


   Object-Oriented and 
Classical Software 
Engineering 

 Eighth Edition 

      Stephen   R.   Schach  
 Vanderbilt University              

sch76183_FM-i-xx.indd   isch76183_FM-i-xx.indd   i 10/06/10   2:36 PM10/06/10   2:36 PM



OBJECT-ORIENTED AND CLASSICAL SOFTWARE ENGINEERING, EIGHTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, 
New York, NY 10020. Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Previous 
editions © 2007, 2005, and 2002. No part of this publication may be reproduced or distributed in any form or 
by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill 
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or 
broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the 
United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4 3 2 1 0

ISBN 978-0-07-337618-9
MHID 0-07-337618-3

Vice President & Editor-in-Chief: Marty Lange
Publisher: Raghothaman Srinivasan
Vice President EDP & Central Publishing Services: Kimberly Meriwether David
Development Editor: Lora Neyens
Senior Marketing Manager: Curt Reynolds
Project Manager: Melissa M. Leick
Buyer: Kara Kudronowicz
Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
Cover Image: © Photodisc/Getty Images
Compositor: Glyph International
Typeface: 10/12 Times Roman
Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data
Schach, Stephen R.
  Object-oriented and classical software engineering / Stephen R. Schach. —
8th ed.
    p. cm.
  ISBN-13: 978-0-07-337618-9 (alk. paper)
  ISBN-10: 0-07-337618-3 (alk. paper)
 1. Software engineering. 2. Object-oriented programming (Computer
science) 3. UML (Computer science) 4. C++ (Computer program language) I.
Title. 
  QA76.758.S318 2010
  005.1’17—dc22
 2010020995

www.mhhe.com

sch76183_FM-i-xx.indd   iisch76183_FM-i-xx.indd   ii 10/06/10   2:36 PM10/06/10   2:36 PM

www.mhhe.com


  To Jackson and Mikaela     

sch76183_FM-i-xx.indd   iiisch76183_FM-i-xx.indd   iii 10/06/10   2:36 PM10/06/10   2:36 PM



 The following are registered trademarks:

   ADF  
  Analyst/Designer  
  Ant  
  Apache  
  Apple  
  AS/400  
  AT&T  
  Bachman Product Set  
  Bell Laboratories  
  Borland  
  Bugzilla  
  Capability Maturity Model  
  Chrome  
  ClearCase  
  ClearQuest  
  CMM  
  Cocoa  
  Coca-Cola  
  CORBA  
  CppUnit  
  CVS  
  DB2  
  Eclipse  
  e-Components  
  Emeraude  
  Enterprise JavaBeans  
  eServer  
  Excel  
  Firefox  
  Focus  
  Ford  
  Foundation Class Library  
  FoxBASE  
  GCC  
  Hewlett-Packard  
  IBM  
  IMS/360  

  Jackpot Source Code Metrics  
  Java  
  JBuilder  
  JUnit  
  Linux  
  Lotus 1-2-3  
  Lucent Technologies  
  MacApp  
  Macintosh  
  Macintosh Toolbox  
  MacProject  
  Microsoft  
  Motif  
  MS-DOS  
  MVS/360  
  Natural  
  Netscape  
   New York Times   
  Object C  
  Objective-C  
  ObjectWindows Library  
  1-800-fl owers.com  
  Oracle  
  Oracle Developer Suite  
  OS/360  
  OS/370  
  OS/VS2  
  Palm Pilot  
  Parasoft  
  Post-It Note  
  PowerBuilder  
  PREfi x  
  PREfast  
  Project  
  PureCoverage  
  PVCS  
  QARun  

  Rational  
  Requisite Pro  
  Rhapsody  
  Rose  
  SBC Communications  
  SilkTest  
  SLAM  
  Software through Pictures  
  Solaris  
  SourceSafe  
  SPARCstation  
  Sun  
  Sun Enterprise  
  Sun Microsystems  
  Sun ONE Studio  
  System Architect  
  Together  
  UNIX  
  VAX  
  Visual Component Library  
  Visual C++  
  Visual J++  
  VM/370  
  VMS  
   Wall Street Journal   
  WebSphere  
  Win32  
  Windows 95  
  Windows 2000  
  Windows NT  
  Word  
  X11  
  Xrunner  
  XUnit  
  Zip disk  
  ZIP Code  
  z10     

sch76183_FM-i-xx.indd   ivsch76183_FM-i-xx.indd   iv 10/06/10   2:36 PM10/06/10   2:36 PM



Contents
Preface  xiii

  Chapter 1 
   The Scope of Software Engineering     1 

   Learning Objectives   1  
  1.1 Historical Aspects   2  
  1.2 Economic Aspects   5  
  1.3 Maintenance Aspects   6  

  1.3.1    Classical and Modern Views 
of Maintenance     9  

  1.3.2    The Importance of Postdelivery 
Maintenance     10  

  1.4 Requirements, Analysis, and Design 
Aspects   12  

  1.5 Team Development Aspects   15  
  1.6 Why There Is No Planning Phase   16  
  1.7 Why There Is No Testing Phase   16  
  1.8 Why There Is No Documentation 

Phase   17  
  1.9 The Object-Oriented Paradigm   18  
  1.10 The Object-Oriented Paradigm in 

Perspective   22  
  1.11 Terminology   23  
  1.12 Ethical Issues   26  
   Chapter Review   27  
   For Further Reading   27  
   Key Terms   28  
   Problems    29  
   References   30  

  PART A      
SOFTWARE ENGINEERING 
CONCEPTS 35

  Chapter 2  
   Software Life-Cycle Models     37 

   Learning Objectives   37  
  2.1 Software Development in Theory   37  
2.2 Winburg Mini Case Study 38
  2.3 Lessons of the Winburg Mini Case Study   42  

2.4 Teal Tractors Mini Case Study 42
  2.5 Iteration and Incrementation   43  
2.6 Winburg Mini Case Study Revisited 47
  2.7 Risks and Other Aspects of Iteration and 

Incrementation   48  
  2.8 Managing Iteration and 

Incrementation   51  
  2.9 Other Life-Cycle Models   52  

    2.9.1 Code-and-Fix Life-Cycle Model     52  
  2.9.2 Waterfall Life-Cycle Model   53  
  2.9.3  Rapid-Prototyping Life-Cycle 

Model   55  
  2.9.4 Open-Source Life-Cycle Model   56  
  2.9.5 Agile Processes   59  
  2.9.6  Synchronize-and-Stabilize Life-Cycle 

Model    62  
  2.9.7   Spiral Life-Cycle Model     62  

  2.10   Comparison of Life-Cycle Models     66  
   Chapter Review   67  
   For Further Reading   68  
   Key Terms   69  
   Problems   69  
   References   70   

  Chapter 3 
    The Software Process     74 

   Learning Objectives   74  
  3.1 The Unifi ed Process   76  
  3.2 Iteration and Incrementation 

within the Object-Oriented 
Paradigm   76  

  3.3 The Requirements Workfl ow   78  
  3.4 The Analysis Workfl ow   80  
  3.5 The Design Workfl ow   82  
  3.6 The Implementation Workfl ow   83  
  3.7 The Test Workfl ow   84  

  3.7.1   Requirements Artifacts     84  
  3.7.2   Analysis Artifacts     84  
  3.7.3   Design Artifacts     85  
  3.7.4   Implementation Artifacts     85  

  3.8 Postdelivery Maintenance   87  

v

sch76183_FM-i-xx.indd   vsch76183_FM-i-xx.indd   v 10/06/10   2:36 PM10/06/10   2:36 PM



vi  Contents

  3.9 Retirement   88  
  3.10 The Phases of the Unifi ed Process   88  

  3.10.1   The Inception Phase     89  
  3.10.2   The Elaboration Phase      91  
  3.10.3   The Construction Phase     92  
  3.10.4   The Transition Phase     92  

  3.11 One- versus Two-Dimensional Life-Cycle 
Models   92  

  3.12 Improving the Software Process   94  
  3.13 Capability Maturity Models    95  
  3.14 Other Software Process Improvement 

Initiatives   98  
  3.15 Costs and Benefi ts of Software Process 

Improvement   99  
   Chapter Review   101  
   For Further Reading   102  
   Key Terms   102  
   Problems   103  
   References   104   

  Chapter 4  
   Teams     107 

   Learning Objectives   107  
  4.1 Team Organization   107  
  4.2 Democratic Team Approach   109  

  4.2.1    Analysis of the Democratic Team 
Approach     110  

  4.3 Classical Chief Programmer Team 
Approach   110  
  4.3.1    The New York Times Project     112  
  4.3.2    Impracticality of the Classical Chief 

