs
special software.]
 Suppose that the MSG staff member clicks on the choice Manage an asset in the
menu of Figure 13.26 . The event manage an asset selected (second from the left
below the MSG Foundation Event Loop box in Figure 13.25) has now occurred,
so the system moves from its current state, MSG Foundation Event Loop , to
the state Managing An Asset . The operations that the MSG staff member can
perform in this state, namely, Add, delete, or modify a mortgage or investment ,
appear below the line in the box with rounded corners.

Producing A
Report

Print a list of all
mortgages or
investments

estimate
funds for
the week
selected

manage an
asset selected

update estimated
annual operating

expenses selected

produce
a report
selected

quit
selected

Updating
Estimated Annual

Operating Expenses

Update the estimated
annual operating
expenses

Estimating Funds
For The Week

Estimate and print
funds available for
the current week

Managing An
Asset

Add, delete, or
modify a mortgage
or investment

MSG Foundation Event Loop

 FIGURE 13.25 The initial statechart of the MSG Foundation case study.

sch76183_ch13_404-464.indd 431sch76183_ch13_404-464.indd 431 10/06/10 4:30 PM10/06/10 4:30 PM

432 Part B The Workfl ows of the Software Life Cycle

 Once the operation has been performed, the system returns to the state MSG
Foundation Event Loop , as shown by the arrows. The behavior of the rest of the
statechart is equally straightforward.
 In summary, the software product moves from state to state. In each state, the
MSG staff member can perform the operations supported by that state, as listed
below the line in the box with rounded corners that represents the state. This
continues until the MSG staff member clicks on menu choice Quit when the soft-
ware product is in the state MSG Foundation Event Loop . At this time the
software product enters the fi nal state (represented by the white circle containing
the small black circle). When this state is entered, execution of the statechart ter-
minates; recall that the statechart is a model of the execution of the target software
product.

Estimate funds for the week

Click on your choice:

Update estimated annual operating expenses

Produce a report

Manage an asset

Quit

 FIGURE 13.26 Menu in the target MSG
Foundation case study.

 FIGURE 13.27 Textual version of the menu of
Figure 13.26 .

MAIN MENU
MARTHA STOCKTON GREENGAGE FOUNDATION

1. Estimate funds available for week
2. Manage an asset
3. Update estimated annual operating expenses
4. Produce a report
5. Quit

Type your choice and press <ENTER>:

Revising the Entity Classes:
The MSG Foundation Case Study
 The initial functional model, the initial class diagram, and the initial dynamic model
have now been completed. However, a check of all three models reveals that some-
thing has been overlooked.
 Look at the initial statechart of Figure 13.25 and consider state Updating
Estimated Annual Operating Expenses with operation Update the esti-
mated annual operating expenses . This operation has to be performed on data,
namely, the current value of the estimated annual operating expenses. But where
is the value of the estimated annual operating expenses to be found? Looking at
 Figure 13.24 , it would have been a serious error to have it as an attribute of Asset
Class or either of its subclasses. On the other hand, currently there is only one
class Asset Class) and its two subclasses. This means that the only way a value

13.1213.12
 Case Study

sch76183_ch13_404-464.indd 432sch76183_ch13_404-464.indd 432 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 433

Mortgage ClassInvestment Class

investmentName
estimatedAnnualReturn
dateEstimatedReturnUpdated

MSG Application Class

estimatedAnnualOperatingExpenses
dateEstimatedAnnualOperatingExpensesUpdated
availableFundsForWeek
expectedAnnualReturnOnInvestments
dateExpectedAnnualReturnOnInvestmentsUpdated
expectedGrantsForWeek
expectedMortgagePaymentsForWeek

Asset Class

assetNumber

lastNameOfMortgagees
originalPurchasePrice
dateMortgageIssued
weeklyPrincipalAndlnterestPayment
combinedWeeklyIncome
mortgageBalance
dateCombinedWeeklyIncomeUpdated
annualRealEstateTax
dateAnnualRealEstateTaxUpdated
annualInsurancePremium
dateAnnualInsurancePremiumUpdated

 FIGURE 13.28 The third iteration of the class diagram of the MSG Foundation case study.

can be stored on a long-term basis is as an attribute of an instance of that class or
its subclasses.
 The solution is obvious: Another entity class is needed in which the value of the
estimated annual operating expenses can be stored. In fact, other values need to be
stored as well; the result is shown in Figure 13.28 . A new class, MSG Application
Class , has been introduced in which the various attributes shown in the top box in
the fi gure can be stored. In addition, the MSG Application Class will be assigned
the task of starting the execution of the rest of the software product.
 Now the class diagram of Figure 13.28 is redrawn to refl ect the stereotypes. This
is shown in Figure 13.29 . All four classes are entity classes. The entity classes seem
to be correct, at least for now. The next step is to determine the boundary classes and
control classes.

sch76183_ch13_404-464.indd 433sch76183_ch13_404-464.indd 433 10/06/10 4:30 PM10/06/10 4:30 PM

434 Part B The Workfl ows of the Software Life Cycle

Extracting the Boundary Classes:
The MSG Foundation Case Study
 Extracting entity classes is usually considerably harder than extracting boundary
classes. After all, entity classes generally have interrelationships, whereas each input
screen, output screen, and printed report is usually modeled by an (independent)
boundary class, as pointed out in Section 13.8.
 In view of the fact that the target MSG Foundation software product appears to be
relatively straightforward (at least at this early stage of the Unifi ed Process), it is rea-
sonable to try to have just one screen that the MSG staff member can use for all four
use cases: Estimate Funds Available for Week, Manage an Asset,
Update Estimated Annual Operating Expenses, and Produce a
Report. As more is learned about the MSG Foundation, it is certainly possible that
this one screen may have to be refi ned into two or more screens. But the initial class
extraction has just the one screen class, User Interface Class .
 There are three reports that have to be printed, the estimated funds for the week
report and the two asset reports, namely, the complete listing of all mortgages or
of all investments. Each of these has to be modeled by a separate boundary class
because the content of each report is different. The four corresponding initial bound-
ary classes are then User Interface Class, Estimated Funds Report Class,
Mortgages Report Class , and Investments Report Class . These four
classes are displayed in Figure 13.30 .

13.13
 Case Study

 FIGURE 13.30
 The initial
boundary classes
of the MSG
Foundation case
study.

 User Interface Class
Estimated Funds Report Class
Mortgages Report Class
 Investments Report Class

Investment
Class

Asset
Class

MSG
Application

Class

Mortgage
Class

 FIGURE 13.29
Figure 13.28
redrawn to show
the stereotypes.

13.13

sch76183_ch13_404-464.indd 434sch76183_ch13_404-464.indd 434 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 435

 FIGURE 13.31 The initial control
class of the MSG Foundation case study.

 Estimate Funds for Week Class

Extracting the Control Classes:
The MSG Foundation Case Study
 Control classes are generally as easy to extract as boundary classes because each
nontrivial computation is almost always modeled by a control class, as stated in
Section 13.8. For the MSG Foundation case study, there is just one computation,
namely, estimating the funds available for the week. This yields the initial control
class Estimate Funds for Week Class shown in Figure 13.31 .
 The next step is to check all three sets of classes: entity classes, boundary classes,
and control classes. Careful examination of the classes yields no obvious discrepan-
cies. Having completed class extraction, we now return to the Unifi ed Process.

13.1413.14
 Case Study

Use-Case Realization:
The MSG Foundation Case Study
 A use case is a description of an interaction between an actor and the software
product. Use cases are fi rst utilized at the beginning of the software life cycle, that
is, in the requirements workfl ow. During the analysis and design workfl ows, more
details are added to each use case, including a description of the classes involved in
carrying out the use case. This process of extending and refi ning use cases is called
 use-case realization . Finally, during the implementation workfl ow, the use cases
are implemented in code.
 This terminology is somewhat confusing, because the verb realize can be used in
at least three different senses:

 • Understand (“Harvey slowly began to realize that he was in the wrong classroom”).
 • Receive (“Ingrid will realize a profi t of $45,000 on the stock transaction”).
 • Accomplish (“Janet hopes to realize her dream of starting a software development

organization”).

 In the phrase realize a use case , the word realize is used in this last sense; that is,
it means to accomplish (or achieve) the use case.
 An interaction diagram (sequence diagram or communication diagram)
depicts the realization of a specifi c scenario of the use case. We fi rst consider the use
case Estimate Funds Available for Week.

13.1513.15
 Case Study

sch76183_ch13_404-464.indd 435sch76183_ch13_404-464.indd 435 10/06/10 4:30 PM10/06/10 4:30 PM

436 Part B The Workfl ows of the Software Life Cycle

 13.15.1 Estimate Funds Available for Week Use Case
 The use-case diagram of Figure 13.23 shows all the use cases. These include Estimate
Funds Available for Week, which is shown separately in Figure 13.32 . The
description of that use case was given in Figure 11.43 , which is reproduced here as
 Figure 13.33 for convenience. From the description we deduce that, as refl ected in
the class diagram of Figure 13.34 , the classes that enter into this use case are User
Interface Class , which models the user interface; Estimate Funds for Week
Class , the control class that models the computation of the estimate of the funds that
are available to fund mortgages during that week; Mortgage Class , which models
the estimated grants and payments for the week; Investment Class , which mod-
els the estimated return on investments for the week; MSG Application Class ,
which models the estimated operating expenses for the week; and Estimated Funds
Report Class, which models the printing of the report.
 Figure 13.34 is a class diagram. That is, it shows the classes that participate in
the realization of the use case and their relationships. A working software product,
on the other hand, uses objects rather than classes. For example, a specifi c mortgage
cannot be represented by Mortgage Class but rather by an object, a specifi c
instance of Mortgage Class , denoted by : Mortgage Class . Also, the class
diagram of Figure 13.34 shows the participating classes in the use case and their
relationships; it does not show the sequence of events as they occur. Something
more is needed to model a specifi c scenario such as the scenario of Figure 13.18 ,
reproduced here as Figure 13.35 .
 Now consider Figure 13.36 . This fi gure is a communication diagram (“collabora-
tion diagram” in older versions of UML). It therefore shows the objects that interact
as well as the messages that are sent, numbered in the order in which they are sent.
A communication diagram depicts a realization of a specifi c scenario of a use case.
In this case, Figure 13.36 depicts the scenario of Figure 13.35 . In more detail, in
the scenario the staff member wants to compute the funds available for the week.
This is represented by message 1: Request estimate of funds available for week
from MSG Staff Member to : User Interface Class , an instance of User
Interface Class .
 Next, this request is passed on to : Estimate Funds for Week Class , an
instance of the control class that actually performs the calculation. This is repre-
sented by message 2: Transfer request .
 Four separate fi nancial estimates are now determined by : Estimate Funds for
Week Class . In step 1 of the scenario (Figure 13.35), the estimated annual return

MSG Staff
Member

MSG Foundation
Information System

Estimate Funds
Available for

Week

 FIGURE 13.32
 The Estimate
Funds
Available
for Week use
case.

sch76183_ch13_404-464.indd 436sch76183_ch13_404-464.indd 436 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 437

on investments is summed for each investment and the result divided by 52. This
extraction of the estimated weekly return is modeled in Figure 13.36 by message 3:
Request estimated return on investments for week from : Estimate Funds
for Week Class to : Investment Class followed by message 4: Return esti-
mated weekly return on investments in the reverse direction, that is, back to the
object that is controlling the computation.
 In step 2 of the scenario (Figure 13.35), the weekly operating expenses are esti-
mated by taking the estimated annual operating expenses and dividing by 52. This
extraction of the weekly return is modeled in Figure 13.36 by message 5: Request
estimated operating expenses for week from : Estimate Funds for Week
Class to : MSG Application Class followed by message 6: Return estimated
operating expenses for week in the other direction.
 In steps 3, 4, and 5 of the scenario (Figure 13.35), two estimates are determined,
namely the estimated grants for the week and the estimated payments for the week.
This is modeled in Figure 13.36 by message 7: Request estimated grants and

 FIGURE 13.33 The description of the Estimate Funds Available for Week use case.

 Brief Description

The Estimate Funds Available for Week use case enables an MSG Foundation
staff member to estimate how much money the Foundation has available that week to
fund mortgages.

 Step-by-Step Description

1. For each investment, extract the estimated annual return on that investment.
Summing the separate returns and dividing the result by 52 yields the estimated
investment income for the week.

2. Determine the estimated MSG Foundation operating expenses for the week by
extracting the estimated annual MSG Foundation operating expenses and dividing
by 52.

3. For each mortgage:
3.1 The amount to be paid this week is the total of the principal and interest

payment and 1_
52nd of the sum of the annual real-estate tax and the annual

homeowner’s insurance premium.
3.2 Compute 28 percent of the couple’s current gross weekly income.
3.3 If the result of Step 3.1 is greater than the result of Step 3.2, then the mortgage

payment for this week is the result of Step 3.2, and the amount of the grant for
this week is the difference between the result of Step 3.1 and the result of Step 3.2.

3.4 Otherwise, the mortgage payment for this week is the result of Step 3.1, and
there is no grant this week.

4. Summing the mortgage payments of Steps 3.3 and 3.4 yields the estimated total
mortgage payments for the week.

5. Summing the grant payments of Step 3.3 yields the estimated total grant payments
for the week.

6. Add the results of Steps 1 and 4 and subtract the results of Steps 2 and 5. This is the
total amount available for mortgages for the current week.

7. Print the total amount available for new mortgages during the current week.

sch76183_ch13_404-464.indd 437sch76183_ch13_404-464.indd 437 10/06/10 4:30 PM10/06/10 4:30 PM

438 Part B The Workfl ows of the Software Life Cycle

Investment
Class

Estimated Funds
Report Class

User Interface
Class

Estimate Funds
for Week Class

Mortgage
Class

MSG Application
Class

MSG Staff
Member

 FIGURE 13.34
 Class diagram
showing the
classes that
realize the
Estimate
Funds
Available
for Week use
case of the MSG
Foundation case
study.

 FIGURE 13.35 A scenario of the Estimate Funds Available for Week use case.

An MSG Foundation staff member wishes to determine the funds available for mortgages this
week.

1. For each investment, the information system extracts the estimated annual return on that
investment. It sums the separate returns and divides the result by 52 to yield the estimated
investment income for the week.

2. The information system then extracts the estimated annual MSG Foundation operating
expenses and divides the result by 52.

3. For each mortgage:
3.1 The information system computes the amount to be paid this week by adding the principal

and interest payment to 1_
52nd of the sum of the annual real-estate tax and the annual

homeowner’s insurance premium.
3.2 It then computes 28 percent of the couple’s current gross weekly income.
3.3 If the result of Step 3.1 is greater than the result of Step 3.2, then it determines the

mortgage payment for the week as the result of Step 3.2, and the amount of the grant for
this week as the difference between the result of Step 3.1 and the result of Step 3.2.

3.4 Otherwise, it takes the mortgage payment for this week as the result of Step 3.1, and there
is no grant for the week.

4. The information system sums the mortgage payments of Steps 3.3 and 3.4 to yield the
estimated total mortgage payments for the week.

5. It sums the grant payments of Step 3.3 to yield the estimated total grant payments for the week.
6. The information system adds the results of Steps 1 and 4 and subtracts the results of Steps 2

and 5. This is the total amount available for mortgages for the current week.
7. Finally, the software product prints the total amount available for new mortgages during the

current week.

sch76183_ch13_404-464.indd 438sch76183_ch13_404-464.indd 438 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 439

payments for week from : Estimate Funds for Week Class to : Mortgage
Class and by message 8: Return estimated grants and payments for week in the
reverse direction.
 Now the arithmetic computation of step 6 of the scenario is performed. This is mod-
eled in Figure 13.36 by message 9: Compute estimated amount available for week .
This is a self call, that is, : Estimate Funds for Week Class tells itself to perform
the calculation. The result of the computation is stored in : MSG Application Class
by message 10: Transfer estimated amount available for week .
 Next, the result is printed in step 7 of the scenario (Figure 13.35). This is modeled
in Figure 13.36 by message 11: Print estimated amount available from : MSG
Application Class to : Estimated Funds Report Class .
 Finally, an acknowledgment is sent to the MSG staff member that the task has
been successfully completed. This is modeled in Figure 13.36 by messages 12: Send
successful completion message, 13: Send successful completion message,
14: Transfer successful completion message, and 15: Display successful com-
pletion message .

2: Transfer
 request

1: Request
 estimate of
 funds available
 for week

7: Request
 estimated grants
 and payments for
 week

15: Display suc-
 cessful completion
 message

4: Return estimated weekly
 return on investments

3: Request estimated
 return on investments
 for week

8: Return estimated
 grants and
 payments for
 week

9: Compute estimated
 amount available
 for week

12: Send
 successful
 completion
 message

6: Return estimated operating
 expenses for week

10: Transfer estimated amount
 available for week

11: Print estimated
 amount available

5: Request estimated operating
 expenses for week

13: Send successful completion
 message

14: Transfer suc-
 cessful completion
 message

: Estimate
Funds for

Week Class

: Estimated
Funds

Report Class

: MSG
Application

Class

MSG Staff
Member

: Mortgage
Class

: User
Interface

Class

: Investment
Class

 FIGURE 13.36 A communication diagram of the realization of the scenario of Figure 13.35 of the Estimate
Funds Available for Week use case of the MSG Application case study.

sch76183_ch13_404-464.indd 439sch76183_ch13_404-464.indd 439 10/06/10 4:30 PM10/06/10 4:30 PM

440 Part B The Workfl ows of the Software Life Cycle

 No client is going to approve the specifi cation document unless he or she under-
stands precisely what the proposed software product will do. For this reason, a written
description of the communication diagram is essential. This is shown in Figure 13.37 ,
the fl ow of events . Finally, the equivalent sequence diagram of the realization of
the scenario is shown in Figure 13.38 . When constructing a software product, either
a communication diagram or a sequence diagram may prove to give better insight of
a realization of a use case. In some situations, both are needed to get a full under-
standing of a specifi c realization of a given use case. That is why, in this chapter,
every communication diagram is followed by the equivalent sequence diagram. The
sequence diagram of Figure 13.38 is fully equivalent to the communication diagram
of Figure 13.36 , so its fl ow of events is also shown in Figure 13.37 .
 The strength of a sequence diagram is that it shows the fl ow of messages unam-
biguously. The order of the messages is particularly clear, as are the sender and
receiver of each individual message. So, when the transfer of information is the focus
of attention (which is the case for much of the time when performing the analy-
sis workfl ow), a sequence diagram is superior to a communication diagram. On the
other hand, the similarity between a sequence diagram (such as Figure 13.38) and the
communication diagram that realizes the relevant scenario (such as Figure 13.36) is
strong. Accordingly, on those occasions when the developers are concentrating on
the classes, a communication diagram is generally more useful than the equivalent
sequence diagram.
 Summarizing, Figures 13.32 through 13.38 do not depict a random collection of
UML artifacts. On the contrary, these fi gures depict a use case and artifacts derived
from that use case. In more detail:

 • Figure 13.32 depicts the use case Estimate Funds Available for Week.
That is, Figure 13.32 models all possible sets of interactions, between the actor
 MSG Staff Member (an entity that is external to the software product) and the
MSG Foundation software product itself, that relate to the action of estimating
funds available for the week.

 • Figure 13.33 is the description of that use case; that is, it provides a written account
of the details of the Estimate Funds Available for Week use case of
 Figure 13.32 .

 • Figure 13.34 is a class diagram showing the classes that realize the Estimate
Funds Available for Week use case. The class diagram depicts the classes
that are needed to model all possible scenarios of the use case, together with their
interactions.

 FIGURE 13.37 The fl ow of events of the communication diagram of Figure 13.36 of the realization of the scenario
of Figure 13.35 of the Estimate Funds Available for Week use case of the MSG Application case study.

An MSG staff member requests an estimate of the funds available for mortgages for the week
(1, 2). The information system estimates the return on investments for the week (3, 4), the
operating expenses for the week (5, 6), and the grants and payments for the week (7, 8). Then it
estimates (9), stores (10), and prints out (11–15) the funds available for the week.

sch76183_ch13_404-464.indd 440sch76183_ch13_404-464.indd 440 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 441

: Investment
Class

: Mortgage
Class

: User
Interface

Class

1: Request
 estimate of
 funds available
 for week

: Estimate
Funds for

Week Class

: MSG
Application

Class

: Estimated
Funds

Report Class

2: Transfer request
3: Request estimated
 return on invest-
 ments for week

4: Return estimated
 return on invest-
 ments for week

5: Request estimated operating
 expenses for week

6: Return estimated operating
 expenses for week

15: Display suc-
 cessful completion
 message

7: Request estimated grants and payments for week

8: Return estimated grants and payments for week

9: Compute estimated amount
 available for week

11: Print estimated amount
 available

12: Send successful com-
 pletion message

10: Transfer estimated amount
 available for week

13: Send successful completion
 message

14: Transfer suc-
 cessful completion
 message

MSG Staff
Member

 FIGURE 13.38 A sequence diagram of the realization of the scenario of Figure 13.35 of the Estimate Funds
Available for Week use case of the MSG Application case study. This sequence diagram is fully equivalent
to the communication diagram of Figure 13.36, so its fl ow of events is also shown in Figure 13.37.

sch76183_ch13_404-464.indd 441sch76183_ch13_404-464.indd 441 10/06/10 4:30 PM10/06/10 4:30 PM

442 Part B The Workfl ows of the Software Life Cycle

 • Figure 13.35 is a scenario, that is, one specific instance of the use case of
 Figure 13.32 .

 • Figure 13.36 is a communication diagram of the realization of the scenario of
 Figure 13.35 ; that is, it depicts the objects and the messages sent between them in
the realization of that one specifi c scenario.

 • Figure 13.37 is the fl ow of events of the communication diagram of the realization of
the scenario of Figure 13.35 . That is, just as Figure 13.33 is a written description of the
Estimate Funds Available for Week use case of Figure 13.32 , Figure
13.37 is a written description of the realization of the scenario of Figure 13.35 .

 • Figure 13.38 is the sequence diagram that is fully equivalent to the communication
diagram of Figure 13.36 . That is, the sequence diagram depicts the objects and the
messages sent between them in the realization of the scenario of Figure 13.35 . Its
fl ow of events is therefore also shown in Figure 13.37 .

 It has been stated many times in this book that the Unifi ed Process is use-case
driven. These bulleted items explicitly state the precise relationship between each
of the artifacts of Figures 13.33 through 13.38 and the use case of Figure 13.32 that
underlies each of them.

 13.15.2 Manage an Asset Use Case
 The Manage an Asset use case is shown in Figure 13.39 and its description
in Figure 13.40 . A class diagram showing the classes that realize the Manage an
Asset use case is shown in Figure 13.41 . Initially it was assumed that only one control

MSG Staff
Member

Borrowers

MSG Foundation
Information System

Manage an Asset

 FIGURE 13.39
 The Manage
an Asset use
case.

 FIGURE 13.40
 Description of
the Manage
an Asset use
case.

 Brief Description

The Manage an Asset use case enables an MSG
Foundation staff member to add and delete assets
and manage the portfolio of assets (investments and
mortgages). Managing a mortgage includes updating
the weekly income of a couple who have borrowed
money from the Foundation.

 Step-by-Step Description

1. Add, modify, or delete an investment or mortgage,
or update the borrower’s weekly income.

sch76183_ch13_404-464.indd 442sch76183_ch13_404-464.indd 442 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 443

class was needed (see Figure 13.31). However, Figure 13.41 shows that a second
control class, Manage an Asset Class , is required; additional control classes
may have to be added in subsequent iterations.
 The normal part of the extended scenario of Figure 13.16 of the use case
Manage a Mortgage (and hence of Manage an Asset) is reproduced
as Figure 13.42 . In this scenario, an MSG staff member updates the annual real-
estate tax on a mortgaged home and the software product updates the date on
which the tax was last changed. Figure 13.43 is the communication diagram of
this scenario. Notice that object : Investment Class does not play an active
role in this communication diagram because the scenario of Figure 13.42 does not

User Interface
Class

Manage an
Asset Class

Mortgage
Class

Investment
Class

In some scenarios,
the borrowers tell the
MSG staff member their
current weekly income.

MSG Staff
Member

Borrowers

 FIGURE 13.41
 A class diagram
showing the
classes that
realize the
Manage an
Asset use case
of the MSG
Foundation case
study.

 FIGURE 13.42
 A scenario of
the Manage
an Asset use
case.

An MSG Foundation staff member wants to update the annual
real-estate tax on a home for which the Foundation has
provided a mortgage.

1. The staff member enters the new value of the annual real-
estate tax.

2. The information system updates the date on which the annual
real-estate tax was last changed.

sch76183_ch13_404-464.indd 443sch76183_ch13_404-464.indd 443 10/06/10 4:30 PM10/06/10 4:30 PM

444 Part B The Workfl ows of the Software Life Cycle

involve an investment, only a mortgage. Also, the Borrowers do not play a role
in this scenario either. The fl ow of events is left as an exercise (Problem 13.14).
The sequence diagram equivalent to the communication diagram of Figure 13.43
is shown in Figure 13.44 .
 Now consider a different scenario of the use case Manage an Asset (Figure 13.39),
namely, the extended scenario of Figure 13.17 , the normal part of which is repro-
duced here as Figure 13.45 . In this scenario, at the request of the borrowers, the
MSG staff member updates the weekly income of a couple who have an MSG mort-
gage. As explained in Section 11.7, the scenario is initiated by the Borrowers , and
their data are entered into the software product by the MSG Staff Member , as
stated in the note in the communication diagram of Figure 13.46 . The fl ow of events
is again left as an exercise (Problem 13.15). The equivalent sequence diagram is
shown in Figure 13.47 .

: Manage an
Asset Class

1: Update annual
 real-estate tax 2: Transfer data

3: Update tax
 and date

5: Send successful
 completion
 message

4: Send successful
 completion
 message

6: Display successful
 completion
 message

MSG Staff
Member

Borrowers

: User
Interface

Class

: Investment
Class

: Mortgage
Class

 FIGURE 13.43 A communication diagram of the realization of the scenario of Figure 13.42 of
the Manage an Asset use case of the MSG Foundation case study.

sch76183_ch13_404-464.indd 444sch76183_ch13_404-464.indd 444 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 445

 Comparing the interaction diagrams of Figures 13.43 and 13.46 (or, equivalently,
the sequence diagrams of Figures 13.44 and 13.47), we see that, other than the actors
involved, the only other difference between the two diagrams is that messages 1, 2,
and 3 involve annual real-estate tax in the case of Figure 13.43 (or Figure 13.44)
and weekly income in the case of Figure 13.46 (or Figure 13.47). This example
highlights the difference between a use case, scenarios (instances of the use case),
and communication or sequence diagrams of the realization of different scenarios
of that use case.
 Boundary class User Interface Class appears in all the realizations considered
so far. In fact, the same screen will be used for all commands of the software product.

1: Update annual
 real-estate tax

2: Transfer data

3: Update tax and
 date

4: Send successful
 completion
 message

5: Send successful
 completion
 message

6: Display
 successful com-
 pletion message

MSG Staff
Member

Borrowers : Manage an
Asset Class

: User Interface
Class

: Investment
Class

: Mortgage
Class

 FIGURE 13.44 A sequence diagram of the realization of the scenario of Figure 13.42 of the Manage an
Asset use case of the MSG Foundation case study.

 FIGURE 13.45 A second scenario of the Manage an Asset use case.

There is a change in the weekly income of a couple who have borrowed money
from the MSG Foundation. They wish to have their weekly income updated
in the Foundation records by an MSG staff member so that their mortgage
payments will be correctly computed.

1. The staff member enters the new value of the weekly income.
2. The information system updates the date on which the weekly income was last

changed.

sch76183_ch13_404-464.indd 445sch76183_ch13_404-464.indd 445 10/06/10 4:30 PM10/06/10 4:30 PM

446 Part B The Workfl ows of the Software Life Cycle446 Part B The Workfl ows of the Software Life Cycle

An MSG staff member clicks on the appropriate operation in the revised menu of
 Figure 13.48 . (The corresponding textual interface, as implemented in Appendices H
and I, is given in Figure 13.49 .)

 13.15.3 Update Estimated Annual Operating
Expenses Use Case

 The use case Update Estimated Annual Operating Expenses is shown
in Figure 11.17 with a description in Figure 11.18 . A class diagram showing the
classes that realize the Update Estimated Annual Operating Expenses
use case appears in Figure 13.50 and a communication diagram of a realization of a
scenario of the use case in Figure 13.51 . The equivalent sequence diagram is shown
in Figure 13.52 . Details of the scenario and the fl ow of events are left as an exercise
(Problems 13.16 and 13.17).

1: Update
 weekly
 income 2: Transfer data

3: Update
 income
 and date

5: Send successful
 completion
 message

4: Send successful
 completion
 message

6: Display successful
 completion
 message

The borrowers tell
the MSG staff member
their current weekly
income

MSG Staff
Member

Borrowers

: Manage an
Asset Class

: User
Interface

Class

: Investment
Class

: Mortgage
Class

 FIGURE 13.46 A communication diagram of the realization of the scenario of Figure 13.45 of
the Manage an Asset use case of the MSG Foundation case study.

sch76183_ch13_404-464.indd 446sch76183_ch13_404-464.indd 446 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 447

 FIGURE 13.47 A sequence diagram of the realization of the scenario of Figure 13.45 of the Manage an
Asset use case of the MSG Foundation case study.

1: Update weekly
 income

2: Transfer data

3: Update income
 and date

4: Send successful
 completion
 message

5: Send successful
 completion
 message

6: Display
 successful com-
 pletion message

The borrowers tell
the MSG staff member
their current weekly
income

MSG Staff
Member

Borrowers : Manage an
Asset Class

: User Interface
Class

: Investment
Class

: Mortgage
Class

 FIGURE 13.48
 Revised
menu of the
target MSG
Foundation case
study.

Estimate funds for the week

Manage an investment

Produce a mortgages report

Manage a mortgage

Produce an investments report

Click on your choice:

Update estimated annual operating expenses

Quit

 FIGURE 13.49
 Textual version
of the revised
menu of Figure
13.48.

MAIN MENU
MARTHA STOCKTON GREENGAGE FOUNDATION

1. Estimate funds available for week
2. Manage a mortgage
3. Manage an investment
4. Update estimated annual operating expenses
5. Produce a mortgages report
6. Produce an investments report
7. Quit

Type your choice and press <ENTER>:

sch76183_ch13_404-464.indd 447sch76183_ch13_404-464.indd 447 10/06/10 4:30 PM10/06/10 4:30 PM

448 Part B The Workfl ows of the Software Life Cycle

User Interface
Class

MSG Application
Class

MSG Staff
Member

 FIGURE 13.50 A class diagram showing the classes that realize the
Update Estimated Annual Operating Expenses use
case of the MSG Foundation case study.

: MSG Application
Class

: User
Interface Class

1: Update annual
 expenses

2: Update expenses
 and date

3: Send successful
 completion
 message

4: Display successful
 completion
 message

MSG Staff
Member

 FIGURE 13.51 A communication diagram of the realization of a scenario of the
Update Estimated Annual Operating Expenses use case of the MSG
Foundation case study.

1: Update annual
 expenses

2: Update expenses
 and date

3: Send
 successful
 completion
 message4: Display

 successful
 completion
 message

MSG Staff
Member

: MSG Application
Class

: User Interface
Class

 FIGURE 13.52 A sequence diagram of the realization of
a scenario of the Update Estimated Annual Operating
Expenses use case of the MSG Foundation case study.

sch76183_ch13_404-464.indd 448sch76183_ch13_404-464.indd 448 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 449

 13.15.4 Produce a Report Use Case
 Use case Produce a Report is shown in Figure 13.53 . The description of use
case Produce a Report of Figure 11.39 is reproduced here as Figure 13.54 . A
class diagram showing the classes that realize the Produce a Report use case
is shown in Figure 13.55 .

 FIGURE 13.53
 The Produce
a Report use
case.

MSG Staff
Member

MSG Foundation
Information System

Produce a Report

 FIGURE 13.54 Description of the Produce a Report use case.

 Brief Description

The Produce a Report use case enables an MSG Foundation staff member to print
a listing of all investments or all mortgages.

 Step-by-Step Description

1. The following reports must be generated:
1.1 Investments report—printed on demand:

The information system prints a list of all investments. For each investment,
the following attributes are printed:

Item number
Item name
Estimated annual return
Date estimated annual return was last updated

1.2 Mortgages report—printed on demand:
The information system prints a list of all mortgages. For each mortgage,
the following attributes are printed:

Account number
Name of mortgagees
Original price of home
Date mortgage was issued
Principal and interest payment
Current combined gross weekly income
Date current combined gross weekly income was last updated
Annual real-estate tax
Date annual real-estate tax was last updated
Annual homeowner’s insurance premium
Date annual homeowner’s insurance premium was last updated

sch76183_ch13_404-464.indd 449sch76183_ch13_404-464.indd 449 10/06/10 4:30 PM10/06/10 4:30 PM

450 Part B The Workfl ows of the Software Life Cycle

 First consider the scenario of Figure 13.19 for listing all mortgages, reproduced
here as Figure 13.56 . A communication diagram of the realization of this scenario
is shown in Figure 13.57 . This realization models the listing of all mortgages.
Accordingly, object : Investment Class , an instance of the other subclass of
 Asset Class , plays no role in this realization, and neither does : Investments
Report Class . The fl ow of events is left as an exercise (Problem 13.18). The equiv-
alent sequence diagram is shown in Figure 13.58 .
 Now consider the scenario of Figure 13.20 for listing all investments, reproduced
here as Figure 13.59 . A communication diagram of the realization of this scenario is
shown in Figure 13.60 . As opposed to the previous realization, Figure 13.60 models

 FIGURE 13.55 A class diagram showing the classes that
realize the Produce a Report use case of the MSG
Foundation case study.

Mortgage
Class

Mortgages
Report Class

Investments
Report Class

User
Interface Class

Investment
Class

MSG Staff
Member

sch76183_ch13_404-464.indd 450sch76183_ch13_404-464.indd 450 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 451

 FIGURE 13.56 A scenario of the Produce a Report
use case.

An MSG staff member wishes to print a list of all
mortgages.

1. The staff member requests a report listing all
mortgages.

: Mortgages
Report Class

: Investments
Report Class

1: Request list
 of mortgages

2: Transfer
 request

5: Send successful
 completion
 message

4: Send successful
 completion
 message

3: Print list of
 mortgages

6: Display successful
 completion
 message

MSG Staff
Member

: User Interface
Class

: Investment
Class

: Mortgage
Class

 FIGURE 13.57 A communication diagram of the realization of the scenario of
Figure 13.56 of the Produce a Report use case of the MSG Foundation case
study.

sch76183_ch13_404-464.indd 451sch76183_ch13_404-464.indd 451 10/06/10 4:30 PM10/06/10 4:30 PM

452 Part B The Workfl ows of the Software Life Cycle

the listing of the investments; mortgages are ignored here. The equivalent sequence
diagram is shown in Figure 13.61 .
 This concludes the realization of the four use cases of Figure 13.23 , the eighth
iteration of the use-case diagram of the MSG Foundation case study.

 FIGURE 13.58 A sequence diagram of the realization of the scenario of Figure 13.56 of the Produce a
Report use case of the MSG Foundation case study.

1: Request list
 of mortgages

2: Transfer request

3: Print list of
 mortgages

4: Send successful
 completion
 message

5: Send successful
 completion
 message6: Display

 successful
 completion
 message

MSG Staff
Member

: User Interface
Class

: Investment
Class

: Mortgage
Class

: Mortgages
Report Class

: Investments
Report Class

 FIGURE 13.59 Another scenario of the Produce a
Report use case.

An MSG staff member wishes to print a list of all
investments.

1. The staff member requests a report listing all
investments.

sch76183_ch13_404-464.indd 452sch76183_ch13_404-464.indd 452 10/06/10 4:30 PM10/06/10 4:30 PM

 FIGURE 13.60
 A communication
diagram of the
realization of
the scenario of
Figure 13.59 of
the Produce
a Report use
case of the MSG
Foundation case
study.

1: Request list
 of investments

2: Transfer
 request

5: Send successful
 completion
 message

4: Send successful
 completion
 message

3: Print list of
 investments

6: Display successful
 completion
 message

MSG Staff
Member

: Mortgages
Report Class

: Investments
Report Class

: User Interface
Class

: Investment
Class

: Mortgage
Class

1: Request list
 of investments

2: Transfer request

3: Print list of
 investments

4: Send successful
 completion
 message

5: Send successful
 completion
 message6: Display

 successful
 completion
 message

MSG Staff
Member

: Investments
Report Class

: User Interface
Class

: Mortgage
Class

: Mortgages
Report Class

: Investment
Class

 FIGURE 13.61 A sequence diagram of the realization of the scenario of Figure 13.59 of the Produce a
Report use case of the MSG Foundation case study.

453

sch76183_ch13_404-464.indd 453sch76183_ch13_404-464.indd 453 10/06/10 4:30 PM10/06/10 4:30 PM

454 Part B The Workfl ows of the Software Life Cycle

Incrementing the Class Diagram:
The MSG Foundation Case Study
 The entity classes were extracted in Sections 13.9 through 13.12, yielding Figure 13.29 ,
which shows four entity classes. The boundary classes were extracted in Section 13.13
and the control classes in Sections 13.14 and 13.15.2. In the course of realizing the vari-
ous use cases in Section 13.15, interrelationships between many of the classes became
apparent; these interrelationships are refl ected in the class diagrams of Figures 13.34 ,
 13.41 , 13.50 , and 13.55 . Figure 13.62 combines these class diagrams.
 Now the class diagrams of Figures 13.29 and 13.62 are combined to yield the
fourth iteration of the class diagram of the MSG Foundation case study, shown in

13.1613.16
 Case Study

User Interface
Class

Mortgages
Report Class

Estimate Funds
Report Class

Investments
Report Class

Mortgage
Class

Investment
Class

MSG Application
Class

Manage an
Asset Class

Estimate
Funds for

Week Class

MSG Staff Member

 FIGURE 13.62
 Class diagram
combining the
class diagrams
of 13.34, 13.41,
13.50, and
13.55.

sch76183_ch13_404-464.indd 454sch76183_ch13_404-464.indd 454 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 455

 Figure 13.63 . More specifi cally, starting with Figure 13.62 , Asset Class of Figure 13.29
is added. Then the two inheritance (generalization) relationships in Figure 13.29 are
drawn in; they are shown with dashed lines to distinguish them. The result, Figure 13.63 ,
the fourth iteration of the class diagram, is the class diagram at the end of the analysis
workfl ow.
 The last step of the analysis workfl ow of the MSG Foundation case study is to
draw up the software project management plan (this is done during the elaboration
phase; see Section 3.10.2). Appendix F contains a software project management plan
for the development of the MSG Foundation product by a small (three-person) soft-
ware organization.

 FIGURE 13.63
 The fourth
iteration of the
class diagram
of the MSG
Foundation
case study,
obtained by
combining the
class diagrams
of Figures 13.29
and 13.62.

Asset
Class

Relationships in Figure 13.62

Relationships in Figure 13.29

User Interface
Class

Mortgages
Report Class

Estimated Funds
Report Class

Investments
Report Class

Mortgage
Class

Investment
Class

MSG Application
Class

Manage an
Asset Class

Estimate
Funds for

Week Class

MSG Staff Member

sch76183_ch13_404-464.indd 455sch76183_ch13_404-464.indd 455 10/06/10 4:30 PM10/06/10 4:30 PM

456 Part B The Workfl ows of the Software Life Cycle

 13.18 The Specifi cation Document in the Unifi ed Process
 A primary goal of the analysis workfl ow is to produce the specifi cation document , but
at the end of Section 13.17 it was claimed that the analysis workfl ow is now complete. The
obvious question is, Where is the specifi cation document?
 The short answer is, the Unifi ed Process is use-case driven. In more detail, the use
cases and the artifacts derived from them contain all the information that, in the traditional
paradigm, appears in the specifi cation document in text form, and more.
 For example, consider the use case Estimate Funds Available for Week.
When the requirements workfl ow is performed, the Estimate Funds Available
for Week use case (Figure 11.27) and its description (Figure 11.40) are shown to the client,
the trustees of the MSG Foundation. The developers must be meticulous in ensuring that the
trustees fully understand these two artifacts and agree that these artifacts accurately model
the software product the Foundation needs. Then, during the analysis workfl ow, the trustees
are shown the use case Estimate Funds Available for Week (Figure 13.32), its
description (Figure 13.33), the class diagram showing the classes that realize the use case
(Figure 13.34), a scenario of the use case (Figure 13.35), the interaction diagrams of the real-
ization of a scenario of the use case (Figures 13.36 and 13.38), and the fl ow of events of these
interaction diagrams (Figure 13.37).
 The set of artifacts just listed all appertain to only the use case Estimate Funds
Available for Week. As shown in Figure 13.23 , there are four use cases altogether.
The same set of artifacts are produced for each of the scenarios of each of the use cases.
The resulting collection of artifacts, some diagrammatic and some textual, convey to the
client more information more accurately than the purely textual specifi cation document of
the traditional paradigm possibly could.
 The traditional specifi cation document usually plays a contractual role. That is, once
it has been signed by both the developers and the client, it essentially constitutes a legal
document. If the developers build a software product that satisfi es the specifi cation docu-
ment, the client is obligated to pay for the software product, and conversely, if the product
does not conform to its specifi cation document, the developers are required to fi x it if
they want to get paid. In the case of the Unifi ed Process, the collection of artifacts of all

The Test Workfl ow:
The MSG Foundation Case Study
 The analysis workfl ow of the MSG Foundation case study is checked in two ways.
First the entity classes are checked using CRC cards, as described in Section 13.7.
Then all the artifacts of the analysis workfl ow are inspected (Section 6.2.3).
 This concludes the analysis workfl ow of the MSG Foundation case study.

13.1713.17
 Case Study

sch76183_ch13_404-464.indd 456sch76183_ch13_404-464.indd 456 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 457

the scenarios of all the use cases similarly constitutes a contract. Therefore, as claimed
at the end of Section 13.17, the analysis workfl ow of the MSG Foundation case study is
indeed complete.
 As stated before, the Unifi ed Process is use-case driven. When using the Unifi ed Pro-
cess, instead of constructing a rapid prototype, the use cases, or more precisely, interaction
diagrams refl ecting the classes that realize the scenarios of the use cases, are shown to the
client. The client can understand how the target software product will behave just as well
from the interaction diagrams and their written fl ow of events as from a rapid prototype.
After all, a scenario is a particular execution sequence of the proposed software product, as
is each execution of the rapid prototype. The difference is that the rapid prototype is gener-
ally discarded, whereas the use cases are successively refi ned, with more information added
each time.
 However, there is one area where a rapid prototype is superior to a scenario, the user
interface. This does not mean that a rapid prototype should be built just so that specimen
screens and reports can be examined by the client and users. But specimen screens and
reports need to be constructed, as described in Section 11.13, preferably with the aid of
CASE tools such as screen generators and report generators (Section 5.5).
 In Section 13.19, methods for determining actors and use cases are provided.

 13.19 More on Actors and Use Cases
 As stated in Section 11.4.3, a use case depicts an interaction between the software product
itself and the actors (the users of that software product). Now that a number of examples
of actors and use cases have been presented, it is appropriate to describe how to fi nd actors
and use cases.
 To fi nd the actors, we have to consider every role in which an individual can interact
with the software product. For example, consider a couple who wish to obtain a mortgage
from the MSG Foundation. When they apply for the mortgage, they are Applicants ,
whereas after their application has been approved and money to buy their home loaned
to them, they become Borrowers . In other words, actors are not so much individuals
as roles played by those individuals. In our example, the actors are not the couple, but
rather fi rst the couple playing the role of Applicants and then the couple playing the
role of Borrowers . This means that merely listing all the individuals who will use the
software product is not a satisfactory way of fi nding the actors. Instead, we need to fi nd
all the roles played by each user (or group of users). From the list of roles we can extract
the actors.
 In the terminology of the Unifi ed Process, the term worker is used to denote a par-
ticular role played by an individual. This is a somewhat unfortunate term, because the
word worker usually refers to an employee. In the terminology of the Unifi ed Process,
in the case of a couple with a mortgage, Applicants and Borrowers are two dif-
ferent workers. In this book, in the interests of clarity the word role is used in place of
 worker .
 Within a business context, the task of fi nding the roles is generally straightforward. The
use-case business model usually displays all the roles played by the individuals who inter-
act with the business, thereby highlighting the business actors. We then fi nd the subset of

sch76183_ch13_404-464.indd 457sch76183_ch13_404-464.indd 457 10/06/10 4:30 PM10/06/10 4:30 PM

458 Part B The Workfl ows of the Software Life Cycle

the use-case business model that corresponds to the use-case model of the requirements. In
more detail,

 1. Construct the use-case business model by fi nding all the roles played by the individuals
who interact with the business.

 2. Find the subset of the use-case diagram of the business model that models the software
product we wish to develop. That is, consider only those parts of the business model that
correspond to the proposed software product.

 Once the actors have been determined, fi nding the use cases is generally straightfor-
ward. For each role, there are one or more use cases. So, the starting point in fi nding the
use cases of the requirements is fi nding the actors, as described in this section.
 How to Perform Box 13.1 summarizes object-oriented analysis.

 13.20 CASE Tools for the Object-Oriented
Analysis Workfl ow

 Bearing in mind the role played by diagrams in object-oriented analysis, it is not surprising
that a number of CASE tools have been developed to support object-oriented analysis. In
its basic form, such a tool is essentially a drawing tool that makes it easy to perform each
of the modeling steps. More important, it is far simpler to modify a diagram constructed
with a drawing tool than to attempt to change a hand-drawn fi gure. Accordingly, a CASE
tool of this type supports the graphical aspects of object-oriented analysis. In addition,
some tools of this type not only draw all the relevant diagrams but CRC cards as well. A
strength of these tools is that a change to the underlying model is refl ected automatically in
all the affected diagrams; after all, the various diagrams are merely different views of the
underlying model.
 On the other hand, some CASE tools support not just object-oriented analysis but a con-
siderable portion of the rest of the object-oriented life cycle as well. Nowadays virtually all
of these tools support UML [Rumbaugh, Jacobson, and Booch, 1999]. Examples of such

 How to Perform Object-Oriented Analysis Box 13.1

 • Iterate

 Perform functional modeling.

 Perform entity class modeling.

 Perform dynamic modeling.

 • Until the entity classes have been satisfactorily extracted.

 • Extract the boundary classes and control classes.

 • Refi ne the use cases.

 • Perform use-case realization.

sch76183_ch13_404-464.indd 458sch76183_ch13_404-464.indd 458 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 459

tools include IBM Rational Rose and Together. ArgoUML is a typical open-source CASE
tool of this type.

 13.21 Metrics for the Object-Oriented Analysis Workfl ow
 As with the other core workfl ows, during object-oriented analysis it is essential to measure
the fi ve fundamental metrics: size, cost, duration, effort, and quality. One measure of the
size of the object-oriented analysis is the number of pages of UML diagrams; this metric
can be used to compare different projects.
 With regard to quality, as with classical analysis, it is essential to keep accurate fault
statistics. Also, the rate at which faults are detected can give a measure of the effi ciency of
the inspection process.

 13.22 Challenges of the Object-Oriented Analysis Workfl ow
 Object-oriented analysis is a specifi c approach to analysis, so the challenges of classical
analysis described in Section 12.16 apply equally to object-oriented analysis. In particu-
lar, the second challenge listed in that section is that it is easy to cross the boundary line
between specifi cations (what) and design (how). This danger is especially acute in the case
of object-oriented analysis.
 Recall that, as described in Section 1.9, the transition from object-oriented analysis to
object-oriented design is far smoother than the transition in the classical paradigm from the
analysis phase to the design phase. In the classical paradigm, an initial task of the design
phase is to decompose the product into modules. In contrast, the classes, the “modules”
of the object-oriented design workfl ow, are extracted during the object-oriented analysis
workfl ow, ready for refi nement during the object-oriented design workfl ow. The presence
of classes from early in the OOA workfl ow means that the temptation to carry the OOA too
far can be extremely strong.
 For example, consider the issue of allocation of methods to classes. One task of the clas-
sical analysis phase is to determine the data and operations of the target product. However,
allocation of the various operations to specifi c modules should be delayed until the classi-
cal design phase, because as pointed out in Section 12.16, we fi rst have to determine how
the product as a whole is broken down into modules.
 In the object-oriented paradigm, however, this latter task is part of the analysis workfl ow.
That is, during the object-oriented analysis workfl ow, we determine the modules (classes)
and their interactions; the result is depicted in the class diagram. Therefore, there is no
apparent reason why we should wait until the object-oriented design workfl ow before allo-
cating methods to classes.
 Nevertheless, it is important to remember that object-oriented analysis is an iterative process.
In the course of refi ning the various models, frequently large portions of the class diagram have
to be reorganized. Reallocating the methods then results in unnecessary additional rework.
 At each step of the OOA process it is a good idea to minimize the information that
would have to be reorganized during iteration. Therefore, allocation of methods to classes
should wait until the design workfl ow, no matter how tempting it may be to go just a little
further during the object-oriented analysis workfl ow.

sch76183_ch13_404-464.indd 459sch76183_ch13_404-464.indd 459 10/06/10 4:30 PM10/06/10 4:30 PM

460 Part B The Workfl ows of the Software Life Cycle

 Object-oriented analysis is introduced (Section 13.1). Extracting entity classes is described in Sec-
tion 13.2. The technique is then applied to the elevator problem case study (Section 13.3); functional
modeling, entity class modeling, and dynamic modeling are performed in Sections 13.4, 13.5, and
13.6, respectively. Next, object-oriented analysis aspects of the test workfl ow are covered in Section
13.7. Extraction of boundary and control classes is the subject of Section 13.8. The class extrac-
tion of the MSG Foundation case study is described in Section 13.9 (the initial functional model),
Section 13.10 (the initial class diagram), Section 13.11 (the initial dynamic model), Section 13.12
(revision of the entity classes), Section 13.13 (extraction of the boundary classes), and Section 13.14
(extraction of the control classes). Application of the Unifi ed Process to the MSG Foundation case
study resumes in Section 13.15 (realization of the use cases), Section 13.16 (class diagram incre-
mentation), and Section 13.17 (test workfl ow). The specifi cation document for the Unifi ed Process
is discussed in Section 13.18. Additional information regarding actors and use cases appears in Sec-
tion 13.19. CASE tools and metrics for object-oriented analysis are described in Sections 13.20 and
13.21, respectively. The chapter concludes with a discussion of the challenges of the object-oriented
analysis workfl ow (Section 13.22).
 An overview of the MSG Foundation case study for Chapter 13 appears in Figure 13.64 , and for
the elevator problem in Figure 13.65 .

 FIGURE 13.64 Overview of the MSG Foundation case study for Chapter 13 .

 Initial functional model Section 13.9

 Seventh iteration of the use-case diagram Figure 13.15

 Initial class diagram Section 13.10

 First iteration of the class diagram Figure 13.21

 Second iteration of the class diagram Figure 13.22

 Eighth iteration of the use-case diagram Figure 13.23

 Second iteration of the class diagram, with attributes added Figure 13.24

 Initial dynamic model Section 13.11

 Initial statechart Figure 13.25

 Revising the entity classes Section 13.12

 Third iteration of the class diagram Figure 13.28

 Extracting the boundary classes Section 13.13

 Extracting the control classes Section 13.14

 Use-case realization Section 13.15

 Estimate Funds Available for Week use case Section 13.15.1

 Manage an Asset use case Section 13.15.2

 Update Estimated Annual Operating Expenses use case Section 13.15.3

 Produce a Report use case Section 13.15.4

 Incrementing the class diagram Section 13.16

 Fourth iteration of the class diagram Figure 13.63

 Chapter
Review

sch76183_ch13_404-464.indd 460sch76183_ch13_404-464.indd 460 10/06/10 4:30 PM10/06/10 4:30 PM

Chapter 13 Object-Oriented Analysis 461

 FIGURE 13.65 Overview of the elevator problem case study for Chapter 13 .

 Object-oriented analysis Section 13.3

 Functional modeling Section 13.4

 Entity class modeling Section 13.5

 First iteration of the class diagram Figure 13.5

 Second iteration of the class diagram Figure 13.6

 Dynamic modeling Section 13.6

 First iteration of the statechart for the elevator controller Figure 13.7

 Test workfl ow Section 13.7

 Third iteration of the class diagram Figure 13.10

 Fourth iteration of the class diagram Figure 13.12

 First iteration of the statechart for the elevator subcontroller Figure 13.13

 Fusion [Coleman et al., 1994] is a second-generation OOA technique, a combination (or fusion) of a
number of fi rst-generation techniques, including OMT [Rumbaugh et al., 1991] and Objectory [Jacob-
son, Christerson, Jonsson, and Overgaard, 1992]. The Unifi ed Software Development Process unifi es
the work of Jacobson, Booch, and Rumbaugh [1999]. Catalysis is another important object-oriented
methodology [D’Souza and Wills, 1999].
 ROOM is an object-oriented methodology for real-time software [Selic, Gullekson, and Ward,
1995]. Further information on real-time object-oriented technologies can be found in [Awad, Kuu-
sela, and Ziegler, 1996].
 Full details regarding UML can be found in [Booch, Rumbaugh, and Jacobson, 1999] and [Rum-
baugh, Jacobson, and Booch, 1999]. The October 1999 issue of Communications of the ACM contains
a broad variety of papers on the use of UML. UML is now under the control of the Object Manage-
ment Group; the latest version of UML will be found at the OMG Website, www.omg.org .
 The noun-extraction technique used in this chapter to extract candidate classes is formalized
in [Juristo, Moreno, and López, 2000]. CRC cards were fi rst put forward in [Beck and Cunning-
ham, 1989]. [Wirfs-Brock, Wilkerson, and Wiener, 1990] is a good source of information on
CRC cards.
 A number of comparisons of object-oriented analysis techniques have been published, including
[de Champeaux and Faure, 1992], [Monarchi and Puhr, 1992], and [Embley, Jackson, and Woodfi eld,
1995]. A comparison of both object-oriented and classical analysis techniques appears in [Fichman
and Kemerer, 1992].
 Management of iteration in object-oriented projects is described in [Williams, 1996]. Statecharts
are described in [Harel and Gery, 1997]. The reuse of specifi cations in the object-oriented paradigm
is described in [Bellinzona, Fugini, and Pernici, 1995].
 A variety of papers on formal techniques for object-oriented software appear in the July 2000
issue of IEEE Transactions on Software Engineering .

 For
Further
Reading

sch76183_ch13_404-464.indd 461sch76183_ch13_404-464.indd 461 10/06/10 4:30 PM10/06/10 4:30 PM

www.omg.org

462 Part B The Workfl ows of the Software Life Cycle

 13.1 Modify the scenario of Figure 13.11 to refl ect the fourth iteration of the class diagram of the
elevator problem case study (Figure 13.12).

 13.2 Develop a statechart for the Button Class shown in Figure 13.12 .

 13.3 Develop a statechart for the Elevator Class shown in Figure 13.12 .

 13.4 Develop a statechart for the Elevator Doors Class shown in Figure 13.12 .

 13.5 Construct a CRC card for the Floor Subcontroller Class shown in Figure 13.12 .

 13.6 Why must the fi nite state machine formalism of Section 12.7 be changed when used for object-
oriented analysis?

 13.7 What is the latest point in the analysis workfl ow in which classes can be introduced without
adversely affecting the project?

 13.8 What is the earliest point in the Unifi ed Process in which classes can meaningfully be intro-
duced?

 13.9 Is it possible to represent the dynamic model using a formalism other than the statechart
described in this chapter? Explain your answer.

 13.10 Why are the attributes of the classes but not the methods determined during object-oriented
analysis?

 13.11 A noun-extraction process is described in Section 13.5.1. Why do we not also extract the
verbs? And what about the other six parts of speech (adjectives, adverbs, conjunctions, inter-
jections, prepositions, and pronouns)?

 13.12 Give an extended scenario of the use case Manage an Investment of Figures 11.30 and
 11.31 .

 13.13 Give an extended scenario of the use case Update Estimated Annual Operating
Expenses of Figures 11.17 and 11.18 .

 13.14 Give the fl ow of events of the interaction diagrams of Figures 13.43 and 13.44 .

 13.15 Give the fl ow of events of the interaction diagrams of Figures 13.46 and 13.47 .

 13.16 Check that your answer to Problem 13.13 is a possible scenario for the interaction diagrams of
 Figures 13.51 and 13.52 . If not, modify your scenario.

 Key Terms abstract noun 411
 actor 407
 analysis workfl ow 405
 attribute 411
 backtrack 430
 boundary class 405
 class diagram 411
 class–responsibility–

collaboration (CRC)
cards 413

 communication
diagram 435

 control class 406
 dynamic modeling 406
 entity class 405

 entity class modeling 406
 event 431
 exception scenario 408
 fl ow of events 440
 functional modeling 406
 interaction diagram 435
 legacy system 405
 millennium bug 405
 normal scenario 408
 noun-extraction method 411
 object-oriented analysis

(OOA) 404
 realize (in the Unifi ed Theory

context) 435
 responsibility-driven design 408

 role 457
 scenario 406
 sequence diagram 435
 specifi cation

document 456
 state 418
 state variable 418
 statechart 414
 stereotype 406
 test workfl ow 417
 transition 431
 use case 407
 use-case realization 435
 worker 457
 Y2K problem 405

 1 Problem 12.16 (Term Project) and Problems 12.20 and 12.21 (Case Study) can be done at the end of either
 Chapter 12 or Chapter 13 .

 Problems 1

462 Part B The Workfl ows of the Software Life Cycle

sch76183_ch13_404-464.indd 462sch76183_ch13_404-464.indd 462 10/06/10 4:30 PM10/06/10 4:30 PM

 13.17 Give the fl ow of events of the interaction diagrams of Figures 13.51 and 13.52 .

 13.18 Give the fl ow of events of the interaction diagrams of Figures 13.57 and 13.58 .

 13.19 (Analysis and Design Project) Perform the analysis workfl ow of the library software product
of Problem 8.7.

 13.20 (Analysis and Design Project) Perform the analysis workfl ow of the product for determining
whether a bank statement is correct of Problem 8.8.

 13.21 (Analysis and Design Project) Perform the analysis workfl ow of the automated teller machine
of Problem 8.9. There is no need to consider the details of the constituent hardware compo-
nents such as the card reader, printer, and cash dispenser. Instead, simply assume that, when
the ATM sends commands to those components, they are correctly executed.

 13.22 (Term Project) Perform the analysis workfl ow of the Chocoholics Anonymous product
described in Appendix A.

 13.23 (Case Study) Add Report Class to the analysis workfl ow of the MSG Foundation case study
(Sections 13.9 through 13.16). Is this an improvement or an unnecessary complication?

 13.24 (Case Study) Determine what happens when object-oriented analysis starts with dynamic
modeling. Start with the statechart of Figure 13.25 and complete the object-oriented analysis
process for the MSG Foundation case study.

 13.25 (Case Study) Compare and contrast the structured systems analysis of the MSG Foundation
case study of Section 12.4 with the object-oriented analysis workfl ow of Sections 13.9 through
13.11.

 13.26 (Readings in Software Engineering) Your instructor will distribute copies of [Juristo, Moreno,
and López, 2000]. What is your opinion of their approach to object-oriented analysis?

 [Awad, Kuusela, and Ziegler, 1996] M. AWAD, J. KUUSELA, AND J. ZIEGLER, Object-Oriented Technol-
ogy for Real-Time Systems: A Practical Approach Using OMT and Fusion, Prentice Hall, Upper
Saddle River, NJ, 1996.

 [Beck and Cunningham, 1989] K. BECK AND W. CUNNINGHAM, “A Laboratory for Teaching Object-
Oriented Thinking,” Proceedings of OOPSLA ’89, ACM SIGPLAN Notices 24 (October 1989),
pp. 1–6.

 [Bellinzona, Fugini, and Pernici, 1995] R. BELLINZONA, M. G. FUGINI, AND B. PERNICI, “Reusing
Specifi cations in OO Applications,” IEEE Software 12 (March 1995), pp. 656–75.

 [Booch, Rumbaugh, and Jacobson, 1999] G. BOOCH, J. RUMBAUGH, AND I. JACOBSON, The UML Users
Guide , Addison-Wesley, Reading, MA, 1999.

 [Coleman et al., 1994] D. COLEMAN, P. ARNOLD, S. BODOFF, C. DOLLIN, H. GILCHRIST, F. HAYES,
AND P. JEREMAES, Object-Oriented Development: The Fusion Method , Prentice Hall, Englewood
Cliffs, NJ, 1994.

 [D’Souza and Wills, 1999] D. D’SOUZA AND H. WILLS, Objects, Components, and Frameworks with
UML: The Catalysis Approach , Addison-Wesley, Reading, MA, 1999.

 [de Champeaux and Faure, 1992] D. DE CHAMPEAUX AND P. FAURE, “A Comparative Study of Object-
Oriented Analysis Methods,” Journal of Object-Oriented Programming 5 (March–April 1992),
pp. 21–33.

 [Embley, Jackson, and Woodfi eld, 1995] D. W. EMBLEY, R. B. JACKSON, AND S. N. WOODFIELD, “OO
Systems Analysis: Is It or Isn’t It?” IEEE Software 12 (July 1995), pp. 18–33.

 [Fichman and Kemerer, 1992] R. G. FICHMAN AND C. F. KEMERER, “Object-Oriented and Con-
ventional Analysis and Design Methodologies: Comparison and Critique,” IEEE Computer 25
(October 1992), pp. 22–39.

 References

Chapter 13 Object-Oriented Analysis 463

sch76183_ch13_404-464.indd 463sch76183_ch13_404-464.indd 463 10/06/10 4:30 PM10/06/10 4:30 PM

464 Part B The Workfl ows of the Software Life Cycle

 [Harel and Gery, 1997] D. HAREL AND E. GERY, “Executable Object Modeling with Statecharts,”
 IEEE Computer 30 (July 1997), pp. 31–42.

 [Jacobson, Booch, and Rumbaugh, 1999], I. JACOBSON, G. BOOCH, AND J. RUMBAUGH, The Unifi ed
Software Development Process , Addison-Wesley, Reading, MA, 1999.

 [Jacobson, Christerson, Jonsson, and Overgaard, 1992] I. JACOBSON, M. CHRISTERSON, P. JONSSON,
AND G. OVERGAARD, Object-Oriented Software Engineering: A Use Case Driven Approach , ACM
Press, New York, 1992.

 [Juristo, Moreno, and López, 2000] N. JURISTO, A. M. MORENO, AND M. LÓPEZ, “How to Use Linguis-
tic Instruments for Object-Oriented Analysis,” IEEE Software 17 (May–June 2000), pp. 80–89.

 [Monarchi and Puhr, 1992] D. E. MONARCHI AND G. I. PUHR, “A Research Typology for Object-
Oriented Analysis and Design,” Communications of the ACM 35 (September 1992), pp. 35–47.

[Rumbaugh et al., 1991] J. RUMBAUGH, M. BLAHA, W. PREMERLANI, F. EDDY, AND W. LORENSEN,
Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

 [Rumbaugh, Jacobson, and Booch, 1999] J. RUMBAUGH, I. JACOBSON, AND G. BOOCH, The Unifi ed
Modeling Language Reference Manual, Addison-Wesley, Reading, MA, 1999.

 [Selic, Gullekson, and Ward, 1995] B. SELIC, G. GULLEKSON, AND P. T. WARD, Real-Time Object-
Oriented Modeling , John Wiley and Sons, New York, 1995.

 [USNO, 2000] “The 21st Century and the Third Millennium—When Will They Begin?” U.S. Naval
Observatory, Astronomical Applications Department, at aa.usno.navy.mil/AA/faq/docs/
millennium.html , February 22, 2000.

 [Williams, 1996] J. D. WILLIAMS, “Managing Iteration in OO Projects,” IEEE Computer 29 (Septem-
ber 1996), pp. 39–43.

 [Wirfs-Brock, Wilkerson, and Wiener, 1990] R. WIRFS-BROCK, B. WILKERSON, AND L. WIENER,
 Designing Object-Oriented Software , Prentice Hall, Englewood Cliffs, NJ, 1990.

464 Part B The Workfl ows of the Software Life Cycle

sch76183_ch13_404-464.indd 464sch76183_ch13_404-464.indd 464 10/06/10 4:30 PM10/06/10 4:30 PM

465

 Chapter 14
Design
 Learning Objectives

 After studying this chapter, you should be able to

 • Perform the design workfl ow.

 • Perform object-oriented design.

 • Perform data fl ow analysis and transaction analysis.

 Over the past 40 or so years, hundreds of design techniques have been put forward. Some
are variations on existing techniques; others are radically different from anything previ-
ously proposed. A few design techniques have been used by tens of thousands of software
engineers; many have been used by only their authors. Some design strategies, particu-
larly those developed by academics, have a fi rm theoretical basis. Others, including many
drawn up by academics, are more pragmatic in nature; they were put forward because their
authors found that they worked well in practice. Most design techniques are manual, but
automation increasingly is becoming an important aspect of design, if only to assist in the
management of documentation.
 Notwithstanding this plethora of design techniques, a certain underlying pattern emerges.
A major theme of this book is that two essential aspects of a product are its operations and
the data on which the operations act. Therefore, the two basic ways of designing a product
are operation-oriented design and data-oriented design. In operation-oriented design ,
the emphasis is on the operations. An example is data fl ow analysis (Section 14.3), where the
objective is to design modules with high cohesion (Section 7.2). In data-oriented design ,
the data are considered fi rst. For example, in Jackson’s technique (Section 14.5), the structure
of the data is determined fi rst, and then the procedures are designed to conform to the struc-
ture of the data.
 A weakness of operation-oriented design techniques is that they concentrate on the
operations; the data are of only secondary importance. Data-oriented design techniques
similarly emphasize the data, to the detriment of the operations. The solution is to use
object-oriented techniques, which give equal weight to operations and data. In this chapter,

sch76183_ch14_465-497.indd 465sch76183_ch14_465-497.indd 465 07/06/10 11:41 AM07/06/10 11:41 AM

466 Part B The Workfl ows of the Software Life Cycle

operation- and data-oriented design are described fi rst, and then object-oriented design.
Just as an object incorporates both operations and data, so object-oriented design combines
features of operation-oriented and data-oriented design. Therefore, a basic understanding
of operation- and data-oriented design is needed to get a full understanding of object-
oriented design.
 Before specifi c design techniques are examined, some general remarks must be made
regarding design.

 14.1 Design and Abstraction
 The classical design phase consists of three activities: architectural design, detailed design,
and design testing. The input to the design process is the specifi cation document, a descrip-
tion of what the product is to do. The output is the design document, a description of how
the product is to achieve this.
 During architectural design (also known as general design , logical design , or
 high-level design), a modular decomposition of the product is developed. That is, the speci-
fi cations are carefully analyzed, and a module structure that has the desired functionality is pro-
duced. The output from this activity is a list of the modules and a description of how they are to
be interconnected. From the viewpoint of abstraction, during architectural design, the existence
of certain modules is assumed; the design then is developed in terms of those modules.
 When the object-oriented paradigm is used, however, as explained in Section 1.9, the
architectural design activity is performed during the object-oriented analysis workfl ow
(Chapter 12). This is because the fi rst step in the analysis workfl ow is to determine the
classes. Because a class is a type of module, the modular decomposition has been per-
formed during the analysis workfl ow.
 The next activity in the classical design phase and a major activity of the object-oriented
design workfl ow is detailed design , also known as modular design , physical design ,
or low-level design , during which each module (or class) is designed in detail. For
example, specifi c algorithms are selected and data structures are chosen. Again, from the
viewpoint of abstraction, during this activity the fact that the modules (or classes) are to be
interconnected to form a complete product is ignored.
 It was stated previously that the classical design phase has three activities and that the third
activity is testing. The word activity was used, rather than stage or step , to emphasize that test-
ing is an integral part of design, just as it is an integral part of the entire software development
and maintenance process. Testing is not something performed only after the architectural
design and detailed design have been completed. Similarly, in the case of object-oriented
design, the test workfl ow is performed concurrently with the design workfl ow.
 A variety of design techniques are now described, fi rst operation-oriented techniques,
then data-oriented techniques, and fi nally object-oriented techniques.

 14.2 Operation-Oriented Design
 Sections 7.2 and 7.3 made a theoretical case for decomposing a product into modules with
high cohesion and low coupling. We now describe two practical classical techniques for
achieving this design objective, data fl ow analysis (Section 14.3) and transaction analysis

sch76183_ch14_465-497.indd 466sch76183_ch14_465-497.indd 466 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 467

(Section 14.4). In theory, data fl ow analysis can be applied whenever the specifi cations can
be represented by a data fl ow diagram, and because (at least in theory) every product can
be represented by a DFD, data fl ow analysis is universally applicable. In practice, however,
in a number of situations, there are more appropriate design techniques, specifi cally for
designing products where the fl ow of data is secondary to other considerations. Examples
where other design techniques are indicated include rule-based systems (expert systems),
databases, and transaction-processing products. (Transaction analysis, described in Section
14.4, is a good way of decomposing transaction-processing products into modules.)

 14.3 Data Flow Analysis
 Data fl ow analysis (DFA) is a classical design technique for achieving modules with high
cohesion. It can be used in conjunction with most analysis techniques. Here, DFA is presented
in conjunction with structured systems analysis (Section 12.3). The input to the technique is a
data fl ow diagram. A key point is that, once the DFD has been completed, the software designer
has precise and complete information regarding the input to and output from the product.
 Consider the fl ow of data in the product represented by the DFD of Figure 14.1 . The
product somehow transforms input into output. At some point in the DFD, the input ceases
to be input and becomes some sort of internal data. Then, at some further point, these
internal data take on the quality of output. This is shown in more detail in Figure 14.2 . The
point at which the input loses the quality of being input and simply becomes internal data
operated on by the product is termed the point of highest abstraction of input . The
 point of highest abstraction of output is similarly the fi rst point in the fl ow of data
at which the output can be identifi ed as such, rather than as some sort of internal data.
 Using the points of highest abstraction of input and output, the product is decomposed into
three modules: input_module, transform_module , and output_module . Now each mod-
ule is taken in turn, its points of highest abstraction found, and the module decomposed again.
This procedure is continued stepwise until each module performs a single operation; that is, the

 FIGURE 14.1 A data fl ow diagram showing fl ow of data and operations of product.

 FIGURE 14.2 Points of highest abstraction of input and output.

a
OutputInput

b c d e f g h

a
OutputInput

b c d e f g h

Point of
highest abstraction

of input

Point of
highest abstraction

of output

input_module transform_module output_module

sch76183_ch14_465-497.indd 467sch76183_ch14_465-497.indd 467 07/06/10 11:41 AM07/06/10 11:41 AM

468 Part B The Workfl ows of the Software Life Cycle

design consists of modules with high cohesion. Consequently, stepwise refi nement, the founda-
tion of so many other software engineering techniques, also underlies data fl ow analysis.
 In fairness, it should be pointed out that minor modifi cations might have to be made to
the decomposition to achieve the lowest possible coupling. Data fl ow analysis is a way of
achieving high cohesion. The aim of composite/structured design is high cohesion but also
low coupling. To achieve the latter, sometimes it is necessary to make minor modifi cations to
the design. For example, because DFA does not take coupling into account, control coupling
may arise inadvertently in a design constructed using DFA. In such a case, all that is needed is
to modify the two modules involved so that data, and not control, are passed between them.

 Mini Case Study Word Counting

 Consider the problem of designing a product that takes as input a fi le name and returns
the number of words in that fi le, similarly to the UNIX wc utility.
 Figure 14.3 depicts the data fl ow diagram. There are fi ve modules. Module
 read_fi le_name reads the name of the fi le, which then is validated by validate_fi le_
name . The validated name is passed to count_number_of_words , which does pre-
cisely that. The word count is passed on to format_word_count , and the formatted
word count fi nally is passed to display_word_count for output.
 Examining the data fl ow, the initial input is fi le_name . When this becomes vali-
dated_fi le_name , it still is a fi le name and therefore has not lost its quality of being
input data. But consider module count_number_of_words . Its input is validated_
fi le_name , and its output is word_count . The output from this module is totally
different in quality from the input to the product as a whole. It is clear that the point
of highest abstraction of input is as indicated on Figure 14.3 . Similarly, even though
the output from count_number_of_words undergoes some sort of formatting, it is
essentially output from the time it emerges from module count_number_of_words .
The point of highest abstraction of output therefore is as shown in Figure 14.3 .
 The result of decomposing the product using these two points of highest abstrac-
tion is shown in the structure chart of Figure 14.4 . This fi gure also reveals that the data

C Mini ase Study

14.3.114.3.1

 FIGURE 14.3 The fi rst refi nement of the data fl ow diagram.

read_
file_

name

validate_
file_

name

format_
word_
count

display_
word_
count

count_
number_
of_words

desired_
output

file_
name

formatted_
word_
count

file_
name

Point of
highest abstraction

of input

Point of
highest abstraction

of output

Input to here Output from here

validated_
file_name

word_
count

sch76183_ch14_465-497.indd 468sch76183_ch14_465-497.indd 468 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 469

fl ow diagram of Figure 14.3 is somewhat too simplistic. The DFD does not show the
logical fl ow corresponding to what happens if the fi le specifi ed by the user does not
exist. Module read_and_validate_fi le_name must return a status_fl ag to perform_
word_count . If the name is invalid, then it is ignored by perform_word_count and
an error message of some sort is printed. But, if the name is valid, it is passed on to
 count_number_of_words . In general, wherever there is a conditional data fl ow, a
corresponding control fl ow is needed.
 As explained in Section 7.2.5, a module has communicational cohesion if it per-
forms a series of operations related by the sequence of steps to be followed by the
product and if all the operations are performed on the same data. In Figure 14.4 , two
modules have communicational cohesion: read_and_validate_fi le_name and
 format_and_display_word_count . These must be decomposed further. The fi nal result
is shown in Figure 14.5 . All eight modules have functional cohesion, with either data
coupling (Section 7.3.5) or no coupling between them.

 FIGURE 14.4
The fi rst
refi nement of the
structure chart.

 FIGURE 14.5 The second refi nement of the structure chart.

count_
number_of_

words

format_
and_display_
word_count

read_and_
validate_
file_name

word_
count

validated_
file_name

word_count
validated_
file_name

status_flag

perform_
word_
count

Data Control

Data Control

count_
number_of_

words

produce_
output

get_
input

word_
count

validated_
file_name

word_count
validated_
file_name

perform_
word_
count

word_countfile_name

read_
file_

name

validate_
file_

name

display_
word_
count

file_name status_flag formatted_
word_count

formatted_
word_count

format_
word_
count

status_flag

sch76183_ch14_465-497.indd 469sch76183_ch14_465-497.indd 469 07/06/10 11:41 AM07/06/10 11:41 AM

470 Part B The Workfl ows of the Software Life Cycle

 Now that the architectural design has been completed, the next step is the detailed
design. Here, data structures are chosen and algorithms selected. The detailed design
of each module then is handed to a programmer for implementation. Just as with
virtually every other phase of software production, time constraints usually require
that the implementation be done by a team, rather than having a single programmer
responsible for coding all the modules. For this reason, the detailed design of each
module must be presented so it can be understood without reference to any other
module. The detailed design of four of the eight modules appears in Figure 14.6 ; the
other four modules are presented in a different format.

 FIGURE 14.6
The detailed
design of four
modules of the
example.

Module name read_file_name
Module type Function
Return type string
Input arguments None
Output arguments None
Error messages None
Files accessed None
Files changed None
Modules called None
Narrative The product is invoked by the user by means of the

command string
word_count ��file_name��

Using an operating system call, this module accesses the
contents of the command string input by the user,
extracts ��file_name��, and returns it as the value of the
module.

Module name validate_file_name
Module type Function
Return type Boolean
Input arguments file_name : string
Output arguments None
Error messages None
Files accessed None
Files changed None
Modules called None
Narrative This module makes an operating system call to

determine whether file file_name exists. The module
returns true if the file exists and false otherwise.

sch76183_ch14_465-497.indd 470sch76183_ch14_465-497.indd 470 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 471

 The design of Figure 14.6 is independent of the programming language. How-
ever, if management decides on an implementation language before the detailed
design is started, the use of a program description language (PDL) for
representing the detailed design is an attractive alternative (pseudocode is an
earlier name for PDL). PDL essentially consists of comments connected by the
control statements of the chosen implementation language. Figure 14.7 shows a

Module name count_number_of_words
Module type Function
Return type integer
Input arguments validated_file_name : string
Output arguments None
Error messages None
Files accessed None
Files changed None
Modules called None
Narrative This module determines whether validated_file_name

is a text file, that is, divided into lines of characters. If so,
the module returns the number of words in the text file;
otherwise, the module returns �1.

Module name produce_output
Module type Function
Return type void
Input arguments word_count : integer
Output arguments None
Error messages None
Files accessed None
Files changed None
Modules called format_word_count

arguments: word_count : integer
formatted_word_count : string

display_word_count
arguments: formatted_word_count : string

Narrative This module takes the integer word_count passed to it
by the calling module and calls format_word_count to
have that integer formatted according to the
specifications. Then it calls display_word_count to have
the line printed.

FIGURE 14.6
(continued)

sch76183_ch14_465-497.indd 471sch76183_ch14_465-497.indd 471 07/06/10 11:41 AM07/06/10 11:41 AM

472 Part B The Workfl ows of the Software Life Cycle

detailed design for the remaining four modules of the product written in a PDL
with the flavor of C++ or Java. A PDL has the advantage that it generally is clear
and concise, and the implementation step usually consists merely of translating
the comments into the relevant programming language. The weakness is that
sometimes there is a tendency for the designers to go into too much detail and
produce a complete code implementation of a module rather than a PDL detailed
design.
 After it has been fully documented and successfully tested, the detailed
design is handed over to the implementation team for coding. The product then
proceeds through the remaining phases of the classical software life cycle.

 void perform_word_count ()
{
 String validated_fi le_name;
 Int word_count;

 if (get_input (validated_fi le_name) is null)
 print “error 1: fi le does not exist”;
 else
 {
 set word_count equal to count_number_of_words (validated_fi le_name);
 if (word_count is equal to –1)
 print “error 2: fi le is not a text fi le”;
 else
 produce_output (word_count);
 }
}

String get_input ()
{
 String fi le_name;

 fi le_name = read_fi le_name ();
 if (validate_fi le_name (fi le_name) is true)
 {
 return fi le_name;
 }
 else
 return null ;
}

 void display_word_count (String formatted_word_count)
{
 print formatted_word_count, left justifi ed ;
}

String format_word_count (int word_count);
{
 return “File contains” word_count “words”;

}

 FIGURE 14.7
PDL
(pseudocode)
representation
of the detailed
design of four
methods of the
example.

sch76183_ch14_465-497.indd 472sch76183_ch14_465-497.indd 472 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 473

 14.3.2 Data Flow Analysis Extensions
The reader may well feel that this mini case study is somewhat artifi cial, in that the data
fl ow diagram (Figure 14.3) has only one input stream and one output stream. To see what
happens in more complex situations, consider Figure 14.8 . Now there are four input streams
and fi ve output streams, a situation that corresponds more closely to reality.
 When there are multiple input and output streams, the way to proceed is to fi nd the point
of highest abstraction of input for each input stream and the point of highest abstraction of
output for each output stream. Use these points to decompose the given data fl ow diagram
into modules with fewer input–output streams than the original. Continue this way until
each resulting module has high cohesion. Finally, determine the coupling between each
pair of modules and make any necessary adjustments.
 Data fl ow analysis is summarized in How to Perform Box 14.1.

 14.4 Transaction Analysis
A transaction is an operation from the viewpoint of the user of the product, such as “pro-
cess a request” or “print a list of today’s orders.” Data fl ow analysis is inappropriate for the
transaction-processing type of product, in which a number of related operations, similar in
outline but differing in detail, must be performed. A typical example is the software controlling

 How to Perform Data Flow Analysis

 • Iterate

 Find the point of highest abstraction of input of each input stream.

 Find the point of highest abstraction of output of each output stream.

 Decompose the data fl ow diagram using these points of highest
abstraction.

 • Until the resulting modules have high cohesion.

 • If a resulting coupling is too high, adjust the design.

Box 14.1

 FIGURE 14.8
The data fl ow
diagram with
multiple input
and output
streams.

o4

i3

i2

i1

i4

o5

o3

o2

o1

sch76183_ch14_465-497.indd 473sch76183_ch14_465-497.indd 473 07/06/10 11:41 AM07/06/10 11:41 AM

474 Part B The Workfl ows of the Software Life Cycle

an automated teller machine. The customer inserts a card with a magnetic strip into a slot,
keys in a password, and then performs operations such as deposit to a checking, savings, or
credit card account; withdraw from an account; or determine the balance in an account. This
type of product is depicted in Figure 14.9 . A good way to design such a product is to break it
into two pieces, the analyzer and the dispatcher. The analyzer determines the transaction type
and passes this information to the dispatcher, which performs the transaction.
 As explained in Section 7.2.2, a module has logical cohesion when it performs a series
of related operations, one of which is selected by the calling module. The design shown
in Figure 14.10 is undesirable, because it has two modules with logical cohesion (Section
7.2.2), edit_any_transaction and update_any_fi le . On the other hand, it seems a waste
of effort to have fi ve very similar edit modules and fi ve very similar update modules. The

 How to Perform Transaction Analysis

• Design the architecture in terms of two components:

 The analyzer.

 The dispatcher.

 • For each set of related operations

 Design one basic module and instantiate it as many times as necessary.

Box 14.2

 FIGURE 14.9 A typical transaction-processing system.

audit_
information

good_
trans_t3

raw_
trans_t3

raw_
trans

good_
trans_t4

good_
trans_t5

good_
trans_t2

good_
trans_t1

write_to_
audit_trail

audit_information

audit_
information

au
dit_

inform
ati

on

raw_

trans_t2

raw
_

tra
ns_t

1

raw_trans_t4
raw_trans_t5

audit_

information

edit_
transaction_

t3

edit_
transaction_

t2

edit_
transaction_

t1

edit_
transaction_

t5

edit_
transaction_

t4

update_
file_z

determine_
transaction_

type

update_
file_y

update_
file_x

update_
file_w

update_
file_v

sch76183_ch14_465-497.indd 474sch76183_ch14_465-497.indd 474 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 475

solution is software reuse (Section 8.1): A basic edit module should be designed, coded,
documented, tested, and then instantiated fi ve times. Each version is slightly different,
but the differences are small enough to make this approach worthwhile. Similarly, a basic
update module can be instantiated fi ve times and slightly modifi ed to cater to the fi ve dif-
ferent update types. The resulting design has high cohesion and low coupling.
 Transaction analysis is summarized in How to Perform Box 14.2.

 14.5 Data-Oriented Design
 The basic principle behind data-oriented design is to design the product according to the
structure of the data on which it is to operate. That is, fi rst the structure of the data is
determined. Then each procedure is given the same structure as the data on which it oper-
ates. There are a number of data-oriented techniques of this type; the most well known are
those of Michael Jackson [1975], Warnier [1976], and Orr [1981]. The three techniques
share many similarities.

 FIGURE 14.10
A poor design
of transaction-
processing
system.

edit_any_
transaction

update_
any_file

write_to_
audit_trail

analyzer dispatcher

process_
trans_t3

process_
trans_t2

process_
trans_t5

process_
trans_t4

process_
transaction

process_
trans_t1

sch76183_ch14_465-497.indd 475sch76183_ch14_465-497.indd 475 07/06/10 11:41 AM07/06/10 11:41 AM

476 Part B The Workfl ows of the Software Life Cycle

 Data-oriented design was never as popular as operation-oriented design and, with the
rise of the object-oriented paradigm, it has largely fallen out of fashion. For reasons of
space, data-oriented design is not discussed further in this book; the interested reader
should consult the references cited in the previous paragraph.