Programmer Team Approach     113  
  4.4 Beyond Chief Programmer and 

Democratic Teams   113  
  4.5 Synchronize-and-Stabilize Teams   117  
  4.6 Teams for Agile Processes   118  
  4.7 Open-Source Programming Teams   118  
  4.8 People Capability Maturity Model   119  
  4.9 Choosing an Appropriate Team 

Organization   120  
   Chapter Review   121  
   For Further Reading   121  
   Key Terms   122  
   Problems   122  
   References   122   

  Chapter 5  
   The Tools of the Trade     124 

   Learning Objectives   124  
  5.1 Stepwise Refi nement   124  

5.1.1  Stepwise Refi nement Mini Case 
Study 125

  5.2 Cost–Benefi t Analysis   130  
  5.3 Divide-and-Conquer   132  
  5.4 Separation of Concerns   132  
  5.5 Software Metrics   133  
5.6 CASE 134
  5.7 Taxonomy of CASE   135  
  5.8 Scope of CASE   137  
  5.9 Software Versions   141  

  5.9.1   Revisions     141  
  5.9.2    Variations     142  

  5.10 Confi guration Control   143  
  5.10.1    Confi guration Control 

during Postdelivery 
Maintenance     145  

  5.10.2    Baselines     145  
  5.10.3    Confi guration Control during 

Development     146  
  5.11 Build Tools   146  
  5.12 Productivity Gains with CASE 

Technology   147  
   Chapter Review   149  
   For Further Reading   149  
   Key Terms   150  
   Problems   150  
   References   151   

  Chapter 6 
   Testing     154 

   Learning Objectives   154  
  6.1 Quality Issues   155  

  6.1.1   Software Quality Assurance     156  
  6.1.2   Managerial Independence     156  

  6.2 Non-Execution-Based Testing   157  
  6.2.1   Walkthroughs     158  
  6.2.2   Managing Walkthroughs     158  
  6.2.3   Inspections     159  
  6.2.4    Comparison of Inspections 

and Walkthroughs     161  

sch76183_FM-i-xx.indd   visch76183_FM-i-xx.indd   vi 10/06/10   2:36 PM10/06/10   2:36 PM



Contents  vii

  6.2.5    Strengths and Weaknesses of 
Reviews     162  

  6.2.6   Metrics for Inspections     162  
  6.3 Execution-Based Testing   162  
  6.4 What Should Be Tested?   163  

  6.4.1   Utility     164  
  6.4.2   Reliability     164  
  6.4.3   Robustness     165  
  6.4.4   Performance     165  
  6.4.5   Correctness     166  

  6.5 Testing versus Correctness Proofs   167  
  6.5.1   Example of a Correctness Proof     167  
6.5.2  Correctness Proof Mini Case Study 171
  6.5.3    Correctness Proofs and Software 

Engineering     172  
  6.6 Who Should Perform Execution-Based 

Testing?   175  
  6.7 When Testing Stops   176  
   Chapter Review   176  
   For Further Reading   177  
   Key Terms   177  
   Problems   178  
   References   179   

  Chapter 7     
From Modules to Objects     183 

   Learning Objectives   183  
  7.1 What Is a Module?   183  
  7.2 Cohesion   187  

  7.2.1   Coincidental Cohesion     187  
  7.2.2   Logical Cohesion     188  
  7.2.3   Temporal Cohesion     189  
  7.2.4   Procedural Cohesion     189  
  7.2.5   Communicational Cohesion     190  
  7.2.6   Functional Cohesion     190  
  7.2.7   Informational Cohesion     191  
  7.2.8   Cohesion Example     191  

  7.3 Coupling   192  
  7.3.1   Content Coupling     192  
  7.3.2   Common Coupling     193  
  7.3.3   Control Coupling     195  
  7.3.4   Stamp Coupling     195  
  7.3.5   Data Coupling     196  
  7.3.6   Coupling Example     197  
  7.3.7   The Importance of Coupling     198  

  7.4 Data Encapsulation   199  
  7.4.1    Data Encapsulation and 

Development     201  
  7.4.2    Data Encapsulation and 

Maintenance     202  
  7.5 Abstract Data Types   207  
  7.6 Information Hiding   209  
  7.7 Objects   211  
  7.8 Inheritance, Polymorphism, and Dynamic 

Binding   215  
  7.9 The Object-Oriented Paradigm   217  
   Chapter Review   220  
   For Further Reading   221  
   Key Terms   221  
   Problems   221  
   References   222   

  Chapter 8     
Reusability and Portability     225 

   Learning Objectives   225  
  8.1 Reuse Concepts   226  
  8.2 Impediments to Reuse   228  
  8.3 Reuse Case Studies   229  

  8.3.1    Raytheon Missile Systems 
Division     230  

  8.3.2   European Space Agency     231  
  8.4 Objects and Reuse   232  
  8.5 Reuse during Design and 

Implementation   232  
  8.5.1   Design Reuse     232  
  8.5.2   Application Frameworks     234  
  8.5.3   Design Patterns     235  
  8.5.4   Software Architecture     236  
  8.5.5    Component-Based Software 

Engineering     237  
  8.6 More on Design Patterns   237  

8.6.1 FLIC Mini Case Study    238
8.6.2   Adapter Design Pattern     239  
  8.6.3   Bridge Design Pattern     240  
  8.6.4   Iterator Design Pattern     241  
  8.6.5   Abstract Factory Design Pattern     241  

  8.7 Categories of Design Patterns   245  
  8.8 Strengths and Weaknesses of Design 

Patterns   247  
  8.9 Reuse and the World Wide Web   248  

sch76183_FM-i-xx.indd   viisch76183_FM-i-xx.indd   vii 10/06/10   2:36 PM10/06/10   2:36 PM



viii  Contents

  8.10 Reuse and Postdelivery Maintenance   249  
  8.11 Portability   250  

  8.11.1   Hardware Incompatibilities     250  
  8.11.2    Operating System 

Incompatibilities     251  
  8.11.3    Numerical Software 

Incompatibilities     251  
  8.11.4   Compiler Incompatibilities     253  

  8.12 Why Portability?   255  
  8.13 Techniques for Achieving Portability   256  

  8.13.1   Portable System Software     257  
  8.13.2   Portable Application Software     257  
  8.13.3   Portable Data     258  
  8.13.4   Model-Driven Architecture     259  

   Chapter Review   259  
   For Further Reading   260  
   Key Terms   261  
   Problems   261  
   References   263   

  CHAPTER 9  
   Planning and Estimating     268 

   Learning Objectives   268  
  9.1 Planning and the Software Process   268  
  9.2 Estimating Duration and Cost   270  

  9.2.1   Metrics for the Size of a Product     272  
  9.2.2   Techniques of Cost Estimation     275  
  9.2.3   Intermediate COCOMO     278  
  9.2.4   COCOMO II     281  
  9.2.5    Tracking Duration and Cost 

Estimates     282  
  9.3 Components of a Software Project 

Management Plan   282  
  9.4 Software Project Management Plan 

Framework   284  
  9.5 IEEE Software Project Management 

Plan   286  
  9.6 Planning Testing   288  
  9.7 Planning Object-Oriented Projects   289  
  9.8 Training Requirements   290  
  9.9 Documentation Standards   291  
  9.10 CASE Tools for Planning and 

Estimating   292  
  9.11 Testing the Software Project Management 

Plan   292  

   Chapter Review   292  
   For Further Reading   292  
   Key Terms   293  
   Problems   294  
   References   295  

  PART B      
THE WORKFLOWS OF THE 
SOFTWARE LIFE CYCLE 299

  Chapter 10  
   Key Material from Part A     301 

   Learning Objective   301  
  10.1 Software Development: Theory versus 

Practice     301  
  10.2 Iteration and Incrementation     302  
  10.3 The Unifi ed Process     306  
  10.4 Workfl ow Overview     307  
  10.5 Teams     307  
  10.6 Cost–Benefi t Analysis     308  
  10.7 Metrics     308  
  10.8 CASE     308  
  10.9 Versions and Confi gurations     309  
  10.10 Testing Terminology     309  
  10.11 Execution-Based and Non-Execution-

Based Testing     309  
  10.12 Modularity     310  
  10.13 Reuse     310  
  10.14 Software Project Management Plan     310  
   Chapter Review   311  
   Key Terms   311  
   Problems   312   

  Chapter 11  
   Requirements     313 

   Learning Objectives   313  
  11.1 Determining What the Client Needs   313  
  11.2 Overview of the Requirements 

Workfl ow   314  
  11.3 Understanding the Domain   315  
  11.4 The Business Model   316  

  11.4.1   Interviewing     316  
  11.4.2   Other Techniques     317  
  11.4.3   Use Cases     318  

sch76183_FM-i-xx.indd   viiisch76183_FM-i-xx.indd   viii 10/06/10   2:36 PM10/06/10   2:36 PM