 14.6 Object-Oriented Design
 As previously stated, the Unifi ed Process assumes previous knowledge of object-
oriented design (OOD). Accordingly, we now describe OOD and then discuss the de-
sign workfl ow of the Unifi ed Process in Section 14.9.
 The aim of OOD is to design the product in terms of objects, that is, instantiations of the
classes and subclasses extracted during object-oriented analysis. Classical languages, such
as C, and older (pre-2000) versions of COBOL and Fortran do not support objects as such.
This might seem to imply that OOD is accessible only to users of object-oriented languages
like Smalltalk [Goldberg and Robson, 1989], C++ [Stroustrup, 2003], Ada 95 [ISO/IEC
8652, 1995], and Java [Flanagan, 2005].
 That is not the case. Although OOD as such is not supported by classical languages, a
large subset of OOD can be used. As explained in Section 7.7, a class is an abstract data
type with inheritance and an object is an instance of a class. When using an implementa-
tion language that does not support inheritance, the solution is to utilize those aspects of
OOD that can be achieved in the programming language used in the project, that is, to
use abstract data type design . Abstract data types can be implemented in virtually
any language that supports type statements. Even in a classical language that does not
support type statements as such, and hence cannot support abstract data types, it still may
be possible to implement data encapsulation. Figure 7.28 depicts a hierarchy of design
concepts starting with modules and ending with objects. In those cases where full OOD
is not possible, the developers should endeavor to ensure that their design uses the high-
est possible concept in the hierarchy of Figure 7.28 that their implementation language
supports.
 The two key steps of OOD are to complete the class diagram and perform the detailed
design. With regard to the fi rst step, completing the class diagram , the formats of the
attributes need to be determined, and the methods need to be assigned to the relevant
classes. The formats of the attributes can generally be deduced directly from the analysis
artifacts. For example, in the United States the specifi cations may state that a date such
as December 3, 1947, shall be represented as 12/03/1947 (mm/dd/yyyy format) or in
Europe as 03/12/1947 (dd/mm/yyyy format). But, irrespective of which date conven-
tion is used, a total of 10 characters is needed.
 The information for determining the formats is obtained during the analysis work-
fl ow, so the formats could certainly be added to the class diagram at that time. However,
the object-oriented paradigm is iterative. Each iteration results in a change to what has
already been completed. For practical reasons, then, information should be added to
UML models as late as possible. Consider, for example, Figures 13.21 and 13.22, which
show the fi rst two iterations of the class diagram of the MSG Foundation case study.
Neither of those two iterations shows the attributes of the classes. If the attributes had
been determined earlier, they would probably have had to be modifi ed, as well as possibly

sch76183_ch14_465-497.indd 476sch76183_ch14_465-497.indd 476 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 477

moved from class to class, until the analysis team was satisfi ed with the class diagram.
Instead, all that had to be modifi ed was the classes themselves. In general, it makes little
sense to add an item to a class diagram (or any other UML diagram) before it is abso-
lutely essential to do so, because adding the item will make the next iteration unneces-
sarily burdensome. In particular, it makes little sense to specify formats before they are
strictly needed.
 The other major component of the fi rst step of OOD is to assign methods (implementa-
tions of operations) to classes. Determination of all the operations of the product is per-
formed by examining the interaction diagrams of every scenario. This is straightforward.
The hard part is to determine how to decide which methods should be associated with
each class.
 A method can be assigned either to a class or to a client that sends a message to an object
of that class. (A client of an object is a program unit that sends a message to that object.)
One principle that can be employed to assist in deciding how to assign an operation is
information hiding (Section 7.6). That is, the state variables of a class should be declared
 private (accessible only within an object of that class) or protected (accessible only
within an object of that class or a subclass of that class). Accordingly, operations performed
on state variables must be local to that class.
 A second principle is that, if a particular operation is invoked by a number of different
clients of an object, it makes sense to have a single copy of that operation implemented as
a method of the object, rather than have a copy in each client of that object.
 A third principle that can be employed to assist in deciding where to locate a method
is to use responsibility-driven design. As explained in Section 1.9, responsibility-driven
design is a key aspect of the object-oriented paradigm. If a client sends a message to an
object, then that object is responsible for every aspect of carrying out the request of the client.
The client does not know how the request will be carried out and is not permitted to know.
Once the request has been carried out, control returns to the client. At that point, all the client
knows is that the request has been carried out; it still has no idea how this was achieved.
 To see how these principles are utilized, we now illustrate OOD by means of two
examples. As before, the elevator problem case study is presented, with just one eleva-
tor for simplicity. Then, we return to the MSG Foundation case study. By using the same
examples, you can compare different approaches without having to worry about the rami-
fi cations of the problem itself.

14.714.7
Case Study

 Object-Oriented Design: The Elevator
Problem Case Study

Step 1. Complete the Class Diagram
A design workflow detailed class diagram (Figure 14.11) is obtained by add-
ing the operations (methods) to the class diagram of Figure 13.12. In the
case of a Java implementation, two additional classes are needed. Elevator

sch76183_ch14_465-497.indd 477sch76183_ch14_465-497.indd 477 07/06/10 11:41 AM07/06/10 11:41 AM

478 Part B The Workfl ows of the Software Life Cycle

Application Class corresponds to the C++ main function, and Elevator
Utilities Class contains the Java routines that correspond to the C++ func-
tions declared external to the C++ classes. (For clarity, methods of the form
 Send message to C Class . . . have been omitted from Figure 14.11 ; but see
Problems 14.7–14.12.)
 Consider the fi rst iteration of the CRC card for the elevator subcontroller
(Figure 13.14). The responsibilities fall into two groups. One responsibility— 5. Start

 FIGURE 14.11 The detailed class diagram for the elevator problem case study. For clarity, only those
methods that cause an object to change its state are shown.

Elevator Class

checkRequests
updateRequests

requests: requestType

Scheduler Class

Floor Button Class

Floor
Subcontroller Class

Elevator Button Class

Elevator
Subcontroller Class

turnOffButton
turnOnButton

turnOffButton
turnOnButton

closeDoors
openDoors

startTimer
doors open : Boolean

Sensor Class

Elevator Doors Class

turnOffButton (abstract)
turnOnButton (abstract)

illuminated : Boolean

Button Class Elevator
Utilities Class

Elevator
Application Class

moveDownOneFloor
moveUpOneFloor

m

m n

controls

controls

controls
communicates

with

communicates
with

communicates
with

communicates
with

controls

1..2

1

1

1
1
1

1

2m � 2

11

1

sch76183_ch14_465-497.indd 478sch76183_ch14_465-497.indd 478 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 479

timer —is assigned to the elevator controller on the basis of responsibility-driven
design; that task is carried out by the elevator controller itself.
 On the other hand, the remaining eleven responsibilities (events 1 through 4 and 6
through 12) have the form “Send a message to another class to tell it to do something.”
This again implies that responsibility-driven design should be used in assigning the
relevant method to classes. In addition, because of safety concerns, the principle of
information hiding is equally applicable in all eleven cases.
 For these two reasons, methods closeDoors and openDoors are assigned to
 Elevator Doors Class . That is, a client of Elevator Doors Class (in this
case, an object of Elevator Subcontroller Class) sends a message to an
object of Elevator Doors Class to close or open the doors of the elevator, and
that request is then carried out by the relevant method. Every aspect of those two
methods is encapsulated within Elevator Doors Class . In addition, information
hiding results in a truly independent Elevator Doors Class , instances of which
can undergo detailed design and implementation independently and be reused later
in other products.
 The same two design principles are applied to methods moveDownOneFloor
and moveUpOneFloor , and they are assigned to Elevator Class . There is no need
for an explicit instruction to cause an elevator to stop. If neither of its two methods is
invoked, an elevator cannot move; there is no way to change the state of an elevator
other than by invoking one of its two methods.
 Finally, methods turnOffButton and turnOnButton are assigned to both Ele-
vator Button Class and Floor Button Class . The reasoning here is the same
as for the methods assigned to Elevator Doors Class and Elevator Class .
First, the principle of responsibility-driven design requires that the buttons have
full control over whether they are on or off. Second, the principle of information
hiding requires the internal state of a button to be hidden. The methods that turn an
elevator button on or off therefore must be local to Elevator Button Class , and
similarly for Floor Button Class . To make use of polymorphism and dynamic
binding, methods turnOffButton and turnOnButton are declared abstract
(virtual) in the base class Button Class for the reasons stated in Section 7.8.
At run time, the correct version of method turnOffButton or turnOnButton will
then be invoked.

 Step 2. Perform the Detailed Design
A detailed design now is developed for all the classes. Any suitable technique may
be used, such as the stepwise refi nement described in Chapter 5 . The detailed design
of method elevatorSubcontrollerEventLoop is shown in Figure 14.12 . Here PDL
(pseudocode) was used, but a tabular representation (such as that of Figure 14.6) can
be equally effective.
 Figure 14.12 is constructed from the statechart of Figure 13.13. For example, the
events elevator button pushed and elevator button turned off is implemented
by the two nested if statements at the beginning of Figure 14.12 . The two operations

sch76183_ch14_465-497.indd 479sch76183_ch14_465-497.indd 479 07/06/10 11:41 AM07/06/10 11:41 AM

480 Part B The Workfl ows of the Software Life Cycle

 FIGURE 14.12
The detailed
design of
method
elevator-
 Subcontroller-
EventLoop .

 void elevatorSubcontrollerEventLoop (void)
{
 while (TRUE)
 {
 if (an elevatorButton has been pressed)
 if (elevatorButton is off)
 {
 elevatorButton ::turnOnButton;
 scheduler ::newRequestMade;
 }
 else if (elevator is moving up)
 {
 wait for sensor message that elevator is arriving at fl oor;
 scheduler ::checkRequests;
 if (there is no request to stop at fl oor f)
 elevator ::moveUpOneFloor;
 else
 {
 stop elevator by not sending a message to move ;
 if (elevatorButton is on)
 elevatorButton ::turnOffButton;
 elevatorDoors ::openDoors;
 startTimer;
 }
 }
 else if (elevator is moving down)
 [similar to up case]
 else if (elevator is stopped and request is pending)
 {
 wait for timeout ;
 elevatorDoors ::closeDoors;
 determine direction of next request ;
 elevator ::moveUp/DownOneFloor;
 wait for sensor message that elevator has left fl oor;
 fl oorSubcontroller ::elevatorHasLeftFloor;
 }
 else if (elevator is at rest and not (request is pending))
 {
 wait for timeout ;
 elevatorDoors ::closeDoors;
 }
 else
 there are no requests, elevator is stopped with elevatorDoors closed, so do nothing ;
 }
}

of the state Processing New Request then follow. The else-if condition cor-
responds to the next event leading from state Elevator Subcontroller Event
Loop , elevator moving in direction d, fl oor f is next . The remainder of the
detailed design is equally straightforward.
 Now we consider the object-oriented design of the MSG Foundation case study.

sch76183_ch14_465-497.indd 480sch76183_ch14_465-497.indd 480 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 481

14.814.8
Case Study

 Object-Oriented Design: The MSG
Foundation Case Study
 As described in Section 14.6, object-oriented design consists of two steps.

 Step 1. Complete the Class Diagram
 The overall class diagram for the MSG Foundation case study is shown in Figure 14.13 .
The user-defi ned Date Class is drawn dashed to denote that it is needed for only

Manage
an Asset

Class

Investment
Class

Investments
Report
Class

Mortgages
Report
Class

Estimated
Funds Report

Class

Asset
Class

Mortgage
Class

MSG
Application

Class

Estimate
Funds for

Week Class

User Interface
Class

MSG Staff Member

Date
Class

 FIGURE 14.13
The overall
class diagram
for the MSG
Foundation case
study.

sch76183_ch14_465-497.indd 481sch76183_ch14_465-497.indd 481 07/06/10 11:41 AM07/06/10 11:41 AM

482 Part B The Workfl ows of the Software Life Cycle

a C++ implementation; Java has built-in classes for handling dates, including java.
text.Dateformat and java.util.Calendar .
 Next, the formats for the attributes of the classes are deduced from discussions
with the client and users; examination of forms (Section 11.4.2) is also extremely
useful in this regard. A portion of the result is shown in Figure 14.14 .
 The methods of the product are found in the various interaction diagrams. The
task of the designer is to decide to which class each method should be assigned. For
example, the convention in an object-oriented software product is that associated
with each attribute of a class are mutator method setAttribute , used to assign a
specifi c value to that attribute , and accessor method getAttribute , which returns
the current value of that attribute .
 For example, consider method setAssetNumber , used to assign a number to an
asset (investment or mortgage). In the classical paradigm, we would need separate
functions set_investment_number and set_mortgage_number. However, the
object-oriented paradigm supports inheritance. Therefore, method setAssetNumber
should be assigned to Asset Class . Then, as refl ected in Figure 14.15 , the method

 FIGURE 14.14 Part of the overall class diagram for the MSG Foundation case study with the attribute formats added.

assetNumber : 12 chars

Asset Class

estimatedAnnualOperatingExpenses : 9 + 2 digits
dateEstimatedAnnualOperatingExpensesUpdated : 10 chars
availableFundsForWeek : 9 + 2 digits
expectedAnnualReturnOnInvestments : 9 + 2 digits
dateExpectedAnnualReturnOnInvestmentsUpdated : 10 chars
expectedGrantsForWeek : 9 + 2 digits
expectedMortgagePaymentsForWeek : 9 + 2 digits

MSG Application Class

Investment Class

investmentName : 25 chars
estimatedAnnualReturn : 9 digits
dateEstimatedReturnUpdated : 10 chars

Mortgage Class

lastNameOfMortgagees : 21 chars
originalPurchasePrice : 6 digits
dateMortgageIssued : 10 chars
weeklyPrincipalAndInterestPayment : 4 + 2 digits
combinedWeeklyIncome : 6 + 2 digits
mortgageBalance : 6 + 2 digits
dateCombinedWeeklyIncomeUpdated : 10 chars
annualRealEstateTax : 5 + 2 digits
dateAnnualRealEstateTaxUpdated : 10 chars
annualInsurancePremium : 5 + 2 digits
dateAnnualInsurancePremiumUpdated : 10 chars

sch76183_ch14_465-497.indd 482sch76183_ch14_465-497.indd 482 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 483

 FIGURE 14.15 Part of the class diagram for the MSG Foundation case study with methods
setAssetNumber and getAssetNumber assigned to Asset Class.

Investment Class Mortgage Class

setAssetNumber ()
getAssetNumber ()

Asset Class MSG Application Class

can be applied not only to instances of Asset Class but also, as a consequence of
inheritance, to instances of every subclass of Asset Class , that is, to instances of
 Investment Class and Mortgage Class . Similarly, method getAssetNumber
should also be allocated to the superclass Asset Class .
 Assigning the other methods to the appropriate classes is equally straightforward.
The resulting design is shown in Appendix G.

 Step 2. Perform the Detailed Design
 Next, the detailed design is built by taking each method and determining what it
does. Figure 14.16 shows the detailed design (in a PDL for Java) of a method com-
puteEstimatedFunds of class EstimateFundsForWeek of the MSG Founda-
tion case study. This method invokes method totalWeeklyNetPayments of class
 Mortgage shown in Figure 14.17 .
 The steps of object-oriented design are summarized in How to Perform Box 14.3.

 14.9 The Design Workfl ow
 The overall aim of the design workfl ow is to refi ne the artifacts of the analysis workfl ow
until the material is in a form that can be implemented by the programmers. The input to
the design workfl ow is therefore the analysis workfl ow artifacts (Chapter 13). During the
design workfl ow, these artifacts are iterated and incremented until they are in a format that
can be utilized by the programmers.

 How to Perform Object-Oriented Design

 • Complete the class diagram.

 • Perform the detailed design.

 Box 14.3

sch76183_ch14_465-497.indd 483sch76183_ch14_465-497.indd 483 07/06/10 11:41 AM07/06/10 11:41 AM

484 Part B The Workfl ows of the Software Life Cycle

 FIGURE 14.16
The detailed
design of
method
compute-
Estimated-
Funds of class
Estimate-
FundsFor-
Week of
the MSG
Foundation case
study.

 public static void computeEstimatedFunds()

 This method computes the estimated funds available for the week.

{

 fl oat expectedWeeklyInvestmentReturn; (expected weekly investment return)

 fl oat expectedTotalWeeklyNetPayments = (fl oat) 0.0;

 (expected total mortgage payments
 less total weekly grants)

 fl oat estimatedFunds = (fl oat) 0.0; (total estimated funds for week)

 Create an instance of an investment record.

 Investment inv = new Investment ();

 Create an instance of a mortgage record.

 Mortgage mort = new Mortgage ();

 Invoke method totalWeeklyReturnOnInvestment.

 expectedWeeklyInvestmentReturn = inv.totalWeeklyReturnOnInvestment ();

 Invoke method expectedTotalWeeklyNetPayments (see Figure 14.17)

 expectedTotalWeeklyNetPayments = mort.totalWeeklyNetPayments ();

 Now compute the estimated funds for the week.

 estimatedFunds = (expectedWeeklyInvestmentReturn

 − (MSGApplication.getAnnualOperatingExpenses () / (fl oat) 52.0)

 + expectedTotalWeeklyNetPayments);

 Store this value in the appropriate location.

 MSGApplication.setEstimatedFundsForWeek (estimatedFunds);

} // computeEstimatedFunds

 One aspect of this iteration and incrementation is the identifi cation of methods and their
allocation to the appropriate classes. Another aspect is performing the detailed design.
These two steps constitute the object-oriented design component of the design workfl ow.
 In addition to performing the object-oriented design, many decisions have to be made as
part of the design workfl ow. One such decision is the selection of the programming language
in which the software product will be implemented. This process is described in detail in
 Chapter 15 . Another decision is how much of existing software products to reuse in the new
software product to be developed. Reuse is described in Chapter 8 . Portability is another
important design decision; this topic, too, is described in Chapter 8 . Also, large software
products are often implemented on a network of computers; yet another design decision is the
allocation of each software component to the hardware component on which it is to run.
 The major motivation behind the development of the Unifi ed Process was to present a
methodology that could be used to develop large-scale software products, typically, 500,000
lines of code or more. On the other hand, the implementations of the MSG Foundation case
study in Appendices H and I are less than 5000 lines of C++ and Java, respectively. In other

sch76183_ch14_465-497.indd 484sch76183_ch14_465-497.indd 484 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 485

 FIGURE 14.17
The detailed
design of
method
totalWeekly-
NetPayments
of class
 Mortgage
of the MSG
Foundation case
study.

 public fl oat totalWeeklyNetPayments ()
 This method computes the net total weekly payments made by the mortgagees, that is, the expected total weekly
mortgage amount less the expected total weekly grants.

{

 File mortgageFile = new File (“mortgage.dat”); (fi le of mortgage records)

 fl oat expectedTotalWeeklyMortgages = (fl oat) 0.0; (expected total weekly mortgage payments)

 fl oat expectedTotalWeeklyGrants = (fl oat) 0.0; (expected total weekly grants)

 fl oat interestPayment; (interest payment)

 fl oat escrowPayment; (escrow payment)

 fl oat capitalRepayment; (capital repayment)

 fl oat weeklyPayment; (mortgage payment for week)

 fl oat maximumPermittedMortgagePayment; (maximum amount the couple may pay)

 Open the fi le of mortgages, name it inFile , and read each element in turn.

{

 read (inFile);

 Compute the interest payment, escrow payment, and capital repayment for this mortgage.

 interestPayment = mortgageBalance * INTEREST_RATE / WEEKS_IN_YEAR ;

 escrowPayment = (annualPropertyTax + annualInsurancePremium) / WEEKS_IN_YEAR;

 capitalRepayment = weeklyPrincipalAndInterestPayment − interestPayment;

 mortgageBalance −= capitalRepayment;

 First assume that the couple can pay the mortgage in full, without a grant.

 weeklyPayment = weeklyPrincipalAndInterestPayment + escrowPayment;

 Add the weekly Principal and Interest payment to the running total of mortgage payments

 expectedTotalWeeklyMortgages += weeklyPrincipalAndInterestPayment;

 Now determine how much the couple can actually pay.

 maximumPermittedMortgagePayment = currentWeeklyIncome *

 MAXIMUM_PERC_OF_INCOME;

 If a grant is needed, add the grant amount to the running total of grants

 if (weeklyPayment > maximumPermittedMortgagePayment)

 expectedTotalWeeklyGrants += weeklyPayment − maximumPermittedMortgagePayment;

 }

 Close the fi le of mortgages. Return the total expected net payments for the week.

 return (expectedTotalWeeklyMortgages − expectedTotalWeeklyGrants);

} // totalWeeklyNetPayments

sch76183_ch14_465-497.indd 485sch76183_ch14_465-497.indd 485 07/06/10 11:41 AM07/06/10 11:41 AM

486 Part B The Workfl ows of the Software Life Cycle

words, the Unifi ed Process is intended primarily for software products at least 100 times
larger than the MSG Foundation case study presented in this book. Accordingly, many
aspects of the Unifi ed Process are inapplicable to this case study. For instance, an important
part of the analysis workfl ow is to partition the software product into analysis packages.
Each package consists of a set of related classes, usually of relevance to a small subset
of the actors, that can be implemented as a single unit. For example, accounts payable,
accounts receivable, and general ledger are typical analysis packages. The concept under-
lying analysis packages is that it is much easier to develop smaller software products than
larger software products. Accordingly, a large software product is easier to develop if it can
be decomposed into relatively independent packages. Decomposing a software product
into packages is an example of divide-and-conquer (Section 5.3).
 This idea of decomposing a large workfl ow into relatively independent smaller work-
fl ows is carried forward to the design workfl ow. Here, the objective is to break up the
upcoming implementation workfl ow into manageable pieces, termed subsystems . Again,
it does not make sense to break up the MSG Foundation case study into subsystems; the
case study is just too small.
 There are two reasons why larger workfl ows are broken into subsystems:

 1. As previously explained, it is easier to implement a number of smaller subsystems than
one large system. That is, breaking up a software product into subsystems is another
example of divide-and-conquer (Section 5.3).

 2. If the subsystems to be implemented are indeed relatively independent, then they can
be implemented by programming teams working in parallel. This results in the software
product as a whole being delivered sooner.

 Recall from Section 8.5.4 that the architecture of a software product includes the vari-
ous components and how they fi t together. The allocation of components to subsystems is a
major part of the architectural task. Deciding on the architecture of a software product is by
no means easy and, in all but the smallest software products, is performed by a specialist,
the software architect .
 In addition to being a technical expert, an architect needs to know how to make
 trade-offs . A software product has to satisfy the functional requirements, that is, the
use cases. It also needs to satisfy the nonfunctional requirements, including portability
(Chapter 8), reliability (Section 6.4.2), robustness (Section 6.4.3), maintainability, and
security. But it needs to do all these things within budget and time constraints. It is
almost never possible to develop a software product that satisfi es all its requirements,
both functional and nonfunctional, and fi nish the project within the cost and time con-
straints; compromises almost always have to be made. The client has to relax some of
the requirements, increase the budget, or move the delivery deadline, or do more than
one of these. The architect must assist the client’s decision making by clearly mapping
out the trade-offs.
 In some cases the trade-offs are obvious. For example, the architect may point out that a
set of security requirements that conform to a new high-security standard are going to take
a further 3 months and $350,000 to incorporate in the software product. If the product is an
international banking network, the issue is moot—there is no way that the client could pos-
sibly agree to compromise on security in any way. However, in other instances, the client
needs to make critical determinations regarding trade-offs and has to rely on the technical

sch76183_ch14_465-497.indd 486sch76183_ch14_465-497.indd 486 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 487

expertise of the architect to assist in coming to the right business decision. For example, the
architect might point out that deferring a particular requirement until the software product
has been delivered and is being maintained may save $150,000 now but will cost $300,000
to incorporate later (see Figure 1.6). The decision whether or not to defer a requirement
can be made only by the client, but he or she needs the technical expertise of the architect
to assist in coming to the correct decision.
 The architecture of a software product is a vital factor in the delivered product’s success
or a failure. And the critical decisions regarding the architecture have to be made while
performing the design workfl ow. If the requirements workfl ow is badly performed, it is
still possible to have a successful project, provided additional time and money are spent
on the analysis workfl ow. Similarly, if the analysis workfl ow is inadequate, it is possible to
recover by making an extra effort as part of the design workfl ow. But if the architecture is
suboptimal, there is no way to recover; the architecture must immediately be redesigned.
It is therefore essential that the development team include an architect with the necessary
technical expertise and people skills.

 14.10 The Test Workfl ow: Design
 The goal of testing the design is to verify that the specifi cations have been accurately and
completely incorporated into the design as well as to ensure the correctness of the design
itself. For example, the design must have no logic faults, and all interfaces must be cor-
rectly defi ned. It is important that any faults in the design be detected before coding com-
mences; otherwise, the cost of fi xing the faults will be considerably higher, as refl ected in
Figure 1.6. Design faults can be detected by means of design inspections as well as design
walkthroughs. Design inspections are discussed in the remainder of this section, but the
remarks apply equally to design walkthroughs.
 When the product is transaction oriented (Section 14.4), the design inspection should
refl ect this [Beizer, 1990]. Inspections that include all possible transaction types should be
scheduled. The reviewer should relate each transaction in the design to the specifi cations,
showing how the transaction arises from the specifi cation document. For example, if the
application is an automated teller machine, a transaction corresponds to each operation the
customer can perform, such as deposit to or withdraw from a credit card account. In other
instances, the correspondence between specifi cations and transactions is not necessarily
one-to-one. In a traffi c-light control system, for example, if an automobile driving over
a sensor pad results in the system deciding to change a particular light from red to green
in 15 seconds, then further impulses from that sensor pad may be ignored. Conversely, to
speed traffi c fl ow, a single impulse may cause a whole series of lights to be changed from
red to green.
 Restricting reviews to transaction-driven inspections does not detect cases where
the designers have overlooked instances of transactions required by the specifi cations. To
take an extreme example, the specifi cations for the traffi c-light controller may stipulate
that between 11:00 P.M. and 6:00 A.M. all lights are to fl ash yellow in one direction and red
in the other direction. If the designers overlooked this stipulation, then clock-generated
transactions at 11:00 P.M. and 6:00 A.M. would not be included in the design; and if these
transactions were overlooked, they could not be tested in a design inspection based on

sch76183_ch14_465-497.indd 487sch76183_ch14_465-497.indd 487 07/06/10 11:41 AM07/06/10 11:41 AM

488 Part B The Workfl ows of the Software Life Cycle

transactions. Therefore, it is not adequate to schedule design inspections that are just trans-
action driven; specifi cation-driven inspections also are essential to ensure that no statement
in the specifi cation document has been either overlooked or misinterpreted.

14.1114.11
Case Study

 The Test Workfl ow: The MSG Foundation
Case Study
Now that the design is apparently complete, all aspects of the design of the MSG
Foundation case study must be checked by means of a design inspection (Section
6.2.3). In particular, each design artifact must be examined. Even if no faults are
found, it is possible that the design will change again, perhaps radically, when the
MSG Foundation case study is implemented.

 14.12 Formal Techniques for Detailed Design
One technique for detailed design has already been presented. In Section 5.1, a description
of stepwise refi nement was given. It then was applied to detailed design using fl owcharts.
In addition to stepwise refi nement, formal techniques can be used to advantage in detailed
design. Chapter 6 suggests that implementing a complete product and then proving it cor-
rect could be counterproductive. However, developing the proof and the detailed design in
parallel and carefully testing the code as well is quite a different matter. Formal techniques
applied to detailed design can greatly assist in three ways:

 1. The state of the art in proving correctness is such that, although it generally cannot be
applied to a product as a whole, it can be applied to module-sized pieces of a product.

 2. Developing a proof together with the detailed design should lead to a design with fewer
faults than if correctness proofs were not used.

 3. If the same programmer is responsible for both the detailed design and the implementa-
tion, then that programmer will feel confi dent that the detailed design is correct. This
positive attitude toward the design should lead to fewer faults in the code.

 14.13 Real-Time Design Techniques
 As explained in Section 6.4.4, real-time software is characterized by hard time con-
straints, that is, time constraints of such a nature that, if a constraint is not met, informa-
tion is lost. In particular, each input must be processed before the next input arrives. An
example of such a system is a computer-controlled nuclear reactor. Inputs such as the
temperature of the core and the level of the water in the reactor chamber are continually
being sent to the computer that reads the value of each input and performs the necessary

sch76183_ch14_465-497.indd 488sch76183_ch14_465-497.indd 488 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 489

processing before the next input arrives. Another example is a computer-controlled inten-
sive care unit. There are two types of patient data: routine information such as heart rate,
temperature, and blood pressure of each patient, and emergency information, when the
system deduces that the condition of a patient has become critical. When such emergencies
occur, the software must process both the routine inputs and the emergency-related inputs
from one or more patients.
 A characteristic of many real-time systems is that they are implemented on distributed
hardware. For example, software controlling a fi ghter aircraft may be implemented on fi ve
computers: one to handle navigation, another the weapons system, a third for electronic coun-
termeasures, a fourth to control the fl ight hardware such as wing fl aps and engines, and the
fi fth to propose tactics in combat. Because hardware is not totally reliable, there may be addi-
tional backup computers that automatically replace a malfunctioning unit. Not only does the
design of such a system have major communications implications, but timing issues, over and
above those of the type just described, arise as a consequence of the distributed nature of the
system. For example, under combat conditions, the tactical computer might suggest that the
pilot should climb, whereas the weapons computer recommends that the pilot go into a dive
so that a particular weapon may be launched under optimal conditions. However, the human
pilot decides to move the stick to the right, thereby sending a signal to the fl ight hardware
computer to make the necessary adjustments so that the plane banks in the indicated direc-
tion. All this information must be managed carefully in such a way that the actual motion of
the plane takes precedence in every way over suggested maneuvers. Furthermore, the actual
motion must be relayed to the tactical and weapons computers so that new suggestions can be
formulated in the light of actual, rather than suggested, conditions.
 A further diffi culty with real-time systems is the problem of synchronization. Suppose that
a real-time system is to be implemented on distributed hardware. Situations such as deadlock
(or deadly embrace) can arise when two operations each have exclusive use of a data item
and each requests exclusive use of the other’s data item in addition. Of course, deadlock does
not occur only in real-time systems, implemented on distributed hardware. But it is particu-
larly troublesome in real-time systems where there is no control over the order or timing of
the inputs, and the situation can be complicated by the distributed nature of the hardware. In
addition to deadlock, other synchronization problems are possible, including race conditions;
for details, the reader may refer to [Silberschatz, Galvin, and Gagne, 2002] or other operating
systems textbooks.
 From these examples it is clear that the major diffi culty with regard to the design of real-
time systems is ensuring that the timing constraints are met by the design. That is, the design
technique should provide a mechanism for checking that, when implemented, the design is
able to read and process incoming data at the required rate. Furthermore, it should be pos-
sible to show that synchronization issues in the design also have been addressed correctly.
 Since the beginning of the computer age, advances in hardware technology have out-
stripped, in almost every respect, advances in software technology. Therefore, although the
hardware exists to handle every aspect of the real-time systems described previously, soft-
ware design technology has lagged behind considerably. In some areas of real-time software
engineering, major progress has been made. For instance, many of the analysis techniques of
 Chapters 12 and 13 can be used to specify real-time systems. Unfortunately, software design
has not yet reached the same level of sophistication. Great strides indeed are being made, but
the state of the art is not yet comparable to what has been achieved with regard to analysis

sch76183_ch14_465-497.indd 489sch76183_ch14_465-497.indd 489 07/06/10 11:41 AM07/06/10 11:41 AM

490 Part B The Workfl ows of the Software Life Cycle

techniques. Because almost any design technique for real-time systems is preferable to no
technique at all, a number of real-time design techniques are used in practice. But, there
still is a long way to go before it will be possible to design real-time systems such as those
described previously and be certain that, before the system has been implemented, every
real-time constraint will be met and synchronization problems cannot arise.
 Older real-time design techniques are extensions of non-real-time techniques to the
real-time domain. For example, structured development for real-time systems (SDRTS)
[Ward and Mellor, 1985] essentially is an extension of structured systems analysis (Section
12.3), data fl ow analysis (Section 14.3), and transaction analysis (Section 14.4) to real-time
software. The development technique includes a component for real-time design. Newer
techniques are described in [Liu, 2000] and [Gomaa, 2000].
 As stated previously, it is unfortunate that the state of the art of real-time design is not as
advanced as one would wish. Nevertheless, efforts are under way to improve the situation.

 14.14 CASE Tools for Design
 As stated in Section 14.10, a critical aspect of design is testing that the design artifacts
accurately incorporate all aspects of the analysis. What is therefore needed is a CASE tool
that can be used both for the analysis artifacts and the design artifacts, a so-called front-end
or upperCASE tool (as opposed to a back-end or lowerCASE tool, which assists with the
implementation artifacts).
 A number of upperCASE tools are on the market. Some of the more popular ones
include Analyst/Designer, Software through Pictures, and System Architect. UpperCASE
tools generally are built around a data dictionary. The CASE tool can check that every fi eld
of every record in the dictionary is mentioned somewhere in the design or that every item
in the design is refl ected in the data fl ow diagram. In addition, many upperCASE tools
incorporate a consistency checker that uses the data dictionary to determine that every item
in the design has been declared in the specifi cations and conversely that every item in the
specifi cations appears in the design.
 Furthermore, many upperCASE tools incorporate screen and report generators. That is,
the client can specify what items are to appear in a report or on an input screen and where
and how each item is to appear. Because full details regarding every item are in the data
dictionary, the CASE tool can easily generate the code for printing the report or displaying
the input screen according to the client’s wishes. Some upperCASE products also incorpo-
rate management tools for estimating and planning.
 With regard to object-oriented design, Together, IBM Rational Rose, and Software through
Pictures provide support for this workfl ow within the context of the complete object-oriented
life cycle. Open-source CASE tools of this type include ArgoUML.

 14.15 Metrics for Design
 A variety of metrics can be used to describe aspects of the design. For example, the number
of code artifacts (modules or classes) is a crude measure of the size of the target product.
Cohesion and coupling are measures of the quality of the design, as are fault statistics.
As with all other types of inspection, it is vital to keep a record of the number and type

sch76183_ch14_465-497.indd 490sch76183_ch14_465-497.indd 490 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 491

of design faults detected during a design inspection. This information is used during code
inspections of the product and in design inspections of subsequent products.
 The cyclomatic complexity M of a detailed design is the number of binary decisions
(predicates) plus 1 [McCabe, 1976] or, equivalently, the number of branches in the code arti-
fact. It has been suggested that cyclomatic complexity is a metric of design quality; the lower
the value of M , the better. A strength of this metric is that it is easy to compute. However, it
has an inherent problem. Cyclomatic complexity is purely a measure of the control complex-
ity; the data complexity is ignored. That is, M does not measure the complexity of a code
artifact that is data driven, such as by the values in a table. For example, suppose a designer
is unaware of the C++ library function toascii and designs a code artifact from scratch that
reads a character input by the user and returns the corresponding ASCII code (an integer
between 0 and 127). One way of designing this is by means of a 128-way branch implemented
by means of a switch statement. A second way is to have an array containing the 128 char-
acters in ASCII code order and utilize a loop to compare the character input by the user with
each element of the array of characters; the loop is exited when a match is obtained. The
current value of the loop variable then is the corresponding ASCII code. The two designs are
equivalent in functionality but have cyclomatic complexities of 128 and 1, respectively.
 When the classical paradigm is used, a related class of metrics for the design phase is
based on representing the architectural design as a directed graph with the modules repre-
sented by nodes and the fl ows between modules (procedure and function calls) represented
by arcs. The fan-in of a module can be defi ned as the number of fl ows into the module plus
the number of global data structures accessed by the module. The fan-out similarly is the
number of fl ows out of the module plus the number of global data structures updated by
the module. A measure of complexity of the module then is given by length × (fan-in ×
 fan-out) 2 [Henry and Kafura, 1981], where length is a measure of the size of the module
(Section 9.2.1). Because the defi nitions of fan-in and fan-out incorporate global data, this
metric has a data-dependent component. Nevertheless, experiments have shown that this
metric is no better a measure of complexity than simpler metrics, such as cyclomatic com-
plexity [Kitchenham, Pickard, and Linkman, 1990; Shepperd, 1990].
 The issue of design metrics is complicated even more when the object-oriented paradigm
is used. For example, the cyclomatic complexity of a class usually is low, because many
classes typically include a large number of small, straightforward methods. Furthermore, as
previously pointed out, cyclomatic complexity ignores data complexity. Because data and
operations are equal partners within the object-oriented paradigm, cyclomatic complexity
overlooks a major component that could contribute to the complexity of an object. There-
fore, metrics for classes that incorporate cyclomatic complexity generally are of little use.
 A number of object-oriented design metrics have been put forward, for example, in
[Chidamber and Kemerer, 1994]. These and other metrics have been questioned on both
theoretical and experimental grounds [Binkley and Schach, 1996; 1997; 1998].

 14.16 Challenges of the Design Workfl ow
As pointed out in Sections 12.16 and 13.22, it is important not to do too much in the
analysis workfl ow; that is, the analysis team must not prematurely start parts of the design
workfl ow. In the design workfl ow, the design team can go wrong in two ways: by doing too
much and by doing too little.

sch76183_ch14_465-497.indd 491sch76183_ch14_465-497.indd 491 07/06/10 11:41 AM07/06/10 11:41 AM

492 Part B The Workfl ows of the Software Life Cycle

 Consider the PDL (pseudocode) detailed design of Figure 14.7 . The temptation is strong
for a designer who enjoys programming to write the detailed design in C++ or Java, rather
than PDL. That is, instead of sketching the detailed design in pseudocode, the designer may
all but code the class. This takes longer to write than just outlining the class and longer to
fi x if a fault is detected in the design (see Figure 1.6). Like the analysis team, the members
of the design team must fi rmly resist the urge to do more than what is required of them.
 At the same time, the design team must be careful not to do too little. Consider the tabu-
lar detailed design of Figure 14.6 . If the design team is in a hurry, it may decide to shrink
the detailed design to just the narrative box. The team may even decide that the program-
mers should do the detailed design by themselves. Either of these decisions would be a
mistake. A primary reason for the detailed design is to ensure that all interfaces are correct.
The narrative box by itself is inadequate for this purpose; no detailed design at all clearly
is even less helpful. Therefore, one challenge of the design workfl ow is for the designers to
do just the correct amount of work.
 In addition, there is a much more signifi cant challenge. In “No Silver Bullet” (see Just in
Case You Wanted to Know Box 3.4), Brooks [1986] decries the lack of what he terms great
designers , that is, designers who are signifi cantly more outstanding than the other members
of the design team. In Brooks’s opinion, the success of a software project depends critically
on whether the design team is led by a great designer. Good design can be taught; great
design is produced only by great designers, and they are “very rare.”
 The challenge, then, is to grow great designers. They should be identifi ed as early as
possible (the best designers are not necessarily the most experienced), assigned a mentor,
provided a formal education as well as apprenticeships to great designers, and allowed to
interact with other designers. A specifi c career path should be available for these design-
ers, and the rewards they receive should be commensurate with the contribution that only a
great designer can make to a software development project.

 Chapter
Review
 The design workfl ow is introduced in Section 14.1. There are three basic approaches to design: operation-

oriented design (Section 14.2), data-oriented design (Section 14.5), and object-oriented design (Sec-
tion 14.6). Two instances of operation-oriented design are described, data fl ow analysis (Section 14.3)
and transaction analysis (Section 14.4). Object-oriented design is applied to the elevator problem case
study in Section 14.7 and to the MSG Foundation case study in Section 14.8. The design workfl ow is
presented in Section 14.9. The design aspects of the test workfl ow are described in Section 14.10 and
applied to the MSG Foundation case study in Section 14.11. Formal techniques for detailed design are
discussed in Section 14.12. Real-time system design is described in Section 14.13. CASE tools and
metrics for the design workfl ow are presented in Sections 14.14 and 14.15, respectively. The chapter
concludes with a discussion of the challenges of the design workfl ow (Section 14.16).
 An overview of the MSG Foundation case study for Chapter 14 appears in Figure 14.18 , and for
the elevator problem in Figure 14.19 .

 FIGURE 14.18
Overview of the
MSG Foundation
case study for
Chapter 14.

 Object-oriented design Section 14.8
 Overall class diagram Figure 14.13
 Part of overall class diagram Figure 14.14
 with attribute formats added
 Detailed design Appendix G

sch76183_ch14_465-497.indd 492sch76183_ch14_465-497.indd 492 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 493

 FIGURE 14.19 Overview of the elevator problem case study
for Chapter 14.

 Object-oriented design Section 14.7
 Detailed class diagram Figure 14.11

 For
Further
Reading

 Data fl ow analysis and transaction analysis are described in books such as [Gane and Sarsen, 1979]
and [Yourdon and Constantine, 1979].
 The March–April 2005 issue of IEEE Software contains a number of papers on design. Designing
for recovery, that is, designing software to detect, react, and recover from exceptional conditions, is
described in [Wirfs-Brock, 2006].
 Briand, Bunse, and Daly [2001] discuss the maintainability of object-oriented designs. A com-
parison of both object-oriented and classical design techniques appears in [Fichman and Kemerer,
1992]. The redesign of an air traffi c control system is described in [Jackson and Chapin, 2000].
Design techniques for high-performance, reliable systems are given in [Stolper, 1999]. A probabilis-
tic approach to estimating the change proneness of an object-oriented design appears in [Tsantalis,
Chatzigeorgiou, and Stephanides, 2005]. A discussion as to whether object-oriented design is intui-
tive appears in [Hadar and Leron, 2008].
 Formal design techniques are described in [Hoare, 1987]. The vital role played by the architect is
described in [McBride, 2007]. Analogously to pair programming, pair design and its effectiveness are
described in [Lui, Chan, and Nosek, 2008].
 With regard to reviews during the design process, the original paper on design inspections is
[Fagan, 1976]; detailed information can be obtained from that paper. Later advances in review tech-
niques are described in [Fagan, 1986]. Architecture reviews are discussed in [Maranzano et al.,
2005].
 With regard to real-time design, specifi c techniques are to be found in [Liu, 2000] and [Gomaa,
2000]. A comparison of four real-time design techniques is found in [Kelly and Sherif, 1992]. A
documentation-driven approach to the design of complex real-time systems is described in [Luqi,
Zhang, Berzins, and Qiao, 2004]. The design of concurrent systems is described in [Magee and
Kramer, 1999].
 Metrics for design are described in [Henry and Kafura, 1981] and [Zage and Zage, 1993]. Metrics
for object-oriented design are discussed in [Chidamber and Kemerer, 1994] and in [Binkley and
Schach, 1996]. A model for object-oriented quality is presented in [Bansiya and Davis, 2002].
 The proceedings of the International Workshops on Software Specifi cation and Design are a com-
prehensive source for information on design techniques.

 Key Terms abstract data type design 476
 accessor 482
 architect 486
 architectural design 466
 class diagram 476
 cyclomatic complexity 491
 data fl ow analysis (DFA) 467
 data-oriented design 465

 design workfl ow 483
 detailed design 466
 fan-in 491
 fan-out 491
 general design 466
 high-level design 466
 length 491
 logical design 466

 low-level design 466
 modular design 466
 mutator 482
 object-oriented design (OOD)

476
 operation-oriented design 465
 package 486
 physical design 466

sch76183_ch14_465-497.indd 493sch76183_ch14_465-497.indd 493 07/06/10 11:41 AM07/06/10 11:41 AM

 point of highest abstraction of
input 467

 point of highest abstraction of
output 467

 program description language
(PDL) 471

 pseudocode 471
 real-time software 488
 responsibility-driven design

477
 subsystem 486
 trade-off 486

 transaction 473
 transaction analysis 475
 transaction-driven inspections

487

 Problems 14.1 Starting with your DFD for Problem 12.9, use data fl ow analysis to design a product for
determining whether a bank statement is correct.

 14.2 Use transaction analysis to design the software to control an ATM (Problem 8.9). At this stage
omit error-handling capabilities.

 14.3 Now take your design for Problem 14.2 and add modules to perform error handling. Carefully
examine the resulting design and determine the cohesion and coupling of the modules. Be on
the lookout for situations such as that depicted in Figure 14.10 .

 14.4 Two different techniques for depicting a detailed design are presented in Section 14.3.1
(Figures 14.6 and 14.7). Compare and contrast the two techniques.

 14.5 Starting with your data fl ow diagram for the automated library circulation system (Problem
12.11), design the circulation system using data fl ow analysis.

 14.6 Repeat Problem 14.5 using transaction analysis. Which of the two techniques did you fi nd to
be more appropriate?

 14.7 Complete the detailed class diagram for the elevator problem case study (Figure 14.11) by
listing the methods of the form Send message to C Class . . . that need to be included
in the Elevator Subcontroller Class .

 14.8 Complete the detailed class diagram for the elevator problem case study (Figure 14.11) by
listing the methods of the form Send message to C Class . . . that need to be included in
the Floor Subcontroller Class .

 14.9 Complete the detailed class diagram for the elevator problem case study (Figure 14.11) by
listing the methods of the form Send message to C Class . . . that need to be included in
the Sensor Class .

 14.10 Complete the detailed class diagram for the elevator problem case study (Figure 14.11) by
listing the methods of the form Send message to C Class . . . that need to be included in
the Floor Button Class .

 14.11 Complete the detailed class diagram for the elevator problem case study (Figure 14.11) by
listing the methods of the form Send message to C Class . . . that need to be included in
the Elevator Button Class .

 14.12 Complete the detailed class diagram for the elevator problem case study (Figure 14.11) by
listing the methods of the form Send message to C Class . . . that need to be included in
the Scheduler Class .

 14.13 (Analysis and Design Project) Starting with your object-oriented analysis for the automated
library circulation system (Problem 13.19), design the library system using object-oriented
design.

 14.14 (Analysis and Design Project) Starting with your object-oriented analysis for the product for
determining whether a bank statement is correct (Problem 13.20), design the software using
object-oriented design.

 14.15 (Analysis and Design Project) Starting with your object-oriented analysis for the ATM soft-
ware (Problem 13.21), design the ATM software using object-oriented design.

494 Part B The Workfl ows of the Software Life Cycle

sch76183_ch14_465-497.indd 494sch76183_ch14_465-497.indd 494 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 495

 14.16 (Term Project) Starting with your specifi cations of Problem 12.20 or 13.22, design the
Chocoholics Anonymous product (Appendix A). Use the design technique specifi ed by your
instructor.

 14.17 (Case Study) Redesign the MSG Foundation product using data fl ow analysis.

 14.18 (Case Study) Redesign the MSG Foundation product using transaction analysis.

 14.19 (Case Study) The detailed design of Figures 14.16 and 14.17 is represented in PDL form.
Represent the design using a tabular format. Which representation is superior? Give reasons
for your answer.

 14.20 (Readings in Software Engineering) Your instructor will distribute copies of [Hadar and
Leron, 2008]. To what extent do you think that object-oriented design is intuitive?

 References [Bansiya and Davis, 2002] J. BANSIYA AND C. G. DAVIS, “A Hierarchical Model for Object-Oriented
Design Quality Assessment,” IEEE Transactions on Software Engineering 28 (January 2002),
pp. 4–17.

 [Beizer, 1990] B. BEIZER, Software Testing Techniques, 2nd ed., Van Nostrand Reinhold, New York,
1990.

 [Binkley and Schach, 1996] A. B. BINKLEY AND S. R. SCHACH, “A Comparison of Sixteen Quality
Metrics for Object-Oriented Design,” Information Processing Letters 57 (No. 6, June 1996),
pp. 271–75.

 [Binkley and Schach, 1997] A. B. BINKLEY AND S. R. SCHACH, “Toward a Unifi ed Approach to Object-
Oriented Coupling,” Proceedings of the 35th Annual ACM Southeast Conference , Murfreesboro,
TN, April 2-4, 1997, IEEE, pp. 91–97.

 [Binkley and Schach, 1998] A. B. BINKLEY AND S. R. SCHACH, “Validation of the Coupling Dependency
Metric as a Predictor of Run-Time Failures and Maintenance Measures,” Proceedings of the 20th
International Conference on Software Engineering , Kyoto, Japan, April 1988, IEEE, pp. 542–55.

 [Briand, Bunse, and Daly, 2001] L. C. BRIAND, C. BUNSE, AND J. W. DALY, “A Controlled Experiment
for Evaluating Quality Guidelines on the Maintainability of Object-Oriented Designs,” IEEE
Transactions on Software Engineering 27 (June 2001), pp. 513–30.

 [Brooks, 1986] F. P. BROOKS, JR., “No Silver Bullet,” in: Information Processing ’86 , H.-J. Kugler
(Editor), Elsevier North-Holland, New York, 1986; reprinted in: IEEE Computer 20 (April 1987),
pp. 10–19.

 [Chidamber and Kemerer, 1994] S. R. CHIDAMBER AND C. F. KEMERER, “A Metrics Suite for Object
Oriented Design,” IEEE Transactions on Software Engineering 20 (June 1994), pp. 476–93.

 [Fagan, 1976] M. E. FAGAN, “Design and Code Inspections to Reduce Errors in Program Develop-
ment,” IBM Systems Journal 15 (No. 3, 1976), pp. 182–211.

 [Fagan, 1986] M. E. FAGAN, “Advances in Software Inspections,” IEEE Transactions on Software
Engineering SE-12 (July 1986), pp. 744–51.

 [Fichman and Kemerer, 1992] R. G. FICHMAN AND C. F. KEMERER, “Object-Oriented and Con-
ventional Analysis and Design Methodologies: Comparison and Critique,” IEEE Computer 25
(October 1992), pp. 22–39.

 [Flanagan, 2005] D. FLANAGAN, Java in a Nutshell: A Desktop Quick Reference , 5th ed., O’Reilly and
Associates, Sebastopol, CA, 2005.

 [Gane and Sarsen, 1979] C. GANE AND T. SARSEN, Structured Systems Analysis: Tools and Techniques ,
Prentice Hall, Englewood Cliffs, NJ, 1979.

 [Goldberg and Robson, 1989] A. GOLDBERG AND D. ROBSON, Smalltalk-80: The Language, Addison-
Wesley, Reading, MA, 1989.

sch76183_ch14_465-497.indd 495sch76183_ch14_465-497.indd 495 07/06/10 11:41 AM07/06/10 11:41 AM

 [Gomaa, 2000] H. GOMAA, Designing Concurrent, Distributed, and Real-time Applications with
UML , Addison-Wesley, Reading, MA, 2000.

 [Hadar and Leron, 2008] “How Intuitive Is Object-Oriented Design?” Communications of the ACM
 51 (May 2008), pp. 41–46.

 [Henry and Kafura, 1981] S. M. HENRY AND D. KAFURA, “Software Structure Metrics Based on Infor-
mation Flow,” IEEE Transactions on Software Engineering SE-7 (September 1981), pp. 510–18.

 [Hoare, 1987] C. A. R. HOARE, “An Overview of Some Formal Methods for Program Design,” IEEE
Computer 20 (September 1987), pp. 85–91.

 [ISO/IEC 8652, 1995] Programming Language Ada: Language and Standard Libraries , ISO/IEC
8652, International Organization for Standardization, International Electrotechnical Commission,
Geneva, Switzerland, 1995.

 [Jackson, 1975] M. A. JACKSON, Principles of Program Design , Academic Press, New York, 1975.

 [Jackson and Chapin, 2000] D. JACKSON AND J. CHAPIN, “Redesigning Air Traffi c Control: An Exer-
cise in Software Design,” IEEE Software 17 (May–June 2000), pp. 63–70.

 [Kelly and Sherif, 1992] J. C. KELLY AND J. S. SHERIF, “A Comparison of Four Design Methods for
Real-Time Software Development,” Information and Software Technology 34 (February 1992),
pp. 74–82.

 [Kitchenham, Pickard, and Linkman, 1990] B. A. KITCHENHAM, L. M. PICKARD, AND S. J. LINK-
MAN, “An Evaluation of Some Design Metrics,” Software Engineering Journal 5 (January
1990), pp. 50–58.

 [Liu, 2000] J. W. S. LIU, Real Time Systems , Prentice Hall, Upper Saddle River, NJ, 2000.

 [Lui, Chan, and Nosek, 2008] K. M. LUI, K. C. C. CHAN, AND J. T. NOSEK, “The Effect of Pairs in
Program Design Tasks,” IEEE Transactions on Software Engineering 34 (March–April 2008),
pp. 197–211.

 [Luqi, Zhang, Berzins, and Qiao, 2004] LUQI, L. ZHANG, V. BERZINS, AND Y. QIAO, “Documentation
Driven Development for Complex Real-Time Systems,” IEEE Transactions on Software Engi-
neering 30 (December 2004), pp. 936–52.

 [Magee and Kramer, 1999] J. MAGEE AND J. KRAMER, Concurrency: State Models & Java Programs ,
John Wiley and Sons, New York, 1999.

 [Maranzano et al., 2005] J. F. MARANZANO, S. A. ROZSYPAL, G. H. ZIMMERMAN, G. W. WARNKEN, P.
E. WIRTH, AND D. M. WEISS, “Architecture Reviews: Practice and Experience,” IEEE Software 22
(March–April 2005), pp. 34–43.

 [McCabe, 1976] T. J. MCCABE, “A Complexity Measure,” IEEE Transactions on Software Engineer-
ing SE-2 (December 1976), pp. 308–20.

 [McBride, 2007] M. R. MCBRIDE, “The Software Architect,” Communications of the ACM 50 (May
2007), pp. 75–81.

 [Orr, 1981] K. ORR, Structured Requirements Defi nition , Ken Orr and Associates, Topeka, KS, 1981.

 [Shepperd, 1990] M. SHEPPERD, “Design Metrics: An Empirical Analysis,” Software Engineering
Journal 5 (January 1990), pp. 3–10.

 [Silberschatz, Galvin, and Gagne, 2002] A. SILBERSCHATZ, P. B. GALVIN, AND G. GAGNE, Operating
System Concepts, 6th ed., Addison-Wesley, Reading, MA, 2002.

 [Stolper, 1999] S. A. STOLPER, “Streamlined Design Approach Lands Mars Pathfi nder,” IEEE Soft-
ware 16 (September–October 1999), pp. 52–62.

 [Stroustrup, 2003] B. STROUSTRUP, The C++ Standard: Incorporating Technical Corrigendum No. 1 ,
2nd ed., John Wiley and Sons, New York, 2003.

496 Part B The Workfl ows of the Software Life Cycle

sch76183_ch14_465-497.indd 496sch76183_ch14_465-497.indd 496 07/06/10 11:41 AM07/06/10 11:41 AM

Chapter 14 Design 497

 [Tsantalis, Chatzigeorgiou, and Stephanides, 2005] N. TSANTALIS, A. CHATZIGEORGIOU, AND G.
STEPHANIDES, “Predicting the Probability of Change in Object-Oriented Systems,” IEEE Transac-
tions on Software Engineering 31 (July 2005), pp. 601–14.

 [Ward and Mellor, 1985] P. T. WARD AND S. MELLOR, Structured Development for Real-Time Systems,
Vols. 1, 2, and 3, Yourdon Press, New York, 1985.

 [Warnier, 1976] J. D. WARNIER, Logical Construction of Programs , Van Nostrand Reinhold, New
York, 1976.

 [Wirfs-Brock, 2006] R. WIRFS-BROCK, “Designing for Recovery,” IEEE Software 23 (July–August
2006), pp. 11–13.

 [Yourdon and Constantine, 1979] E. YOURDON AND L. L. CONSTANTINE, Structured Design: Funda-
mentals of a Discipline of Computer Program and Systems Design , Prentice Hall, Englewood
Cliffs, NJ, 1979.

 [Zage and Zage, 1993] W. M. ZAGE AND D. M. ZAGE, “Evaluating Design Metrics on Large-Scale
Software,” IEEE Software 10 (July 1993), pp. 75–81.

sch76183_ch14_465-497.indd 497sch76183_ch14_465-497.indd 497 07/06/10 11:41 AM07/06/10 11:41 AM

 Chapter 15
Implementation
 Learning Objectives

 After studying this chapter, you should be able to

 • Perform the implementation workfl ow.

 • Perform black-box, glass-box, and non-execution-based unit testing.

 • Perform integration testing, product testing, and acceptance testing.

 • Appreciate the need for good programming practices and programming
standards.

 Implementation is the process of translating the detailed design into code. When this is
done by a single individual, the process is relatively well understood. But, most real-life
products today are too large to be implemented by one programmer within the given time
constraints. Instead, the product is implemented by a team, working at the same time on
different components of the product; this is termed programming-in-the-many . Issues
associated with programming-in-the-many are examined in this chapter.

 15.1 Choice of Programming Language
 In most cases, the issue of which programming language to choose for the implementation
simply does not arise. Suppose the client wants a product to be implemented in, say, Small-
talk. Perhaps, in the opinion of the development team, Smalltalk is entirely unsuitable for the
product. Such an opinion is irrelevant to the client. Management of the development organi-
zation has only two choices: Implement the product in Smalltalk or turn down the job.
 Similarly, if the product has to be implemented on a specifi c computer and the only language
available on that computer is assembler, then again there is no choice. If no other language is
available, either because no compiler has yet been developed for any high-level language on
that computer or management is not prepared to pay for a new C++ compiler for the stipulated
computer, then again clearly the issue of choice of programming language is not relevant.

498

sch76183_ch15_498-550.indd 498sch76183_ch15_498-550.indd 498 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 499

 A more interesting situation is this: A contract specifi es that the product is to be imple-
mented in “the most-suitable” programming language. What language should be chosen?
To answer this question, consider the following scenario. QQQ Corporation has been writ-
ing COBOL products for over 30 years. The entire 200-member software staff of QQQ,
from the most junior programmer to the vice-president for software, has COBOL expertise.
Why on earth should the most suitable programming language be anything but COBOL?
The introduction of a new language, Java, for example, would mean having to hire new pro-
grammers, or, at the very least, existing staff would have to be intensively retrained. Hav-
ing invested all that money and effort in Java training, management might well decide that
future products also should be implemented in Java. Nevertheless, all the existing COBOL
products would have to be maintained. There then would be two classes of programmers,
COBOL maintenance programmers and Java programmers writing the new applications.
Quite undeservedly, maintenance almost always is considered inferior to developing new
applications, so there would be distinct unhappiness among the ranks of the COBOL
programmers. This unhappiness would be compounded by the fact that Java programmers
usually are paid more than COBOL programmers because Java programmers are in short
supply. Although QQQ has excellent development tools for COBOL, a Java compiler would
have to be purchased, as well as appropriate Java CASE tools. Additional hardware may have
to be purchased or leased to run this new software. Perhaps most serious of all, QQQ has
accumulated hundreds of person-years of COBOL expertise, the kind of expertise that can
be gained only through hands-on experience, such as what to do when a certain cryptic
error message appears on the screen or how to handle the quirks of the compiler. In brief, it
would seem that “the most suitable” programming language could be only COBOL—any
other choice would be fi nancial suicide, either from the viewpoint of the cost involved or as
a consequence of plummeting staff morale leading to poor-quality code.
 And yet, the most suitable programming language for QQQ Corporation’s latest project
may indeed be some language other than COBOL. Notwithstanding its position as the
world’s most widely used programming language (see Just in Case You Wanted to Know
Box 15.1), COBOL is suited for only one class of software products, data-processing ap-
plications. If QQQ Corporation has software needs outside this class, then COBOL rapidly
loses its attractiveness. For example, if QQQ wishes to construct a knowledge-based prod-
uct using artifi cial intelligence (AI) techniques, then an AI language such as Lisp could
be used; COBOL is totally unsuitable for AI applications. If large-scale communications
software is to be built, perhaps because QQQ requires satellite links to hundreds of branch
offi ces all over the world, then a language such as Java would prove far more suitable than
COBOL. If QQQ is to go into the business of writing systems software, such as operating
systems, compilers, and linkers, then COBOL very defi nitely is unsuitable. And, if QQQ
Corporation decides to go into defense contracting, management will soon discover that
COBOL simply cannot be used for real-time embedded software.
 The issue of which programming language to use often can be decided by using cost–
benefi t analysis (Section 5.2). That is, management must compute the dollar cost of an
implementation in COBOL as well as the dollar benefi ts, present and future, of using
COBOL. This computation must be repeated for every language under consideration. The
language with the largest expected gain (that is, the difference between estimated benefi ts
and estimated costs) is then the appropriate implementation language. Another way of de-
ciding which programming language to select is to use risk analysis. For each language

sch76183_ch15_498-550.indd 499sch76183_ch15_498-550.indd 499 07/06/10 11:43 AM07/06/10 11:43 AM

500 Part B The Workfl ows of the Software Life Cycle

under consideration, a list is made of the potential risks and ways of resolving them. The
language for which the overall risk is the smallest then is selected.
 Currently, software organizations are under pressure to develop new software in an
object-oriented language—any object-oriented language. The question that arises is this:
Which is the appropriate object-oriented language? Twenty years ago, there really was only
one choice, Smalltalk. Today, however, the most widely used object-oriented programming
language is C++ [Borland, 2002], with Java in second place. There are a number of reasons
for the popularity of C++. One is the widespread availability of C++ compilers. In fact,
some C++ compilers simply translate the source code from C++ into C, and then invoke the
C compiler. Therefore, any computer with a C compiler essentially can handle C++.
 But the real explanation for the popularity of C++ is its apparent similarity to C. This
is unfortunate, in that a number of managers view C++ as a superset of C and, therefore,
conclude that any programmer who knows C can quickly pick up the additional pieces.
Indeed, from just a syntactical viewpoint, C++ essentially is a superset of C. After all,
virtually any C program can be compiled using a C++ compiler. Conceptually, however,
C++ is totally different from C. C is a product of the classical paradigm, whereas C++

 Just in Case You Wanted to Know Box 15.1

 Far more code has been implemented in COBOL than in all other programming languages
put together. COBOL is the most widely used language primarily because COBOL is a prod-
uct of the U.S. Department of Defense (DoD). Developed under the direction of the late
Rear-Admiral Grace Murray Hopper, COBOL was approved by the DoD in 1960. Thereafter,
the DoD would not buy hardware for running data-processing applications unless that
hardware had a COBOL compiler [Sammet, 1978]. The DoD was, and still is, the world’s
largest purchaser of computer hardware; and in the 1960s, a considerable proportion of
DoD software was implemented for data processing. As a result, COBOL compilers were
developed as a matter of urgency for virtually every computer. This widespread availability
of COBOL, at a time when the only alternative language usually was assembler, resulted in
COBOL becoming the world’s most popular programming language.
 Languages such as C, C��, Java, and the 4GLs undoubtedly are growing in popularity
for new applications. Nevertheless, postdelivery maintenance still is the major software
activity, and this maintenance is being performed on existing COBOL software. In short,
the DoD put its stamp onto the world’s software via its fi rst major programming language,
COBOL.
 Another reason for the popularity of COBOL is that COBOL frequently is the best lan-
guage for implementing a data-processing product. In particular, COBOL generally is the
language of choice when money is involved. Financial books have to balance, so rounding
errors cannot be allowed to creep in. Therefore, all computations have to be performed
using integer arithmetic. COBOL supports integer arithmetic on very large numbers (that
is, billions of dollars). In addition, COBOL can handle very small numbers, such as fractions
of a cent. Banking regulations require interest computations to be calculated to at least
four decimal places of a cent, and COBOL can do this arithmetic with ease as well. Finally,
COBOL probably has the best formatting, sorting, and report generation facilities of any
third-generation language (or high-level language, see Section 15.2). All these reasons have
made COBOL an excellent choice for implementing a data-processing product.
 As mentioned in Section 8.11.4, the current COBOL language standard is for an object-
oriented language. This standard surely will further boost the popularity of COBOL.

sch76183_ch15_498-550.indd 500sch76183_ch15_498-550.indd 500 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 501

is for the object-oriented paradigm. Using C++ makes sense only if object-oriented
techniques have been used and if the product is organized around objects and classes,
not functions.
 Therefore, before an organization adopts C++, it is essential that the relevant software
professionals be trained in the object-oriented paradigm. It is particularly important that
the information of Chapter 7 be taught. Unless it is clear to all involved, and particularly to
management, that the object-oriented paradigm is a different way of developing software
and what the precise differences are, the classical paradigm will just continue to be used
but with the code implemented in C++ rather than C. When organizations are disappointed
with the results of switching from C to C++, a major contributory factor is a lack of educa-
tion in the object-oriented paradigm.
 Suppose that an organization decides to adopt Java. In that case it is not possible to
move gradually from the classical paradigm to the object-oriented paradigm. Java is a pure
object-oriented programming language; it does not support the functions and procedures
of the classical paradigm. Unlike a hybrid object-oriented language such as C++, Java
programmers have to use the object-oriented paradigm (and only the object-oriented para-
digm) from the very beginning. Because of the necessity of an abrupt transition from the
one paradigm to the other, education and training are even more important when adopting
Java (or another pure object-oriented language, such as Smalltalk) than if the organization
were to switch to a hybrid object-oriented language like C++ or OO-COBOL.

 15.2 Fourth-Generation Languages
 The fi rst computers had neither interpreters nor compilers. They were programmed in bi-
nary, either hardwired with plug boards or by setting switches. Such a binary machine code
was a fi rst-generation language . The second-generation languages were assem-
blers, developed in the late 1940s and early 1950s. Instead of having to program in binary,
instructions could be expressed in symbolic notation such as

mov $17, next

 In general, each assembler instruction is translated into one machine code instruction.
So, although assembler was easier to write than machine code and easier for postdelivery
maintenance programmers to comprehend, the assembler source code was the same length
as the machine code.
 The idea behind a third-generation language (or high-level language), such as C,
C++, Pascal, or Java, is that one statement of a high-level language is compiled to as many
as 5 or 10 machine code instructions (this is another example of abstraction; see Section
7.4.1). High-level language code is hence considerably shorter than the equivalent assem-
bler code. It is also simpler to understand and, therefore, easier to maintain than assembler
code. The fact that the high-level language code may not be quite as effi cient as the equiva-
lent assembler code generally is a small price to pay for ease in postdelivery maintenance.
 This concept was taken further in the late 1970s. A major objective in the design of a
 fourth-generation language (4GL) is that each 4GL statement should be equivalent to
30, or even 50, machine code instructions. Products implemented in a 4GL such as Focus
or Natural are shorter and hence quicker to develop and easier to maintain.

sch76183_ch15_498-550.indd 501sch76183_ch15_498-550.indd 501 07/06/10 11:43 AM07/06/10 11:43 AM

502 Part B The Workfl ows of the Software Life Cycle

 It is diffi cult to program in machine code. It is somewhat easier to program in assem-
bler, and easier still to use a high-level language. A second major design objective of a
4GL is ease in programming. In particular, many 4GLs are nonprocedural (see Just in
Case You Wanted to Know Box 15.2 for an insight into this term). For example, consider
the command

 for every surveyor
 if rating is excellent
 add 6500 to salary

 It is up to the compiler of the 4GL to translate this nonprocedural instruction into a sequence
of machine code instructions that can be executed procedurally.
 Success stories abound from organizations that have switched to a 4GL. A few that
previously used COBOL reported a 10-fold increase in productivity through use of a 4GL.
Many organizations found that their productivity indeed increased through use of a 4GL
but not spectacularly so. Other organizations tried a 4GL and were bitterly disappointed
with the results.
 One reason for this inconsistency is that it is unlikely that one 4GL will be appropriate
for all products. On the contrary, it is important to select the correct 4GL for the specifi c
product. For example, Playtex used IBM’s Application Development Facility (ADF) and
reported an 80 to 1 productivity increase over COBOL. Notwithstanding this impressive
result, Playtex subsequently returned to COBOL for products deemed by management to
be less well suited to ADF [Martin, 1985].
 A second reason for these inconsistent results is that many 4GLs are supported by power-
ful CASE workbenches and environments (Section 5.7). CASE workbenches and environ-
ments can be both a strength and a weakness. As explained in Section 5.12, it is inadvisable
to introduce large-scale CASE within an organization with a low maturity level. The reason is
that the purpose of a CASE workbench or environment is to support the software process. An
organization at level 1 has no software process in place. If at this point CASE is introduced as
part of the transition to a 4GL, this imposes a process onto an organization not ready for any
sort of process. The usual consequences at best are unsatisfactory and can be disastrous. In
fact, a number of reported 4GL failures can be ascribed to the effects of the associated CASE
environment rather than to the 4GL itself.
 The attitudes of 43 organizations to 4GLs are reported in [Guimaraes, 1985]. This re-
search found that use of a 4GL reduced user frustration because the data-processing de-
partment could respond more quickly when a user needed information extracted from the

 Just in Case You Wanted to Know Box 15.2
 Some years ago I hailed a cab outside Grand Central Station in New York City and said to
the driver, “Please take me to Lincoln Center.” This was a nonprocedural request, because I
expressed the desired result but left it to the driver to decide how to achieve that result. It
turned out that the driver was an immigrant from Central Europe who had been in America
less than 2 months and knew virtually nothing about the geography of New York City or the
English language. As a result, I quickly replaced my nonprocedural request with a procedural
request of the form, “Straight, straight. Take a right at the next light. I said right. Right,
here, yes, right! Now straight. Slow down, please. I said slow down. For heaven’s sake, slow
down!” and so on, until we fi nally reached Lincoln Center.

sch76183_ch15_498-550.indd 502sch76183_ch15_498-550.indd 502 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 503

organization’s database. However, there also were a number of problems. Some 4GLs
proved to be slow and ineffi cient, with long response times. One product consumed 60
percent of the CPU cycles on an IBM 4331 mainframe, while supporting, at most, 12 con-
current users. Overall, the 28 organizations that had been using a 4GL for over 3 years felt
that the benefi ts outweighed the costs.
 No one 4GL dominates the software market. Instead, there are hundreds of 4GLs; some of
them, including DB2, Oracle, and PowerBuilder, have sizable user groups. This widespread
proliferation of 4GLs is further evidence that care has to be taken in selecting the correct
4GL. Of course, few organizations can afford to support more than one 4GL. Once a 4GL
has been chosen and used, the organization must either use that 4GL for subsequent products
or fall back on the language used before the 4GL was introduced.
 Notwithstanding the potential productivity gain, there could be danger in using a 4GL
the wrong way. Many organizations currently have a large backlog of products to be devel-
oped and a long list of postdelivery maintenance tasks to be performed. A design objective
of many 4GLs is end-user programming , that is, programming by the person who will
use the product. For example, before the advent of 4GLs, the investment manager of an
insurance company would ask the data-processing manager for a product that would dis-
play certain information regarding the bond portfolio. The investment manager then would
wait a year or so for the data-processing group to fi nd the time to develop the product. A
4GL was desired that would be so simple to use that the investment manager, previously
untrained in programming, could implement the desired product unaided. End-user pro-
gramming was intended to help reduce the development backlog, leaving the professionals
to maintain existing products.
 In practice, end-user programming can be dangerous. First, consider the situation when
all product development is performed by computer professionals. Computer professionals
are trained to mistrust computer output. After all, probably less than 1 percent of all out-
put during product development is correct. On the other hand, the user is told to trust all
computer output, because no product should be delivered to the user until it is fault free.
Now consider the situation when end-user programming is encouraged. When a user who is
inexperienced in programming implements code with a user-friendly, nonprocedural 4GL,
the natural tendency is for that user to believe the output. After all, for years the user has
been instructed to trust computer output. As a result, many business decisions have been
based on data generated by hopelessly incorrect end-user code. In some cases, the user-
friendliness of certain 4GLs has led to fi nancial catastrophes.
 Another potential danger lies in the tendency, in some organizations, to allow users to
implement 4GL products that update the organization’s database. A programming mistake
made by a user eventually may result in the corruption of the entire database. The lesson
is clear: Programming by inexperienced or inadequately trained users can be exceedingly
dangerous, if not fatal, to the fi nancial health of a corporation.
 The ultimate choice of a 4GL is made by management. In making such a decision,
management should be guided by the many success stories resulting from the use of a
4GL. At the same time, management should carefully analyze the failures caused by using
an inappropriate 4GL, by premature introduction of a CASE environment, and by poor
management of the development process. For example, a common cause of failure is
neglecting to train the development team thoroughly in all aspects of the 4GL, includ-
ing relational database theory [Date, 2003] where appropriate. Management should study

sch76183_ch15_498-550.indd 503sch76183_ch15_498-550.indd 503 07/06/10 11:43 AM07/06/10 11:43 AM

both the successes and failures in the specifi c application area and learn from past mis-
takes. Choosing the correct 4GL can mean the difference between a major success and
dismal failure.
 Having decided on the implementation language, the next issue is how software engi-
neering principles can lead to better-quality code.

 15.3 Good Programming Practice
 Many recommendations on good coding style are language specifi c. For example, sugges-
tions regarding use of COBOL 88-level entries or parentheses in Lisp are of little interest
to programmers implementing a product in Java. In contrast, recommendations regarding
language-independent good programming practice are now given.

 15.3.1 Use of Consistent and Meaningful Variable Names
 As stated in Chapter 1 , on average at least two-thirds of a software budget is devoted to
postdelivery maintenance. This implies that the programmer developing a code artifact is
merely the fi rst of many who will work on that code artifact. It is counterproductive for
a programmer to give names to variables that are meaningful to only that programmer;
within the context of software engineering, the term meaningful variable names means
“meaningful from the viewpoint of future maintenance programmers.” This point is ampli-
fi ed in Just in Case You Wanted to Know Box 15.3.
 In addition to the use of meaningful variable names, it is equally essential that consistent
variable names be chosen. For example, the following four variables are declared in
a code artifact: averageFreq , frequencyMaximum , minFr , and frqncyTotl . A mainte-
nance programmer who is trying to understand the code has to know if freq , frequency ,
 fr , and frqncy all refer to the same thing. If yes, then the identical word should be used,

 Just in Case You Wanted to Know Box 15.3
 In the late 1970s, a small software organization in Johannesburg, South Africa, consisted of
two programming teams. Team A was made up of émigrés from Mozambique. They were of
Portuguese extraction, and their native language was Portuguese. Their code was well writ-
ten. Variable names were meaningful but unfortunately only to a speaker of Portuguese. Team
B comprised Israeli immigrants whose native language was Hebrew. Their code was equally
well written, and the names they chose for their variables were equally meaningful—but only
to a speaker of Hebrew.
 One day, team A resigned en masse, together with its team leader. Team B was totally
unable to maintain any of the excellent code that team A had written, because they spoke
no Portuguese. The variable names, meaningful as they were to Portuguese speakers, were
incomprehensible to the Israelis, whose linguistic abilities were restricted to Hebrew and
English. The owner of the software organization was unable to hire enough Portuguese-
speaking programmers to replace team A, and the company soon went into bankruptcy,
under the weight of numerous lawsuits from disgruntled customers whose code was now
essentially unmaintainable.
 The situation could have been avoided easily. The head of the company should have in-
sisted from the start that all variable names be in English, the language understood by every
South African computer professional. Variable names then would have been meaningful to
any maintenance programmer.

sch76183_ch15_498-550.indd 504sch76183_ch15_498-550.indd 504 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 505

preferably frequency , although freq or frqncy is marginally acceptable; fr is not. But if
one or more variable names refer to a different quantity, then a totally different name, such
as rate , should be used. Conversely, do not use two different names to denote the identical
concept; for example, both average and mean should not be used in the same program.
 A second aspect of consistency is the ordering of the components of variable names.
For example, if one variable is named frequencyMaximum , then the name minimum-
Frequency would be confusing; it should be frequencyMinimum. To make the code clear
and unambiguous for future maintenance programmers, the four variables listed previously
should be named frequencyAverage , frequencyMaximum , frequencyMinimum ,
and frequencyTotal, respectively. Alternatively, the frequency component can appear
at the end of all four variable names, yielding the variable names averageFrequency ,
 maximumFrequency, minimumFrequency , and totalFrequency. It clearly does not
matter which of the two sets is chosen; what is important is that all the names be from
one set or the other.
 A number of different naming conventions have been put forward that are intended to
make it easier to understand the code. The idea is that the name of a variable should in-
corporate type information. For example, ptrChTmp might denote a temporary variable
(Tmp) of type pointer (ptr) to an character (Ch). The best known of such schemes are the
Hungarian Naming Conventions [Klunder, 1988]. (If you want to know why they are called
Hungarian, see Just in Case You Wanted to Know Box 15.4.) One drawback of many such
schemes is that the effectiveness of code inspections (Section 15.14) can be reduced when
participants are unable to pronounce the names of variables. It is extremely frustrating to
have to spell out variable names, letter by letter.

 15.3.2 The Issue of Self-Documenting Code
 When asked why their code contains no comments whatsoever, programmers often
proudly reply, “I write self-documenting code .” The implication is that their variable
names are chosen so carefully and their code crafted so exquisitely that there is no need
for comments. Self-documenting code does exist, but it is exceedingly rare. Instead, the
usual scenario is that the programmer appreciates every nuance of the code at the time the
code artifact is implemented. It is conceivable that the programmer uses the same style
for every code artifact and that in 5 years’ time, the code still is crystal clear in every
respect to the original programmer. Unfortunately, this is irrelevant. The important point
is whether the code artifact can be understood easily and unambiguously by all the other
programmers who have to read it, starting with the software quality assurance group and
including a number of different postdelivery maintenance programmers. The problem
becomes more acute in the light of the unfortunate practice of assigning postdelivery

 Just in Case You Wanted to Know Box 15.4
 There are two explanations for the term Hungarian Naming Conventions . First, these
conventions were invented by Charles Simonyi, who was born in Hungary. Second, it gen-
erally is agreed that, to the uninitiated, programs with variable names conforming to the
conventions are about as easy to read as Hungarian. Nevertheless, organizations (such as
Microsoft) that use them claim that they enhance code readability for those with experi-
ence in the Hungarian Naming Conventions.

sch76183_ch15_498-550.indd 505sch76183_ch15_498-550.indd 505 07/06/10 11:43 AM07/06/10 11:43 AM

506 Part B The Workfl ows of the Software Life Cycle

maintenance tasks to inexperienced programmers and not supervising them closely. The
undocumented code of the artifact may be only partially comprehensible to an experi-
enced programmer. How much worse, then, is the situation when the maintenance pro-
grammer is inexperienced.
 To see the sorts of problems that can arise, consider the variable xCoordinateOfPosition-
OfRobotArm . Such a variable name undoubtedly is self-documenting in every sense of the
word, but few programmers are prepared to use a 31-character variable name, especially if
that name is used frequently. Instead, a shorter name is used, xCoord , for example. The rea-
soning behind this is that if the entire code artifact deals with the movement of the arm of
a robot, xCoord can refer only to the x coordinate of the position of the arm of the robot.
Although that argument holds water within the context of the development process, it is
not necessarily true for postdelivery maintenance. The maintenance programmer may not
have suffi cient knowledge of the product as a whole to realize that, within this code arti-
fact, xCoord refers to the arm of the robot or may not have the necessary documentation
to understand the workings of the code artifact. The way to avoid this sort of problem is
to insist that every variable name be explained at the beginning of the code artifact, in the
 prologue comments . If this rule is followed, the maintenance programmer quickly
will understand that variable xCoord is used for the x coordinate of the position of the
robot arm.
 Prologue comments are mandatory in every code artifact. The minimum information
that must be provided at the top of every code artifact is listed in Figure 15.1 .
 Even if a code artifact is clearly written, it is unreasonable to expect someone to have
to read every line to understand what the code artifact does and how it does it. Prologue
comments make it easy for others to understand the key points. Only a member of the SQA
group or a maintenance programmer modifying a specifi c code artifact should be expected
to have to read every line of that code artifact.

The name of the code artifact
A brief description of what the code artifact does
The programmer’s name
The date the code artifact was coded
The date the code artifact was approved
The name of the person who approved the code artifact
The arguments of the code artifact
A list of the name of each variable of the code artifact, preferably in alphabetical

order, and a brief description of its use
The names of any files accessed by this code artifact
The names of any files changed by this code artifact
Input–output, if any
Error-handling capabilities
The name of the file containing test data (to be used later for regression testing)
A list of each modification made to the code artifact, the date the modification was

made, and who approved the modification
Any known faults

 FIGURE 15.1
 Minimal
prologue
comments for a
code artifact.

sch76183_ch15_498-550.indd 506sch76183_ch15_498-550.indd 506 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 507

 In addition to prologue comments, inline comments should be inserted into the code
to assist maintenance programmers in understanding that code. It has been suggested that
inline comments should be used only when the code is implemented in a nonobvious way
or uses some subtle aspect of the language. On the contrary, confusing code should be
reimplemented in a clearer way. Inline comments are a means of helping maintenance pro-
grammers and should not be used to promote or excuse poor programming practice.

 15.3.3 Use of Parameters
 There are very few genuine constants, that is, variables whose values never change. For
instance, satellite photographs have caused changes to be made in submarine navigation
systems incorporating the latitude and longitude of Pearl Harbor, Hawaii, to refl ect more
accurate geographic data regarding the exact location of Pearl Harbor. To take another
example, sales tax is not a genuine constant; legislators tend to change the sales tax rate
from time to time. Suppose that the sales tax rate currently is 6.0 percent. If the value 6.0
has been hard coded in a number of code artifacts of a product, then changing the product
is a major exercise, with the likely outcome of one or two instances of the “constant” 6.0
being overlooked and, perhaps, changing an unrelated 6.0 by mistake. A better solution is
a C++ declaration such as

 const fl oat salesTaxRate = 6.0;

 or, in Java,

 public static fi nal fl oat salesTaxRate = (fl oat) 6.0;

 Then, wherever the value of the sales tax rate is needed, the constant salesTaxRate should
be used and not the number 6.0 . If the sales tax rate changes, then only the line containing
the value of salesTaxRate need be altered using an editor. Better still, the value of the sales
tax rate should be read in from a parameter fi le at the beginning of the run. All such appar-
ent constants should be treated as parameters. If a value should change for any reason, this
change can be implemented quickly and effectively.

 15.3.4 Code Layout for Increased Readability
 It is relatively simple to make a code artifact easy to read. For example, no more than one
statement should appear on a line, even though many programming languages permit more
than one. Indentation is perhaps the most important technique for increasing readability. Just
imagine how diffi cult it would be to read the code examples in Chapter 7 if indentation had
not been used to assist in understanding the code. In C++ or Java, indentation can be used to
connect corresponding { . . . } pairs. Indentation also shows which statements belong in a given
block. In fact, correct indentation is too important to be left to humans. Instead, as described in
Section 5.8, CASE tools should be used to ensure that indentation is done correctly.
 Another useful aid is blank lines. Methods should be separated by blank lines; in addi-
tion, it often is helpful to break up large blocks of code with blank lines. The extra “white
space” makes the code easier to read and, hence, comprehend.

 15.3.5 Nested if Statements
 Consider the following example. A map consists of two squares, as shown in Figure 15.2 .
It is required to write code to determine whether a point on the Earth’s surface lies in

sch76183_ch15_498-550.indd 507sch76183_ch15_498-550.indd 507 07/06/10 11:43 AM07/06/10 11:43 AM

508 Part B The Workfl ows of the Software Life Cycle

 mapSquare1, mapSquare2 , or not on the map at all. The solution of Figure 15.3 is
so badly formatted that it is incomprehensible. A properly formatted version appears in
 Figure 15.4 . Notwithstanding this, the combination of if - if and if - else - if constructs is
so complex that it is diffi cult to check whether the code fragment is correct. This is fi xed
in Figure 15.5 . When faced with complex code containing the if - if construct, one way to
simplify it is to use the fact that the if - if combination

 FIGURE 15.3
 Badly formatted
nested if
statements.

 if (latitude > 30 && longitude > 120) { if (latitude <= 60 && longitude <= 150)
mapSquareNo = 1; else if (latitude <= 90 && longitude <= 150) mapSquareNo = 2
 else print “Not on the map”;} else print “Not on the map”;

 FIGURE 15.4
 Well-formatted
but badly
constructed
nested if
statements.

 if (latitude > 30 && longitude > 120)
{
 if (latitude <= 60 && longitude <= 150)
 mapSquareNo = 1;
 else
 if (latitude <= 90 && longitude <= 150)
 mapSquareNo = 2;
 else
 print �Not on the map�;
}
 else
 print �Not on the map�;

 FIGURE 15.5
 Acceptably
nested if
statements.

 if (longitude > 120 && longitude <= 150 && latitude > 30 && latitude <= 60)
 mapSquareNo = 1;
 else
 if (longitude > 120 && longitude <= 150 && latitude > 60 && latitude <= 90)
 mapSquareNo = 2;
 else
 print �Not on the map�;

 FIGURE 15.2
Coordinates for
a map.

latitude

150�90� 120� 180�

90�

60�

30�

longitude

map-
Square-

2

map-
Square-

1

sch76183_ch15_498-550.indd 508sch76183_ch15_498-550.indd 508 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 509

 if < condition 1>
 if < condition 2>

 is equivalent to the single condition

 if < condition 1> and < condition 2>

 provided that < condition 2> is defi ned even if < condition 1> does not hold. For example,
< condition 1> might check that a pointer is not null and, if so, then < condition 2> can use
that pointer. (This problem does not arise in Java or C++. The && operator is defi ned such
that if < condition 1> is false, then < condition 2> is not evaluated—see Problems 15.9
and 15.10.)
 Another problem with the if - if construct is that nesting if statements too deeply leads to
code that can be diffi cult to read. As a rule of thumb, if statements nested to a depth greater
than three is poor programming practice and should be avoided.

 15.4 Coding Standards
 Coding standards can be both a blessing and a curse. Section 7.2.1 pointed out that
modules with coincidental cohesion (that is, modules that perform multiple, completely
unrelated operations) generally arise as a consequence of rules such as, “Every module
will consist of between 35 and 50 executable statements.” Instead of stating a rule in
such a dogmatic fashion, a better formulation is, “Programmers should consult their
managers before constructing a module with fewer than 35 or more than 50 executable
statements.” The point is that no coding standard can be applicable under all possible
circumstances.
 Coding standards imposed from above tend to be ignored. As mentioned previously, a
useful rule of thumb is that if statements should not be nested to a depth greater than three.
If programmers are shown examples of unreadable code resulting from nesting if state-
ments too deeply, then it is likely that they will conform to such a regulation. But they are
unlikely to adhere to a list of coding rules imposed on them with no discussion or explana-
tion. Furthermore, such standards are likely to lead to friction between programmers and
their managers.
 In addition, unless a coding standard can be checked by machine, it is going to
either waste a lot of the SQA group’s time or simply be ignored by the programmers
and SQA group alike. On the other hand, consider the following rules (see Problems
15.11–15.13):

 • Nesting of if statements should not exceed a depth of three, except with prior approval
from the team leader.

 • Modules should consist of between 35 and 50 statements, except with prior approval
from the team leader.

 • The use of goto statements should be avoided. However, with prior approval from the
team leader, a forward goto may be used for error handling.

 Such rules may be checked by machine, provided some mechanism is set up for capturing
the data relating to permission to deviate from the standard.

sch76183_ch15_498-550.indd 509sch76183_ch15_498-550.indd 509 07/06/10 11:43 AM07/06/10 11:43 AM

510 Part B The Workfl ows of the Software Life Cycle

 The aim of coding standards is to make maintenance easier. However, if the effect of a
standard is to make the life of software developers diffi cult, then such a standard should be
modifi ed, even in the middle of a project. Overly restrictive coding standards are counter-
productive, in that the quality of software production inevitably must suffer if programmers
have to develop software within such a framework. On the other hand, standards such as
those just listed regarding nesting of if statements, module size, and goto statements,
coupled with a mechanism for deviating from those standards, can lead to improved soft-
ware quality, which, after all, is a major goal of software engineering.

 15.5 Code Reuse
 Reuse was presented in detail in Chapter 8 . In fact, the material on reuse could have ap-
peared virtually anywhere in this book, because artifacts from all workfl ows of the software
process are reused, including portions of specifi cations, contracts, plans, designs, and code
artifacts. That is why the material on reuse was put into the fi rst part of the book, rather than
tying it to one or another specifi c workfl ow. In particular, it was important that the material
on reuse not be presented in this chapter to underline the fact that, even though reuse of
code is by far the most common form of reuse, more than just code can be reused.

 15.6 Integration
 Consider the product depicted in Figure 15.6 . One approach to integration of the product
is to code and test each code artifact separately, link together all 13 code artifacts, and test
the product as a whole. There are two diffi culties with this approach. First, consider artifact
 a . It cannot be tested on its own, because it calls artifacts b , c , and d . Therefore, to unit test
artifact a , artifacts b , c , and d must be coded as stubs . In its simplest form, a stub is an empty
artifact. A more effective stub prints a message such as artifact displayRadarPattern called.
Best of all, a stub should return values corresponding to preplanned test cases.

a

b c d

e

h

f

i

g

j k

l m

 FIGURE 15.6
 A typical
interconnection
diagram.

sch76183_ch15_498-550.indd 510sch76183_ch15_498-550.indd 510 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 511

 Now consider artifact h . To test it on its own requires a driver , a code artifact that calls
it one or more times, if possible checking the values returned by the artifact under test.
Similarly, testing artifact d requires a driver and two stubs. Therefore, one problem that
arises with separate implementation and integration is that effort has to be put into con-
structing stubs and drivers, all of which are thrown away after unit testing is completed.
 The second, and much more important, diffi culty that arises when implementation is
completed before integration starts is lack of fault isolation. If the product as a whole is
tested against a specifi c test case and the product fails, then the fault could lie in any of the
13 code artifacts or 13 interfaces. In a large product with, say, 103 code artifacts and 108
interfaces, the fault might lie in no fewer than 211 places.
 The solution to both diffi culties is to combine unit and integration testing.

 15.6.1 Top-down Integration
 In top-down integration , if code artifact mAbove sends a message to artifact mBelow ,
then mAbove is implemented and integrated before mBelow . Suppose that the product
shown in Figure 15.6 is implemented and integrated top down. One possible top-down
ordering is a , b , c , d , e , f , g , h , i , j , k , l , and m . First, artifact a is coded and tested with b ,
 c , and d implemented as stubs. Next stub b is expanded into artifact b , linked to artifact a,
and tested with artifact e implemented as a stub. Implementation and integration proceed
in this way until all the artifacts have been integrated into the product. Another possible
top-down ordering is a , b , e , h , c , d , f , i , g , j , k , l , and m . With this ordering, portions of the
integration can proceed in parallel in the following way. After a has been coded and tested,
one programmer can use artifact a to implement and integrate b , e , and h , while another
programmer can use a to work in parallel on c , d , f , and i . Once d and f are completed, a
third programmer can start work on g , j , k , l , and m .
 Suppose that artifact a by itself executes correctly on a specifi c test case. However,
when the same test data are submitted after b has been coded and integrated into the prod-
uct, now consisting of artifacts a and b linked together, the test fails. The fault can be in
one of two places, in artifact b or the interface between artifacts a and b . In general, when-
ever a code artifact mNew is added to what has been tested so far and a previously suc-
cessful test case fails, the fault almost certainly lies either in mNew or in the interface(s)
between mNew and the rest of the product. Accordingly, top-down integration supports
fault isolation.
 Another strength of top-down integration is that major design fl aws show up early. The
artifacts of a product can be divided into two groups, logic artifacts and operational artifacts.
The logic artifacts essentially incorporate the decision-making fl ow of control aspects of
the product. The logic artifacts generally are those situated close to the root in the intercon-
nection diagram. For example, in Figure 15.6 , it is reasonable to expect artifacts a , b , c , d,
and perhaps g and j to be logic artifacts. The operational artifacts , on the other hand, per-
form the actual operations of the product. For example, an operational artifact may be named
 getLineFromTerminal or measureTemperatureOfReactorCore . The operational artifacts
generally are found in the lower levels, close to the leaves, of the interconnection diagram. In
 Figure 15.6 , artifacts e , f , h , i , k , l, and m are operational artifacts.
 It is always important to code and test the logic artifacts before coding and testing the
operational artifacts. This ensures that any major design faults show up early. Suppose the
whole product is completed before a major fault is detected. Large parts of the product

sch76183_ch15_498-550.indd 511sch76183_ch15_498-550.indd 511 07/06/10 11:43 AM07/06/10 11:43 AM

512 Part B The Workfl ows of the Software Life Cycle

have to be reimplemented, especially the logic artifacts that embody the fl ow of control. Many
of the operational artifacts probably are reusable in the rebuilt product; for example, an
artifact like getLineFromTerminal or measureTemperatureOfReactorCore is needed
no matter how the product is restructured. However, the way the operational artifacts are
connected to the other artifacts in the product may have to be changed, resulting in unnec-
essary work. Therefore, the earlier a design fault is detected, the quicker and less costly it is
to correct the product and get back on the development schedule. The order in which arti-
facts are implemented and integrated using the top-down strategy essentially ensures that
logic artifacts indeed are implemented and integrated before operational artifacts, because
logic artifacts almost always are the ancestors of operational artifacts in the interconnection
diagram. This is a major strength of top-down integration.
 Nevertheless, top-down integration has a weakness: Potentially reusable code artifacts
may not be adequately tested, as will be explained. Reuse of an artifact that is thought,
incorrectly, to have been thoroughly tested is likely to be less cost-effective than writing
that artifact from scratch, because the assumption that an artifact is correct can lead to
wrong conclusions when the product fails. Instead of suspecting the insuffi ciently tested,
reused artifact, the tester may think that the fault lies elsewhere, resulting in a waste of
effort.
 Logic artifacts are likely to be somewhat problem specifi c and hence unusable in
another context. However, operational artifacts, particularly if they have informational
cohesion (Section 7.2.7), probably are reusable in future products and, therefore, require
thorough testing. Unfortunately, the operational artifacts generally are the lower-level
code artifacts in the interconnection diagram and hence are not tested as frequently as
the upper-level artifacts. For example, if there are 184 artifacts, the root artifact is tested
184 times, whereas the last artifact to be integrated into the product is tested only once.
Top-down integration makes reuse a risky undertaking as a consequence of inadequate
testing of operational artifacts.
 The situation is exacerbated if the product is well designed; in fact, the better the
design, the less thoroughly the artifacts are likely to be tested. To see this, consider an
artifact computeSquareRoot . This artifact takes two arguments, a fl oating-point number x
whose square root is to be determined and an errorFlag that is set to true if x is negative.
Suppose further that computeSquareRoot is invoked by artifact a3 and that a3 contains
the statement

 if (x > = 0)

 y = computeSquareRoot (x, errorFlag);

 In other words, computeSquareRoot is never invoked unless the value of x is non-
negative; therefore, the artifact can never be tested with negative values of x to see if it
behaves correctly. The type of design where the calling artifact includes a safety check of
this kind is referred to as defensive programming . As a result of defensive program-
ming, subordinate operational artifacts are unlikely to be thoroughly tested if integrated
top down. An alternative to defensive programming is the use of responsibility-driven
design (Section 1.9). Here, the necessary safety checks are built into the invoked artifact,
rather than the invoker. Another approach is the use of assertions in the invoked artifact
(Section 6.5.3).

sch76183_ch15_498-550.indd 512sch76183_ch15_498-550.indd 512 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 513

 15.6.2 Bottom-up Integration
 In bottom-up integration , if artifact mAbove sends a message to artifact mBelow ,
then mBelow is implemented and integrated before mAbove . In Figure 15.6 , one possible
bottom-up ordering is l , m , h , i , j , k , e , f , g , b , c , d , and a. To have the product coded by a
team, a better bottom-up ordering is as follows: h , e , and b are given to one programmer
and i , f , and c to another. The third programmer starts with l , m , j , k , and g , and then imple-
ments d and integrates his or her work with the work of the second programmer. Finally,
when b , c , and d have been successfully integrated, a can be implemented and integrated.
 The operational artifacts thereby are tested thoroughly when a bottom-up strategy is
used. In addition, the testing is done with the aid of drivers, rather than by fault-shielding,
defensively programmed artifacts. Although bottom-up integration solves the major dif-
fi culty of top-down integration and shares with top-down integration the advantage of
fault isolation, it unfortunately has a diffi culty of its own. Specifi cally, major design faults
are detected late in the implementation workfl ow. The logic artifacts are integrated last;
hence, if there is a major design fault, it will be picked up at the end of the implementation
workfl ow with the resulting huge cost of redesigning and recoding large portions of the
product.
 Therefore, both top-down and bottom-up integration have their strengths and weak-
nesses. The solution for product development is to combine the two strategies in such a way
as to use their strengths and minimize their weaknesses. This leads to the idea of sandwich
integration.

 15.6.3 Sandwich Integration
 Consider the interconnection diagram shown in Figure 15.7 . Six of the code artifacts— a ,
 b , c , d , g, and j —are logic artifacts and therefore should be integrated top down. Seven are

 FIGURE 15.7
 The product
of Figure 15.6
developed
using sandwich
integration.

Logic artifact Operational artifact

Interface connecting logic and operational artifacts

a

b c d

g

j

ml

kih

e f

sch76183_ch15_498-550.indd 513sch76183_ch15_498-550.indd 513 07/06/10 11:43 AM07/06/10 11:43 AM

514 Part B The Workfl ows of the Software Life Cycle

operational artifacts— e , f , h , i , k , l , and m —and should be integrated bottom up. Because
neither top-down nor bottom-up integration is suitable for all the artifacts, the solution
is to partition them. The six logic artifacts are integrated top down and any major design
faults can be caught early. The seven operational artifacts are integrated bottom up. They
therefore receive a thorough testing, unshielded by defensively programmed artifacts that
invoke them, and therefore they can be reused with confi dence in other products. When all
artifacts have been appropriately integrated, the interfaces between the two groups of arti-
facts are tested, one by one. There is fault isolation at all times during this process, called
 sandwich integration (see Just in Case You Wanted to Know Box 15.5).
 Figure 15.8 summarizes the strengths and weaknesses of sandwich integration, as well
as the other integration techniques previously discussed in this chapter.
 Sandwich integration is summarized in How to Perform Box 15.1.

 15.6.4 Integration of Object-Oriented Products
 Objects can be integrated either bottom up or top down. If top-down integration is chosen,
stubs are used for each method in the same way as with classical modules.
 If bottom-up integration is used, the objects that do not send messages to other objects
are implemented and integrated fi rst. Then, the objects that send messages to those objects

 Just in Case You Wanted to Know Box 15.5
 The term sandwich integration [Myers, 1979] comes from viewing the logic artifacts and the
operational artifacts as the top and the bottom of a sandwich, and the interfaces that con-
nect them as the sandwich fi lling. This can be seen (sort of) in Figure 15.7 .

 Approach Strengths Weaknesses

 Implementation then — No fault isolation
 integration Major design faults show up
 (Section 15.6) late

 Potentially reusable code
 artifacts are not
 adequately tested

 Top-down integration Fault isolation Potentially reusable code
 (Section 15.6.1) Major design faults show up artifacts are not
 early adequately tested

 Bottom-up integration Fault isolation Major design faults show up
 (Section 15.6.2) Potentially reusable code late
 artifacts are adequately
 tested

 Sandwich integration Fault isolation —
 (Section 15.6.3) Major design faults show up
 early

 Potentially reusable code
 artifacts are adequately
 tested

 FIGURE 15.8
 A summary of
the integration
approaches
presented in
this chapter and
the section in
which each is
described.

sch76183_ch15_498-550.indd 514sch76183_ch15_498-550.indd 514 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 515

are implemented and integrated, and so on, until all the objects in the product have been
implemented and integrated. (This process must be modifi ed if there is recursion.)
 Because both top-down and bottom-up integration are supported, sandwich integration
also can be used. If the product is implemented in a hybrid object-oriented language like
C++, the classes generally are operational artifacts and therefore integrated bottom up.
 Many of the artifacts that are not classes are logic artifacts. These are implemented and
integrated in a top-down manner. The other artifacts are operational, so they are imple-
mented and integrated bottom up. Finally, all the nonobject artifacts are integrated with
the objects.
 Even when the product is implemented using a pure object-oriented language like Java,
class methods (sometimes referred to as static methods) such as main and utility meth-
ods usually are similar in structure to logic modules of the classical paradigm. Therefore,
class methods are also implemented top down and then integrated with the other objects.
In other words, when implementing and integrating an object-oriented product, variants of
sandwich integration are used.

 15.6.5 Management of Integration
 A problem for management is discovering, at integration time, that the code artifacts
simply do not fi t together. For example, suppose that programmer 1 coded object o1,
and programmer 2 coded object o2 . In the version of the design documentation used by
programmer 1, object o1 sends a message to object o2 passing four arguments, but the
version of the design documentation used by programmer 2 states clearly that only three
arguments are passed to o2 . A problem like this can arise when a change is made to only
one copy of the design document, without informing all the members of the develop-
ment group. Both programmers know that they are in the right; neither is prepared to
compromise, because the programmer who gives in must recode large portions of the
product.
 To solve these and similar problems of incompatibility, the entire integration process
should be run by the SQA group. Furthermore, as with testing during other workfl ows,
the SQA group has the most to lose if the integration testing is performed improperly. The
SQA group therefore is the most likely to ensure that the testing is performed thoroughly.
Hence, the manager of the SQA group should have responsibility for all aspects of inte-
gration testing. He or she must decide which artifacts are implemented and integrated
top down and which bottom up and assign integration-testing tasks to the appropriate

 How to Perform Sandwich Integration

 • In parallel,
 Implement and integrate the logic artifacts top down.

 Implement and integrate the operational artifacts bottom up.

 • Test the interfaces between the logic artifacts and the operational artifacts.

Box 15.1

sch76183_ch15_498-550.indd 515sch76183_ch15_498-550.indd 515 07/06/10 11:43 AM07/06/10 11:43 AM

516 Part B The Workfl ows of the Software Life Cycle

individuals. The SQA group, which will have drawn up the integration test plan in the
software project management plan, is responsible for implementing that plan.
 At the end of the integration process, all the code artifacts will have been tested and
combined into a single product.

 15.7 The Implementation Workfl ow
 The overall aim of the implementation workfl ow is to implement the target software
product in the selected implementation language. More precisely, as explained in Section
14.9, a large software product is partitioned into smaller subsystems, which are then imple-
mented in parallel by coding teams. The subsystems, in turn, consist of components or
 code artifacts .
 As soon as a code artifact has been coded, the programmer tests it; this is termed unit
testing . Once the programmer is satisfi ed that the code artifact is correct, it is passed on
to the quality assurance group for further testing. This testing by the quality assurance
group is part of the test workfl ow, described in Sections 15.20 through 15.22.

 The Implementation Workfl ow:
The MSG Foundation Case Study
 Complete implementations of the MSG Foundation product in both C++ and Java
can be downloaded from www.mhhe.com/schach . The programmers included a
variety of comments to aid the postdelivery maintenance programmers.
 Testing during the implementation workfl ow is examined next.

 15.9 The Test Workfl ow: Implementation
 A number of different types of testing have to be performed during the implementation
workfl ow, including unit testing, integration testing, product testing, and acceptance test-
ing. These types of testing are discussed in the following sections.
 As pointed out in Section 6.6, code artifacts (modules, classes) undergo two types of
testing: informal unit testing performed by the programmer while developing the code
artifact and methodical unit testing carried out by the SQA group after the programmer
is satisfi ed that the artifact appears to function correctly. This methodical testing is de-
scribed in Sections 15.10 through 15.14. In turn, there are two basic types of methodical
testing, non-execution-based testing , in which the artifact is reviewed by a team, and
 execution-based testing in which the artifact is run against test cases. Techniques for
selecting test cases now are described.

Case Study
15.815.8

sch76183_ch15_498-550.indd 516sch76183_ch15_498-550.indd 516 07/06/10 11:43 AM07/06/10 11:43 AM

www.mhhe.com/schach

Chapter 15 Implementation 517

 15.10 Test Case Selection
 The worst way to test a code artifact is to use haphazard test data. The tester sits in front of
the keyboard, and whenever the artifact requests input, the tester responds with arbitrary
data. As will be shown, there is never time to test more than the tiniest fraction of all pos-
sible test cases, which easily can number many more than 10 100 . The few test cases that
can be run, perhaps, on the order of 1000, are too valuable to waste on haphazard data.
Worse, there is a tendency when the machine solicits input to respond more than once with
the same data, wasting even more test cases. It is clear that test cases must be constructed
systematically.

 15.10.1 Testing to Specifi cations versus Testing to Code
 Test data for unit testing can be constructed systematically in two basic ways. The fi rst is
to test to specifi cations . This technique also is called black-box , behavioral , data-
driven , functional , and input/output-driven testing . In this approach, the code itself
is ignored; the only information used in drawing up test cases is the specifi cation document.
The other extreme is to test to code and to ignore the specifi cation document when se-
lecting test cases. Other names for this technique are glass-box , white-box , structural ,
 logic-driven , and path-oriented testing (for an explanation of why there are so many
different terms, see Just in Case You Wanted to Know Box 15.6).
 We now consider the feasibility of each of these two techniques, starting with testing to
specifi cations.

 15.10.2 Feasibility of Testing to Specifi cations
 Consider the following example. Suppose that the specifi cations for a certain data-
processing product state that fi ve types of commission and seven types of discount must
be incorporated. Testing every possible combination of just commission and discount
requires 35 test cases. It is no use saying that commission and discount are computed in
two entirely separate code artifacts and hence may be tested independently—in black-
box testing, the product is treated as a black box, and its internal structure therefore is
completely irrelevant.
 This example contains only two factors, commission and discount, taking on fi ve and
seven different values, respectively. Any realistic product has hundreds, if not thousands,

 Just in Case You Wanted to Know Box 15.6
 It is reasonable to ask why so many different names are given for the same testing concept.
As so often happens in software engineering, the same concept was discovered, indepen-
dently, by a number of different researchers, each of whom invented his or her own term.
By the time the software engineering community realized that these were different names
for the identical concept it was too late—the diverse names had crept into the software
engineering vocabulary.
 In this book, I use the terms black-box testing and glass-box testing . These terms are par-
ticularly descriptive. When we test to specifi cations, we treat the code as a totally opaque
black box. Conversely, when we test to code, we need to be able to see inside the box:
hence the term glass-box testing . I avoid the term white-box testing because it is somewhat
confusing. After all, a box painted white is just as opaque as one painted black.

sch76183_ch15_498-550.indd 517sch76183_ch15_498-550.indd 517 07/06/10 11:43 AM07/06/10 11:43 AM

518 Part B The Workfl ows of the Software Life Cycle

of different factors. Even if there are only 20 factors, each taking on only four different
values, a total of 4 20 or 1.1 � 10 12 different test cases must be examined.
 To see the implications of over a trillion test cases, consider how long it would take to test
them all. If a team of programmers could be found that could generate, run, and examine
test cases at an average rate of one every 30 seconds, then it would take more than a million
years to test the product exhaustively.
 Therefore, exhaustive testing to specifi cations is impossible in practice because of the
combinatorial explosion. There simply are too many test cases to consider. Testing to code
now is examined.

 15.10.3 Feasibility of Testing to Code
 The most common form of testing to code requires that each path through the code artifact
be executed at least once.

 • To see the infeasibility of this, consider the code fragment of Figure 15.9 . The cor-
responding fl owchart is shown in Figure 15.10 . Even though the fl owchart appears to
be almost trivial, it has over 10 12 different paths. There are fi ve possible paths through
the central group of six shaded boxes, and the total number of possible paths through
the fl owchart therefore is

5 1 � 5 2 � 5 3 � . . . � 5 18 �
5 � (518�1)

(5�1) � 4.77 � 10 12

 If there can be this many paths through a simple fl owchart containing a single loop, it is
not diffi cult to imagine the total number of different paths in a code artifact of reason-
able size and complexity, let alone a large artifact with many loops. In short, the huge
number of possible paths renders exhaustive testing to code as infeasible as exhaustive
testing to specifi cations.

 read (kmax) // kmax is an integer between 1 and 18
 for (k = 0; k < kmax; k++) do
 {
 read (myChar) // myChar is the character A, B, or C
 switch (myChar)
 {
 case ’A’:
 blockA;
 if (cond1) blockC;
 break ;
 case ’B’:
 blockB;
 if (cond2) blockC;
 break ;
 case ’C’:
 blockC;
 break ;
 }
 blockD;
}

 FIGURE 15.9
 A code
fragment.

sch76183_ch15_498-550.indd 518sch76183_ch15_498-550.indd 518 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 519

 • Furthermore, testing to code requires the tester to exercise every path. It is possible to
exercise every path without detecting every fault in the product; that is, testing to code
is not reliable. To see this, consider the code fragment shown in Figure 15.11 [Myers,
1976]. The fragment was written to test the equality of three integers, x , y , and z, using
the totally fallacious assumption that if the average of three numbers is equal to the fi rst
number, then the three numbers are equal. Two test cases are shown in Figure 15.11 . In
the fi rst test case the value of the average of the three numbers is 6/3 or 2 , which is not
equal to 1 . The product therefore correctly informs the tester that x , y , and z are unequal.
The integers x , y , and z all equal 2 in the second test case, so the product computes their
average as 2 , which is equal to the value of x , and the product correctly concludes that
the three numbers are equal. Accordingly, both paths through the product have been
exercised without the fault being detected. Of course, the fault would come to light if
test data such as x = 2 , y = 1 , z = 3 are used.

 • A third diffi culty with path testing is that a path can be tested only if it is present.
Consider the code fragment shown in Figure 15.12(a) . Clearly, two paths are to be

 FIGURE 15.10
 A fl owchart
with over 10 12
possible paths.

loop � 18 times

blockA

blockC

blockD

blockBmyChar

cond1 cond2

'A'

'C'

'B'

true

false false

true

sch76183_ch15_498-550.indd 519sch76183_ch15_498-550.indd 519 07/06/10 11:43 AM07/06/10 11:43 AM

520 Part B The Workfl ows of the Software Life Cycle

tested, corresponding to the cases d = 0 and d ≠ 0 . Next, consider the single statement
of Figure 15.12(b) . Now there is only one path, and this path can be tested without the
fault being detected. In fact, a programmer who omits checking whether d = 0 in his
or her code is likely to be unaware of the potential danger, and the case d = 0 will not
be included in the programmer’s test data. This problem is an additional argument for
having an independent software quality assurance group whose job includes detecting
faults of this type.

 These examples show conclusively that the criterion “exercise all paths in the product”
is not reliable , as products exist for which some data exercising a given path detect a fault
and different data exercising the same path do not. However, path-oriented testing is valid ,
because it does not inherently preclude selecting test data that might reveal the fault.
 Because of the combinatorial explosion, neither exhaustive testing to specifi cations nor
exhaustive testing to code is feasible. A compromise is needed, using techniques that high-
light as many faults as possible, while accepting that there is no way to guarantee that all
faults have been detected. A reasonable way to proceed is to use black-box test cases fi rst
(testing to specifi cations) and then develop additional test cases using glass-box techniques
(testing to code).

 15.11 Black-Box Unit-Testing Techniques
 Exhaustive black-box testing generally requires billions and billions of test cases. The art
of testing is to devise a small, manageable set of test cases to maximize the chances of
detecting a fault while minimizing the chances of wasting a test case by having the same

 FIGURE 15.11
 An incorrect
code fragment
for determining
if three integers
are equal,
together with
two test cases.

 if ((x � y � z)/3 == x)
 print “x, y, z are equal in value”;
 else
 print “x, y, z are unequal”;

Test case 1: x = 1, y = 2, z = 3
Test case 2: x = y = z = 2

 FIGURE 15.12
 Two code
fragments for
computing a
quotient.

 if (d == 0)
 zeroDivisionRoutine ();
 else
 x = n/d;
 (a)

x = n/d;
 (b)

sch76183_ch15_498-550.indd 520sch76183_ch15_498-550.indd 520 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 521

fault detected by more than one test case. Every test case must be chosen to detect a previ-
ously undetected fault. One such black-box technique is equivalence testing combined with
boundary value analysis.

 15.11.1 Equivalence Testing and Boundary Value Analysis
 Suppose the specifi cations for a database product state that the product must be able to
handle any number of records from 1 through 16,383 (2 14 – 1). If the product can handle
34 records and 14,870 records, then the chances are good that it will work fi ne for, say,
8252 records. In fact, the chances of detecting a fault, if present, are likely to be equally
good if any test case from 1 through 16,383 records is selected. Conversely, if the product
works correctly for any one test case in the range from 1 through 16,383, then it prob-
ably will work for any other test case in the range. The range from 1 through 16,383
constitutes an equivalence class , that is, a set of test cases such that any one member
of the class is as good a test case as any other. To be more precise, the specifi ed range
of numbers of records that the product must be able to handle defi nes three equivalence
classes:

 Equivalence class 1. Less than 1 record.
 Equivalence class 2. From 1 through 16,383 records.
 Equivalence class 3. More than 16,383 records.

 Testing the database product using the technique of equivalence classes then requires
that one test case from each equivalence class be selected. The test case from equivalence
class 2 should be handled correctly, whereas error messages should be printed for the test
cases from class 1 and class 3.
 A successful test case detects a previously undetected fault. To maximize the chances of
fi nding such a fault, a high-payoff technique is boundary value analysis .
 Experience has shown that, when a test case on or just to one side of the boundary of an
equivalence class is selected, the probability of detecting a fault increases. Therefore, when
testing the database product, seven test cases should be selected:

 Test case 1. 0 records: Member of equivalence class 1 and adjacent to boundary
value.

 Test case 2. 1 record: Boundary value.
 Test case 3. 2 records: Adjacent to boundary value.
 Test case 4. 723 records: Member of equivalence class 2.
 Test case 5. 16,382 records: Adjacent to boundary value.
 Test case 6. 16,383 records: Boundary value.
 Test case 7. 16,384 records: Member of equivalence class 3 and adjacent to

boundary value.

 This example applies to the input specifi cations. An equally powerful technique is to
examine the output specifi cations. For example, in 2008, the minimum Social Security
deduction or, more precisely, the minimum Old-Age, Survivors, and Disability Insurance
(OASDI) deduction from any one paycheck permitted by the U.S. tax code was $0 and the
maximum was $6324, the latter corresponding to gross earnings of $102,000. Therefore,

sch76183_ch15_498-550.indd 521sch76183_ch15_498-550.indd 521 07/06/10 11:43 AM07/06/10 11:43 AM

522 Part B The Workfl ows of the Software Life Cycle

when testing a payroll product, the test cases for the Social Security deduction from pay-
checks should include input data that are expected to result in deductions of exactly $0 and
$6324. In addition, test data should be set up that might result in deductions of less than $0
or more than $6324.
 In general, for each range (R 1 , R 2) listed in either the input or the output specifi ca-
tions, fi ve test cases should be selected, corresponding to values less than R 1 , equal to R 1 ,
greater than R 1 but less than R 2 , equal to R 2 , and greater than R 2 . Where it is specifi ed that
an item has to be a member of a certain set (for example, the input must be a letter), two
equivalence classes must be tested, a member of the specifi ed set and a nonmember of the
set. Where the specifi cations lay down a precise value (for example, the response must be
followed by a # sign), then again there are two equivalence classes, the specifi ed value and
anything else.
 The use of equivalence classes, together with boundary value analysis, to test both
the input specifi cations and the output specifi cations is a valuable technique for gen-
erating a relatively small set of test data with the potential of uncovering a number of
faults that might well remain hidden if less powerful techniques for test data selection
were used.
 The process of equivalence testing is summarized in How to Perform Box 15.2.

 15.11.2 Functional Testing
 An alternative form of black-box testing is to base the test data on the functionality of a
code artifact. In functional testing [Howden, 1987], each item of functionality or func-
tion implemented in the code artifact is identifi ed. Typical functions in a classical mod-
ule for a computerized warehouse product might be get_next_database_record or
 determine_whether_quantity_on_hand_is_below_the_reorder_point . In a weapons
control system, a module might include the function compute_trajectory . In a module of
an operating system, one function might be determine_whether_fi le_is_empty.
 After determining all the functions of a code artifact, test data are devised to test each
function separately. Now, the functional testing is taken a step further. If the code artifact
consists of a hierarchy of lower-level functions, connected by the control structures of

 How to Perform Equivalence Testing

 • For both the input and output specifi cations

 For each range (L , U)

 Select fi ve test cases: less than L , equal to L , greater than L but less than U , equal to U , and greater
than U .

 For each set S

 Select two test cases: a member of S and a nonmember of S .

 For each precise value P

 Select two cases: P and anything else.

Box 15.2

sch76183_ch15_498-550.indd 522sch76183_ch15_498-550.indd 522 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 523

structured programming, then functional testing proceeds recursively. For example, if a
higher-level function is of the form

 < higher-level function > ::= if < conditional expression >
 < lower-level function 1>;
 else
 < lower-level function 2>;

 then, because < conditional expression >, < lower-level function 1>, and < lower-level
function 2> have been subjected to functional testing, < higher-level function > can be
tested using branch coverage, a glass-box technique described in Section 15.13.1. Note
that this form of structural testing is a hybrid technique—the lower-level functions are
tested using a black-box technique, but the higher-level functions are tested using a
glass-box technique.
 In practice, however, higher-level functions are not constructed in such a structured
fashion from lower-level functions. Instead, the lower-level functions usually are inter-
twined in some way. To determine faults in this situation, functional analysis is required,
a somewhat complex procedure; for details, see [Howden, 1987]. A further complicat-
ing factor is that functionality frequently does not coincide with code artifact boundaries.
Therefore, the distinction between unit testing and integration testing becomes blurred;
one code artifact cannot be tested without, at the same time, testing the other code artifacts
whose functionality it uses. This problem also arises in the object-oriented paradigm when
a method of one object sends a message to (invokes) a method of a different object.
 The random interrelationships between code artifacts from the viewpoint of functional
testing may have unacceptable consequences for management. For example, milestones
and deadlines can become somewhat ill defi ned, making it diffi cult to determine the status
of the product with respect to the software project management plan.

 Black-Box Test Cases:
The MSG Foundation Case Study
 Figures 15.13 and 15.14 contain black-box test cases for the MSG Foundation case
study. First consider test cases derived from equivalence classes and boundary value
analysis. The fi rst test case in Figure 15.13 tests whether the product detects an error
if the itemName of an investment does not begin with an alphabetic character. The
next set of fi ve test cases checks that an itemName consists of between 1 and 25
characters. Similar test cases check other statements in the specifi cations, as refl ected
in Figure 15.13 .
 Turning now to functional testing, 10 functions are listed in the specifi cation doc-
ument, as shown in Figure 15.14 . An additional 11 test cases correspond to misuses
of these functions.
 It is important to be aware that these test cases could have been developed as soon
as the analysis workfl ow was complete; the only reason that they appear here is that

Case Study
15.1215.12

sch76183_ch15_498-550.indd 523sch76183_ch15_498-550.indd 523 07/06/10 11:43 AM07/06/10 11:43 AM

524 Part B The Workfl ows of the Software Life Cycle

 FIGURE 15.13
 Black-box
test cases
for the MSG
Foundation
case study
derived from
equivalence
classes and
boundary value
analysis.

 Investment data :
 Equivalence classes for itemName.

 1. First character not alphabetic Error

 2. < 1 character Error

 3. 1 character Acceptable

 4. Between 1 and 25 characters Acceptable

 5. 25 characters Acceptable

 6. > 25 characters Error (name too long)

 Equivalence classes for itemNumber.
 1. Character instead of digit Error (not a number)

 2. < 12 digits Acceptable

 3. 12 digits Acceptable

 4. > 12 digits Error (too many digits)

 Equivalence classes for estimatedAnnualReturn and expectedAnnualOperatingExpenses.

 1. < $0.00 Error

 2. $0.00 Acceptable

 3. $0.01 Acceptable

 4. Between $0.01 and $999,999,999.97 Acceptable

 5. $999,999,999.98 Acceptable

 6. $999,999,999.99 Acceptable

 7. $1,000,000,000.00 Error

 8. > $1,000,000,000.00 Error

 9. Character instead of digit Error (not a number)

 Mortgage information:
 Equivalence classes for accountNumber are same as for itemNumber above.

 Equivalence classes for last name of mortgagees

 1. First character not alphabetic Error

 2. < 1 character Error

 3. 1 character Acceptable

 4. Between 1 and 21 characters Acceptable

 5. 21 characters Acceptable

 6. > 21 characters Acceptable (truncated to 21 characters)

 Equivalence classes for original price of home, current family income, and mortgage balance.

 1. < $0.00 Error

 2. $0.00 Acceptable

 3. $0.01 Acceptable

 4. Between $0.01 and $999,999.98 Acceptable

 5. $999,999.98 Acceptable

 6. $999,999.99 Acceptable

 7. $1,000,000.00 Error

 8. > $1,000,000.00 Error

 9. Character instead of digit Error (not a number)

sch76183_ch15_498-550.indd 524sch76183_ch15_498-550.indd 524 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 525

test case selection is a topic of this chapter, rather than an earlier chapter. A major
component of every test plan should be a stipulation that black-box test cases be
drawn up as soon as the analysis artifacts have been approved, for use by the SQA
group during the implementation workfl ow.

 15.13 Glass-Box Unit-Testing Techniques
 In glass-box techniques, test cases are selected on the basis of examination of the code
rather than the specifi cations. There are a number of different forms of glass-box testing,
including statement, branch, and path coverage.

FIGURE 15.13
(continued)

 Equivalence classes for annual property tax and annual homeowner’s premium.

 1. < $0.00 Error

 2. $0.00 Acceptable

 3. $0.01 Acceptable

 4. Between $0.01 and $99,999.98 Acceptable

 5. $99,999.98 Acceptable

 6. $99,999.99 Acceptable

 7. $100,000.00 Error

 8. > $100,000.00 Error

 9. Character instead of digit Error (not a number)

 FIGURE 15.14
 Functional
analysis test
cases for
the MSG
Foundation case
study.

 The functions outlined in the specifi cations document are used to create test cases:

 1. Add a mortgage.

 2. Add an investment.

 3. Modify a mortgage.

 4. Modify an investment.

 5. Delete a mortgage.

 6. Delete an investment.

 7. Update operating expenses.

 8. Compute funds to purchase houses.

 9. Print list of mortgages.

10. Print list of investments.

In addition to these direct tests, it is necessary to perform the following additional tests:

11. Attempt to add a mortgage that is already on fi le.

12. Attempt to add an investment that is already on fi le.

13. Attempt to delete a mortgage that is not on fi le.

14. Attempt to delete an investment that is not on fi le.

15. Attempt to modify a mortgage that is not on fi le.

16. Attempt to modify an investment that is not on fi le.

17. Attempt to delete twice a mortgage that is already on fi le.

18. Attempt to delete twice an investment that is already on fi le.

19. Attempt to update each fi eld of a mortgage twice and check that the second version is stored.

20. Attempt to update each fi eld of an investment twice and check that the second version is stored.

21. Attempt to update operating expenses twice and check that second version is stored.

sch76183_ch15_498-550.indd 525sch76183_ch15_498-550.indd 525 07/06/10 11:43 AM07/06/10 11:43 AM

526 Part B The Workfl ows of the Software Life Cycle

 15.13.1 Structural Testing: Statement, Branch,
and Path Coverage

 The simplest form of glass-box unit testing is statement coverage, that is, running a series
of test cases during which every statement is executed at least once. To keep track of which
statements are still to be executed, a CASE tool keeps a record of how many times each state-
ment has been executed over the series of tests; PureCoverage is an example of such a tool.
 A weakness of this approach is that there is no guarantee that all outcomes of branches
are properly tested. To see this, consider the code fragment of Figure 15.15 . The programmer
made a mistake; the compound conditional s > 1 && t == 0 should read s > 1 || t == 0 .
The test data shown in the fi gure allow the statement x = 9 to be executed without the fault
being highlighted.
 An improvement over statement coverage is branch coverage , that is, running a series
of tests to ensure that all branches are tested at least once. Again, a tool usually is needed to
help the tester keep track of which branches have or have not been tested; Generic Cover-
age Tool (gct) is an example of a branch coverage tool for C programs. Techniques such as
statement or branch coverage are termed structural tests .
 The most powerful form of structural testing is path coverage , that is, testing all paths.
As shown previously, in a product with loops, the number of paths can be very large indeed.
As a result, researchers have been investigating ways of reducing the number of paths to be
examined while uncovering more faults than would be possible using branch coverage. One
criterion for selecting paths is to restrict test cases to linear code sequences [Woodward,
Hedley, and Hennell, 1980]. To do this, fi rst identify the set of points L from which control
fl ow may jump. The set L includes entry and exit points and branch statements such as an
 if or goto statement. The linear code sequences are those paths that begin at an element
of L and end at an element of L . The technique has been successful in that it has uncovered
many faults without having to test every path.
 Another way of reducing the number of paths to test is all-defi nition-use-path
coverage [Rapps and Weyuker, 1985]. In this technique, each occurrence of a variable
 pqr , say, in the source code is labeled either as a defi nition of the variable, such as pqr = 1
or read (pqr), or a use of the variable, such as y = pqr + 3 or if (pqr < 9) errorB () .
All paths between the defi nition of a variable and the use of that defi nition are identifi ed,
nowadays by means of an automatic tool. Finally, a test case is set up for each such path.
All-defi nition-use-path coverage is an excellent test technique in that large numbers of
faults frequently are detected by relatively few test cases. However, all-defi nition-use-path
coverage has the weakness that the upper bound on the number of paths is 2 d , where d is
the number of decision statements (branches) in the product. Examples can be constructed
exhibiting the upper bound. However, it has been shown that, for real products as opposed
to artifi cial examples, this upper bound is not reached, and the actual number of paths is
proportional to d [Weyuker, 1988]. In other words, the number of test cases needed for

 FIGURE 15.15
 Code fragment
with test data.

 if (s > 1 && t == 0)
 x = 9;

Test case: s = 2, t = 0.

sch76183_ch15_498-550.indd 526sch76183_ch15_498-550.indd 526 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 527

all-defi nition-use-path coverage generally is much smaller than the theoretical upper bound.
Therefore, all-defi nition-use-path coverage is a practical test case selection technique.
 When using structural testing, the tester simply might not come up with a test case that ex-
ercises a specifi c statement, branch, or path. What may have happened is that an infeasible path
(“dead code”) is in the code artifact, that is, a path that cannot possibly be executed for any input
data. Figure 15.16 shows two examples of infeasible paths. In Figure 15.16(a) the programmer
omitted a minus sign. If k is less than 2 , then k cannot possibly be greater than 3 , so the state-
ment x = x * k cannot be reached. Similarly, in Figure 15.16(b) , j is never less than 0 , so the
statement total = total + value[j] can never be reached; the programmer had intended the test
to be j < 10 , but made a typing mistake. A tester using statement coverage would soon realize
that neither statement could be reached and the faults would be found.

 15.13.2 Complexity Metrics
 The quality assurance viewpoint provides another approach to glass-box unit testing. Sup-
pose a manager is told that code artifact m1 is more complex than code artifact m2.
Irrespective of the precise way in which the term complex is defi ned, the manager intuitively
believes that m1 is likely to have more faults than m2 . Following this idea, computer scien-
tists have developed a number of metrics of software complexity as an aid in determining
which code artifacts are most likely to have faults. If the complexity of a code artifact is
found to be unreasonably high, a manager may direct that the artifact be redesigned and
reimplemented on the grounds that it probably is less costly and faster to start from scratch
than to attempt to debug a fault-prone code artifact.
 A simple metric for predicting numbers of faults is lines of code. The underlying as-
sumption is that there is a constant probability, p , that a line of code contains a fault. If a
tester believes that, on average, a line of code has a 2 percent chance of containing a fault,
and the artifact under test is 100 lines long, then this implies that the artifact is expected to
contain two faults; and an artifact that is twice as long is likely to have four faults. Basili
and Hutchens [1983] as well as Takahashi and Kamayachi [1985] showed that the number
of faults indeed is related to the size of the product as a whole.
 Attempts have been made to fi nd more sophisticated predictors of faults based on
measures of product complexity. A typical contender is McCabe’s [1976] measure of
 cyclomatic complexity , the number of binary decisions (predicates) plus 1. As described
in Section 14.15, the cyclomatic complexity essentially is the number of branches in the

 FIGURE 15.16
 Two examples
of infeasible
paths.

 if (k < 2)
{
 if (k > 3) [should be k > −3]
 ↑
 x = x * k;
}
 (a)

 for (j = 0; j < 0; j++) [should be j < 10]
 ↑
 total = total + value[j];
 (b)

sch76183_ch15_498-550.indd 527sch76183_ch15_498-550.indd 527 07/06/10 11:43 AM07/06/10 11:43 AM

528 Part B The Workfl ows of the Software Life Cycle

code artifact. Accordingly, cyclomatic complexity can be used as a metric for the number
of test cases needed for branch coverage of a code artifact. This is the basis for so-called
 structured testing [Watson and McCabe, 1996].
 McCabe’s metric can be computed almost as easily as lines of code. In some cases, it has
been shown to be a good metric for predicting faults; the higher the value of M , the greater
is the chance that a code artifact contains a fault. For example, Walsh [1979] analyzed 276
modules in the Aegis system, a shipboard combat system. Measuring the cyclomatic com-
plexity, M, he found that 23 percent of the modules with M greater than or equal to 10 had 53
percent of the faults detected. In addition, the modules with M greater than or equal to 10 had
21 percent more faults per line of code than the modules with smaller M values. However, the
validity of McCabe’s metric has been questioned seriously on both theoretical grounds and
on the basis of the many different experiments cited in [Shepperd and Ince, 1994].
 Musa, Iannino, and Okumoto [1987] analyzed the data available on fault densities. They
concluded that most complexity metrics, including McCabe’s, show a high correlation with
the number of lines of code or, more precisely, the number of deliverable, executable source
instructions. In other words, when researchers measure what they believe to be the com-
plexity of a code artifact or a product, the result they obtain may be largely a refl ection of
the number of lines of code, a measure that correlates strongly with the number of faults.
In addition, complexity metrics provide little improvement over lines of code for predicting
fault rates. Other problems with complexity are discussed in [Shepperd and Ince, 1994].

 15.14 Code Walkthroughs and Inspections
 Section 6.2 made a strong case for the use of walkthroughs and inspections in general. The
same arguments hold for code walkthroughs and inspections. In brief, the fault-detecting
power of these two non-execution-based techniques leads to rapid, thorough, and early
fault detection. The additional time required for code walkthroughs or inspections is more
than repaid by increased productivity due to the presence of fewer faults when integration
is performed. Furthermore, code inspections have led to a reduction of up to 95 percent in
corrective maintenance costs [Crossman, 1982].
 Another reason why code inspections should be performed is that the alternative,
execution-based testing (test cases), can be extremely expensive in two ways. First, it is
time consuming. Second, inspections lead to detection and correction of faults earlier in the
life cycle than with execution-based testing. As refl ected in Figure 1.6, the earlier a fault
is detected and corrected, the less it costs. An extreme case of the high cost of running test
cases is that 80 percent of the budget for the software of the NASA Apollo program was
consumed by testing [Dunn, 1984].
 Further arguments in favor of walkthroughs and inspections are given in Section 15.15.

 15.15 Comparison of Unit-Testing Techniques
 A number of studies have compared strategies for unit testing. Myers [1978a] compared
black-box testing, a combination of black-box and glass-box testing, and three-person code
walkthroughs. The experiment was performed using 59 highly experienced programmers test-
ing the same product. All three techniques were equally effective in fi nding faults, but code
walkthroughs proved to be less cost effective than the other two techniques. Hwang [1981]

sch76183_ch15_498-550.indd 528sch76183_ch15_498-550.indd 528 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 529

compared black-box testing, glass-box testing, and code reading by one person. All three
techniques were found to be equally effective, with each technique having its own strengths
and weaknesses.
 A major experiment was conducted by Basili and Selby [1987]. The techniques com-
pared were the same as in Hwang’s experiment: black-box testing, glass-box testing, and
one-person code reading. The subjects were 32 professional programmers and 42 advanced
students. Each tested three products, using each testing technique once. Fractional facto-
rial design [Basili and Weiss, 1984] was used to compensate for the different ways the
products were tested by different participants; no participant tested the same product in
more than one way. Different results were obtained from the two groups of participants.
The professional programmers detected more faults with code reading than with the other
two techniques, and the fault detection rate was faster. Two groups of advanced students
participated. In one group, no signifi cant difference was found among the three techniques;
in the other, code reading and black-box testing were equally good and both outperformed
glass-box testing. However, the rate at which students detected faults was the same for all
techniques. Overall, code reading led to the detection of more interface faults than the other
two techniques, whereas black-box testing was most successful at fi nding control faults.
 In Basili and Selby’s experiment, code inspection was at least as successful at detecting
faults as glass-box and black-box testing. Most subsequent experiments have shown that
black-box testing and glass-box testing are more effi cient or more effective than inspections
[Runeson et al., 2006]. However, some studies have shown that test cases and inspections
tend to fi nd different kinds of faults. In other words, the two techniques are complementary,
and both need to be utilized on every software product.
 A development technique that makes use of this conclusion is the Cleanroom software
development technique.

 15.16 Cleanroom
 The Cleanroom technique [Linger, 1994] is a combination of a number of different soft-
ware development techniques, including an incremental life-cycle model, formal tech-
niques for analysis and design, and non-execution-based unit-testing techniques, such as
code reading [Mills, Dyer, and Linger, 1987] and code walkthroughs and inspections (Sec-
tion 15.14). A critical aspect of Cleanroom is that a code artifact is not compiled until it
has passed inspection. That is, a code artifact should be compiled only after non-execution-
based testing has been successfully completed.
 The technique has had a number of great successes. For example, a prototype auto-
mated documentation system was developed for the U.S. Naval Underwater Systems
Center using Cleanroom [Trammel, Binder, and Snyder, 1992]. Altogether 18 faults were
detected while the design underwent “functional verifi cation,” a review process in which
correctness-proving techniques are employed (Section 6.5). Informal proofs such as the
one presented in Section 6.5.1 were used as much as possible; full mathematical proofs
were developed only when participants were unsure of the correctness of the portion of the
design being inspected. Another 19 faults were detected during walkthroughs of the 1820
lines of FoxBASE code; when the code was then compiled, there were no compilation
errors. Furthermore, there were no failures at execution time. This is an additional indica-
tion of the power of non-execution-based testing techniques.

sch76183_ch15_498-550.indd 529sch76183_ch15_498-550.indd 529 07/06/10 11:43 AM07/06/10 11:43 AM

530 Part B The Workfl ows of the Software Life Cycle

 This certainly is an impressive result. But, as has been pointed out, results that apply
to small-scale software products cannot necessarily be scaled up to large-scale software.
In the case of Cleanroom, however, results for larger products also are impressive. The
relevant metric is the testing fault rate , that is, the total number of faults detected per
KLOC (thousand lines of code), a relatively common metric in the software industry. Yet,
there is a critical difference in the way this metric is computed when Cleanroom is used as
opposed to traditional development techniques.
 As pointed out in Section 6.6, when traditional development techniques are used, a
code artifact is tested informally by its programmer while it is being developed and there-
after it is tested methodically by the SQA group. Faults detected by the programmer while
developing the code are not recorded. However, from the time the artifact leaves the private
workspace of the programmer and is handed over to the SQA group for execution-based
and non-execution-based testing, a tally is kept of the number of faults detected. In con-
trast, when Cleanroom is used, “testing faults” are counted from the time of compilation.
Fault counting then continues through execution-based testing. In other words, when tradi-
tional development techniques are used, faults detected informally by the programmer do
not count toward the testing fault rate. When Cleanroom is used, faults detected during the
inspections and other non-execution-based testing procedures that precede compilation are
recorded, but they do not count toward the testing fault rate.
 A report on 17 Cleanroom products appears in [Linger, 1994]. For example, Cleanroom
was used to develop the 350,000-line Ericsson Telecom OS32 operating system. The prod-
uct was developed in 18 months by a team of 70. The testing fault rate was only 1.0 fault
per KLOC. Another product was the prototype automated documentation system described
previously; the testing fault rate was 0.0 faults per KLOC for the 1820-line program. The
17 products together total nearly 1 million lines of code. The weighted average testing fault
rate was 2.3 faults per KLOC, which Linger describes as a remarkable quality achievement.
That praise certainly is no exaggeration.

 15.17 Potential Problems When Testing Objects
 One of the many reasons put forward for using the object-oriented paradigm is that it
reduces the need for testing. Reuse via inheritance is a major strength of the paradigm;
once a class has been tested, the argument goes, there is no need to retest it. Furthermore,
new methods defi ned within a subclass of such a tested class have to be tested, but inherited
methods need no further testing.
 In fact, both claims are only partially true. In addition, the testing of objects poses cer-
tain problems that are specifi c to object orientation. These issues are discussed here.
 To begin, it is necessary to clarify an issue regarding the testing of classes and of objects.
As explained in Section 7.7, a class is an abstract data type that supports inheritance, and an
object is an instance of a class. That is, a class has no concrete realization, whereas an object
is a physical piece of code executing within a specifi c environment. Therefore, it is impos-
sible to perform execution-based testing on a class; only non-execution-based testing, such
as an inspection, can be done.
 Information hiding and the fact that many methods consist of relatively few lines of
code can have a signifi cant impact on testing. First, consider a product developed using the

sch76183_ch15_498-550.indd 530sch76183_ch15_498-550.indd 530 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 531

classical paradigm. Nowadays, such a product generally consists of modules of roughly 50
executable instructions. The interface between a module and the rest of the product is the
argument list. Arguments are of two kinds, input arguments supplied to the module when
it is invoked and output arguments returned by the module when it returns control to the
calling module. Testing a module consists of supplying values to the input arguments and
invoking the module and then comparing the values of the output arguments to the pre-
dicted results of the test.
 In contrast, a “typical” object contains perhaps 30 methods, many of which are rel-
atively small, frequently just two or three executable statements [Wilde, Matthews, and
Huitt, 1993]. These methods do not return a value to the caller but rather change the state
of the object. That is, these methods modify attributes (state variables) of the object. The
diffi culty here is that, to test that the change of state has been performed correctly, it is nec-
essary to send additional messages to the object. For example, consider the bank account
object described in Section 1.9. The effect of method deposit is to increase the value of
state variable accountBalance . However, as a consequence of information hiding, the only
way to test whether a particular deposit method has been executed correctly is to invoke
method determineBalance both before and after invoking method deposit and see how
the bank balance changes.
 The situation is worse if the object does not include methods that can be invoked to de-
termine the values of all the state variables. One alternative is to include additional methods
for this purpose, and then use conditional compilation to ensure that they are unavailable
except for testing purposes (in C++, this can be implemented using #ifdef). The test plan
(Section 9.6) should stipulate that the value of every state variable be accessible during
testing. To satisfy this requirement, additional methods that return the values of the state
variables may have to be added to the relevant classes during the design workfl ow. As a
result, it is possible to test the effect of invoking a specifi c method of an object by querying
the value of the applicable state variable.
 Surprisingly enough, an inherited method still may have to be tested. That is, even
if a method has been adequately tested, it may require thorough testing when inherited,
unchanged, by a subclass. To see this latter point, consider the class hierarchy shown in
 Figure 15.17 . Two methods are defi ned in the base class RootedTreeClass , namely,
 displayNodeContents and printRoutine , where method displayNodeContents uses
method printRoutine .
 Next consider subclass BinaryTreeClass . This subclass inherits method printRoutine
from its base class RootedTreeClass . In addition, a new method, displayNodeContents,
is defi ned that overrides the method defi ned in RootedTreeClass . This new method still
uses printRoutine. In Java notation, BinaryTreeClass.displayNodeContents uses
 RootedTreeClass.printRoutine .
 Now consider the subclass BalancedBinaryTreeClass . This subclass inherits
method displayNodeContents from its superclass BinaryTreeClass . However, a new
method printRoutine is defi ned that overrides the one defi ned in RootedTreeClass .
When displayNodeContents uses printRoutine within the context of Balanced-
BinaryTreeClass , the scope rules of C++ and Java specify that the local version of
 printRoutine is to be used. In Java notation, when method BinaryTreeClass.display-
NodeContents is invoked within the lexical scope of BalancedBinaryTreeClass , it
uses method BalancedBinaryTreeClass.printRoutine .

sch76183_ch15_498-550.indd 531sch76183_ch15_498-550.indd 531 07/06/10 11:43 AM07/06/10 11:43 AM

532 Part B The Workfl ows of the Software Life Cycle

 Therefore, the actual code (method printRoutine) executed when displayNodeContents
is invoked within instantiations of BinaryTreeClass is different from what is executed when
 displayNodeContents is invoked within instantiations of BalancedBinaryTreeClass .
This holds notwithstanding that the method displayNodeContents itself is inherited, un-
changed, by BalancedBinaryTreeClass from BinaryTreeClass . Therefore, even if
method displayNodeContents has been thoroughly tested within a BinaryTreeClass
object, it has to be retested from scratch when reused within a BalancedBinaryTreeClass
environment. To make matters even more complex, there are theoretical reasons why it needs
to be retested with different test cases [Perry and Kaiser, 1990].
 It must be pointed out immediately that these complications are no reason to abandon
the object-oriented paradigm. First, they arise only through the interaction of methods (dis-
playNodeContents and printRoutine in the example). Second, it is possible to determine
when this retesting is needed [Harrold, McGregor, and Fitzpatrick, 1992].
 Suppose an instantiation of a class has been thoroughly tested. Any new or redefi ned
methods of a subclass then need to be tested, together with methods fl agged for retesting

 FIGURE 15.17
 A Java
implementation
of a tree
hierarchy.

 class RootedTreeClass
{
 …
 void displayNodeContents (Node a);
 void printRoutine (Node b);
//
// method displayNodeContents uses method printRoutine
//
 …
}

 class BinaryTreeClass extends RootedTreeClass
{
 …
 void displayNodeContents (Node a);
//
// method displayNodeContents defi ned in this class uses
// method printRoutine inherited from ClassRootedTree
//
 …
}

 class BalancedBinaryTreeClass extends BinaryTreeClass
{
 …
 void printRoutine (Node b);
//
// method displayNodeContents (inherited from BinaryTreeClass) uses this
// local version of printRoutine within class BalancedBinaryTreeClass
//
 …
}

sch76183_ch15_498-550.indd 532sch76183_ch15_498-550.indd 532 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 533

because of their interaction with other methods. In short, then, the claim that use of the
object-oriented paradigm reduces the need for testing largely is true.
 Some management implications of unit testing now are considered.

 15.18 Management Aspects of Unit Testing
 An important decision that must be made during the development of every code artifact
is how much time, and therefore money, to spend on testing that artifact. As with so many
other economic issues in software engineering, cost–benefi t analysis (Section 5.2) can play
a useful role. For example, the decision as to whether the cost of correctness proving ex-
ceeds the benefi t of the assurance that a specifi c product satisfi es its specifi cations can be
decided on the basis of cost–benefi t analysis. Cost–benefi t analysis also can be used to
compare the cost of running additional test cases against the cost of failure of the delivered
product caused by inadequate testing.
 There is another approach for determining whether testing of a specifi c code artifact should
continue or whether it is likely that virtually all the faults have been removed. The techniques
of reliability analysis can be used to provide statistical estimates of how many faults remain.
A variety of different techniques have been proposed for determining statistical estimates of
the number of remaining faults. The basic idea underlying these techniques is the following:
Suppose a code artifact is tested for 1 week. On Monday, 23 faults are found and seven more
are found on Tuesday. On Wednesday, fi ve more faults are found, two on Thursday, and none
on Friday. Because the rate of fault detection decreases steadily from 23 faults per day to
none, it seems likely that most faults have been found, and testing of that code artifact could
be halted. Determining the probability that there are no more faults in the code requires a
level of mathematical statistics beyond that required for readers of this book. Details therefore
are not given here; the reader interested in reliability analysis should consult Grady [1992].

 15.19 When to Reimplement Rather
than Debug a Code Artifact

 When a member of the SQA group detects a failure (erroneous output), as stated previously,
the code artifact must be returned to the original programmer for debugging , that is, detec-
tion of the fault and correction of the code. On some occasions, it is preferable for the code
artifact to be thrown away and redesigned and recoded from scratch, either by the original
programmer or by another, possibly more senior, member of the development team.
 To see why this may be necessary, consider Figure 15.18 . The graph shows the coun-
terintuitive concept that the probability of the existence of more faults in a code artifact is
proportional to the number of faults already found in that code artifact [Myers, 1979]. To
see why this should be so, consider two code artifacts, a1 and a2 . Suppose that both code
artifacts are approximately the same length and both have been tested for the same number
of hours. Suppose further that only 2 faults were detected in a1 , but 48 faults were detected
in a2 . It is likely that more faults remain to be rooted out of a2 than out of a1 . Furthermore,
additional testing and debugging of a2 is likely to be a lengthy process, and the suspicion
that a2 is still not perfect will remain. In both the short run and the long run, it is preferable
to discard a2 , redesign it, and then recode it.

sch76183_ch15_498-550.indd 533sch76183_ch15_498-550.indd 533 07/06/10 11:43 AM07/06/10 11:43 AM

534 Part B The Workfl ows of the Software Life Cycle

 The distribution of faults in modules certainly is not uniform. Myers [1979] cites the
example of faults found by users in OS/370. It was found that 47 percent of the faults were
associated with only 4 percent of the modules. Current research shows that the nonuniform
distribution of faults in modules has continued. For example, Andersson and Runeson [2007]
examined three telecommunications products that were developed using the iterative-and-
incremental model. For the fi rst project, they found that 20 percent of the modules contained
63 percent of the faults; for the second and third projects, 20 percent of the modules contained
70 percent of the faults.
 An earlier study by Endres [1975] regarding internal tests of DOS/VS (Release 28) at
IBM Laboratories, Böblingen, Germany, showed similar nonuniformity. Of the total of 512
faults detected in 202 modules, only 1 fault was detected in each of 112 of the modules. On
the other hand, some modules were found to have 14, 15, 19, and 28 faults, respectively.
Endres points out that the latter three modules were three of the largest modules in the
product, each comprising over 3000 lines of DOS macro assembler language. However, the
module with 14 faults was a relatively small module previously known to be very unstable.
This type of module is a prime candidate for being discarded and recoded.
 The way for management to cope with this sort of situation is to predetermine the
maximum number of faults permitted during development of a given code artifact; when
that maximum is reached, the code artifact must be thrown away and then redesigned
and recoded, preferably by an experienced software professional. This maximum varies
from application domain to application domain and from code artifact to code artifact.
After all, the maximum permitted number of faults detected in a code artifact that reads
a record from a database and checks the validity of the part number should be far smaller
than the number of faults in a complex code artifact from a tank weapons control system
that must coordinate data from a variety of sensors and direct the aim of the main gun
toward the intended target. One way to decide on the maximum fault fi gure for a specifi c
code artifact is to examine fault data on similar code artifacts that have required corrective
maintenance. But, whatever estimation technique is used, management must ensure that
the code artifact is scrapped if that fi gure is exceeded (but see Just in Case You Wanted to
Know Box 15.7).

 FIGURE 15.18
 Graph showing
that the
probability that
faults are still
to be found is
proportional to
the number of
faults already
detected.

Number of faults already found

Probability
of existence
of additional

faults

0

1

sch76183_ch15_498-550.indd 534sch76183_ch15_498-550.indd 534 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 535

 15.20 Integration Testing
 Each new code artifact must be tested when it is added to what has already been integrated;
this is termed integration testing . The key point here is fi rst to test the new code artifact as
described in Sections 15.10 through 15.14 (unit testing) and then to check that the rest of the
partial product continues to behave as it did before the new code artifact was integrated into it.
 When the product has a graphical user interface, special issues can arise with regard
to integration testing. In general, testing a product usually can be simplifi ed by storing
the input data for a test case in a fi le. The product then is executed, and the relevant data
submitted to it. With the aid of a CASE tool, the whole process can be automated; that is, a
set of test cases is set up, together with the expected outcome of each case. The CASE tool
runs each test case, compares the actual results with the expected results, and reports to the
user on each case. The test cases then are stored for use in regression testing whenever the
product is modifi ed. SilkTest is an example of a tool of this kind.
 However, when a product incorporates a graphical user interface, this approach does not
work. Specifi cally, test data for pulling down a menu or clicking on a mouse button cannot be
stored in a fi le in the same way as conventional test data. At the same time, it is time consum-
ing and boring to test a GUI manually. The solution to this problem is to use a special CASE
tool that keeps a record of mouse clicks, key presses, and so on. The GUI is tested once manu-
ally so that the CASE tool can set up the test fi le. Thereafter, this fi le is used in subsequent
tests. A number of CASE tools support testing GUIs, including QARun and XRunner.
 When the integration process is complete, the product as a whole is tested; this is termed
 product testing . When the developers are confi dent about the correctness of every aspect
of the product, it is handed over to the client for acceptance testing . These two forms of
testing are now described in more detail.

 15.21 Product Testing
 The fact that the last code artifact has been integrated successfully into the product does not
mean that the task of the developers is complete. The SQA group still must perform a number
of testing tasks to ascertain that the product will be successful. There are two main types of
software, commercial off-the-shelf (COTS) software (Section 1.11) and custom software. The
aim of COTS product testing is to ensure that the product as a whole is free of faults. When
the product testing is complete, the product undergoes alpha and beta testing, as described in
Section 3.7. That is, preliminary versions are shipped to selected prospective buyers of the
product to get feedback, particularly regarding residual faults overlooked by the SQA team.
 Custom software, on the other hand, undergoes somewhat different product testing. The
SQA group performs a number of testing tasks to be certain that the product will not fail its
acceptance test, the fi nal hurdle that the custom software development team must overcome.

 Just in Case You Wanted to Know Box 15.7
 The discussion regarding the maximum permitted number of faults detected during devel-
opment of a code artifact means precisely that: the maximum number permitted during de-
velopment . The maximum permitted number of faults detected after the product has been
delivered to the client should be zero for all code artifacts of all products. That is, it should
be the aim of every software engineer to deliver fault-free code to the client.

sch76183_ch15_498-550.indd 535sch76183_ch15_498-550.indd 535 07/06/10 11:43 AM07/06/10 11:43 AM

536 Part B The Workfl ows of the Software Life Cycle

The failure of a product to pass its acceptance test almost always is a poor refl ection on the
management capabilities of the development organization. The client may conclude that the
developers are incompetent, which all but guarantees that the client will do everything to
avoid employing those developers again. Worse, the client may believe that the developers
are dishonest and deliberately handed over substandard software to fi nish the contract and
be paid as quickly as possible. If the client genuinely believes this and tells other potential
clients, then the developers face a major public relations problem. It is up to the SQA group
to make sure the product passes the acceptance test with fl ying colors.
 To ensure a successful acceptance test, the SQA group must test the product using tests
that the SQA group believes closely approximate the forthcoming acceptance tests:

 • Black-box test cases for the product as a whole must be run. Up to now, test cases have
been set up on an artifact-by-artifact or class-by-class basis, ensuring that each code
artifact or class individually satisfi es its specifi cations.

• The robustness of the product as a whole must be tested. Again, the robustness of individ-
ual code artifacts and classes was tested during integration; now productwide robustness
is the issue for which test cases must be set up and run. In addition, the product must be
subjected to stress testing , that is, making sure that it behaves correctly when operat-
ing under a peak load, such as all terminals trying to log on at the same time or customers
operating all the automated teller machines simultaneously. The product also must be sub-
jected to volume testing , for example, making sure that it can handle large input fi les.

• The SQA group must check that the product satisfi es all its constraints. For example, if
the specifi cations state that the response time for 95 percent of queries when the product
is working under full load must be under 3 seconds, then it is the responsibility of the
SQA group to verify that this indeed is the case. There is no question that the client will
check constraints during acceptance testing; and if the product fails to meet a major con-
straint, then the development organization will lose a considerable amount of credibility.
Similarly, storage constraints and security constraints must be checked.

• The SQA group must review all documentation to be handed over to the client together
with the code. The SQA group must check that the documentation conforms to the stan-
dards laid down in the SPMP. In addition, the documentation must be checked against
the product. For instance, the SQA group has to determine that the user manual indeed
refl ects the correct way of using the product and that the product functions as specifi ed
in the user manual.

 Once the SQA group assures management that the product can handle anything the
acceptance testers can throw at it, the product (that is, the code plus all the documentation)
is handed to the client organization for acceptance testing.

 15.22 Acceptance Testing
 The purpose of acceptance testing is for the client to determine whether the product in-
deed satisfi es its specifi cations as claimed by the developer. Acceptance testing is done by
either the client organization, the SQA group in the presence of client representatives, or
an independent SQA group hired by the client for this purpose. Acceptance testing natu-
rally includes correctness testing, but in addition, it is necessary to test performance and

sch76183_ch15_498-550.indd 536sch76183_ch15_498-550.indd 536 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 537

robustness. The four major components of acceptance testing—testing correctness, robust-
ness, performance, and documentation—are exactly what is done by the developer during
product testing; this is not surprising, because product testing is a comprehensive rehearsal
for the acceptance test.
 A key aspect of acceptance testing is that it must be performed on actual data rather
than on test data. No matter how well test cases are set up, by their very nature, they are
artifi cial. More important, test data should be a true refl ection of the corresponding actual
data, but in practice, this is not always the case. For example, the member of the specifi ca-
tion team responsible for characterizing the actual data may perform this task incorrectly.
Alternatively, even if the data are specifi ed correctly, the SQA group member who uses
that data specifi cation may misunderstand or misinterpret it. The resulting test cases are
not a true refl ection of the actual data, leading to an inadequately tested product. For these
reasons, acceptance testing must be performed on actual data. Furthermore, because the
development team endeavors to ensure that the product testing duplicates every aspect of
the acceptance testing, as much of the product testing as possible should also be performed
on actual data.
 When a new product is to replace an existing one, the specifi cation document almost
always includes a clause to the effect that the new product must be installed to run in par-
allel with the existing product. The reason is that there is a very real possibility that the
new product may be faulty in some way. The existing product works correctly but is inad-
equate in some respects. If the existing product is replaced by a new product that works
incorrectly, then the client is in trouble. Therefore, both products must run in parallel until
the client is satisfi ed that the new product can take over the functions of the existing prod-
uct. Successful parallel running concludes acceptance testing, and the existing product
can be retired.
 When the product has passed its acceptance test, the task of the developers is complete.
Any changes now made to that product constitute postdelivery maintenance.

 The Test Workfl ow: The MSG Foundation
Case Study
 The C++ and Java implementations of the MSG Foundation product (available for
download at www.mhhe.com/Schach) were tested against the black-box test cases
of Figure 15.13 and 15.14 , as well as the glass-box test cases of Problems 15.35
through 15.39.

 15.24 CASE Tools for Implementation
 CASE tools to support implementation of code artifacts were described in some detail in
 Chapter 5 . For integration, version-control tools, build tools, and confi guration manage-
ment tools are needed (Chapter 5). The reason is that code artifacts under test change

Case Study
15.2315.23

sch76183_ch15_498-550.indd 537sch76183_ch15_498-550.indd 537 07/06/10 11:43 AM07/06/10 11:43 AM

www.mhhe.com/Schach

538 Part B The Workfl ows of the Software Life Cycle

continually as a consequence of faults being detected and corrected, and these CASE tools
are essential to ensure that the appropriate version of each artifact is compiled and linked.
Commercially available confi guration-control workbenches include PVCS and SourceSafe.
Popular open-source confi guration-control tools include CVS and Subversion.
 In each chapter so far, CASE tools and workbenches specifi c to that workfl ow have been
described. Now that all workfl ows of the development process have been described, it is
appropriate to consider CASE tools for the process as a whole.

 15.24.1 CASE Tools for the Complete Software Process
 There is a natural progression within CASE. As described in Section 5.7, the simplest CASE
device is a single tool , such as an online interface checker or a build tool. Next, tools can be
combined, leading to a workbench that supports one or two activities within the software
process, such as confi guration control or coding. However, such a workbench might not pro-
vide management information even for the limited portion of the software process to which
it is applicable, let alone for the project as a whole. Finally, an environment provides
computer-aided support for most, if not all of, the process.
 Ideally, every software development organization should utilize an environment. But
the cost of an environment can be large—not just the package itself but the hardware on
which to run it. For a smaller organization, a workbench, or perhaps just a set of tools, may
suffi ce. But, if at all possible, an integrated environment should be utilized to support
the development and maintenance effort.

 15.24.2 Integrated Development Environments
 The most common meaning of the word integrated within the CASE context is in terms
of user interface integration . That is, all the tools in the environment share a common
user interface. The idea behind this is that, if all the tools have the same visual appearance,
the user of one tool should have little diffi culty in learning and using another tool in the en-
vironment. This has been successfully achieved on the Macintosh, where most applications
have a similar “look and feel.” Although this is the usual meaning, there are other types of
integration as well.
 The term tool integration means that all the tools communicate via the same data
format. For example, in the UNIX Programmer’s Workbench, the UNIX pipe formalism
assumes that all data are in the form of an ASCII stream. It therefore is easy to combine
two tools by directing the output stream from one tool to the input stream of the other tool.
Eclipse is an open-source environment for tool integration.
 Process integration refers to an environment that supports one specifi c software
process. A subset of this class of environment is the technique-based environment
(but see Just in Case You Wanted to Know Box 15.8). An environment of this type sup-
ports only a specifi c technique for developing software, rather than a complete process.
Environments exist for a variety of the techniques discussed in this book, such as Gane
and Sarsen’s structured systems analysis (Section 12.3), Jackson system development
(Section 14.5), and Petri nets (Section 12.8). The majority of these environments pro-
vide graphical support for analysis and design and incorporate a data dictionary. Some
consistency checking usually is provided. Support for managing the development pro-
cess frequently is incorporated into the environment. Many environments of this type are

sch76183_ch15_498-550.indd 538sch76183_ch15_498-550.indd 538 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 539

commercially available, including Analyst/Designer and Rhapsody. Analyst/Designer is
specifi c to Yourdon’s methodology [Yourdon, 1989], and Rhapsody supports Statecharts
[Harel et al., 1990]. With regard to object-oriented methodologies, IBM Rational Rose
supports the Unifi ed Process [Jacobson, Booch, and Rumbaugh, 1999]. In addition, some
older environments have been extended to support the object-oriented paradigm; Software
through Pictures is an example of this type. Almost all object-oriented environments now
support UML.
 The emphasis in most technique-based environments is on the support and formaliza-
tion of the manual operations for software development laid down by the technique. That
is, these environments force users to utilize the technique step by step in the way intended
by its author, while assisting the user by providing graphical tools, a data dictionary, and
consistency checking. This computerized framework is a strength of technique-based envi-
ronments in that users are forced to use a specifi c technique and use it correctly. But it can
be a weakness as well. Unless the software process of the organization incorporates this
specifi c technique, use of a technique-based environment can be counterproductive.

 15.24.3 Environments for Business Applications
 An important class of environments is used for building business-oriented products. The
emphasis is on ease of use, achieved in a number of ways. In particular, the environment
incorporates a number of standard screens, and these can be modifi ed endlessly via a user-
friendly GUI generator. One popular feature of such environments is a code generator. The
lowest level of abstraction of a product then is the detailed design. The detailed design is
the input to a code generator that automatically generates code in a language such as C,
C++, or Java. This automatically generated code is compiled; no “programming” of any
kind is performed on it.
 Languages for specifying the detailed design could well be the programming languages
of the future. The level of abstraction of programming languages rose from the physical
machine level of fi rst- and second-generation languages to the abstract machine level of
third- and fourth-generation languages. Today, the level of abstraction of environments of
this type is the detailed design level, a portable level. Section 15.2 stated that one objec-
tive in using a fourth-generation language is shorter code, and hence quicker development
and easier postdelivery maintenance. The use of code generators takes these goals even
further, in that the programmer has to provide fewer details to a code generator than to an

 In the literature, technique-based environments usually are called method-based
environment s. The rise of the object-oriented paradigm gave the word method a second
meaning (in the software engineering context). The original meaning was a technique or an
approach; this is how the word is used in the phrase method-based environment . The object-
oriented meaning is an operation within an object or class. Unfortunately, it sometimes is
not totally clear from the context which meaning is intended.
 Accordingly, I have used the word method exclusively within the context of the
object-oriented paradigm. Otherwise, I have employed the term technique or approach . For
example, that is why the term formal method never appears in Chapter 12 . Instead, I use
the term formal technique . Similarly, in this chapter, I have used the term technique-based
environments .

 Just in Case You Wanted to Know Box 15.8

sch76183_ch15_498-550.indd 539sch76183_ch15_498-550.indd 539 10/06/10 2:27 PM10/06/10 2:27 PM

540 Part B The Workfl ows of the Software Life Cycle

interpreter or compiler for a 4GL. Therefore, it is expected that use of business-oriented
environments that support code generators will increase productivity.
 A number of environments of this type are currently available, including Oracle Developer
Suite. Bearing in mind the size of the market for business-oriented CASE environments, it is
likely that many more environments of this type will be developed in future years.

 15.24.4 Public Tool Infrastructures
 The European Strategic Programme for Research in Information Technology (ESPRIT)
developed an infrastructure for supporting CASE tools. Despite its name, the portable
common tool environment (PCTE) [Long and Morris, 1993] is not an environment.
Instead, it is an infrastructure that provides the services needed by CASE tools, in much the
same way that UNIX provides the operating system services needed by user products. (The
word common in PCTE is in the sense of “public” or “not copyrighted.”)
 PCTE has gained widespread acceptance. For example, PCTE and the C and Ada in-
terfaces to PCTE were adopted as ISO/IEC Standard 13719 in 1995. Implementations of
PCTE include those of Emeraude and IBM.
 The hope is that, in the future, many more CASE tools will conform to the PCTE stan-
dard and that PCTE itself will be implemented on a wider variety of computers. A tool
that conforms to PCTE would run on any computer that supports PCTE. Accordingly, this
should result in the widespread availability of a broad range of CASE tools. This, in turn,
should lead to better software processes and better-quality software.

 15.24.5 Potential Problems with Environments
 No one environment is ideal for all products and all organizations, any more than one
programming language can be considered “the best.” Every environment has its strengths
and its weaknesses, and choosing an inappropriate environment can be worse than using no
environment at all. For example, as explained in Section 15.24.2, a technique-based envi-
ronment essentially automates a manual process. If an organization chooses to use an envi-
ronment that enforces a technique inappropriate for it as a whole or for a current software
product under development, then use of that CASE environment is counterproductive.
 A worse situation occurs when an organization chooses to ignore the advice of
Section 5.12, that the use of a CASE environment should be fi rmly avoided until the
organization has attained CMM level 3. Of course, every organization should use CASE
tools, and there generally is little harm in using a workbench. However, an environment
imposes an automated software process on an organization that uses it. If a good process
is being used, that is, the organization is at level 3 or higher, then use of the environment
assists in all aspects of software production by automating that process. But, if the organi-
zation is at the crisis-driven level 1 or even at level 2, then no process as such is in place.
Automation of this nonexistent process, that is, the introduction of a CASE environment
(as opposed to a CASE tool or CASE workbench), can lead only to chaos.

 15.25 CASE Tools for the Test Workfl ow
 Numerous CASE tools are available to support the different types of testing that are performed
during the implementation workfl ow. First consider unit testing. The XUnit testing frame-
works, including JUnit for Java and CppUnit for C++, are a set of open-source automated

sch76183_ch15_498-550.indd 540sch76183_ch15_498-550.indd 540 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 541

tools for unit testing; that is, they are utilized to test each class in turn. A set of test cases
is prepared, and the tool checks that each of the messages sent to the class results in the
expected answer being returned. Commercial tools of this type are produced by many ven-
dors, including Parasoft.
 We now turn to integration testing. Examples of commercial tools that support auto-
mated integration testing (as well as unit testing) include SilkTest and IBM Rational Func-
tional Tester. It is common for tools of this kind to pool the unit-testing test cases and utilize
the resulting set of test cases for integration testing and regression testing.
 During the test workfl ow, it is essential for management to know the status of all defects.
In particular, it is vital to know which defects have been detected but have not yet been cor-
rected. The best-known defect-tracking tool is Bugzilla, an open-source product.
 Returning to Figure 1.6 yet again, it is vital to detect coding faults as soon as possible.
One way to achieve this is to use a CASE tool to analyze the code, looking for common
syntactic and semantic faults, or constructs that could lead to problems later. Examples of
such tools include lint (for C—see Section 8.11.4), IBM Rational Purify, Sun’s Jackpot
Source Code Metrics, and three Microsoft tools: PREfi x, PREfast, and SLAM.
 The Hyades project (otherwise known as the Eclipse test and performance tools proj-
ect) is an open-source integrated test, trace, and monitoring environment that currently
can be used with Java and C++. It has facilities for a variety of different testing tools. As
more and more tool vendors adapt their tools to work under Eclipse, users will be able
to select from a wider choice of testing tools, all of which will work in conjunction with
one another.

 15.26 Metrics for the Implementation Workfl ow
 A number of different complexity metrics for the implementation workfl ow are discussed
in Section 15.13.2, including lines of code and McCabe’s cyclomatic complexity.
 From a testing viewpoint, the relevant metrics include the total number of test cases and
the number of test cases that resulted in a failure. The usual fault statistics must be main-
tained for code inspections. The total number of faults is important, because if the number
of faults detected in a code artifact exceeds a predetermined maximum, then that code
artifact must be redesigned and recoded, as discussed in Section 15.19. In addition, detailed
statistics need to be kept regarding the types of faults detected. Typical fault types include
misunderstanding the design, lack of initialization, and inconsistent use of variables. The
fault data can be incorporated into the checklists to be used during code inspections of
future products.
 A number of metrics specifi c to the object-oriented paradigm have been put forward,
for example, the height of the inheritance tree [Chidamber and Kemerer, 1994]. Many of
these metrics have been questioned on both theoretical and experimental grounds [Binkley
and Schach, 1996; 1997]. Furthermore, Alshayeb and Li [2003] have shown that, whereas
object-oriented metrics can relatively accurately predict the number of lines of code added,
changed, and deleted in agile processes, they are of little use in predicting the same mea-
sures in a framework–based process (see Section 8.5.2). It remains to be shown that there is
a need for specifi cally object-oriented metrics, as opposed to classical metrics that can be
applied equally to object-oriented software.

sch76183_ch15_498-550.indd 541sch76183_ch15_498-550.indd 541 07/06/10 11:43 AM07/06/10 11:43 AM

542 Part B The Workfl ows of the Software Life Cycle

 15.27 Challenges of the Implementation Workfl ow
 Paradoxically, a major challenge of the implementation workfl ow has to be met in the
workfl ows that precede it. As explained in Chapter 8 , code reuse is an effective way of
reducing software development cost and delivery time. However, it is hard to achieve code
reuse if it is attempted as late as the implementation workfl ow.
 For example, suppose the decision is made to implement a product in language L . Now,
after half the code artifacts have been implemented and tested, management decides to
utilize package P for the graphical user interfaces of the software product. No matter how
powerful the routines of P may be, if they are implemented in a language that is hard to
interface with L, then they cannot be reused in the software product.
 Even if language interoperability is not an issue, there is little point in trying to reuse
an existing code artifact unless the item to be reused fi ts the design exactly. More work
may be needed to modify the existing code artifact than to create a new code artifact from
scratch.
 Code reuse therefore has to be built into a software product from the very beginning.
Reuse has to be a user requirement as well as a constraint of the specifi cation document.
The software project management plan (Section 9.4) must incorporate reuse. Also, the
design document must state which code artifacts are to be implemented and which are to
be reused.
 So, as stated at the beginning of this section, even though code reuse is an important
challenge of implementation, code reuse has to be incorporated into the requirements, anal-
ysis, and design workfl ows.
 From a purely technical viewpoint, the implementation workfl ow is relatively straight-
forward. If the requirements, analysis, and design workfl ows were carried out satisfactorily,
the task of implementation should pose few problems to competent programmers. However,
management of integration is of critical importance; the challenges of the implementation
workfl ow are to be found in this area.
 Typical make-or-break issues include use of the appropriate CASE tools (Section
15.24), test planning once the specifi cations have been signed off on by the client (Sec-
tion 9.6), ensuring that changes to the design are communicated to all relevant personnel
(Section 15.6.5), and deciding when to stop testing and deliver the product to the client
(Section 6.1.2).