Contents  ix

  11.5 Initial Requirements   319  
11.6  Initial Understanding of the Domain: 

The MSG Foundation Case Study  320
11.7 Initial Business Model: The MSG 

Foundation Case Study 322
11.8 Initial Requirements: The MSG 

Foundation Case Study 326
11.9 Continuing the Requirements Workfl ow: 

The MSG Foundation Case Study 328
11.10  Revising the Requirements: The MSG 

Foundation Case Study  330
11.11  The Test Workfl ow: The MSG Foundation 

Case Study  338
  11.12 The Classical Requirements 

Phase   347  
  11.13 Rapid Prototyping   348  
  11.14 Human Factors   349  
  11.15 Reusing the Rapid Prototype   351  
  11.16 CASE Tools for the Requirements 

Workfl ow   353  
  11.17 Metrics for the Requirements 

Workfl ow   353  
  11.18 Challenges of the Requirements 

Workfl ow   354  
   Chapter Review   355  
   For Further Reading   356  
   Key Terms   357  
   Case Study Key Terms   357  
   Problems   357  
   References   358   

  Chapter 12 
   Classical Analysis     360 

   Learning Objectives   360  
  12.1 The Specifi cation Document   360  
  12.2 Informal Specifi cations   362  

12.2.1  Correctness Proof Mini Case Study 
Redux 363

  12.3 Structured Systems Analysis   364  
12.3.1  Sally’s Software Shop Mini Case 

Study 364
12.4 Structured Systems Analysis: The MSG 

Foundation Case Study 372
  12.5 Other Semiformal Techniques   373  
  12.6 Entity-Relationship Modeling   374  

  12.7 Finite State Machines   376  
12.7.1  Finite State Machines: The Elevator 

Problem Case Study 378
  12.8 Petri Nets   382  

12.8.1  Petri Nets: The Elevator Problem Case 
Study 385

  12.9 Z   387  
  12.9.1  Z: The Elevator Problem Case 

Study 388
12.9.2   Analysis of Z     390  

  12.10 Other Formal Techniques   392  
  12.11 Comparison of Classical Analysis 

Techniques   392  
  12.12 Testing during Classical Analysis   393  
  12.13 CASE Tools for Classical Analysis   394  
  12.14 Metrics for Classical Analysis   395  
12.15 Software Project Management Plan: The 

MSG Foundation Case Study 395
  12.16 Challenges of Classical Analysis   396  
   Chapter Review   396  
   For Further Reading   397  
   Key Terms   398  
   Case Study Key Terms   398  
   Problems   398  
   References   400   

  Chapter 13  
   Object-Oriented Analysis     404 

   Learning Objectives   404  
  13.1 The Analysis Workfl ow   405  
  13.2 Extracting the Entity Classes   406  
13.3 Object-Oriented Analysis: The Elevator 

Problem Case Study 407
13.4 Functional Modeling: The Elevator 

Problem Case Study 407
13.5 Entity Class Modeling: The Elevator 

Problem Case Study 410
 13.5.1 Noun Extraction  411
 13.5.2 CRC Cards  413

13.6 Dynamic Modeling: The Elevator Problem 
Case Study 414

  13.7 The Test Workfl ow: Object-Oriented 
Analysis   417  

  13.8 Extracting the Boundary and Control 
Classes   424  

sch76183_FM-i-xx.indd   ixsch76183_FM-i-xx.indd   ix 10/06/10   2:36 PM10/06/10   2:36 PM



x  Contents

13.9 The Initial Functional Model: The MSG 
Foundation Case Study 425

13.10 The Initial Class Diagram: The MSG 
Foundation Case Study  428

13.11 The Initial Dynamic Model: The MSG 
Foundation Case Study 430

13.12 Revising the Entity Classes: The MSG 
Foundation Case Study 432

13.13 Extracting the Boundary Classes: The 
MSG Foundation Case Study 434

13.14 Extracting the Control Classes: The MSG 
Foundation Case Study 435

13.15 Use-Case Realization: The MSG 
Foundation Case Study 435
 13.15.1  Estimate Funds Available 

for Week Use Case  436
 13.15.2  Manage an Asset Use Case  442
 13.15.3  Update Estimated Annual 

Operating Expenses 
Use Case  446

 13.15.4  Produce a Report Use Case  449
13.16 Incrementing the Class Diagram: The 

MSG Foundation Case Study 454
13.17 The Test Workfl ow: The MSG Foundation 

Case Study 456
 13.18 The Specifi cation Document in the Unifi ed 

Process   456  
  13.19 More on Actors and Use Cases   457  
  13.20 CASE Tools for the Object-Oriented 

Analysis Workfl ow   458  
  13.21 Metrics for the Object-Oriented Analysis 

Workfl ow   459  
  13.22 Challenges of the Object-Oriented 

Analysis Workfl ow   459  
   Chapter Review   460  
   For Further Reading   461  
   Key Terms   462  
   Problems     462  
   References   463   

  Chapter 14  
   Design     465 

   Learning Objectives   465  
  14.1 Design and Abstraction   466  
  14.2 Operation-Oriented Design   466  

  14.3 Data Flow Analysis   467  
14.3.1 Mini Case Study Word Counting 468
  14.3.2   Data Flow Analysis Extensions     473  

  14.4 Transaction Analysis   473  
  14.5 Data-Oriented Design   475  
  14.6 Object-Oriented Design   476  
14.7 Object-Oriented Design: The Elevator 

Problem Case Study 477
14.8 Object-Oriented Design: The MSG 

Foundation Case Study 481
  14.9 The Design Workfl ow   483  
  14.10 The Test Workfl ow: Design   487  
14.11 The Test Workfl ow: The MSG Foundation 

Case Study 488
  14.12 Formal Techniques for Detailed Design   488  
  14.13 Real-Time Design Techniques   488  
  14.14 CASE Tools for Design   490  
  14.15 Metrics for Design   490  
  14.16 Challenges of the Design Workfl ow   491  
   Chapter Review   492  
   For Further Reading   493  
   Key Terms   493  
   Problems   494  
   References   495   

  Chapter 15    
 Implementation     498 

   Learning Objectives   498  
  15.1 Choice of Programming Language   498  
  15.2 Fourth-Generation Languages   501  
  15.3 Good Programming Practice   504  

  15.3.1    Use of Consistent and Meaningful 
Variable Names     504  

  15.3.2    The Issue of Self-Documenting 
Code     505  

  15.3.3    Use of Parameters     507  
  15.3.4    Code Layout for Increased 

Readability      507  
  15.3.5    Nested     if     Statements     507  

  15.4 Coding Standards   509  
  15.5 Code Reuse   510  
  15.6 Integration   510  

  15.6.1   Top-down Integration     511  
  15.6.2   Bottom-up Integration     513  
  15.6.3   Sandwich Integration     513  

sch76183_FM-i-xx.indd   xsch76183_FM-i-xx.indd   x 10/06/10   2:36 PM10/06/10   2:36 PM



Contents  xi

  15.6.4     Integration of Object-Oriented 
Products     514  

  15.6.5   Management of Integration     515  
  15.7 The Implementation Workfl ow   516  
 15.8 The Implementation Workfl ow: The MSG 

Foundation Case Study 516
 15.9 The Test Workfl ow: Implementation   516  
  15.10 Test Case Selection   517  

  15.10.1    Testing to Specifi cations versus 
Testing to Code     517  

  15.10.2    Feasibility of  Testing to 
Specifi cations      517  

  15.10.3   Feasibility of Testing to Code     518  
  15.11 Black-Box Unit-Testing Techniques   520  

  15.11.1    Equivalence Testing and Boundary 
Value Analysis     521  

  15.11.2   Functional Testing     522  
15.12 Black-Box Test Cases: The MSG 

Foundation Case Study 523
  15.13 Glass-Box Unit-Testing Techniques   525  

  15.13.1    Structural Testing: Statement, 
Branch, and Path Coverage     526  

  15.13.2   Complexity Metrics     527  
  15.14 Code Walkthroughs and Inspections   528  
  15.15 Comparison of Unit-Testing Techniques   528  
  15.16 Cleanroom   529  
  15.17 Potential Problems When Testing 

Objects   530  
  15.18 Management Aspects of Unit Testing   533  
  15.19 When to Reimplement Rather than Debug 

a Code Artifact   533  
  15.20 Integration Testing   535  
  15.21 Product Testing   535  
  15.22 Acceptance Testing   536  
15.23 The Test Workfl ow: The MSG Foundation 

Case Study 537
  15.24 CASE Tools for Implementation   537  

  15.24.1    CASE Tools for the Complete 
Software Process     538  

  15.24.2    Integrated Development 
Environments     538  

  15.24.3    Environments for Business 
Applications     539  

  15.24.4   Public Tool Infrastructures     540  
  15.24.5    Potential Problems with 

Environments     540  

  15.25 CASE Tools for the Test Workfl ow   540  
  15.26  Metrics for the Implementation 

Workfl ow   541  
  15.27 Challenges of the Implementation 

Workfl ow   542  
   Chapter Review   542  
   For Further Reading   543  
   Key Terms   544  
   Problems   545  
   References   547   