 Chapter
Review

 This chapter presents various issues relating to the implementation of a product by a team. These include
choice of programming language (Section 15.1). The issue of fourth-generation languages is discussed
in some detail in Section 15.2. Good programming practice is described in Section 15.3, and the need
for practical coding standards is presented in Section 15.4. Then, comments are made regarding code
reuse (Section 15.5). Implementation and integration activities must be carried out in parallel (Section
15.6). Top-down, bottom-up, and sandwich integration are described and compared (Sections 15.6.1
through 15.6.3). Integration of object-oriented products is discussed in Section 15.6.4, and management
of integration in Section 15.6.5. The implementation workfl ow is presented in Section 15.7 and applied
to the MSG Foundation case study in Section 15.8. Next, implementation aspects of the test workfl ow
are presented (Section 15.9). Test cases must be selected systematically (Section 15.10). Various black-
box, glass-box, and non-execution-based unit-testing techniques are described (Sections 15.11, 15.13,
and 15.14, respectively) and then compared (Section 15.15). Black-box testing of the MSG Foundation

sch76183_ch15_498-550.indd 542sch76183_ch15_498-550.indd 542 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 543

case study is presented in Section 15.12. The Cleanroom technique is described in Section 15.16. Test-
ing objects is discussed in Section 15.17, followed by a discussion of the managerial implications of
unit testing (Section 15.18). Another problem is when to reimplement rather than debug a code artifact
(Section 15.19). Integration testing is described in Section 15.20, product testing in Section 15.21, and
acceptance testing in Section 15.22. The test workfl ow for the MSG Foundation case study is outlined
in Section 15.23. CASE tools for the implementation workfl ow are described in Section 15.24. In more
detail, CASE tools for the complete process are discussed in Section 15.24.1 and integrated develop-
ment environments in Section 15.24.2. Environments for business applications are presented in Section
15.24.3. Section 15.24.4 is devoted to public tool infrastructures. Next, potential problems with environ-
ments are discussed (Section 15.24.5). Now CASE tools for the test workfl ow are described (Section
15.25). Metrics for the implementation workfl ow are discussed in Section 15.26. The chapter concludes
with an analysis of the challenges of the implementation workfl ow (Section 15.27).
 An overview of the MSG Foundation case study for Chapter 15 appears in Figure 15.19 .

 FIGURE 15.19
 Overview
of the MSG
Foundation
case study for
 Chapter 15 .

 For
Further
Reading

 The attitudes of 43 organizations to 4GLs are reported in [Guimaraes, 1985]. Klepper and Bock
[1995] describes how McDonnell Douglas obtained higher productivity with 4GLs than with 3GLs.
Some of the dangers of end-user programming are presented in [Harrison, 2004]. A wide variety of
papers on end-user programming appear in the November 2004 issue of the Communications of the
ACM . Localization techniques to assist end users in debugging spreadsheets are described in [Ruthruff,
Burnett, and Rothermel, 2006].
 Excellent books on good programming practice include [Kernighan and Plauger, 1974] and [Mc-
Connell, 1993].
 Probably the most important early work on execution-based testing is [Myers, 1979]. A compre-
hensive source of information on testing in general is [Beizer, 1990]. Functional testing is described in
[Howden, 1987]. Black-box testing is described in detail in [Beizer, 1995]. The design of black-box
test cases is presented in [Yamaura, 1998]. The relationship between the various coverage measures
of structural testing and software quality is discussed in [Horgan, London, and Lyu, 1994]. A formal
approach to glass-box testing is described in [Stocks and Carrington, 1996]. Elbaum, Malishevsky,
and Rothermel [2002] discuss setting test case priorities. Generation of synthetic workloads for stress
testing is presented in [Krishnamurthy, Rolia, and Majumdar, 2006]. A comprehensive list of unit-
testing strategies appears in [Juristo, Moreno, Vegas, and Solari, 2006]. Geographically and tempo-
rally distributed code reviews are presented in [Meyer, 2008].
 Cleanroom is described in [Linger, 1994]. The use of Cleanroom during postdelivery mainte-
nance is presented in [Sherer, Kouchakdjian, and Arnold, 1996]. A criticism of Cleanroom is given in
[Beizer, 1997].
 A good introduction to software reliability is [Musa and Everett, 1990]. In addition, the proceed-
ings of the annual International Symposium on Software Reliability Engineering contain a wide
variety of articles on software reliability.
 The proceedings of the International Symposia on Software Testing and Analysis cover a particu-
larly broad range of testing issues.
 A survey of different approaches to the testing of objects can be found in [Turner, 1994]. Two impor-
tant papers on the subject are [Perry and Kaiser, 1990] and [Harrold, McGregor, and Fitzpatrick, 1992].

 Implementation workfl ow Section 15.8, Appendix H, Appendix I

 Black-box test cases Section 15.12

 Test workfl ow Section 15.23

sch76183_ch15_498-550.indd 543sch76183_ch15_498-550.indd 543 07/06/10 11:43 AM07/06/10 11:43 AM

544 Part B The Workfl ows of the Software Life Cycle

[Beizer, 1995], mentioned previously, also covers black-box testing of object-oriented software. With
regard to the object-oriented paradigm, Jorgensen and Erickson [1994] describe the integration testing
of object-oriented software.
 With regard to metrics for implementation, McCabe’s cyclomatic complexity was fi rst presented
in [McCabe, 1976]. Extensions of the metric to design appear in [McCabe and Butler, 1989]. Articles
questioning the validity of cyclomatic complexity include [Shepperd and Ince, 1994]. The validity
of object-oriented metrics is discussed in [Alshayeb and Li, 2003]. The relative inability of object-
oriented metrics to detect high-impact faults is described in [Zhou and Leung, 2006].
 Selection of test data for integration testing appears in [Harrold and Soffa, 1991]. The generation
of test cases for testing GUIs is described in [Memon, Pollack, and Soffa, 2001].
 Every 2 or 3 years, ACM SIGSOFT and SIGPLAN sponsor a Symposium on Practical Software
Development Environments. The proceedings provide information on a broad spectrum of toolkits and
environments. Also useful are the proceedings of the annual International Workshops on Computer-
Aided Software Engineering.
 With regard to PCTE, [Long and Morris, 1993] contains a number of information sources on
that topic.

 Key Terms acceptance testing 535
 all-defi nition-use-path

coverage 526
 behavioral testing 517
 black-box testing 517
 bottom-up integration 513
 boundary value analysis 521
 branch coverage 526
 Cleanroom 529
 code artifact 516
 coding standards 509
 complexity 527
 component 516
 consistent variable names 504
 cyclomatic complexity 527
 data-driven testing 517
 debugging 533
 defensive programming 512
 driver 511
 end-user programming 503
 environment 538
 equivalence class 521
 execution-based testing 516
 fi rst-generation language 501
 fourth-generation language

(4GL) 501
 functional analysis 523
 functional testing 517
 glass-box testing 517

 good programming
practice 504

 Hungarian Naming
Conventions 505

 implementation workfl ow 516
 input/output-driven testing 517
 integrated environment 538
 integration 510
 integration testing 535
 linear code sequences 526
 logic artifact 511
 logic-driven testing 517
 meaningful variable

names 504
 method-based

environment 539
 non-execution-based

testing 516
 nonprocedural 502
 operational artifact 511
 path coverage 526
 path-oriented testing 517
 portable common tool

environment (PCTE) 540
 procedural 502
 process integration 538
 product testing 535
 programming-in-the-many 498
 prologue comments 506

 reliable 520
 sandwich integration 514
 second-generation

language 501
 self-documenting code 505
 statement coverage 526
 static method 515
 stress testing 536
 structural test 526
 structural testing 517
 structured testing 528
 stub 510
 technique-based

environment 538
 test case selection 527
 testing fault rate 530
 testing to code 517
 testing to specifi cations 517
 third-generation

language 501
 tool 538
 tool integration 538
 top-down integration 511
 user interface integration 538
 valid 520
 unit testing 516
 volume testing 536
 white-box testing 517
 workbench 538

sch76183_ch15_498-550.indd 544sch76183_ch15_498-550.indd 544 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 545

 15.1 Your instructor has asked you to implement the Chocoholics Anonymous product (Appendix A).
Which language would you choose for implementing the product, and why? Of the various
languages available to you, list their benefi ts and their costs. Do not attempt to attach dollar
values to your answers.

 15.2 Repeat Problem 15.1 for the elevator problem (Section 12.7.1).

 15.3 Repeat Problem 15.1 for the automated library circulation system (Problem 8.7).

 15.4 Repeat Problem 15.1 for the product that determines whether a bank statement is correct
(Problem 8.8).

 15.5 Repeat Problem 15.1 for the automated teller machine (Problem 8.9).

 15.6 Add prologue comments to a code artifact that you have recently implemented.

 15.7 How do coding standards for a one-person software production company differ from those in
organizations with 300 software professionals?

 15.8 How do coding standards for a software company that develops and maintains software for
intensive-care units differ from those in an organization that develops and maintains account-
ing products?

 15.9 Consider the statement

 < condition 1> && < condition 2>

 As stated at the end of Section 15.3, in Java and C++ the semantics of the && operator are
such that if < condition 1> is false, then < condition 2> is not evaluated. What is the technical
term for this?

 15.10 Consider the statement

 < condition 1> and < condition 2>

 In what programming languages is < condition 2> evaluated even if < condition 1> is false?

 15.11 Why does deep nesting of if -statements frequently lead to code that can be diffi cult to read?

 15.12 Why has it been suggested that modules ideally should consist of between 35 and 50 state-
ments?

 15.13 Why should backward goto statements be avoided, whereas a forward goto may be used for
error handling?

 15.14 Set up black-box test cases for Naur’s text-processing problem (Section 6.5.2). For each test
case, state what is being tested and the expected outcome of that test case.

 15.15 Using your solution to Problem 6.14 (or code distributed by your instructor), set up statement
coverage test cases. For each test case, state what is being tested and the expected outcome of
that test case.

 15.16 Repeat Problem 15.15 for branch coverage.

 15.17 Repeat Problem 15.15 for all-defi nition-use-path coverage.

 15.18 Repeat Problem 15.15 for path coverage.

 15.19 Repeat Problem 15.15 for linear code sequences.

 15.20 Draw a fl owchart of your solution to Problem 6.14 (or code distributed by your instructor).
Determine its cyclomatic complexity. If you are unable to determine the number of branches,
consider the fl owchart as a directed graph. Determine the number of edges e , nodes n , and
connected components c. (Each method constitutes a connected component.) The cyclomatic
complexity M is then given by the formula [McCabe, 1976]

 M = e − n + 2 c

 Problems

sch76183_ch15_498-550.indd 545sch76183_ch15_498-550.indd 545 07/06/10 11:43 AM07/06/10 11:43 AM

546 Part B The Workfl ows of the Software Life Cycle

 15.21 You are the owner and sole employee of One-Person Software Company. You bought the pro-
gramming workbench described in Section 5.8. List its fi ve capabilities in order of importance
to you, giving reasons.

 15.22 You are now the vice-president for software technology of Very Big Software Company; there
are 17,500 employees in your organization. How do you rank the capabilities of the program-
ming workbench described in Section 5.8? Explain any differences between your answer to
this problem and that of Problem 15.21.

 15.23 As SQA manager for a software development organization, you are responsible for determin-
ing the maximum number of faults that may be found in a given code artifact during testing.
If this maximum is exceeded, then the code artifact must be redesigned and recoded. What
criteria would you use to determine the maximum for a given code artifact?

 15.24 Explain the difference between logic artifacts and operational artifacts.

 15.25 Defensive programming is good software engineering practice. At the same time, it can pre-
vent operational artifacts from being tested thoroughly enough for reuse purposes. How can
this apparent contradiction be resolved?

 15.26 What are the similarities between product testing and acceptance testing? What are the major
differences?

 15.27 What is the role of the SQA group during implementation?

 15.28 You are the owner and sole employee of One-Person Software Company. You decide that to be
competitive you must buy CASE tools. You therefore apply for a bank loan for $15,000. Your
bank manager asks you for a statement no more than one page in length (preferably shorter)
explaining in lay terms why you need CASE tools. Write the statement.

 15.29 The newly appointed vice-president for software development of Ye Olde Fashioned Software
Corporation has hired you to help her change the way the company develops software. There
are 650 employees, all writing COBOL 85 code without the assistance of any CASE tools
(COBOL 85 conforms to the 1985 COBOL standard; it is not object-oriented). Write a memo
to the vice-president stating what sort of CASE equipment the company should purchase.
Justify your choice.

 15.30 You and a friend decide to start Personal Computer Software Programs ’R Us, developing
software for personal computers on personal computers. Then a distant cousin dies, leaving
you $1 million on condition that you spend the money on a business-oriented environment and
the hardware needed to run it and that you keep the environment for at least 5 years. What do
you do, and why?

 15.31 You are a computer science professor at an excellent small liberal arts college. Programming
assignments for computer science courses are done on a network of 35 personal computers.
Your dean asks you whether to use the limited software budget to buy CASE tools, bearing in
mind that, unless some sort of site license can be obtained, 35 copies of every CASE tool have
to be purchased. What do you advise?

 15.32 You have just been elected mayor of a major city. You discover that no CASE tools are being
used to develop software for the city. What do you do?

 15.33 (Term Project) Draw up black-box test cases for the product you specifi ed in Problem 12.20
or 13.22. For each test case, state what is being tested and the expected outcome of that test
case.

 15.34 (Term Project) Implement and integrate the Chocoholics Anonymous product (Appendix
A). Use the programming language specifi ed by your instructor. Your instructor will tell you
whether to build a Web-based user interface, a graphical user interface, or a text-based user
interface. Remember to utilize the black-box test cases you developed in Problem 15.33 for
testing your code.

sch76183_ch15_498-550.indd 546sch76183_ch15_498-550.indd 546 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 547

 15.35 (Case Study) Download a copy of the implementation of the MSG Foundation product de-
scribed in Section 15.8. Draw up statement coverage test cases for the product. For each test
case, state what is being tested and the expected outcome of that test case.

 15.36 (Case Study) Repeat Problem 15.35 for branch coverage.

 15.37 (Case Study) Repeat Problem 15.35 for all-defi nition-use-path coverage.

 15.38 (Case Study) Repeat Problem 15.35 for path coverage.

 15.39 (Case Study) Repeat Problem 15.35 for linear code sequences.

 15.40 (Case Study) Starting with the detailed design of Problem 14.16, code the MSG Foundation
case study in an object-oriented language other than C++ or Java.

 15.41 (Case Study) Recode the MSG Foundation case study (Section 15.8) in pure C, with no C++
features. Although C does not support inheritance, object-based concepts such as encapsu-
lation and information hiding can be achieved relatively easily. How would you implement
polymorphism and dynamic binding?

 15.42 (Case Study) To what extent is the documentation of the code of the implementation of Section
15.8 inadequate? Make any necessary additions.

 15.43 (Readings in Software Engineering) Your instructor will distribute copies of [Meyer, 2008].
What are your views on geographically and temporally distributed code reviews?

 References [Alshayeb and Li, 2003] M. ALSHAYEB, AND W. LI, “An Empirical Validation of Object-Oriented Met-
rics in Two Different Iterative Software Processes,” IEEE Transactions on Software Engineering
 29 (November 2003), pp. 1043–49.

 [Andersson and Runeson, 2007] C. ANDERSSON AND P. RUNESON, “A Replicated Quantitative Analysis
of Fault Distributions in Complex Software Systems,” IEEE Transactions on Software Engineering
 33 (May 2007), pp. 273–86.

 [Basili and Hutchens, 1983] V. R. BASILI AND D. H. HUTCHENS, “An Empirical Study of a Syntac-
tic Complexity Family,” IEEE Transactions on Software Engineering SE-9 (November 1983),
pp. 664–72.

 [Basili and Selby, 1987] V. R. BASILI AND R. W. SELBY, “Comparing the Effectiveness of Software
Testing Strategies,” IEEE Transactions on Software Engineering SE-13 (December 1987),
pp. 1278–96.

 [Basili and Weiss, 1984] V. R. BASILI AND D. M. WEISS, “A Methodology for Collecting Valid Soft-
ware Engineering Data,” IEEE Transactions on Software Engineering SE-10 (November 1984),
pp. 728–38.

 [Beizer, 1990] B. BEIZER, Software Testing Techniques, 2nd ed., Van Nostrand Reinhold, New York, 1990.

 [Beizer, 1995] B. BEIZER, Black-Box Testing: Techniques for Functional Testing of Software and Sys-
tems, John Wiley and Sons, New York, 1995.

 [Beizer, 1997] B. BEIZER, “Cleanroom Process Model: A Critical Examination,” IEEE Software 14
(March–April 1997), pp. 14–16.

 [Binkley and Schach, 1996] A. B. BINKLEY AND S. R. SCHACH, “A Comparison of Sixteen Qual-
ity Metrics for Object-Oriented Design,” Information Processing Letters 57 (No. 6, June 1996),
pp. 271–75.

 [Binkley and Schach, 1997] A. B. BINKLEY AND S. R. SCHACH, “Toward a Unifi ed Approach to Object-
Oriented Coupling,” Proceedings of the 35th Annual ACM Southeast Conference , Murfreesboro,
TN, April 2–4, ACM, 1997, pp. 91–97.

 [Borland, 2002] BORLAND, “Press Release: Borland Unveils C++ Application Development Strategy
for 2002,” www.borland.com/news/press_releases/2002/01_28_02_cpp.strategy.html ,
January 28, 2002.

sch76183_ch15_498-550.indd 547sch76183_ch15_498-550.indd 547 07/06/10 11:43 AM07/06/10 11:43 AM

www.borland.com/news/press_releases/2002/01_28_02_cpp.strategy.html

548 Part B The Workfl ows of the Software Life Cycle

 [Chidamber and Kemerer, 1994] S. R. CHIDAMBER AND C. F. KEMERER, “A Metrics Suite for Object
Oriented Design,” IEEE Transactions on Software Engineering 20 (June 1994), pp. 476–93.

 [Crossman, 1982] T. D. CROSSMAN, “Inspection Teams, Are They Worth It?” Proceedings of the Sec-
ond National Symposium on EDP Quality Assurance , Chicago, ACM, November 1982.

 [Date, 2003] C. J. DATE, An Introduction to Database Systems, 8th ed., Addison-Wesley, Reading,
MA, 2003.

 [Dunn, 1984] R. H. DUNN, Software Defect Removal , McGraw-Hill, New York, 1984.

 [Elbaum, Malishevsky, and Rothermel, 2002] S. ELBAUM, A. G. MALISHEVSKY, AND G. ROTHERMEL,
“Test Case Prioritization: A Family of Empirical Studies,” IEEE Transactions on Software Engi-
neering 28 (February 2002), pp. 159–82.

 [Endres, 1975] A. ENDRES, “An Analysis of Errors and Their Causes in System Programs,” IEEE
Transactions on Software Engineering SE-1 (June 1975), pp. 140–49.

 [Grady, 1992] R. B. GRADY, Practical Software Metrics for Project Management and Process
Improvement , Prentice Hall, Englewood Cliffs, NJ, 1992.

 [Guimaraes, 1985] T. GUIMARAES, “A Study of Application Program Development Techniques,”
 Communications of the ACM 28 (May 1985), pp. 494–99.

 [Harel et al., 1990] D. HAREL, H. LACHOVER, A. NAAMAD, A. PNUELI, M. POLITI, R. SHERMAN, A.
SHTULL-TRAURING, AND M. TRAKHTENBROT, “STATEMATE: A Working Environment for the De-
velopment of Complex Reactive Systems,” IEEE Transactions on Software Engineering 16 (April
1990), pp. 403–14.

 [Harrison, 2004] W. HARRISON, “The Dangers of End-User Programming,” IEEE Software 21 (July–
August 2004), pp. 5–7.

 [Harrold and Soffa, 1991] M. J. HARROLD AND M. L. SOFFA, “Selecting and Using Data for Integra-
tion Testing,” IEEE Software 8 (1991), pp. 58–65.

 [Harrold, McGregor, and Fitzpatrick, 1992] M. J. HARROLD, J. D. MCGREGOR, AND K. J. FITZPATRICK,
“Incremental Testing of Object-Oriented Class Structures,” Proceedings of the 14th International
Conference on Software Engineering , Melbourne, Australia, May 1992, IEEE, pp. 68–80.

 [Horgan, London, and Lyu, 1994] J. R. HORGAN, S. LONDON, AND M. R. LYU, “Achieving Software
Quality with Testing Coverage Measures,” IEEE Computer 27 (1994), pp. 60–69.

 [Howden, 1987] W. E. HOWDEN, Functional Program Testing and Analysis , McGraw-Hill, New York,
1987.

 [Hwang, 1981] S.-S. V. HWANG, “An Empirical Study in Functional Testing, Structural Testing, and
Code Reading Inspection,” Scholarly Paper 362, Department of Computer Science, University of
Maryland, College Park, 1981.

 [Jacobson, Booch, and Rumbaugh, 1999] I. JACOBSON, G. BOOCH, AND J. RUMBAUGH, The Unifi ed
Software Development Process , Addison-Wesley, Reading, MA, 1999.

 [Jorgensen and Erickson, 1994] P. C. JORGENSEN AND C. ERICKSON, “Object-Oriented Integration
Testing,” Communications of the ACM 37 (September 1994), pp. 30–38.

 [Juristo, Moreno, Vegas, and Solari, 2006] N. JURISTO, A. M. MORENO, S. VEGAS, AND M. SOLARI,
“In Search of What We Experimentally Know about Unit Testing,” IEEE Software 23 (November–
December 2006), pp. 72–80.

 [Kernighan and Plauger, 1974] B. W. KERNIGHAN AND P. J. PLAUGER, The Elements of Programming
Style, McGraw-Hill, New York, 1974.

 [Klepper and Bock, 1995] R. KLEPPER AND D. BOCK, “Third and Fourth Generation Productivity Dif-
ferences,” Communications of the ACM 38 (September 1995), pp. 69–79.

 [Klunder, 1988] D. KLUNDER, “Hungarian Naming Conventions,” Technical Report, Microsoft Cor-
poration, Redmond, WA, January 1988.

sch76183_ch15_498-550.indd 548sch76183_ch15_498-550.indd 548 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 15 Implementation 549

 [Krishnamurthy, Rolia, and Majumdar, 2006] D. KRISHNAMURTHY, J. A. ROLIA, AND S. MAJUMDAR,
“A Synthetic Workload Generation Technique for Stress Testing Session-Based Systems,” IEEE
 Transactions on Software Engineering 32 (November 2006), pp. 868–82.

 [Linger, 1994] R. C. LINGER, “Cleanroom Process Model,” IEEE Software 11 (March 1994),
pp. 50–58.

 [Long and Morris, 1993] F. LONG AND E. MORRIS, “An Overview of PCTE: A Basis for a Portable
Common Tool Environment,” Technical Report CMU/SEI–93–TR–1, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, January 1993.

 [Martin, 1985] J. MARTIN, Fourth-Generation Languages, Vols. 1, 2, and 3, Prentice Hall, Englewood
Cliffs, NJ, 1985.

 [McCabe, 1976] T. J. MCCABE, “A Complexity Measure,” IEEE Transactions on Software Engineer-
ing SE-2 (December 1976), pp. 308–20.

 [McCabe and Butler, 1989] T. J. MCCABE AND C. W. BUTLER, “Design Complexity Measurement and
Testing,” Communications of the ACM 32 (December 1989), pp. 1415–25.

 [McConnell, 1993] S. MCCONNELL, Code Complete: A Practical Handbook of Software Construc-
tion, Microsoft Press, Redmond, WA, 1993.

 [Memon, Pollack, and Soffa, 2001] A. M. MEMON, M. E. POLLACK, AND M. L. SOFFA, “Hierarchical GUI
Test Case Generation Using Automated Planning,” IEEE Transactions on Software Engineering 27
(February 2001), pp. 144–55.

 [Meyer, 2008] B. MEYER, “Design and Code Reviews in the Age of the Internet,” Communications of
the ACM 51 (September 2008), pp. 66–71.

 [Mills, Dyer, and Linger, 1987] H. D. MILLS, M. DYER, AND R. C. LINGER, “Cleanroom Software
Engineering,” IEEE Software 4 (September 1987), pp. 19–25.

 [Musa and Everett, 1990] J. D. MUSA AND W. W. EVERETT, “Software-Reliability Engineering: Tech-
nology for the 1990s,” IEEE Software 7 (November 1990), pp. 36–43.

 [Musa, Iannino, and Okumoto, 1987] J. D. MUSA, A. IANNINO, AND K. OKUMOTO, Software Reliabil-
ity: Measurement, Prediction, Application , McGraw-Hill, New York, 1987.

 [Myers, 1976] G. J. MYERS, Software Reliability: Principles and Practices, Wiley-Interscience, New
York, 1976.

 [Myers, 1978a] G. J. MYERS, “A Controlled Experiment in Program Testing and Code Walkthroughs/
Inspections,” Communications of the ACM 21 (September 1978), pp. 760–68.

 [Myers, 1979] G. J. MYERS, The Art of Software Testing , John Wiley and Sons, New York, 1979.

 [Perry and Kaiser, 1990] D. E. PERRY AND G. E. KAISER, “Adequate Testing and Object-Oriented
Programming,” Journal of Object-Oriented Programming 2 (January–February 1990), pp. 13–19.

 [Rapps and Weyuker, 1985] S. RAPPS AND E. J. WEYUKER, “Selecting Software Test Data Using
Data Flow Information,” IEEE Transactions on Software Engineering SE-11 (April 1985),
pp. 367–75.

 [Runeson et al., 2006] P. RUNESON, C. ANDERSSON, T. THELIN, A. ANDREWS, AND T. BERLING,
“What Do We Know about Defect Detection Methods?” IEEE Software 23 (May–June 2006),
pp. 82–90.

 [Ruthruff, Burnett, and Rothermel, 2006] J. R. RUTHRUFF, M. BURNETT, AND G. ROTHERMEL,
“Interactive Fault Localization Techniques in a Spreadsheet Environment,” IEEE Transactions on
Software Engineering 32 (April 2006), pp. 213–39.

 [Sammet, 1978] J. E. SAMMET, “The Early History of COBOL,” Proceedings of the History of Pro-
gramming Languages Conference, Los Angeles, ACM, 1978, pp. 199–276.

 [Shepperd and Ince, 1994] M. SHEPPERD AND D. C. INCE, “A Critique of Three Metrics,” Journal of
Systems and Software 26 (September 1994), pp. 197–210.

sch76183_ch15_498-550.indd 549sch76183_ch15_498-550.indd 549 07/06/10 11:43 AM07/06/10 11:43 AM

550 Part B The Workfl ows of the Software Life Cycle

 [Sherer, Kouchakdjian, and Arnold, 1996] S. W. SHERER, A. KOUCHAKDJIAN, AND P. G. ARNOLD, “Expe-
rience Using Cleanroom Software Engineering,” IEEE Software 13 (May 1996), pp. 69–76.

 [Stocks and Carrington, 1996] P. STOCKS AND D. CARRINGTON, “A Framework for Specifi cation-Based
Testing,” IEEE Transactions on Software Engineering 22 (November 1996), pp. 777–93.

 [Takahashi and Kamayachi, 1985] M. TAKAHASHI AND Y. KAMAYACHI, “An Empirical Study of a
Model for Program Error Prediction,” Proceedings of the Eighth International Conference on
Software Engineering , London, IEEE, 1985, pp. 330–36.

 [Trammel, Binder, and Snyder, 1992] C. J. TRAMMEL, L. H. BINDER, AND C. E. SNYDER, “The
Automated Production Control Documentation System: A Case Study in Cleanroom Software
Engineering,” ACM Transactions on Software Engineering and Methodology 1 (January 1992),
pp. 81–94.

 [Turner, 1994] C. D. TURNER, “State-Based Testing: A New Method for the Testing of Object-
Oriented Programs,” Ph.D. thesis, Computer Science Division, University of Durham, Durham,
UK, November 1994.

 [Walsh, 1979] T. J. WALSH, “A Software Reliability Study Using a Complexity Measure,” Proceed-
ings of the AFIPS National Computer Conference , New York, AFIPS, 1979, pp. 761–68.

 [Watson and McCabe, 1996] A. H. WATSON AND T. J. MCCABE, “Structured Testing: A Testing Meth-
odology Using the Cyclomatic Complexity Metric,” NIST Special Publication 500–235, Com-
puter Systems Laboratory, National Institute of Standards and Technology, Gaithersburg, MD,
1996.

 [Weyuker, 1988] E. J. WEYUKER, “An Empirical Study of the Complexity of Data Flow Testing,” Pro-
ceedings of the Second Workshop on Software Testing, Verifi cation, and Analysis , Banff, Canada,
IEEE, July 1988, pp. 188–95.

 [Wilde, Matthews, and Huitt, 1993] N. WILDE, P. MATTHEWS, AND R. HUITT, “Maintaining Object-
Oriented Software,” IEEE Software 10 (January 1993), pp. 75–80.

 [Woodward, Hedley, and Hennell, 1980] M. R. WOODWARD, D. HEDLEY, AND M. A. HENNELL, “Expe-
rience with Path Analysis and Testing of Programs,” IEEE Transactions on Software Engineering
 SE-6 (May 1980), pp. 278–86.

 [Yamaura, 1998] T. YAMAURA, “How to Design Practical Test Cases,” IEEE Software 15 (November–
December 1998), pp. 30–36.

 [Yourdon, 1989] E. YOURDON, Modern Structured Analysis , Yourdon Press, Englewood Cliffs, NJ,
1989.

 [Zhou and Leung, 2006] Y. ZHOU AND H. LEUNG, “Empirical Analysis of Object-Oriented Design
Metrics for Predicting High and Low Severity Faults,” IEEE Transactions on Software Engineering
 32 (October 2006), pp. 771–89.

sch76183_ch15_498-550.indd 550sch76183_ch15_498-550.indd 550 07/06/10 11:43 AM07/06/10 11:43 AM

551

 Chapter

 A major theme of this book is the vital importance of postdelivery maintenance. Therefore,
it is somewhat surprising that this is a relatively short chapter. The reason is that maintain-
ability has to be built into a product from the very beginning and must not be compro-
mised at any time during the development process. Accordingly, in a very real sense, all the
previous chapters have been devoted to the subject of postdelivery maintenance. What is
described in this chapter is how to ensure that maintainability is not compromised during
postdelivery maintenance itself.

 16.1 Development and Maintenance
 Once the product has passed its acceptance test, it is handed over to the client. The product
is installed and used for the purpose for which it was constructed. Any useful product,
however, is almost certain to undergo postdelivery maintenance , either to fi x faults
(corrective maintenance) or extend the functionality of the product (enhancement).

16
Postdelivery
Maintenance
 Learning Objectives

 After studying this chapter, you should be able to

 • Perform postdelivery maintenance.

 • Appreciate the importance of postdelivery maintenance.

 • Describe the challenges of postdelivery maintenance.

 • Describe the maintenance implications of the object-oriented paradigm.

 • Describe the skills needed for maintenance.

sch76183_ch16_551-570.indd 551sch76183_ch16_551-570.indd 551 07/06/10 11:43 AM07/06/10 11:43 AM

 Because a product consists of more than just the source code, any changes to the docu-
mentation, manuals, or any other component of the product after it has been delivered to the
client are examples of postdelivery maintenance. Some computer scientists prefer to use the
term evolution rather than maintenance to indicate that a product evolves over time. In fact,
some view the entire software life cycle, from beginning to end, as an evolutionary process.
 This is how maintenance is viewed by the Unifi ed Process. In fact, the word mainte-
nance hardly occurs anywhere in Jacobson, Booch, and Rumbaugh [1999]. Instead, main-
tenance is implicitly treated merely as another increment of the software product. However,
there is a basic difference between development and maintenance, a difference that will be
illustrated by means of the following example.
 Suppose that a woman has her portrait painted when she is 18. The oil painting depicts
just her head and shoulders. Twenty years later she marries and now wants the portrait to
be modifi ed so that it depicts both her new husband and herself. There are four diffi culties
that would arise if the portrait were to be changed in this way.

 • The canvas is not large enough for her husband’s head to be added.
 • The original portrait was hung where sunlight fell on it much of the day, so the colors

have faded somewhat. In addition, the brand of oil paint that was used for the original
painting is no longer manufactured. For both these reasons, it will be hard to achieve
consistency of color.

 • The original artist has retired, so it will be hard to achieve consistency of style.
 • The woman’s face has aged 20 years since the original portrait was painted, so considerable

work will have to be done to ensure that the modifi ed painting is an accurate likeness.

 For all these reasons, it would be laughable even to think about modifying the original
portrait. Instead, a new artist will paint a new portrait of the couple from scratch (but see
Just in Case You Wanted to Know Box 16.1).
 Now consider the maintenance of a software product that originally cost $2 million to
develop. There are four diffi culties that have to be solved:

 • Unfortunately, the disk on which the database is stored is all but full—the current disk
is not large enough for more data to be added.

 • The company that manufactured the original disk is no longer in business, so a larger disk
will have to be bought from a different manufacturer. However, there are hardware incom-
patibilities between the new disk and the existing software product (Section 8.11.1), and it
will cost about $100,000 to make all the changes needed to use the new disk.

 • The original developers left the company some years ago, so the changes to the software
product will have to be made by a team of maintainers who have never seen the software
product before.

Chapter 10 Key Material from Part A 552

 The National Gallery in London contains a masterpiece that was ruined when an additional
head was added to a portrait. In 1515, the artist Lorenzo Lotto (ca. 1480–after 1556)
painted a picture of Giovanni Agostino della Torre, a physician who lived in Bergamo, then
in the State of Venice, Italy. Download the picture [Lotto, 1515] and examine it. It certainly
appears as if the artist added della Torre’s son, Niccolò, after the original portrait had been
completed, thereby irreparably marring the painting.

 Just in Case You Wanted to Know Box 16.1

sch76183_ch16_551-570.indd 552sch76183_ch16_551-570.indd 552 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 16 Postdelivery Maintenance 553

 • The original software product was developed using the classical paradigm. Nowadays,
the object-oriented paradigm (and specifi cally the Unifi ed Process) is commonly used.

 There is a clear correspondence between each portrait bullet point and the correspond-
ing software product bullet point. The inescapable conclusion regarding the oil painting is
to paint a new portrait from scratch. Does that mean that, instead of performing a $100,000
maintenance task, we should develop a totally new software product at a cost of $2 million?
 The answer is that analogies should never be taken too far. Just as it is obvious that a new
portrait should be painted, it is equally obvious that the existing software product should
undergo maintenance at 5 percent of the cost of a new software product.
 Nevertheless, there is an important lesson to be learned from this otherwise poor anal-
ogy. Whether we are dealing with portraits or software products, it is easier to create a new
version than to modify an existing version. In the case of the portrait, not only was it all but
impossible to modify the existing portrait, but the cost of doing so would surely have been
more than the cost of painting a new portrait from scratch. In the case of the software prod-
uct, not only were the changes feasible, but the cost of doing them would be a fraction of
the cost of developing a new software product from scratch. In other words, even though it
is harder to make changes to existing artifacts than to construct new artifacts from scratch,
economic considerations make maintenance far preferable to redevelopment.

 16.2 Why Postdelivery Maintenance Is Necessary
 There are three main reasons for making changes to a product:

 1. A fault needs correcting, whether an analysis fault, design fault, coding fault, documenta-
tion fault, or any other type of fault. This is termed corrective maintenance .

 2. In perfective maintenance , a change is made to the code to improve the effective-
ness of the product. For instance, the client may wish additional functionality or request
that the product be modifi ed so that it runs faster. Improving the maintainability of a
product is another example of perfective maintenance.

 3. In adaptive maintenance , a change is made to the product to react to a change in
the environment in which the product operates. For example, a product almost certainly
has to be modifi ed if it is ported to a new compiler, operating system, or hardware.
With each change to the tax code, a product that prepares tax returns has to be modi-
fi ed accordingly. When the U.S. Postal Service introduced nine-digit ZIP codes in 1981,
products that had allowed for only fi ve-digit ZIP codes had to be changed. Adaptive
maintenance is not requested by a client; instead, it is externally imposed on the client.

 16.3 What Is Required of Postdelivery
Maintenance Programmers?

 During the software life cycle, more time is spent on postdelivery maintenance than on any
other activity. In fact, on average, at least 67 percent of the total cost of a product can be
attributed to postdelivery maintenance, as shown in Figure 1.3 . But many organizations,
even today, assign the task of postdelivery maintenance to beginners and less competent

sch76183_ch16_551-570.indd 553sch76183_ch16_551-570.indd 553 07/06/10 11:43 AM07/06/10 11:43 AM

554 Part B The Workfl ows of the Software Life Cycle

programmers, leaving the “glamorous” job of product development to better or more expe-
rienced programmers.
 In fact, postdelivery maintenance is the most diffi cult of all aspects of software produc-
tion. A major reason is that postdelivery maintenance incorporates aspects of all the other
workfl ows of the software process. Consider what happens when a defect report is handed
to a maintenance programmer (recall from Section 1.11 that a defect is a generic term for
a fault, failure, or error). A defect report is fi led if, in the opinion of the user, the product is
not working as specifi ed in the user manual. A number of causes are possible. First, nothing
at all could be wrong; perhaps the user has misunderstood the user manual or is using the
product incorrectly. Alternatively, if there is a fault in the product, it simply might be that
the user manual has been badly worded and nothing is wrong with the code itself. Usually,
however, there is a fault in the code. But, before making any changes, the maintenance
programmer has to determine exactly where the fault lies, using the defect report fi led by
the user, the source code, and often nothing else. Therefore, the maintenance programmer
needs to have far above average debugging skills, because the fault could lie anywhere
within the product. And the original cause of the defect might lie in the by now nonexistent
analysis or design artifacts.
 Suppose that the maintenance programmer has located a fault and must fi x it without
inadvertently introducing another fault elsewhere in the product, that is, a regression fault .
If regression faults are to be minimized, detailed documentation for the product as a whole and
each individual code artifact must be available. However, software professionals are notorious
for their dislike of paperwork of all kinds, especially documentation; and it is quite com-
mon for the documentation to be incomplete, erroneous, or totally missing. In these cases, the
maintenance programmer has to deduce from the source code itself, the only valid form of
documentation available, all the information needed to avoid introducing a regression fault.
 Having determined the probable fault and tried to correct it, the maintenance programmer
now must test that the modifi cation works correctly and no regression faults have been intro-
duced. To check the modifi cation itself, the maintenance programmer must construct special
test cases; checking for regression faults is done using the set of test data stored precisely for
performing regression testing (Section 3.8). Then the test cases constructed for checking
the modifi cation must be added to the set of stored test cases to be used for future regres-
sion testing of the modifi ed product. In addition, if changes to the analysis or design had to
be made to correct the fault, then these changes also must be checked. Expertise in testing
therefore is an additional prerequisite for postdelivery maintenance. Finally, it is essential
that the maintenance programmer document every change. The preceding discussion relates
to corrective maintenance. For that task, the maintenance programmer primarily must be a
superb diagnostician to determine if there is a fault and, if so, an expert technician to fi x it.
 The other major maintenance tasks are adaptive and perfective maintenance. To perform
these, the maintenance programmer must perform the requirements, analysis, design, and
implementation workfl ows, taking the existing product as the starting point. For some types of
changes, additional code artifacts have to be designed and implemented. In other cases, changes
to the design and implementation of existing code artifacts are needed. Therefore, whereas
specifi cations frequently are produced by analysis experts, designs by design experts, and code
by programming experts, a maintenance programmer has to be an expert in all three areas. Per-
fective and adaptive maintenance are adversely affected by a lack of adequate documentation,
just like corrective maintenance. Furthermore, the ability to design suitable test cases and write

sch76183_ch16_551-570.indd 554sch76183_ch16_551-570.indd 554 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 16 Postdelivery Maintenance 555

good documentation is needed for perfective and adaptive maintenance, just as in corrective
maintenance. Therefore, none of the forms of maintenance is a task for a less experienced pro-
grammer unless a top-rank computer professional supervises the process.
 From the preceding discussion, it is clear that maintenance programmers have to possess
almost every technical skill that a software professional could have. But what does he or
she get in return?

 • Postdelivery maintenance is a thankless task in every way. Maintainers deal with dis-
satisfi ed users; if the user were happy with the product, it would not need maintenance.

 • The user’s problems have frequently been caused by the individuals who developed the
product, not the maintainer.

 • The code itself may be badly written, adding to the frustrations of the maintainer.
 • Postdelivery maintenance is looked down on by many software developers, who con-

sider development to be a glamorous job and maintenance to be drudge work fi t only for
junior programmers or incompetents.

 Postdelivery maintenance can be likened to after-sales service. The product has been de-
livered to the client. But the client is dissatisfi ed, because the product does not work correctly,
it does not do everything that the client currently wants, or the circumstances for which the
product was built have changed in some way. Unless the software organization provides good
maintenance service, the client will take all future product development business elsewhere.
When the client and software group are part of the same organization, and hence inextricably
tied from the viewpoint of future work, a dissatisfi ed client may use every means, fair or
foul, to discredit the software group. This, in turn, leads to an erosion of confi dence, from
both outside and inside the software group, and resignations and dismissals. It is important
for every software organization to keep its clients happy by providing excellent postdelivery
maintenance service. So, for product after product, postdelivery maintenance is the most
challenging aspect of software production—and frequently the most thankless.
 How can this situation be changed? Managers must restrict postdelivery maintenance
tasks to programmers with all the skills needed to perform maintenance. They must make
it known that only top computer professionals merit maintenance assignments in their orga-
nization and pay them accordingly. If management believes that postdelivery maintenance
is a challenge and good maintenance is critical for the success of the organization, attitudes
toward postdelivery maintenance will slowly improve (but see Just in Case You Wanted to
Know Box 16.2).
 Some of the problems that maintenance programmers face are now highlighted in a mini
case study.

C Mini ase Study

16.416.4 Postdelivery Maintenance Mini Case Study

 In countries with centralized economies, the government controls the distribution
and marketing of agricultural products. In one such country, temperate fruits, such as
peaches, apples, and pears, were the responsibility of the Temperate Fruit Committee
(TFC). One day, the chairman of the TFC asked a government computer consultant

sch76183_ch16_551-570.indd 555sch76183_ch16_551-570.indd 555 07/06/10 11:43 AM07/06/10 11:43 AM

to computerize the operations of the TFC. The chairman informed the consultant
that there are exactly seven temperate fruits: apples, apricots, cherries, nectarines,
peaches, pears, and plums. The database was to be designed for those seven fruits, no
more and no less. After all, that was the way that the world was, and the consultant
was not to waste time and money allowing for any sort of expandability.
 The product was duly delivered to the TFC. About a year later, the chairman sum-
moned the maintenance programmer responsible for the product. “What do you know
about kiwi fruit?” asked the chairman. “Nothing,” replied the mystifi ed programmer.
“Well,” said the chairman, “it seems that kiwi fruit is a temperate fruit that has just
started to be grown in our country, and the TFC is responsible for it. Please change
the product accordingly.”
 The maintenance programmer discovered that the consultant fortunately had not
carried out the chairman’s original instructions to the letter. The good practice of
allowing for some sort of future expansion was too ingrained, and the consultant
had provided a number of unused fi elds in the relevant database records. By slightly
rearranging certain items, the maintenance programmer was able to incorporate kiwi
fruit, the eighth temperate fruit, into the product.
 Another year went by, and the product functioned well. Then the maintenance
programmer again was called to the chairman’s offi ce. The chairman was in a good
mood. He jovially informed the programmer that the government had reorganized
the distribution and marketing of agricultural products. His committee was now
responsible for all fruit produced in that country, not just temperate fruit, and so the
product now had to be modifi ed to incorporate the 26 additional kinds of fruit on the
list he handed to the maintenance programmer. The programmer protested, pointing
out that this change would take almost as long as rewriting the product from scratch.
“Nonsense,” replied the chairman. “You had no trouble adding kiwi fruit. Just do the
same thing another 26 times!”
 A number of important lessons are to be learned from this:

 • The problem with the product, no provision for expansion, was caused by the devel-
oper, not the maintainer. The developer made the mistake of obeying the chairman’s
instruction regarding future expandability of the product, but the maintenance pro-
grammer suffered the consequences. In fact, unless she reads this book, the consultant
who developed the original product may never realize that her product was anything

Chapter 10 Key Material from Part A 556

 In Practical Software Maintenance , Tom Pigoski [1996] describes how he set up a U.S. Navy
postdelivery maintenance organization in Pensacola, Florida. His idea was that, if prospec-
tive employees were told in advance that they were to work as maintainers, they would
have a positive attitude toward postdelivery maintenance. In addition, he tried to keep
morale high by ensuring that all employees received plenty of training and had the oppor-
tunity to travel all over the world in the course of their work. The beautiful nearby beaches
certainly helped, as did the brand-new building they occupied.
 Nevertheless, within 6 months of starting work at the postdelivery maintenance organiza-
tion, every employee asked when he or she could do some development work. It seems that
it is extremely hard to change the attitudes of individuals toward postdelivery maintenance.

 Just in Case You Wanted to Know Box 16.2

sch76183_ch16_551-570.indd 556sch76183_ch16_551-570.indd 556 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 16 Postdelivery Maintenance 557

but a success. One of the more annoying aspects of postdelivery maintenance is that
the maintainer is responsible for fi xing other people’s mistakes. The person who caused
the problem either has other duties or has left the organization, but the maintenance
programmer is left holding the baby.

 • The client frequently does not understand that postdelivery maintenance can be
diffi cult or, in some instances, all but impossible. The problem is exacerbated when
the maintenance programmer has successfully carried out previous perfective and
adaptive maintenance tasks but suddenly protests that a new assignment cannot
be done, even though superfi cially it seems no different from what has been done
before with little diffi culty.

 • All software development must be carried out with an eye on future postdelivery
maintenance. If the consultant had designed the product for an arbitrary number of
different kinds of fruit, there would have been no diffi culty in incorporating fi rst
the kiwi fruit and then the 26 other kinds of fruit.

 As stated many times, postdelivery maintenance is a vital aspect of software pro-
duction, and the one that consumes the most resources. During product development,
it is essential that the development team never forget the maintenance programmer,
who will be responsible for the product once it has been installed.

 16.5 Management of Postdelivery Maintenance
 Issues regarding management of postdelivery maintenance are now considered.

 16.5.1 Defect Reports
 The fi rst thing needed when maintaining a product is a mechanism for changing the prod-
uct. With regard to corrective maintenance, that is, removing residual faults, if the product
appears to be functioning incorrectly, then a defect report should be fi led by the user.
This must include enough information to enable the maintenance programmer to re-create
the problem, which usually is some sort of software failure. In addition, the maintenance
programmer must indicate the severity of the defect; typical severity categories include
critical, major, normal, minor, and trivial.
 Ideally, every defect reported by a user should be fi xed immediately. In practice, pro-
gramming organizations usually are understaffed, with a backlog of work, both development
and maintenance. If the defect is critical, such as if a payroll product crashes the day before
payday or overpays or underpays employees, immediate corrective action must be taken.
Otherwise, each defect report must at least receive an immediate preliminary investigation.
 The maintenance programmer should fi rst consult the defect report fi le. This contains
all reported defects that have not yet been fi xed, together with suggestions for working
around them, that is, ways for the user to bypass the portion of the product that apparently is
responsible for the failure, until such time as the defect can be fi xed. If the defect has been
reported previously, any information in the defect report fi le should be given to the user.
But, if what the user reports appears to be a new defect, then the maintenance programmer
should study the problem and attempt to fi nd the cause and a way to fi x it. In addition, an
attempt should be made to fi nd a way to work around the problem, because it may take 6 or
9 months before someone can be assigned to make the necessary changes to the software.

sch76183_ch16_551-570.indd 557sch76183_ch16_551-570.indd 557 07/06/10 11:43 AM07/06/10 11:43 AM

558 Part B The Workfl ows of the Software Life Cycle

In the light of the serious shortage of programmers and in particular programmers good
enough to perform maintenance, suggesting a way to live with the defect until it can be
solved often is the only way to deal with defect reports that are not true emergencies.
 The maintenance programmer’s conclusions should be added to the defect report fi le,
together with any supporting documentation, such as listings, designs, and manuals used
to arrive at those conclusions. The manager in charge of postdelivery maintenance should
consult the fi le regularly, setting priorities for the various fi xes. The fi le also should contain
the client’s requests for perfective and adaptive maintenance. The next modifi cation made
to the product then will be the one with the highest priority.
 When copies of a product have been distributed to a variety of sites, copies of defect
reports must be circulated to all users of the product, together with an estimate of when
each defect can be fi xed. Then, if the same failure occurs at another site, the user can con-
sult the relevant defect report to determine if it is possible to work around the defect and
when it will be fi xed. It would be preferable to fi x every defect immediately and distribute
a new version of the product to all sites, of course. Given the current worldwide shortage
of good programmers and the realities of postdelivery software maintenance, distributing
defect reports probably is the best that can be done.
 There is another reason why defects usually are not fi xed immediately. It almost always is
cheaper to make a number of changes, test them all, change the documentation, and install
the new version than it is to perform each change separately, test it, document it, install the
new version, and then repeat the entire cycle for the next change. This is particularly true if
every new version has to be installed on a signifi cant number of computers (such as a large
number of clients in a client–server network) or when the software is running at different
sites. As a result, organizations prefer to accumulate noncritical maintenance tasks, and
then implement the changes as a group.

 16.5.2 Authorizing Changes to the Product
 Once a decision has been made to perform corrective maintenance, a maintenance pro-
grammer is assigned the task of determining the fault that caused the failure and repair-
ing it. After the code has been changed, the repair must be tested, as must the product
as a whole (regression testing). Then, the documentation must be updated to refl ect the
changes. In particular, a detailed description of what was changed, why it was changed, by
whom, and when must be added to the prologue comments of any changed code artifact
(Figure 15.1). If necessary, analysis or design artifacts also are changed. A similar set of
steps is followed when performing perfective or adaptive maintenance; the only real differ-
ence is that perfective and adaptive maintenance are initiated by a change in requirements
rather than by a defect report.
 At this point all that would seem to be needed would be to distribute the new version to
the users. But, what if the maintenance programmer has not tested the repair adequately?
Before the product is distributed, it must be subjected to software quality assurance per-
formed by an independent group; that is, the members of the maintenance SQA group must
not report to the same manager as the maintenance programmer. It is important that the
SQA group remain managerially independent (Section 6.1.2).
 Reasons were given previously as to why postdelivery maintenance is diffi cult. For those
same reasons, maintenance also is fault prone. Testing during postdelivery maintenance is dif-
fi cult and time consuming, and the SQA group should not underestimate the implications of

sch76183_ch16_551-570.indd 558sch76183_ch16_551-570.indd 558 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 16 Postdelivery Maintenance 559

software maintenance with regard to testing. Once the new version has been approved by the
SQA group, it can be distributed.
 Another area in which management must ensure that procedures are followed carefully is
when the technique of baselines and private copies (Section 5.10.2) is used. Suppose a program-
mer wishes to change Tax Provision Class . The programmer makes copies of Tax Provi-
sion Class and all the other code artifacts needed to perform the required maintenance task;
often this includes all the other classes in the product. The programmer makes the necessary
changes to Tax Provision Class and tests them. Now, the previous version of Tax Provi-
sion Class is frozen, and the modifi ed version of Tax Provision Class incorporating the
changes is installed in the baseline. But, when the modifi ed product is delivered to the user, it
immediately crashes. What went wrong is that the maintenance programmer tested the modifi ed
version of Tax Provision Class using his or her private workspace copies, that is, the copies
of the other code artifacts that were in the baseline at the time that maintenance of Tax Provi-
sion Class was started. In the meantime, certain other code artifacts were updated by other
maintenance programmers working on the same product. The lesson is clear: Before installing
a code artifact, it must be tested using the current baseline versions of all the other code artifacts
and not the programmer’s private versions. This is a further reason for stipulating an indepen-
dent SQA group—members of the SQA group simply have no access to programmers’ private
workspaces. A third reason is that it has been estimated that the initial correction of a fault is
itself incorrect some 70 percent of the time [Parnas, 1999].
 16.5.3 Ensuring Maintainability
 Postdelivery maintenance is not a one-time effort. A well-written product goes through
a series of versions over its lifetime. As a result, it is necessary to plan for postdelivery
maintenance during the entire software process. During the design workfl ow, for example,
information-hiding techniques (Section 7.6) should be employed; during implementation,
variable names should be selected that will be meaningful to future maintenance program-
mers (Section 15.3). Documentation should be complete, correct, and refl ect the current
version of every component code artifact of the product.
 During postdelivery maintenance, it is important not to compromise the maintainability
that has been built into the product from the very beginning. In other words, just as soft-
ware development personnel always should be conscious of the inevitable postdelivery
maintenance, so software maintenance personnel always should be conscious of the equally
inevitable further future postdelivery maintenance. The principles established for maintain-
ability during development apply equally to postdelivery maintenance.
 16.5.4 Problem of Repeated Maintenance
 One of the more frustrating diffi culties of software development is the moving-target
problem (Section 2.4). As fast as the developer constructs the product, the client can change
the requirements. Not only is this frustrating to the development team, frequent changes can
result in a poorly constructed product. In addition, such changes add to the cost of the product.
 The problem is exacerbated during postdelivery maintenance. The more a completed
product is changed, the more it deviates from its original design, and the more diffi cult further
changes become. Under repeated maintenance, the documentation is likely to become even
less reliable than usual, and the regression testing fi les may not be up to date. If still more
maintenance is done, the product as a whole may fi rst have to be completely reimplemented.

sch76183_ch16_551-570.indd 559sch76183_ch16_551-570.indd 559 07/06/10 11:43 AM07/06/10 11:43 AM

560 Part B The Workfl ows of the Software Life Cycle

 The problem of the moving target clearly is a management problem. In theory, if man-
agement is suffi ciently fi rm with the client and explains the problem at the beginning of
the project, then the requirements can be frozen from the time the specifi cations are signed
off on until the product is delivered. Again, after each request for perfective maintenance,
the requirements can be frozen for, say, 3 months or 1 year. In practice, it does not work
that way. For example, if the client happens to be the president of the corporation and the
development organization is the software division of that corporation, then the president
can order changes every Monday and Thursday and they will be implemented. The old
proverb, “He who pays the piper calls the tune,” unfortunately is all too relevant in this
situation. Perhaps, the best that the vice-president for software can do is to try to explain to
the president the effect on the product of repeated maintenance, and then simply have the
complete product reimplemented whenever further maintenance would be hazardous to the
integrity of the product.
 Trying to discourage additional maintenance by ensuring that the requested changes are
implemented slowly may mean that the relevant personnel are replaced by others prepared
to do the job faster. In short, if the person who requests repeated changes has suffi cient
clout, there is no solution to the problem of the moving target.

 16.6 Maintenance of Object-Oriented Software
 One reason put forward for using the object-oriented paradigm is that it promotes main-
tainability. After all, an object is an independent unit of a program. More specifi cally, a
well-designed object exhibits conceptual independence, otherwise known as encapsula-
tion (Section 7.4). Every aspect of the product that relates to the portion of the real world
modeled by that object is localized to the object itself. In addition, objects exhibit physical
independence; information hiding is employed to ensure that implementation details are
not visible outside that object (Section 7.6). The only form of communication permitted is
sending a message to the object to invoke a specifi c method.
 As a consequence, the argument goes, it is easy to maintain an object for two reasons.
First, conceptual independence means it is easy to determine which part of a product must
be changed to achieve a specifi c maintenance goal, be it enhancement or corrective main-
tenance. Second, information hiding ensures that a change made to an object has no impact
outside that object, and hence the number of regression faults is reduced greatly.
 In practice, however, the situation is not quite this idyllic. In fact, three obstacles are
specifi c to the maintenance of object-oriented software. One of the problems can be solved
through use of appropriate CASE tools, but the others are less tractable:

 1. Consider the C�� class hierarchy shown in Figure 16.1 . Method displayNode is defi ned
in UndirectedTreeClass , inherited by DirectedTreeClass , and then redefi ned
in RootedTreeClass . This redefi ned version is inherited by BinaryTreeClass and
 BalancedBinaryTreeClass and utilized in BalancedBinaryTreeClass . There-
fore, a maintenance programmer has to study the complete inheritance hierarchy to
understand BalancedBinaryTreeClass . Worse, the hierarchy may not be displayed
in the linear fashion of Figure 16.1 but generally is spread over the entire product. So,
to understand what displayNode does in BalancedBinaryTreeClass , the mainte-
nance programmer may have to peruse a major proportion of the product. This is a far

sch76183_ch16_551-570.indd 560sch76183_ch16_551-570.indd 560 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 16 Postdelivery Maintenance 561

cry from the “independent” object described at the beginning of this section. The solu-
tion to this problem is straightforward: use the appropriate CASE tool. Just as a C++
compiler can resolve precisely the version of displayNode within instances of the class
 BalancedBinaryTreeClass , so a programming workbench can provide a “fl attened”
version of a class, that is, a defi nition of the class with all features inherited directly or
indirectly appearing explicitly, with any renaming or redefi nition incorporated. The fl at-
tened form of BalancedBinaryTreeClass of Figure 16.1 includes the defi nition of
displayNode from RootedTreeClass .

 2. Another obstacle to the maintenance of a product implemented using an object-
oriented language is less easy to solve. It arises as a consequence of polymorphism
and dynamic binding, concepts explained in Section 7.8. An example was given in
that section, a base class named File Class , together with three subclasses: Disk
File Class , Tape File Class , and Diskette File Class . This is shown in Figure
7.33(b) , reproduced here for convenience as Figure 16.2 . In base class File Class , a
dummy (abstract or virtual) method open is declared. Then, a specifi c implemen-
tation of the method appears in each of the three subclasses; each method is given the
identical name, open, as shown in Figure 16.2 . Suppose that myFile is declared to be
an object, an instance of File Class , and the code to be maintained contains the mes-
sage myFile.open (). As a consequence of polymorphism and dynamic binding, at
run time, myFile could be a member of any of the three derived classes of File Class , that

 FIGURE 16.1
 C++ implemen-
tation of a class
hierarchy.

 class UndirectedTreeClass
{

 …
 void displayNode (Node a);
 …
}// class UndirectedTreeClass

 class DirectedTreeClass : public UndirectedTreeClass
{

 …
}// class DirectedTreeClass

 class RootedTreeClass : public DirectedTreeClass
{

 …
 void displayNode (Node a);
 …
}// class RootedTreeClass

 class BinaryTreeClass : public RootedTreeClass
{

 …
}// class BinaryTreeClass

 class BalancedBinaryTreeClass : public BinaryTreeClass
{
 Node hhh;
 displayNode (hhh);
}// class BalancedBinaryTreeClass

sch76183_ch16_551-570.indd 561sch76183_ch16_551-570.indd 561 07/06/10 11:43 AM07/06/10 11:43 AM

562 Part B The Workfl ows of the Software Life Cycle

is, a disk fi le, a tape fi le, or a diskette fi le. Once the run-time system has determined
in which derived class it is, the appropriate version of open is invoked. This can have
adverse consequences for maintenance. If a maintenance programmer encounters the
call myFile.open () in the code, then, to understand that part of the product, he or
she has to consider what would happen if myFile were an instance of each of the three
subclasses. A CASE tool cannot help here because, in general, there is no way to re-
solve dynamic binding issues using static methods. The only way to determine which
of a number of dynamic bindings actually occurs in a particular set of circumstances
is to trace through the code, either by running it on a computer or tracing through it
manually. Polymorphism and dynamic binding indeed are extremely powerful aspects
of object-oriented technology that promote the development of an object-oriented
product. However, they can have a deleterious impact on maintenance, by forcing the
maintenance programmer to investigate a wide variety of possible bindings that might
occur at run time and hence determine which of a number of different methods could
be invoked at that point in the code.

 3. The fi nal problem arises as a consequence of inheritance . Suppose a particular base
class does most, but not all, of what is required for the design of a new product. A
derived class now is defi ned, that is, a class identical to the base class in many ways, but
new features may be added and existing features renamed, reimplemented, suppressed,
or changed in other ways. Furthermore, these changes may be made without having an
effect on the base class or any other derived classes. However, suppose now that the base
class itself is changed. If this happens, all derived classes are changed in the same way.
In other words, the strength of inheritance is that new leaves can be added to the inheri-
tance tree (or graph, if the implementation language supports multiple inheritance, as
C�� does) without altering any other class in the tree. But, if an interior node of the
tree is changed in any way, then this change is propagated to all its descendants (the
 fragile base class problem).

 Consequently, inheritance is another feature of object-oriented technology that can have
a major positive infl uence on development but a negative impact on maintenance.

 FIGURE 16.2
 Defi nition of
base class File
Class with
derived classes
 Disk File
Class, Tape
File Class, and
 Diskette File
Class .

Implementation of
method open

for a diskette file

Diskette File Class

Implementation of
method open
for a tape file

Tape File Class

abstract method
open

File Class

Implementation of
method open
for a disk file

Disk File Class

sch76183_ch16_551-570.indd 562sch76183_ch16_551-570.indd 562 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 16 Postdelivery Maintenance 563

 16.7 Postdelivery Maintenance Skills versus
Development Skills

 Earlier in this chapter, much was said about the skills needed for postdelivery maintenance.

 • For corrective maintenance, the ability to determine the cause of a failure of a large
product was deemed essential. But this skill is not needed exclusively for postdelivery
maintenance. It is used throughout integration and product testing.

 • Another vital skill is the ability to function effectively without adequate documentation.
Again, the documentation rarely is complete while integration and product testing are
under way.

 • Also stressed was that skills with regard to analysis, design, implementation, and testing
are essential for adaptive and perfective maintenance. These activities also are carried
out during the development process, and each requires specialized skills if it is to be
performed correctly.

 In other words, the skills a postdelivery maintenance programmer needs are in no way
different from those needed by software professionals specializing in other aspects of soft-
ware production. The key point is that a maintenance programmer must not be merely
skilled in a broad variety of areas but highly skilled in all those areas. Although the aver-
age software developer can specialize in one area of software development, such as design
or testing, the software maintainer must be a specialist in virtually every area of software
production. After all, postdelivery maintenance is the same as development, only more so.

 16.8 Reverse Engineering
 As has been pointed out, sometimes the only documentation available for postdelivery
maintenance is the source code itself. (This happens all too frequently when maintain-
ing legacy systems , that is, software in current use but developed some 15 or 20 years
ago, if not earlier.) Under these circumstances, maintaining the code can be extremely
diffi cult. One way of handling this problem is to start with the source code and attempt to
re-create the design documents or even the specifi cations. This process is called reverse
engineering .
 CASE tools can assist with this process. One of the simplest is a pretty printer (Section 5.8),
which may help display the code more clearly. Other tools construct diagrams, such as fl ow-
charts or UML diagrams, directly from the source code; these visual aids can help in the process
of design recovery.
 Once the maintenance team has reconstructed the design, there are two possibilities.
One alternative is to attempt to reconstruct the specifi cations, modify the reconstructed
specifi cations to refl ect the necessary changes, and reimplement the product the usual
way. (Within the context of reverse engineering, the usual development process that pro-
ceeds from analysis through design to implementation is called forward engineering .
The process of reverse engineering followed by forward engineering sometimes is called
 reengineering .) In practice, reconstruction of the specifi cations is an extremely hard
task. More frequently the reconstructed design is modifi ed and the modifi ed design then is
forward engineered.

sch76183_ch16_551-570.indd 563sch76183_ch16_551-570.indd 563 07/06/10 11:43 AM07/06/10 11:43 AM

564 Part B The Workfl ows of the Software Life Cycle

 A related activity often performed during maintenance is restructuring. Reverse engi-
neering takes the product from a lower level of abstraction to a higher level of abstraction,
for example, from code to design. Forward engineering takes the product from a higher
level of abstraction to a lower level. Restructuring , however, takes place at the same level.
It is the process of improving the product without changing its functionality. Pretty print-
ing is one form of restructuring, and so is converting code from unstructured to structured
form. In general, restructuring is performed to make the source code (or design or even
the database) easier to maintain. When an agile process (Section 2.9.5) is used, the design
modifi cation known as refactoring is another example of restructuring.
 A worse situation occurs if the source code is lost and the executable version of the prod-
uct is all that is available. At fi rst sight, it might seem that the only possible way to re-create
the source code is to use a disassembler to create assembler code and then to build a tool
(that might be termed a reverse compiler) to try to re-create the original high-level lan-
guage code. A number of virtually insurmountable problems accompany this approach:

 • The names of the variables will have been lost as a consequence of the original
compilation.

 • Many compilers optimize the code in some way, making it extremely diffi cult to attempt
to re-create the source code.

 • A construct such as a loop in the assembler could correspond to a number of different
possible constructs in the source code.

 In practice, therefore, the existing product is treated as a black box and reverse engi-
neering is used to deduce the specifi cations from the behavior of the current product. The
reconstructed specifi cations are modifi ed as required, and a new version of the product is
forward engineered from those specifi cations.

 16.9 Testing during Postdelivery Maintenance
 While the product is being developed, many members of the development team have a
broad overview of the product as a whole, but as a result of the rapid personnel turnover
in the computer industry, it is unlikely that members of the postdelivery maintenance team
have been involved in the original development. Therefore, the maintainer tends to see the
product as a set of loosely related components and generally is not aware that a change to
one code artifact may seriously affect one or more other artifacts and hence the product
as a whole. Even if the maintainer wished to understand every aspect of the product, the
pressures to fi x or to extend the product generally are such that no time is allowed for the
detailed study needed to achieve this. Furthermore, in many cases, little or no documenta-
tion is available to assist in gaining that understanding. One way of trying to minimize this
diffi culty is to use regression testing, that is, testing the changed product against previous
test cases to ensure that it still works correctly.
 For this reason, it is vital to store all test cases, together with their expected outcomes,
in machine-readable form. As a result of changes made to the product, certain stored test
cases may have to be modifi ed. For example, if the percentages of salary to be withheld
change as a consequence of tax legislation, then the correct output from a payroll product
for each test case involving withholding changes, too. Similarly, if satellite observations

sch76183_ch16_551-570.indd 564sch76183_ch16_551-570.indd 564 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 16 Postdelivery Maintenance 565

lead to corrections in the latitude and longitude of an island, then the correct output from a
product that calculates the position of an aircraft using the coordinates of the island must
correspondingly change. Depending on the maintenance performed, some valid test cases
become invalid. But the computations that need to be made to correct the stored test cases
are essentially the same as would have to be made to set up new test data for checking that
the maintenance has been correctly performed. No additional work therefore is involved in
maintaining the fi le of test cases and their expected outcomes.
 It can be argued that regression testing is a waste of time because regression testing
requires the complete product to be retested against a host of test cases, most of which
apparently have nothing to do with the code artifacts modifi ed in the course of product
maintenance. The word apparently in the previous sentence is critical. The dangers of
unwitting side effects of maintenance (that is, the introduction of regression faults) are too
great for that argument to hold water; regression testing is an essential aspect of mainte-
nance in all situations.

 16.10 CASE Tools for Postdelivery Maintenance
 It is unreasonable to expect maintenance programmers to keep track manually of the vari-
ous revision numbers and assign the next revision number each time a code artifact is
updated. Unless the operating system incorporates version control, a version-control tool
such as the UNIX tools sccs (source code control system) [Rochkind, 1975] and rcs (revision
control system) [Tichy, 1985] is needed. It is equally unreasonable to expect manual control
of the freezing technique described in Chapter 5 or any other manual way of ensuring that
revisions are updated appropriately. A confi guration-control tool is needed. Popular open-
source confi guration-control tools include CVS (concurrent versions system) [Loukides
and Oram, 1997] and Subversion. Typical examples of commercial tools are CCC (change
and confi guration control) and IBM Rational ClearCase. Even if the software organization
does not wish to purchase a complete confi guration-control tool, at the very least a build
tool must be used in conjunction with a version-control tool. Another category of CASE
tool virtually essential during postdelivery maintenance is a defect-tracking tool that keeps
a record of reported defects not yet fi xed.
 Section 16.8 described some categories of CASE tools that can assist in reverse engi-
neering and reengineering. Examples of such tools that assist by creating visual displays of
the structure of the product include IBM Rational Rose and Together. Doxygen is an open-
source tool of this kind.
 Defect tracking is an important aspect of postdelivery maintenance. It is vital to be able
to determine the current status of every reported defect. IBM Rational ClearQuest is a com-
mercial defect-tracking tool , and Bugzilla is a popular open-source tool. Such tools can be
used to record the severity of a defect (Section 16.5.1) and its status (essentially, whether or
not the defect has been fi xed). In addition, some defect-tracking tools can link a defect report
to the confi guration management tool so that, when a new version is built, the maintenance
programmer can select specifi c defect report fi xes to be included in the build.
 Postdelivery maintenance is diffi cult and frustrating. The very least that management
can do is to provide the maintenance team the tools needed for effi cient and effective prod-
uct maintenance.

sch76183_ch16_551-570.indd 565sch76183_ch16_551-570.indd 565 07/06/10 11:43 AM07/06/10 11:43 AM

566 Part B The Workfl ows of the Software Life Cycle

 16.11 Metrics for Postdelivery Maintenance
 The activities of postdelivery maintenance essentially are analysis, design, implementa-
tion, testing, and documentation. Therefore, the metrics that measure these activities are
equally applicable to maintenance. For example, the complexity metrics of Section 15.13.2
are relevant to postdelivery maintenance, in that a code artifact with high complexity is a
likely candidate for inducing a regression fault. Particular care must be taken in modifying
such a code artifact.
 In addition, metrics specifi c to postdelivery maintenance include measures relating to
software defect reports, such as the total number of defects reported and classifi cation of
those defects by severity and type. In addition, information regarding the current status of
the defect reports is needed. For example, there is a considerable difference between hav-
ing 13 critical defects reported and fi xed during 2006 and having only 2 critical defects
reported during that year but neither of them fi xed.

Case Study
16.1216.12 Postdelivery Maintenance:

The MSG Foundation Case Study
 A number of faults have been seeded in the source code of the MSG Foundation case
study. In addition, perfective maintenance must be performed. These maintenance
tasks are left as exercises (Problems 16.16 through 16.21).

 16.13 Challenges of Postdelivery Maintenance
 This chapter describes numerous challenges of postdelivery maintenance. The toughest
one to change is that maintenance is generally harder than development, yet maintenance
programmers are often looked down on by developers and all too frequently are paid less
than developers.

 Chapter
Review

 The chapter begins with a comparison of development and maintenance (Section 16.1). Postdeliv-
ery maintenance is an important and challenging software activity (Sections 16.2 and 16.3). This is
illustrated by means of the mini case study of Section 16.4. Issues relating to the management of post-
delivery maintenance are described (Section 16.5), including the problem of repeated maintenance
(Section 16.5.4). Postdelivery maintenance of object-oriented software is discussed in Section 16.6.
The skills that a maintenance programmer needs are the same as those of a developer; the difference
is that a developer can specialize in one aspect of the software process, whereas the maintainer must
be an expert in all aspects of software production (Section 16.7). A description of reverse engineering
is given in Section 16.8. Next follows a description of testing during postdelivery maintenance (Sec-
tion 16.9) and CASE tools for postdelivery maintenance (Section 16.10). Metrics for postdelivery
maintenance are described in Section 16.11. Postdelivery maintenance of the MSG Foundation case
study, discussed in Section 16.12, is left as an exercise. The chapter concludes with a discussion of
the challenges of postdelivery maintenance (Section 16.13).

sch76183_ch16_551-570.indd 566sch76183_ch16_551-570.indd 566 07/06/10 11:43 AM07/06/10 11:43 AM

Chapter 16 Postdelivery Maintenance 567

 Key Terms adaptive maintenance 553
 corrective maintenance 553
 defect 554
 defect report 557
 defect-tracking tool 565
 encapsulation 560
 evolution 552

 forward engineering 563
 fragile base class problem 562
 inheritance 562
 legacy system 563
 moving-target problem 559
 perfective maintenance 553
 postdelivery maintenance 551

 reengineering 563
 refactoring 564
 regression fault 554
 regression testing 554
 restructuring 564
 reverse engineering 563

 Problems 16.1 Why do you think that the mistake is frequently made of considering postdelivery software
maintenance to be inferior to software development?

 16.2 Consider a product that determines whether a computer is virus free. Describe why such a
product is likely to have multiple variations of many of its code artifacts. What are the implica-
tions for postdelivery maintenance? How can the resulting problems be solved?

 16.3 Repeat Problem 16.2 for the automated library circulation system of Problem 8.7.

 For
Further
Reading

 A classic source of information on postdelivery maintenance is [Lientz, Swanson, and Tompkins,
1978], although some of the results are now being questioned (see Just in Case You Wanted to
Know Box 1.3). Regression test case selection is discussed in [Harrold, Rosenblum, Rothermel, and
Weyuker, 2001] and setting priorities of regression test cases in [Rothermel, Untch, Chu, and Har-
rold, 2001]. A method for estimating staffi ng needs during postdelivery maintenance is described in
[Antoniol, Cimitile, Di Lucca, and Di Penta, 2004].
 The September 2005 issue of Journal of Systems and Software contains a number of papers on re-
verse engineering. Fioravanti and Nesi [2001] present metrics for estimating adaptive maintenance effort.
Problems of comprehension of legacy systems are discussed in [Rajlich, Wilde, Buckellew, and Page,
2001]. The importance of traceability within the context of reengineering is the subject of [Ebner and
Kaindl, 2002]. The use of metrics within the context of maintainability is discussed in [Bandi, Vaishnavi,
and Turk, 2003]. Problems that can arise in the maintenance of open-source software are presented in
[Samoladas, Stamelos, Angelis, and Oikonomou, 2005]. Extracting the architecture of a software product
from run-time observations is described in [Schmerl et al., 2006]. How developers gain an understand-
ing of unfamiliar code is presented in [Ko, Myers, Coblenz, and Aung, 2006] and [Sillito, Murphy, and De
Volder, 2008]. During maintenance, the size of the test suite can grow signifi cantly. Culling of test cases,
however, can reduce the fault detection effectiveness. This issue is addressed in [Jeffrey and Gupta, 2007].
 Briand, Bunse, and Daly [2001] discuss the maintainability of object-oriented designs. Experiments
to assess the impact of design pattern documentation on postdelivery maintenance are described in
[Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002]. The maintainability of object-oriented soft-
ware is discussed in [Lim, Jeong, and Schach, 2005] and [Freeman and Schach, 2005]. The impact
of UML diagrams on maintenance is described in [Arisholm, Briand, Hove, and Labiche, 2006]; the
costs and benefi ts in [Dzidek, Arisholm, and Briand, 2008]. A tool that supports incremental software
maintenance while ensuring consistency between the artifacts is described in [Reiss, 2006]. Automated
refactoring to reduce the cost of maintaining object-oriented software is proposed in [O’Keeffe and Ó
Cinnéide, 2008]. Lack of effectiveness of software metrics in identifying fault-prone classes in postde-
livery maintenance (as opposed to during development) is discussed in [Shatnawi and Li, 2008].
 Papers on software maintenance appear in the September 2006 issue of IEEE Transactions on
Software Engineering ; [Briand, Labiche, and Leduc, 2006] is of particular interest. The proceedings
of the annual Conference on Software Maintenance and Reengineering, as well as the International
Conference on Software Maintenance and Evolution, are broadly based sources of information on all
aspects of maintenance.

sch76183_ch16_551-570.indd 567sch76183_ch16_551-570.indd 567 07/06/10 11:43 AM07/06/10 11:43 AM

 16.4 Repeat Problem 16.2 for the product of Problem 8.8 that checks whether a bank statement is correct.

 16.5 Repeat Problem 16.2 for the automated teller machine of Problem 8.9.

 16.6 You are the manager in charge of postdelivery maintenance in a large software organization.
What qualities do you look for when hiring new employees?

 16.7 What are the implications of postdelivery maintenance for a one-person software production
organization?

 16.8 You have been asked to build a computerized defect report fi le. What sort of data would you
store in the fi le? What sorts of queries could be answered by your tool? What sorts of queries
could not be answered by your tool?

 16.9 You receive a memo from the vice-president for software maintenance of Ye Olde Fashioned
Software Corporation (Problem 15.29), pointing out that, for the foreseeable future, Olde
Fashioned will have to maintain tens of millions of lines of COBOL 85 code and asking your
advice with regard to CASE tools for such postdelivery maintenance. What do you reply?

 16.10 Now you are told that the tens of millions of lines of COBOL 85 code (Problem 16.9) have
to be reimplemented in an object-oriented language, either in COBOL 2002 or in C++/Java.
Which of the two would you choose: COBOL 2002 or C++/Java? Justify your answer.

 16.11 If Ye Olde Fashioned Software Corporation decides to reimplement their code in COBOL
2002 (see Problem 16.10), what strategy would you follow?

 16.12 If Ye Olde Fashioned Software Corporation decides to reimplement their code in C++/Java
(see Problem 16.10), what strategy would you follow?

 16.13 What role does reuse play in your answers to Problems 16.11 and 16.12?

 16.14 What role does portability play in your answers to Problems 16.11 and 16.12?

 16.15 (Term Project) Suppose that the product for Chocoholics Anonymous in Appendix A has been
implemented exactly as described. Now the product has to be modifi ed to include endocri-
nologists as providers. In what ways will the existing product have to be changed? Would it be
better to discard everything and start again from scratch? Compare your answer to the answer
you gave to Problem 1.19.

 16.16 (Case Study) Improve the aesthetic appearance of the reports in the implementation of Section
15.8 by adjusting the horizontal alignment of the various components.

 16.17 (Case Study) Suppose that the requirements of the MSG Foundation are changed so that a
couple will never have to pay more than 26 percent of their gross income each week to the
MSG Foundation (rather than the 28 percent as currently stipulated). In how many places does
the implementation of Section 15.8 have to be changed?

 16.18 (Case Study) The MSG Foundation has decided that it will now operate on a monthly basis,
rather than a weekly basis. Modify the implementation of Section 15.8 accordingly.

 16.19 (Case Study) Replace the menu-driven input routines in the implementation of Section 15.8
with a graphical user interface (GUI).

 16.20 (Case Study) Modify the implementation of Section 15.8 so that it runs under Linux.

 16.21 (Case Study) Modify the implementation of Section 15.8 to make it Web-based.

 16.22 (Readings in Software Engineering) Your instructor will distribute copies of [Freeman and
Schach, 2005]. Do you feel that the paper resolves the question of whether object orientation
promotes maintainability? Justify your answer.

 References [Antoniol, Cimitile, Di Lucca, and Di Penta, 2004] G. ANTONIOL , A. CIMITILE , G. A. DI LUCCA, AND M.
 DI PENTA , “Assessing Staffi ng Needs for a Software Maintenance Project through Queuing Simula-
tion,” IEEE Transactions on Software Engineering 30 (January 2004), pp. 43–58.

568 Part B The Workfl ows of the Software Life Cycle

sch76183_ch16_551-570.indd 568sch76183_ch16_551-570.indd 568 07/06/10 11:43 AM07/06/10 11:43 AM

 [Arisholm, Briand, Hove, and Labiche, 2006] E. ARISHOLM , L. C. BRIAND , S. E. HOVE, AND Y. LABICHE ,
“The Impact of UML Documentation on Software Maintenance: An Experimental Evaluation,”
 IEEE Transactions on Software Engineering 32 (June 2006), pp. 365–81.

 [Bandi, Vaishnavi, and Turk, 2003] R. K. BANDI , V. K. VAISHNAVI, AND D. E. TURK , “Predicting Main-
tenance Performance Using Object-Oriented Design Complexity Metrics,” IEEE Transactions on
Software Engineering 29 (January 2003), pp. 77–87.

 [Briand, Bunse, and Daly, 2001] L. C. BRIAND , C. BUNSE, AND J. W. DALY , “A Controlled Experiment
for Evaluating Quality Guidelines on the Maintainability of Object-Oriented Designs,” IEEE
Transactions on Software Engineering 27 (June 2001), pp. 513–30.

 [Briand, Labiche, and Leduc, 2006] L. C. BRIAND , Y. LABICHE, AND J. LEDUC , “Toward the Reverse
Engineering of UML Sequence Diagrams for Distributed Java Software,” IEEE Transactions on
Software Engineering 32 (September 2006), pp. 642–63.

 [Dzidek, Arisholm, and Briand, 2008] W. J. DZIDEK , E. ARISHOLM, AND L. C. BRIAND , “A Realistic
Empirical Evaluation of the Costs and Benefi ts of UML in Software Maintenance,” IEEE Trans-
actions on Software Engineering 34 (May–June 2008), pp. 407–32.

 [Ebner and Kaindl, 2002] G. EBNER AND H. KAINDL , “Tracing All Around in Reengineering,” IEEE
Software 19 (May–June 2002), pp. 70–77.

 [Fioravanti and Nesi, 2001] F. FIORAVANTI AND P. NESI , “Estimation and Prediction Metrics for Adap-
tive Maintenance Effort of Object-Oriented Systems,” IEEE Transactions on Software Engineer-
ing 27 (December 2001), pp. 1062–84.

 [Freeman and Schach, 2005] G. L. FREEMAN , JR. AND S. R. SCHACH , “The Task-Dependent Nature of
the Maintenance of Object-Oriented Programs,” Journal of Systems and Software 76 (May 2005),
pp. 195–206.

 [Harrold, Rosenblum, Rothermel and Weyuker, 2001] M. J. HARROLD , D. ROSENBLUM , G. ROTHER-
MEL, AND E. WEYUKER , “Empirical Studies of a Prediction Model for Regression Test Selection,”
 IEEE Transactions on Software Engineering 27 (March 2001), pp. 248–63.

 [Jacobson, Booch, and Rumbaugh, 1999] I. JACOBSON , G. BOOCH, AND J. RUMBAUGH , The Unifi ed
Software Development Process, Addison-Wesley, Reading, MA, 1999.

 [Jeffrey and Gupta, 2007] D. JEFFREY AND N. GUPTA , “Improving Fault Detection Capability by
Selectively Retaining Test Cases during Test Suite Reduction,” IEEE Transactions on Software
Engineering 33 (February 2007), pp. 108–23.

 [Ko, Myers, Coblenz, and Aung, 2006] A. J. KO, B. A. MYERS , M. J. COBLENZ, AND H. H. AUNG , “An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant Information during Software
Maintenance Tasks,” IEEE Transactions on Software Engineering 32 (December 2006), pp. 971–87.

 [Lientz, Swanson, and Tompkins, 1978] B. P. LIENTZ , E. B. SWANSON, AND G. E. TOMPKINS , “Char-
acteristics of Application Software Maintenance,” Communications of the ACM 21 (June 1978),
pp. 466–71.

 [Lim, Jeong, and Schach, 2005] J. S. LIM , S. R. JEONG, AND S. R. SCHACH , “An Empirical Inves-
tigation of the Impact of the Object-Oriented Paradigm on the Maintainability of Real-World
Mission-Critical Software,” Journal of Systems and Software 77 (August 2005), pp. 131–38.

 [Lotto, 1515] L. LOTTO , Giovanni Agostino della Torre and his Son, Niccolò , oil on canvas, 1515,
 www.nationalgallery.org.uk/cgi-bin/WebObjects.dll/CollectionPublisher.woa/wa/largeI
mage?workNumber=NG699 .

 [Loukides and Oram, 1997] M. K. LOUKIDES AND A. ORAM , Programming with GNU Software ,
O’Reilly and Associates, Sebastopol, CA, 1997.

 [O’Keeffe and Ó Cinnéide, 2008] M. O’ KEEFFE AND M. Ó CINNÉIDE, “Software Reliability Prediction
by Soft Computing Techniques,” Journal of Systems and Software 81 (April 2008), pp. 502–16.

Chapter 16 Postdelivery Maintenance 569

sch76183_ch16_551-570.indd 569sch76183_ch16_551-570.indd 569 07/06/10 11:43 AM07/06/10 11:43 AM

www.nationalgallery.org.uk/cgi-bin/WebObjects.dll/CollectionPublisher.woa/wa/largeImage?workNumber=NG699
www.nationalgallery.org.uk/cgi-bin/WebObjects.dll/CollectionPublisher.woa/wa/largeImage?workNumber=NG699

 [Parnas, 1999] D. L. PARNAS , “Ten Myths about Y2K Inspections,” Communications of the ACM 42
(May 1999), p. 128.

 [Pigoski, 1996] T. M. PIGOSKI , Practical Software Maintenance: Best Practices for Managing Your
Software Investment , John Wiley and Sons, New York, 1996.

 [Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002] L. PRECHELT , B. UNGER - LAMPRECHT , M.
 PHILIPPSEN, AND W. F. TICHY , “Two Controlled Experiments in Assessing the Usefulness of Design
Pattern Documentation in Program Maintenance,” IEEE Transactions on Software Engineering
 28 (June 2002), pp. 595–606.

 [Rajlich, Wilde, Buckellew, and Page, 2001] V. RAJLICH , N. WILDE , M. BUCKELLEW, AND H. PAGE ,
“Software Cultures and Evolution,” IEEE Computer 34 (September 2001), pp. 24–28.

 [Reiss, 2006] S. P. REISS , “Incremental Maintenance of Software Artifacts,” IEEE Transactions on
Software Engineering 32 (September 2006), pp. 682–97.

 [Rochkind, 1975] M. J. ROCHKIND , “The Source Code Control System,” IEEE Transactions on Soft-
ware Engineering SE-1 (October 1975), pp. 255–65.

 [Rothermel, Untch, Chu, and Harrold, 2001] G. ROTHERMEL , R. H. UNTCH , C. CHU, AND M. J. HAR-
ROLD , “Prioritizing Test Cases for Regression Test Cases,” IEEE Transactions on Software Engi-
neering 27 (October 2001), pp. 929–48.

 [Samoladas, Stamelos, Angelis, and Oikonomou, 2005] I. SAMOLADAS , I. STAMELOS , L. ANGELIS,
AND A. OIKONOMOU , “Open Source Software Development Should Strive for Even Greater Code
Maintainability,” Communications of the ACM 47 (October 2004), pp. 83–87.

 [Schmerl et al., 2006] B. SCHMERL , J. ALDRICH , D. GARLAN , R. KAZMAN, AND H. YAN , “Discover-
ing Architectures from Running Systems,” IEEE Transactions on Software Engineering 32 (July
2006), pp. 454–66.

 [Shatnawi and Li, 2008] R. SHATNAWI AND W. LI , “The Effectiveness of Software Metrics in Identi-
fying Error-Prone Classes in Post-Release Software Evolution Process,” Journal of Systems and
Software 81 (November 2008), pp. 1868–82.

 [Sillito, Murphy, and De Volder, 2008] J. SILLITO , G. C. MURPHY, AND K. DE VOLDER , “Asking and
Answering Questions during a Programming Change Task,” IEEE Transactions on Software
Engineering 34 (July–August 2008), pp. 434–51.

 [Tichy, 1985] W. F. TICHY , “RCS—A System for Version Control,” Software—Practice and Experi-
ence 15 (July 1985), pp. 637–54.

570 Part B The Workfl ows of the Software Life Cycle

sch76183_ch16_551-570.indd 570sch76183_ch16_551-570.indd 570 07/06/10 11:43 AM07/06/10 11:43 AM

571

 Chapter 17
More on UML
 Learning Objectives

After studying this chapter, you should be able to

 • Model software using UML use cases, class diagrams, notes, use-case diagrams,
interaction diagrams, statecharts, activity diagrams, packages, component
diagrams, and deployment diagrams.

 • Appreciate that UML is a language, not a methodology.

 During the course of this book, various elements of UML [Booch, Rumbaugh, and Jacob-
son, 1999] have been introduced. Specifi cally, the notation for class diagrams, inheritance,
aggregation, and association was described in Chapter 7 . In Chapter 11 , use cases, use-case
diagrams, and notes were introduced; in Chapter 13 , statecharts, interaction diagrams, and
sequence diagrams were added.
 This subset of UML is adequate for understanding this book and for doing all the
exercises, as well as the term project of Appendix A. However, real-world software prod-
ucts are, unfortunately, much larger and considerably more complex than the MSG Foun-
dation case study or the term project of Appendix A. Accordingly, in this chapter more
material on UML is presented, as preparation for entering the real world.
 Before reading this chapter, it is necessary to be aware that UML, like all state-of-the-art
computer languages, is constantly changing. When this book was written, the latest version
of UML was Version 2.0. By this time, however, some aspects of UML may have changed.
As explained in Just in Case You Wanted to Know Box 3.2, UML is now under the control
of the Object Management Group. Before proceeding, it would probably be a good idea to
check for updates to UML at the OMG website, www.omg.org .

 17.1 UML Is Not a Methodology
 Before looking at UML in more detail, it is essential to clarify what UML is and, more
importantly, what UML is not. UML is an acronym for Unifi ed Modeling Language. That
is, UML is a language . Consider a language like English. English can be used to write

sch76183_ch17_571-589.indd 571sch76183_ch17_571-589.indd 571 07/06/10 11:44 AM07/06/10 11:44 AM

www.omg.org

572 Part B The Workfl ows of the Software Life Cycle

novels, encyclopedias, poems, prayers, news reports, and even textbooks on software engi-
neering. That is, a language is simply a tool for expressing ideas. A specifi c language does
not constrain the types of ideas that can be described by that language or the way that they
can be described.
 As a language, UML can be used to describe software developed using the traditional
paradigm or any of the many versions of the object-oriented paradigm, including the Uni-
fi ed Process. In other words, UML is a notation, not a methodology. It is a notation that can
be used in conjunction with any methodology.
 In fact, UML is not merely a notation; it is the notation. It is hard to imagine a mod-
ern book on software engineering that does not use UML to describe software. UML has
become a world standard, so much so that someone unfamiliar with UML would have dif-
fi culty functioning today as a software professional.
 The title of this chapter is “More on UML.“ Bearing in mind the central role played by
UML, it would seem essential for all of UML to be presented here. However, the manual
for Version 2.0 of UML is over 1200 pages long, so complete coverage would probably not
be a good idea. But is it possible to be a competent software professional without knowing
every single aspect of UML?
 The key point is that UML is a language. The English language has over 100,000 words,
but almost all speakers of English seem to manage perfectly well with just a subset of
the complete English vocabulary. In the same way, in this chapter all the types of UML
diagrams are described, together with many (but by no means all) of the various options
for each of those diagrams. The small subset of UML presented in Chapters 7 , 11 , and 13
is adequate for the purposes of this book. In the same way, the larger subset of UML pre-
sented in this chapter is adequate for the development and maintenance of most software
products.

 17.2 Class Diagrams
 The simplest possible class diagram is shown in Figure 17.1 . It depicts the Bank
Account Class . More details of Bank Account Class are shown in the class diagram
of Figure 17.2 . A key aspect of UML is that both Figures 17.1 and 17.2 are valid class
diagrams. In other words, in UML as many or as few details may be added as are judged
appropriate for the current iteration and incrementation.

 FIGURE 17.1 The simplest
possible class diagram.

Bank Account Class

 FIGURE 17.2 The class
diagram of Figure 17.1
with an attribute and two
operations added.

accountBalance

deposit ()
withdraw ()

Bank Account Class

sch76183_ch17_571-589.indd 572sch76183_ch17_571-589.indd 572 07/06/10 11:44 AM07/06/10 11:44 AM

Chapter 17 More on UML 573

 This freedom of notation extends to objects. The notation bank account may be
informally used for one specifi c object of this class. The full UML notation is

 bank account : Bank Account Class

 That is, bank account is an object, an instance of a class Bank Account Class .
In more detail, the underlining denotes an object, the colon denotes “an instance of,” and
the boldface and initial uppercase letters in Bank Account Class denote this is a class.
However, UML allows us to use a shorter notation bank account when there is no
ambiguity.
 Now suppose we wish to model the concept of an arbitrary bank account. That is, we do
not wish to refer to one specifi c object of Bank Account Class . The UML notation for
this is

 : Bank Account Class

 As just pointed out, the colon means “an instance of,” so : Bank Account Class
means “an instance of class Bank Account Class ,” which is precisely what we wanted
to model. This notation is widely used in Chapter 13 . Conversely, in Figure 13.51, a com-
munication diagram for the realization of a scenario of the use case Update Estimated
Annual Operating Expenses of the MSG Foundation software product, the actor
is labeled MSG Staff Member and not : MSG Staff Member (the labeling of other
items in that diagram) precisely because MSG Staff Member denotes that MSG Staff
Member is an actor, whereas : MSG Staff Member would denote “an instance of the
[nonexistent] MSG Staff Member Class .”
 Section 7.6 introduced the concept of information hiding. In UML, the prefi x + indi-
cates that an attribute or operation is public , and similarly the prefi x – denotes that the
attribute or operation is private. This notation is used in Figure 17.3 . The attribute of
 Bank Account Class is declared to be private (so that we can achieve information
hiding), whereas both the operations are public so that they can be invoked from any-
where in the software product. A third standard type of visibility, protected , uses the
prefi x #. If an attribute is public , it is visible everywhere; if it is private , it is visible only
in the class in which it is defi ned, and if it is protected , it is visible both within the class
in which it is defi ned and within subclasses of that class.
 Up to now in this chapter, class diagrams containing only one class have been presented.
Section 17.2.1 considers class diagrams with more than one class.

 17.2.1 Aggregation
Consider Figure 17.4 , which models the statement: “A car consists of a chassis, an engine,
wheels, and seats.” Recall that the open diamonds denote aggregation. Aggregation is the
UML term for the part–whole relationship ; the parts of a car are the chassis, engine,

 FIGURE 17.3
The class
diagram of
 Figure 17.2
with visibility
prefi xes added.

� accountBalance

� deposit ()
� withdraw ()

Bank Account

sch76183_ch17_571-589.indd 573sch76183_ch17_571-589.indd 573 07/06/10 11:44 AM07/06/10 11:44 AM

574 Part B The Workfl ows of the Software Life Cycle

wheels, and seats. The diamond is placed at the “whole” (car) end, not the “part” (chassis,
engine, wheels, or seats) end of the line connecting a part to the whole.

 17.2.2 Multiplicity
Now suppose that we want to use UML to model the statement: “A car consists of one
chassis, one engine, four or fi ve wheels, an optional sunroof, zero or more fuzzy dice hang-
ing from the rearview mirror, and two or more seats.” This is shown in Figure 17.5 . The
numbers next to the ends of the lines denote multiplicity , the number of times that the one
class is associated with the other class.
 First consider the line connecting Chassis Class to Car Class . The 1 at the “part” end
of the line denotes that one chassis is involved in this relationship, and the 1 at the “whole”
end denotes that one car is involved; that is, each car has one chassis. Similar observations
hold for the line connecting Engine Class to Car Class .

 FIGURE 17.4 An aggregation example.

 FIGURE 17.5 Aggregation example with multiplicities.

Engine ClassChassis Class Seats ClassWheels Class

Car Class

1

1 1 4..5 0..1 2..**

1 1 1 1 1

Car Class

Wheels ClassEngine ClassChassis Class Sunroof Class Fuzzy Dice Class Seats Class

sch76183_ch17_571-589.indd 574sch76183_ch17_571-589.indd 574 07/06/10 11:44 AM07/06/10 11:44 AM

 Now consider the line connecting Wheels Class to Car Class . The 4..5 at the “part”
end together with the 1 at the “whole” end denotes that each car has from four to fi ve
wheels (the fi fth wheel is the spare). Because instances of classes come in whole numbers
only, this means that the UML diagram models the statement that a car has four or fi ve
wheels, as required.
 In general, the two dots .. denote a range. Consequently, 0..1 means zero or one, which
is the UML way of denoting “optional.” That is why there is the 0..1 next to the line con-
necting Sun Roof Class to Car Class .
 Now look at the line connecting Fuzzy Dice Class to Car Class . At the “part” end,
the label is *. An asterisk by itself denotes “zero or more.” Accordingly, the * in Figure 17.5
means that a car has zero or more fuzzy dice hanging from the rearview mirror. (If you
want to know more about that asterisk, see Just in Case You Wanted to Know Box 17.1.)
 Now look at the line connecting Seats Class to Car Class . At the “part” end, the
label is 2..*. An asterisk by itself denotes “zero or more”; an asterisk in a range denotes “or
more.” Consequently, the 2..* in Figure 17.5 means that a car has two or more seats.
 Therefore, in UML if the exact multiplicity is known, that number is used. An example is the
 1 that appears in eight places in Figure 17.5 . If the range is known, the range notation is used,
as with the 0..1 or 4..5 in Figure 17.5 . And if the number is unspecifi ed, the asterisk is used. If
the upper limit in a range is unspecifi ed, the range notation is combined with the asterisk nota-
tion, as with the 2..* in Figure 17.5 . In passing, the multiplicity notation of UML is based on the
entity–relationship diagrams of traditional database theory (see Section 12.6).

 17.2.3 Composition
Another example of aggregation is shown in Figure 17.6 , which models the relationship
between a chessboard and its squares; every chessboard consists of 64 squares. In fact, this
relationship goes further; it is an example of composition , a stronger form of aggrega-
tion. As previously stated, association models the part–whole relationship. When there is
composition, then, in addition, every part may belong to only one whole, and if the whole
is deleted, so are the parts. In the example, if there are a number of different chessboards,
each square belongs to only one board, and if a chessboard is thrown away, all 64 squares

 Just in Case You Wanted to Know Box 17.1
Stephen Kleene laid the foundations of recursive function theory, a branch of mathematical
logic that has had a major infl uence on computer science. The Kleene star (the asterisk that
denotes “zero or more” in diagrams like Figure 17.5) is named after him.
 The Kleene star is well known among mathematicians and computer scientists. What is
considerably less well known is that Kleene pronounced his last name as if it were written
“Clay knee” (with the accent on the fi rst syllable), and not “Clean knee.”

 FIGURE 17.6
Another
aggregation
example (but see
 Figure 17.7).

1 64

Chessboard Class Square Class

sch76183_ch17_571-589.indd 575sch76183_ch17_571-589.indd 575 07/06/10 11:44 AM07/06/10 11:44 AM

576 Part B The Workfl ows of the Software Life Cycle

on that board go as well. Composition, an extension of aggregation, is depicted with a solid
diamond, as in Figure 17.7 .

 17.2.4 Generalization
Inheritance is a required feature of object orientation. It is a special case of generaliza-
tion . The UML notation for generalization is an open triangle. Sometimes we choose to
label that open triangle with a discriminator . Consider Figure 17.8 , which models two
types of investments, bonds and stocks. The notation investmentType next to the open
triangle means that every instance of Investment Class or its two subclasses has an
attribute investmentType , and this attribute can be used to distinguish between instances
of bonds and instances of stocks.

 17.2.5 Association
In Section 7.7, an example of association involving two classes was presented in which
the direction of the association had to be clarifi ed by means of a navigation arrow in the
form of a solid triangle. Figure 7.32 is reproduced here as Figure 17.9 .

 FIGURE 17.7
Composition
example.

 FIGURE 17.8
 Generalization
(inheritance)
example with
an explicit
discriminator.

 FIGURE 17.9
An association.

1 64

Chessboard Class Square Class

Bond Class Stock Class

investmentType

Investment Class

consults

Radiologist Class Lawyer Class

sch76183_ch17_571-589.indd 576sch76183_ch17_571-589.indd 576 07/06/10 11:44 AM07/06/10 11:44 AM

Chapter 17 More on UML 577

 In some cases, the association between the two classes may itself need to be modeled
as a class. For example, suppose the radiologist in Figure 17.9 consults the lawyer on a
number of different occasions, on each occasion for a different length of time. To enable the
lawyer to bill the radiologist correctly, a class diagram such as that depicted in Figure 17.10
is needed. Now consults has become a class, Consults Class , called an association
class (because it is both an association and a class).

 17.3 Notes
 When we want to include a comment in a UML diagram, we put it in a note (a rectangle
with the top right-hand corner bent over). A dashed line is then drawn from the note to the
item to which the note refers. Figure 13.41 shows a note.

 17.4 Use-Case Diagrams

 As described in Section 11.4.3, a use case is a model of the interaction between external
users of a software product (actors) and the software product itself. More precisely, an
actor is a user playing a specifi c role. A use-case diagram is a set of use cases.
 In Section 11.4.3, generalization within the context of actors was described, as depicted
in Figure 11.2. Figure 17.11 is another example; it shows that a Manager is a special case
of an Employee . As with classes, the open triangle points toward the more general case.

 17.5 Stereotypes
 The three primary tax forms for U.S. personal income tax are Forms 1040, 1040A, and
1040EZ. Figure 17.12 shows that use cases Prepare Form 1040, Prepare Form

 FIGURE 17.10 An association class. FIGURE 17.11
 Generalization
of an actor.

consults

dateOfConsultation
lengthOfConsultation

Radiologist Class Lawyer Class

Consults Class
Employee

Manager

sch76183_ch17_571-589.indd 577sch76183_ch17_571-589.indd 577 07/06/10 11:44 AM07/06/10 11:44 AM

578 Part B The Workfl ows of the Software Life Cycle

1040A, and Prepare Form 1040EZ all incorporate the use case Print Tax Form ,
as indicated by the include relationship, represented by a stereotype.
 A stereotype in UML is a way of extending UML. That is, if we need to defi ne a con-
struct that is not in UML, we can do it. Three stereotypes were presented in Chapter 12 :
boundary, control, and entity classes. In general, the names of stereotypes appear between
 guillemets [Wikipedia, 2010], for example, «this is my own construct» . Accordingly,
instead of using the special symbol for a boundary class, the standard rectangular symbol
for a class could have been used with the notation «boundary class» inside the rectangle
and similarly for control and entity classes.
 The include relationship shown in Figure 17.12 is treated in UML as a stereotype;
hence the notation «include» in that fi gure to denote common functionality, in this instance
the use case Print Tax Form (Figure 11.41). Another relationship is the extend
 relationship , where one use case is a variation of the standard use case. For example, we
may wish to have a separate use case to model the situation of a diner ordering a burger but
turning down the fries. The notation «extend» is similarly used for this purpose, as shown
in Figure 17.13 . However, for this relationship, the open-headed arrow goes in the other
direction.

 FIGURE 17.12
The use cases
 Prepare
Form 1040 ,
 Prepare
Form 1040A ,
and Prepare
Form
1040EZ
incorporate
the use case
 Print Tax
Form .

 FIGURE 17.13 Use case Order a Burger showing the variation when the customer turns
down the fries.

Tax Preparation
Software Product

Print Tax Form
«include»

Tax Preparer

«include»

«in
clu

de»

Prepare Form
1040

Prepare Form
1040A

Prepare Form
1040EZ

Frederick’s Fast Food

Order a Burger
«extend» Turn Down

the Fries

Server Customer

sch76183_ch17_571-589.indd 578sch76183_ch17_571-589.indd 578 07/06/10 11:44 AM07/06/10 11:44 AM

Chapter 17 More on UML 579

 17.6 Interaction Diagrams
 Interaction diagrams show the way that the objects in the software product interact with
one another. In Chapter 13 , both types of interaction diagram supported by UML were
presented: sequence diagrams and communication diagrams.
 First, consider sequence diagrams . Suppose that someone interactively orders
an item over the Internet, but when the overall total, including sales tax and delivery
charges, is displayed, the buyer decides that the price is too high and cancels the order.
 Figure 17.14 depicts the dynamic creation and subsequent dynamic destruction of the
order.

 1. Consider the lifelines in Figure 17.14 . When an object is active, this is denoted by a thin
rectangle (activation box) in place of the dashed line. For example, the : Price Class

 FIGURE 17.14
A sequence
diagram
showing
dynamic
creation and
destruction of an
object, return,
and explicit
activation.

: User
Interface

Class

: Order
Class

: Price
Class

: Assemble
Order
Control

Class
1: Give order
 details

2: Transfer details

3: Create order

7: Provide price
8: Display price

4: Return new
 order

5: Determine price of order

6: Return price

9: [price too high] Destroy order

Buyer

sch76183_ch17_571-589.indd 579sch76183_ch17_571-589.indd 579 07/06/10 11:44 AM07/06/10 11:44 AM

580 Part B The Workfl ows of the Software Life Cycle

object is active from message 5: Determine price of order until message 6: Return
price , and similarly for the other objects.

 2. The : Order Class object is created only when the : Assemble Order Control
Class sends message 3: Create order to the : Order Class object. This is denoted by
the lifeline starting at only the point of dynamic creation.

 3. Figure 17.14 also shows the destruction of the : Order Class object after the : Order
Class object receives the message 9: [price too high] Destroy order . The destruction
is denoted by the heavy X .

 4. This destruction takes place after a return has taken place, denoted by the dashed hori-
zontal line below event 9, terminated by an open arrow. In the rest of the sequence
diagram, each message is eventually followed by a message sent back to the object that
sent the original message. In fact, this reciprocity is optional; it is perfectly valid to send
a message without eventually receiving any sort of reply. Even if there is a reply, it is
not necessary that a specifi c new message be sent back. Instead, a dashed line ending
in an open arrow is drawn (a return) to indicate a return from the original message, as
opposed to a new message.

 5. There is a guard on message 9: [price too high] Destroy order . That is, message 9 is
sent only if the buyer decides not to purchase the item because the price is too high. A
 guard (condition) is something that is true or false; only if it is true is the message sent.
In Section 17.7, guards are described within the context of statecharts, but here they are
used in a sequence diagram.

 (In Figure 17.14 , the message 9: [price too high] Destroy order should be sent from
the Buyer to the : User Interface Class object, and the latter should then send a mes-
sage to the : Assemble Order Control Class object. Next, the : Assemble Order
Control Class object should send a message to the : Order Class object, instructing
it to destroy the order. To highlight dynamic destruction of an object, these details have
been suppressed in Figure 17.14 .)
 Many other options are supported by UML interaction diagrams. For example, suppose
we model an elevator going up. We do not know in advance which elevator button will be
pressed, so we have no idea how many fl oors up the elevator will go. We model this itera-
tion by labeling the relevant message *move up one fl oor, as shown in Figure 17.15 . The
asterisk is, once again, the Kleene star (see Just in Case You Wanted to Know Box 17.1). So
this message means, “move up zero or more fl oors.”
 An object can send a message to itself. This is termed a self-call . For example, suppose
that the elevator has arrived at a fl oor. The elevator controller sends a message to the eleva-
tor doors to open. Once the return has been received, the elevator controller sends a mes-
sage to itself to start its timer; this self-call is also shown in Figure 17.15 . At the end of the
time period, the elevator controller sends a message to the doors to close. When the second
return has been received (that is, when the doors have been safely closed), the elevator is
instructed to move again.
 Turning now to communication diagrams (collaboration diagrams in earlier
versions of UML), it was stated in Section 13.15.1 that communication diagrams are equiv-
alent to sequence diagrams. So, all the features of sequence diagrams presented in this
section are equally applicable to communication diagrams, such as Figure 13.36.

sch76183_ch17_571-589.indd 580sch76183_ch17_571-589.indd 580 07/06/10 11:44 AM07/06/10 11:44 AM

Chapter 17 More on UML 581

 17.7 Statecharts
 Consider the statechart of Figure 17.16 . This is similar to the statechart of Figure 13.25,
but modeled using guards instead of events. It shows the start state (the solid circle) with an
unlabeled transition leading to state MSG Foundation Event Loop . Five transitions
lead from that state, each with a guard, that is, a condition that is true or false. When one of
the guards becomes true, the corresponding transition takes place.
 An event also causes transitions between states. A common event is the receipt of a
message. Consider Figure 17.17 , which depicts a part of a statechart for an elevator. The
elevator is in state Elevator Moving . It stays in motion, performing operation Move up
one fl oor , while guard [no message received yet] remains true, until it receives the mes-
sage Elevator has arrived at fl oor. The receipt of this message (event) causes the guard to
be false and also enables a transition to state Stopped At Floor . In this state, the activity
 Open the elevator doors is performed.
 So far, transition labels have been in the form of [guard] or event . In fact, the most
general form of a transition label is

 event [guard] / action

 That is, if event has taken place and [guard] is true, then the transition occurs and,
while it is occurring, action is performed. An example of such a transition label is shown

 FIGURE 17.15
A sequence
diagram
showing
iteration and
self-call.

open doors

close doors

start timer

: Elevator
Controller : Elevator

: Elevator
Doors

*move up one floor

*move up one floor

sch76183_ch17_571-589.indd 581sch76183_ch17_571-589.indd 581 07/06/10 11:44 AM07/06/10 11:44 AM

582 Part B The Workfl ows of the Software Life Cycle

 FIGURE 17.16 A statechart for the MSG Foundation case study.

in Figure 17.18 , which is equivalent to Figure 17.17 . The transition label is Elevator has
arrived at fl oor [a message has been received] / Open the elevator doors . The guard
 [a message has been received] is true when the event Elevator has arrived at fl oor has
occurred and a message to this effect has been sent. The action to be taken, indicated by
the instruction following the slash / , is Open the elevator doors.
 Comparing Figures 17.17 and 17.18 , we see that there are two places where an action
can be performed in a statechart. First, as refl ected in state Stopped At Floor in
 Figure 17.17 , an action can be performed when a state is entered. Such an action is called
an activity in UML. Second, as shown in Figure 17.18 , an action can take place as part
of a transition. (Technically, there is a slight difference between an activity and an action.

 FIGURE 17.17
A portion of a
statechart for
an elevator.

MSG Foundation Event Loop

Estimating Funds
 For The Week

Estimate and print
funds available for
the current week

[estimate funds
 for the week

selected]

Managing An Asset

Add, delete, or
modify a mortgage
or investment

[manage
an asset

 selected]

Updating
Estimated Annual

Operating Expenses

Update the
estimated annual
operating expenses

[update estimated
annual operating

expenses selected]

Producing A
Report

Print a list of all
mortgages or
investments

[produce
a report
selected]

[quit
selected]

Elevator Moving

Move up one floor

Stopped At Floor

Open the elevator doors

Elevator has
arrived at floor

[no message
received yet]

sch76183_ch17_571-589.indd 582sch76183_ch17_571-589.indd 582 07/06/10 11:44 AM07/06/10 11:44 AM

Chapter 17 More on UML 583

An action is assumed to take place essentially instantaneously, but an activity may take
place less quickly, perhaps over several seconds.)
 UML supports a wide variety of different types of actions and events in statecharts. For
instance, an event can be specifi ed in terms of words like when or after . Therefore, an event
might stipulate when (cost > 1000) or after (2.5 seconds) .
 A statechart with a large number of states tends to have a large number of transitions. The
many arrows representing these transitions soon make the statechart look like a large bowl
of spaghetti. One technique for dealing with this is to use a superstate . Consider the state-
chart of Figure 17.19(a) . The four states A , B , C , and D all have transitions to Next State .
 Figure 17.19(b) shows how these four states can be combined into one superstate, ABCD
Combined , which needs only one transition, as opposed to the four in Figure 17.19(a) .
This reduces the number of arrows from four to only one. At the same time, states A , B , C ,
and D still exist in their own right, so any existing actions associated with those states are not
affected nor are any existing transitions into those states. Another example of a superstate is
shown in Figure 17.20 , where the four lower states of Figure 17.16 are unifi ed into one super-
state, MSG Foundation Combined , leading to a cleaner and clearer diagram.

 17.8 Activity Diagrams
 Activity diagrams show how various events are coordinated. They are therefore used
when activities are carried out in parallel.
 Suppose a couple seated at a restaurant orders their meal. One orders a chicken dish;
the other orders fi sh. The waiter writes down their order and hands the order to the chef
so that she knows what dishes to prepare. It does not matter which dish is completed fi rst
because the meal is served only when both dishes have been prepared. This is shown in

 FIGURE 17.18 A statechart equivalent
to Figure 17.17 .

 FIGURE 17.19 Statechart (a) without
and (b) with superstate.

Elevator Moving

Move up one floor

Stopped At Floor

Elevator has arrived at
floor [a message has
been received]/Open

the elevator doors

[no message
received yet]

Next State

A B C D

Next State

A B C D

ABCD Combined

(a)

(b)

sch76183_ch17_571-589.indd 583sch76183_ch17_571-589.indd 583 07/06/10 11:44 AM07/06/10 11:44 AM

584 Part B The Workfl ows of the Software Life Cycle

 Figure 17.21 . The upper heavy horizontal line is called a fork, and the lower one is called
a join . In general, a fork has one incoming transition and many outgoing transitions, each
of which starts an activity to be executed in parallel with the other activities. Conversely, a
 join has many incoming transitions, each of which lead from an activity executed in paral-
lel with the other activities, and one outgoing transition that is started when all the parallel
activities have been completed.

 FIGURE 17.20 Figure 17.16 with four states combined into a superstate, MSG Foundation Combined .

 FIGURE 17.21
 An activity
diagram for a
restaurant order
for two diners.

Updating
Estimated Annual

Operating Expenses

Update the
estimated annual
operating expenses

Producing A
Report

Print a list of all
mortgages or
investments

Estimating Funds
 For The Week

Estimate and print
funds available for
the current week

Managing An Asset

Add, delete, or
modify a mortgage
or investment

MSG Foundation Event Loop

MSG Foundation Combined

[update estimated
annual operating

expenses selected]

[produce
a report
selected]

[estimate funds
 for the week

selected]

[manage
an asset

 selected]

[quit
selected]

Write down
order

Prepare
fish

Prepare
chicken

Serve
order

Fork

Join

sch76183_ch17_571-589.indd 584sch76183_ch17_571-589.indd 584 07/06/10 11:44 AM07/06/10 11:44 AM

 Activity diagrams are useful for modeling businesses where a number of activities
are carried out in parallel. For example, consider a company that assembles computers
as specifi ed by the customer. As shown in the activity diagram of Figure 17.22 , when an
order is received, it is passed on to the Assembly Department . It is also passed to the
 Accounts Receivable Department . The order is complete when the computer has
been assembled and delivered, and the customer’s payment has been processed. Each of the
three departments involved, the Assembly Department , the Order Department ,
and the Accounts Receivable Department , is in its own swimlane . In general, the
combination of forks, joins, and swimlanes shows clearly which branches of an organiza-
tion are involved in each specifi c activity, which tasks are carried on in parallel, and which
tasks have to be completed in parallel before the next task can be started.

 17.9 Packages
 As explained in Section 14.9, the way to handle a large software product is to decompose it
into relatively independent packages . The UML notation for a package is a rectangle with
a name tag, as shown in Figure 17.23 . This fi gure shows that My Package is a package,
but the rectangle is empty. This is a valid UML diagram—the diagram simply models the
fact that My Package is a package. Figure 17.24 is more interesting—it shows the contents

 FIGURE 17.22
 An activity
diagram for
a computer
assembly
company.

Assembly
Department

Order
Department

Accounts
Receivable

Department

Complete
order

Assemble
computer

Deliver
computer

Send
invoice

Process
payment

Swimlane

Receive
order

Chapter 17 More on UML 585

sch76183_ch17_571-589.indd 585sch76183_ch17_571-589.indd 585 07/06/10 11:44 AM07/06/10 11:44 AM

586 Part B The Workfl ows of the Software Life Cycle

of My Package , including a class, an entity class, and another package. We can continue
to supply more details until the package is at the appropriate level of detail for the current
iteration and incrementation.

 17.10 Component Diagrams
 A component diagram shows dependencies among software components, including
source code, compiled code, and executable load images. For example, the component
diagram of Figure 17.25 shows source code (represented by a note) and the executable
load image created from the source code .

 17.11 Deployment Diagrams
 A deployment diagram shows on which hardware component each software compo-
nent is installed (or deployed). It also shows the communication links among the hardware
components. A simple deployment diagram is shown in Figure 17.26 .

 FIGURE 17.23 The
UML notation for a
package.

 FIGURE 17.24 The
package of Figure 17.23
with more details shown.

 FIGURE 17.25 Component diagram.

My Package My Package

executable
load

image

source code

 FIGURE 17.26 A deployment diagram.

MSG
Foundation

Laptop computer

MSG Staff
Member

sch76183_ch17_571-589.indd 586sch76183_ch17_571-589.indd 586 07/06/10 11:44 AM07/06/10 11:44 AM

Chapter 17 More on UML 587

 17.12 Review of UML Diagrams
 A wide variety of different UML diagrams have been presented in this chapter. In the inter-
ests of clarity, here is a list of some of the diagram types that might be confused:

 • A use case models the interaction between actors (external users of a software product)
and the software product itself.

 • A use-case diagram is a single diagram that incorporates a number of use cases.
 • A class diagram is a model of the classes showing the static relationships among them,

including association and generalization.
 • A statechart shows states (specifi c values of attributes of objects), events that cause

transitions between states (subject to guards), and actions and activities performed by
objects. A statechart is therefore a dynamic model—it refl ects the behavior of objects,
that is, the way they react to specifi c events.

 • An interaction diagram (sequence diagram or communication diagram) shows the way
that objects interact with one another as messages are passed between them. This is
another dynamic model; that is, it also shows how objects behave.

 • An activity diagram shows how events that occur at the same time are coordinated. This
is yet another dynamic model.

 17.13 UML and Iteration
 Consider a statechart. The transitions can be labeled with a guard, an event, an action, or all
three. Now consider a sequence diagram. The lifelines may or may not include activation boxes,
there may or may not be returns, and there may or may not be guards on the messages.
 A wide range of options are available for every UML diagram. That is, a valid UML dia-
gram consists of a small required part plus any number of options. UML diagrams have so
many options for two reasons. First, not every feature of UML is applicable to every software
product, so there has to be freedom with regard to choice of options. Second, we cannot per-
form the iteration and incrementation of the Unifi ed Process unless we are permitted to add
features stepwise to diagrams, rather than create the complete fi nal diagram at the beginning.
That is, UML allows us to start with a basic diagram. We can then add optional features as we
wish, bearing in mind that, at all times, the resulting UML diagram is still valid. This is one
of the many reasons why UML is so well suited to the Unifi ed Process.

 Chapter
Review
 It is explained in Section 17.1 that UML is a language, not a methodology. Class diagrams are described

in Section 17.2. Specifi c aspects of class diagrams are discussed, including aggregation (Section 17.2.1),
multiplicity (Section 17.2.2), composition (Section 17.2.3), generalization (Section 17.2.4), and asso-
ciation (Section 17.2.5). Next, a variety of UML diagrams are presented, including notes (Section 17.3),
use-case diagrams (Section 17.4), stereotypes (Section 17.5), interaction diagrams (both sequence dia-
grams and communication diagrams; Section 17.6), statecharts (Section 17.7), activity diagrams (Sec-
tion 17.8), packages (Section 17.9), component diagrams (Section 17.10), and deployment diagrams
(Section 17.11). The chapter concludes with a review of UML diagrams (Section 17.12) and a discus-
sion of why UML is so suitable for the Unifi ed Process (Section 17.13).

sch76183_ch17_571-589.indd 587sch76183_ch17_571-589.indd 587 07/06/10 11:44 AM07/06/10 11:44 AM

588 Part B The Workfl ows of the Software Life Cycle

 For
Further
Reading

 There is no substitute for reading the current version of the UML manual, to be found at the OMG
website, www.omg.org . Two good introductory texts on UML are [Fowler and Scott, 2000] and
[Stevens and Pooley, 2000].

 Key Terms action 582
 activation box 579
 activity 582
 activity diagram 583
 actor 577
 aggregation 573
 association 576
 association class 577
 class diagram 572
 collaboration diagram 580
 communication diagram 580
 component diagram 586
 composition 575

 deployment diagram 586
 discriminator 576
 event 581
 extend relationship 578
 fork 584
 generalization 576
 guard 580
 guillemets 578
 include relationship 578
 interaction diagram 579
 join 584
 multiplicity 574
 note 577

 package 585
 part–whole relationship 573
 return 580
 self-call 580
 sequence diagram 579
 statechart 581
 stereotype 578
 superstate 583
 swimlane 585
 transition 581
 use case 577
 use-case diagram 577

 Problems 17.1 Is UML a methodology? Carefully explain your answer.

 17.2 Use UML to model airports. (Hint: Do not show any more details than are strictly needed to
answer the question.)

 17.3 Use UML to model chocolate cakes. A chocolate cake is made with eggs, fl our, sugar, baking
powder, milk, and cocoa. A chocolate cake is mixed, baked, frosted, and then eaten. To prevent
unauthorized individuals from baking a chocolate cake, the ingredients are private, as are all
but the last operation.

 17.4 Add a note to your diagram of Problem 17.3 pointing out that the cake you modeled is a
chocolate cake.

 17.5 Use UML to model the following: Turn on the oven. Mix the ingredients for a chocolate cake.
Mix the ingredients for an apple pie. Place the (raw) cake and pie in the oven. Remove the
chocolate cake when it is done. Remove the apple pie when it is done. Turn off the oven.

 17.6 How does your UML model of Problem 17.5 cope with the fact that we do not know, from the
information given, which of the two items is removed from the oven fi rst?

 17.7 Modify your model of Problem 17.6 to refl ect that the chocolate cake is prepared by the
chocolate cake baker, the apple pie by the apple pie baker, and that the oven is switched on
and off by the chief baker.

 17.8 Model chocolate cakes and apple pies using one package.

 17.9 Use UML to model dining rooms. Every dining room has to have a table, four or more chairs,
and a sideboard. Optionally, it may also have a fi replace.

 17.10 Model the dining rooms of Problem 17.9 using a combination of aggregation and
composition.

 17.11 Modify your UML model of Problem 17.9 to refl ect that a dining room is a specifi c type of
room.

sch76183_ch17_571-589.indd 588sch76183_ch17_571-589.indd 588 10/06/10 2:29 PM10/06/10 2:29 PM

www.omg.org

 17.12 Use UML to model John Cage’s somewhat controversial 1952 piano composition enti-
tled 4�33�� . The piece consists of three silent movements, of length 30 seconds, 2 minutes
23 seconds, and 1 minute 40 seconds, respectively. (The title of the piece comes from its total
length.) The pianist walks onto the stage holding a stopwatch and the score (in conventional
music notation but with blank measures). The pianist sits down on the piano stool, puts the
score and the stopwatch on the piano, opens the score, starts the stopwatch, and then signals
the start of the fi rst movement by lowering the lid of the piano. At the end of the fi rst move-
ment (that is, after 30 seconds of silence during which the pianist carefully follows the blank
score, turning the page when necessary), the lid of the piano is raised to signal the end of the
fi rst movement. These actions are repeated for the second movement (2 minutes 23 seconds)
and the third movement (1 minute 40 seconds). The pianist then closes the score, picks up the
score and the stopwatch, gets up, and leaves the stage.

 References [Booch, Rumbaugh, and Jacobson, 1999] G. BOOCH, J. RUMBAUGH, AND I. JACOBSON, The UML Users
Guide , Addison-Wesley, Reading, MA, 1999.

 [Fowler and Scott, 2000] M. FOWLER WITH K. SCOTT, UML Distilled, 2nd ed., Addison-Wesley, Upper
Saddle River, NJ, 2000.

 [Stevens and Pooley, 2000] P. STEVENS WITH R. POOLEY, Using UML: Software Engineering with
Objects and Components , updated edition, Addison-Wesley, Upper Saddle River, NJ, 2000.

[Wikipedia, 2010] WIKIPEDIA, “Guillemets,” en.wikipedia.org/wiki/Guillements, February 13, 2010.

Chapter 17 More on UML 589

sch76183_ch17_571-589.indd 589sch76183_ch17_571-589.indd 589 07/06/10 11:44 AM07/06/10 11:44 AM

 Chapter 18
Emerging
Technologies
 Learning Objectives

 After studying this chapter, you should appreciate the importance of a variety of
emerging technologies, including

 • Aspect-oriented technology

 • Model-driven technology

 • Component-based technology

 • Service-oriented technology

 • Social computing

 • Web engineering

 • Cloud technology

 • Web 3.0

 • Computer security

 • Model checking

 In what direction is software engineering moving? What are the technologies of the future?
How will we develop and maintain software in the year 2020? Or the year 2050?
 As explained in Just in Case You Wanted to Know Box 18.1, predicting the future is no easy
task. In this chapter, we give an overview of a number of promising emerging technologies that
may (or may not) be harbingers of the future direction of software engineering. The aim of this
chapter is to give the fl avor of 10 emerging technologies, with the technical details suppressed.
 The topics in this chapter are generally taught in graduate-level courses in software
engineering. They are included in this textbook for the fi rst course in software engineering
because it is important to have a basic understanding of these emerging technologies.

590

sch76183_ch18_590-600.indd 590sch76183_ch18_590-600.indd 590 07/06/10 11:45 AM07/06/10 11:45 AM

 Throughout this book we have carefully analyzed the strengths and weaknesses of the
techniques we have presented. However, it is too soon to determine the strengths and weak-
nesses of the technologies presented in this chapter.

 18.1 Aspect-Oriented Technology
 A concern of a software product is a specifi c set of behaviors of that product. For example,
in a banking product, one concern is the set of interest computations: Banks pay interest to
depositors and charge interest to borrowers. A second concern is the writing of informa-
tion to the audit trail. A core concern of a software product is a primary set of behaviors
of that product. In the banking example, interest computation is clearly primary, whereas
writing to the audit trail, though absolutely essential from the viewpoints of auditing and
security, is not a core banking concern.
 As described in Section 5.4, separation of concerns [Dijkstra, 1982] is a principle
underlying a technique for achieving modularization by designing software with each concern
isolated in its own module or group of modules, thereby maximizing cohesion and minimiz-
ing coupling (Chapter 7). However, it is sometimes impossible to achieve such a separation
of concerns. In the banking example, interest computations can probably be isolated to one or
more modules, but virtually every operation of the banking product has to write information
to the audit trail. Cross-cutting concerns are concerns that cut across module boundaries,
such as the audit trail concern in the banking product. Cross-cutting can have a deleterious
effect on maintenance, because the presence of cross-cutting can lead to regression faults; if a
concern has to be implemented in a variety of otherwise unrelated modules, a change to that
concern has to be made consistently to all instances of the concern in all relevant modules.
 When a part of a software product cross-cuts its core concerns, the principle of separation
of concerns is violated. In the banking example, the code for writing to the audit trail will
cross-cut many modules. This is illustrated in Figure 18.1(a) , which shows three modules, each
with one or more pieces of cross-cutting code for writing to the audit trail. A change to the
audit trail mechanism requires all six pieces of audit trail code to be consistently changed.
 The aim of aspect-oriented programming (AOP) is to isolate such cross-cutting
aspects by letting the developer sequester cross-cutting concerns in special modules called
 aspects . Aspects contain advice , code that is to be linked to specifi c places in the software.
An example of advice is an audit trail routine in the bank software. A pointcut is a place in the
code where the cross-cutting concern is to be applied, that is, where the advice is to be executed.
An aspect therefore consists of two pieces: the advice and its associated set of pointcuts.

 Lawrence Peter “Yogi” Berra (born in 1925) achieved fame not only as a top baseball player
and manager, but also for his witty comments, known as Yogiisms. A characteristic of a
Yogiism is that, on fi rst hearing, it appears to be meaningless, but after some thought, it
makes perfect sense. For example, his home in New Jersey was equally accessible via two
different roads that branched off at a fork. So, when giving directions to his home, he would
say: “When you come to a fork in the road, take it.”
 Regarding the subject of this chapter, Berra declared: “It’s tough making predictions,
especially about the future.”

 Just in Case You Wanted to Know Box 18.1

sch76183_ch18_590-600.indd 591sch76183_ch18_590-600.indd 591 07/06/10 11:45 AM07/06/10 11:45 AM

592 Part B The Workfl ows of the Software Life Cycle

 Separation of concerns can now be achieved by placing each cross-cutting concern into
its own aspect, thereby isolating the relevant code (the advice) and reducing the risk of a
regression fault. The pointcuts inserted into the product merely show where the specifi c
advice is to be executed. Figure 18.1(b) shows how the six pieces of audit trail code of Fig-
ure 18.1(a) are replaced by an aspect (containing advice), and six pointcuts. Now, a change
to the audit trail mechanism is localized to the aspect.
 To employ aspect-oriented programming, an aspect-oriented programming lan-
guage is needed. A compiler for an aspect-oriented programming language is called
a weaver . A major task of a weaver is to insert the relevant advice at each pointcut
before compiling the code; this operation is termed composition . That is, development
and maintenance are performed on the uncompiled source code, including its aspects
and pointcuts; separation of concerns is thereby achieved. Before the code can be com-
piled and executed, the weaver composes the code by inserting the cross-cutting code
into the correct places. Returning to Figure 18.1 , once composition has been applied to
 Figure 18.1(b) , it becomes Figure 18.1(a) . However, the composed code is rarely, if ever,
inspected by the programmer. That is, programmers work on software that resembles
 Figure 18.1(b) , not Figure 18.1(a) .

Audit trail code

Audit trail code

Audit trail code
Audit trail code

Audit trail code

Audit trail code

(a)

(b)

Aspect

Advice
X

Pointcut

X

X

X

Pointcut

X

X

 FIGURE 18.1 Banking product with cross-cutting concern. (a) Conventional design (b) Aspect-oriented design.

sch76183_ch18_590-600.indd 592sch76183_ch18_590-600.indd 592 07/06/10 11:45 AM07/06/10 11:45 AM

Chapter 18 Emerging Technologies 593

 The most popular aspect-oriented programming language is AspectJ, an aspect-oriented
extension for Java [Kiczales et al., 2001; Laddad, 2003]. Aspect-oriented implementations
have been developed for a wide variety of programming languages, including C++ and C#,
and even for COBOL [Cobble, 2004].
 Aspect-oriented programming is one part of aspect-oriented software develop-
ment (AOSD), also called early aspects . A primary aim of AOSD is the early identifi ca-
tion of both functional and nonfunctional cross-cutting concerns such as writing to audit
trails, security, error checking, and real-time constraints. Once the cross-cutting concerns
have been identifi ed, they are specifi ed (aspect-oriented analysis), modularized (aspect-
oriented design), and coded (aspect-oriented implementation).
 Aspect-oriented programming has been used in a number of commercial applications,
including IBM Websphere (Section 8.5.2), and in open-source software such as JBoss, a
Java application server.

 18.2 Model-Driven Technology
 In Section 8.6.5, the problem of porting a widget generator from one architecture to another
was solved by using the abstract factory design pattern. That is, the widget generator was
designed as an abstract class, and then implemented in terms of concrete classes, one for
each target architecture. This solution is at the design level.
 The model-driven architecture (MDA) [MDA, 2008] solves the problem of moving
a software product to a new platform at the analysis level rather than at the design level.

 1. As shown in Figure 18.2 , the functionality of the desired software product is specifi ed
by means of a platform-independent model (PIM). This is done using UML, or an ap-
propriate domain-specifi c language, that is, a special-purpose language for the specifi c
problem domain.

 2. A platform-specifi c model (PSM) is chosen, for example, CORBA, .NET, or J2EE, and
the PIM is mapped into the selected PSM. The PSM is expressed in UML.

 3. The PSM is translated into code, using an automatic code generator, and run on a
computer.

 4. If multiple platforms are required, steps 2 and 3 are repeated for each PSM.

 In other words, as can be seen in Figure 18.2 , MDA totally decouples the functionality
of a software product from the implementation of that software product, and thereby pro-
vides a powerful mechanism for achieving portability (Section 8.13).

Platform-
Specific
Model
(PSM)

Code

Implementation

Platform-
Independent

Model
(PIM)

Functionality

Map Generate

 FIGURE 18.2
 Model-driven
architecture.

sch76183_ch18_590-600.indd 593sch76183_ch18_590-600.indd 593 07/06/10 11:45 AM07/06/10 11:45 AM

594 Part B The Workfl ows of the Software Life Cycle

 Patterns play an important role in MDA-based software products. The PIM has to incor-
porate suffi cient detail to enable the mapping into the PSM to take place. This detail could
be supplied manually each time, but it is clearly preferable to supply these details via
patterns (“archetype patterns” [Arlow and Neustadt, 2004]). Furthermore, as explained
in Section 8.8, once a design pattern has been implemented, that implementation can be
reused when the pattern is reused. Similarly, in the case of MDA-based software, the map-
ping of an archetype pattern within the PIM into the PSM may already have been done.
 The key to MDA is that this approach raises the level of abstraction from the platform-
dependent code level to the platform-independent model level. A current research topic in
MDA is how to construct the necessary CASE tools to automate the approach. If the CASE
tools can indeed be built, then this will allow software engineers to develop software at
the model level. The modeling language of the PIM (a domain-specifi c language or UML)
will then be the lowest level of abstraction for software development and maintenance. The
PSM and the code will be automatically generated, and will be as “invisible” to the soft-
ware engineer of the future as machine code usually is today.

 18.3 Component-Based Technology
 The goal of component-based technology is to construct a standard collection of
reusable components. Then, instead of reinventing the wheel each time, in the future all
software will be constructed by choosing a standard architecture and standard reusable
frameworks and inserting standard reusable code artifacts into the hot spots of the frame-
works (see Chapter 8). That is, software products will be built by composing reusable
components. This will be done using an automated tool. That is, production automation is
a key aspect of component-based software engineering.
 For this technology to work, the components have to be independent, that is, fully encap-
sulated (Section 7.4). In fact, the components have to be at a higher level of abstraction
than objects, because they cannot share state. Like objects, however, they communicate by
exchanging messages.
 In Chapter 8 , the many advantages that accrue through the reuse of code artifacts, design
patterns, and software architectures are described. Hence, achieving component-based
software engineering would lead to order-of-magnitude increases in software productivity
and quality, and decreases in time to market and maintenance effort.
 Unfortunately, the state of the art with regard to reuse is currently far from this ambitious
target. In addition, component-based software construction has many challenges, including
the defi nition, standardization, and retrieval of components. However, researchers in many
centers are actively engaged in trying to achieve the goal of component-based software
engineering.

 18.4 Service-Oriented Technology
 One way to create a document on a computer is for the user to install a copy of Microsoft
Word on the user’s computer, and then use Microsoft Word to create the document on that
computer. Another alternative is for the user to open a Web browser (Section 5.8) and cre-
ate the document using Google Docs. In this case, the word-processing software stays on

sch76183_ch18_590-600.indd 594sch76183_ch18_590-600.indd 594 07/06/10 11:45 AM07/06/10 11:45 AM

Chapter 18 Emerging Technologies 595

the Google computer. (The document also resides on the Google computer, but a copy can
be downloaded to the user’s computer, for additional security.)
 Docs is a service provided by Google for the user. The American Heritage Dictio-
nary defi nes a service as “An act or a variety of work done for others . . .” [Service, 2000].
In other words, with service-oriented technology, capabilities are provided by service
providers over a network (frequently the Internet) to meet specifi c needs of service
consumers .

 18.5 Comparison of Service-Oriented and Component-
Based Technology

 Service-oriented technology has many features in common with component-based
technology:

 • First, both are instances of distributed computing; services and components are both
distributed over a network.

 • Second, both are primarily reuse technologies. In the case of service-oriented technol-
ogy, the service consumers reuse the services of the service providers. And the basis
for component-based technology is the standard collection of reusable components,
together with standard architectures and standard reusable frameworks.

 • Third, encapsulation is essential for both technologies, to ensure that the components
and the services are indeed independent (and hence reusable).

 • Fourth, both components and services are accessed through their interfaces; careful
adherence to interface specifi cations is of major importance.

 • Fifth, both components and services must have the highest possible cohesion and the
lowest possible coupling, to ensure reusability via separation of concerns.

 • Sixth, both technologies have low entry costs. With service-oriented technology, service
consumers pay for the use of services, on a pay-per-use basis or monthly subscription;
they do not need to purchase the service itself. (Some services, such as Google Docs,
are free.) With component-based technology, users compose their own software from
standard components; they do not have to pay to have custom software built.

 • Seventh, there is no need to install software, confi gure it, and then continually update
it with each new release. Instead, the latest version of software is automatically
downloaded each time. These ideas are extended in Just in Case You Wanted to Know
Box 18.2.

 • Eighth, both technologies are generally geographic location independent. Components
and services are usually accessible over the Web and can be accessed ubiquitously using
any appropriate device.

 A major difference between the two technologies is granularity. Component-based
technology constructs a software product by combining components into an executable
program, whereas service-oriented technology utilizes existing executable programs. In
other words, the basic building blocks of component-based technology are components,
whereas the basic building blocks of service-oriented technology are complete executable
programs.

sch76183_ch18_590-600.indd 595sch76183_ch18_590-600.indd 595 07/06/10 11:45 AM07/06/10 11:45 AM

 A second difference is that, although both component-based technology and service-
oriented technology are emerging technologies, early versions of service-oriented tech-
nology are already being used today by a wide variety of service consumers, whereas
component-based technology still requires breakthrough research before it can be used
in practice.

 18.6 Social Computing
 The term social computing is used in two different contexts. First, it is used in the con-
text of the ways in which computers support social behavior. This includes chat rooms,
instant messaging, e-mail, blogs, and shared work spaces like wikis. Popular sites that
allow users to interact and share data include personal profi le sites like MySpace and Face-
book, networking sites like LinkedIn, media sites like Flickr (for sharing photographs) and
YouTube (for sharing videos), and many others. In this usage, the term social computing
does not refer to the underlying technologies as such, but rather to the social interactions
and structure brought about and supported by those technologies.
 In other words, this usage of the term focuses on the “social” rather than the “comput-
ing.” For example, consider Wikipedia from this perspective. The underlying wiki tech-
nology itself is not of interest. Instead, social computing here focuses on the community
that has grown around the online encyclopedia and the interactions between the members
of that community. Disputes between contributors, fraudulent user credentials, deliberate
misstatements of facts in postings are all relevant here, as is the overall high standard of
the articles.
 Second, the term social computing is used in the context of group computations. Exam-
ples include online auctions, multiplayer online games, and collaborative fi ltering (analysis
of large data sets to extract information like “Individuals who bought Book A also bought
Book B,” to make purchase suggestions to online shoppers). Here the emphasis is on the
“computing” rather than the “social.” This usage, unlike the fi rst, therefore relates to an
emerging technology.

 18.7 Web Engineering
 As stated at the beginning of Chapter 1 , software engineering is a discipline whose aim
is the production of fault-free software delivered on time, within budget, and satisfying
the user’s needs. Analogously, Web engineering is a discipline whose aim is the produc-
tion of fault-free Web software delivered on time, within budget, and satisfying the
user’s needs.
 Web software is a subset of software in general. Accordingly, Web engineering is techni-
cally a subset of software engineering. However, proponents of Web engineering point out

 In 1999, Salesforce.com, Inc., was the fi rst company to provide major business applications
as a service. The company’s slogan is “No software!” This catchphrase implies that service-
oriented computing obviates the problems that organizations face when they install their
own software.

 Just in Case You Wanted to Know Box 18.2

sch76183_ch18_590-600.indd 596sch76183_ch18_590-600.indd 596 07/06/10 11:45 AM07/06/10 11:45 AM

Chapter 18 Emerging Technologies 597

that Web software has characteristics of its own, and the Web engineering should therefore
be considered a separate discipline. Characteristics of Web software include:

 • Unstable requirements. The moving target problem (Section 2.4) tends to be more acute
in the case of Web software, because there are three moving targets: the members of the
community of users, the experience level of the users, and Web technology. Accordingly,
the requirements of Web software tend to change rapidly.

 • Wide range of user skills. The skill set of a Web user can range from total beginner to
expert. This can have major implications for the design of the human–computer interface.

 • No opportunity to train users. When a new software product is installed in an organi-
zation, management can require every employee who is to use the product to undergo
appropriate training. This is not possible with Web applications. At best, a help menu
can be provided.

 • Varied content. The website of an online retailer can contain text, graphics, audio, and
video. Furthermore, these elements may be integrated with the all-important sales func-
tionality of the website. This can drastically affect response times.

 • Exceedingly short maintenance turnaround times. The time between releases of new
versions of commercial software is typically six months or a year. In contrast, Web soft-
ware can be updated as often as daily. Furthermore, updating can often be performed in
the background, that is, seamlessly to the user.

 • The human–user interface is of prime importance. As pointed out in Section 11.14, a
poorly designed human–computer interface for a software product can lead to increased
learning times and higher error rates. In the case of Web software, a poorly designed
human–computer interface can lead to the site in question being ignored by users, with
severe fi nancial consequences for the owner of the website.

 • Diverse run-time environments. It should be possible to successfully access a given
Web page using any of the many popular Web browsers. These browsers run on differ-
ent hardware (including the PC and the Macintosh) under different operating systems
(Linux, Mac OS X, Windows, and so on). Web software must be compatible with all
these combinations of browsers, hardware, and operating systems.

 • Privacy and security requirements are usually stringent. When a hacker breaks into an
online database containing unencrypted credit card data, millions of credit card holders
can be exposed to identity theft.

 • Accessibility through multiple devices. The Web can be accessed via computer, cell phone,
PDA, and so on. Web software must take this multiplicity of devices into account.

 In fact, some researchers feel that Web technology is so different from computer tech-
nology that they have put forward a new discipline, Web science, analogous to computer
science [Berners-Lee et al., 2006a; Berners-Lee et al., 2006b].

 18.8 Cloud Technology
 The Internet is sometimes referred to as The Cloud . The term comes from extending the
term iCloud (information cloud) [Heinemann, Kangasharju, Lyardet, and Mühlhäuser,
2003], the communication range of a mobile device, to the Internet [Vander Wal, 2004].

sch76183_ch18_590-600.indd 597sch76183_ch18_590-600.indd 597 07/06/10 11:45 AM07/06/10 11:45 AM

598 Part B The Workfl ows of the Software Life Cycle

 Cloud technology is a synonym for Internet-based technology. Specifi c to cloud com-
puting is the idea that the users are not expected to have any knowledge of the underlying
infrastructure; the metaphor is that users are operating “in a cloud.”

 18.9 Web 3.0
 The World Wide Web (or Web for short) is a collection of hypertext documents. In contrast,
Web 2.0 is a term that refers to the technology that individuals now use when they make use
of the Web. Accordingly, it would be incorrect to describe Web 2.0 as “emerging technol-
ogy,” the subject of this chapter.
 On the other hand, Web 3.0 (or the Semantic Web) is indeed an emerging technology.
The term refers to ways that the Web will be used in the future. Many excellent suggestions
have been put forward. Following the advice in Just in Case You Wanted to Know Box 18.1,
we will just have to wait and see which of those suggestions, if any, will in fact eventuate.

 18.10 Computer Security
 Computer security is a fi eld in its own right; it is not a branch of software engineering.
Nevertheless, there are aspects of computer security that are also of concern to software
engineers. In fact, all the new technologies in this chapter have security aspects.
 One important area of overlap between software engineering and computer security is
human factors (Section 11.14), because users are generally more interested in the features
of a software product than in security issues. As a result of the statement made by McGraw
and Felten [1999], “Given a choice between dancing pigs and security, users will pick danc-
ing pigs every time,” the lack of attention to security issues among all-too-many users has
become known as the dancing pigs problem .
 Ironically, a scientifi c study of phishing (a criminal attempt to obtain confi dential informa-
tion by falsely pretending to be a legitimate website) found that people really do prefer dancing
animals to security [Dhamija, Tygar, and Hearst, 2006]. Participants were shown a fraudulent
Web page for Bank of the West, whose logo is a bear. At the top of the page there was a video
of a bear swimming. The researchers found that the “cute” design was one of the factors that
convinced them that the page was real. In fact, the animated bear video was so appealing that
many participants reloaded the fraudulent page just to see the animation again.
 The design of human interfaces has to take into account that many users simply do not
care about security. Accordingly, security has to be built into a software product, rather
than offered as an option. This is a hard problem. After all, at the time of writing there are
no comprehensive solutions to the problems of spam e-mail or phishing. Nevertheless, it is
essential that, in the near future, software engineers and security specialists undertake joint
research to tackle the many serious problems common to both fi elds.

 18.11 Model Checking
 The 2007 ACM Turing Award (sometimes called the “Nobel Prize for Computer Science”)
was awarded to Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis for developing
model checking. Model checking is a testing technology for hardware that is starting to be
applied to software.

sch76183_ch18_590-600.indd 598sch76183_ch18_590-600.indd 598 07/06/10 11:45 AM07/06/10 11:45 AM

Chapter 18 Emerging Technologies 599

 As discussed in Section 6.5.3, correctness proving is still somewhat problematic.
What is needed is an alternative to a human having to construct a proof. Certain soft-
ware products, such as operating systems, are designed to run forever. Temporal logic
(Section 6.5.3) is a good way to model these software products. So, we specify a soft-
ware product using temporal logic, and then realize that software product as a fi nite
state machine (Section 12.7). As discussed in Section 12.7, the properties of a fi nite
state machine can be determined. Accordingly, the idea behind model checking is fi rst
to check whether a given fi nite state machine is a model of a temporal logic specifi ca-
tion, and then to determine the properties of that fi nite state machine. In this way, we can
mathematically show that a software product is correct without explicitly constructing a
proof of correctness.

 18.12 Present and Future
 This chapter contains an outline of 10 emerging technologies. At the time of writing, all
are promising, all have the potential to become mainstream technologies. But, as Yogi
Berra has stated (in Just in Case You Wanted to Know Box 18.1), “It’s tough making pre-
dictions, especially about the future.” So, only in the future will we know what the future
will bring.

 An outline is given of aspect-oriented technology, model-driven technology, component-based
technology, and service-oriented technology in Sections 18.1 through 18.4, respectively. In Sec-
tion 18.5, a comparison is made between service-oriented and component-based technology. Social
computing is described in Section 18.6, and Web engineering in Section 18.7. The subject of Sec-
tion 18.8 is cloud technology. Web 3.0 is described in Section 18.9. Computer security is outlined
in Section 18.10, and model checking in Section 18.11. The future of these technologies is dis-
cussed in Section 18.12.

 Chapter
Review

 The material in this chapter is changing at an ever-increasing rate. Any references cited here will be out
of date by the time this book has appeared in print. Wikipedia, on the other hand, is constantly being
updated, and should be utilized as a pointer to current articles on the topics of this chapter.

 For
Further
Reading

 Key Terms advice 591
 aspect 591
 aspect-oriented programming

(AOP) 591
 aspect-oriented programming

language 592
 aspect-oriented software

development
(AOSD) 593

 component-based
technology 594

 composing 594
 composition 592
 concern 591
 core concern 591
 cross-cutting concern 591
 dancing pigs problem 598
 early aspects 593

 model-driven architecture
(MDA) 593

 pointcut 591
 separation of concerns 591
 service 595
 service consumers 595
 service providers 595
 social computing 596
 weaver 592

sch76183_ch18_590-600.indd 599sch76183_ch18_590-600.indd 599 07/06/10 11:45 AM07/06/10 11:45 AM

 [Arlow and Neustadt, 2004] J. ARLOW AND I. NEUSTADT, Enterprise Patterns and MDA: Building
Better Software with Archetype Patterns and UML , Addison-Wesley Professional, Reading, MA,
2004.

 [Berners-Lee et al., 2006a] T. BERNERS-LEE, W. HALL, J. HENDLER, N. SHADBOLT, AND D. WEITZNER,
“Creating a Science of the Web,” Science 313 (August 2006), pp. 769–71.

 [Berners-Lee et al., 2006b] T. BERNERS-LEE, W. HALL, J. HENDLER, K. O’HARA, N. SHADBOLT, AND
D. WEITZNER, “A Framework for Web Science,” Foundations and Trends in Web Science 1 (2006),
pp. 1–130.

 [Cobble, 2004] “Cobble,” users.ugent.be/~kdschutt/cobble, 2004.

 [Dhamija, Tygar, and Hearst, 2006] R. DHAMIJA, J. D. TYGAR, AND M. HEARST, “Why Phishing
Works,” Proceedings of the SIGCHI Conference on Human Factors , Montréal, Québec, Canada,
April 2006, ACM, pp. 581–90.

 [Dijkstra, 1982] E. W. DIJKSTRA, “On the Role of Scientifi c Thought,” in: Dijkstra, Edsger W., Selected
Writings on Computing: A Personal Perspective, Springer-Verlag, New York, 1982, pp. 60–66.

 [Heinemann, Kangasharju, Lyardet, and Mühlhäuser, 2003] A. HEINEMANN, J. KANGASHARJU, F.
LYARDET, AND M. MÜHLHÄUSER, “iClouds—Peer-to-Peer Information Sharing in Mobile Envi-
ronments,” Proceedings of the International Conference on Parallel and Distributed Computing
 (Euro-Par 2003) , IEEE, Klagenfurt, Austria, August 2003.

 [Kiczales et al., 2001] G. KICZALES, E. HILSDALE, J. HUGUNIN, M. KERSTEN, J. PALM, AND W. G.
GRISWOLD, “An Overview of AspectJ.” In: J. L. Knudsen (Ed.), European Conference on Object-
oriented Programming , Vol. 2072 of Lecture Notes in Computer Science , Springer-Verlag, New
York, 2001, pp. 327–53.

 [Laddad, 2003] R. LADDAD, AspectJ in Action , Manning Publications, Greenwich, CT, 2003.

 [McGraw and Felten, 1999] G. MCGRAW AND E. FELTEN, Securing Java , John Wiley and Sons, New
York, 1999.

 [MDA, 2008] “MDA,” www.omg.org/mda , 2008.

 [Service, 2000] “Service. The American Heritage Dictionary of the English Language: Fourth Edi-
tion. 2000,” www.bartleby.com/61/68/S0286800.html , 2000.

 [Vander Wal, 2004] T. VANDER WAL, “Understanding the Personal Info Cloud: Using the Model of
Attraction,” Presentation, University of Maryland, Baltimore, MD, June 2004.

 References

600 Part B The Workfl ows of the Software Life Cycle

sch76183_ch18_590-600.indd 600sch76183_ch18_590-600.indd 600 07/06/10 11:45 AM07/06/10 11:45 AM

www.omg.org/mda
www.bartleby.com/61/68/S0286800.html

601

 Bibliography

 The chapter number in parentheses denotes the chapter in which
the item has been referenced.

 [Aberdour, 2007] M. ABERDOUR, “Achieving Quality in
Open-Source Software,” IEEE Software 24 (January–
February 2007), pp. 58–64. (Chapter 6)

 [Abrial, 1980] J.-R. ABRIAL, “The Specifi cation Language
Z: Syntax and Semantics,” Oxford University Comput-
ing Laboratory, Programming Research Group, Ox-
ford, UK, April 1980. (Chapter 12)

 [Ackerman, Buchwald, and Lewski, 1989] A. F. ACKER-
MAN, L. S. BUCHWALD, AND F. H. LEWSKI, “Software
Inspections: An Effective Verifi cation Process,” IEEE
Software 6 (May 1989), pp. 31–36. (Chapter 6)

 [Agrawal and Chari, 2007] M. AGRAWAL AND K. CHARI,
“Software Effort, Quality, and Cycle Time: A Study
of CMM Level 5 Projects,” IEEE Transactions on
Software Engineering 32 (March 2007), pp. 145–56.
(Chapter 3)

 [Albrecht, 1979] A. J. ALBRECHT, “Measuring Application
Development Productivity,” Proceedings of the
IBM SHARE/GUIDE Applications Development
Symposium , Monterey, CA, IEEE, October 1979,
pp. 83–92. (Chapter 9)

 [Alexander, 1999] C. ALEXANDER, “The Origins of Pat-
tern Theory,” IEEE Software 16 (September–October
1999), pp. 71–82. (Chapter 8)

 [Alexander et al., 1977] C. ALEXANDER, S. ISHIKAWA, M.
SILVERSTEIN, M. JACOBSON, I. FIKSDAHL-KING, AND S.
ANGEL, A Pattern Language , Oxford University Press,
New York, 1977. (Chapter 8)

 [I. Alexander, 2003] I. ALEXANDER, “Misuse Cases:
Use Cases with Hostile Intent,” IEEE Software 20
(January–February 2003), pp. 58–66. (Chapter 11)

 [R. Alexander, 2003] R. ALEXANDER, “The Real Costs of
Aspect-Oriented Programming,” IEEE Software 20
(November–December 2003), pp. 92–93. (Chapter 7)

 [Alford, 1985] M. ALFORD, “SREM at the Age of Eight;
The Distributed Computing Design System,” IEEE
Computer 18 (April 1985), pp. 36–46. (Chapter 12)

 [Alshayeb and Li, 2003] M. ALSHAYEB, AND W. LI “An
Empirical Validation of Object-Oriented Metrics in
Two Different Iterative Software Processes,” IEEE
Transactions on Software Engineering 29 (November
2003), pp. 1043–49. (Chapters 5 and 15)

 [Ammann and Offutt, 2008] P. AMMANN AND J. OFFUTT,
 Introduction to Software Testing, Cambridge Univer-
sity Press, Cambridge, UK, 2008. (Chapters 3 and 6)

 [Andersson and Runeson, 2007] C. ANDERSSON AND P.
RUNESON, “A Replicated Quantitative Analysis of Fault
Distributions in Complex Software Systems,” IEEE
 Transactions on Software Engineering 33 (May 2007),
pp. 273–86. (Chapter 15)

 [ANSI X3.159, 1989] The Programming Language C ,
ANSI X3.159-1989, American National Standards
Institute, New York, 1989. (Chapter 8)

 [ANSI/IEEE 754, 1985] Standard for Binary Floating
Point Arithmetic , ANSI/IEEE 754, American National
Standards Institute, Institute of Electrical and Elec-
tronic Engineers, New York, 1985. (Chapter 8)

 [ANSI/IEEE 829, 1991] Software Test Documentation ,
ANSI/IEEE 829-1991, American National Standards
Institute, Institute of Electrical and Electronic Engi-
neers, New York, 1991. (Chapter 9)

 [ANSI/MIL-STD-1815A, 1983] Reference Manual for
the Ada Programming Language , ANSI/MIL-STD-
1815A, American National Standards Institute, United
States Department of Defense, Washington, DC, 1983.
(Chapter 8)

 [Antoniol, Cimitile, Di Lucca, and Di Penta, 2004] G.
ANTONIOL, A. CIMITILE, G. A. DI LUCCA, AND M.
DI PENTA, “Assessing Staffi ng Needs for a Software
Maintenance Project through Queuing Simulation,”
 IEEE Transactions on Software Engineering 30 (Janu-
ary 2004), pp. 43–58. (Chapter 16)

 [Arisholm, Briand, Hove, and Labiche, 2006] E. ARIS-
HOLM, L. C. BRIAND, S. E. HOVE, AND Y. LABICHE,
“The Impact of UML Documentation on Software
Maintenance: An Experimental Evaluation,” IEEE
 Transactions on Software Engineering 32 (June 2006),
pp. 365–81. (Chapter 16)

sch76183_bib_601-626.indd 601sch76183_bib_601-626.indd 601 07/06/10 11:58 AM07/06/10 11:58 AM

602 Bibliography

 [Arisholm, Gallis, Dybå, and Sjøberg, 2007] E. ARIS-
HOLM, H. GALLIS, T. DYBÅ, AND D. I. K. SJØBERG,
“Evaluating Pair Programming with Respect to System
Complexity and Programmer Expertise,” IEEE Trans-
actions on Software Engineering 33 (February 2007),
pp. 65–86. (Chapters 2, 4, and 9)

 [Arlow and Neustadt, 2004] J. ARLOW AND I. NEUSTADT,
 Enterprise Patterns and MDA: Building Better Soft-
ware with Archetype Patterns and UML , Addison-
Wesley Professional, Reading, MA, 2004. (Chapter 18)

 [Awad, Kuusela, and Ziegler, 1996] M. AWAD, J. KUU-
SELA, AND J. ZIEGLER, Object-Oriented Technology for
Real-Time Systems: A Practical Approach Using OMT
and Fusion, Prentice Hall, Upper Saddle River, NJ,
1996. (Chapter 13)

 [Babich, 1986] W. A. BABICH, Software Confi guration
Management: Coordination for Team Productivity ,
Addison-Wesley, Reading, MA, 1986. (Chapter 5)

 [Baker, 1972] F. T. BAKER, “Chief Programmer Team
Management of Production Programming,” IBM Sys-
tems Journal 11 (No. 1, 1972), pp. 56–73. (Chapter 4)

 [Balzer, 1985] R. BALZER, “A 15 Year Perspective on
Automatic Programming,” IEEE Transactions on
Software Engineering SE-11 (November 1985), pp.
1257–68. (Chapter 12)

 [Bandi, Vaishnavi, and Turk, 2003] R. K. BANDI, V. K.
VAISHNAVI, AND D. E. TURK, “Predicting Maintenance
Performance Using Object-Oriented Design Complex-
ity Metrics,” IEEE Transactions on Software Engineer-
ing 29 (January 2003), pp. 77–87. (Chapter 16)

 [Banks, Carson, Nelson, and Nichol, 2001] J. BANKS, J. S.
CARSON, B. L. NELSON, AND D. M. NICHOL, Discrete-
Event System Simulation, 3rd ed., Prentice Hall, Upper
Saddle River, NJ, 1995. (Chapter 12)

 [Bannerman, 2008] P. L. BANNERMAN, “Risk and Risk
Management in Software Projects: A Reassessment,”
 Journal of Systems and Software 81 (December 2008),
pp. 2118–33. (Chapter 1)

 [Bansiya and Davis, 2002] J. BANSIYA AND C. G. DAVIS,
“A Hierarchical Model for Object-Oriented Design
Quality Assessment,” IEEE Transactions on Software
Engineering 28 (January 2002), pp. 4–17. (Chapter 14)

 [Basili and Hutchens, 1983] V. R. BASILI AND D. H.
HUTCHENS, “An Empirical Study of a Syntactic Complex-
ity Family,” IEEE Transactions on Software Engineering
 SE-9 (November 1983), pp. 664–72. (Chapter 15)

 [Basili and Selby, 1987] V. R. BASILI AND R. W. SELBY,
“Comparing the Effectiveness of Software Testing

Strategies,” IEEE Transactions on Software En-
gineering SE-13 (December 1987), pp. 1278–96.
(Chapter 15)

 [Basili and Weiss, 1984] V. R. BASILI AND D. M. WEISS,
“A Methodology for Collecting Valid Software En-
gineering Data,” IEEE Transactions on Software
Engineering SE-10 (November 1984), pp. 728–38.
(Chapter 15)

 [Bass, Clements, and Kazman, 2003] L. BASS, P. CLE-
MENTS, AND R. KAZMAN, Software Architecture in
Practice, 2nd ed., Addison-Wesley, Reading, MA,
2003. (Chapter 8)

 [Bass et al., 2008] L. BASS, R. NORD, W. WOOD, D. ZU-
BROW, AND I. OZKAYA, “Architectural Knowledge Dis-
covery with Latent Semantic Analysis: Constructing a
Reading Guide for Software Product Audits,” Journal
of Systems and Software 81 (September 2008), pp.
1443–55. (Chapter 8)

 [Baster, Konana, and Scott, 2001] G. BASTER, P. KONANA,
AND J. E. SCOTT, “Business Components: A Case
Study of Bankers Trust Australia Limited,” Com-
munications of the ACM 44 (May 2001), pp. 92–98.
(Chapter 8)

 [Beck, 2000] K. BECK, Extreme Programming Explained:
Embrace Change, Addison-Wesley Longman, Read-
ing, MA, 2000. (Chapters 2 and 4)

 [Beck and Cunningham, 1989] K. BECK AND W. CUN-
NINGHAM, “A Laboratory for Teaching Object-Oriented
Thinking,” Proceedings of OOPSLA ’89, ACM SIG-
PLAN Notices 24 (October 1989), pp. 1–6. (Chapter 13)

 [Beck et al., 2001] K. BECK, M. BEEDLE, A. COCKBURN,
W. CUNNINGHAM, M. FOWLER, J. GRENNING, J. HIGH-
SMITH, A. HUNT, R. JEFFRIES, J. KERN, B. MARICK,
R. C. MARTIN, S. MELLOR, K. SCHWABER, J. SUTHER-
LAND, D. THOMAS, AND A. VAN BENNEKUM, Manifesto
for Agile Software Development , agilemanifesto.org,
2001. (Chapters 2 and 4)

 [Beizer, 1990] B. BEIZER, Software Testing Techniques,
2nd ed., Van Nostrand Reinhold, New York, 1990.
(Chapters 6, 14, 15)

 [Beizer, 1995] B. BEIZER, Black-Box Testing: Techniques
for Functional Testing of Software and Systems, John
Wiley and Sons, New York, 1995. (Chapter 15)

 [Beizer, 1997] B. BEIZER, “Cleanroom Process Model:
A Critical Examination,” IEEE Software 14 (March–
April 1997), pp. 14–16. (Chapter 15)

 [Belanger et al., 2006] F. BELANGER, W. FAN, L. C.
SCHAUPP, A. KRISHEN, J. EVERHART, D. POTEET, AND

sch76183_bib_601-626.indd 602sch76183_bib_601-626.indd 602 07/06/10 11:58 AM07/06/10 11:58 AM

Bibliography 603

K. NAKAMOTO, “Web Site Success Metrics: Addressing
the Duality of Goals,” Communications of the ACM 49
(December 2006), pp. 114–16. (Chapter 5)

 [Bellinzona, Fugini, and Pernici, 1995] R. BELLINZONA,
M. G. FUGINI, AND B. PERNICI, “Reusing Specifi cations
in OO Applications,” IEEE Software 12 (March 1995),
pp. 656–75. (Chapter 13)

 [Bennatan, 2000] E. M. BENNATAN, On Time within
Budget: Software Project Management Practices and
Techniques , 3rd ed., John Wiley and Sons, New York,
2000. (Chapter 9)

 [Berners-Lee et al., 2006a] T. BERNERS-LEE, W. HALL, J.
HENDLER, N. SHADBOLT, AND D. WEITZNER, “Creating
a Science of the Web,” Science 313 (August 2006),
pp. 769–71. (Chapter 18)

 [Berners-Lee et al., 2006b] T. BERNERS-LEE, W. HALL,
J. HENDLER, K. O’HARA, N. SHADBOLT, AND D.
WEITZNER, “A Framework for Web Science,” Founda-
tions and Trends in Web Science 1 (2006), pp. 1–130.
(Chapter 18)

 [Berry, 2004] D. M. BERRY, “The Inevitable Pain of
Software Development: Why There Is No Silver Bul-
let,” in: Radical Innovations of Software and Systems
Engineering in the Future , Lecture Notes in Computer
Science, Vol. 2941, Springer-Verlag, Berlin, 2004,
pp. 50–74. (Chapter 11)

 [Berry and Wing, 1985] D. M. BERRY AND J. M. WING,
“Specifying and Prototyping: Some Thoughts on Why
They Are Successful,” in: Formal Methods and Soft-
ware Development, Proceedings of the International
Joint Conference on Theory and Practice of Software
Development , Vol. 2, Springer-Verlag, Berlin, 1985,
pp. 117–28. (Chapter 6)

 [Bianchi, Caivano, Marengo, and Visaggio, 2003] A.
BIANCHI, D. CAIVANO, V. MARENGO, AND G. VISAGGIO,
“Iterative Reengineering of Legacy Systems,” IEEE
Transactions on Software Engineering 29 (March
2003), pp. 225–41. (Chapter 2)

 [Binkley and Schach, 1996] A. B. BINKLEY AND S. R.
SCHACH, “A Comparison of Sixteen Quality Metrics
for Object-Oriented Design,” Information Processing
Letters 57 (No. 6, June 1996), pp. 271–75. (Chapters
14 and 15)

 [Binkley and Schach, 1997] A. B. BINKLEY AND S. R.
SCHACH, “Toward a Unifi ed Approach to Object-
Oriented Coupling,” Proceedings of the 35th Annual
ACM Southeast Conference , Murfreesboro, TN, ACM,
April 2–4, 1997, pp. 91–97. (Chapters 7, 14, and 15)

 [Binkley and Schach, 1998] A. B. BINKLEY AND S. R.
SCHACH, “Validation of the Coupling Dependency
Metric as a Predictor of Run-Time Failures and Main-
tenance Measures,” Proceedings of the 20th Interna-
tional Conference on Software Engineering , Kyoto,
Japan, IEEE, April 1988, pp. 542–55. (Chapter 14)

 [Birk et al. 2003] A. BIRK, G. HELLER, I. JOHN, K. SCHMID,
T. VON DER MASSEN, AND K. MULLER, “Product Line
Engineering, the State of the Practice,” IEEE Software
 20 (November–December 2003), pp. 52–60. (Chapter 8)

 [Black and Murphy-Hill, 2008] E. BLACK AND A. P.
MURPHY-HILL, “Refactoring Tools: Fitness for Pur-
pose,” IEEE Software 25 (September–October 2008),
pp. 38–44. (Chapter 5)

 [Blaha, Premerlani, and Rumbaugh, 1988] M. R. BLAHA,
W. J. PREMERLANI, AND J. E. RUMBAUGH, “Relational
Database Design Using an Object-Oriented Methodol-
ogy,” Communications of the ACM 31 (April 1988),
pp. 414–27. (Chapter 7)

 [Blaine and Cleland-Huang, 2008] J. D. BLAINE AND
J. CLELAND-HUANG, “Software Quality Requirements:
How to Balance Competing Priorities,” IEEE Software
 25 (March–April 2008), pp. 22–24. (Chapter 11)

 [Blanco, Gutiérrez, and Satriani, 2001] M. BLANCO,
P. GUTIÉRREZ, AND G. SATRIANI, “SPI Patterns: Learn-
ing from Experience,” IEEE Software 18 (May–June
2001), pp. 28–35. (Chapter 3)

 [Bockle et al., 2004] G. BOCKLE, P. CLEMENTS, J. D.
MCGREGOR, D. MUTHIG, AND K. SCHMID, “Calculating
ROI for Software Product Lines,” IEEE Software 21
(May–June 2004), pp. 23–31. (Chapters 5 and 8)

 [Boehm, 1976] B. W. BOEHM, “Software Engineering,”
 IEEE Transactions on Computers C-25 (December
1976), pp. 1226–41. (Chapter 1)

 [Boehm, 1979] B. W. BOEHM, “Software Engineering,
R & D Trends and Defense Needs,” in: Research Direc-
tions in Software Technology , P. Wegner (Editor), The
MIT Press, Cambridge, MA, 1979. (Chapter 1)