  Chapter 16     
Postdelivery Maintenance     551 

   Learning Objectives   551  
  16.1 Development and Maintenance   551  
  16.2 Why Postdelivery Maintenance Is 

Necessary   553  
  16.3 What Is Required of Postdelivery 

Maintenance Programmers?   553  
16.4  Postdelivery Maintenance Mini Case 

Study  555
  16.5 Management of Postdelivery 

Maintenance   557  
  16.5.1   Defect Reports     557  
  16.5.2    Authorizing Changes to the 

Product     558  
  16.5.3   Ensuring Maintainability     559  
  16.5.4    Problem of Repeated Maintenance     559  

  16.6 Maintenance of Object-Oriented 
Software   560  

  16.7 Postdelivery Maintenance Skills versus 
Development Skills   563  

  16.8 Reverse Engineering   563  
  16.9 Testing during Postdelivery 

Maintenance   564  
  16.10 CASE Tools for Postdelivery 

Maintenance   565  
  16.11 Metrics for Postdelivery 

Maintenance   566  
16.12 Postdelivery Maintenance: The MSG 

Foundation Case Study 566
  16.13 Challenges of Postdelivery 

Maintenance   566  
   Chapter Review   566  
   For Further Reading   567  

sch76183_FM-i-xx.indd   xisch76183_FM-i-xx.indd   xi 10/06/10   2:36 PM10/06/10   2:36 PM



xii  Contents

   Key Terms   567  
   Problems   567  
   References   568   

  Chapter 17  
   More on UML     571 

   Learning Objectives   571  
  17.1 UML Is   Not   a Methodology   571  
  17.2 Class Diagrams   572  

  17.2.1   Aggregation     573  
  17.2.2   Multiplicity     574  
  17.2.3   Composition     575  
  17.2.4   Generalization     576  
  17.2.5   Association     576  

  17.3 Notes   577  
  17.4 Use-Case Diagrams   577  
  17.5 Stereotypes   577  
  17.6 Interaction Diagrams   579  
  17.7 Statecharts   581  
  17.8 Activity Diagrams   583  
  17.9 Packages   585  
  17.10 Component Diagrams   586  
  17.11 Deployment Diagrams   586  
  17.12 Review of UML Diagrams   587  
  17.13 UML and Iteration   587  
   Chapter Review   587  
   For Further Reading   588  
   Key Terms   588  
   Problems   588  
   References   589   

  Chapter 18  
   Emerging Technologies     590 

   Learning Objectives   590  
  18.1 Aspect-Oriented Technology   591  
  18.2 Model-Driven Technology   593  
  18.3 Component-Based Technology   594  
  18.4 Service-Oriented Technology   594  
  18.5 Comparison of Service-Oriented and 

Component-Based Technology   595  
  18.6 Social Computing   596  
  18.7 Web Engineering   596  

  18.8 Cloud Technology   597  
  18.9 Web 3.0   598  
  18.10 Computer Security   598  
  18.11 Model Checking   598  
  18.12 Present and Future   599  
   Chapter Review   599  
   For Further Reading   599  
   Key Terms   599  
   References   600   

Bibliography  601
Appendix A
Term Project: Chocoholics 
Anonymous  627
Appendix B
Software Engineering Resources  630
Appendix C
Requirements Workfl ow: The MSG Foundation 
Case Study  632
Appendix D
Structured Systems Analysis: The MSG 
Foundation Case Study  633
Appendix E
Analysis Workfl ow: The MSG Foundation 
Case Study  636
Appendix F
Software Project Management Plan: The MSG 
Foundation Case Study  637
Appendix G
Design Workfl ow: The MSG Foundation 
Case Study  642
Appendix H
Implementation Workfl ow: The MSG Foundation 
Case Study (C++ Version)  647
Appendix I
Implementation Workfl ow: The MSG Foundation 
Case Study (Java Version)  648
Appendix J
Test Workfl ow: The MSG Foundation 
Case Study  649

Author Index  651
Subject Index  654

sch76183_FM-i-xx.indd   xiisch76183_FM-i-xx.indd   xii 10/06/10   2:36 PM10/06/10   2:36 PM



xiii

  Preface 
 Almost every computer science and computer engineering curriculum now includes a 
required team-based software development project. In some cases, the project is only one 
semester or quarter in length, but a year-long team-based software development project is 
fast becoming the norm. 
  In an ideal world, every student would complete a course in software engineering before 
starting his or her team-based project (“two-stage curriculum”). In practice, however, many 
students have to start their projects partway through their software engineering course, or 
even at the beginning of the course (“parallel curriculum”). 
  As explained in the next section, this book is organized in such a way that it can be used 
for both curricula. 

  How the Eighth Edition Is Organized 
  The book comprises two main parts: Part B teaches the students how to develop a software 
product; Part A provides the necessary theoretical background for Part B. The 18 chapters 
are organized as follows: 

                 Chapter 1     Introduction to software engineering   
   Part A     Chapters 2 through 9     Software engineering concepts   
   Part B     Chapters 10 through 17     Software engineering techniques        
   Chapter 18     Emerging technologies      

 Chapter 10 is new. It contains a summary of the key material of Part A. When the two-stage 
curriculum is followed, the instructor teaches fi rst Part A and then Part B (omitting Chapter 10, 
because the material of Chapter 10 will have been covered in depth in Part A). For the parallel 
curriculum, the instructor fi rst teaches Part B (so that the students can start their projects as soon 
as possible), and then Part A. The material of Chapter 10 enables the students to understand Part 
B without fi rst covering Part A. 
  This latter approach seems counterintuitive: Surely theory should always be taught 
before practice. In fact, curricular issues have forced many of the instructors who have 
used the seventh edition of this book to teach the material of Part B before Part A. Surpris-
ingly, they have been most satisfi ed with the outcome. They report that their students have 
a greater appreciation of the theoretical material of Part A as a consequence of their project 
work. That is, team-based project work makes students more receptive to and understand-
ing of the theoretical concepts that underlie software engineering. 
  In more detail, the material of the eighth edition may be taught in the following two ways:

    1.  Two-Stage Curriculum 

               Chapter 1 (Introduction to software engineering)   
    Part A     Chapters 2 through 9 (Software engineering concepts)   
    Part B     Chapters 11 through 17 (Software engineering techniques)        
   Chapter 18 (Emerging technologies)        
    The students then commence their team-based projects in the following semester 

or quarter.        
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   2.  Parallel Curriculum 

               Chapter 1 (Introduction to software engineering)   
        Chapter 10 (Key material from Part A)   
         The students now commence their team-based projects, in parallel with studying 

the material of Part B.   
   Part B     Chapters 11 through 17 (Software engineering techniques)   
   Part A     Chapters 2 through 9 (Software engineering concepts)        

   Chapter 18 (Emerging technologies)             

 New Features of the Eighth Edition 

    • The book has been updated throughout.  
  • I have added two new chapters. As previously explained, Chapter 10, a summary of key 

points of Part A, has been included so that this book can be used when students start their 
team-based term projects in parallel with their software engineering course. The other 
new chapter, Chapter 18, gives an overview of 10 emerging technologies, including 
   • Aspect-oriented technology  
  • Model-driven technology  
  • Component-based technology  
  • Service-oriented technology  
  • Social computing  
  • Web engineering  
  • Cloud technology  
  • Web 3.0  
  • Computer security  
  • Model checking    

  • I have considerably expanded the material on design patterns in Chapter 8, including a 
new mini case study.  

  • Two theoretical tools have been added to Chapter 5: divide-and-conquer, and separation 
of concerns.  

  • The object-oriented analysis of the elevator problem of Chapter 13 now refl ects a mod-
ern distributed, decentralized architecture.  

  • The references have been extensively updated, with an emphasis on current research.  
  • There are well over 100 new problems.  
  • There are new Just in Case You Wanted to Know boxes.     

  Features Retained from the Seventh Edition 

    • The Unifi ed Process is still largely the methodology of choice for object-oriented soft-
ware development. Throughout this book, the student is therefore exposed to both the 
theory and the practice of the Unifi ed Process.  

  • In Chapter 1, the strengths of the object-oriented paradigm are analyzed in depth.  
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  • The iterative-and-incremental life-cycle model has been introduced as early as possible, namely, 
in Chapter 2. Furthermore, as with all previous editions, numerous other life-cycle models are 
presented, compared, and contrasted. Particular attention is paid to agile processes.  

  • In Chapter 3 (“The Software Process”), the workfl ows (activities) and processes of the 
Unifi ed Process are introduced, and the need for two-dimensional life-cycle models is 
explained.  