 [Boehm, 1980] B. W. BOEHM, “Developing Small-Scale
Application Software Products: Some Experimental Re-
sults,” Proceedings of the Eighth IFIP World Computer
Congress, IFIP, October 1980, pp. 321–26. (Chapter 1)

 [Boehm, 1981] B. W. BOEHM, Software Engineering Eco-
nomics, Prentice Hall, Englewood Cliffs, NJ, 1981.
(Chapters 1 and 9)

 [Boehm, 1984] B. W. BOEHM, “Software Engineering
Economics,” IEEE Transactions on Software Engi-
neering SE-10 (January 1984), pp. 4–21. (Chapter 9)

sch76183_bib_601-626.indd 603sch76183_bib_601-626.indd 603 07/06/10 11:58 AM07/06/10 11:58 AM

604 Bibliography

 [Boehm, 1988] B. W. BOEHM, “A Spiral Model of Soft-
ware Development and Enhancement,” IEEE Com-
puter 21 (May 1988), pp. 61–72. (Chapter 2)

 [Boehm, 2002] B. W. BOEHM, “Get Ready for Agile Meth-
ods, with Care,” IEEE Computer 35 (January 2002),
pp. 64–69. (Chapters 2 and 4)

 [Boehm and Basili, 2001] B. BOEHM AND V. R. BASILI,
“Software Defect Reduction Top Ten List,” IEEE Com-
puter 34 (January 2001), pp. 135–37. (Chapter 6)

 [Boehm and Huang, 2003] B. BOEHM AND L. G. HUANG,
“Value-Based Software Engineering: A Case Study,”
 IEEE Computer 36 (March 2003), pp. 33–41.
(Chapter 1)

 [Boehm and Turner, 2003] B. BOEHM AND R. TURNER,
 Balancing Agility and Discipline: A Guide for the
Perplexed , Addison-Wesley Professional, Boston, MA,
2003. (Chapter 2)

 [Boehm and Turner, 2005] B. BOEHM AND R. TURNER,
“Management Challenges to Implementing Agile
Processes in Traditional Development Organizations,”
 IEEE Software 22 (September–October 2005),
pp. 30–39. (Chapter 2)

 [Boehm et al., 1984] B. W. BOEHM, M. H. PENEDO, E. D.
STUCKLE, R. D. WILLIAMS, AND A. B. PYSTER, “A Soft-
ware Development Environment for Improving Pro-
ductivity,” IEEE Computer 17 (June 1984), pp. 30–44.
(Chapters 2 and 9)

 [Boehm et al., 2000] B. W. BOEHM, C. ABTS, A. W.
BROWN, S. CHULANI, B. K. CLARK, E. HOROWITZ,
R. MADACHY, D. REIFER, AND B. STEECE, Software
Cost Estimation with COCOMO II , Prentice Hall,
Upper Saddle River, NJ, 2000. (Chapter 9)

 [Booch, 1994] G. BOOCH, Object-Oriented Analysis and
Design with Applications, 2nd ed., Benjamin/
Cummings, Redwood City, CA, 1994. (Chapter 3)

 [Booch, 2000] G. BOOCH, “The Future of Software Engi-
neering,” keynote address, International Conference on
Software Engineering, Limerick, Ireland, May 2000.
(Chapter 2)

 [Booch, Rumbaugh, and Jacobson, 1999] G. BOOCH, J. RUM-
BAUGH, AND I. JACOBSON, The UML Users Guide , Addison-
Wesley, Reading, MA, 1999. (Chapters 3, 13, 17)

 [Borjesson and Mathiassen, 2004] A. BORJESSON AND
L. MATHIASSEN, “Successful Process Implementation,”
 IEEE Software 21 (July–August 2004), pp. 36–44.
(Chapter 3)

 [Borland, 2002] BORLAND, “Press Release: Borland
Unveils C++ Application Development Strategy for

2002,” www.borland.com/news/press_releases/
2002/01_28_02_cpp.strategy.html, January 28,
2002. (Chapter 15)

 [Bosch, 2000] J. BOSCH, Design and Use of Software
Architectures, Addison-Wesley, Reading, MA, 2000.
(Chapter 8)

 [Bowen and Hinchey, 1995a] J. P. BOWEN AND M. G.
HINCHEY, “Ten Commandments of Formal Methods,”
 IEEE Computer 28 (April 1995), pp. 56–63.
(Chapter 12)

 [Bowen and Hinchey, 1995b] J. P. BOWEN AND M. G.
HINCHEY, “Seven More Myths of Formal Methods,”
 IEEE Software 12 (July 1995), pp. 34–41. (Chapter 12)

 [Brady, 1977] J. M. BRADY, The Theory of Computer Sci-
ence , Chapman and Hall, London, 1977. (Chapter 12)

 [Brereton and Budgen, 2000] P. BRERETON AND D. BUD-
GEN, “Component-Based Systems: A Classifi cation
of Issues,” IEEE Computer 33 (November 2000),
pp. 54–62. (Chapter 8)

 [Briand and Wüst, 2001] L. C. BRIAND AND J. WÜST,
“Modeling Development Effort in Object-Oriented
Systems Using Design Properties,” IEEE Transactions
on Software Engineering 27 (November 2001),
pp. 963–86. (Chapters 5 and 9)

 [Briand, Bunse, and Daly, 2001] L. C. BRIAND, C. BUNSE,
AND J. W. DALY, “A Controlled Experiment for Evalu-
ating Quality Guidelines on the Maintainability of
Object-Oriented Designs,” IEEE Transactions on
Software Engineering 27 (June 2001), pp. 513–30.
(Chapters 14 and 16)

 [Briand, Daly, Porter, and Wüst, 1998] L. C. BRIAND,
J. DALY, V. PORTER, AND J. WÜST, “A Comprehensive
Empirical Validation of Design Measures for Object-
Oriented Systems,” Proceedings of the Fifth Inter-
national Metrics Symposium, Bethesda, MD, IEEE,
November 1998, pp. 246–257. (Chapter 7)

 [Briand, Labiche, and Leduc, 2006] L. C. BRIAND, Y.
LABICHE, AND J. LEDUC, “Toward the Reverse Engineer-
ing of UML Sequence Diagrams for Distributed Java
Software,” IEEE Transactions on Software Engineer-
ing 32 (September 2006), pp. 642–63. (Chapter 16)

 [Brooks, 1975] F. P. BROOKS, JR., The Mythical Man-
Month: Essays on Software Engineering, Addison-
Wesley, Reading, MA, 1975; Twentieth Anniversary
Edition, Addison-Wesley, Reading, MA, 1995.
(Chapters 1, 4, and 11)

 [Brooks, 1986] F. P. BROOKS, JR., “No Silver Bullet,” in:
 Information Processing ’86 , H.-J. Kugler (Editor),

sch76183_bib_601-626.indd 604sch76183_bib_601-626.indd 604 10/06/10 4:57 PM10/06/10 4:57 PM

www.borland.com/news/press_releases/2002/01_28_02_cpp.strategy.html
www.borland.com/news/press_releases/2002/01_28_02_cpp.strategy.html

Bibliography 605

Elsevier North-Holland, New York, 1986; reprinted in
 IEEE Computer 20 (April 1987), pp. 10–19. (Chapters 3
and 14)

 [Brooks et al., 1987] F. P. BROOKS, V. BASILI, B. BOEHM,
E. BOND, N. EASTMAN, D. L. EVANS, A. K. JONES, M.
SHAW, AND C. A. ZRAKET, “Report of the Defense
Science Board Task Force on Military Software,” De-
partment of Defense, Offi ce of the Under Secretary of
Defense for Acquisition, Washington, DC, September
1987. (Chapter 3)

 [Brown et al., 1998] W. J. BROWN, R. C. MALVEAU, W. H.
BROWN, H. W. MCCORMICK III, AND T. J. MOWBRAY,
 AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis, John Wiley and Sons, New York,
1998. (Chapter 8)

 [Brownsword, Oberndorf, and Sledge, 2000] L. BROWN-
SWORD, T. OBERNDORF, AND C. A. SLEDGE, “Develop-
ing New Process for COTS-Based Systems,” IEEE
Software 17 (July–August 2000), pp. 40–47.
(Chapter 1)

 [Bruegge, Blythe, Jackson, and Shufelt, 1992] B. BRUEGGE,
J. BLYTHE, J. JACKSON, AND J. SHUFELT, “Object-
Oriented Modeling with OMT,” Proceedings of the Con-
ference on Object-Oriented Programming, Languages,
and Systems, OOPSLA ’92, ACM SIGPLAN Notices 27
(October 1992), pp. 359–76. (Chapter 7)

 [Bruno and Marchetto, 1986] G. BRUNO AND G. MAR-
CHETTO, “Process-Translatable Petri Nets for the Rapid
Prototyping of Process Control Systems,” IEEE Trans-
actions on Software Engineering SE-12 (February
1986), pp. 346–57. (Chapter 12)

 [Budd, 2002] T. A. BUDD, An Introduction to Object-
Oriented Programming , 3rd ed., Addison-Wesley,
Reading, MA, 2002. (Chapter 1)

 [Bush, 1990] M. BUSH, “Improving Software Quality: The
Use of Formal Inspections at the Jet Propulsion Labo-
ratory,” Proceedings of the 12th International Confer-
ence on Software Engineering , Nice, France, IEEE,
March 1990, pp. 196–99. (Chapter 6)

 [Business Week Online, 1999] Business Week Online ,
www.businessweek.com/1999/99_08/b3617025.
htm, February 2, 1999. (Chapter 4)

 [Cao and Ramesh, 2008] L. CAO AND B. RAMESH, “Agile
Requirements Engineering Practices: An Empirical
Study,” IEEE Software 25 (January–February 2008),
pp. 60–67. (Chapter 11)

 [Capper, Colgate, Hunter, and James, 1994] N. P. CAPPER,
R. J. COLGATE, J. C. HUNTER, AND M. F. JAMES, “The

Impact of Object-Oriented Technology on Software
Quality: Three Case Histories,” IBM Systems Journal
 33 (No. 1, 1994), pp. 131–57. (Chapters 1 and 7)

 [Cartwright and Shepperd, 2000] M. CARTWRIGHT AND
M. SHEPPERD, “An Empirical Investigation of an
Object-Oriented Software System,” IEEE Transactions
on Software Engineering 26 (August 2000), pp. 786–95.
(Chapters 7 and 9)

 [Ceschi, Sillitti, Succi, and De Panfi lis, 2005] M. CESCHI,
A. SILLITTI, G. SUCCI, AND S. DE PANFILIS, “Project
Management in Plan-Based and Agile Companies,”
 IEEE Software 22 (May–June 2005), pp. 21–27.
(Chapter 2)

 [Chen, 1976] P. CHEN, “The Entity-Relationship Model—
Towards a Unifi ed View of Data,” ACM Transactions
on Database Systems 1 (March 1976), pp. 9–36.
(Chapter 12)

 [Chidamber and Kemerer, 1994] S. R. CHIDAMBER AND
C. F. KEMERER, “A Metrics Suite for Object Oriented
Design,” IEEE Transactions on Software Engineering
 20 (June 1994), pp. 476–93. (Chapters 14 and 15)

 [Chow and Cao, 2008] T. CHOW AND D.-B. CAO, “A Sur-
vey Study of Critical Success Factors in Agile Soft-
ware Projects,” Journal of Systems and Software 81
(June 2008), pp. 961–71. (Chapter 2)

 [Ciolkowski, Laitenberger, and Biffl , 2003] M. CI-
OLKOWSKI, O. LAITENBERGER, AND S. BIFFL, “Software
Reviews, the State of the Practice,” IEEE Software 20
(November–December 2003), pp. 46–51. (Chapter 6)

 [Clements and Northrop, 2002] P. CLEMENTS AND L.
NORTHROP, Software Product Lines: Practices and
Patterns , Addison-Wesley, Reading, MA, 2002.
(Chapter 8)

 [Clements, Jones, Northrop, and McGregor, 2005] P. C.
CLEMENTS, L. G. JONES, L. M. NORTHROP, AND J. D.
MCGREGOR, “Project Management in a Software Prod-
uct Line Organization,” IEEE Software 22 (September–
October 2005), pp. 54–62. (Chapter 8)

 [CNN.com, 2003] “Russia: Software Bug Made Soyuz
Stray,” edition.cnn.com/2003/TECH/space/05/06/
soyuz.landing.ap/, May 6, 2003. (Chapter 3)

 [Cobble, 2004] “Cobble,” users.ugent.be/~kdschutt/
cobble, 2004. (Chapter 18)

 [Cockburn, 2001] A. COCKBURN, Agile Software Develop-
ment , Addison-Wesley Professional, Reading, MA,
2001. (Chapter 2)

 [Coleman et al., 1994] D. COLEMAN, P. ARNOLD, S.
BODOFF, C. DOLLIN, H. GILCHRIST, F. HAYES, AND

sch76183_bib_601-626.indd 605sch76183_bib_601-626.indd 605 07/06/10 11:58 AM07/06/10 11:58 AM

www.businessweek.com/1999/99_08/b3617025.htm
www.businessweek.com/1999/99_08/b3617025.htm

606 Bibliography

P. JEREMAES, Object-Oriented Development: The Fu-
sion Method , Prentice Hall, Englewood Cliffs, NJ,
1994. (Chapter 13)

 [Conradi and Fuggetta, 2002] R. CONRADI AND A. FUG-
GETTA, “Improving Software Process Improvement,”
 IEEE Software 19 (July–August 2002), pp. 92–99.
(Chapter 3)

 [Coolahan and Roussopoulos, 1983] J. E. COOLAHAN, JR.,
AND N. ROUSSOPOULOS, “Timing Requirements for
Time-Driven Systems Using Augmented Petri Nets,”
 IEEE Transactions on Software Engineering SE-9
(September 1983), pp. 603–16. (Chapter 12)

 [Costagliola, Ferrucci, Tortora, and Vitiello, 2005] G.
COSTAGLIOLA, F. FERRUCCI, G. TORTORA, AND G. VITI-
ELLO, “Class Point: An Approach for the Size Estima-
tion of Object-Oriented Systems,” IEEE Transactions
on Software Engineering 31 (January 2005), pp. 52–74.
(Chapter 9)

 [Crossman, 1982] T. D. CROSSMAN, “Inspection Teams,
Are They Worth It?” Proceedings of the Second
National Symposium on EDP Quality Assurance ,
Chicago, IEEE, November 1982. (Chapter 15)

 [Curtis, Hefl ey, and Miller, 2002] B. CURTIS, W. E. HEF-
LEY, AND S. A. MILLER, The People Capability Matu-
rity Model: Guidelines for Improving the Workforce ,
Addison-Wesley, Reading, MA, 2002. (Chapter 4)

 [Cusumano and Selby, 1995] M. A. CUSUMANO AND R. W.
SELBY, Microsoft Secrets: How the World’s Most Pow-
erful Software Company Creates Technology, Shapes
Markets, and Manages People , The Free Press/Simon
and Schuster, New York, 1995. (Chapters 2 and 4)

 [Cusumano and Selby, 1997] M. A. CUSUMANO AND
R. W. SELBY, “How Microsoft Builds Software,”
 Communications of the ACM 40 (June 1997), pp. 53–61.
(Chapters 2 and 4)

 [Cutter Consortium, 2002] Cutter Consortium, “78% of
IT Organizations Have Litigated,” The Cutter Edge ,
www.cutter.com/research/2002/edge020409.
html, April 09, 2002. (Chapter 1)

 [Cysneiros and do Prado Leite, 2004] L. M. CYSNEIROS
AND J. C. S. DO PRADO LEITE, “Nonfunctional Require-
ments: From Elicitation to Conceptual Models,” IEEE
Transactions on Software Engineering 30 (May 2004),
pp. 328–50. (Chapter 11)

 [D’Souza and Wills, 1999] D. D’SOUZA AND H. WILLS,
 Objects, Components, and Frameworks with UML:
The Catalysis Approach , Addison-Wesley, Reading,
MA, 1999. (Chapter 13)

 [Dahl and Nygaard, 1966] O.-J. DAHL AND K. NYGAARD,
“SIMULA—An ALGOL-Based Simulation Lan-
guage,” Communications of the ACM 9 (September
1966), pp. 671–78. (Chapter 7)

 [Daly, 1977] E. B. DALY, “Management of Software De-
velopment,” IEEE Transactions on Software Engineer-
ing SE-3 (May 1977), pp. 229–42. (Chapter 1)

 [Damian and Chisan, 2006] D. DAMIAN AND J. CHISAN,
“An Empirical Study of the Complex Relationships
between Requirements Engineering Processes and
Other Processes That Lead to Payoffs in Productivity,
Quality, and Risk Management,” IEEE Transactions
on Software Engineering 32 (July 2006), pp. 433–53.
(Chapters 6, 9, and 11)

 [Dangle, Larsen, Shaw, and Zelkowitz, 2005] K. C.
DANGLE, P. LARSEN, M. SHAW, AND M. V. ZELKOWITZ,
“Software Process Improvement in Small Organiza-
tions: A Case Study,” IEEE Software 22 (September–
October 2005), pp. 68–75. (Chapter 3)

 [Dart, Ellison, Feiler, and Habermann, 1987] S. A. DART,
R. J. ELLISON, P. H. FEILER, AND A. N. HABERMANN,
“Software Development Environments,” IEEE Com-
puter 20 (November 1987), pp. 18–28. (Chapter 12)

 [Date, 2003] C. J. DATE, An Introduction to Database Sys-
tems, 8th ed., Addison-Wesley, Reading, MA, 2003.
(Chapter 15)

 [Dawood, 1994] M. DAWOOD, “It’s Time for ISO 9000,”
 CrossTalk (March 1994), pp. 26–28. (Chapter 3)

 [de Champeaux and Faure, 1992] D. DE CHAMPEAUX AND
P. FAURE, “A Comparative Study of Object-
Oriented Analysis Methods,” Journal of Object-
Oriented Programming 5 (March–April 1992),
pp. 21–33. (Chapter 13)

 [Delisle and Garlan, 1990] N. DELISLE AND D. GARLAN,
“A Formal Description of an Oscilloscope,” IEEE Soft-
ware 7 (September 1990), pp. 29–36. (Chapter 12)

 [Delisle and Schwartz, 1987] N. DELISLE AND M.
SCHWARTZ, “A Programming Environment for CSP,”
 Proceedings of the Second ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Soft-
ware Development Environments, ACM SIGPLAN
Notices 22 (January 1987), pp. 34–41. (Chapter 12)

 [DeMarco, 1978] T. DEMARCO, Structured Analysis and
System Specifi cation , Yourdon Press, New York, 1978.
(Chapter 12)

 [DeMarco and Boehm, 2002] T. DEMARCO AND B. BOEHM,
“The Agile Methods Fray,” IEEE Computer 35 (June
2002), pp. 90–92. (Chapters 2 and 4)

sch76183_bib_601-626.indd 606sch76183_bib_601-626.indd 606 07/06/10 11:58 AM07/06/10 11:58 AM

www.cutter.com/research/2002/edge020409.html
www.cutter.com/research/2002/edge020409.html

Bibliography 607

 [DeMarco and Lister, 1987] T. DEMARCO AND T. LISTER,
 Peopleware: Productive Projects and Teams, Dorset
House, New York, 1987. (Chapter 4)

 [DeMillo, Lipton, and Perlis, 1979] R. A. DEMILLO, R. J.
LIPTON, AND A. J. PERLIS, “Social Processes and Proofs
of Theorems and Programs,” Communications of the
ACM 22 (May 1979), pp. 271–80. (Chapter 6)

 [DeMillo, Lipton, and Sayward, 1978] R. A. DEMILLO,
R. J. LIPTON, AND F. G. SAYWARD, “Hints on Test Data
Selection: Help for the Practicing Programmer,” IEEE
Computer 11 (April 1978), pp. 34–43. (Chapter 6)

 [Deming, 1986] W. E. DEMING, Out of the Crisis , MIT
Center for Advanced Engineering Study, Cambridge,
MA, 1986. (Chapter 3)

 [Denger and Shull, 2007] C. DENGER AND F. SHULL, “A
Practical Approach for Quality-Driven Inspections,”
 IEEE Software 24 (March–April 2007), pp. 79–86.
(Chapter 6)

 [DeRemer and Kron, 1976] F. DEREMER AND H. H. KRON,
“Programming-in-the-Large versus Programming-in-
the-Small,” IEEE Transactions on Software Engineer-
ing SE-2 (June 1976), pp. 80–86. (Chapter 5)

 [Devenny, 1976] T. DEVENNY, “An Exploratory Study
of Software Cost Estimating at the Electronic Sys-
tems Division,” Thesis No. GSM/SM/765–4, Air
Force Institute of Technology, Dayton, OH, 1976.
(Chapter 9)

 [Devlin, 2001] K. DEVLIN, “The Real Reason Why Soft-
ware Engineers Need Math,” Communications of the
ACM 44 (October 2001), pp. 21–22. (Chapter 1)

 [Dhamija, Tygar, and Hearst, 2006] R. DHAMIJA, J. D.
TYGAR, AND M. HEARST, “Why Phishing Works,”
 Proceedings of the SIGCHI Conference on Human
Factors , Montréal, Québec, Canada, ACM, April 2006,
pp. 581–90. (Chapter 18)

 [Diaz and Sligo, 1997] M. DIAZ AND J. SLIGO, “How Soft-
ware Process Improvement Helped Motorola,” IEEE
Software 14 (September–October 1997), pp. 75–81.
(Chapter 3)

 [Dig, Manzoor, Johnson, and Nguyen, 2008] D. DIG, K.
MANZOOR, R. E. JOHNSON, AND T. N. NGUYEN, “Effec-
tive Software Merging in the Presence of Object-
Oriented Refactorings,” IEEE Transactions on Soft-
ware Engineering 34 (May–June 2008), pp. 321–35.
(Chapters 2 and 5)

 [Dijkstra, 1968] E. W. DIJKSTRA, “A Constructive Approach
to the Problem of Program Correctness,” BIT 8 (No. 3,
1968), pp. 174–86. (Chapter 6)

 [Dijkstra, 1972] E. W. DIJKSTRA, “The Humble Program-
mer,” Communications of the ACM 15 (October 1972),
pp. 859–66. (Chapter 6)

 [Dijkstra, 1976] E. W. DIJKSTRA, A Discipline of Pro-
gramming, Prentice Hall, Englewood Cliffs, NJ, 1976.
(Chapter 5)

 [Dijkstra, 1982] E. W. DIJKSTRA, “On the Role of Scien-
tifi c Thought,” in: Dijkstra, Edsger W., Selected Writ-
ings on Computing: A Personal Perspective, Springer-
Verlag, New York, 1982, pp. 60–66. (Chapters 5 and 18)

 [Diller, 1994] A. DILLER, Z: An Introduction to Formal
Methods , 2nd ed., John Wiley and Sons, Chichester,
UK, 1994. (Chapter 12)

 [Dion, 1993] R. DION, “Process Improvement and the
Corporate Balance Sheet,” IEEE Software 10 (July
1993), pp. 28–35. (Chapter 3)

 [Donzelli et al., 2005] P. DONZELLI, M. ZELKOWITZ,
V. BASILI, D. ALLARD, AND K. N. MEYER, “Evaluat-
ing COTS Component Dependability in Context,”
 IEEE Software 22 (July–August 2005), pp. 46–53.
(Chapter 1)

 [Doolan, 1992] E. P. DOOLAN, “Experience with Fagan’s
Inspection Method,” Software—Practice and Experi-
ence 22 (February 1992), pp. 173–82. (Chapter 12)

 [Dooley and Schach, 1985] J. W. M. DOOLEY AND S. R.
SCHACH, “FLOW: A Software Development Environ-
ment Using Diagrams,” Journal of Systems and Soft-
ware 5 (August 1985), pp. 203–19. (Chapter 5)

 [Drobka, Noftz, and Raghu, 2004] J. DROBKA, D. NOFTZ,
AND R. RAGHU, “Piloting XP on Four Mission-Critical
Projects,” IEEE Software 21 (November–December
2004), pp. 70–75. (Chapters 2 and 4)

 [Dunn, 1984] R. H. DUNN, Software Defect Removal ,
McGraw-Hill, New York, 1984. (Chapter 15)

 [Dunsmore, Roper, and Wood, 2003] A. DUNSMORE, M.
ROPER, AND M. WOOD, “The Development and Evalu-
ation of Three Diverse Techniques for Object-Oriented
Code Inspection,” IEEE Transactions on Software En-
gineering 29 (August 2003), pp. 677–86. (Chapter 6)

 [Dybå, 2005] T. DYBÅ, “An Empirical Investigation of the
Key Factors for Success in Software Process Improve-
ment,” IEEE Transactions in Software Engineering 31
(May 2005), pp. 410–24. (Chapter 3)

 [Dybå et al., 2007] T. DYBÅ, E. ARISHOLM, D. I. K. SJØ-
BERG, J. E. HANNAY, AND F. SHULL, “Are Two Heads
Better than One? On the Effectiveness of Pair Pro-
gramming,” IEEE Software 24 (November–December
2007), pp. 12–15. (Chapters 2 and 4)

sch76183_bib_601-626.indd 607sch76183_bib_601-626.indd 607 07/06/10 11:58 AM07/06/10 11:58 AM

608 Bibliography

 [Dzidek, Arisholm, and Briand, 2008] W. J. DZIDEK, E.
ARISHOLM, AND L. C. BRIAND, “A Realistic Empiri-
cal Evaluation of the Costs and Benefi ts of UML in
Software Maintenance,” IEEE Transactions on Soft-
ware Engineering 34 (May–June 2008), pp. 407–32.
(Chapter 16)

 [Ebert, 2006] C. EBERT, “Understanding the Product
Life Cycle: Four Key Requirements Engineering
Techniques,” IEEE Software 23 (May–June 2006),
pp. 19–25. (Chapter 11)

 [Ebner and Kaindl, 2002] G. EBNER AND H. KAINDL,
“Tracing All Around in Reengineering,” IEEE Soft-
ware 19 (May–June 2002), pp. 70–77. (Chapter 16)

 [Eickelmann, 2003] N. EICKELMANN, “An Insider’s View
of CMM Level 5,” IEEE Software 20 (July–August
2003), pp. 79–81. (Chapter 3)

 [Eickelmann and Anant, 2003] N. EICKELMANN AND A.
ANANT, “Statistical Process Control: What You Don’t
Know Can Hurt You!” IEEE Software 20 (March–
April 2003), pp. 49–51. (Chapter 3)

 [Elbaum, Malishevsky, and Rothermel, 2002] S. ELBAUM,
A. G. MALISHEVSKY, AND G. ROTHERMEL, “Test Case
Prioritization: A Family of Empirical Studies,” IEEE
Transactions on Software Engineering 28 (February
2002), pp. 159–82. (Chapter 15)

 [El Emam, Benlarbi, Goel, and Rai, 2001] K. EL EMAM,
S. BENLARBI, N. GOEL, AND S. N. RAI, “The Confound-
ing Effect of Class Size on the Validity of Object-
Oriented Metrics,” IEEE Transactions on Software
Engineering 27 (July 2001), pp. 630–50. (Chapter 5)

 [Elrad et al., 2001] T. ELRAD, M. AKSIT, G. KICZALES,
K. LIEBERHERR, AND H. OSSHER, “Discussing Aspects
of AOP,” Communications of the ACM 44 (October
2001), pp. 33–38. (Chapter 7)

 [Elshoff, 1976] J. L. ELSHOFF, “An Analysis of Some
Commercial PL/I Programs,” IEEE Transactions on
Software Engineering SE-2 (June 1976), pp. 113–20.
(Chapter 1)

 [Embley, Jackson, and Woodfi eld, 1995] D. W. EMBLEY,
R. B. JACKSON, AND S. N. WOODFIELD, “OO Systems
Analysis: Is It or Isn’t It?” IEEE Software 12 (July
1995), pp. 18–33. (Chapter 13)

 [Endres, 1975] A. ENDRES, “An Analysis of Errors and
Their Causes in System Programs,” IEEE Transac-
tions on Software Engineering SE-1 (June 1975),
pp. 140–49. (Chapter 15)

 [Erdogmus, Morisio, and Torchiano, 2005] H. ERDOGMUS,
M. MORISIO, AND M. TORCHIANO, “On the Effectiveness

of the Test-First Approach to Programming,” IEEE
Transactions on Software Engineering 31 (March
2005), pp. 226–37. (Chapter 2)

 [Fach, 2001] P. W. FACH, “Design Reuse through Frame-
works and Patterns,” IEEE Software 18 (September–
October 2001), pp. 71–76. (Chapter 8)

 [Fagan, 1974] M. E. FAGAN, “Design and Code Inspec-
tions and Process Control in the Development of Pro-
grams,” Technical Report IBM-SSD TR 21.572, IBM
Corporation, December 1974. (Chapter 1)

 [Fagan, 1976] M. E. FAGAN, “Design and Code Inspec-
tions to Reduce Errors in Program Development,”
 IBM Systems Journal 15 (No. 3, 1976), pp. 182–211.
(Chapters 6, 12, and 14)

 [Fagan, 1986] M. E. FAGAN, “Advances in Software
Inspections,” IEEE Transactions on Software Engi-
neering SE-12 (July 1986), pp. 744–51. (Chapters 6
and 14)

 [Feather et al., 2008] M. S. FEATHER, S. L. CORNFORD,
K. A. HICKS, J. D. KIPER, AND T. MENZIES, “A Broad,
Quantitative Model for Making Early Requirements
Decisions,” IEEE Software 25 (March–April 2008),
pp. 49–56. (Chapter 11)

 [Feldman, 1979] S. I. FELDMAN, “Make—A Program for
Maintaining Computer Programs,” Software—Prac-
tice and Experience 9 (April 1979), pp. 225–65.
(Chapter 5)

 [Ferguson and Sheard, 1998] J. FERGUSON AND S. SHEARD,
“Leveraging Your CMM Efforts for IEEE/EIA 12207,”
 IEEE Software 15 (September–October 1998), pp. 23–28.
(Chapter 3)

 [Ferguson et al., 1997] P. FERGUSON, W. S. HUMPHREY,
S. KHAJENOORI, S. MACKE, AND A. MATVYA, “Results
of Applying the Personal Software Process,” IEEE
Computer 30 (May 1997), pp. 24–31. (Chapter 3)

 [Ferrari and Madhavji, 2008] R. FERRARI AND N. H. MAD-
HAVJI, “Software Architecting without Requirements
Knowledge and Experience: What Are the Repercus-
sions?” Journal of Systems and Software 81 (Septem-
ber 2008), pp. 1470–90. (Chapter 8)

 [Fichman and Kemerer, 1992] R. G. FICHMAN AND C. F.
KEMERER, “Object-Oriented and Conventional Analy-
sis and Design Methodologies: Comparison and Cri-
tique,” IEEE Computer 25 (October 1992), pp. 22–39.
(Chapters 13 and 14)

 [Fingar, 2000] P. FINGAR, “Component-Based Frameworks
for e-Commerce,” Communications of the ACM 43
(October 2000), pp. 61–66. (Chapter 8)

sch76183_bib_601-626.indd 608sch76183_bib_601-626.indd 608 07/06/10 11:58 AM07/06/10 11:58 AM

Bibliography 609

 [Finkelstein, 2000] A. FINKELSTEIN (Editor), The Future of
Software Engineering , IEEE Computer Society Press,
Los Alamitos, CA, 2000. (Chapter 1)

 [Finney, 1996] K. FINNEY, “Mathematical Notation in For-
mal Specifi cation: Too Diffi cult for the Masses?” IEEE
Transactions on Software Engineering 22 (1996),
pp. 158–59. (Chapter 12)

 [Fioravanti and Nesi, 2001] F. FIORAVANTI AND P. NESI,
“Estimation and Prediction Metrics for Adaptive
Maintenance Effort of Object-Oriented Systems,”
 IEEE Transactions on Software Engineering 27
(December 2001), pp. 1062–84. (Chapter 16)

 [Flanagan, 2005] D. FLANAGAN, Java in a Nutshell: A
Desktop Quick Reference , 5th ed., O’Reilly and Asso-
ciates, Sebastopol, CA, 2005. (Chapters 7, 8, and 14)

 [Flor, 2006] N. V. FLOR. “Globally Distributed Software
Development and Pair Programming,” Communica-
tions of the ACM 49 (October 2006), pp. 57–58.
(Chapter 4)

 [Florac, Carleton, and Barnard, 2000] W. A. FLORAC,
A. D. CARLETON, AND J. BARNARD, “Statistical Process
Control: Analyzing a Space Shuttle Onboard Software
Process,” IEEE Software 17 (July–August 2000),
pp. 97–106. (Chapter 3)

 [Florida Today , 1999] “Milstar Satellite Lost during Air
Force Titan 4b Launch from Cape,” Florida Today ,
www.fl oridatoday.com/space/explore/uselv/titan/
b32/, June 5, 1999. (Chapter 3)

 [Fowler, 1986] P. J. FOWLER, “In-Process Inspections of
Work Products at AT&T,” AT&T Technical Journal 65
(March–April 1986), pp. 102–12. (Chapter 6)

 [Fowler, 1997] M. FOWLER, Analysis Patterns: Reusable
Object Models , Addison-Wesley, Reading, MA, 1997.
(Chapter 8)

 [Fowler and Scott, 2000] M. FOWLER WITH K. SCOTT,
UML Distilled, 2nd ed., Addison-Wesley, Upper Sad-
dle River, NJ, 2000. (Chapter 17)

 [Fowler et al., 1999] M. FOWLER WITH K. BECK, J. BRANT,
W. OPDYKE, AND D. ROBERTS, Refactoring: Improving
the Design of Existing Code , Addison-Wesley, Read-
ing, MA, 1999. (Chapter 2)

 [Frakes and Kang, 2005] W. B. FRAKES AND K. KANG,
“Software Reuse Research: Status and Future,” IEEE
Transactions on Software Engineering 31 (July 2005),
pp. 529–36. (Chapter 8)

 [Främling, Ala-Risku, Kärkkäinen, and Holmström, 2007]
K. FRÄMLING, T. ALA-RISKU, M. KÄRKKÄINEN, AND J.
HOLMSTRÖM, “Design Patterns for Managing Product

Life Cycle Information,” Communications of the ACM
 50 (June 2007), pp. 75–79. (Chapter 8)

 [Freeman and Schach, 2005] G. L. FREEMAN, JR. AND
S. R. SCHACH, “The Task-Dependent Nature of the
Maintenance of Object-Oriented Programs,” Journal
of Systems and Software 76 (May 2005), pp. 195–206.
(Chapter 16)

 [Freimut, Briand, and Vollei, 2005] B. FREIMUT, L. C.
BRIAND, AND F. VOLLEI, “Determining Inspection Cost-
Effectiveness by Combining Project Data and Expert
Opinion,” IEEE Transactions on Software Engineering
 31 (December 2005), pp. 1074–92. (Chapter 6)

 [Fu, Milanova, Ryder, and Wonnacott, 2005] C. FU, A.
MILANOVA, B. G. RYDER, AND D. G. WONNACOTT,
“Robustness Testing of Java Server Applications,”
 IEEE Transactions on Software Engineering 31 (April
2005), pp. 292–311. (Chapter 6)

 [Fuggetta, 1993] A. FUGGETTA, “A Classifi cation of CASE
Technology,” IEEE Computer 26 (December 1993),
pp. 25–38. (Chapter 5)

 [Furey and Kitchenham, 1997] S. FUREY AND B. KITCH-
ENHAM, “Function Points,” IEEE Software 14 (March–
April 1997), pp. 28–32. (Chapter 9)

 [Galin and Avrahami, 2006] D. GALIN AND M. AVRAHAMI,
“Are CMM Program Investments Benefi cial? Analyz-
ing Past Studies,” IEEE Software 23 (November–
December 2006), pp. 81–87. (Chapter 3)

 [Gamma, Helm, Johnson, and Vlissides, 1995] E.
GAMMA, R. HELM, R. JOHNSON, AND J. VLISSIDES,
 Design Patterns: Elements of Reusable Object-
Oriented Software , Addison-Wesley, Reading, MA,
1995. (Chapter 8)

 [Gane and Sarsen, 1979] C. GANE AND T. SARSEN, Struc-
tured Systems Analysis: Tools and Techniques , Pren-
tice Hall, Englewood Cliffs, NJ, 1979. (Chapters 12
and 14)

 [Garman, 1981] J. R. GARMAN, “The ‘Bug’ Heard ’Round
the World,” ACM SIGSOFT Software Engineering
Notes 6 (October 1981), pp. 3–10. (Chapter 3)

 [Gelperin and Hetzel, 1988] D. GELPERIN AND B. HETZEL,
“The Growth of Software Testing,” Communications of
the ACM 31 (June 1988), pp. 687–95. (Chapter 6)

 [Gerald and Wheatley, 1999] C. F. GERALD AND P. O.
WHEATLEY, Applied Numerical Analysis , 6th ed.,
Addison-Wesley, Reading, MA, 1999. (Chapter 7)

 [Ghezzi and Mandrioli, 1987] C. GHEZZI AND D. MAN-
DRIOLI, “On Eclecticism in Specifi cations: A Case
Study Centered around Petri Nets,” Proceedings of the

sch76183_bib_601-626.indd 609sch76183_bib_601-626.indd 609 07/06/10 11:58 AM07/06/10 11:58 AM

www.floridatoday.com/space/explore/uselv/titan/b32/
www.floridatoday.com/space/explore/uselv/titan/b32/

610 Bibliography

Fourth International Workshop on Software Specifi ca-
tion and Design , Monterey, CA, 1987, pp. 216–24.
(Chapter 12)

 [Gifford and Spector, 1987] D. GIFFORD AND A. SPECTOR,
“Case Study: IBM’s System/360-370 Architecture,”
 Communications of the ACM 30 (April 1987),
pp. 292–307. (Chapter 8)

 [GJSentinel.com, 2003] “Sallie Mae’s Errors Double
Some Bills,” www.gjsentinel.com/news/content/
coxnet/headlines/0522_salliemae.html, May 22,
2003. (Chapter 1)

 [Glinz, 2008] M. GLINZ, “A Risk-Based, Value-Oriented
Approach to Quality Requirements,” IEEE Software
 25 (March–April 2008), pp. 34–41. (Chapter 11)

 [Goldberg and Robson, 1989] A. GOLDBERG AND D. ROB-
SON, Smalltalk-80: The Language, Addison-Wesley,
Reading, MA, 1989. (Chapters 7 and 14)

 [Gomaa, 2000] H. GOMAA, Designing Concurrent,
Distributed, and Real-time Applications with UML ,
Addison-Wesley, Reading, MA, 2000. (Chapter 14)

 [Goodenough, 1979] J. B. GOODENOUGH, “A Survey of
Program Testing Issues,” in: Research Directions in
Software Technology , P. Wegner (Editor), The MIT
Press, Cambridge, MA, 1979, pp. 316–40. (Chapter 6)

 [Goodenough and Gerhart, 1975] J. B. GOODENOUGH
AND S. L. GERHART, “Toward a Theory of Test Data
Selection,” Proceedings of the Third International
Conference on Reliable Software , Los Angeles, 1975,
pp. 493–510; also published in IEEE Transactions on
Software Engineering SE-1 (June 1975), pp. 156–73.
Revised version: J. B. Goodenough and S. L. Gerhart,
“Toward a Theory of Test Data Selection: Data Selec-
tion Criteria,” in: Current Trends in Programming
Methodology, Vol. 2, R. T. Yeh (Editor), Prentice Hall,
Englewood Cliffs, NJ, 1977, pp. 44–79. (Chapters 6
and 12)

 [Gordon, 1979] M. J. C. GORDON, The Denotational
Description of Programming Languages: An Introduc-
tion , Springer-Verlag, New York, 1979. (Chapter 12)

 [Gorla and Lam, 2004] N. GORLA AND Y. W. LAM, “Who
Should Work with Whom?” Communications of the
ACM 47 (June 2004), pp. 79–82. (Chapter 4)

 [Goth, 2000] G. GOTH, “New Air Traffi c Control Software
Takes an Incremental Approach,” IEEE Software 17
(July–August 2000), pp. 108–111. (Chapter 2)

 [Grady, 1992] R. B. GRADY, Practical Software Metrics for
Project Management and Process Improvement , Pren-
tice Hall, Englewood Cliffs, NJ, 1992. (Chapter 15)

 [Grady, 1994] R. B. GRADY, “Successfully Applying Soft-
ware Metrics,” IEEE Computer 27 (September 1994),
pp. 18–25. (Chapter 1)

 [Gramlich, 1997] E. M. GRAMLICH, A Guide to Benefi t–
Cost Analysis , 2nd ed., Waveland Books, Prospect
Heights, IL, 1997. (Chapter 5)

 [Green, 2000] P. GREEN, “FW: Here’s an Update to the
Simulated Kangaroo Story,” The Risks Digest 20
(January 23, 2000), catless.ncl.ac.uk/Risks/20.76.
html. (Chapter 8)

 [Gregoriades and Sutcliffe, 2005] A. GREGORIADES AND A.
SUTCLIFFE, “Scenario-Based Assessment of Nonfunc-
tional Requirements,” IEEE Transactions on Software
Engineering 31 (May 2005), pp. 392–409. (Chapter 11)

 [Griss, 1993] M. L. GRISS, “Software Reuse: From Li-
brary to Factory,” IBM Systems Journal 32 (No. 4,
1993), pp. 548–66. (Chapter 8)

 [Guéhéneuc and Antoniol, 2008] Y.-G. GUÉHÉNEUC AND
G. ANTONIOL, “DeMIMA: A Multilayered Approach
for Design Pattern Identifi cation,” IEEE Transactions
on Software Engineering 34 (September–October
2008), pp. 667–84. (Chapter 8)

 [Guerrero and Eterovic, 2004] F. GUERRERO AND Y.
ETEROVIC, “Adopting the SW-CMM in a Small IT
Organization,” IEEE Software 21 (July–August 2004),
pp. 29–35. (Chapter 3)

 [Guha, Lang, and Bassiouni, 1987] R. K. GUHA, S. D.
LANG, AND M. BASSIOUNI, “Software Specifi cation and
Design Using Petri Nets,” Proceedings of the Fourth
International Workshop on Software Specifi cation and
Design , Monterey, CA, IEEE, April 1987, pp. 225–30.
(Chapter 12)

 [Guimaraes, 1985] T. GUIMARAES, “A Study of Applica-
tion Program Development Techniques,” Commu-
nications of the ACM 28 (May 1985), pp. 494–99.
(Chapter 15)

 [Guinan, Cooprider, and Sawyer, 1997] P. J. GUINAN, J. G.
COOPRIDER, AND S. SAWYER, “The Effective Use of Au-
tomated Application Development Tools,” IBM Systems
Journal 36 (No. 1, 1997), pp. 124–39. (Chapter 5)

 [Guttag, 1977] J. GUTTAG, “Abstract Data Types and the
Development of Data Structures,” Communications of
the ACM 20 (June 1977), pp. 396–404. (Chapter 7)

 [Hadar and Leron, 2008] I. HADAR AND U. LERON, “How
Intuitive Is Object-Oriented Design?” Communications
of the ACM 51 (May 2008), pp. 41–46. (Chapter 14)

 [Hagge and Lappe, 2005] L. HAGGE AND K. LAPPE,
“Sharing Requirements Engineering Experience

sch76183_bib_601-626.indd 610sch76183_bib_601-626.indd 610 07/06/10 11:58 AM07/06/10 11:58 AM

www.gjsentinel.com/news/content/coxnet/headlines/0522_salliemae.html
www.gjsentinel.com/news/content/coxnet/headlines/0522_salliemae.html

Bibliography 611

Using Patterns,” IEEE Software 22 (January–February
2005), pp. 24–31. (Chapter 8)

 [Hall, 1990] A. HALL, “Seven Myths of Formal Methods,”
 IEEE Software 7 (September 1990), pp. 11–19.
(Chapter 12)

 [Hall and Chapman, 2002] A. HALL AND R. CHAPMAN,
“Correctness by Construction: Developing a Commer-
cial Secure System,” IEEE Software 19 (January–
February 2002), pp. 18–25. (Chapter 12)

 [Hanssen and Fægri, 2008] G. K. HANSSEN AND T. E.
FÆGRI, “Process Fusion: An Industrial Case Study on
Agile Software Product Line Engineering,” Journal
of Systems and Software 81 (April 2008), pp. 502–16.
(Chapter 8)

 [Hansson, Dittrich, Gustafsson, and Zarnak, 2006] C. HANS-
SON, Y. DITTRICH, B. GUSTAFSSON, AND S. ZARNAK, “How
Agile are Industrial Software Development Practices?”
 Journal of Systems and Software 79 (September 2006),
pp. 1217–58. (Chapter 2)

 [Harel and Gery, 1997] D. HAREL AND E. GERY, “Execut-
able Object Modeling with Statecharts,” IEEE Com-
puter 30 (July 1997), pp. 31–42. (Chapters 12 and 13)

 [Harel et al., 1990] D. HAREL, H. LACHOVER, A. NAAMAD,
A. PNUELI, M. POLITI, R. SHERMAN, A. SHTULL-
TRAURING, AND M. TRAKHTENBROT, “STATEMATE:
A Working Environment for the Development of
Complex Reactive Systems,” IEEE Transactions on
Software Engineering 16 (April 1990), pp. 403–14.
(Chapters 12 and 15)

 [Harrison, 2004] W. HARRISON, “The Dangers of End-User
Programming,” IEEE Software 21 (July–August 2004),
pp. 5–7. (Chapter 15)

 [Harrold and Soffa, 1991] M. J. HARROLD AND M. L.
SOFFA, “Selecting and Using Data for Integration
Testing,” IEEE Software 8 (1991), pp. 58–65.
(Chapter 15)

 [Harrold, McGregor, and Fitzpatrick, 1992] M. J. HAR-
ROLD, J. D. MCGREGOR, AND K. J. FITZPATRICK, “Incre-
mental Testing of Object-Oriented Class Structures,”
 Proceedings of the 14th International Conference on
Software Engineering , Melbourne, Australia, IEEE,
May 1992, pp. 68–80. (Chapter 15)

 [Harrold, Rosenblum, Rothermel and Weyuker, 2001]
M. J. HARROLD, D. ROSENBLUM, G. ROTHERMEL, AND
E. WEYUKER, “Empirical Studies of a Prediction
Model for Regression Test Selection,” IEEE Transac-
tions on Software Engineering 27 (March 2001),
pp. 248–63. (Chapter 16)

 [Hatton, 1998] L. HATTON, “Does OO Sync with How
We Think?” IEEE Software 15 (May–June 1998),
pp. 46–54. (Chapter 1)

 [Hatton, 2008] L. HATTON, “Testing the Value of Check-
lists in Code Inspections,” IEEE Software 25 (July–
August 2008), pp. 82–88. (Chapter 6)

 [Haxthausen and Peleska, 2000] A. E. HAXTHAUSEN AND
J. PELESKA, “Formal Development and Verifi cation of
a Distributed Railway Control System,” IEEE Transac-
tions on Software Engineering 26 (August 2000),
pp. 687–701. (Chapter 12)

 [Hayes, 2004] F. HAYES, “Chaos Is Back,” Computerworld ,
www.computerworld.com/managementtopics/
management/project/story/0,10801,97283,00.
html, November 8, 2004. (Chapter 2)

 [Heinemann, Kangasharju, Lyardet, and Mühlhäuser,
2003] A. HEINEMANN, J. KANGASHARJU,
F. LYARDET, AND M. MÜHLHÄUSER, “iClouds—
Peer-to-Peer Information Sharing in Mobile
Environments,” Proceedings of the International
Conference on Parallel and Distributed Computing
 (Euro-Par 2003) , Klagenfurt, Austria, IEEE,
August 2003. (Chapter 18)

 [Henry and Kafura, 1981] S. M. HENRY AND D. KAFURA,
“Software Structure Metrics Based on Information
Flow,” IEEE Transactions on Software Engineering
 SE-7 (September 1981), pp. 510–18. (Chapter 14)

 [Highsmith and Cockburn, 2001] J. HIGHSMITH AND A.
COCKBURN, “Agile Software Development: The Busi-
ness of Innovation,” IEEE Computer 34 (September
2001), pp. 120–22. (Chapter 2)

 [Hinchey et al., 2008] M. HINCHEY, M. JACKSON, P. COU-
SOT, B. COOK, J. P. BOWEN, AND T. MARGARIA, “Soft-
ware Engineering and Formal Methods,” Communica-
tions of the ACM 51 (September 2008), pp. 54–59.
(Chapters 6 and 12)

 [Hoare, 1969] C. A. R. HOARE, “An Axiomatic Basis for
Computer Programming,” Communications of the
ACM 12 (October 1969), pp. 576–83. (Chapter 6)

 [Hoare, 1981] C. A. R. HOARE, “The Emperor’s Old
Clothes,” Communications of the ACM 24 (February
1981), pp. 75–83. (Chapter 6)

 [Hoare, 1985] C. A. R. HOARE, Communicating Sequen-
tial Processes , Prentice Hall International, Englewood
Cliffs, NJ, 1985. (Chapter 12)

 [Hoare, 1987] C. A. R. HOARE, “An Overview of Some
Formal Methods for Program Design,” IEEE Com-
puter 20 (September 1987), pp. 85–91. (Chapter 14)

sch76183_bib_601-626.indd 611sch76183_bib_601-626.indd 611 07/06/10 11:58 AM07/06/10 11:58 AM

www.computerworld.com/managementtopics/management/project/story/0,10801,97283,00.html
www.computerworld.com/managementtopics/management/project/story/0,10801,97283,00.html
www.computerworld.com/managementtopics/management/project/story/0,10801,97283,00.html

612 Bibliography

 [Hoepman and Jacobs, 2007] J.-H. HOEPMAN AND B.
JACOBS, “Increased Security through Open Source,”
 Communications of the ACM 50 (January 2007),
pp. 79–83. (Chapter 1)

 [Holzinger, 2005] A. HOLZINGER, “Usability Engineering
Methods for Software Developers,” Communications
of the ACM 48 (January 2005), pp. 71–74. (Chapter 11)

 [Horgan, London, and Lyu, 1994] J. R. HORGAN, S. LON-
DON, AND M. R. LYU, “Achieving Software Quality
with Testing Coverage Measures,” IEEE Computer 27
(1994), pp. 60–69. (Chapter 15)

 [Howden, 1987] W. E. HOWDEN, Functional Program
Testing and Analysis , McGraw-Hill, New York, 1987.
(Chapter 15)

 [Hsueh, Chu, and Chu, 2008] N. HSUEH, P. CHU, AND W.
CHU, “A Quantitative Approach for Evaluating the
Quality of Design Patterns,” Journal of Systems and
Software 81 (August 2008), pp. 1430–39. (Chapter 8)

 [Humphrey, 1989] W. S. HUMPHREY, Managing the Soft-
ware Process , Addison-Wesley, Reading, MA, 1989.
(Chapter 3)

 [Humphrey, 1996] W. S. HUMPHREY, “Using a Defi ned
and Measured Personal Software Process,” IEEE Soft-
ware 13 (May 1996), pp. 77–88. (Chapter 3)

 [Humphrey, Snider, and Willis, 1991] W. S. HUMPHREY,
T. R. SNIDER, AND R. R. WILLIS, “Software Process Im-
provement at Hughes Aircraft,” IEEE Software 8 (July
1991), pp. 11–23. (Chapter 3)

 [Hwang, 1981] S.-S. V. HWANG, “An Empirical Study in
Functional Testing, Structural Testing, and Code Read-
ing Inspection,” Scholarly Paper 362, Department of
Computer Science, University of Maryland, College
Park, 1981. (Chapter 15)

 [Iacovou and Nakatsu, 2008] C. L. IACOVOU AND R.
NAKATSU, “A Risk Profi le of Offshore-Outsourced
Development Projects,” Communications of the ACM
 51 (June 2008), pp. 89–94. (Chapter 2)

 [IEEE 610.12, 1990] “A Glossary of Software Engi-
neering Terminology,” IEEE 610.12-1990, Institute
of Electrical and Electronic Engineers, Inc., 1990.
(Chapters 1 and 6)

 [IEEE 1028, 1997] Standard for Software Reviews , IEEE
1028, Institute of Electrical and Electronic Engineers,
New York, 1997. (Chapter 6)

 [IEEE 1058, 1998] “IEEE Standard for Software Project
Management Plans.” IEEE Std. 1058-1998, Institute of
Electrical and Electronic Engineers, New York, 1998.
(Chapter 9)

 [IEEE Standards, 2003] “Products and Projects Status
Report,” standards.ieee.org/db/status/status.txt,
June 3, 2003. (Chapter 1)

 [IEEE/ACM, 1999] “Software Engineering Code of Eth-
ics and Professional Practice, Version 5.2, as Recom-
mended by the IEEE-CS/ACM Joint Task Force on
Software Engineering Ethics and Professional Prac-
tice,” www.computer.org/tab/seprof/code.htm,
1999. (Chapter 1)

 [IEEE/EIA 12207.0-1996, 1998] “IEEE/EIA 12207.0-
1996 Industry Implementation of International Stan-
dard ISO/IEC 12207:1995,” Institute of Electrical and
Electronic Engineers, Electronic Industries Alliance,
New York, 1998. (Chapters 1 and 3)

 [In, Baik, Kim, Yang, and Boehm, 2006] H. P. IN, J. BAIK,
S. KIM, Y. YANG, AND B. BOEHM, “A Quality-Based
Cost Estimation Model for the Product Line Life
Cycle,” Communications of the ACM 49 (December
2006), pp. 85–88. (Chapter 9)

 [ISO 9000-3, 1991] “ISO 9000-3, Guidelines for the Ap-
plication of ISO 9001 to the Development, Supply, and
Maintenance of Software,” International Organization
for Standardization, Geneva, 1991. (Chapter 3)

 [ISO 9001, 1987] “ISO 9001, Quality Systems—Model
for Quality Assurance in Design/Development, Pro-
duction, Installation, and Servicing,” International
Organization for Standardization, Geneva, 1987.
(Chapter 3)

 [ISO/IEC 1539–1, 2004] Information Technology—
Programming Languages—Fortran—Part 1: Base
Language , ISO/IEC 1539–1, International Organiza-
tion for Standardization, International Electrotechni-
cal Commission, Geneva, 2004. (Chapter 8)

 [ISO/IEC 1989, 2002] Information Technology—
Programming Language COBOL , ISO 1989:2002,
International Organization for Standardization, Inter-
national Electrotechnical Commission, Geneva, 2002.
(Chapter 8)

 [ISO/IEC 8652, 1995] Programming Language Ada:
Language and Standard Libraries , ISO/IEC 8652,
International Organization for Standardization, Inter-
national Electrotechnical Commission, Geneva, 1995.
(Chapters 8 and 14)

 [ISO/IEC 12207, 1995] “ISO/IEC 12207:1995, Informa-
tion Technology—Software Life-Cycle Processes,”
International Organization for Standardization, Inter-
national Electrotechnical Commission, Geneva, 1995.
(Chapters 1, 2 and 3)

sch76183_bib_601-626.indd 612sch76183_bib_601-626.indd 612 07/06/10 11:58 AM07/06/10 11:58 AM

www.computer.org/tab/seprof/code.htm

Bibliography 613

 [ISO/IEC 14882, 1998] Programming Language C++ ,
ISO/IEC 14882, International Organization for Stan-
dardization, International Electrotechnical Commis-
sion, Geneva, 1998. (Chapter 8)

 [IWSSD, 1986] Call for Papers, Fourth International
Workshop on Software Specifi cation and Design,
 ACM SIGSOFT Software Engineering Notes 11 (April
1986), pp. 94–96. (Chapter 12)

 [Jackson, 1975] M. A. JACKSON, Principles of Program
Design , Academic Press, New York, 1975.
(Chapter 14)

 [Jackson, 1995] M. JACKSON, Software Requirements and
Specifi cations: A Lexicon of Practice, Principles and
Prejudices, Addison-Wesley Longman, Reading, MA,
1995. (Chapter 11)

 [Jackson and Chapin, 2000] D. JACKSON AND J. CHAPIN,
“Redesigning Air Traffi c Control: An Exercise in Soft-
ware Design,” IEEE Software 17 (May–June 2000),
pp. 63–70. (Chapter 14)

 [Jacobson, Booch, and Rumbaugh, 1999] I. JACOBSON,
G. BOOCH, AND J. RUMBAUGH, The Unifi ed Software
Development Process , Addison-Wesley, Reading, MA,
1999. (Chapters 2, 3, 11, 13, 15, 16)

 [Jacobson, Christerson, Jonsson, and Overgaard, 1992]
I. JACOBSON, M. CHRISTERSON, P. JONSSON, AND G.
OVERGAARD, Object-Oriented Software Engineering:
A Use Case Driven Approach , ACM Press, New York,
1992. (Chapter 13)

 [Jalote, Palit, Kurien, and Peethamber, 2004] P. JALOTE,
A. PALIT, P. KURIEN, AND V. T. PEETHAMBER,
“Timeboxing: A Process Model for Iterative
Software Development,” Journal of Systems and
Software 70 (February 2004), pp. 117–27.
(Chapter 2)

 [Jeffrey and Gupta, 2007] D. JEFFREY AND N. GUPTA, “Im-
proving Fault Detection Capability by Selectively Re-
taining Test Cases during Test Suite Reduction,” IEEE
 Transactions on Software Engineering 33 (February
2007), pp. 108–23. (Chapter 16)

 [Jézéquel and Meyer, 1997] J.-M. JÉZÉQUEL AND B.
MEYER, “Put It in the Contract: The Lessons of Ari-
ane,” IEEE Computer 30 (January 1997), pp. 129–30.
(Chapter 8)

 [Jing, Sheng, and Kang, 2007] D. JING, Y. SHENG, AND
Z. KANG, “Visualizing Design Patterns in Their Ap-
plications and Compositions,” IEEE Transactions on
Software Engineering 32 (July 2007), pp. 433–53.
(Chapter 8)

 [Johnson, 1979] S. C. JOHNSON, “A Tour through the
Portable C Compiler,” 7th ed., UNIX Programmer’s
Manual, Bell Laboratories, Murray Hill, NJ, January
1979. (Chapter 8)

 [Johnson, 2000] R. A. JOHNSON, “The Ups and Downs
of Object-Oriented System Development,” Commu-
nications of the ACM 43 (October 2000), pp. 69–73.
(Chapters 1 and 7)

 [Johnson and Ritchie, 1978] S. C. JOHNSON AND
D. M. RITCHIE, “Portability of C Programs and
the UNIX System,” Bell System Technical
Journal 57 (No. 6, Part 2, 1978), pp. 2021–48.
(Chapter 8)

 [Jones, 1978] T. C. JONES, “Measuring Programming
Quality and Productivity,” IBM Systems Journal 17
(No. 1, 1978), pp. 39–63. (Chapter 6)

 [Jones, 1984] T. C. JONES, “Reusability in Programming:
A Survey of the State of the Art,” IEEE Transactions
on Software Engineering SE-10 (September 1984),
pp. 488–94. (Chapter 8)

 [Jones, 1986a] C. JONES, Programming Productivity,
McGraw-Hill, New York, 1986. (Chapter 9)

 [Jones, 1986b] C. B. JONES, Systematic Software Develop-
ment Using VDM , Prentice Hall, Englewood Cliffs, NJ,
1986. (Chapter 12)

 [Jones, 1987] C. JONES, Letter to the Editor, IEEE Com-
puter 20 (December 1987), p. 4. (Chapter 9)

 [Jones, 1994] C. JONES, “Software Metrics: Good, Bad,
and Missing,” IEEE Computer 27 (September 1994),
pp. 98–100. (Chapter 5)

 [Jones, 1996] C. JONES, Applied Software Measurement,
McGraw-Hill, New York, 1996. (Chapter 3)

 [Jorgensen and Erickson, 1994] P. C. JORGENSEN AND
C. ERICKSON, “Object-Oriented Integration Testing,”
 Communications of the ACM 37 (September 1994),
pp. 30–38. (Chapter 15)

 [Jorgensen and Moløkken-Østvold, 2004] M.
JORGENSEN AND K. MOLØKKEN-ØSTVOLD, “Reasons
for Software Effort Estimation Error: Impact of
Respondent Role, Information Collection Approach,
and Data Analysis Method,” IEEE Transactions
on Software Engineering 30 (December 2004),
pp. 993–1007. (Chapter 9)

 [Jorgensen and Shepperd, 2007] M. JORGENSEN AND M.
SHEPPERD, “A Systematic Review of Software De-
velopment Cost Estimation Studies,” IEEE Transac-
tions on Software Engineering 32 (January 2007),
pp. 33–53. (Chapter 9)

sch76183_bib_601-626.indd 613sch76183_bib_601-626.indd 613 07/06/10 11:58 AM07/06/10 11:58 AM

614 Bibliography

 [Josephson, 1992] M. JOSEPHSON, Edison, A Biography ,
John Wiley and Sons, New York, 1992. (Chapter 1)

 [Juran, 1988] J. M. JURAN, Juran on Planning for Quality ,
Macmillan, New York, 1988. (Chapter 3)

 [Juristo, Moreno, and López, 2000] N. JURISTO, A. M.
MORENO, AND M. LÓPEZ, “How to Use Linguistic In-
struments for Object-Oriented Analysis,” IEEE Software
 17 (May–June 2000), pp. 80–89. (Chapter 13)

 [Juristo, Moreno, Vegas, and Solari, 2006] N. JURISTO, A.
M. MORENO, S. VEGAS, AND M. SOLARI, “In Search of
What We Experimentally Know about Unit Testing,”
 IEEE Software 23 (November–December 2006),
pp. 72–80. (Chapter 15)

 [Kampen, 1987] G. R. KAMPEN, “An Eclectic Approach to
Specifi cation,” Proceedings of the Fourth International
Workshop on Software Specifi cation and Design , Mon-
terey, CA, April 1987, pp. 178–82. (Chapter 12)

 [Kan et al., 1994] S. H. KAN, S. D. DULL, D. N. AMUND-
SON, R. J. LINDNER, AND R. J. HEDGER, “AS/400 Soft-
ware Quality Management,” IBM Systems Journal 33
(No. 1, 1994), pp. 62–88. (Chapter 1)

 [Karlsson and Ryan, 1997] J. KARLSSON AND K. RYAN,
“A Cost-Value Approach for Prioritizing Require-
ments,” IEEE Software 14 (September–October 1997),
pp. 67–74. (Chapter 11)

 [Karlström and Runeson, 2005] D. KARLSTRÖM AND P.
RUNESON, “Combining Agile Methods with Stage-
Gate Project Management,” IEEE Software 22
(May–June 2005), pp. 43–49. (Chapter 2)

 [Kazman, Bass, and Klein, 2006] R. KAZMAN, L. BASS,
AND M. KLEIN, “The Essential Components of Soft-
ware Architecture Design and Analysis,” Journal of
Systems and Software 79 (August 2006), pp. 1207–16.
(Chapter 8)

 [Keeni, 2000] G. KEENI, “The Evolution of Quality Pro-
cesses at Tata Consultancy Services,” IEEE Software
 17 (July–August 2000), pp. 79–88. (Chapter 3)

 [Keil and Tiwana, 2005] M. KEIL AND A. TIWANA, “Be-
yond Cost: The Drivers of COTS Application Value,”
 IEEE Software 22 (May–June 2005), pp. 64–69.
(Chapter 1)

 [Kelly and Sherif, 1992] J. C. KELLY AND J. S. SHERIF,
“A Comparison of Four Design Methods for Real-
Time Software Development,” Information and
Software Technology 34 (February 1992), pp. 74–82.
(Chapter 14)

 [Kelly, Sherif, and Hops, 1992] J. C. KELLY, J. S. SHERIF,
AND J. HOPS, “An Analysis of Defect Densities Found

during Software Inspections,” Journal of Systems and
Software 17 (January 1992), pp. 111–17. (Chapters 1
and 6)

 [Kernighan and Plauger, 1974] B. W. KERNIGHAN AND P.
J. PLAUGER, The Elements of Programming Style,
McGraw-Hill, New York, 1974. (Chapter 15)

 [Kernighan and Ritchie, 1978] B. W. KERNIGHAN AND D.
M. RITCHIE, The C Programming Language , Prentice
Hall, Englewood Cliffs, NJ, 1978. (Chapter 8)

 [Kiczales et al., 2001] G. KICZALES, E. HILSDALE, J. HU-
GUNIN, M. KERSTEN, J. PALM, AND W. G. GRISWOLD,
“An Overview of AspectJ,” in: J. L. Knudsen (Edition),
 European Conference on Object-oriented Program-
ming , Vol. 2072 of Lecture Notes in Computer Sci-
ence , Springer-Verlag, New York, 2001, pp. 327–53.
(Chapter 18)

 [Kilpi, 2001] T. KILPI, “Implementing a Software Metrics
Program at Nokia,” IEEE Software 18 (November–
December 2001), pp. 72–76. (Chapter 5)

 [Kitchenham and Mendes, 2004] B. KITCHENHAM AND E.
MENDES, “Software Productivity Measurement Using
Multiple Size Measures,” IEEE Transactions on Soft-
ware Engineering 30 (December 2004), pp. 1023–35.
(Chapter 9)

 [Kitchenham, Pickard, and Linkman, 1990] B. A. KITCH-
ENHAM, L. M. PICKARD, AND S. J. LINKMAN, “An Eval-
uation of Some Design Metrics,” Software Engineer-
ing Journal 5 (January 1990), pp. 50–58. (Chapter 14)

 [Kleinrock and Gail, 1996] L. KLEINROCK AND R. GAIL,
 Queuing Systems: Problems and Solutions , John Wiley
and Sons, New York, 1996. (Chapter 12)

 [Klepper and Bock, 1995] R. KLEPPER AND D. BOCK,
“Third and Fourth Generation Productivity Differ-
ences,” Communications of the ACM 38 (September,
1995), pp. 69–79. (Chapter 15)

 [Klunder, 1988] D. KLUNDER, “Hungarian Naming Con-
ventions,” Technical Report, Microsoft Corporation,
Redmond, WA, January 1988. (Chapter 15)

 [Knuth, 1968] D. E. KNUTH, The Art of Computer Pro-
gramming, Vol. I , Fundamental Algorithms , Addison-
Wesley, Reading, MA, 1968. (Chapter 12)

 [Knuth, 1974] D. E. KNUTH, “Structured Programming
with go to Statements,” ACM Computing Surveys 6
(December 1974), pp. 261–301. (Chapter 7)

 [Ko, Myers, Coblenz, and Aung, 2006] A. J. KO, B. A.
MYERS, M. J. COBLENZ, AND H. H. AUNG, “An
Exploratory Study of How Developers Seek, Relate,
and Collect Relevant Information during Software

sch76183_bib_601-626.indd 614sch76183_bib_601-626.indd 614 07/06/10 11:58 AM07/06/10 11:58 AM

Bibliography 615

Maintenance Tasks,” IEEE Transactions on Soft-
ware Engineering 32 (December 2006), pp. 971–87.
(Chapter 16)

 [Kobryn, 2000] C. KOBRYN, “Modeling Components and
Frameworks with UML,” Communications of the ACM
 43 (October 2000), pp. 31–38. (Chapter 8)

 [Kramer, 2007] J. KRAMER, “Is Abstraction the Key to
Computing?” Communications of the ACM 50 (April
2007), pp. 36–42. (Chapter 7)

 [Krishnamurthy, Rolia, and Majumdar, 2006] D. KRISH-
NAMURTHY, J. A. ROLIA, AND S. MAJUMDAR, “A
Synthetic Workload Generation Technique for Stress
Testing Session-Based Systems,” IEEE Transactions
on Software Engineering 32 (November 2006), pp.
868–82. (Chapter 15)

 [Kruchten, Obbink, and Stafford, 2006] P. KRUCHTEN,
H. OBBINK, AND J. STAFFORD, “The Past, Present, and
Future for Software Architecture,” IEEE Software 23
(March–April 2006), pp. 22–30. (Chapter 8)

 [Kung, Hsia, and Gao, 1998] D. C. KUNG, P. HSIA, AND J.
GAO, Testing Object-Oriented Software , IEEE Computer
Society Press, Los Alamitos, CA, 1998. (Chapter 6)

 [Laddad, 2003] R. LADDAD, AspectJ in Action , Manning
Publications, Greenwich, CT, 2003. (Chapter 18)

 [La Libre Online, 2007a] “Lalibre.be—Une erreur à
883 millions d’euros,” www.lalibre.be/index.
php?view=article&art_id=305607. (Chapter 1)

 [La Libre Online, 2007b] “Lalibre.be—C’est la
faute à l’informatique,” www.lalibre.be/index.
php?view=article&art_id=307021. (Chapter 1)

 [Landwehr, 1983] C. E. LANDWEHR, “The Best Available
Technologies for Computer Security,” IEEE Computer
 16 (July 1983), pp. 86–100. (Chapter 6)

 [Lanergan and Grasso, 1984] R. G. LANERGAN AND C.
A. GRASSO, “Software Engineering with Reusable
Designs and Code,” IEEE Transactions on Software
Engineering SE-10 (September 1984), pp. 498–501.
(Chapter 8)

 [Lange, Chaudron, and Muskens, 2006] C. F. J. LANGE,
M. R. V. CHAUDRON, AND J. MUSKENS, “In Practice:
UML Software Architecture and Design Description,”
 IEEE Software 23 (March–April 2006), pp. 40–46.
(Chapter 8)

 [LAPACK++, 2000] “LAPACK++: Linear Algebra Pack-
age in C++,” at math.nist.gov/lapack++, 2000.
(Chapter 8)

 [Larman and Basili, 2003] C. LARMAN AND V. R. BASILI,
“Iterative and Incremental Development: A Brief

History,” IEEE Computer 36 (June 2003), pp. 47–56.
(Chapter 2)

 [Lau and Wang, 2007] K.-K. LAU AND Z. WANG, “Soft-
ware Component Models,” IEEE Transactions on
Software Engineering 33 (October 2007), pp. 709–24.
(Chapter 8)

 [Leavenworth, 1970] B. LEAVENWORTH, Review #19420,
 Computing Reviews 11 (July 1970), pp. 396–97.
(Chapters 6 and 12)

 [Leveson and Turner, 1993] N. G. LEVESON AND C. S.
TURNER, “An Investigation of the Therac-25 Acci-
dents,” IEEE Computer 26 (July 1993), pp. 18–41.
(Chapter 1)

 [Li and Alshayeb, 2002] W. LI AND M. ALSHAYEB, “An
Empirical Study of XP Effort,” Proceedings of the 17th
International Forum on COCOMO and Software Cost
Modeling , Los Angeles, IEEE, October 2002. (Chapter 2)

 [Li et al., 2008] J. LI, O. P. N. SLYNGSTAD, M. TORCHIANO,
M. MORISIO, AND C. BUNSE, “A State-of-the-Practice
Survey of Risk Management in Development with
Off-the-Shelf Software Components,” IEEE Trans-
actions on Software Engineering 34 (March–April
2008), pp. 271–86. (Chapters 1 and 2)

 [Li, Lu, Myagmar, and Zhou, 2006] Z. LI, S. LU, S.
MYAGMAR, AND Y. ZHOU, “CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software
Code,” IEEE Transactions on Software Engineering
 32 (March 2006), pp. 176–92. (Chapter 8)

 [Lieberman and Fry, 2001] H. LIEBERMAN AND C. FRY,
“Will Software Ever Work?” Communications of the
ACM 44 (March 2001), pp. 122–24. (Chapter 6)

 [Lientz, Swanson, and Tompkins, 1978] B. P. LIENTZ, E.
B. SWANSON, AND G. E. TOMPKINS, “Characteristics of
Application Software Maintenance,” Communications
of the ACM 21 (June 1978), pp. 466–71. (Chapters 1
and 16)

 [Lim, 1994] W. C. LIM, “Effects of Reuse on Quality,
Productivity, and Economics,” IEEE Software 11
(September 1994), pp. 23–30. (Chapters 8 and 9)

 [Lim, Jeong, and Schach, 2005] J. S. LIM, S. R. JEONG,
AND S. R. SCHACH, “An Empirical Investigation of the
Impact of the Object-Oriented Paradigm on the Main-
tainability of Real-World Mission-Critical Software,”
 Journal of Systems and Software 77 (August 2005),
pp. 131–38. (Chapter 16)

 [Linger, 1994] R. C. LINGER, “Cleanroom Process
Model,” IEEE Software 11 (March 1994), pp. 50–58.
(Chapter 15)

sch76183_bib_601-626.indd 615sch76183_bib_601-626.indd 615 07/06/10 11:58 AM07/06/10 11:58 AM

www.lalibre.be/index.php?view=article&art_id=305607
www.lalibre.be/index.php?view=article&art_id=305607
www.lalibre.be/index.php?view=article&art_id=307021
www.lalibre.be/index.php?view=article&art_id=307021

616 Bibliography

 [Liskov and Zilles, 1974] B. LISKOV AND S. ZILLES, “Pro-
gramming with Abstract Data Types,” ACM SIGPLAN
Notices 9 (April 1974), pp. 50–59. (Chapter 7)

 [Liskov, Snyder, Atkinson, and Schaffert, 1977] B. LIS-
KOV, A. SNYDER, R. ATKINSON, AND C. SCHAFFERT,
“Abstraction Mechanisms in CLU,” Communications
of the ACM 20 (August 1977), pp. 564–76. (Chapter 8)

 [Little, 2006] T. LITTLE, “Schedule Estimation and Uncer-
tainty Surrounding the Cone of Uncertainty,” IEEE Soft-
ware 23 (May–June 2006), pp. 48–54. (Chapter 9)

 [Liu, 2000] J. W. S. LIU, Real Time Systems , Prentice Hall,
Upper Saddle River, NJ, 2000. (Chapter 14)

 [London, 1971] R. L. LONDON, “Software Reliability
through Proving Programs Correct,” Proceedings of
the IEEE International Symposium on Fault-Tolerant
Computing, IEEE, March 1971. (Chapters 6 and 12)

 [Long and Morris, 1993] F. LONG AND E. MORRIS, “An
Overview of PCTE: A Basis for a Portable Common
Tool Environment,” Technical Report CMU/SEI–93–
TR–1, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, January 1993. (Chapter 15)

 [Longstaff, Chittister, Pethia, and Haimes, 2000] T. A.
LONGSTAFF, C. CHITTISTER, R. PETHIA, AND Y. Y.
HAIMES, “Are We Forgetting the Risks of Information
Technology?” IEEE Computer 33 (December 2000),
pp. 43–51. (Chapters 1 and 2)

 [Lotto, 1515] L. LOTTO, Giovanni Agostino della Torre
and his Son, Niccolò , oil on canvas, 1515, www.
nationalgallery.org.uk/cgi-bin/WebObjects.dll/
CollectionPublisher.woa/wa/largeImage?work
Number=NG699. (Chapter 16)

 [Loukides and Oram, 1997] M. K. LOUKIDES AND A.
ORAM, Programming with GNU Software , O’Reilly and
Associates, Sebastopol, CA, 1997. (Chapters 5 and 16)

 [Louridas, 2006] P. LOURIDAS, “Version Control,” IEEE
Software 23 (January–February 2006), pp. 104–107.
(Chapter 5)

 [Luckham and von Henke, 1985] D. C. LUCKHAM AND F.
W. VON HENKE, “An Overview of Anna, a Specifi cation
Language for Ada,” IEEE Software 2 (March 1985),
pp. 9–22. (Chapter 12)

 [Lui, Chan, and Nosek, 2008] K. M. LUI, K. C. C. CHAN,
AND J. T. NOSEK, “The Effect of Pairs in Program Design
Tasks,” IEEE Transactions on Software Engineering 34
(March–April 2008), pp. 197–211. (Chapters 4 and 14)

 [Luqi, Zhang, Berzins, and Qiao, 2004] LUQI, L. ZHANG,
V. BERZINS, AND Y. QIAO, “Documentation Driven
Development for Complex Real-Time Systems,” IEEE

Transactions on Software Engineering 30 (December
2004), pp. 936–52. (Chapter 14)

 [Mackenzie, 1980] C. E. MACKENZIE, Coded Character
Sets: History and Development , Addison-Wesley,
Reading, MA, 1980. (Chapter 8)

 [Mackey, 1999] K. MACKEY, “Stages of Team Develop-
ment,” IEEE Software 16 (July–August 1999),
pp. 90–91. (Chapter 4)

 [Madanmohan and De’, 2004] T. R. MADANMOHAN AND
R. DE’, “Open Source Reuse in Commercial Firms,”
 IEEE Software 21 (November–December 2004),
pp. 62–69. (Chapter 1)

 [Magee and Kramer, 1999] J. MAGEE AND J. KRAMER,
 Concurrency: State Models & Java Programs , John
Wiley and Sons, New York, 1999. (Chapter 14)

 [Manna and Pnueli, 1992] Z. MANNA AND A. PNUELI, The
Temporal Logic of Reactive and Concurrent Systems,
Springer-Verlag, New York, 1992. (Chapter 6)

 [Manna and Waldinger, 1978] Z. MANNA AND R.
WALDINGER, “The Logic of Computer Programming,”
 IEEE Transactions on Software Engineering SE-4
(1978), pp. 199–229. (Chapter 6)

 [Mantei, 1981] M. MANTEI, “The Effect of Programming
Team Structures on Programming Tasks,” Commu-
nications of the ACM 24 (March 1981), pp. 106–13.
(Chapter 4)

 [Manzoni and Price, 2003] L. V. MANZONI AND R. T.
PRICE, “Identifying Extensions Required by RUP
(Rational Unifi ed Process) to Comply with CMM
(Capability Maturity Model) Levels 2 and 3,” IEEE
Transactions on Software Engineering 29 (February
2003), pp. 181–92. (Chapter 3)

 [Maranzano et al., 2005] J. F. MARANZANO, S. A.
ROZSYPAL, G. H. ZIMMERMAN, G. W. WARNKEN, P.
E. WIRTH, AND D. M. WEISS, “Architecture Reviews:
Practice and Experience,” IEEE Software 22 (March–
April 2005), pp. 34–43. (Chapter 14)

 [Martin, 1985] J. MARTIN, Fourth-Generation Languages,
Vols. 1, 2, and 3, Prentice Hall, Englewood Cliffs, NJ,
1985. (Chapter 15)

 [Martin, 2007] R. C. MARTIN, “Professionalism and Test-
Driven Development,” IEEE Software 24 (May–June
2007), pp. 32–36. (Chapter 2)

 [Matsumoto, 1984] Y. MATSUMOTO, “Management of
Industrial Software Production,” IEEE Computer 17
(February 1984), pp. 59–72. (Chapter 8)

 [Matsumoto, 1987] Y. MATSUMOTO, “A Software Factory:
An Overall Approach to Software Production,” in:

sch76183_bib_601-626.indd 616sch76183_bib_601-626.indd 616 07/06/10 11:58 AM07/06/10 11:58 AM

www.nationalgallery.org.uk/cgi-bin/WebObjects.dll/CollectionPublisher.woa/wa/largeImage?workNumber=NG699
www.nationalgallery.org.uk/cgi-bin/WebObjects.dll/CollectionPublisher.woa/wa/largeImage?workNumber=NG699
www.nationalgallery.org.uk/cgi-bin/WebObjects.dll/CollectionPublisher.woa/wa/largeImage?workNumber=NG699
www.nationalgallery.org.uk/cgi-bin/WebObjects.dll/CollectionPublisher.woa/wa/largeImage?workNumber=NG699

Bibliography 617

 Tutorial: Software Reusability , P. Freeman (Editor),
Computer Society Press, Washington, DC, 1987,
pp. 155–78. (Chapter 8)

 [Maxwell and Forselius, 2000] K. D. MAXWELL AND P.
FORSELIUS, “Benchmarking Software Development
Productivity,” IEEE Software 17 (January–February
2000), pp. 80–88. (Chapter 9)

 [McBride, 2007] M. R. MCBRIDE, “The Software Archi-
tect,” Communications of the ACM 50 (May 2007),
pp. 75–81. (Chapter 14)

 [McBride, 2008] T. MCBRIDE, “The Mechanisms of Proj-
ect Management of Software Development,” Journal
of Systems and Software 81 (December 2008), pp.
2386–95. (Chapter 9)

 [McCabe, 1976] T. J. MCCABE, “A Complexity Measure,”
 IEEE Transactions on Software Engineering SE-2
(December 1976), pp. 308–20. (Chapters 14 and 15)

 [McCabe and Butler, 1989] T. J. MCCABE AND C. W. BUT-
LER, “Design Complexity Measurement and Testing,”
 Communications of the ACM 32 (December 1989),
pp. 1415–25. (Chapter 15)

 [McConnell, 1993] S. MCCONNELL, Code Complete: A
Practical Handbook of Software Construction, Micro-
soft Press, Redmond, WA, 1993. (Chapter 15)

 [McConnell, 2001] S. MCCONNELL, “The Nine Deadly
Sins of Project Planning,” IEEE Software 18
(November–December 2001), pp. 5–7. (Chapter 9)

 [McGarry and Decker, 2002] F. MCGARRY AND B. DECKER,
“Attaining Level 5 in CMM Process Maturity,” IEEE
Software 19 (2002), pp. 87–96. (Chapter 3)

 [McGraw and Felten, 1999] G. MCGRAW AND E. FELTEN,
 Securing Java , John Wiley & Sons, New York, 1999.
(Chapter 18)

 [MDA, 2008] “MDA,” www.omg.org/mda, 2008.
(Chapter 18)

 [Mellor, 1994] P. MELLOR, “CAD: Computer-Aided Disas-
ter,” Technical Report, Centre for Software Reliability,
City University, London, July 1994. (Chapter 1)

 [Memon, Pollack, and Soffa, 2001] A. M. MEMON, M. E.
POLLACK, AND M. L. SOFFA, “Hierarchical GUI Test
Case Generation Using Automated Planning,” IEEE
Transactions on Software Engineering 27 (February
2001), pp. 144–55. (Chapter 15)

 [Mens, 2002] T. MENS, “A State-of-the-Art Survey on
Software Merging,” IEEE Transactions on Software
Engineering 28 (May 2002), pp. 449–62. (Chapter 5)

 [Mens and Tourwe, 2004] T. MENS AND T. TOURWE, “A
Survey of Software Refactoring,” IEEE Transactions

on Software Engineering 30 (February 2004), pp.
126–39. (Chapter 2)

 [Menzies and Hihn, 2006] T. MENZIES AND J. HIHN,
“Evidence-Based Cost Estimation for Better-Quality
Software,” IEEE Software 23 (July–August 2006),
pp. 64–66. (Chapter 9)

 [Meyer, 1985] B. MEYER, “On Formalism in Specifi ca-
tions,” IEEE Software 2 (January 1985), pp. 6–26.
(Chapter 12)

 [Meyer, 1986] B. MEYER, “Genericity versus Inheritance,”
Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applications ,
ACM SIGPLAN Notices 21 (November 1986), pp.
391–405. (Chapter 7)

 [Meyer, 1992] B. MEYER, “Applying ‘Design by Con-
tract’,” IEEE Computer 25 (October 1992), pp. 40–51.
(Chapter 1)

 [Meyer, 2008] B. MEYER, “Design and Code Reviews in
the Age of the Internet,” Communications of the ACM
 51 (September 2008), pp. 66–71. (Chapters 6 and 15)

 [Miller, 1956] G. A. MILLER, “The Magical Number
Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,” The Psycholog-
ical Review 63 (March 1956), pp. 81–97; reprinted in
www.well.com/user/smalin/miller.html. (Chapters
2, 3, and 5)

 [Miller and Yin, 2004] J. MILLER AND Z. YIN, “A Cognitive-
Based Mechanism for Constructing Software Inspection
Teams,” IEEE Transactions on Software Engineering 30
(November 30), pp. 811–25. (Chapter 6)

 [Mills, Dyer, and Linger, 1987] H. D. MILLS, M. DYER,
AND R. C. LINGER, “Cleanroom Software Engineer-
ing,” IEEE Software 4 (September 1987), pp. 19–25.
(Chapter 15)

 [Modell, 1996] M. E. MODELL, A Professional’s Guide to
Systems Analysis , 2nd ed., McGraw-Hill, New York,
1996. (Chapter 12)

 [Mohan, Xu, and Ramesh, 2008] K. MOHAN, P. XU, AND
B. RAMESH, “Improving the Change-Management
Process,” Communications of the ACM 51 (May 2008),
pp. 59–64. (Chapter 5)

 [Moløkken-Østvold and Jorgensen, 2005] K. MOLØKKEN-
ØSTVOLD AND M. JORGENSEN, “A Comparison of Software
Project Overruns—Flexible versus Sequential Devel-
opment Models,” IEEE Transactions on Software Engi-
neering 31 (September 2005), pp. 754–66. (Chapter 9)

 [Monarchi and Puhr, 1992] D. E. MONARCHI AND G. I.
PUHR, “A Research Typology for Object-Oriented

sch76183_bib_601-626.indd 617sch76183_bib_601-626.indd 617 07/06/10 11:58 AM07/06/10 11:58 AM

www.well.com/user/smalin/miller.html
www.omg.org/mda

618 Bibliography

Analysis and Design,” Communications of the ACM 35
(September 1992), pp. 35–47. (Chapter 13)

 [Mooney, 1990] J. D. MOONEY, “Strategies for Supporting
Application Portability,” IEEE Computer 23 (November
1990), pp. 59–70. (Chapter 8)

 [Morisio, Ezran, and Tully, 2002] M. MORISIO, M. EZRAN,
AND C. TULLY, “Success and Failure Factors in Soft-
ware Reuse,” IEEE Transactions on Software Engi-
neering 28 (April 2002), pp. 340–57. (Chapter 8)

 [Morisio, Tully, and Ezran, 2000] M. MORISIO, C.
TULLY, AND M. EZRAN, “Diversity in Reuse Pro-
cesses,” IEEE Software 17 (July–August 2000),
pp. 56–63. (Chapter 8)

 [Murphy et al., 2001] G. C. MURPHY, R. J. WALKER,
E. L. A. BANNIASSAD, M. P. ROBILLARD, A. LIA, AND
M. A. KERSTEN, “Does Aspect-Oriented Programming
Work?” Communications of the ACM 44 (October
2001), pp. 75–78. (Chapters 7 and 18)

 [Murru, Deias, and Mugheddu, 2003] O. MURRU, R.
DEIAS, AND G. MUGHEDDU, “Assessing XP at a
European Internet Company,” IEEE Software 20
(May–June, 2003), pp. 37–43. (Chapters 2 and 4)

 [Murugappan and Keeni, 2003] M. MURUGAPPAN AND G.
KEENI, “Blending CMM and Six Sigma to Meet Busi-
ness Goals,” IEEE Software 20 (March–April 2003),
pp. 42–48. (Chapter 3)

 [Musa and Everett, 1990] J. D. MUSA AND W. W. EVERETT,
“Software-Reliability Engineering: Technology for the
1990s,” IEEE Software 7 (November 1990), pp. 36–43.
(Chapter 15)

 [Musa, Iannino, and Okumoto, 1987] J. D. MUSA, A. IAN-
NINO, AND K. OKUMOTO, Software Reliability: Mea-
surement, Prediction, Application , McGraw-Hill, New
York, 1987. (Chapter 15)

 [Musser and Saini, 1996] D. R. MUSSER AND A. SAINI,
 STL Tutorial and Reference Guide: C++ Programming
with the Standard Template Library , Addison-Wesley,
Reading, MA, 1996. (Chapter 8)

 [Myers, 1976] G. J. MYERS, Software Reliability: Prin-
ciples and Practices, Wiley-Interscience, New York,
1976. (Chapter 15)

 [Myers, 1978a] G. J. MYERS, “A Controlled Experiment in
Program Testing and Code Walkthroughs/Inspections,”
 Communications of the ACM 21 (September 1978),
pp. 760–68. (Chapter 15)

 [Myers, 1978b] G. J. MYERS, Composite/Structured
Design , Van Nostrand Reinhold, New York, 1978.
(Chapter 7)

 [Myers, 1979] G. J. MYERS, The Art of Software Testing ,
John Wiley and Sons, New York, 1979. (Chapters 6
and 15)

 [Myers, 1992] W. MYERS, “Good Software Practices Pay
Off—or Do They?” IEEE Software 9 (March 1992),
pp. 96–97. (Chapter 5)

 [Myrtveit, Stensrud, and Shepperd, 2005] I. MYRTVEIT, E.
STENSRUD, AND M. SHEPPERD, “Reliability and Validity
in Comparative Studies of Software Prediction Mod-
els,” IEEE Transactions on Software Engineering 31
(May 2005), pp. 380–91. (Chapter 9)

 [NAG, 2003] “NAG The Numerical Algorithms Group
Ltd,” at www.nag.co.uk, 2003. (Chapter 8)

 [Naur, 1964] P. NAUR, “The Design of the GIER ALGOL
Compiler,” in: Annual Review in Automatic Program-
ming, Vol. 4, Pergamon Press, Oxford, UK, 1964,
pp. 49–85. (Chapter 12)

 [Naur, 1969] P. NAUR, “Programming by Action Clusters,”
 BIT 9 (No. 3, 1969), pp. 250–58. (Chapters 6 and 12)

 [Naur, Randell, and Buxton, 1976] P. NAUR, B. RANDELL,
AND J. N. BUXTON (Editors), Software Engineering:
Concepts and Techniques: Proceedings of the NATO
Conferences , Petrocelli-Charter, New York, 1976.
(Chapter 1)

 [Nerur, Mahapatra, and Mangalaraj, 2005] S. NERUR, R.
MAHAPATRA, AND G. MANGALARAJ, “Challenges of
Migrating to Agile Methodologies,” Communications
of the ACM 48 (May 2005), pp. 72–78. (Chapter 2)

 [Neumann, 1980] P. G. NEUMANN, Letter from the Editor,
 ACM SIGSOFT Software Engineering Notes 5 (July
1980), p. 2. (Chapter 1)

 [NIST 151, 1988] “POSIX: Portable Operating System
Interface for Computer Environments,” Federal Infor-
mation Processing Standard 151, National Institute
of Standards and Technology, Washington, DC, 1988.
(Chapter 8)

 [Nix and Collins, 1988] C. J. NIX AND B. P. COLLINS,
“The Use of Software Engineering, Including the
Z Notation, in the Development of CICS,” Qual-
ity Assurance 14 (September 1988), pp. 103–10.
(Chapter 12)

 [Norden, 1958] P. V. NORDEN, “Curve Fitting for a Model
of Applied Research and Development Scheduling,”
 IBM Journal of Research and Development 2 (July
1958), pp. 232–48. (Chapter 9)

 [Norušis, 2005] M. J. NORUŠIS, SPSS 13.0 Guide to Data
Analysis, Prentice Hall, Upper Saddle River, NJ, 2005.
(Chapter 8)

sch76183_bib_601-626.indd 618sch76183_bib_601-626.indd 618 07/06/10 11:58 AM07/06/10 11:58 AM

www.nag.co.uk

Bibliography 619

 [Norwig, 1996] P. NORWIG, “Design Patterns in Dynamic
Programming,” norvig.com/design-patterns/
ppframe.htm/, 1996. (Chapter 8)

 [O’Keeffe and Ó Cinnéide, 2008] M. O’KEEFFE AND M.
Ó CINNÉIDE, “Software Reliability Prediction by Soft
Computing Techniques,” Journal of Systems and Soft-
ware 81 (April 2008), pp. 502–16. (Chapter 16)

 [Oest, 1986] O. N. OEST, “VDM from Research to Prac-
tice,” Proceedings of the IFIP Congress, Information
Processing ’86, 1986, pp. 527–33. (Chapter 12)

 [Orr, 1981] K. ORR, Structured Requirements Defi ni-
tion , Ken Orr and Associates, Topeka, KS, 1981.
(Chapter 14)

 [Ostrand, Weyuker, and Bell, 2005] T. J. OSTRAND, E. J.
WEYUKER, AND R. M. BELL, “Predicting the Location
and Number of Faults in Large Software Systems,”
 IEEE Transactions on Software Engineering 31 (April
2005), pp. 340–55. (Chapter 6)

 [Palshikar, 2001] G. K. PALSHIKAR, “Applying Formal
Specifi cations to Real-World Software Development,”
 IEEE Software 18 (November–December 2001),
pp. 89–97. (Chapter 12)

 [Parnas, 1971] D. L. PARNAS, “Information Distribu-
tion Aspects of Design Methodology,” Proceedings
of the IFIP Congress , Ljubljana, Yugoslavia, 1971,
IFIP, pp. 339–44. (Chapter 7)

 [Parnas, 1972a] D. L. PARNAS, “A Technique for Soft-
ware Module Specifi cation with Examples,” Com-
munications of the ACM 15 (May 1972), pp. 330–36.
(Chapter 7)

 [Parnas, 1972b] D. L. PARNAS, “On the Criteria to Be
Used in Decomposing Systems into Modules,” Com-
munications of the ACM 15 (December 1972), pp.
1053–58. (Chapter 7)

 [Parnas, 1994] D. L. PARNAS, “Software Aging,” Proceed-
ings of the 16th International Conference on Software
Engineering , Sorrento, Italy, IEEE, May 1994,
pp. 279–87. (Chapter 1)

 [Parnas, 1999] D. L. PARNAS, “Ten Myths about Y2K
Inspections,” Communications of the ACM 42 (May
1999), p. 128. (Chapter 16)

 [Parnas and Lawford, 2003] D. L. PARNAS AND M. LAWFORD,
“The Role of Inspection in Software Quality Assurance,”
 IEEE Transactions on Software Engineering 29 (August
2003), pp. 674–76. (Chapter 6)

 [Paulk, Weber, Curtis, and Chrissis, 1995] M. C. PAULK,
C. V. WEBER, B. CURTIS, AND M. B. CHRISSIS, The
Capability Maturity Model: Guidelines for Improving

the Software Process , Addison-Wesley, Reading, MA,
1995. (Chapter 3)

 [Paulson, Succi, and Eberlein, 2004] J. W. PAULSON, G.
SUCCI, AND A. EBERLEIN, “An Empirical Study of
Open-Source and Closed-Source Software Products,”
 IEEE Transactions on Software Engineering 30 (April
2004), pp. 246–56. (Chapter 1)

 [Payne and Landry, 2006] D. PAYNE AND B. J. L. LANDRY,
“A Uniform Code of Ethics: Business and IT Profes-
sional Ethics,” Communications of the ACM 49
(November 2006), pp. 81–84. (Chapter 1)

 [Pendharkar, Subramanian, and Rodger, 2005] P. C. PEND-
HARKAR, G. H. SUBRAMANIAN, AND J. A. RODGER, “A
Probabilistic Model for Predicting Software Develop-
ment Effort,” IEEE Transactions on Software Engi-
neering 31 (July 2005), pp. 615–24. (Chapter 9)

 [Perry and Kaiser, 1990] D. E. PERRY AND G. E. KAISER,
“Adequate Testing and Object-Oriented Program-
ming,” Journal of Object-Oriented Programming 2
(January–February 1990), pp. 13–19. (Chapter 15)

 [Perry et al., 2002] D. E. PERRY, A. PORTER, M. W. WADE,
L G. VOTTA, AND J. PERPICH, “Reducing Inspection
Interval in Large-Scale Software Development,” IEEE
Transactions on Software Engineering 28 (July 2002),
pp. 695–705. (Chapter 6)

 [Peterson, 1981] J. L. PETERSON, Petri Net Theory and the
Modeling of Systems , Prentice Hall, Englewood Cliffs,
NJ, 1981. (Chapter 12)

 [Petri, 1962] C. A. PETRI, “Kommunikation mit Auto-
maten,” Ph.D. Dissertation, University of Bonn,
Germany, 1962. [In German.]

 [Pigoski, 1996] T. M. PIGOSKI, Practical Software Main-
tenance: Best Practices for Managing Your Software
Investment , John Wiley and Sons, New York, 1996.
(Chapter 16)

 [Pitterman, 2000] B. PITTERMAN, “Telecordia Technolo-
gies: The Journey to High Maturity,” IEEE Software
 17 (July–August 2000), pp. 89–96. (Chapter 3)

 [Pittman, 1993] M. PITTMAN, “Lessons Learned in Man-
aging Object-Oriented Development,” IEEE Software
 10 (January 1993), pp. 43–53. (Chapter 9)

 [Pohl and Metzger, 2006] K. POHL AND A. METZGER,
“Software Product Line Testing,” Communications of
the ACM 49 (December 2006), pp. 78–81. (Chapter 8)

 [Pont and Banner, 2004] M. J. PONT AND M. P. BANNER,
“Designing Embedded Systems Using Patterns: A
Case Study,” Journal of Systems and Software 71 (May
2004), pp. 201–13. (Chapter 8)

sch76183_bib_601-626.indd 619sch76183_bib_601-626.indd 619 07/06/10 11:58 AM07/06/10 11:58 AM

620 Bibliography

 [Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002]
L. PRECHELT, B. UNGER-LAMPRECHT, M. PHILIPPSEN,
AND W. F. TICHY, “Two Controlled Experiments in
Assessing the Usefulness of Design Pattern Documen-
tation in Program Maintenance,” IEEE Transactions
on Software Engineering 28 (June 2002), pp. 595–606.
(Chapters 8 and 16)

 [Prechelt and Unger, 2000] L. PRECHELT AND B. UNGER,
“An Experiment Measuring the Effects of Personal
Software Process (PSP) Training,” IEEE Transactions
on Software Engineering 27 (May 2000), pp. 465–72.
(Chapter 3)

 [Procaccino and Verner, 2006] J. D. PROCACCINO AND
J. M. VERNER, “How Agile Are Industrial Software
Development Practices?” Journal of Systems and Soft-
ware 79 (November 2006), pp. 1541–51. (Chapter 9)

 [Procaccino, Verner, and Lorenzet, 2006] J. D. PROCAC-
CINO, J. M. VERNER, AND S. J. LORENZET, “Defi ning
and Contributing to Software Development Success,”
 Communications of the ACM 49 (August 2006), pp.
79–83. (Chapter 1)

 [Putnam, 1978] L. H. PUTNAM, “A General Empirical
Solution to the Macro Software Sizing and Estimating
Problem,” IEEE Transactions on Software Engineering
 SE-4 (July 1978), pp. 345–61. (Chapter 9)

 [Qumer and Henderson-Sellers, 2008] A. QUMER AND B.
HENDERSON-SELLERS, “A Framework to Support the
Evaluation, Adoption and Improvement of Agile Meth-
ods in Practice,” Journal of Systems and Software 81
(November 2008), pp. 1899–1919. (Chapter 2)

 [Rajlich, 2006] V. RAJLICH, “Changing the Paradigm of
Software Engineering,” Communications of the ACM
 49 (August 2006) pp. 67–70. (Chapter 2)

 [Rajlich and Bennett, 2000] V. RAJLICH AND K. H.
BENNETT, “A Staged Model for the Software Life
Cycle,” IEEE Computer 33 (July 2000), pp. 66–71.
(Chapter 2)

 [Rajlich, Wilde, Buckellew, and Page, 2001] V. RAJLICH,
N. WILDE, M. BUCKELLEW, AND H. PAGE, “Software
Cultures and Evolution,” IEEE Computer 34
(September 2001), pp. 24–28. (Chapter 16)

 [Rapps and Weyuker, 1985] S. RAPPS AND E. J. WEYUKER,
“Selecting Software Test Data Using Data Flow Infor-
mation,” IEEE Transactions on Software Engineering
 SE-11 (April 1985), pp. 367–75. (Chapter 15)

 [Rasmusson, 2003] J. RASMUSSON, “Introducing XP into
Greenfi eld Projects: Lessons Learned,” IEEE Software
 20 (May–June, 2003), pp. 21–29. (Chapter 2)

 [Ravichandran and Rothenberger, 2003] T. RAVICHAN-
DRAN AND M. A. ROTHENBERGER, “Software Reuse
Strategies and Component Markets,” Communica-
tions of the ACM 46 (August 2003), pp. 109–14.
(Chapter 8)

 [Raymond, 2000] E. S. RAYMOND, The Cathedral and
the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary , O’Reilly & Associates,
Sebastopol, CA, 2000; also available at www.catb.
org/~esr/writings/cathedral-bazaar/cathedral-
bazaar/. (Chapters 1 and 2)

 [Rech, Bogner, and Haas, 2007] J. RECH, C. BOGNER, AND
V. HAAS, “Using Wikis to Tackle Reuse in Software
Projects,” IEEE Software 24 (November–December
2007), pp. 99–104. (Chapter 8)

 [Reifer, 2000] D. J. REIFER, “Software Management:
The Good, the Bad, and the Ugly,” IEEE Software
 17 (March–April 2000), pp. 73–75. (Chapter 9)

 [Reifer, 2003] D. REIFER, “XP and the CMM,” IEEE Soft-
ware 20 (May–June 2003), pp. 14–15. (Chapter 4)

 [Reifer, Maurer, and Erdogmus, 2003] D. REIFER, F. MAU-
RER, AND H. ERDOGMUS, “Scaling Agile Methods,”
 IEEE Software 20 (July–August 2004), pp. 12–14.
(Chapter 2)

 [Reiss, 2006] S. P. REISS, “Incremental Maintenance of
Software Artifacts,” IEEE Transactions on Software
Engineering 32 (September 2006), pp. 682–97.
(Chapters 2, 5, and 16)

 [Rochkind, 1975] M. J. ROCHKIND, “The Source Code
Control System,” IEEE Transactions on Software En-
gineering SE-1 (October 1975), pp. 255–65. (Chapters
5 and16)

 [Ropponen and Lyttinen, 2000] J. ROPPONEN AND K.
LYTTINEN, “Components of Software Development
Risk: How to Address Them? A Project Manager Sur-
vey,” IEEE Transactions on Software Engineering 26
(February 2000), pp. 96–111. (Chapter 2)

 [Ross, 1985] D. T. ROSS, “Applications and Extensions of
SADT,” IEEE Computer 18 (April 1985), pp. 25–34.
(Chapter 12)

 [Rothermel, Untch, Chu, and Harrold, 2001] G. ROTHER-
MEL, R. H. UNTCH, C. CHU, AND M. J. HARROLD, “Pri-
oritizing Test Cases for Regression Test Cases,” IEEE
Transactions on Software Engineering 27 (October
2001), pp. 929–48. (Chapter 16)

 [Rout et al., 2007] T. P. ROUT, K. EL EMAM, M. FUSANI, D.
GOLDENSON, AND H.-W. JUNG, “SPICE in Retrospect:
Developing a Standard for Process Assessment,”

sch76183_bib_601-626.indd 620sch76183_bib_601-626.indd 620 07/06/10 11:58 AM07/06/10 11:58 AM

www.catb.org/~esr/writings/cathedral-bazaar/cathedralbazaar/
www.catb.org/~esr/writings/cathedral-bazaar/cathedralbazaar/
www.catb.org/~esr/writings/cathedral-bazaar/cathedralbazaar/

Bibliography 621

 Journal of Systems and Software 80 (September 2007),
pp. 1483–93. (Chapter 3)

 [Royce, 1970] W. W. ROYCE, “Managing the Development of
Large Software Systems: Concepts and Techniques,” 1970
WESCON Technical Papers, Western Electronic Show and
Convention , Los Angeles, August 1970, pp. A/1-1–A/1-9;
reprinted in: Proceedings of the 11th International Con-
ference on Software Engineering , Pittsburgh, May 1989,
IEEE, pp. 328–38. (Chapter 2)

 [Royce, 1998] W. ROYCE, Software Project Management:
A Unifi ed Framework , Addison-Wesley, Reading, MA,
1998. (Chapters 2 and 4)

 [Royce, 2005] W. ROYCE, “Successful Software Manage-
ment Style: Steering and Balance,” IEEE Software 22
(September–October 2005), pp. 40–47. (Chapter 9)

 [Rubenstein, 2007] D. RUBENSTEIN, “Standish Group
Report: There’s Less Development Chaos Today,” www.
sdtimes.com/content/article.aspx?ArticleID=30247,
March 1, 2007. (Chapters 1 and 2)

 [Rumbaugh et al., 1991] J. RUMBAUGH, M. BLAHA, W.
PREMERLANI, F. EDDY, AND W. LORENSEN, Object-
Oriented Modeling and Design , Prentice Hall, Engle-
wood Cliffs, NJ, 1991. (Chapter 3)

 [Rumbaugh, Jacobson, and Booch, 1999] J. RUMBAUGH,
I. JACOBSON, AND G. BOOCH, The Unifi ed Modeling
Language Reference Manual , Addison-Wesley, Read-
ing, MA, 1999. (Chapter 13)

 [Runeson et al., 2006] P. RUNESON, C. ANDERSSON, T.
THELIN, A. ANDREWS, AND T. BERLING, “What Do We
Know about Defect Detection Methods?” IEEE Soft-
ware 23 (May–June 2006), pp. 82–90. (Chapter 15)

 [Ruthruff, Burnett, and Rothermel, 2006] J. R. RUTHRUFF,
M. BURNETT, AND G. ROTHERMEL, “Interactive Fault
Localization Techniques in a Spreadsheet Environ-
ment,” IEEE Transactions on Software Engineering 32
(April 2006), pp. 213–39. (Chapter 15)

 [Sackman, 1970] H. SACKMAN, Man–Computer Problem
Solving: Experimental Evaluation of Time-Sharing
and Batch Processing, Auerbach, Princeton, NJ, 1970.
(Chapter 9)

 [Sackman, Erikson, and Grant, 1968] H. SACKMAN, W. J.
ERIKSON, AND E. E. GRANT, “Exploratory Experimen-
tal Studies Comparing Online and Offl ine Program-
ming Performance,” Communications of the ACM 11
(January 1968), pp. 3–11. (Chapter 9)

 [Sakthivel, 2007] S. SAKTHIVEL, “Managing Risk in Off-
shore Systems Development,” Communications of the
ACM 50 (April 2007), pp. 69–75. (Chapter 2)

 [Sammet, 1978] J. E. SAMMET, “The Early History of
COBOL,” Proceedings of the History of Program-
ming Languages Conference , Los Angeles, ACM,
1978, pp. 199–276. (Chapter 15)

 [Samoladas, Stamelos, Angelis, and Oikonomou, 2005]
I. SAMOLADAS, I. STAMELOS, L. ANGELIS, AND A. OIKO-
NOMOU, “Open Source Software Development Should
Strive for Even Greater Code Maintainability,” Com-
munications of the ACM 47 (October 2004), pp. 83–87.
(Chapter 16)

 [Sarkar, Kak, and Rama, 2008] S. SARKAR, A. C. KAK,
AND G. M. RAMA, “Metrics for Measuring the Qual-
ity of Modularization of Large-Scale Object-Oriented
Software,” IEEE Transactions on Software Engi-
neering 34 (September–October 2008), pp. 700–20.
(Chapter 7)

 [Schach, 1992] S. R. SCHACH, Software Reuse: Past, Pres-
ent, and Future , videotape, 150 min, US-VHS format,
IEEE Computer Society Press, Los Alamitos, CA,
November 1992. (Chapter 8)

 [Schach, 1994] S. R. SCHACH, “The Economic Impact of
Software Reuse on Maintenance,” Journal of Software
Maintenance—Research and Practice 6 (July–August
1994), pp. 185–96. (Chapters 8 and 9)

 [Schach, 1997] S. R. SCHACH, Software Engineering with
Java , Richard D. Irwin, Chicago, 1997. (Chapter 8)

 [Schach and Stevens-Guille, 1979] S. R. SCHACH AND P. D.
STEVENS-GUILLE, “Two Aspects of Computer-Aided
Design,” Transactions of the Royal Society of South
Africa 44 (Part 1, 1979), 123–26. (Chapter 7)

 [Schach and Wood, 1986] S. R. SCHACH AND P. T. WOOD,
“An Almost Path-Free Very High-Level Interactive
Data Manipulation Language for a Microcomputer-
Based Database System,” Software–Practice and
Experience 16 (March 1986), pp. 243–68. (Chapter 11)

 [Schach et al., 2003a] S. R. SCHACH, B. JIN, DAVID R.
WRIGHT, G. Z. HELLER, AND J. OFFUTT, “Quality Im-
pacts of Clandestine Common Coupling,” Software
Quality Journal 11 (July 2003), pp. 211–18. (Chapter 7)

 [Schach et al., 2003b] S. R. SCHACH, B. JIN, G. Z. HELLER,
L. YU, AND J. OFFUTT, “Determining the Distribution
of Maintenance Categories: Survey versus Measure-
ment,” Empirical Software Engineering 8 (December
2003), pp. 351–66. (Chapter 1)

 [Scheffer, Stone, and Rzepka, 1985] P. A. SCHEFFER, A.
H. STONE III, AND W. E. RZEPKA, “A Case Study of
SREM,” IEEE Computer 18 (April 1985), pp. 47–54.
(Chapter 12)

sch76183_bib_601-626.indd 621sch76183_bib_601-626.indd 621 07/06/10 11:58 AM07/06/10 11:58 AM

www.sdtimes.com/content/article.aspx?ArticleID=30247
www.sdtimes.com/content/article.aspx?ArticleID=30247

622 Bibliography

 [Schmerl et al., 2006] B. SCHMERL, J. ALDRICH, D. GAR-
LAN, R. KAZMAN, AND H. YAN, “Discovering Archi-
tectures from Running Systems,” IEEE Transactions
on Software Engineering 32 (July 2006), pp. 454–66.
(Chapter 16)

 [Schrage, 2004] M. SCHRAGE, “Never Go to a Client
Meeting without a Prototype,” IEEE Software 21
(2004), pp. 42–45. (Chapter 11)

 [Schricker, 2000] D. SCHRICKER, “Cobol for the Next
Millennium,” IEEE Software 17 (March–April 2000),
pp. 48–52. (Chapter 8)

 [Schwaber, 2001] K. SCHWABER, Agile Software Develop-
ment with Scrum , Prentice Hall, Upper Saddle River,
NJ, 2001. (Chapter 2)

 [Schwartz and Delisle, 1987] M. D. SCHWARTZ AND N. M.
DELISLE, “Specifying a Lift Control System with CSP,”
 Proceedings of the Fourth International Workshop on
Software Specifi cation and Design , Monterey, CA,
IEEE, April 1987, pp. 21–27. (Chapter 12)

 [Scott and Vessey, 2002] J. E. SCOTT AND I. VESSEY,
“Managing Risks in Enterprise Systems Implementa-
tions,” Communications of the ACM 45 (April 2002),
pp. 74–81. (Chapters 1 and 2)

 [Sedigh-Ali and Paul, 2001] S. SEDIGH-ALI AND R. A.
PAUL, “Software Engineering Metrics for COTS-Based
Systems,” IEEE Computer 34 (May 2001), pp. 44–50.
(Chapter 5)

 [SEI, 2002] “CMMI Frequently Asked Questions (FAQ),”
Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, June 2002. (Chapter 3)

 [Selby, 1989] R. W. SELBY, “Quantitative Studies of Software
Reuse,” in: Software Reusability, Vol. 2, Applications and
Experience , T. J. Biggerstaff and A. J. Perlis (Editors),
ACM Press, New York, 1989, pp. 213–33. (Chapter 8)

 [Selby, 2005] R. W. SELBY, “Enabling Reuse-Based Soft-
ware Development of Large-Scale Systems,” IEEE
Transactions on Software Engineering 31 (June 2005),
pp. 495–510. (Chapter 8)

 [Selic, Gullekson, and Ward, 1995] B. SELIC, G. GULLEK-
SON, AND P. T. WARD, Real-Time Object-Oriented
Modeling , John Wiley and Sons, New York, 1995.
(Chapter 13)

 [Service, 2000] “Service. The American Heritage Dictio-
nary of the English Language: Fourth Edition. 2000,”
www.bartleby.com/61/68/S0286800.html, 2000.
(Chapter 18)

 [Shapiro, 1994] F. R. SHAPIRO, “The First Bug,” Byte 19
(April 1994), p. 308. (Chapter 1)

 [Sharma and Rai, 2000] S. SHARMA AND A. RAI, “CASE
Deployment in IS Organizations,” Communications of
the ACM 43 (January 2000), pp. 80–88. (Chapter 5)

 [Shatnawi and Li, 2008] R. SHATNAWI AND W. LI, “The
Effectiveness of Software Metrics in Identifying Error-
Prone Classes in Post-Release Software Evolution Pro-
cess,” Journal of Systems and Software 81 (November
2008), pp. 1868–82. (Chapter 16)

 [Shaw and Clements, 2006] M. SHAW AND P. CLEMENTS,
“The Golden Age of Software Architecture,” IEEE
Software 23 (March–April 2006), pp. 31–39.
(Chapter 8)

 [Shaw and Garlan, 1996] M. SHAW AND D. GARLAN, Soft-
ware Architecture: Perspectives on an Emerging Dis-
cipline , Prentice Hall, Upper Saddle River, NJ, 1996.
(Chapter 8)

 [Shepperd and Ince, 1994] M. SHEPPERD AND D. C. INCE,
“A Critique of Three Metrics,” Journal of Systems
and Software 26 (September 1994), pp. 197–210.
(Chapter 15)

 [Shepperd, 1990] M. SHEPPERD, “Design Metrics: An
Empirical Analysis,” Software Engineering Journal
 5 (January 1990), pp. 3–10. (Chapter 14)

 [Sherer, Kouchakdjian, and Arnold, 1996] S. W. SHERER,
A. KOUCHAKDJIAN, AND P. G. ARNOLD, “Experience
Using Cleanroom Software Engineering,” IEEE Soft-
ware 13 (May 1996), pp. 69–76. (Chapter 15)

 [Shneiderman, 1980] B. SHNEIDERMAN, Software Psychol-
ogy: Human Factors in Computer and Information
Systems , Winthrop Publishers, Cambridge, MA, 1980.
(Chapter 1)

 [Shneiderman, 2003] B. SHNEIDERMAN, Designing the
User Interface: Strategies for Effective Human-
Computer Interaction, 4th ed., Addison-Wesley
Longman, Reading, MA, 2003. (Chapter 11)

 [Shneiderman and Mayer, 1975] B. SHNEIDERMAN AND R.
MAYER, “Towards a Cognitive Model of Programmer
Behavior,” Technical Report TR-37, Indiana Univer-
sity, Bloomington, 1975. (Chapter 7)

 [Silberschatz, Galvin, and Gagne, 2002] A. SILBERSCHATZ,
P. B. GALVIN, AND G. GAGNE, Operating System Con-
cepts, 6th ed., Addison-Wesley, Reading, MA, 2002.
(Chapters 12 and 14)

 [Sillito, Murphy, and De Volder, 2008] J. SILLITO, G. C.
MURPHY, AND K. DE VOLDER, “Asking and Answering
Questions during a Programming Change Task,” IEEE
 Transactions on Software Engineering 34 (July–
August 2008), pp. 434–51. (Chapter 16)

sch76183_bib_601-626.indd 622sch76183_bib_601-626.indd 622 07/06/10 11:58 AM07/06/10 11:58 AM

www.bartleby.com/61/68/S0286800.html

Bibliography 623

 [Smith, Hale, and Parrish, 2001] R. K. SMITH, J. E. HALE,
AND A. S. PARRISH, “An Empirical Study Using Task
Assignment Patterns to Improve the Accuracy of
Software Effort Estimation,” IEEE Transactions on
Software Engineering 27 (March 2001), pp. 264–71.
(Chapter 9)

 [Sobel and Clarkson, 2002] A. E. K. SOBEL AND M. R.
CLARKSON, “Formal Methods Application: An Empiri-
cal Tale of Software Development,” IEEE Transac-
tions on Software Engineering 28 (March 2002), pp.
308–20. (Chapter 12)

 [Sobell, 1995] M. G. SOBELL, A Practical Guide to the
UNIX System , 3rd ed., Benjamin/Cummings, Menlo
Park, CA, 1995. (Chapter 5)

 [Softwaremag.com, 2004] “Standish: Project Success
Rates Improved Over 10 Years,” www.softwaremag.
com/L.cfm?Doc=newsletter/2004-01-15/
Standish, January 15, 2004. (Chapter 2)

 [Sparling, 2000] M. SPARLING, “Lessons Learned through
Six Years of Component-Based Development,” Com-
munications of the ACM 43 (October 2000), pp. 47–53.
(Chapter 8)

 [Spiegel Online, 2004] “Rheinbrücke mit Treppe—54
Zentimeter Höhenunterschied,” www.spiegel.de/
panorama/0,1518,281837,00.html. (Chapter 1)

 [Spivey, 1990] J. M. SPIVEY, “Specifying a Real-Time
Kernel,” IEEE Software 7 (September 1990), pp.
21–28. (Chapter 12)

 [Spivey, 1992] J. M. SPIVEY, The Z Notation: A Reference
Manual , Prentice Hall, New York, 1992. (Chapter 2)

 [Spivey, 2001] J. M. SPIVEY, The Z Notation: A Reference
Manual , 3rd ed., spivey.oriel.ox.ac.uk/~mike/zrm/,
2001. (Chapter 12)

 [St. Petersburg Times Online, 2003] “Thousands of
Federal Checks Uncashable,” www.sptimes.
com/2003/02/07/Worldandnation/Thousands_
of_federal_.shtml, February 07, 2003. (Chapter 1)

 [Standish, 2003] STANDISH GROUP INTERNATIONAL,
“Introduction,” www.standishgroup.com/chaos/
introduction.pdf, 2003. (Chapter 2)

 [Stephens and Rosenberg, 2003] M. STEPHENS AND D.
ROSENBERG, Extreme Programming Refactored:
The Case against XP , Apress, Berkeley, CA, 2003.
(Chapter 2)

 [Stephenson, 1976] W. E. STEPHENSON, “An Analysis of
the Resources Used in Safeguard System Software
Development,” Bell Laboratories, Draft Paper, August
1976. (Chapter 1)

 [Stevens and Pooley, 2000] P. STEVENS WITH R. POOLEY,
 Using UML: Software Engineering with Objects and
Components , updated edition, Addison-Wesley, Upper
Saddle River, NJ, 2000. (Chapter 17)

 [Stevens, Myers, and Constantine, 1974] W. P. STEVENS,
G. J. MYERS, AND L. L. CONSTANTINE, “Structured
Design,” IBM Systems Journal 13 (No. 2, 1974), pp.
115–39. (Chapters 5 and 7)

 [Stocks and Carrington, 1996] P. STOCKS AND D. CAR-
RINGTON, “A Framework for Specifi cation-Based Test-
ing,” IEEE Transactions on Software Engineering 22
(November 1996), pp. 777–93. (Chapter 15)

 [Stolper, 1999] S. A. STOLPER, “Streamlined Design
Approach Lands Mars Pathfi nder,” IEEE Software 16
(September–October 1999), pp. 52–62. (Chapter 14)

 [Stroustrup, 2003] B. STROUSTRUP, The C++ Standard:
Incorporating Technical Corrigendum No. 1 , 2nd ed.,
John Wiley and Sons, New York, 2003. (Chapters 7
and 14)

 [Sykes and McGregor, 2000] D. A. SYKES AND J. D.
MCGREGOR, Practical Guide to Testing Object-
Oriented Software , Addison-Wesley, Reading, MA,
2000. (Chapter 6)

 [Symons, 1991] C. R. SYMONS, Software Sizing and Esti-
mating: Mk II FPA , John Wiley and Sons, Chichester,
UK, 1991. (Chapter 9)

 [Takahashi and Kamayachi, 1985] M. TAKAHASHI AND
Y. KAMAYACHI, “An Empirical Study of a Model for
Program Error Prediction,” Proceedings of the Eighth
International Conference on Software Engineering ,
London, IEEE, 1985, pp. 330–36. (Chapter 15)

 [Talby, Keren, Hazzan, and Dubinsky, 2006] D. TALBY, A.
KEREN, O. HAZZAN, AND Y. DUBINSKY, “Agile Software
Testing in a Large-Scale Project,” IEEE Software 23
(July–August 2006), pp. 30–37. (Chapter 2)

 [Tanenbaum, 2002] A. S. TANENBAUM, Computer Net-
works, 4th ed., Prentice Hall, Upper Saddle River, NJ,
2002. (Chapter 8)

 [Teichroew and Hershey, 1977] D. TEICHROEW AND E. A.
HERSHEY III, “PSL/PSA: A Computer-Aided Tech-
nique for Structured Documentation and Analysis of
Information Processing Systems,” IEEE Transactions
on Software Engineering SE-3 (January 1977), pp.
41–48. (Chapter 12)

 [Thayer and Dorfman, 1999] R. H. THAYER AND M. DORF-
MAN, Software Requirements Engineering , revised 2nd
ed., IEEE Computer Society Press, Los Alamitos, CA,
1999. (Chapter 11)

sch76183_bib_601-626.indd 623sch76183_bib_601-626.indd 623 07/06/10 11:58 AM07/06/10 11:58 AM

www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/
www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/
www.spiegel.de/panorama/0,1518,281837,00.html
www.spiegel.de/panorama/0,1518,281837,00.html
www.sptimes.com/2003/02/07/Worldandnation/Thousands_of_federal_.shtml
www.sptimes.com/2003/02/07/Worldandnation/Thousands_of_federal_.shtml
www.sptimes.com/2003/02/07/Worldandnation/Thousands_of_federal_.shtml
www.standishgroup.com/chaos/introduction.pdf
www.standishgroup.com/chaos/introduction.pdf

624 Bibliography

 [Tichy, 1985] W. F. TICHY, “RCS—A System for Version
Control,” Software—Practice and Experience 15 (July
1985), pp. 637–54. (Chapters 5 and 16)

 [Toft, Coleman, and Ohta, 2000] P. TOFT, D. COLEMAN,
AND J. OHTA, “A Cooperative Model for Cross-
Divisional Product Development for a Software
Product Line,” in: Software Product Lines: Experi-
ence and Research Directions , P. Donohoe (Editor),
Kluwer Academic Publishers, Boston, 2000,
pp. 111–32. (Chapter 8)

 [Tomer and Schach, 2000] A. TOMER AND S. R. SCHACH,
“The Evolution Tree: A Maintenance-Oriented
Software Development Model,” in: Proceedings of
the Fourth European Conference on Software Main-
tenance and Reengineering (CSMR 2000) , Zürich,
Switzerland, February/March 2000, pp. 209–14.
(Chapter 2)

 [Tomer and Schach, 2002] A. TOMER AND S. R. SCHACH,
“A Three-Dimensional Model for System Design
Evolution,” Systems Engineering 5 (No. 4, 2002),
pp. 264–73. (Chapter 5)

 [Tomer et al., 2004] A. TOMER, L. GOLDIN, T. KUFLIK,
E. KIMCHI, AND S. R. SCHACH, “Evaluating Software
Reuse Alternatives: A Model and Its Application to an
Industrial Case Study,” IEEE Transactions on Software
Engineering 30 (September 2004), pp. 601–12.
(Chapter 8)

 [Toth, 2006] K. TOTH, “Experiences with Open Source
Software Engineering Tools,” IEEE Software 23
(November–December 2006), pp. 44–52. (Chapter 5)

 [Tracz, 1979] W. J. TRACZ, “Computer Programming and
the Human Thought Process,” Software—Practice and
Experience 9 (February 1979), pp. 127–37. (Chapter 5)

 [Tracz, 1994] W. TRACZ, “Software Reuse Myths Revis-
ited,” Proceedings of the 16th International Confer-
ence on Software Engineering , Sorrento, Italy, IEEE,
May 1994, pp. 271–72. (Chapter 8)

 [Trammel, Binder, and Snyder, 1992] C. J. TRAMMEL, L.
H. BINDER, AND C. E. SNYDER, “The Automated Pro-
duction Control Documentation System: A Case Study
in Cleanroom Software Engineering,” ACM Transac-
tions on Software Engineering and Methodology 1
(January 1992), pp. 81–94. (Chapter 15)

 [Tsantalis, Chatzigeorgiou, and Stephanides, 2005] N.
TSANTALIS, A. CHATZIGEORGIOU, AND G. STEPHANIDES,
“Predicting the Probability of Change in Object-
Oriented Systems,” IEEE Transactions on Software
Engineering 31 (July 2005), pp. 601–14. (Chapter 14)

 [Tsantalis, Chatzigeorgiou, Stephanides, and Halkidis,
2006] N. TSANTALIS, A. CHATZIGEORGIOU, G. STEPHA-
NIDES, AND S. T. HALKIDIS, “Design Pattern Detection
Using Similarity Scoring,” IEEE Transactions on Soft-
ware Engineering 32 (November 2006), pp. 896–909.
(Chapter 8)

 [Turner, 1994] C. D. TURNER, “State-Based Testing: A
New Method for the Testing of Object-Oriented Pro-
grams,” Ph.D. thesis, Computer Science Division,
University of Durham, Durham, UK, November 1994.
(Chapter 15)

 [Tyran and George, 2002] C. K. TYRAN AND J. F. GEORGE,
“Improving Software Inspections with Group Process
Support,” Communications of the ACM 45 (September
2002), pp. 87–92. (Chapter 6)

 [Ulkuniemi and Seppanen, 2004] P. ULKUNIEMI AND
V. SEPPANEN, “COTS Component Acquisition in an
Emerging Market,” IEEE Software 21 (November–
December 2004), pp. 76–82. (Chapter 1)

 [USNO, 2000] “The 21st Century and the Third Millen-
nium—When Will They Begin?” U.S. Naval Obser-
vatory, Astronomical Applications Department, at
aa.usno.navy.mil/AA/faq/docs/millennium.html,
February 22, 2000. (Chapter 13)

 [van der Hoek, Carzaniga, Heimbigner, and Wolf, 2002]
A. VAN DER HOEK, A. CARZANIGA, D. HEIMBIGNER, AND
A. L. WOLF, “A Testbed for Confi guration Manage-
ment Policy Programming,” IEEE Transactions on
Software Engineering 28 (January 2002), pp. 79–99.
(Chapter 5)

 [van der Poel and Schach, 1983] K. G. VAN DER POEL AND
S. R. SCHACH, “A Software Metric for Cost Estimation
and Effi ciency Measurement in Data Processing Sys-
tem Development,” Journal of Systems and Software 3
(September 1983), pp. 187–91. (Chapter 9)

 [van Solingen, 2004] R. VAN SOLINGEN, “Measuring the
ROI of Software Process Improvement,” IEEE Software
 21 (May–June 2004), pp. 32–38. (Chapters 3 and 5)

 [van Wijngaarden et al., 1975] A. VAN WIJNGAARDEN,
B. J. MAILLOUX, J. E. L. PECK, C. H. A. KOSTER, M.
SINTZOFF, C. H. LINDSEY, L. G. L. T. MEERTENS, AND
R. G. FISKER, “Revised Report on the Algorithmic
Language ALGOL 68,” Acta Informatica 5 (1975),
pp. 1–236. (Chapter 3)

 [Vander Wal, 2004] T. VANDER WAL, “Understanding the
Personal Info Cloud: Using the Model of Attraction,”
Presentation, University of Maryland, Baltimore, MD,
June 2004. (Chapter 18)

sch76183_bib_601-626.indd 624sch76183_bib_601-626.indd 624 07/06/10 11:58 AM07/06/10 11:58 AM

Bibliography 625

 [Ven, Verelst, and Mannaert, 2008] K. VEN, I. VERELST,
AND H. MANNAERT, “Should You Adopt Open Source
Software?” IEEE Software 25 (May–June 2008), pp.
54–59. (Chapter 1)

 [Venugopal, 2005] C. VENUGOPAL, “Single Goal Set: A
New Paradigm for IT Megaproject Success,” IEEE
Software 22 (September–October 2005), pp. 48–53.
(Chapter 9)

 [Vitharana, 2003] P. VITHARANA, “Risks and Challenges
of Component-Based Software Development,” Com-
munications of the ACM 46 (August 2003), pp. 67–72.
(Chapter 8)

 [Vitharana and Ramamurthy, 2003] P. VITHARANA AND
K. RAMAMURTHY, “Computer-Mediated Group Sup-
port, Anonymity and the Software Inspection Process:
An Empirical Investigation,” IEEE Transactions on
Software Engineering 29 (March 2003), pp. 167–80.
(Chapter 6)

 [Vokac, 2004] M. VOKAC, “Defect Frequency and Design
Patterns: An Empirical Study of Industrial Code,”
 IEEE Transactions on Software Engineering 30
(December 2004), pp. 904–17. (Chapter 9)

 [Walrad and Strom, 2002] C. WALRAD AND D. STROM, “The
Importance of Branching Models in SCM,” IEEE Com-
puter 35 (September 2002), pp. 31–38. (Chapter 5)

 [Walsh, 1979] T. J. WALSH, “A Software Reliability Study
Using a Complexity Measure,” Proceedings of the
AFIPS National Computer Conference , New York,
AFIPS, 1979, pp. 761–68. (Chapter 15)

 [Ward and Mellor, 1985] P. T. WARD AND S. MELLOR,
 Structured Development for Real-Time Systems, Vols. 1,
2 and 3, Yourdon Press, New York, 1985. (Chapter 14)

 [Warnier, 1976] J. D. WARNIER, Logical Construction of
Programs , Van Nostrand Reinhold, New York, 1976.
(Chapter 14)

 [Watson and McCabe, 1996] A. H. WATSON AND T. J.
MCCABE, “Structured Testing: A Testing Methodology
Using the Cyclomatic Complexity Metric,” NIST Spe-
cial Publication 500–235, Computer Systems Labora-
tory, National Institute of Standards and Technology,
Gaithersburg, MD, 1996. (Chapter 15)

 [Watson et al., 2008] R. T. WATSON, M.-C. BOUDREAU,
P. T. YORK, M. E. GREINER. AND D. WYNN, “The Business
of Open Source,” Communications of the ACM 51
(April 2008), pp. 41–46. (Chapter 1)

 [Weinberg, 1971] G. M. WEINBERG, The Psychology of
Computer Programming , Van Nostrand Reinhold, New
York, 1971. (Chapters 1 and 4)

 [Weinberg, 1992] G. M. WEINBERG, Quality Software
Management: Systems Thinking , Vol. 1, Dorset House,
New York, 1992. (Chapter 9)

 [Weinberg, 1993] G. M. WEINBERG, Quality Software
Management: First-Order Measurement , Vol. 2,
Dorset House, New York, 1993. (Chapter 9)

 [Weinberg, 1994] G. M. WEINBERG, Quality Software
Management: Congruent Action , Vol. 3, Dorset House,
New York, 1994. (Chapter 9)

 [Weinberg, 1997] G. M. WEINBERG, Quality Software
Management: Anticipating Change , Vol. 4, Dorset
House, New York, 1997. (Chapter 9)

 [Weller, 2000] E. F. WELLER, “Practical Applications of
Statistical Process Control,” IEEE Software 18 (May–
June 2000), pp. 48–55. (Chapter 3)

 [Wesselius, 2008] J. WESSELIUS, “The Bazaar inside the
Cathedral: Business Models for Internal Markets,” IEEE
Software 25 (May–June 2008), pp. 60–66. (Chapter 1)

 [Weyuker, 1988] E. J. WEYUKER, “An Empirical Study of
the Complexity of Data Flow Testing,” Proceedings of
the Second Workshop on Software Testing, Verifi cation,
and Analysis , Banff, Canada, IEEE, July 1988,
pp. 188–95. (Chapter 15)

 [Whittaker, 2000] J. A. WHITTAKER, “What Is Software
Testing? And Why Is It So Hard?” IEEE Software 17
(January–February 2000), pp. 70–79. (Chapter 6)

 [Whittaker and Voas, 2000] J. A. WHITTAKER AND J. VOAS,
“Toward a More Reliable Theory of Software Reliabil-
ity,” IEEE Computer 33 (December 2000), pp. 36–42.
(Chapter 6)

 [Wilde, Matthews, and Huitt, 1993] N. WILDE, P. MAT-
THEWS, AND R. HUITT, “Maintaining Object-Oriented
Software,” IEEE Software 10 (January 1993), pp.
75–80. (Chapter 15)

 [Williams, 1996] J. D. WILLIAMS, “Managing Iteration in
OO Projects,” IEEE Computer 29 (September 1996),
pp. 39–43. (Chapter 13)

 [Williams, Kessler, Cunningham, and Jeffries, 2000] L.
WILLIAMS, R. R. KESSLER, W. CUNNINGHAM, AND R.
JEFFRIES, “Strengthening the Case for Pair Program-
ming,” IEEE Software 17 (July–August 2000), pp.
19–25. (Chapters 2 and 4)

 [Wing, 1990] J. WING, “A Specifi er’s Introduction to For-
mal Methods,” IEEE Computer 23 (September 1990),
pp. 8–24. (Chapter 12)

 [Wirfs-Brock, 2006] R. WIRFS-BROCK, “Designing for
Recovery,” IEEE Software 23 (July–August 2006),
pp. 11–13. (Chapter 14)

sch76183_bib_601-626.indd 625sch76183_bib_601-626.indd 625 07/06/10 11:58 AM07/06/10 11:58 AM

626 Bibliography

 [Wirfs-Brock, Wilkerson, and Wiener, 1990] R. WIRFS-
BROCK, B. WILKERSON, AND L. WIENER, Designing
Object-Oriented Software , Prentice Hall, Englewood
Cliffs, NJ, 1990. (Chapters 1 and 13)

 [Wirth, 1971] N. WIRTH, “Program Development by Step-
wise Refi nement,” Communications of the ACM 14
(April 1971), pp. 221–27. (Chapters 5 and 6)

 [Wirth, 1975] N. WIRTH, Algorithms + Data Structures =
Programs, Prentice Hall, Englewood Cliffs, NJ, 1975.
(Chapter 5)

 [Woodcock, 1989] J. WOODCOCK, “Calculating Properties
of Z Specifi cations,” ACM SIGSOFT Software Engi-
neering Notes 14 (July 1989), pp. 43–54. (Chapter 12)

 [Woodward, Hedley, and Hennell, 1980] M. R. WOOD-
WARD, D. HEDLEY, AND M. A. HENNELL, “Experience
with Path Analysis and Testing of Programs,” IEEE
Transactions on Software Engineering SE-6 (May
1980), pp. 278–86. (Chapter 15)

 [Yamaura, 1998] T. YAMAURA, “How to Design Practical
Test Cases,” IEEE Software 15 (November–December
1998), pp. 30–36. (Chapter 15)

 [Yang, Bhuta, Boehm, and Port, 2005] Y. YANG, J. BHUTA,
B. BOEHM, AND D. N. PORT, “Value-Based Processes
for COTS-Based Applications,” IEEE Software 22
(July–August 2005), pp. 54–62. (Chapter 1)

 [Yoo et al., 2006] C. YOO, J. YOON, B. LEE, C. LEE, J.
LEE, S. HYUN, AND C.WU, “A Unifi ed Model for the
Implementation of Both ISO 9001:2000 and CMMI
by ISO-Certifi ed Organizations,” Journal of Systems
and Software 79 (July 2006), pp. 954–61. (Chapter 3)

 [Yourdon, 1989] E. YOURDON, Modern Structured Analysis ,
Yourdon Press, Englewood Cliffs, NJ, 1989. (Chapter 15)

 [Yourdon, 1992] E. YOURDON, The Decline and Fall of the
American Programmer , Yourdon Press, Upper Saddle
River, NJ, 1992. (Chapter 1)

 [Yourdon and Constantine, 1979] E. YOURDON AND L. L.
CONSTANTINE, Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design ,
Prentice Hall, Englewood Cliffs, NJ, 1979. (Chapters
7, 12, and 14)

[Yu, Schach, Chen, and Offutt, 2004] L. YU, S. R.
SCHACH, K. CHEN, AND J. OFFUTT, “Categorization of
Common Coupling and Its Application to the Main-
tainability of the Linux Kernel,” IEEE Transactions
on Software Engineering 30 (October 2004), pp.
694–706. (Chapter 7)

 [Zage and Zage, 1993] W. M. ZAGE AND D. M. ZAGE,
“Evaluating Design Metrics on Large-Scale Soft-
ware,” IEEE Software 10 (July 1993), pp. 75–81.
(Chapter 14)

 [Zelkowitz, Shaw, and Gannon, 1979] M. V. ZELKOWITZ,
A. C. SHAW, AND J. D. GANNON, Principles of Software
Engineering and Design, Prentice Hall, Englewood
Cliffs, NJ, 1979. (Chapter 1)

 [Zhou and Leung, 2006] Y. ZHOU AND H. LEUNG,
“Empirical Analysis of Object-Oriented Design
Metrics for Predicting High and Low Severity
Faults,” IEEE Transactions on Software
Engineering 32 (October 2006), pp. 771–89.
(Chapter 15)

 [Zvegintzov, 1998] N. ZVEGINTZOV, “Frequently
Begged Questions and How to Answer Them,” IEEE
Software 15 (January/February 1998), pp. 93–96.
(Chapter 1)

sch76183_bib_601-626.indd 626sch76183_bib_601-626.indd 626 07/06/10 11:58 AM07/06/10 11:58 AM

627

A
Term Project:
Chocoholics
Anonymous

 Chocoholics Anonymous (ChocAn) is an organization dedicated to helping people addicted
to chocolate in all its glorious forms. Members pay a monthly fee to ChocAn. For this fee
they are entitled to unlimited consultations and treatments with health care professionals,
namely, dietitians, internists, and exercise experts. Every member is given a plastic card
embossed with the member’s name and a nine-digit member number and incorporating
a magnetic strip on which that information is encoded. Each health care professional
(provider) who provides services to ChocAn members has a specially designed ChocAn
computer terminal, similar to a credit card device in a shop. When a provider’s terminal is
switched on, the provider is asked to enter his or her provider number.
 To receive health care services from ChocAn, the member hands his or her card to the
provider, who slides the card through the card reader on the terminal. The terminal then
dials the ChocAn Data Center, and the ChocAn Data Center computer verifi es the member
number. If the number is valid, the word Validated appears on the one-line display. If the
number is not valid, the reason is displayed, such as Invalid number or Member sus-
pended; the latter message indicates that fees are owed (that is, the member has not paid
membership fees for at least a month) and member status has been set to suspended.
 To bill ChocAn after a health care service has been provided to the member, the provider
again passes the card through the card reader or keys in the member number. When the word
Validated appears, the provider keys in the date the service was provided in the format
MM–DD–YYYY. The date of service is needed because hardware or other diffi culties may
have prevented the provider from billing ChocAn immediately after providing the service.
Next, the provider uses the Provider Directory to look up the appropriate six-digit service
code corresponding to the service provided. For example, 598470 is the code for a session
with a dietitian, whereas 883948 is the code for an aerobics exercise session. The provider

 Appendix

sch76183_appA_627-629.indd 627sch76183_appA_627-629.indd 627 07/06/10 11:53 AM07/06/10 11:53 AM

628 Appendix A Term Project: Chocoholics Anonymous

then keys in the service code. To check that the service code has been correctly looked up
and keyed in, the software product then displays the name of the service corresponding to
the code (up to 20 characters) and asks the provider to verify that this is indeed the ser-
vice that was provided. If the provider has entered a nonexistent code, an error message is
printed. The provider also can enter comments about the service provided.
 The software product now writes a record to disk that includes the following fi elds:

 Current date and time (MM–DD–YYYY HH:MM:SS).
 Date service was provided (MM–DD–YYYY).
 Provider number (9 digits).
 Member number (9 digits).
 Service code (6 digits).
 Comments (100 characters) (optional).

 The software product next looks up the fee to be paid for that service and displays it on
the provider’s terminal. For verifi cation purposes, the provider has a form on which to enter
the current date and time, the date the service was provided, member name and number,
service code, and fee to be paid. At the end of the week, the provider totals the fees to verify
the amount to be paid to that provider by ChocAn for that week.
 At any time, a provider can request the software product for a Provider Directory, an
alphabetically ordered list of service names and corresponding service codes and fees. The
Provider Directory is sent to the provider as an e-mail attachment.
 At midnight on Friday, the main accounting procedure is run at the ChocAn Data Center.
It reads the week’s fi le of services provided and prints a number of reports. Each report also
can be run individually at the request of a ChocAn manager at any time during the week.
 Each member who has consulted a ChocAn provider during that week receives a list of
services provided to that member, sorted in order of service date. The report, which is also
sent as an e-mail attachment, includes:

 Member name (25 characters).
 Member number (9 digits).
 Member street address (25 characters).
 Member city (14 characters).
 Member state (2 letters).
 Member ZIP code (5 digits).
 For each service provided, the following details are required:
 Date of service (MM–DD–YYYY).
 Provider name (25 characters).
 Service name (20 characters).

 Each provider who has billed ChocAn during that week receives a report, sent as an
e-mail attachment, containing the list of services he or she provided to ChocAn members.
To simplify the task of verifi cation, the report contains the same information as that entered
on the provider’s form, in the order that the data were received by the computer. At the end
of the report is a summary including the number of consultations with members and the
total fee for that week. That is, the fi elds of the report include:

sch76183_appA_627-629.indd 628sch76183_appA_627-629.indd 628 07/06/10 11:53 AM07/06/10 11:53 AM

Appendix A Term Project: Chocoholics Anonymous 629

 Provider name (25 characters).
 Provider number (9 digits).
 Provider street address (25 characters).
 Provider city (14 characters).
 Provider state (2 letters).
 Provider ZIP code (5 digits).
 For each service provided, the following details are required:
 Date of service (MM–DD–YYYY).
 Date and time data were received by the computer (MM–DD–YYYY HH:MM:SS).
 Member name (25 characters).

 Member number (9 digits).
 Service code (6 digits).

 Fee to be paid (up to $999.99).
 Total number of consultations with members (3 digits).

 Total fee for week (up to $99,999.99).

 A record consisting of electronic funds transfer (EFT) data is then written to a disk;
banking computers will later ensure that each provider’s bank account is credited with the
appropriate amount.
 A summary report is given to the manager for accounts payable. The report lists every
provider to be paid that week, the number of consultations each had, and his or her total
fee for that week. Finally, the total number of providers who provided services, the total
number of consultations, and the overall fee total are printed.
 During the day, the software at the ChocAn Data Center is run in interactive mode to
allow operators to add new members to ChocAn, to delete members who have resigned, and
to update member records. Similarly, provider records are added, deleted, and updated.
 The processing of payments of ChocAn membership fees has been contracted out to
Acme Accounting Services, a third-party organization. Acme is responsible for fi nancial
procedures such as recording payments of membership fees, suspending members whose
fees are overdue, and reinstating suspended members who have now paid what is owing.
The Acme computer updates the relevant ChocAn Data Center computer membership
records each evening at 9 P.M.
 Your organization has been awarded the contract to write only the ChocAn data process-
ing software; another organization will be responsible for the communications software,
for designing the ChocAn provider’s terminal, for the software needed by Acme Account-
ing Services, and for implementing the EFT component. The contract states that, at the
acceptance test, the data from a provider’s terminal must be simulated by keyboard input
and data to be transmitted to a provider’s terminal display must appear on the screen. A
manager’s terminal must be simulated by the same keyboard and screen. Each member
report must be written to its own fi le; the name of the fi le should begin with the member
name, followed by the date of the report. The provider reports should be handled the same
way. The Provider Directory must also be created as a fi le. None of the fi les should actually
be sent as e-mail attachments. As for the EFT data, all that is required is that a fi le be set up
containing the provider name, provider number, and the amount to be transferred.

sch76183_appA_627-629.indd 629sch76183_appA_627-629.indd 629 07/06/10 11:53 AM07/06/10 11:53 AM

B
Software
Engineering
Resources

 There are two good ways to get more information on software engineering topics: by read-
ing journals and conference proceedings, and via the Internet and World Wide Web.
 Journals dedicated exclusively to software engineering are available, such as IEEE
Transactions on Software Engineering , as well as journals of a more general nature,
such as Communications of the ACM , in which signifi cant articles on software engineer-
ing are published. For reasons of space, only a selection of journals of both classes fol-
lows. The journals have been chosen on a subjective basis, those I currently fi nd to be
the most useful.

 ACM Computing Reviews
 ACM Computing Surveys
 ACM SIGSOFT Software Engineering Notes
 ACM Transactions on Computer Systems
 ACM Transactions on Programming Languages and Systems
 ACM Transactions on Software Engineering and Methodology
 Communications of the ACM
 Computer Journal
 Empirical Software Engineering
 IBM Systems Journal
 IEEE Computer
 IEEE Software
 IEEE Transactions on Software Engineering

 Appendix

630

sch76183_appB_630-631.indd 630sch76183_appB_630-631.indd 630 07/06/10 11:53 AM07/06/10 11:53 AM

Appendix B Software Engineering Resources 631

 Journal of Systems and Software
 Software Engineering Journal
 Software—Practice and Experience
 Software Quality Journal

 In addition, proceedings of many conferences contain important articles on software engi-
neering topics. Again, a subjective selection follows. Most of the conferences are referred to
by their acronym or name of sponsoring organization; these appear in parentheses.

 ACM SIGPLAN Annual Conference (SIGPLAN)
 ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE)
 Conference on Human Factors in Computing Systems (CHI)
 Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA)
 International Computer Software and Applications Conference (COMPSAC)
 International Conference on Software Engineering (ICSE)
 International Conference on Software Maintenance (ICSM)
 International Conference on Software Reuse (ICSR)
 International Conference on the Software Process (ICSP)
 International Software Architecture Workshop (ISAW)
 International Symposium on Software Testing and Analysis (ISSTA)
 International Workshop on Software Confi guration Management (SCM)
 International Workshop on Software Specifi cation and Design (IWSSD)

 The Internet is another valuable source of information on software engineering. With
regard to Usenet news groups, the following two have been consistently useful to me:

 comp.object
 comp.software-eng

 Other newsgroups that sometimes have items that I fi nd relevant include the following:

 comp.lang.c++.moderated
 comp.lang.java.programmer
 comp.risks
 comp.software.confi g-mgmt

sch76183_appB_630-631.indd 631sch76183_appB_630-631.indd 631 07/06/10 11:53 AM07/06/10 11:53 AM

C
Requirements
Workfl ow: The MSG
Foundation Case
Study

 The requirements workfl ow for the MSG Foundation case study appears in Chapter 10.

 Appendix

632

sch76183_appC_632.indd 632sch76183_appC_632.indd 632 07/06/10 11:54 AM07/06/10 11:54 AM

633

D
Structured Systems
Analysis: The MSG
Foundation Case
Study

 Step 1. Draw the Data Flow Diagram See Figure 12.9.
 Step 2. Decide What Sections to Computerize and How Computerize the
complete pilot project online. However, if the weekly computation regarding availability of
funds to purchase homes turns out to be time consuming, it may be better to perform it the
night before it is required.
 Step 3. Put in the Details of the Data Flows

 investment_details
 investment_number (12 characters)
 investment_name (25 characters)
 expected_return (9 + 2 digits)
 date_expected_return_updated (8 characters)

 mortgage_details
 mortgage_number (12 characters)
 mortgage_name (21 characters)
 price (6 + 2 digits)
 date_mortgage_issued (8 characters)
 weekly_income (6 + 2 digits)
 date_weekly_income_was_updated (8 characters)
 annual_property_tax (5 + 2 digits)

 Appendix

sch76183_appD_633-635.indd 633sch76183_appD_633-635.indd 633 07/06/10 11:54 AM07/06/10 11:54 AM

634 Appendix D Structured Systems Analysis: The MSG Foundation Case Study

 annual_insurance_premium (5 + 2 digits)
 mortgage_balance (6 + 2 digits)

 available_funds_for_week (9 + 2 digits)

 annual_operating_expenses (9 + 2 digits)

 update_request (1 character)

 Step 4. Defi ne the Logic of the Processes

 compute_availability_of_funds_and_generate_funds_report
 Determine the expected income for the week by adding the expected_return of

each investment in INVESTMENT_DATA.
 Determine the expected mortgage payments for the week by adding the expected

mortgage payment of each mortgage in MORTGAGE_DATA.
 Determine the expected grants for the week by adding the expected grant for each

mortgage in MORTGAGE_DATA.
 Compute available_funds_for_week �
 expected income for the week
 � annual_operating_expenses / 52
 � expected mortgage payments for the week
 � expected grants for the week
 Display/print available_funds_for_week

 generate_listing_of_investments
 For each investment in INVESTMENT_DATA
 Print investment_details

 generate_listing_of_mortgages
 For each mortgage in MORTGAGE_DATA
 Print mortgage_details

 perform_selected_update
 Use the value of update_request to determine whether MORTGAGE_DATA,

 INVESTMENT_DATA, or EXPENSES_DATA are to be updated.
 Perform the update.

 Step 5. Defi ne the Data Stores

 EXPENSES_DATA
 annual_operating_expenses [defi ned in Step 3]

 INVESTMENT_DATA
 investment_details [defi ned in Step 3]

 MORTGAGE_DATA
 mortgage_details [defi ned in Step 3]

 All fi les are sequential, and hence there is no DIAD.

sch76183_appD_633-635.indd 634sch76183_appD_633-635.indd 634 07/06/10 11:54 AM07/06/10 11:54 AM

Appendix D Structured Systems Analysis: The MSG Foundation Case Study 635

 Step 6. Defi ne the Physical Resources

 EXPENSES DATA
 Sequential fi le
 Stored on disk

 INVESTMENT DATA
 Sequential fi le
 Stored on disk

 MORTGAGE DATA
 Sequential fi le
 Stored on disk

 Step 7. Determine the Input/Output Specifi cations Input screens are
designed for the following processes:

 update_investment, update_mortgage, update_annual_operating_expenses,
compute_availability_of_funds_and_generate_funds_report

 The following reports are displayed:

 list_of_investments, list_of_mortgages, available_funds_for_week

 The screens and reports of the rapid prototype will be used as a basis for the preceding.
The exact format of all screens and reports is subject to approval by the MSG Foundation.

 Step 8. Perform Sizing Approximately 4 megabytes of storage are needed for the
software. Each investment object requires approximately 50 bytes of storage. Each mort-
gage object requires approximately 90 bytes of storage. The storage requirements can be
computed on the basis of the number of investments and mortgages owned by the MSG
Foundation.

 Step 9. Determine the Hardware Requirements

 Desktop computer with hard disk, running Linux.
 Zip drive for backups.
 Laser printer for printing reports.

sch76183_appD_633-635.indd 635sch76183_appD_633-635.indd 635 07/06/10 11:54 AM07/06/10 11:54 AM

 Appendix

636

 The analysis workfl ow is presented in Chapter 12.

E
Analysis Workfl ow:
The MSG Foundation
Case Study

sch76183_appE_636.indd 636sch76183_appE_636.indd 636 07/06/10 11:55 AM07/06/10 11:55 AM

637

 AppendixF
Software Project
Management Plan:
The MSG Foundation
Case Study

 The plan presented here is for development of the MSG product by a small software organiza-
tion consisting of three individuals: Almaviva, the owner of the company, and two software
engineers, Bartolo and Cherubini.

 1 Overview.

 1.1 Project Summary.

 1.1.1 Purpose, Scope, and Objectives. The objective of this project is to develop a software
product that will assist the Martha Stockton Greengage (MSG) Foundation in making deci-
sions regarding home mortgages for married couples. The product will allow the client to add,
modify, and delete information regarding the Foundation’s investments, operating expenses, and
individual mortgage information. The product will perform the required calculations in these
areas and produce reports listing investments, mortgages, and weekly operating expenses.

 1.1.2 Assumptions and Constraints. Constraints include the following:

 The deadline must be met.
 The budget constraint must be met.
 The product must be reliable.
 The architecture must be open so that additional functionality may be added later.
 The product must be user-friendly.

sch76183_appF_637-641.indd 637sch76183_appF_637-641.indd 637 07/06/10 11:55 AM07/06/10 11:55 AM

638 Appendix F Software Project Management Plan: The MSG Foundation Case Study

 1.1.3 Project Deliverables. The complete product, including user manual, will be deliv-
ered 10 weeks after the project commences.

 1.1.4 Schedule and Budget Summary. The duration, personnel requirements, and bud-
get of each workfl ow are as follows:

 Requirements workfl ow (1 week, two team members, $3740)
 Analysis workfl ow (2 weeks, two team members, $7480)
 Design workfl ow (2 weeks, two team members, $7480)
 Implementation workfl ow (3 weeks, three team members, $16,830)
 Testing workfl ow (2 weeks, three team members, $11,220)

 The total development time is 10 weeks, and the total internal cost is $46,750.

 1.2 Evolution of the Project Management Plan. All changes in the project management
plan must be agreed to by Almaviva before they are implemented. All changes should be
documented to keep the project management plan correct and up to date.

 2 Reference Materials. All artifacts will conform to the company’s programming, docu-
mentation, and testing standards.

 3 Defi nitions and Acronyms. MSG—Martha Stockton Greengage; the MSG Foundation
is our client.

 4 Project Organization.

 4.1 External Interfaces. All the work on this project will be performed by Almaviva,
Bartolo, and Cherubini. Almaviva will meet weekly with the client to report progress and
discuss possible changes and modifi cations.

 4.2 Internal Structure. The development team consists of Almaviva (owner), Bartolo,
and Cherubini.

 4.3 Roles and Responsibilities . Bartolo and Cherubini will perform the design workfl ow.
Almaviva will implement the class defi nitions and report artifacts, Bartolo will construct
the artifacts to handle investments and operating expenses, and Cherubini will develop the
artifacts that handle mortgages. Each member is responsible for the quality of the artifacts
he or she produces. Almaviva will oversee integration and the overall quality of the soft-
ware product and will liaise with the client.

 5 Managerial Process Plans.

 5.1 Start-up Plan.

 5.1.1 Estimation Plan. As previously stated, the total development time is estimated to
be 10 weeks and the total internal cost to be $46,750. These fi gures were obtained by expert
judgment by analogy, that is, by comparison with similar projects.

 5.1.2 Staffi ng Plan. Almaviva is needed for the entire 10 weeks, for the fi rst 5 weeks
in only a managerial capacity and the second 5 weeks as both manager and programmer.
Bartolo and Cherubini are needed for the entire 10 weeks, for the fi rst 5 weeks as systems
analysts and designers, and for the second 5 weeks as programmers and testers.

sch76183_appF_637-641.indd 638sch76183_appF_637-641.indd 638 07/06/10 11:55 AM07/06/10 11:55 AM

Appendix F Software Project Management Plan: The MSG Foundation Case Study 639

 5.1.3 Resource Acquisition Plan. All necessary hardware, software, and CASE tools for
the project are already available. The product will be delivered to the MSG Foundation
installed on a desktop computer that will be leased from our usual supplier.

 5.1.4 Project Staff Training Plan. No additional staff training is needed for this project.

 5.2 Work Plan.

 5.2.1–2 Work Activities and Schedule Allocation.

 Week 1. (Completed) Met with client, and determined requirements artifacts.
Inspected requirements artifacts.

 Weeks 2, 3. (Completed) Produced analysis artifacts, and inspected analysis
artifacts. Showed artifacts to client, who approved them. Produced
software project management plan, and inspected software project
management plan.

 Weeks 4, 5. Produce design artifacts, inspect design artifacts.
 Weeks 6–10. Implementation and inspection of each class, unit testing and documen-

tation, integration of each class, integration testing, product testing, and
documentation inspection.

 5.2.3 Resource Allocation. The three team members will work separately on their
assigned artifacts. Almaviva’s assigned role will be to monitor the daily progress of the
other two, oversee implementation, be responsible for overall quality, and interact with the
client. Team members will meet at the end of each day and discuss problems and progress.
Formal meetings with the client will be held at the end of each week to report progress and
determine if any changes need to be made. Almaviva will ensure that schedule and budget
requirements are met. Risk management will also be Almaviva’s responsibility.
 Minimizing faults and maximizing user-friendliness will be Almaviva’s top priorities. Alma-
viva has overall responsibility for all documentation and has to ensure that it is up to date.

 5.2.4 Budget Allocation. The budget for each workfl ow is as follows:

 Requirements workfl ow $ 3,740
 Analysis workfl ow 7,480
 Design workfl ow 7,480
 Implementation workfl ow 16,830
 Testing workfl ow 11,220

 Total $46,750

 5.3 Control Plan. Any major changes that affect the milestones or the budget have to
be approved by Almaviva and documented. No outside quality assurance personnel are
involved. The benefi ts of having someone other than the individual who carried out the
development task do the testing will be accomplished by each person testing another per-
son’s work products.
 Almaviva will be responsible for ensuring that the project is completed on time and
within budget. This will be accomplished through daily meetings with the team members.
At each meeting, Bartolo and Cherubini will present the day’s progress and problems.

sch76183_appF_637-641.indd 639sch76183_appF_637-641.indd 639 07/06/10 11:55 AM07/06/10 11:55 AM

640 Appendix F Software Project Management Plan: The MSG Foundation Case Study

Almaviva will determine whether they are progressing as expected and whether they are
following the specifi cation document and the project management plan. Any major prob-
lems faced by the team members will immediately be reported to Almaviva.

 5.4 Risk Management Plan. The risk factors and the tracking mechanisms are as follows:

 There is no existing product with which the new product can be compared. Accordingly,
it will not be possible to run the product in parallel with an existing one. Therefore, the
product should be subjected to extensive testing.
 The client is assumed to be inexperienced with computers. Therefore, special attention
should be paid to the analysis workfl ow and communication with the client. The product
has to be made as user-friendly as possible.
 Because of the ever-present possibility of a major design fault, extensive testing will be
performed during the design workfl ow. Also, each of the team members will initially test
his or her own code and then test the code of another member. Almaviva will be responsible
for integration testing and in charge of product testing.
 The information must meet the specifi ed storage requirements and response times. This
should not be a major problem because of the small size of the product, but it will be moni-
tored by Almaviva throughout development.
 There is a slim chance of hardware failure, in which case another machine will be leased.
If there is a fault in the compiler, it will be replaced. These are covered in the warranties
received from the hardware and compiler suppliers.

 5.5 Project Close-out Plan. Not applicable here.

 6 Technical Process Plans.

 6.1 Process Model. The Unifi ed Process will be used.

 6.2 Methods, Tools, and Techniques. The workfl ows will be performed in accordance
with the Unifi ed Process. The product will be implemented in Java.

 6.3 Infrastructure Plan. The product will be developed using ArgoUML running under
Linux on a personal computer.

 6.4 Product Acceptance Plan. Acceptance of the product by our client will be achieved
by following the steps of the Unifi ed Process.

 7 Supporting Process Plan

 7.1 Confi guration Management Plan. CVS will be used throughout for all artifacts.

 7.2 Testing Plan. The testing workfl ow of the Unifi ed Process will be performed.

 7.3 Documentation Plan. Documentation will be produced as specifi ed in the Unifi ed
Process.

 7.4–5 Quality Assurance Plan and Reviews and Audits Plan. Bartolo and Cherubini will
test each other’s code, and Almaviva will conduct integration testing. Extensive product
testing will then be performed by all three.

 7.6 Problem Resolution Plan. As stated in 5.3, any major problems faced by the team
members will immediately be reported to Almaviva.

sch76183_appF_637-641.indd 640sch76183_appF_637-641.indd 640 07/06/10 11:55 AM07/06/10 11:55 AM

Appendix F Software Project Management Plan: The MSG Foundation Case Study 641

 7.7 Subcontractor Management Plan. Not applicable here.

 7.8 Process Improvement Plan. All activities will be conducted in accord with the com-
pany plan to advance from CMM level 2 to level 3 within 2 years.

 8. Additional Plans . Additional components:

 Security. A password will be needed to use the product.
 Training. Training will be performed by Almaviva at time of delivery. Because the
product is straightforward to use, 1 day should be suffi cient for training. Almaviva will
answer questions at no cost for the fi rst year of use.
 Maintenance. Corrective maintenance will be performed by the team at no cost for a
period of 12 months. A separate contract will be drawn up regarding enhancement.

sch76183_appF_637-641.indd 641sch76183_appF_637-641.indd 641 07/06/10 11:55 AM07/06/10 11:55 AM

 AppendixG
Design Workfl ow:
The MSG Foundation
Case Study

642

 This appendix contains the fi nal version of the class diagram for the MSG Foundation case
study (Figure G.1). The overall class diagram is followed by UML diagrams for the 10 compo-
nent classes, in alphabetical order. These UML diagrams show the attributes and the methods.
As explained in Section 17.2, the UML visibility prefi xes are – for private , + for public ,
and # for protected . The attributes and methods are shown in a PDL for Java. Accordingly,
there is no Date Class (see Section 14.8).

sch76183_appG_642-646.indd 642sch76183_appG_642-646.indd 642 07/06/10 11:56 AM07/06/10 11:56 AM

Appendix G Design Workfl ow: The MSG Foundation Case Study 643

FIGURE G.1
The fi nal
class diagram
for the MSG
Foundation
case study.

Asset
Class

User Interface
Class

Mortgages
Report Class

Estimated Funds
Report Class

Investments
Report Class

Mortgage
Class

Investment
Class

MSG Application
Class

Manage an
Asset Class

Estimate
Funds for

Week Class

MSG Staff Member

 « entity class»
 Asset Class

 # assetNumber : string

 + getAssetNumber () : string
 + setAssetNumber (a : string) : void
 + abstract read (fi leName : RandomAccessFile) : void
 + abstract obtainNewData () : void
 + abstract performDeletion () : void
 + abstract write (fi leName : RandomAccessFile) : void
 + abstract save () : void
 + abstract print () : void
 + abstract fi nd (s : string) : Boolean
 + delete () : void
 + add () : void

sch76183_appG_642-646.indd 643sch76183_appG_642-646.indd 643 07/06/10 11:56 AM07/06/10 11:56 AM

644 Appendix G Design Workfl ow: The MSG Foundation Case Study

 «boundary class»
Estimate Funds Report Class

 + <<static>> printReport () : void

 «control class»
 Estimate Funds for Week Class

+ <<static>> compute () : void

 «entity class»
Investment Class

 − investmentName : string
 − expectedAnnualReturn : fl oat
 − expectedAnnualReturnUpdated : string

 + getInvestmentName () : string
 + setInvestmentName (n : string) : void
 + getExpectedAnnualReturn () : fl oat
 + setExpectedAnnualReturn (r : fl oat) : void
 + getExpectedAnnualReturnUpdated () : string
 + setExpectedAnnualReturnUpdated (d : string) : void
 + totalWeeklyReturnOnInvestment () : fl oat
 + fi nd (fi ndInvestmentID : string) : Boolean
 + read (fi leName : RandomAccessFile) : void
 + write (fi leName : RandomAccessFile) : void
 + save () : void
 + print () : void
 + printAll () : void
 + obtainNewData () : void
 + performDeletion () : void
 + readInvestmentData () : void
 + updateInvestmentName () : void
 + updateExpectedReturn () : void

 «boundary class»
Investments Report Class

 + <<static>> printReport () : void

sch76183_appG_642-646.indd 644sch76183_appG_642-646.indd 644 07/06/10 11:56 AM07/06/10 11:56 AM

Appendix G Design Workfl ow: The MSG Foundation Case Study 645

 «entity class»
 Mortgage Class

 − mortgageeName : string
 − price : fl oat
 − dateMortgageIssued : string
 − currentWeeklyIncome : fl oat
 − weeklyIncomeUpdated : string
 − annualPropertyTax : fl oat
 − annualInsurancePremium : fl oat
 − mortgageBalance : fl oat
 + <<static fi nal>> INTEREST_RATE : fl oat
 + <<static fi nal>> MAX_PER_OF_INCOME : fl oat
 + <<static fi nal>> NUMBER_OF_MORTGAGE_PAYMENTS : int
 + <<static fi nal>> WEEKS_IN_YEAR : fl oat
 + getMortgageeName () : string
 + setMortgageeName (n : string) : void
 + getPrice () : fl oat
 + setPrice (p : fl oat) : void
 + getDateMortgageIssued () : string
 + setDateMortgageIssued (w : string) : void
 + getCurrentWeeklyIncome () : fl oat
 + setCurrentWeeklyIncome (i : fl oat) : void
 + getWeeklyIncomeUpdated () : string
 + setWeeklyIncomeUpdated (w : string) : void
 + getAnnualPropertyTax () : fl oat
 + setAnnualPropertyTax (t : fl oat) : void
 + getAnnualInsurancePremium () : fl oat
 + setAnnualInsurancePremium (p : fl oat) : void
 + getMortgageBalance () : fl oat
 + setMortgageBalance (m : fl oat) : void
 + totalWeeklyNetPayments () : fl oat
 + fi nd (fi ndMortgageID : string) : Boolean
 + read (fi leName : RandomAccessFile) : void
 + write (fi leName : RandomAccessFile) : void
 + obtainNewData () : void
 + performDeletion () : void
 + print () : void
 + <<static>> printAll () : void

 «control class»
 Manage an Asset Class

 + <<static>> manageInvestment () : void
 + <<static>> manageMortgage () : void

sch76183_appG_642-646.indd 645sch76183_appG_642-646.indd 645 07/06/10 11:56 AM07/06/10 11:56 AM

646 Appendix G Design Workfl ow: The MSG Foundation Case Study

 «boundary class»
 Mortgages Report Class

 + <<static>> printReport () : void

 + save () : void
 + readMortgageData () : void
 + updateBalance () : void
 + updateDate () : void
 + updateInsurancePremium () : void
 + updateMortgageeName () : void
 + updatePrice () : void
 + updatePropertyTax () : void
 + updateWeeklyIncome () : void

 «entity class»
 MSG Application Class

 − <<static>> estimatedAnnualOperatingExpenses : fl oat
 − <<static>> estimatedFundsForWeek : fl oat

 − <<static>> getAnnualOperatingExpenses () : fl oat
 − <<static>> setAnnualOperatingExpenses (e : fl oat) : void
 + <<static>> getEstimatedFundsForWeek () : fl oat
 + <<static>> setEstimatedFundsForWeek (e : fl oat) : void
 + <<static>> initializeApplication () : void
 + <<static>> updateAnnualOperatingExpenses () : void
 + <<static>> main ()

 «boundary class»
 User Interface Class

 + <<static>> clearScreen () : void
 + <<static>> pressEnter () : void
 + <<static>> displayMainMenu () : void
 + <<static>> displayInvestmentMenu () : void
 + <<static>> displayMortgageMenu () : void
 + <<static>> displayReportMenu () : void
 + <<static>> getChar () : char
 + <<static>> getString () : string
 + <<static>> getInt () : int

sch76183_appG_642-646.indd 646sch76183_appG_642-646.indd 646 07/06/10 11:56 AM07/06/10 11:56 AM

 Appendix H
Implementation
Workfl ow: The MSG
Foundation Case
Study (C++ Version)

647

 The complete C++ source code for the MSG Foundation product is available on the World
Wide Web at www.mhhe.com/schach.

sch76183_appH_647.indd 647sch76183_appH_647.indd 647 07/06/10 11:57 AM07/06/10 11:57 AM

www.mhhe.com/schach

 Appendix I
Implementation
Workfl ow: The MSG
Foundation Case
Study (Java Version)

 The complete Java source code for the MSG Foundation product is available on the World
Wide Web at www.mhhe.com/schach.