  • A wide variety of ways of organizing software teams are presented in Chapter 4 (“Teams”), 
including teams for agile processes and for open-source software development.  

  • Chapter 5 (“The Tools of the Trade”) includes information on important classes of 
CASE tools.  

  • The importance of continual testing is stressed in Chapter 6 (“Testing”).  
  • Objects continue to be the focus of attention in Chapter 7 (“From Modules to Objects”).  
  • Design patterns remain a central focus of Chapter 8 (“Reusability and Portability”).  
  • The IEEE standard for software project management plans is again presented in 

Chapter 9 (“Planning and Estimating”).  
  • Chapter 11 (“Requirements”), Chapter 13 (“Object-Oriented Analysis”), and Chapter 14 

(“Design”) are largely devoted to the workfl ows (activities) of the Unifi ed Process. For 
obvious reasons, Chapter 12 (“Classical Analysis”) is largely unchanged.  

  • The material in Chapter 15 (“Implementation”) clearly distinguishes between imple-
mentation and integration.  

  • The importance of postdelivery maintenance is stressed in Chapter 16.  
  • Chapter 17 provides additional material on UML to prepare the student thoroughly for 

employment in the software industry. This chapter is of particular use to instructors who 
utilize this book for the two-semester software engineering course sequence. In the second 
semester, in addition to developing the team-based term project or a capstone project, the 
student can acquire additional knowledge of UML, beyond what is needed for this book.  

  • As before, there are two running case studies. The MSG Foundation case study and the 
Elevator Problem case study have been developed using the Unifi ed Process. As usual, 
Java and C++ implementations are available online at www.mhhe.com/schach.  

  • In addition to the two running case studies that are used to illustrate the complete life 
cycle, eight mini case studies highlight specifi c topics, such as the moving target prob-
lem, stepwise refi nement, design patterns, and postdelivery maintenance.  

  • In all the previous editions, I have stressed the importance of documentation, mainte-
nance, reuse, portability, testing, and CASE tools. In this edition, all these concepts are 
stressed equally fi rmly. It is no use teaching students the latest ideas unless they appreci-
ate the importance of the basics of software engineering.  

  • As in the seventh edition, particular attention is paid to object-oriented life-cycle mod-
els, object-oriented analysis, object-oriented design, management implications of the 
object-oriented paradigm, and the testing and maintenance of object-oriented software. 
Metrics for the object-oriented paradigm also are included. In addition, many briefer 
references are made to objects, a paragraph or even only a sentence in length. The reason 
is that the object-oriented paradigm is not just concerned with how the various phases 
are performed but rather permeates the way we think about software engineering. Object 
technology again pervades this book.  
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  • The software process is still the concept that underlies the book as a whole. To control the pro-
cess, we have to be able to measure what is happening to the project. Accordingly, the emphasis 
on metrics continues. With regard to process improvement, the material on the capability matu-
rity model (CMM), ISO/IEC 15504 (SPICE), and ISO/IEC 12207 has been retained.  

  • The book is still language independent. The few code examples are presented in C++ 
and Java, and I have made every effort to smooth over language-dependent details and 
ensure that the code examples are equally clear to C++ and Java users. For example, 
instead of using cout for C++ output and System.out.println for Java output, I have 
utilized the pseudocode instruction  print . (The one exception is the new case study, 
where complete implementation details are given in both C++ and Java, as before.)  

  • As in the seventh edition, this book contains over 600 references. I have selected current 
research papers as well as classic articles and books whose message remains fresh and rel-
evant. There is no question that software engineering is a rapidly moving fi eld, and students 
therefore need to know the latest results and where in the literature to fi nd them. At the same 
time, today’s cutting-edge research is based on yesterday’s truths, and I see no reason to 
exclude an older reference if its ideas are as applicable today as they originally were.  

  • With regard to prerequisites, it is assumed that the reader is familiar with a high-level 
programming language such as C, C#, C++, or Java. In addition, the reader is expected 
to have taken a course in data structures.     

  Why the Classical Paradigm Is Still Included 
  There is now almost unanimous agreement that the object-oriented paradigm is superior 
to the classical paradigm. Accordingly, many instructors who adopted the seventh edition 
of  Object-Oriented and Classical Software Engineering  chose to teach only the object-
oriented material in that book. However, when asked, instructors indicated that they prefer 
to adopt a text that includes the classical paradigm. 
  The reason is that, even though more and more instructors  teach  only the object-oriented 
paradigm, they still  refer  to the classical paradigm in class; many object-oriented techniques are 
hard for the student to understand unless that student has some idea of the classical techniques 
from which those object-oriented techniques are derived. For example, understanding entity-
class modeling is easier for the student who has been introduced, even superfi cially, to entity-
relationship modeling. Similarly, a brief introduction to fi nite state machines makes it easier for 
the instructor to teach statecharts. Accordingly, I have retained classical material in the eighth 
edition, so that instructors have classical material available for pedagogical purposes.   

  The Problem Sets 
  As in the seventh edition, this book has fi ve types of problems. First, there are running 
object-oriented analysis and design projects at the end of Chapters 11, 13, and 14. These 
have been included because the only way to learn how to perform the requirements, analy-
sis, and design workfl ows is from extensive hands-on experience. 
  Second, the end of each chapter contains a number of exercises intended to highlight key 
points. These exercises are self-contained; the technical information for all the exercises 
can be found in this book. 
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  Third, there is a software term project. It is designed to be solved by students working 
in teams of three, the smallest number of team members that cannot confer over a standard 
telephone. The term project comprises 15 separate components, each tied to the relevant 
chapter. For example, design is the topic of Chapter 14, so in that chapter the component of 
the term project is concerned with software design. By breaking a large project into smaller, 
well-defi ned pieces, the instructor can monitor the progress of the class more closely. The 
structure of the term project is such that an instructor may freely apply the 15 components 
to any other project that he or she chooses. 
  Because this book has been written for use by graduate students as well as upper-class 
undergraduates, the fourth type of problem is based on research papers in the software 
engineering literature. In each chapter, an important paper has been chosen; wherever pos-
sible, a paper related to object-oriented software engineering has been selected. The student 
is asked to read the paper and answer a question relating to its contents. Of course, the 
instructor is free to assign any other research paper; the For Further Reading section at the 
end of each chapter includes a wide variety of relevant papers. 
  The fi fth type of problem relates to the case study. This type of problem was fi rst intro-
duced in the third edition in response to a number of instructors who felt that their students 
learn more by modifying an existing product than by developing a new product from scratch. 
Many senior software engineers in the industry agree with that viewpoint. Accordingly, each 
chapter in which the case study is presented has problems that require the student to modify 
the case study in some way. For example, in one chapter the student is asked to redesign the 
case study using a different design technique from the one used for the case study. In another 
chapter, the student is asked what the effect would have been of performing the steps of the 
object-oriented analysis in a different order. To make it easy to modify the source code of the 
case study, it is available on the Web at www.mhhe.com/schach. 
  The website also has material for instructors, including a complete set of PowerPoint 
lecture notes and detailed solutions to all the exercises as well as to the term project.   

  Material on UML 
  This book makes substantial use of UML (Unifi ed Modeling Language). If the students do not 
have previous knowledge of UML, this material may be taught in two ways. I prefer to teach 
UML on a just-in-time basis; that is, each UML concept is introduced just before it is needed. 
The following table describes where the UML constructs used in this book are introduced. 

               Section in Which the Corresponding 
Construct  UML Diagram Is Introduced    

    Class diagram, note, inheritance (generalization),  Section 7.7
 aggregation, association, navigation triangle        
   Use case     Section 11.4.3   
   Use-case diagram, use-case description     Section 11.7   
   Stereotype     Section 13.1   
   Statechart     Section 13.6   
   Interaction diagram (sequence diagram,      Section 13.15      
 communication diagram)
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  Alternatively, Chapter 17 contains an introduction to UML, including material above and 
beyond what is needed for this book. Chapter 17 may be taught at any time; it does not depend 
on material in the fi rst 16 chapters. The topics covered in Chapter 17 are as follows: 

               Section in Which the Corresponding 
Construct  UML Diagram Is Introduced    

    Class diagram, aggregation, multiplicity,      Section 17.2   
 composition, generalization, association
   Note     Section 17.3   
   Use-case diagram     Section 17.4   
   Stereotype     Section 17.5   
   Interaction diagram     Section 17.6   
   Statechart     Section 17.7   
   Activity diagram     Section 17.8   
   Package     Section 17.9   
   Component diagram       Section 17.10   
   Deployment diagram       Section 17.11        

Online Resources
A website to accompany the text is available at www.mhhe.com/schach. The website 
features Java and C++ implementations as well as source code for the MSG case study for 
students. For instructors, lecture PowerPoints, detailed solutions to all exercises and the term 
project, and an image library are available. For details, contact your sales representative. 

Electronic Textbook Options
E-books are an innovative way for students to save money and create a greener environment 
at the same time. An e-book can save students about half the cost of a traditional textbook 
and offers unique features like a powerful search engine, highlighting, and the ability to 
share notes with classmates using e-books. 
 McGraw-Hill offers this text as an e-book. To talk about the e-book options, contact your 
McGraw-Hill sales representative or visit the site www.coursesmart.com to learn more. 
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1

 Chapter 1
The Scope of Software 
Engineering 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Defi ne what is meant by software engineering.  

  • Describe the classical software engineering life-cycle model.  

  • Explain why the object-oriented paradigm is now so widely accepted.  

  • Discuss the implications of the various aspects of software engineering.  

  • Distinguish between the classical and modern views of maintenance.  

  • Discuss the importance of continual planning, testing, and documentation.  

 •  Appreciate the importance of adhering to a code of ethics.      

  A well-known story tells of an executive who received a computer-generated bill for $0.00. 
After having a good laugh with friends about “idiot computers,” the executive tossed the 
bill away. A month later, a similar bill arrived, this time marked 30 days. Then came the 
third bill. The fourth bill arrived a month later, accompanied by a message hinting at pos-
sible legal action if the bill for $0.00 was not paid at once. 
  The fi fth bill, marked 120 days, did not hint at anything—the message was rude and 
forthright, threatening all manner of legal actions if the bill was not immediately paid. 
Fearful of his organization’s credit rating in the hands of this maniacal machine, the execu-
tive called an acquaintance who was a software engineer and related the whole sorry story. 
Trying not to laugh, the software engineer told the executive to mail a check for $0.00. This 
had the desired effect, and a receipt for $0.00 was received a few days later. The executive 
meticulously fi led it away in case at some future date the computer might allege that $0.00 
was still owed. 
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  This well-known story has a less well-known sequel. A few days later, the executive 
was summoned by his bank manager. The banker held up a check and asked, “Is this your 
check?” 
  The executive agreed that it was. 
  “Would you mind telling me why you wrote a check for $0.00?” asked the banker. 
  So the whole story was retold. When the executive had fi nished, the banker turned to 
him and she quietly asked, “Have you any idea what your check for $0.00 did to   our   com-
puter system?” 
  A computer professional can laugh at this story, albeit somewhat nervously. After all, 
every one of us has designed or implemented a product that, in its original form, would 
have resulted in the equivalent of sending dunning letters for $0.00. Up to now, we have 
always caught this sort of fault during testing. But our laughter has a hollow ring to it, 
because at the back of our minds is the fear that someday we will not detect the fault before 
the product is delivered to the customer. 
  A decidedly less humorous software fault was detected on November 9, 1979. The 
Strategic Air Command had an alert scramble when the worldwide military command 
and control system (WWMCCS) computer network reported that the Soviet Union 
had launched missiles aimed toward the United States [Neumann, 1980]. What actu-
ally happened was that a simulated attack was interpreted as the real thing, just as in 
the movie   WarGames   some 5 years later. Although the U.S. Department of Defense 
understandably has not given details about the precise mechanism by which test data 
were taken for actual data, it seems reasonable to ascribe the problem to a software 
fault. Either the system as a whole was not designed to differentiate between simula-
tions and reality or the user interface did not include the necessary checks for ensur-
ing that end users of the system would be able to distinguish fact from fiction. In other 
words, a software fault, if indeed the problem was caused by software, could have 
brought civilization as we know it to an unpleasant and abrupt end. (See Just in Case 
You Wanted to Know Box 1.1 for information on disasters caused by other software 
faults.) 
  Whether we are dealing with billing or air defense, much of our software is delivered 
late, over budget, and with residual faults, and does not meet the client’s needs. Software 
engineering is an attempt to solve these problems. In other words,   software engineering   
is a discipline whose aim is the production of fault-free software, delivered on time and 
within budget, that satisfi es the client’s needs. Furthermore, the software must be easy to 
modify when the user’s needs change. 
  The scope of software engineering is extremely broad. Some aspects of software engi-
neering can be categorized as mathematics or computer science; other aspects fall into the 
areas of economics, management, or psychology. To display the wide-reaching realm of 
software engineering, we now examine fi ve different aspects. 

  1.1 Historical Aspects 
  It is a fact that electric power generators fail, but far less frequently than payroll prod-
ucts. Bridges sometimes collapse but considerably less often than operating systems. In 
the belief that software design, implementation, and maintenance could be put on the same 
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 Just in Case You Wanted to Know Box 1.1 
 In the case of the WWMCCS network, disaster was averted at the last minute. However, 
the consequences of other software faults have been fatal. For example, between 1985 and 
1987, at least two patients died as a consequence of severe overdoses of radiation delivered 
by the Therac-25 medical linear accelerator [Leveson and Turner, 1993]. The cause was a 
fault in the control software. 
  Also, during the 1991 Gulf War, a Scud missile penetrated the Patriot antimissile shield 
and struck a barracks near Dhahran, Saudi Arabia. In all, 28 Americans were killed and 98 
wounded. The software for the Patriot missile contained a cumulative timing fault. The 
Patriot was designed to operate for only a few hours at a time, after which the clock was 
reset. As a result, the fault never had a signifi cant effect and therefore was not detected. 
In the Gulf War, however, the Patriot missile battery at Dhahran ran continuously for over 
100 hours. This caused the accumulated time discrepancy to become large enough to 
render the system inaccurate. 
  During the Gulf War, the United States shipped Patriot missiles to Israel for protection 
against the Scuds. Israeli forces detected the timing problem after only 8 hours and imme-
diately reported it to the manufacturer in the United States. The manufacturer corrected the 
fault as quickly as it could, but tragically, the new software arrived the day after the direct 
hit by the Scud [Mellor, 1994]. 
  Fortunately, it is extremely rare for death or serious injury to be caused by a software 
fault. However, one fault can cause major problems for thousands and thousands of people. 
For example, in February 2003, a software fault resulted in the U.S. Treasury Department 
mailing 50,000 Social Security checks that had been printed without the name of the ben-
efi ciary, so the checks could not be deposited or cashed [St. Petersburg Times Online, 
2003]. In April 2003, borrowers were informed by SLM Corp. (commonly known as Sallie 
Mae) that the interest on their student loans had been miscalculated as a consequence of a 
software fault from 1992 but detected only at the end of 2002. Nearly 1 million borrowers 
were told that they would have to pay more, either in the form of higher monthly payments 
or extra interest payments on loans extending beyond their original 10-year terms [GJSenti-
nel.com, 2003]. Both faults were quickly corrected, but together they resulted in nontrivial 
fi nancial consequences for about a million people. 
  The Belgian government overestimated its 2007 budget by €883,000,000 (more than 
$1,100,000,000 at time of writing). This mistake was caused by a software fault compounded 
by the manual overriding of an error-detection mechanism [La Libre Online, 2007a; 
2007b]. The Belgian tax authorities used scanners and optical character recognition soft-
ware to process tax returns. If the software encountered an unreadable return, it recorded 
the taxpayer’s income as €99,999,999.99 (over $125,000,000). Presumably, the “magic 
number” €99,999,999.99 was chosen to be quickly detected by employees of the data pro-
cessing department, so that the return in question would then be processed manually. This 
worked fi ne when the tax returns were analyzed for tax assessment purposes, but not when 
the tax returns were reanalyzed for budgetary purposes. Ironically, the software product did 
have fi lters to detect this sort of problem, but the fi lters were manually bypassed to speed 
up processing. 
  There were at least two faults in the software. First, the software engineers assumed that 
there would always be adequate manual scrutiny before further processing of the data. 
Second, the software allowed the fi lters to be manually overridden. 
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footing as traditional engineering disciplines, a NATO study group in 1967 coined the term 
  software engineering  . The claim that building software is similar to other engineering tasks 
was endorsed by the 1968 NATO Software Engineering Conference held in Garmisch, 
Germany [Naur, Randell, and Buxton, 1976]. This endorsement is not too surprising; the 
very name of the conference refl ected the belief that software production should be an 
engineering-like activity (but see Just in Case You Wanted to Know Box 1.2). A conclusion 
of the conferees was that software engineering should use the philosophies and paradigms 
of established engineering disciplines to solve what they termed the   software crisis  , 
namely, that the quality of software generally was unacceptably low and that deadlines and 
budgets were not being met. 
  Despite many software success stories, an unacceptably large proportion of software 
products still are being delivered late, over budget, and with residual faults. For exam-
ple, the Standish Group is a research fi rm that analyzes software development projects. 
Their study of development projects completed in 2006 is summarized in  Figure 1.1  
[Rubenstein, 2007]. Only 35 percent of the projects were successfully completed, whereas 
19 percent were canceled before completion or were never implemented. The remaining 
46 percent of the projects were completed and installed on the client’s computer. How-
ever, those projects were over budget, late, or had fewer features and functionality than 
initially specifi ed. In other words, during 2006, just over one in three software develop-
ment projects was successful; almost half the projects displayed one or more symptoms 
of the software crisis. 