648

sch76183_appI_648.indd 648sch76183_appI_648.indd 648 07/06/10 11:57 AM07/06/10 11:57 AM

www.mhhe.com/schach

 Appendix J
Test Workfl ow: The
MSG Foundation
Case Study

649

 The test workfl ow of the MSG Foundation case study is presented in four sections:

 Section 11.11 (requirements)
 Section 13.17 (analysis)
 Section 14.11 (design)
 Section 15.23 (implementation)

sch76183_appJ_649-650.indd 649sch76183_appJ_649-650.indd 649 07/06/10 11:58 AM07/06/10 11:58 AM

This page intentionally left blank

651

 Author Index

 A

 Abrial, J.-R., 388
 Ackerman, A. F., 161
 Albrecht, A. J., 273
 Alexander, C., 235
 Alford, M., 374
 Alshayeb, M., 61, 541
 Andersson, C., 534
 Arisholm, E., 61, 118
 Arlow, J., 594
 Atkinson, R., 253
 Avrahami, M., 100

 B

 Babich, W. A., 144
 Baker, F. T., 111, 112, 113
 Balzer, R., 392
 Banks, J., 361
 Basili, V. R., 44, 527, 529
 Bassiouni, M., 385, 387
 Beck, K., 59, 60, 118
 Beizer, B., 487
 Berners-Lee, T., 597
 Berry, D. M., 172, 190
 Binder, L. H., 529
 Binkley, A. B., 491, 541
 Blaha, M. R., 213
 Blythe, J., 220
 Boehm, B. W., 11, 12, 14, 62, 63, 64,

66, 269, 278, 279, 280, 281, 291
 Booch, G., 44, 61, 77, 90, 91, 92, 314,

404, 405, 458, 539, 552, 571
 Brady, J. M., 376
 Briand, L. C., 198
 Brooks, F. P., 7, 95, 101, 108, 110,

352, 492
 Brown, W. J., 236
 Bruegge, B., 220
 Buchwald, L. S., 161
 Budd, T., 20
 Bush, M., 161
 Buxton, J. N., 4

 C

 Capper, N. P., 219
 Carson, J. S., 361
 Chen, K., 198
 Chen, P. P.-S., 374
 Chidamber, S. R., 491, 541
 Chrissis, M. B., 95
 Clements, P., 236
 Cockburn, A., 60
 Coleman, D., 237
 Colgate, R. J., 219
 Collins, B. P., 391
 Constantine, L. L., 133, 184, 186, 364, 365
 Coolahan, J. E., Jr., 386
 Cooprider, J. G., 148
 Crossman, T. D., 528
 Cunningham, W., 59, 61, 118
 Curtis, B., 95, 119
 Cusumano, M. A., 62, 117
 Cutter Consortium, 5

 D

 Dahl, O.-J., 184, 211
 Daly, E. B., 11, 12
 Daly, J., 198
 Dart, S. A., 373
 Date, C. J., 503
 Dawood, M., 99
 Delisle, N., 390, 392
 DeMarco, T., 364, 365
 Deming, W. E., 96
 DeRemer, F., 138
 Devenny, T., 270
 Dhamija, R., 598
 Diaz, M., 100
 Dijkstra, E. W., 132, 163, 171, 591
 Dion, R., 99
 Doolan, E. P., 393
 Dooley, J. W. M., 141
 Drobka, J., 59
 Dunn, R. H., 528
 Dybå, T., 61, 118
 Dyer, M., 529

 E

 Ellison, R. J., 373
 Elshoff, J. L., 11
 Endres, A., 534
 Erdogmus, H., 61
 Erikson, W. J., 271

 F

 Fagan, M. E., 12, 159, 160,
161, 393

 Feiler, P. H., 373
 Feldman, S. I., 147
 Felten, E., 598
 Ferguson, J., 101
 Fitzpatrick, J., 532
 Flanagan, D., 211, 233, 476
 Forselius, P., 275
 Fowler, M., 236
 Fowler, P. J., 161
 Fuggetta, A., 137

 G

 Gagne, G., 382, 489
 Gail, R., 361
 Galin, D., 100
 Gallis, H., 61, 118
 Galvin, P. B., 382, 489
 Gamma, E., 234, 235, 236, 239, 244,

245, 248
 Gane, C., 364, 365, 373
 Gannon, J. D., 11
 Garlan, D., 236, 390
 Garman, J. R., 93
 Gerald, C. F., 186
 Gerhart, S. L., 171, 363
 Ghezzi, C., 387
 Gifford, D., 251
 Goldberg, A., 211, 476
 Gomaa, H., 490
 Goodenough, J. B., 163, 164, 166,

171, 363

 This index includes only authors cited in the actual text.

sch76183_a-ind_651-653.indd 651sch76183_a-ind_651-653.indd 651 07/06/10 11:49 AM07/06/10 11:49 AM

652 Author Index

 Gordon, M. J. C., 392
 Grady, R. B., 11, 533
 Grant, E. E., 271
 Grasso, C. A., 230
 Green, P., 229
 Griss, M. L., 228
 Guha, R. K., 385, 387
 Guimaraes, T., 502
 Guinan, P. J., 148

 H

 Habermann, A. N., 373
 Hall, A., 390, 391
 Harel, D., 382, 539
 Harrold, M. J., 532
 Hatton, L., 11, 18
 Hayes, F., 50
 Hearst, M., 598
 Hedley, D., 526
 Hefl ey, W. E., 119
 Heinemann, A., 597
 Helm, R., 234, 235, 236, 239, 244,

245, 248
 Hennell, M. A., 526
 Henry, S. M., 491
 Hershey, E. A., 373
 Hoare, C. A. R., 174, 389, 392
 Hops, J., 14, 161
 Howden, W. E., 522, 523
 Huitt, R., 531
 Humphrey, W. S., 95, 99
 Hunter, J. C., 219
 Hutchens, D. H., 527
 Hwang, S.-S. V., 528

 I

 Iannino, A., 528
 Ince, D. C., 528

 J

 Jackson, J., 220
 Jackson, M. A., 475
 Jacobson, I., 44, 77, 90, 91, 92, 314,

404, 405, 458, 539, 552, 571
 Jalote, P., 60
 James, M. F., 219

 Jeffries, R., 59, 61, 118
 Jézéquel, J.-M., 231, 232
 Johnson, R., 219, 234, 235, 236, 239,

244, 245, 248
 Johnson, S. C., 254, 257
 Jones, C., 100, 161, 227, 274,

275, 291
 Jones, C. B., 392
 Josephson, M., 25
 Juran, J. M., 96

 K

 Kafura, D. G., 491
 Kaiser, G. E., 532
 Kamayachi, Y., 527
 Kampen, G. R., 377, 378,

380, 382
 Kan, S. H., 13
 Kangasharju, J., 597
 Keeni, G., 100
 Kelly, J. C., 14, 161
 Kemerer, C. F., 491, 541
 Kernighan, B. W., 254
 Kessler, R. R., 59, 61, 118
 Kiczales, G., 593
 Kitchenham, B. A., 491
 Kleinrock, L., 361
 Klunder, D., 505
 Knuth, D. E., 196, 378
 Kron, H. H., 138
 Kurien, P., 60

 L

 Laddad, R., 593
 Landwehr, C. E., 172
 Lanergan, R. G., 230
 Lang, S. D., 385, 387
 Larman, V., 44
 Leavenworth, B., 171, 363
 Leveson, N. G., 3
 Lewski, F. H., 161
 Li, W., 61, 541
 Lientz, B. P., 8
 Lim, W. C., 228, 229, 290
 Linger, R. C., 529, 530
 Linkman, S. J., 491
 Liskov, B., 253
 Liu, J. W. S., 490

 London, R. L., 171, 363
 Long, F., 540
 Loukides, M., 146, 565
 Luckham, D. C., 392
 Lyardet, F., 597

 M

 Mackenzie, C. E., 250
 Mandrioli, D., 387
 Manna, Z., 172, 173
 Mantei, M., 110
 Martin, J., 502
 Matsumoto, Y., 229
 Matthews, P., 531
 Maurer, F., 61
 Maxwell, K. D., 275
 Mayer, R., 188
 McCabe, T. J., 491, 527, 528
 McGraw, G., 598
 McGregor, J. D., 532
 Mellor, P., 3
 Mellor, S., 490
 Meyer, B., 20, 211, 231,

232, 363
 Miller, G. A., 44, 93
 Miller, S. A., 119
 Mills, H. D., 529
 Mooney, J. D., 250
 Morris, E., 540
 Mühlhäuser, M., 597
 Musa, J. D., 528
 Musser, D. R., 227
 Myers, G. J., 133, 175, 184, 186,

187, 188, 514, 519, 528,
533, 534

 Myers, W., 147

 N

 Naur, P., 4, 171, 363
 Nelson, B. L., 361
 Neumann, P. G., 2
 Neustadt, I., 594
 New, R., 158
 Nichol, D. M., 361
 Nix, C. J., 391
 Noftz, D., 59
 Norden, P. V., 282
 Northrop, L., 236

sch76183_a-ind_651-653.indd 652sch76183_a-ind_651-653.indd 652 07/06/10 11:49 AM07/06/10 11:49 AM

Author Index 653

 Norusis, M. J., 227
 Norwig, P., 248
 Nygaard, K., 184, 211

 O

 Oest, O. N., 392
 Offutt, A. J., 198
 Ohta, J., 237
 Okumoto, K., 528
 Oram, A., 146, 565
 Orr, K., 475

 P

 Palit, A., 60
 Parnas, D. L., 184, 209, 559
 Paulk, M. C., 95
 Peethamber, V. T., 60
 Perry, D. E., 532
 Peterson, J. L., 383, 384
 Petri, C. A., 383
 Pickard, L. M., 491
 Pigorski, T., 556
 Pittman, M., 290
 Pnueli, A., 172
 Porter, V., 198
 Premerlani, W. J., 213
 Putnam, L. H., 283

 R

 Raghu, R., 59
 Randell, B., 4
 Rapps, S., 526
 Raymond, E. S., 23, 58
 Reifer, D. J., 61
 Ritchie, D. M., 254, 257
 Robson, D., 211, 476
 Rochkind, M. J., 146, 565
 Ross, D. T., 374
 Roussopoulos, N., 386
 Royce, W. W., 41, 53
 Rubenstein, D., 4, 50
 Rumbaugh, J., 44, 77, 90, 91, 92,

213, 314, 404, 405, 458, 539,
552, 571

 Runeson, P., 529, 534
 Rzepka, W. E., 374, 393, 395

 S

 Sackman, H., 271
 Saini, A., 227
 Sammet, J. E., 500
 Sarsen, T., 364, 365, 373
 Sawyer, S., 148
 Schach, S. R., 8, 38, 135, 141, 194,

198, 249, 253, 272, 273, 290, 350,
491, 541

 Schaffert, C., 253
 Scheffer, P. A., 374, 393, 395
 Schricker, D., 254
 Schwaber, K., 60
 Schwartz, M., 392
 Selby, R. W., 62, 117, 130, 229, 529
 Shapiro, F. R., 25
 Shaw, A. C., 11
 Shaw, M., 236
 Sheard, S., 101
 Shepperd, M., 491, 528
 Sherif, J. S., 14, 161
 Shneiderman, B., 188
 Shufelt, J., 220
 Silberschatz, A., 382, 489
 Sjøberg, D. I. K., 61, 118
 Sligo, J., 100
 Snider, T. R., 99
 Snyder, A., 253
 Snyder, C. E., 529
 Sobell, M. G., 138, 140
 Spector, A., 251
 Spivey, J. M., 54, 387, 390
 Stephenson, W. E., 12
 Stevens, W. P., 133, 184, 186
 Stevens-Guille, P. D., 194
 Stone, A. H., 374, 393, 395
 Stroustrup, B., 211, 476
 Swanson, E. B., 8
 Symons, C. R., 275

 T

 Takahashi, M., 527
 Tanenbaum, A. S., 257
 Teichroew, D., 373
 Tichy, W. F., 146, 565
 Toft, P., 237
 Tomer, A., 38, 135, 236
 Tompkins, G. E., 8
 Tracz, W., 228

 Trammel, C. J., 529
 Turner, C. S., 3
 Turner, R., 62
 Tygar, J. D., 598

 V

 van der Poel, K. G., 272, 273
 van Wijngaarden, A., 86
 Vander Wal, T., 597
 Vlissides, J., 234, 235, 236, 239, 244,

245, 248
 von Henke, F. W., 392

 W

 Waldinger, R., 173
 Walsh, T. J., 528
 Ward, P. T., 490
 Warnier, J. D., 475
 Watson, A. H., 528
 Weber, C. V., 95
 Weinberg, G. M., 109
 Weiss, D. M., 529
 Weyuker, E. J., 526
 Wheatley, P. O., 186
 Wiener, L., 20, 413
 Wilde, N., 531
 Wilkerson, B., 20, 413
 Williams, L., 59, 61, 118
 Willis, R. R., 99
 Wing, J. M., 172
 Wirfs-Brock, R., 20, 413
 Wirth, N., 130
 Wood, P. T., 350
 Woodcock, J., 391
 Woodward, M. R., 526
 Wüst, J., 198

 Y

 Yourdon, E., 11, 18, 184, 364,
365, 539

 Yu, L., 198

 Z

 Zelkowitz, M. V., 11

sch76183_a-ind_651-653.indd 653sch76183_a-ind_651-653.indd 653 07/06/10 11:49 AM07/06/10 11:49 AM

654

 Subject Index

 A

 abstract class, 239
 abstract data type, 191, 207–208,

209, 530
 abstract data type design, 476
 abstract factory design pattern,

 241–244
 abstract initial state, 389
 abstract method, 239, 561
 abstract noun, 411
 abstraction, 201–207, 466
 acceptance criteria, 361
 acceptance testing, 7, 86, 158, 535,

536–537
 accessor, 482
 accidental reuse, 226
 action, defi nition, 582
 activation box, 579
 activity, 137, 283, 582

 defi nition, 582
 diagram, 583–585, 587

 actor, 318–319, 323–325, 408, 457,
577, 587

 defi nition, 318
 elevator problem case study, 408
 MSG Foundation case study,

 323–325
 Ada (language), 195, 254, 255, 275,

370, 392, 476, 540
 Ada 83 (language), 255
 Ada 95 (language), 255, 476
 Ada, Countess of Lovelace, 254
 Ada Joint Program Offi ce (AJPO), 255
 Ada reference manual, 255
 Ada standard, 255
 adapter design pattern, 235, 240
 adaptive maintenance, 8, 142, 553,

554–555, 558, 563
 defi nition, 553

 ADF, 502
 advice, 591
 aggregate, 241
 aggregation, 213, 573
 Agile Alliance, 60

 agile processes, 59–62, 118
 Alexander, Christopher, 235
 ALGOL, 254
 algorithm, 328–329
 all-defi nition-use-path coverage, 526–527
 alpha release, 86
 alpha testing, 86–87, 535
 alter verb, 193
 ambiguity, 81, 362
 analysis. See analysis workfl ow;

classical analysis phase; object-
oriented analysis

 analysis artifacts, 84–85
 review, 84

 analysis fault, 12–14, 553
 analysis phase. See classical analysis

phase
 analysis testing, 84–85
 analysis workfl ow, 22, 44–47, 80–82,

404–459, 636
 challenges, 459
 elevator problem case study, 407–424
 MSG Foundation case study,

 425–455, 636
 Analyst/Designer, 395, 490, 539
 analytic network modeling, 361
 Anna, 392
 ANSI X3. 159, 254
 ANSI/IEEE 754, 252
 ANSI/IEEE 829, 291
 ANSI/MIL-STD-1815A, 255
 Ant, 147
 antipattern, 236
 Apache project, 147
 Apache Web server, 23
 application composition model, 281
 application domain, 76, 78, 314,

315–316
 application framework, 234
 application programming interface

(API), 227
 architect, 486
 architectural design, 7, 21, 82, 466–470
 architecture, 49, 90. See also software

architecture

 architecture pattern, 236–237
 ArgoUML, 353, 459, 490
 Ariane 5 rocket, 231–232
 artifact, 18, 41, 135
 ASCII, 250
 aspect, 591
 AspectJ, 593
 aspect-oriented programming (AOP),

 220, 591–593
 aspect-oriented programming language,

 592
 aspect-oriented software development

(AOSD), 593
 aspect-oriented technology, 591–593
 assembler, 257, 275, 501, 534, 564
 assert statement, 174, 232
 assertion, 168, 170, 174
 association, 214, 576
 association class, 577
 assumptions, 131
 asterisk, 575
 AT&T Bell Laboratories, 252
 ATM, 278
 attribute, 18–22, 212, 411, 531

 B

 Babbage, Charles, 254
 back-end CASE tool, 136, 490
 backtrack, 342, 430
 backup programmer, 111–112, 113
 bag, 383
 baseline, 41, 145–146, 284, 559
 Beethoven, Ludwig van, 226
 behavioral design pattern, 246
 behavioral testing, 517
 Belgian budget, 3
 beta release, 86, 92
 beta testing, 86–87, 535
 binding, 186
 BlackBerry, 316
 black-box testing, 289, 517. See also

black-box unit testing
 origin of term, 517

 1-800-fl owers.com, 21

sch76183_s-ind_654-668.indd 654sch76183_s-ind_654-668.indd 654 07/06/10 11:48 AM07/06/10 11:48 AM

Subject Index 655

 black-box unit testing, 520–525,
528–530

 blog, 596
 Boccalini, Traiano, 132
 Booch’s method, 77
 Borland, 23
 bottom-up integration, 513

 strengths, 513
 weaknesses, 513

 boundary class, 424, 434–435
 defi nition, 405
 MSG Foundation case study,

 434–435
 boundary value analysis, 521–522
 bounds checking, 174
 branch coverage, 526–527
 bridge design pattern, 240–241
 Brooks’s Law, 108
 browser, 138, 227, 594
 budget, 82, 270, 284
 bug, 25, 109

 fi rst use in computer context, 25
 Bugzilla, 541, 565
 build tool, 146–147, 565
 business case, 79, 90–92
 business logic tier, 237
 business model, 89, 316–319, 322–325

 defi nition, 316
 MSG Foundation case study,

 322–325
 business-oriented environment,

 539–540
 Byron, Lord Alfred, 254

 C

 C, 147, 174, 184, 196, 202, 213, 214,
252–253, 254–255, 257, 476, 500,
501, 539, 540

 history, 252
 C standard, 254–255
 C/SD. See composite/structured design
 C#, 593
 C++, 10, 25, 138, 140, 143, 147, 166,

174, 184, 196, 202–211, 213, 214,
215, 227, 230, 252–253, 254, 255,
472, 476, 498, 500–501, 507, 509,
515, 516, 531–532, 537, 539, 593

 history, 252–253
 popularity, 500–501

 C++ standard, 255
 C 3 I, 374

 Caesar, Julius, 132
 California Institute of Technology, 378
 capability maturity model (CMM),

 95–101, 120, 148, 540
 capital, 320
 CASE, 124, 134–148, 227, 276,

292, 352, 353, 394–395, 457,
458–459, 490, 535, 537–541,
560, 563, 565

 scope, 137–141
 tools for analysis workfl ow, 458–459
 tools for classical analysis, 394–395
 tools for design workfl ow, 490
 tools for implementation, 138–141
 tools for implementation workfl ow,

 537–541
 tools for management, 292
 tools for object-oriented analysis,

 458–459
 tools for planning and estimating,

 292
 tools for postdelivery maintenance,

 565
 tools for requirements workfl ow,

 353
 tools for test workfl ow, 540–541
 tools for the complete life cycle,

 537–541
 case study. See elevator problem case

study; MSG Foundation case study
 CCC, 565
 challenges

 of the analysis workfl ow, 459
 of classical analysis, 396
 of the design workfl ow, 491–492
 of the implementation workfl ow,

 542
 of object-oriented analysis, 459
 of postdelivery maintenance, 566
 of the requirements workfl ow,

 354–355
 CHAOS Report, 50, 51
 chat room, 596
 chief programmer, 111–117
 chief programmer team, 110–117

 classical, 110–113
 modern, 113–117

 ChocAn. See Chocoholics Anonymous
 Chocoholics Anonymous, 627–629
 choice of programming language, 484,

538–539
 Chrome, 138
 chunk, 130

 CICS, 391
 clandestine common coupling, 194
 Clarke, Edmund M., 598
 class, 82, 202–220, 466, 530–533
 class diagram, 411–412, 419, 422,

428–429, 477–478, 572–577, 587
 elevator problem case study

 411–412, 419, 422, 477–478
 MSG Foundation case study,

 428–429
 class library, 227
 class testing, 530
 classical analysis phase, 7, 22, 218,

360–396
 challenges, 396
 test workfl ow, 393–394

 classical analysis technique, 360–393
 comparison, 392–393

 classical chief programmer team,
 110–113

 impracticality, 113
 classical design phase, 7, 22, 466–476
 classical implementation phase, 7
 classical life cycle, 6–7
 classical maintenance, 9, 10
 classical paradigm, 1–15, 18, 25, 215,

217–220, 289, 347–352, 360–396,
466–476

 strengths, 217–220
 weaknesses, 217–220

 classical phase, 6–7
 classical requirements phase, 7, 218,

347–352
 class-responsibility-collaboration

(CRC) card, 413–414, 417–418
 elevator problem case study, 417–424

 Cleanroom, 529–530
 clickware, 23
 client, 23
 client–server, 236
 closing costs, 322
 cloud technology, 597–598
 CLU, 253
 CMM. See capability maturity model
 CMMI, 95
 Cobble, 593
 COBOL, 184, 193, 230–231, 234,

253, 254, 476, 500, 501, 502,
504, 593

 history, 500
 object-oriented, 500, 501

 COBOL 2002, 254
 COBOL program logic structure, 230

sch76183_s-ind_654-668.indd 655sch76183_s-ind_654-668.indd 655 07/06/10 11:48 AM07/06/10 11:48 AM

656 Subject Index

 COBOL standard, 253–254
 Coca-Cola, 156
 Cocoa, 227
 COCOMO, 278–282, 290, 292

 example, 279–280
 experimentation, 280

 COCOMO II, 281–282, 292
 CODASYL, 254
 code artifact, 83, 516
 code generator, 539–540
 code inspection, 352, 528–530
 code reuse, 232–237, 510
 code review, 85, 113
 code walkthrough, 528–530
 code-and-fi x model, 52–53, 218
 coding. See implementation
 coding fault, 553
 coding standard, 509–510
 coding tool, 138
 cohesion, 186, 187–192, 218, 468–475,

490
 example, 191–192

 coincidental cohesion, 187–188,
192, 509

 collaboration diagram, 436–452, 587
 MSG Foundation case study,

 436–452
 collection, 241
 comments, 506–507
 commercial off-the-shelf software.

 See COTS
 common coupling, 193–195, 198, 203
 Communicating Sequential Processes

(CSP), 392
 communicational cohesion, 190, 469
 compiler, 253–255

 incompatibility, 253–255
 complexity, 20, 527
 component, 83, 226–228, 516

 reusable, 226–228
 component diagram, defi nition, 586
 component-based software engineering,

 237, 594
 component-based technology, 594,

595–596
 composite/structured design (C/SD),

 133, 186–199, 232, 468
 composition, 575–576, 592, 594
 computer crime, 194, 196
 computer security, 598
 computer-aided software engineering.

 See CASE
 concept exploration, 79

 conceptual independence, 20, 133, 202,
232, 560

 concern, 591
 cone of uncertainty, 269
 confi guration, 143
 confi guration control, 143–147, 565

 during maintenance, 145–146
 during postdelivery maintenance, 565

 confi guration-control tool, 143, 145,
538, 565

 consistency checker, 136, 538, 539
 consistent variable names, 504–505
 constraints, 79, 83, 165, 360–361, 488,

489, 536, 537
 deadline, 79, 83, 361
 hard time, 165, 488
 parallel running, 361, 537
 portability, 361
 reliability, 79, 361
 response time, 536
 security, 536
 size of object code, 79
 storage, 536
 timing, 361, 489

 construction phase, 89, 92
 container, 241
 content coupling, 192–193
 contract software development, 23
 contradiction, 81
 control class, 406, 424, 435

 defi nition, 406
 MSG Foundation case study, 435

 control coupling, 195, 198
 core assets, 236
 core concern, 591
 core workfl ows, 78
 corrective maintenance, 8, 142, 528,

553, 554, 555, 558, 560, 563
 defi nition, 8, 553

 correctness, 166
 necessity, 166
 suffi ciency, 166

 correctness proof, 167–174, 363–364
 example, 167–170
 mini case study, 172, 363–364
 strengths, 173–174
 and testing, 171
 weaknesses, 173

 correctness testing, 86, 166–167,
536, 537

 cost, 79, 133, 134, 268–272, 275–282
 external, 271
 internal, 271

 cost estimate, 270–271
 cost estimation, 81–82, 268–272,

275–282
 algorithmic models, 277–282
 bottom-up approach, 277
 expert judgment by analogy,

 276–277
 tracking, 282

 cost–benefi t analysis, 130–131, 173,
257, 364, 533

 example, 130–131
 COTS, 23, 62, 86–87, 228,

405, 535
 coupling, 186, 192–199, 203, 218,

468–475, 490
 example, 197–198
 importance, 198–199

 CppUnit, 540
 CRC card. See class-responsibility-

collaboration card
 creational design pattern, 245
 Cresti, Domenico, 349
 cross-cutting concerns, 591
 cursor, 241
 Cutter Consortium, 5
 CVS, 146
 cyclomatic complexity, 491, 527–528,

541
 strengths, 491
 weaknesses, 491

 D

 dancing pigs problem, 598
 data abstraction, 202, 208, 214
 data access logic tier, 237
 data coupling, 196–197, 198
 data dictionary, 136–137, 368, 394,

490, 538, 539
 data encapsulation, 199–206

 and development, 201–202
 and maintenance, 202–206

 data fl ow (structured systems analysis),
 365

 data fl ow analysis (DFA), 18, 467–473,
490

 mini case study, 468–472
 data fl ow diagram (DFD), 365–367,

394, 467–473
 data immediate access diagram

(DIAD), 370
 data processing, 230–231, 273, 499

sch76183_s-ind_654-668.indd 656sch76183_s-ind_654-668.indd 656 07/06/10 11:48 AM07/06/10 11:48 AM

Subject Index 657

 data store (structured systems analysis),
 365

 data-driven testing, 517
 data-oriented design, 465
 date and time stamp, 147
 DB2, 503
 dbx tool, 141
 debugging, 140–141, 175, 533
 decision tree, 369
 defect, terminology, 25, 155, 554
 defect report, 557–558
 defect tracking, 565
 defect-tracking tool, 565
 defensive programming, 512, 513, 514
 defi ned level, 96
 deliberate reuse, 226
 deliverables, 82, 89, 91, 92
 della Torre, Giovanni Agostino, 552
 della Torre, Niccolò, 552
 Delphi technique, 276
 delta, 145
 democratic team, 109–110, 113–117

 strengths, 110
 weaknesses, 110

 Department of Defense (DoD), 98, 500
 Department of Redundant Information

Department, 278
 deployment diagram, defi nition, 586
 deposit, 320
 derivation, 144
 derived class, 212
 design, 465–492. See also classical

design phase; design workfl ow;
object-oriented design

 of real-time systems, 488–490
 design artifacts, 85
 design by contract, 20
 design document, 7, 563
 design fault, 12–14, 85, 487, 553
 design inspection, 352
 design pattern, 232–249

 abstract factory , 241–244
 adapter , 235, 240
 behavioral, 246
 bridge , 240–241
 creational, 245
 iterator , 241
 strengths, 247
 structural, 245
 weaknesses, 248

 design phase. See classical design
phase

 design reuse, 232–237

 design walkthrough, 487
 design workfl ow, 22, 44–47,

82–83, 477–480, 488–492,
642–646

 challenges, 491–492
 elevator problem case study,

 477–480
 MSG Foundation case study,

 488–490, 642–646
 desk checking, 175
 detailed design, 7, 21, 82, 466,

470–472, 479, 483, 488
 elevator problem case study, 479
 formal techniques, 488
 MSG Foundation case study, 483

 developers, 23
 development, 20
 development-then-maintenance

model, 9
 DFD. See data fl ow diagram
 direct observation, 317
 discriminator, 576
 distributed software, 489
 divide-and-conquer, 132
 documentation, 24, 45, 54–55, 74, 75,

82, 86, 87, 88, 91, 137–138, 258,
291, 536, 537, 554, 558, 559,
563, 564

 checking, 537
 documentation fault, 553
 documentation phase, 17
 documentation standard, 258, 291
 doghouse, 61
 domain, 78, 314, 315–316. See also

application domain
 door (elevator), 381
 DOS/VS, 534
 Doxygen, 565
 driver, 240, 511–513

 defi nition, 511
 DTSTTCPW, 60
 duration, 134, 268–272, 275–282
 duration estimate, 270–271
 duration estimation, 81–82, 268–272,

275–282
 tracking, 282

 dynamic binding, 215–217, 220,
561–562

 dynamic model, 414–417, 430–432
 elevator problem case study

 414–417
 MSG Foundation case study,

 430–432

 dynamic modeling, 406, 414–417,
430–432

 defi nition, 406
 elevator problem case study,

 414–417
 MSG Foundation case study,

 430–432

 E

 early aspects, 593
 early design model, 281
 EBCDIC, 250
 Eclipse, 538, 541
 e-Components, 234
 economics, 5–6
 Edison, Thomas Alva, 25
 effi ciency, 273
 effort, 134
 egoless programming, 109–110
 elaboration phase, 89, 91–92
 element access, 241
 element traversal, 241
 elephant, 108
 elevator button, 378
 elevator controller, 380
 elevator door malfunction, 419
 elevator problem, history, 378
 elevator problem case study, 378–382,

385–387, 388–390, 407–424,
477–480

 class diagram, 411–412, 419, 422,
477–478

 class-responsibility-collaboration
(CRC) card, 417–424

 constraints, 378, 385–387, 389
 detailed design, 479
 dynamic modeling, 414–417
 entity class modeling, 410–414
 fi nite state machine, 378–382
 functional modeling, 407–410
 noun extraction, 411
 object-oriented analysis, 407–424
 object-oriented design, 477–480
 Petri nets, 385–387
 scenarios, 408–410
 statechart, 414–417, 422
 statement of problem, 378, 407
 test workfl ow, 417–424
 use case, 408
 use-case diagram, 408, 419
 Z, 388–390

sch76183_s-ind_654-668.indd 657sch76183_s-ind_654-668.indd 657 07/06/10 11:48 AM07/06/10 11:48 AM

658 Subject Index

 e-mail, 138, 596
 embedded software, 165
 Emeraude, 540
 Emerson, E. Allen, 598
 enable (Petri net), 384
 encapsulation, 20, 133, 199–206,

232, 560
 end-user programming, 503
 enhancement, 8, 560
 Enterprise JavaBeans, 234
 entity class, defi nition, 405
 entity class modeling, 406, 410–414,

425–435
 defi nition, 406
 elevator problem case study,

 410–414
 MSG Foundation case study,

 425–435
 entity-relationship diagram,

 374–376
 entity-relationship model (ERM),

 374–376, 394, 410
 environment, 137, 538–540. See also

CASE
 potential problems, 540

 equivalence class, defi nition, 521
 equivalence testing, 521–522
 error, terminology, 25, 155
 escrow account, 321
 estimation. See cost estimation;

duration estimation; size
estimation

 ethics, 26–27
 European Space Agency, 231–232
 European Strategic Programme

for Research in Information
Technology (ESPRIT), 540

 event, 431
 event (fi nite state machine), 377
 event (UML), 581
 evolution, 552
 evolution-tree model, 40–42, 43, 47–48
 Excel, 292
 exception, 231
 exception scenario, 408
 executable load image, 147
 execution-based testing, 155, 162–167,

176, 516–530
 who should perform it, 175–176

 experimentation, 161, 271, 274, 280,
528–529

 on COCOMO, 280
 on function points, 274

 on inspection, 161
 on programmer performance, 271
 on unit testing, 528–529

 extend relationship, 578
 extended fi nite state machine, 377–382
 external cost, 271
 extreme programming, 59–60, 117–118

 F

 Facebook, 596
 failure, terminology, 25, 155
 fan-in, 491
 fan-out, 491
 fault, terminology, 25, 155
 fault density, 162
 fault detection, 157–164, 166–167,

529–533
 fault detection effi ciency, 162
 fault detection rate, 162
 fault distribution, 528, 534
 fault isolation, 190, 511–513
 fault statistics, 160–161, 289, 541, 566
 faults, maximum permitted number, 535
 feature creep, 43
 FFP metric, 273, 275

 strengths, 273
 weaknesses, 273, 275

 fi eld, 26
 fi nite state machine (FSM), 374,

376–382, 414
 defi nition, 376–377
 elevator problem case study, 378–382

 Firefox Web browser, 23, 56, 58
 fi rst-generation language, 501, 539
 Flickr, 596
 Flintstock Life Insurance Company

(FLIC) mini case study, 238–239
 fl oating-point standard, 252
 fl oor button, 378
 FLOW, 141
 fl owchart, 55, 130, 563
 fl owchart cohesion, 190
 Focus, 501
 follow-up, 160
 fork, 584, 585

 defi nition, 584
 formal method, 539
 formal specifi cation, 54, 363, 376–392
 formal technique, 376–392, 414,

488, 539
 formatter, 138

 forms, 317
 Fortran, 253, 254, 476

 spelling, 254
 Fortran 2003, 253, 254
 Fortran standard, 254
 forward engineering, 563
 fourth-generation language (4GL), 272,

349, 500, 501–503, 539
 potential danger, 503

 FoxBASE, 529
 fragile base class problem, 219, 562
 framework, 234, 236
 freeze, 145
 front-end CASE tool, 135, 490
 function points, 273–275, 290

 experimentation, 274
 strengths, 275
 weaknesses, 275

 functional analysis, 523
 functional cohesion, 187, 190–191,

232, 469
 functional modeling, 407–410, 425–427

 defi nition, 406
 elevator problem case study, 407–410
 MSG Foundation case study,

 425–427
 functional module, 230
 functional requirement, 486

 defi nition, 320
 functional testing, 517, 522–525

 G

 Gang of Four, 235
 general design, 466
 generalization, 213, 319, 576
 Generic Coverage Tool, 526
 Gist, 392
 given set, 388
 glass-box testing, origin of term, 517
 glass-box unit testing, 525–530
 glossary, 315, 322

 MSG Foundation case study, 322
 God class, 419
 good programming practice, 203,

504–509
 Google Docs, 594, 595
 Gosling, James, 252, 253
 graphical user interface (GUI), 219,

233, 258, 350, 535, 539
 graphical user interface (GUI)

generator, 539

sch76183_s-ind_654-668.indd 658sch76183_s-ind_654-668.indd 658 07/06/10 11:48 AM07/06/10 11:48 AM

Subject Index 659

 Gregorian calendar, 413
 GTE, 12
 guard, 580–583

 defi nition, 580
 GUI, 431
 guillemet, 578

 H

 hardware, 250–251, 371
 incompatibility, 250–251

 Hayakawa, S. I., 314
 Hewlett-Packard, 11, 228, 237
 hierarchy, 111
 high-level design, 466
 high-level language, 256, 257, 501
 history

 of C, 252
 of C++, 252–253
 of COBOL, 500
 of elevator problem, 378
 of Java, 252–253
 of reuse, 227

 Hopper, Grace Murray, 25, 500
 horizontal schema defi nition, 389
 hot spot, 234
 How to Perform

 equivalence testing, 522
 object-oriented analysis, 458
 requirements workfl ow, 355
 sandwich integration, 515
 structured systems analysis, 371
 transaction analysis, 474

 HTML, 349, 352
 Hughes Aircraft, 99
 human factors, 271, 349–351
 human–computer interface (HCI),

 349–351
 Hungarian Naming Conventions, 505
 Hypertext Markup Language. See

HTML

 I

 IBM, 12, 13, 112, 161, 219,
251, 253, 257, 391, 502,
503, 540

 IBM Rational ClearCase, 565
 IBM Rational ClearQuest, 565
 IBM Rational Functional Tester, 541
 IBM Rational Purify, 541

 IBM Rational Rose, 353, 459, 490,
539, 565

 IBM Websphere, 593
 IEEE 1028, 159, 160
 IEEE 1058, 284
 IEEE 610, 12, 155
 IEEE/EIA 12207, 101
 illuminated (button), 379
 implementation, 138–141, 498–542.

 See also classical implementation
phase; implementation workfl ow

 implementation artifacts, 85–87
 implementation phase. See classical

implementation phase
 implementation testing. See unit testing
 implementation workfl ow, 22, 44–47,

83–84, 516, 647, 648
 challenges, 542
 MSG Foundation case study,

 647, 648
 inception phase, 89–91
 include relationship, 345, 578
 incompleteness, 81
 incrementation, 43–52, 429

 management, 51–52
 infeasible path, 527
 informal specifi cation, 362–364

 example, 362–363
 information hiding, 19, 20, 133, 184,

209–211, 232, 240, 530–531,
559, 560

 informational cohesion, 187, 191,
201, 232

 inheritance, 211–220, 319, 411, 530,
531–532, 560–561

 inhibitor arc, 385
 initial level, 95
 initial requirements, 319–320, 326–327
 input (fi nite state machine), 377
 input function (Petri net), 383
 input specifi cation, 166, 168–173
 input/output-driven testing, 517
 inspection, 159–162, 289, 393, 487,

528–530
 code, 528–530
 comparison with walkthrough,

 161–162
 experimentation, 161
 possible danger, 161
 strength, 162
 transaction-driven, 487
 weakness, 162

 inspection rate, 162

 instance variable, 25
 instant messaging, 596
 insurance premium, 321
 integrated environment, 290, 538–539
 integration, 7, 85–87, 510–516,

535–537
 of object-oriented products, 514

 integration testing, 86, 92, 510–514,
535–537, 563

 interaction diagram, 436–452, 587
 MSG Foundation case study,

 436–452
 interactive source-level debugger, 140
 interconnection diagram, 511
 interface, 188
 internal cost, 271
 internal software development, 23
 International Organization for

Standardization (ISO), 10, 98
 interview, 316–317, 353
 IPD–CMM, 95
 isA relationship, 213
 ISO. See International Organization for

Standardization
 ISO 9000-3, 98
 ISO 9001, 98
 ISO/IEC 12207, 101
 ISO/IEC 14882, 255
 ISO/IEC 1539-1, 253, 254
 ISO/IEC 15504 (SPICE), 99
 ISO/IEC 1989, 254
 ISO/IEC 8652, 255, 476
 iteration, 43, 48–52, 429, 476

 management, 51–52
 iterative-and-incremental life-cycle

model, 43–52, 76, 338, 406, 587
 strengths, 49–50

 iterator, 241
 iterator design pattern, 241

 J

 Jackpot Source Code Metrics, 541
 Jackson system development (JSD),

 18, 538
 Java, 10, 140, 143, 174, 184, 211, 227,

252–253, 254, 255, 352, 500, 501,
504, 507, 509, 515, 516, 537, 539

 history, 252–253
 origin of name, 252

 Java Abstract Windowing Toolkit, 233
 Java interpreter, 15

sch76183_s-ind_654-668.indd 659sch76183_s-ind_654-668.indd 659 07/06/10 11:48 AM07/06/10 11:48 AM

660 Subject Index

 Java loader, 15
 JavaBeans, 234
 JBoss, 593
 JBuilder, 138
 job control language (JCL), 111, 251
 Johannesburg, 504
 join, 584, 585

 defi nition, 584
 Julian Day, 413
 JUnit, 540
 Just in Case You Wanted to Know, 3, 4,

8, 10, 21, 24, 25, 38, 51, 75, 77,
93, 101, 109, 132, 135, 136, 156,
165, 174, 184, 196, 203, 210, 226,
229, 235, 236, 252–253, 254, 278,
279, 314, 321, 349, 351, 378, 388,
405, 410, 413, 419, 500, 502, 504,
505, 514, 517, 535, 539, 552, 556,
575, 591, 596

 K

 kangaroos, 229
 KDSI. See lines of code
 key process area (KPA), 97–98, 119
 Kleene star, 575, 580
 Kleene, Stephen, 575
 KLOC. See lines of code
 Knuth, Donald E., 196
 Kokomo, Indiana, 278

 L

 learning curve, 219
 legacy system, 10, 405, 563
 levels of abstraction, 539, 564
 librarian, 112
 library, 233–234
 life cycle, 6, 12–14, 21
 life-cycle model, 6, 37–67

 agile processes, 59–62
 code-and-fi x, 52–53
 comparison, 66–67
 evolution-tree, 40–42
 extreme programming, 59–60
 iterative-and-incremental, 48–52
 open source, 56–59
 rapid prototyping, 55–56
 spiral, 62–66
 synchronize-and-stabilize, 62
 waterfall, 41

 lift problem, 378
 Lilio, Luigi, 413
 Lincoln Center, 502
 linear path sequences, 526
 line-editing problem. See text-

processing problem
 lines of code (LOC, KLOC, KDSI),

 133, 272, 274, 278, 527, 528, 541
 LinkedIn, 596
 lint , 15, 254, 541
 Linus’s Law, 23, 24
 Linux, 23, 49, 244, 258
 LISP, 213, 253, 272, 349, 499, 504
 LOC. See lines of code
 logic artifact, 511–514

 defi nition, 511
 logical cohesion, 188, 191, 195, 474
 logical data fl ow, 365
 logical design, 466
 logic-driven testing, 517
 lookahead, 129
 loop invariant, 169–171, 172–173
 Lotto, Lorenzo, 552
 Lotus 1-2-3, 292
 lowerCASE tool, 136, 490
 low-level design, 466

 M

 Mac OS, 244
 Mac OS X, 227
 Machiavelli, Niccolò, 132
 Macintosh, 351, 538
 MacProject, 292
 maintainability, 553, 559

 techniques, 559
 maintenance, 6–12, 18, 20, 75, 87, 142,

188, 190, 197, 219, 528, 551–566
 adaptive maintenance, 8, 142, 553,

554–555, 558, 563
 classical, 9
 corrective maintenance, 8, 142, 528,

553, 554, 555, 558, 560, 563
 modern, 10
 operational defi nition, 10
 perfective maintenance, 8, 142, 553,

554–555, 558, 563
 postdelivery, 75, 87, 551–566
 temporal defi nition, 9

 maintenance programmer, 505–506,
553–559

 maintenance team, 145–146

 maintenance testing, 87
 maintenance tool, 565
 make tool, 147
 managed level, 96
 management, 75, 158–159, 282–291,

515–516, 533, 557–560. See also
software project management plan

 of integration, 515–516
 of postdelivery maintenance,

 557–560
 of unit testing, 533
 of walkthrough, 158–159

 managerial independence, 156
 Manifesto for Agile Software

Development , 60, 61
 manual. See documentation
 manual pages, 138
 marked Petri net, 384
 marking, defi nition, 384
 maturity, 95
 maturity level, 95–101, 120
 MDA. See model-driven architecture
 mean time between failures,

 133, 164
 mean time to repair, 164
 meaningful variable names, 504–505
 MEASL. See million equivalent

assembler source lines
 media site, 596
 member, 26
 member function, 26
 menu, 431
 message, 19, 218, 514, 560
 method, 19, 531, 539

 multiple meanings, 539
 method-based environment, 539
 methodology, correct meaning, 24
 metrics, 133–134, 162, 187–199,

270–282, 353–354, 395, 459,
490–491, 527–528, 541, 566

 for classical analysis, 395
 cohesion, 187–192
 complexity, 491, 527–528
 cost, 134, 270–282
 coupling, 192–199
 cyclomatic complexity, 527–528
 for design, 490–491
 duration, 134, 270–272, 275–282
 effort, 134, 395
 for implementation, 527–528, 541
 for inspections, 162
 object-oriented, 491
 for object-oriented analysis, 459

sch76183_s-ind_654-668.indd 660sch76183_s-ind_654-668.indd 660 07/06/10 11:48 AM07/06/10 11:48 AM

Subject Index 661

 for planning, 270–282
 for postdelivery maintenance, 566
 quality, 134, 395, 459, 490
 for requirements, 353–354
 size, 134, 272–275, 395, 459, 490

 Microsoft, 23, 62, 117, 505, 541
 Microsoft Project, 292
 Microsoft Word, 594
 milestone, 82, 284
 millennium bug, 405
 Miller’s Law, 44, 78, 93, 124–125
 million equivalent assembler source

lines (MEASL), 100
 Milstar satellite, 93
 mini case study. See correctness

proof mini case study; data
fl ow analysis mini case study;
Flintstock Life Insurance
Company mini case study;
postdelivery maintenance mini
case study; Sally’s Software
Store mini case study; stepwise
refi nement mini case study; Teal
Tractors mini case study; Winburg
mini case study; word counting
mini case study

 mistake, terminology, 25, 155
 mitigate risk. See risk mitigation
 Mk II function points, 275
 modal logic, 172, 173
 model (UML), 318
 model checking, 174, 598–599
 model, life cycle. See life-cycle model
 model, UML, 76
 model-driven architecture (MDA), 259,

593–594
 model-driven technology, 593–594
 model-view-controller (MVC)

architecture pattern, 133, 237
 modern chief programmer team,

 113–117
 modern maintenance, 10
 modular design, 466
 module, 7, 82, 184–220, 232, 466

 context, 186
 defi nition, 184
 interface, 82
 logic, 186
 operation, 186

 money, 284
 mortgage, 320–322

 pronunciation, 321
 Motif, 258

 Motorola, 100
 moving target problem, 43, 559–560
 Mozart, Wolfgang Amadeus, 226
 MSG Foundation case study, 320–347,

372–373, 425–457, 476, 481–483,
484, 486, 516, 523–525, 537, 566,
632–649

 actors, 323–325
 algorithm, 328–329
 analysis workfl ow, 425–455, 636
 black-box test cases, 523–525
 boundary classes, 434–435
 business model, 322–325
 C++ implementation, 647
 class diagram, 428–429
 class extraction, 425–435
 classical analysis phase, 372–373
 collaboration diagrams, 435–452
 control classes, 435
 design workfl ow, 481–483,

642–646
 detailed design, 483
 dynamic model, 430–432
 entity classes, 425–435
 functional model, 425–427
 glossary, 322
 implementation workfl ow, 516,

647, 648
 initial business model, 322–325
 initial class diagram, 428–429
 initial dynamic model, 430–432
 initial functional model, 425–427
 initial glossary, 322
 initial requirements, 326–327
 initial understanding of the domain,

 320–322
 interaction diagrams, 435–452
 Java implementation, 648
 noun extraction, 428
 object-oriented analysis (OOA),

 425–455
 object-oriented design, 481–483
 postdelivery maintenance, 566
 requirements workfl ow, 320–347,

632
 scenarios, 435–452
 sequence diagrams, 435–452
 software project management plan,

 637–641
 statechart, 430–432
 structured systems analysis, 372–373,

633–635
 test workfl ow, 456, 537, 649

 understanding of the domain,
 320–322

 use cases, 425–430, 435–452
 use-case diagram, 330–345, 429
 use-case realizations, 435–454

 multiplicity, 574–575
 multiset, 383
 mutator, 482
 MySpace, 596

 N

 NAG, 227
 NASA, 14
 Natural, 501
 natural language, 362
 Naur, Peter, 171, 363–364
 navigation triangle, 214, 576
 negotiation, 354
 nested if statement, 507–509
 networking site, 596
 New York Times . See The New York

Times
 NIST 151, 258
 No Silver Bullet , 101, 492
 nominal effort, 278
 non-execution-based testing, 155,

157–162, 167–174, 516,
528–530

 nonfunctional requirement, 320, 486
 nonprocedural language, 502, 503
 normal scenario, 408
 not invented here (NIH) syndrome,

 228
 note, 213, 577
 noun extraction, 411, 428

 elevator problem case study, 411
 MSG Foundation case study, 428

 numerical software, incompatibility,
 251

 O

 object, 18–22, 191, 211–220, 232, 514,
530–533, 560

 advantages, 214
 object code, 146–147
 Object Management Group (OMG),

 77, 571
 object points, 281
 object testing, 530–533

sch76183_s-ind_654-668.indd 661sch76183_s-ind_654-668.indd 661 07/06/10 11:48 AM07/06/10 11:48 AM

662 Subject Index

 object-oriented analysis (OOA), 22,
404–459, 466. See also analysis
workfl ow

 elevator problem case study
 407–424

 MSG Foundation case study,
 425–455

 object-oriented architecture, 236
 object-oriented CASE tool, 458–459,

539
 object-oriented COBOL, 254
 object-oriented design (OOD), 20,

410, 466, 476–483, 490. See also
design workfl ow

 elevator problem case study, 477–480
 MSG Foundation case study,

 481–483
 object-oriented Fortran, 254
 object-oriented language, 476
 object-oriented metrics, 491
 object-oriented paradigm, 18–22, 25,

187, 202–220, 232, 277, 289–290,
314–346, 404–459, 500–501, 514,
516, 530–533, 539, 560–562

 strengths, 22, 217–220
 weaknesses, 22, 217–220,

560–562
 object-oriented programming language,

 500–501, 514, 515
 hybrid, 501, 515
 pure, 501, 515

 Objectory, 77
 OMG. See Object Management Group
 OMT, 77
 one-dimensional life-cycle model, 92.

 See also waterfall model
 online documentation, 137–138, 141
 online interface checker, 139, 141
 open-ended design, 83
 open-source CASE tool, 146, 147, 353,

459, 490, 538, 540, 541, 565
 Ant, 147
 ArgoUML, 353, 459, 490
 Bugzilla, 541, 565
 CppUnit, 540
 CVS, 146, 538, 565
 Doxygen, 565
 Eclipse, 541
 JUnit, 540
 Subversion, 146, 538, 565

 open-source life-cycle model, 56–59
 open-source software, 23, 147

 open-source software development,
 56–59

 operating system, 257
 incompatibility, 251, 258

 operating system front end, 139–140,
141

 operation, 18–22
 operational artifact, 511–514

 defi nition, 511
 operation-oriented design, 465,

466–476
 operations, 389
 opportunistic reuse, 226
 optimization, 196
 optimizing level, 96
 Oracle, 503
 Oracle Developer Suite, 540
 OS/370, 534
 OS/VS2, 188
 output function (Petri net), 383
 output specifi cation, 166, 168–173
 overview, 159

 P

 P & I. See principal and interest
 package, 132, 486, 585

 defi nition, 585
 pair programming, 59, 61, 118
 Palm Pilot, 316
 paradigm, correct meaning, 24
 parameter, 507
 Parasoft, 541
 part–whole relationship, 573
 Pascal (language), 184, 254, 501
 Pascal, Blaise, 254
 path coverage, 520, 526–527
 path-oriented testing, 517
 Patriot missile, 3
 pattern, 232–249

 architecture, 236–237
 pattern language for architecture,

 235
 pcc compiler front end, 254
 P–CMM, 95, 120
 PCTE. See portable common tool

environment
 PDL. See pseudocode
 people capability maturity model. See

P–CMM
 perfective maintenance, 8, 142, 553,

554–555, 558, 563

 performance appraisal, 113–114, 159,
161

 performance testing, 165–166, 536, 537
 Perl, 349
 personal profi le site, 596
 person-month, defi nition, 133
 Petri net, 382–387, 394, 538

 defi nition, 383
 elevator problem case study, 385–387

 phase. See also classical analysis phase;
classical design phase; classical
implementation phase; classical
requirements phase; construction
phase; elaboration phase;
inception phase; transition phase

 classical, 6–7, 16–17
 Phillip II of Macedon, 132
 physical design, 466
 physical independence, 20, 133, 232,

560
 PIN, 278
 pipes and fi lters, 236, 538
 PL/I, 112–113, 253
 place (Petri net), 383
 planning, 16, 45, 91, 98, 268–291
 planning phase, 16
 platform constraint, 320
 platform-independent model (PIM),

 593
 platform-specifi c model (PSM), 593
 point and click, 350
 point of highest abstraction of input,

 467–473
 point of highest abstraction of output,

 467–473
 pointcut, 591
 points, 322
 polymorphism, 215–217, 220,

561–562
 portability, 250–259, 484, 486, 539

 defi nition, 250
 description, 226
 impediments, 256, 259
 strengths, 256, 259

 portable application software, 257–258
 portable common tool environment

(PCTE), 540
 portable compiler, 255
 portable data, 258–259
 portable database, 258
 portable numerical software, 251
 portable operating system, 257

sch76183_s-ind_654-668.indd 662sch76183_s-ind_654-668.indd 662 07/06/10 11:48 AM07/06/10 11:48 AM

Subject Index 663

 portable operating system interface for
computer environments (POSIX),
 258

 portable system software, 257
 POSIX. See portable operating

system interface for computer
environments

 postarchitecture model, 281
 postcondition, 390
 postdelivery maintenance, 6–12, 20, 75,

87, 145–146, 249–250, 551–566.
 See also maintenance

 attitude toward, 556
 challenges, 566
 diffi culty, 554–555
 management of, 557–560
 mini case study, 556–557
 of object-oriented software, 560–562
 repeated, 559–560
 scope, 552
 skills, 563
 thanklessness, 555

 postdelivery maintenance testing,
 564–565

 PowerBuilder, 503
 pragma statement, 232
 precondition, 390
 predicate (fi nite state machine), 377
 predicate calculus, 172
 PREfast, 541
 PREfi x, 541
 preparation, 159
 presentation logic tier, 237
 pretty printer, 138, 563, 564
 price, 271
 principal, 320
 principal and interest (P & I), 321
 private visibility modifi er, 210
 private workspace, 145, 559
 procedural abstraction, 202, 208
 procedural cohesion, 189
 procedural language, 502
 process. See software process
 process (structured systems analysis),

 365
 process improvement, 94–101
 process integration, 538–539
 process maturity level, 95–101
 process metric, 133
 product, terminology, 24
 product line, 236–237
 product metric, 133

 product testing, 86, 92, 289, 535–536,
563

 productivity, 147–148, 231, 232, 272,
273, 274, 502

 program, 24
 program description language. See

pseudocode (PDL)
 programming language, choice of,

 538–539
 programming languages. See specifi c

languages
 programming secretary, 111, 112, 113
 programming team, 15, 470
 programming workbench, 141
 programming-in-the-large, 138
 programming-in-the-many, 138,

139, 498
 programming-in-the-small, 138
 project function, 283
 Prolog, 349
 prologue comments, 506–507, 558
 proof of correctness. See correctness

proof
 proof-of-concept prototype, 45, 63, 91
 prototype, 62–64, 91, 361. See also

rapid prototype
 pseudocode (PDL), 130, 471, 492
 PSL/PSA, 373
 public tool infrastructure, 540
 public visibility modifi er, 193,

208, 210
 pun, 136
 PureCoverage, 526
 PVCS, 146, 538

 Q

 QARun, 535
 quality. See software quality

 terminology, 156
 quality requirement, 320
 questionnaire, 317

 R

 rapid prototype, 55–56, 63, 348–349,
351–352

 purpose, 348
 reuse of, 351–352

 rapid-prototyping model, 55–56,
348–349, 351–352

 Rational, 77
 Rational Unifi ed Process, 77
 Rayleigh distribution, 282
 Raytheon, 99, 230–231, 234
 rcs tool, 146, 565
 readability, 505, 507
 reader, 160
 real-time software, 93, 166
 real-time system, 11, 163, 166, 488–490

 diffi culties, 489
 real-time system design, 488–490

 extension of non-real-time
techniques, 490

 recorder, 160
 reengineering, 563
 refactoring, 60, 564
 refi ne, 319, 434, 457

 defi nition, 316
 regression fault, 20, 43, 53, 197, 218,

554, 560, 566
 regression testing, 54, 87, 176, 554,

558, 559, 564–565
 reliability, 164, 320, 486
 reliability analysis, 533
 reliability testing, 164
 repeatable level, 96
 report generator, 136, 457, 490
 requirements, 313–355
 requirements analysis, 315, 348
 requirements artifacts, 84
 requirements capture, 315
 requirements elicitation, 315, 316–317,

348
 requirements engineering, 315
 requirements fault, 14
 requirements management, 98
 requirements workfl ow, 44–47, 78–80,

314–347, 353–355, 632
 actors, 318–319
 business model, 316–319
 challenges, 354–355
 intial requirements, 319–320
 MSG Foundation case study, 632
 understanding the domain, 315–316
 use cases, 318–319

 RequisitePro, 137
 resources, 282, 283
 response time, 320, 371
 responsibility-driven design, 20, 21,

408, 477
 restructuring, 564
 retirement, 8, 88, 176

sch76183_s-ind_654-668.indd 663sch76183_s-ind_654-668.indd 663 07/06/10 11:48 AM07/06/10 11:48 AM

664 Subject Index

 return, 580
 reusable component, 226–228
 reuse, 21, 188, 189, 190, 193, 194, 218,

226–250, 259, 290, 475, 484, 510,
512, 514

 case studies, 229–232
 code, 232–237, 510
 description, 226
 design, 232–237
 history, 227
 impediments, 228, 259
 and postdelivery maintenance,

 249–250
 savings, 290
 statistics, 231
 strengths, 259
 theoretical upper limit, 227

 reverse engineering, 563–564
 review, 84, 85. See also walkthrough;

inspection
 revision, 141–142
 rework, 160
 Rhapsody, 382, 539
 risk, 50, 62–66, 87, 90
 risk analysis, 499
 risk mitigation, 63
 Ritchie, Dennis, 252
 robustness, 49, 86, 90, 165, 486, 536
 robustness testing, 86, 165, 537
 role, 457
 Romeo and Juliet , 226
 Romney, George, 314

 S

 SADT, 374
 Salesforce.com, 596
 Sallie Mae, 3
 Sally’s Software Shop mini case study,

 364–371
 San Francisco (framework), 234
 sandwich integration, 513–514

 origin of term, 514
 SBC Communications, 253
 Scaliger, Joseph, 413
 Scaliger, Julius Caesar, 413
 sccs tool, 146, 565
 scenario, 406, 408–410, 435–452

 elevator problem case study,
 408–410

 MSG Foundation case study,
 435–452

 scheduling tool, 292
 schema, 388
 Schubert, Franz, 226
 scientifi c software, 233
 scratch, 38
 screen generator, 136–137, 457, 490
 Scud missile, 3
 SDRTS, 490
 second-generation language, 501, 539
 secretary, 112
 SEI. See Software Engineering Institute
 self-call, 580
 self-documenting code, 505
 Semantic Web, 598
 semiformal specifi cation, 364–375, 404
 semiformal technique, 414
 separate implementation and

integration, 510–511
 separation of concerns, 20, 132–133,

186, 191, 197, 201, 209, 591
 sequence diagram, 435–452, 587

 MSG Foundation case study,
 435–452

 service, 595
 service providers, 595
 service-oriented technology, 594–596
 Shakespeare, William, 226
 Shoo-Bug, 109
 shrink-wrapped software, 23
 Sifakis, Joseph, 598
 SilkTest, 535, 541
 Simula 67 (language), 184, 211
 simulator, 164
 size, 272–275
 size estimation, 272–275
 sizing, hardware, 371
 SLAM, 541
 Smalltalk, 211, 227, 349, 476, 498, 500
 social computing, 596
 software, 24
 software architecture, 236–237
 software crisis, 4–5

 fi nancial implications, 4–5
 software depression, 5
 software development effort

multipliers, 278
 software development environment. See

CASE
 software engineering

 defi nition, 2
 economic aspects, 5–6
 historical aspects, 4–5
 maintenance aspects, 6–12

 requirements, analysis and design
aspects, 12–14

 scope of, 1–15
 team development aspects, 15

 Software Engineering Institute (SEI),
 95–98

 software engineering resources,
 630–631

 software process, 5, 74–101
 software process improvement, 94–101

 costs and benefi ts, 99–101
 software product line, 236–237
 software production, terminology, 24
 software project management plan

(SPMP), 7, 16, 81–82, 282–292,
393, 516, 536, 637–641

 components, 282–284
 IEEE standard, 282, 286–288
 MSG Foundation case study,

 637–641
 terminology, 282–284
 testing, 292

 software quality, 17, 133, 134,
155–157, 173

 software quality assurance (SQA), 62,
98, 156–157, 559

 software quality assurance (SQA)
group, 17, 53, 81, 84–85, 141,
158, 160, 175, 289, 506, 509,
535–537, 558

 software repair, 8
 Software through Pictures, 137, 353,

395, 490, 539
 software tool. See CASE; tool
 software update, 8
 solution strategy, 361–362
 sort (in typesetting), 136
 source code, 146–147, 554
 source computer, 250
 source or destination of data (structured

systems analysis), 365
 source-level debugger, 140–141
 SourceSafe, 146, 538
 Soyuz TMA-1 spaceship, 93
 space shuttle, 93
 specialization, 111, 213, 319
 specifi cation document, 7, 54, 80–81,

84, 166–167, 173, 360–361,
456–457, 490, 563

 ambiguity, 81, 362
 contradiction, 81
 correctness, 166–167, 173
 feasibility, 84

sch76183_s-ind_654-668.indd 664sch76183_s-ind_654-668.indd 664 07/06/10 11:48 AM07/06/10 11:48 AM

Subject Index 665

 incompleteness, 81
 MSG Foundation case study,

 456–457
 specifi cation inspection, 393
 specifi cation phase. See classical

analysis phase
 specifi cation walkthrough, 393
 SPICE. See ISO/IEC 15504
 spiral model, 62–66

 strengths, 64–65, 66
 weaknesses, 66

 spreadsheet, 138
 SPSS, 227
 SQA. See software quality assurance
 SREM, 374, 393, 395
 stabilize, 62
 stamp coupling, 195–196, 198
 Standish Group, 4, 50, 51
 stand-up meeting, 60
 state (attribute value), 418
 state (fi nite state machine), 377
 state defi nition (Z), 388
 state transition diagram (STD), 376,

379–381, 414
 state variable, 418, 531
 statechart, 414–417, 422, 430–432,

539, 581–583, 587
 elevator problem case study,

 414–417, 422
 MSG Foundation case study,

 430–432
 statement coverage, 526–527
 statistical-based testing, 533
 stepwise refi nement, 44, 124–130,

201–202, 366–370, 468, 488
 mini case study, 125–130

 stereotype, 577–578
 defi nition, 406

 stories, 59
 strength, 186
 stress testing, 536
 Stroustrup, Bjarne, 253
 structural analysis, 374
 structural design pattern, 245
 structural testing, 517, 526
 structure chart, 468
 structure editor, 138–141
 structured interview, defi nition, 316
 structured paradigm, 501, 531. See also

classical paradigm
 structured programming, 18, 191, 193
 structured systems analysis, 18, 364–

373, 404, 467, 490, 538, 633–635

 MSG Foundation case study,
 372–373, 633–635

 Sally’s Software Shop mini case
study, 364–371

 structured testing, 18, 528
 stub, 510–514

 defi nition, 510
 subclass, 212
 subsystem, 132, 486
 Sun Microsystems, 252, 255
 Sun ONE Studio, 141
 superprogrammer, 113
 superstate, 583
 SW–CMM, 95–98
 swimlane, defi nition, 585
 synchronization, 489
 synchronize, 62
 synchronize-and-stabilize model,

 62, 117
 synchronize-and-stabilize team, 117
 system, terminology, 24
 System Architect, 353, 395, 413, 490
 systematic reuse, 226
 systematic testing, 175
 systems analysis, 218

 defi nition, 24
 systems design, defi nition, 24
 systems engineering, 135

 T

 Tacitus, Publius Cornelius, 132
 target computer, 250
 task, 59, 118, 283
 Teal Tractors mini case study, 42–43
 team, 107–120
 team leader, 114–117
 team manager, 114–117
 team organization, 107–120

 communication channels, 108
 comparison, 120
 managerial aspects, 108, 113–118

 technical complexity factor, 274
 technique, 25
 technique-based environment, 538,

539, 540
 technology, 184
 Temperate Fruit Committee, 556–557
 temporal cohesion, 189
 temporal logic, 172
 terminology, 23–26
 test, 594

 test case, 176
 successful, 175

 test case selection, 517–527
 test driven development, 59
 test plan, 288–289, 531
 test workfl ow, 44–47, 84–87, 91,

393–394, 417–424, 456, 516–528,
535–537, 540–541, 559, 564–565,
649

 during analysis, 456
 analysis artifacts, 84–85
 during classical analysis, 393–394
 design artifacts, 85
 elevator problem case study,

 417–424
 graphical user interface (GUI), 535
 during implementation, 516–528,

535–537
 implementation artifacts, 85–87
 during integration, 535–537
 MSG Foundation case study, 456,

537, 649
 during postdelivery maintenance,

 559, 564–565
 requirements artifacts, 84

 testing, 16–17, 45, 62, 75, 84–85,
86–87, 91, 154–176, 510–514,
516–528, 530–533. See also test
workfl ow

 classes, 530
 destructiveness, 175
 execution-based, 155, 162–167, 176
 during implementation, 516–528
 during integration, 510–514
 non-execution-based, 155, 157–162,

167–174
 objects, 530–533
 when it stops, 176

 testing fault rate, 530
 testing phase, 16–17
 testing to code, 517, 518–520

 feasibility, 518–520
 reliability, 519, 520
 validity, 520

 testing to specifi cations, 517, 518–520
 feasibility, 518–520

 text-processing problem, 171–172,
363–364, 391

 The Cloud, 597
 The New York Times , 112–113
 theorem prover, 172–173
 Therac-25, 3
 third-generation language, 501, 539

sch76183_s-ind_654-668.indd 665sch76183_s-ind_654-668.indd 665 07/06/10 11:48 AM07/06/10 11:48 AM

666 Subject Index

 Three Amigos! , 77
 three-tier architecture, 133, 237
 time. See duration
 timeboxing, 60
 timeout, 380
 Together, 353, 459, 490, 565
 token (Petri net), 384
 tool, 135–137, 538. See also CASE
 tool integration, 538
 toolkit, 233–234, 236
 top-down integration, 511–512

 strengths, 511–512
 weaknesses, 512

 Torvalds’ Truism, 24
 Torvalds, Linus, 23, 24
 traceability, 84, 85, 289
 tracing, 140
 trade-offs, 486
 traditional paradigm. See classical

paradigm
 training, 290–291
 transaction, defi nition, 473
 transaction analysis, 473–475, 490
 transaction-driven inspection, 487
 transition, 431
 transition (Petri net), 383
 transition (UML), 582

 defi nition, 581
 transition function (fi nite state

machine), 377
 transition phase, 89
 transition rule (fi nite state machine),

 377
 TRW, 12
 two-dimensional life-cycle model,

 93–94. See also evolution-tree
model; iterative-and-incremental
life-cycle model

 typesetting, 136

 U

 U.S. Air Force, 98
 UML, 76, 77–78, 212–217, 315,

405–457, 571–587
 aggregation, 213
 association, 214
 inheritance, 213
 navigation triangle, 214
 not a methodology, 571–572
 note, 213

 unadjusted function points, 273

 underscore, 18 n
 understanding the domain, 315–316,

320–322
 MSG Foundation case study,

 320–322
 Unifi ed Modeling Language. See

UML
 Unifi ed Process, 76–94, 155, 284,

314–346, 404–406, 456–457, 516,
539, 552, 553, 572, 587

 analysis workfl ow, 404–406,
456–457

 construction phase, 92
 elaboration phase, 91–92
 history, 77
 implementation workfl ow, 516
 inception phase, 89–91
 requirements workfl ow, 314–346

 unit testing, 7, 85, 92, 516, 528–529,
533, 535, 516–535

 comparison, 528–529
 experimentation, 528–529
 statistical techniques, 533

 UNIX, 49, 138, 140, 146, 147, 236,
254, 257, 258, 468, 538, 540, 565

 UNIX Programmer’s Workbench, 538
 unstructured interview, defi nition, 316
 upperCASE tool, 135, 136, 490
 upward compatibility, 256
 urban myth, 229
 use case, 318–319, 323, 408, 425–430,

435–452, 457, 577, 587
 defi nition, 407
 elevator problem case study, 408
 MSG Foundation case study,

 425–430, 435–452
 use-case description, 323
 use-case diagram, 325, 330–345, 408,

419, 429, 577, 587
 elevator problem case study,

 408, 419
 MSG Foundation case study, 325,

330–345, 429
 use-case realization, 435–452, 454

 defi nition, 435
 MSG Foundation case study,

 435–452, 454
 user, 23
 user interface, 431, 457
 user interface integration, 538
 user-friendliness, 350–351
 utility, 164
 utility testing, 164, 165

 V

 V & V, 155
 validation, 17, 155
 variable names

 consistent, 504–505
 meaningful, 504–505

 variation, 144–145
 multiple, 144–145

 VAX/VMS, 257
 Vegetius, 132
 verifi cation, 17, 155, 167
 version, 141–147, 559–560
 version control, 143–147, 565
 version-control tool, 143–144, 146
 vertical schema defi nition, 389
 videotape, 317
 Vienna defi nition method (VDM), 392
 virtual method, 215
 Visual Basic .NET, 25
 Visual C++, 138, 147
 Visual Java, 147
 VM/370, 257
 volume testing, 536

 W

 walkthrough, 158–159, 161–162,
528–530

 code, 528–530
 comparison with inspection,

 161–162
 possible danger, 159
 strength, 162
 weakness, 162

 WarGames , 2
 waterfall life-cycle model. See waterfall

model
 waterfall model, 7, 41, 49, 51, 41

 strengths, 54
 weaknesses, 54–55

 weaver, 592
 Web 2.0, 598
 Web 3.0, 598
 Web engineering, 596–597
 WebSphere, 234
 West Side Story , 226
 white-box testing, 517
 widget, 241
 wiki, 596
 Wikipedia, 596
 Win32, 227

sch76183_s-ind_654-668.indd 666sch76183_s-ind_654-668.indd 666 07/06/10 11:48 AM07/06/10 11:48 AM

Subject Index 667

 Winburg mini case study, 38–42, 44,
47–48, 50

 Windows, 244, 258
 word counting mini case study,

 468–472
 word processor, 138
 work package, 284
 work product, 283
 workbench, 137, 538. See also CASE
 worker, 457
 workfl ow, 44, 76. See also analysis

workfl ow; core workfl ows;
design workfl ow; implementation
workfl ow; requirements workfl ow;
test workfl ow

 World Wide Web, 248–249
 and reuse, 248–249

 wrapper, 235
 WWMCCS, 2

 X

 X Window, 350
 X11, 258
 XRunner, 535

 Y

 Y2K problem, 405
 YAGNI, 60
 YouTube, 596

 Z

 Z, 387–392
 elevator problem case study, 388–390
 strengths, 390–391
 weaknesses, 390–391
 Zermelo, Ernst Friedrich Ferdinand,

 388

sch76183_s-ind_654-668.indd 667sch76183_s-ind_654-668.indd 667 07/06/10 11:48 AM07/06/10 11:48 AM

	Cover
	Title Page
	Copyright
	Contents
	Preface
	Chapter 1 The Scope of Software Engineering
	Learning Objectives
	1.1 Historical Aspects
	1.2 Economic Aspects
	1.3 Maintenance Aspects
	1.3.1 Classical and Modern Views of Maintenance
	1.3.2 The Importance of Postdelivery Maintenance

	1.4 Requirements, Analysis, and Design Aspects
	1.5 Team Development Aspects
	1.6 Why There Is No Planning Phase
	1.7 Why There Is No Testing Phase
	1.8 Why There Is No Documentation Phase
	1.9 The Object-Oriented Paradigm
	1.10 The Object-Oriented Paradigm in Perspective
	1.11 Terminology
	1.12 Ethical Issues
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	PART A: SOFTWARE ENGINEERING CONCEPTS
	Chapter 2 Software Life-Cycle Models
	Learning Objectives
	2.1 Software Development in Theory
	2.2 Winburg Mini Case Study
	2.3 Lessons of the Winburg Mini Case Study
	2.4 Teal Tractors Mini Case Study
	2.5 Iteration and Incrementation
	2.6 Winburg Mini Case Study Revisited
	2.7 Risks and Other Aspects of Iteration and Incrementation
	2.8 Managing Iteration and Incrementation
	2.9 Other Life-Cycle Models
	2.10 Comparison of Life-Cycle Models
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 3 The Software Process
	Learning Objectives
	3.1 The Unified Process
	3.2 Iteration and Incrementation within the Object-Oriented Paradigm
	3.3 The Requirements Workflow
	3.4 The Analysis Workflow
	3.5 The Design Workflow
	3.6 The Implementation Workflow
	3.7 The Test Workflow
	3.8 Postdelivery Maintenance
	3.9 Retirement
	3.10 The Phases of the Unified Process
	3.11 One- versus Two-Dimensional Life-Cycle Models
	3.12 Improving the Software Process
	3.13 Capability Maturity Models
	3.14 Other Software Process Improvement Initiatives
	3.15 Costs and Benefi ts of Software Process Improvement
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 4 Teams
	Learning Objectives
	4.1 Team Organization
	4.2 Democratic Team Approach
	4.3 Classical Chief Programmer Team Approach
	4.4 Beyond Chief Programmer and Democratic Teams
	4.5 Synchronize-and-Stabilize Teams
	4.6 Teams for Agile Processes
	4.7 Open-Source Programming Teams
	4.8 People Capability Maturity Model
	4.9 Choosing an Appropriate Team Organization
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 5 The Tools of the Trade
	Learning Objectives
	5.1 Stepwise Refinement
	5.2 Cost–Benefit Analysis
	5.3 Divide-and-Conquer
	5.4 Separation of Concerns
	5.5 Software Metrics
	5.6 CASE
	5.7 Taxonomy of CASE
	5.8 Scope of CASE
	5.9 Software Versions
	5.10 Configuration Control
	5.11 Build Tools
	5.12 Productivity Gains with CASE Technology
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 6 Testing
	Learning Objectives
	6.1 Quality Issues
	6.2 Non-Execution-Based Testing
	6.3 Execution-Based Testing
	6.4 What Should Be Tested?
	6.5 Testing versus Correctness Proofs
	6.6 Who Should Perform Execution-Based Testing?
	6.7 When Testing Stops
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 7 From Modules to Objects
	Learning Objectives
	7.1 What Is a Module?
	7.2 Cohesion
	7.3 Coupling
	7.4 Data Encapsulation
	7.5 Abstract Data Types
	7.6 Information Hiding
	7.7 Objects
	7.8 Inheritance, Polymorphism, and Dynamic Binding
	7.9 The Object-Oriented Paradigm
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 8 Reusability and Portability
	Learning Objectives
	8.1 Reuse Concepts
	8.2 Impediments to Reuse
	8.3 Reuse Case Studies
	8.4 Objects and Reuse
	8.5 Reuse during Design and Implementation
	8.6 More on Design Patterns
	8.7 Categories of Design Patterns
	8.8 Strengths and Weaknesses of Design Patterns
	8.9 Reuse and the World Wide Web
	8.10 Reuse and Postdelivery Maintenance
	8.11 Portability
	8.12 Why Portability?
	8.13 Techniques for Achieving Portability
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 9 Planning and Estimating
	Learning Objectives
	9.1 Planning and the Software Process
	9.2 Estimating Duration and Cost
	9.3 Components of a Software Project Management Plan
	9.4 Software Project Management Plan Framework
	9.5 IEEE Software Project Management Plan
	9.6 Planning Testing
	9.7 Planning Object-Oriented Projects
	9.8 Training Requirements
	9.9 Documentation Standards
	9.10 CASE Tools for Planning and Estimating
	9.11 Testing the Software Project Management Plan
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	PART B: THE WORKFLOWS OF THE SOFTWARE LIFE CYCLE
	Chapter 10 Key Material from Part A
	Learning Objective
	10.1 Software Development: Theory versus Practice
	10.2 Iteration and Incrementation
	10.3 The Unified Process
	10.4 Workflow Overview
	10.5 Teams
	10.6 Cost–Benefit Analysis
	10.7 Metrics
	10.8 CASE
	10.9 Versions and Configurations
	10.10 Testing Terminology
	10.11 Execution-Based and Non-Execution-Based Testing
	10.12 Modularity
	10.13 Reuse
	10.14 Software Project Management Plan
	Chapter Review
	Key Terms
	Problems

	Chapter 11 Requirements
	Learning Objectives
	11.1 Determining What the Client Needs
	11.2 Overview of the Requirements Workflow
	11.3 Understanding the Domain
	11.4 The Business Model
	11.5 Initial Requirements
	11.6 Initial Understanding of the Domain: The MSG Foundation Case Study
	11.7 Initial Business Model: The MSG Foundation Case Study
	11.8 Initial Requirements: The MSG Foundation Case Study
	11.9 Continuing the Requirements Workflow: The MSG Foundation Case Study
	11.10 Revising the Requirements: The MSG Foundation Case Study
	11.11 The Test Workflow: The MSG Foundation Case Study
	11.12 The Classical Requirements Phase
	11.13 Rapid Prototyping
	11.14 Human Factors
	11.15 Reusing the Rapid Prototype
	11.16 CASE Tools for the Requirements Workflow
	11.17 Metrics for the Requirements Workflow
	11.18 Challenges of the Requirements Workflow
	Chapter Review
	For Further Reading
	Key Terms
	Case Study Key Terms
	Problems
	References

	Chapter 12 Classical Analysis
	Learning Objectives
	12.1 The Specification Document
	12.2 Informal Specifications
	12.3 Structured Systems Analysis
	12.4 Structured Systems Analysis: The MSG Foundation Case Study
	12.5 Other Semiformal Techniques
	12.6 Entity-Relationship Modeling
	12.7 Finite State Machines
	12.8 Petri Nets
	12.9 Z
	12.10 Other Formal Techniques
	12.11 Comparison of Classical Analysis Techniques
	12.12 Testing during Classical Analysis
	12.13 CASE Tools for Classical Analysis
	12.14 Metrics for Classical Analysis
	12.15 Software Project Management Plan: The MSG Foundation Case Study
	12.16 Challenges of Classical Analysis
	Chapter Review
	For Further Reading
	Key Terms
	Case Study Key Terms
	Problems
	References

	Chapter 13 Object-Oriented Analysis
	Learning Objectives
	13.1 The Analysis Workflow
	13.2 Extracting the Entity Classes
	13.3 Object-Oriented Analysis: The Elevator Problem Case Study
	13.4 Functional Modeling: The Elevator Problem Case Study
	13.5 Entity Class Modeling: The Elevator Problem Case Study
	13.6 Dynamic Modeling: The Elevator Problem Case Study
	13.7 The Test Workflow: Object-Oriented Analysis
	13.8 Extracting the Boundary and Control Classes
	13.9 The Initial Functional Model: The MSG Foundation Case Study
	13.10 The Initial Class Diagram: The MSG Foundation Case Study
	13.11 The Initial Dynamic Model: The MSG Foundation Case Study
	13.12 Revising the Entity Classes: The MSG Foundation Case Study
	13.13 Extracting the Boundary Classes: The MSG Foundation Case Study
	13.14 Extracting the Control Classes: The MSG Foundation Case Study
	13.15 Use-Case Realization: The MSG Foundation Case Study
	13.16 Incrementing the Class Diagram: The MSG Foundation Case Study
	13.17 The Test Workflow: The MSG Foundation Case Study
	13.18 The Specification Document in the Unified Process
	13.19 More on Actors and Use Cases
	13.20 CASE Tools for the Object-Oriented Analysis Workflow
	13.21 Metrics for the Object-Oriented Analysis Workflow
	13.22 Challenges of the Object-Oriented Analysis Workflow
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 14 Design
	Learning Objectives
	14.1 Design and Abstraction
	14.2 Operation-Oriented Design
	14.3 Data Flow Analysis
	14.4 Transaction Analysis
	14.5 Data-Oriented Design
	14.6 Object-Oriented Design
	14.7 Object-Oriented Design: The Elevator Problem Case Study
	14.8 Object-Oriented Design: The MSG Foundation Case Study
	14.9 The Design Workflow
	14.10 The Test Workflow: Design
	14.11 The Test Workflow: The MSG Foundation Case Study
	14.12 Formal Techniques for Detailed Design
	14.13 Real-Time Design Techniques
	14.14 CASE Tools for Design
	14.15 Metrics for Design
	14.16 Challenges of the Design Workflow
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 15 Implementation
	Learning Objectives
	15.1 Choice of Programming Language
	15.2 Fourth-Generation Languages
	15.3 Good Programming Practice
	15.4 Coding Standards
	15.5 Code Reuse
	15.6 Integration
	15.7 The Implementation Workflow
	15.8 The Implementation Workflow: The MSG Foundation Case Study
	15.9 The Test Workflow: Implementation
	15.10 Test Case Selection
	15.11 Black-Box Unit-Testing Techniques
	15.12 Black-Box Test Cases: The MSG Foundation Case Study
	15.13 Glass-Box Unit-Testing Techniques
	15.14 Code Walkthroughs and Inspections
	15.15 Comparison of Unit-Testing Techniques
	15.16 Cleanroom
	15.17 Potential Problems When Testing Objects
	15.18 Management Aspects of Unit Testing
	15.19 When to Reimplement Rather than Debug a Code Artifact
	15.20 Integration Testing
	15.21 Product Testing
	15.22 Acceptance Testing
	15.23 The Test Workflow: The MSG Foundation Case Study
	15.24 CASE Tools for Implementation
	15.25 CASE Tools for the Test Workflow
	15.26 Metrics for the Implementation Workflow
	15.27 Challenges of the Implementation Workflow
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 16 Postdelivery Maintenance
	Learning Objectives
	16.1 Development and Maintenance
	16.2 Why Postdelivery Maintenance Is Necessary
	16.3 What Is Required of Postdelivery Maintenance Programmers?
	16.4 Postdelivery Maintenance Mini Case Study
	16.5 Management of Postdelivery Maintenance
	16.6 Maintenance of Object-Oriented Software
	16.7 Postdelivery Maintenance Skills versus Development Skills
	16.8 Reverse Engineering
	16.9 Testing during Postdelivery Maintenance
	16.10 CASE Tools for Postdelivery Maintenance
	16.11 Metrics for Postdelivery Maintenance
	16.12 Postdelivery Maintenance: The MSG Foundation Case Study
	16.13 Challenges of Postdelivery Maintenance
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 17 More on UML
	Learning Objectives
	17.1 UML Is Not a Methodology
	17.2 Class Diagrams
	17.3 Notes
	17.4 Use-Case Diagrams
	17.5 Stereotypes
	17.6 Interaction Diagrams
	17.7 Statecharts
	17.8 Activity Diagrams
	17.9 Packages
	17.10 Component Diagrams
	17.11 Deployment Diagrams
	17.12 Review of UML Diagrams
	17.13 UML and Iteration
	Chapter Review
	For Further Reading
	Key Terms
	Problems
	References

	Chapter 18 Emerging Technologies
	Learning Objectives
	18.1 Aspect-Oriented Technology
	18.2 Model-Driven Technology
	18.3 Component-Based Technology
	18.4 Service-Oriented Technology
	18.5 Comparison of Service-Oriented and Component-Based Technology
	18.6 Social Computing
	18.7 Web Engineering
	18.8 Cloud Technology
	18.9 Web 3.0
	18.10 Computer Security
	18.11 Model Checking
	18.12 Present and Future
	Chapter Review
	For Further Reading
	Key Terms
	References

	Bibliography
	Appendix A: Term Project: Chocoholics Anonymous
	Appendix B: Software Engineering Resources
	Appendix C: Requirements Workflow: The MSG Foundation Case Study
	Appendix D: Structured Systems Analysis: The MSG Foundation Case Study
	Appendix E: Analysis Workflow: The MSG Foundation Case Study
	Appendix F: Software Project Management Plan: The MSG Foundation Case Study
	Appendix G: Design Workflow: The MSG Foundation Case Study
	Appendix H: Implementation Workflow: The MSG Foundation Case Study (C++ Version)
	Appendix I: Implementation Workflow: The MSG Foundation Case Study (Java Version)
	Appendix J: Test Workflow: The MSG Foundation Case Study
	Author Index
	Subject Index