 As stated in Section 1.1, the aim of the Garmisch conference was to make software develop-
ment as successful as traditional engineering. But by no means are all traditional engineer-
ing projects successful. For example, consider bridge building. 
  In July 1940, construction of a suspension bridge over the Tacoma Narrows, in Wash-
ington State, was completed. Soon after, it was discovered that the bridge swayed and 
buckled dangerously in windy conditions. Approaching cars would alternately disappear 
into valleys and then reappear as that part of the bridge rose again. From this behavior, 
the bridge was given the nickname “Galloping Gertie.” Finally, on November 7, 1940, 
the bridge collapsed in a 42 mile per hour wind; fortunately, the bridge had been closed 
to all traffi c some hours earlier. The last 15 minutes of its life were captured on fi lm, now 
stored in the U.S. National Film Registry. 
  A somewhat more humorous bridge construction failure was observed in January 
2004. A new bridge was being built over the Upper Rhine River near the German 
town of Laufenberg, to connect Germany and Switzerland. The German half of the 
bridge was designed and constructed by a team of German engineers; the Swiss half 
by a Swiss team. When the two parts were connected, it immediately became appar-
ent that the German half was some 21 inches (54 centimeters) higher than the Swiss 
half. Major reconstruction was needed to correct the problem, which was caused by 
wrongly correcting for the fact that “sea level” is taken by Swiss engineers to be the 
average level of the Mediterranean Sea, whereas German engineers use the North Sea. 
To compensate for the difference in sea levels, the Swiss side should have been raised 
10.5 inches. Instead, it was lowered 10.5 inches, resulting in the gap of 21 inches 
[Spiegel Online, 2004]. 

 Just in Case You Wanted to Know Box 1.2 
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  The fi nancial implications of the software crisis are horrendous. In a survey conducted 
by the Cutter Consortium [2002], the following was reported:

  •  An astounding 78 percent of information technology organizations have been involved 
in disputes that ended in litigation.  

  • In 67 percent of those cases, the functionality or performance of the software products 
as delivered did not measure up to the claims of the software developers.  

  • In 56 percent of those cases, the promised delivery date slipped several times.  
  • In 45 percent of those cases, the faults were so severe that the software product was 

unusable.    

  It is clear that far too little software is delivered on time, within budget, fault free, and 
meeting its client’s needs. To achieve these goals, a software engineer has to acquire a broad 
range of skills, both technical and managerial. These skills have to be applied not just to 
programming but to every step of software production, from requirements to postdelivery 
maintenance. 
  That the software crisis still is with us, some 40 years later, tells us two things. First, the 
  software process ,  that is, the way we produce software, has its own unique properties and 
problems, even though it resembles traditional engineering in many respects. Second, the 
software crisis perhaps should be renamed the   software depression  , in view of its long 
duration and poor prognosis. 
  We now consider economic aspects of software engineering.   

  1.2 Economic Aspects 
  A software organization currently using coding technique CT old  discovers that new coding 
technique CT new  would result in code being produced in only nine-tenths of the time needed 
by CT old  and, hence, at nine-tenths the cost. Common sense seems to dictate that CT new  is 
the appropriate technique to use. In fact, although common sense certainly dictates that 
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the faster technique is the technique of choice, the economics of software engineering may 
imply the opposite. 

  •  One reason is the cost of introducing new technology into an organization. The fact 
that coding is 10 percent faster when technique CT new  is used may be less important 
than the costs incurred in introducing CT new  into the organization. It may be necessary 
to complete two or three projects before recouping the cost of training. Also, while 
attending courses on CT new , software personnel are unable to do productive work. Even 
when they return, a steep learning curve may be involved; it may take many months of 
practice with CT new  before software professionals become as profi cient with CT new  as 
they currently are with CT old . Therefore, initial projects using CT new  may take far longer 
to complete than if the organization had continued to use CT old . All these costs need to 
be taken into account when deciding whether to change to CT new .  

  • A second reason why the economics of software engineering may dictate that CT old  
be retained is the maintenance consequence. Coding technique CT new  indeed may be 
10 percent faster than CT old , and the resulting code may be of comparable quality from 
the viewpoint of satisfying the client’s current needs. But the use of technique CT new  
may result in code that is diffi cult to maintain, making the cost of CT new  higher over 
the life of the product. Of course, if the software developer is not responsible for any 
postdelivery maintenance, then, from the viewpoint of just that developer, CT new  is a 
more attractive proposition. After all, the use of CT new  would cost 10 percent less. The 
client should insist that technique CT old  be used and pay the higher initial costs with the 
expectation that the total lifetime cost of the software will be lower. Unfortunately, often 
the sole aim of both the client and the software provider is to produce code as quickly as 
possible. The long-term effects of using a particular technique generally are ignored in 
the interests of short-term gain. Applying economic principles to software engineering 
requires the client to choose techniques that reduce long-term costs.   

  This example deals with coding, which constitutes less than 10 percent of the software 
development effort. The economic principles, however, apply to all other aspects of soft-
ware production as well. 
  We now consider the importance of maintenance.   

  1.3 Maintenance Aspects 
  In this section, we describe maintenance within the context of the software life cycle. 
A   life-cycle model   is a description of the steps that should be performed when build-
ing a software product. Many different life-cycle models have been proposed; several of 
them are described in  Chapter 2 . Because it is almost always easier to perform a sequence 
of smaller tasks than one large task, the overall life-cycle model is broken into a series of 
smaller steps, called   phases  . The number of phases varies from model to model—from 
as few as four to as many as eight. In contrast to a life-cycle model, which is a theoretical 
description of what should be done, the actual series of steps performed on a specifi c soft-
ware product, from concept exploration through fi nal retirement, is termed the   life cycle   of 
that product. In practice, the phases of the life cycle of a software product may not be car-
ried out exactly as specifi ed in the life-cycle model, especially when time and cost overruns 
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are encountered. It has been claimed that more software projects have gone wrong for 
lack of time than for all other reasons combined [Brooks, 1975]. 
  Until the end of the 1970s, most organizations were producing software using as their 
life-cycle model what now is termed the   waterfall model  . There are many variations 
of this model, but by and large, a product developed using this classical life-cycle model 
goes through the six phases shown in  Figure 1.2 . These phases probably do not correspond 
exactly to the phases of any one particular organization, but they are suffi ciently close to 
most practices for the purposes of this book. Similarly, the precise name of each phase 
varies from organization to organization. The names used here for the various phases have 
been chosen to be as general as possible in the hope that the reader will feel comfortable 
with them. 

   1.   Requirements phase    .   During the   requirements phase  , the concept is explored and 
refi ned, and the client’s requirements are elicited.  

  2.   Analysis (specifi cation) phase.   The client’s requirements are analyzed and presented 
in the form of the   specifi cation document  , “what the product is supposed to do.”  
The   analysis phase   sometimes is called the   specifi cation phase.   At the end of this 
phase, a plan is drawn up, the   software project management plan  , describing the 
proposed software development in full detail.  

  3.   Design phase  . The specifi cations undergo two consecutive design procedures during the 
  design phase  . First comes   architectural design  , in which the product as a whole is 
broken down into components, called   modules  . Then, each module is designed; this 
procedure is termed   detailed design  . The two resulting   design documents   describe 
“how the product does it.”  

  4.   Implementation phase  . The various components undergo   coding   and testing (  unit 
testing  ) separately. Then, the components of the product are combined and tested as a 
whole; this is termed   integration  . When the developers are satisfi ed that the product 
functions correctly, it is tested by the client (  acceptance testing  ). The   implementa-
tion phase   ends when the product is accepted by the client and installed on the client’s 
computer. (We see in  Chapter 15  that coding and integration should be performed in 
parallel.)  

  5.   Postdelivery maintenance.   The product is used to perform the tasks for which it 
was developed. During this time, it is maintained.   Postdelivery maintenance   
includes all changes to the product once the product has been delivered and installed 
on the client’s computer and passes its acceptance test. Postdelivery maintenance 
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includes   corrective maintenance   (or   software repair  ), which consists of the 
removal of residual faults while leaving the specifications unchanged, as well as 
  enhancement   (or software update), which consists of changes to the specifi-
cations and the implementation of those changes. There are, in turn, two types 
of enhancement. The first is   perfective maintenance  , changes that the client 
thinks will improve the effectiveness of the product, such as additional functional-
ity or decreased response time. The second is   adaptive maintenance  , changes 
made in response to changes in the environment in which the product operates, 
such as a new hardware/operating system or new government regulations. (For 
an insight into the three types of postdelivery maintenance, see Just in Case You 
Wanted to Know Box 1.3.)   

   6.    Retirement  .   Retirement   occurs when the product is removed from service. This occurs 
when the functionality provided by the product no longer is of any use to the client 
organization.   

  Now we examine the defi nition of   maintenance   in greater detail. 

 Just in Case You Wanted to Know Box 1.3 
 One of the most widely quoted results in software engineering is that 17.4 percent of 
the postdelivery maintenance effort is corrective in nature; 18.2 percent is adaptive; 60.3 
percent is perfective; and 4.1 percent can be categorized as “other.” This result is taken 
from a paper published in 1978 [Lientz, Swanson, and Tompkins, 1978]. 
  However, the result in that paper was not derived from   measurements   on maintenance 
data. Instead, the authors conducted a survey of maintenance managers who were asked 
to   estimate   how much time was devoted to each category within their organization as 
a whole and to state how confi dent they felt about their estimate. More specifi cally, the 
participating software maintenance managers were asked whether their response was 
based on reasonably accurate data, minimal data, or no data; 49.3 percent stated that 
their answer was based on reasonably accurate data, 37.7 percent on minimal data, and 
8.7 percent on no data. 
  In fact, one should seriously question whether any respondents had “reasonably 
accurate data” regarding the percentage of time devoted to the categories of mainte-
nance included in the survey; most of them probably did not have even “minimal data.”  
In that survey, participants were asked to state what percentage of maintenance consisted 
of items like “emergency fi xes” or “routine debugging”; from this raw information, the 
percentage of adaptive, corrective, and perfective maintenance was deduced. Software 
engineering was just starting to emerge as a discipline in 1978, and it was the exception 
for software maintenance managers to collect the detailed information needed to re-
spond to such a survey.  Indeed, in modern terminology, in 1978 virtually every organiza-
tion was still at CMM level 1 (see Section 3.13). 
  Hence, we have strong grounds for questioning whether the actual distribution of post-
delivery maintenance activities back in 1978 was anything like the estimates of the man-
agers who took part in the survey.  The distribution of maintenance activities is certainly 
nothing like that today.  For example, results on actual maintenance data for the Linux 
kernel [Schach et al., 2002] and the gcc compiler [Schach et al., 2003] show that at least 
50 percent of postdelivery maintenance is corrective, as opposed to the 17.4 percent fi gure 
claimed in the survey. 
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  1.3.1 Classical and Modern Views of Maintenance 
 In the 1970s, software production was viewed as consisting of two distinct activities 
performed sequentially:   development   followed by   maintenance  . Starting from scratch, the 
software product was developed, and then installed on the client’s computer. Any change 
to the software after installation on the client’s computer and acceptance by the client, 
whether to fi x a residual fault or extend the functionality, constituted classical maintenance  
[IEEE 610.12, 1990]. Hence, the way that software was developed classically can be de-
scribed as the   development-then-maintenance model  . 
  This is a   temporal defi nition  ; that is, an activity is classifi ed as development or main-
tenance depending on when it is performed. Suppose that a fault in the software is detected 
and corrected a day after the software has been installed. By defi nition, this constitutes 
classical maintenance. But if the identical fault is detected and corrected the day before 
the software is installed, in terms of the defi nition, this constitutes classical development. 
Now suppose that a software product has just been installed but the client wants to increase 
the functionality of the software product. Classically, that would be described as perfec-
tive maintenance. However, if the client wants the same change to be made just before the 
software product is installed, this would be classical development. Again, there is no differ-
ence whatsoever between the nature of the two activities, but classically one is considered 
development, the other perfective maintenance. 
  In addition to such inconsistencies, two other reasons explain why the development-
then-maintenance model is unrealistic today:

   1. Nowadays, it is certainly not unusual for construction of a product to take a year or 
more. During this time, the client’s requirements may well change. For example, the 
client might insist that the product now be implemented on a faster processor, which 
has just become available. Alternatively, the client organization may have expanded into 
Belgium while development was under way, and the product now has to be modifi ed 
so it can also handle sales in Belgium. To see how a change in requirements can affect 
the software life cycle, suppose that the client’s requirements change while the design 
is being developed. The software engineering team has to suspend development and 
modify the specifi cation document to refl ect the changed requirements. Furthermore, it 
then may be necessary to modify the design as well, if the changes to the specifi cations 
necessitate corresponding changes to those portions of the design already completed. 
Only when these changes have been made can development proceed. In other words, 
developers have to perform “maintenance” long before the product is installed.  

  2. A second problem with the classical development-then-maintenance model arose as a 
result of the way in which we now construct software. In classical software engineering, 
a characteristic of development was that the development team built the target product 
starting from scratch. In contrast, as a consequence of the high cost of software produc-
tion today, wherever possible developers try to reuse parts of existing software products 
in the software product to be constructed (reuse is discussed in detail in  Chapter 8 ). 
Therefore, the development-then-maintenance model is inappropriate today because 
reuse is so widespread.    

  A more realistic way of looking at maintenance is that given in the standard for life-
cycle processes published by the International Organization for Standardization (ISO) 

Chapter 1  The Scope of Software Engineering  9

sch76183_ch01_001-034.indd   9sch76183_ch01_001-034.indd   9 04/06/10   12:30 PM04/06/10   12:30 PM



and the International Electrotechnical Commission (IEC). That is, maintenance is the 
process that occurs when “software undergoes modifi cations to code and associated 
documentation due to a problem or the need for improvement or adaptation” [ISO/IEC 
12207, 1995]. In terms of this   operational defi nition  , maintenance occurs whenever 
a fault is fi xed or the requirements change, irrespective of whether this takes place 
before or after installation of the product. The Institute for Electrical and Electronics 
Engineers (IEEE) and the Electronic Industries Alliance (EIA) subsequently adopted 
this defi nition [IEEE/EIA 12207.0-1996, 1998] when IEEE standards were modifi ed to 
comply with ISO/IEC 12207. (See Just in Case You Wanted to Know Box 1.4 for more 
on ISO.) 
  In this book, the term   postdelivery maintenance   refers to the 1990 IEEE defi nition of 
maintenance as any change to the software after it has been delivered and installed on 
the client’s computer, and   modern maintenance   or just   maintenance   refers to the 1995 
ISO/IEC defi nition of corrective, perfective, or adaptive activities performed at any time. 
Postdelivery maintenance is therefore a subset of (modern) maintenance.  

  1.3.2 The Importance of Postdelivery Maintenance 
 It is sometimes said that only bad software products undergo postdelivery mainte-
nance. In fact, the opposite is true: Bad products are thrown away, whereas good prod-
ucts are repaired and enhanced, for 10, 15, or even 20 years. Furthermore, a software 
product is a model of the real world, and the real world is perpetually changing. As 
a consequence, software has to be maintained constantly for it to remain an accurate 
reflection of the real world. 
  For instance, if the sales tax rate changes from 6 to 7 percent, almost every software 
product that deals with buying or selling has to be changed. Suppose the product contains 
the C++ statement

       const fl oat salesTax � 6.0;

or the equivalent Java statement

       public static fi nal fl oat salesTax � (fl oat) 6.0;

 Just in Case You Wanted to Know Box 1.4 
 The International Organization for Standardization (ISO) is a network of the national stan-
dards institutes of 147 countries, with a central secretariat based in Geneva, Switzerland.  
ISO has published over 13,500 internationally accepted standards, ranging from standards 
for photographic fi lm speed (“ISO number”) to many of the standards presented in this 
book. For example, ISO 9000 is discussed in  Chapter 3 . 
  ISO is not an acronym. It is derived from the Greek word �����, meaning   equal  , the 
root of the English prefi x   iso  - found in words such as   isotope  ,   isobar  , and   isosceles  . The 
International Organization for Standardization chose ISO as the short form of its name to 
avoid having multiple acronyms arising from the translation of the name “International 
Organization for Standardization” into the languages of the different member countries. 
Instead, to achieve international standardization, a universal short form of its name was 
chosen.             
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declaring that salesTax is a fl oating-point constant initialized to the value 6.0. In this case, 
maintenance is relatively simple. With the aid of a text editor the value 6.0 is replaced 
by 7.0 and the code is recompiled and relinked. However, if instead of using the name 
salesTax, the actual value 6.0 has been used in the product wherever the value of the sales 
tax is invoked, then such a product is extremely diffi cult to modify. For example, there may 
be occurrences of the value 6.0 in the source code that should be changed to 7.0 but are 
overlooked, or instances of 6.0 that do not refer to sales tax but are incorrectly changed to 
7.0. Finding these faults almost always is diffi cult and time consuming. In fact, with some 
software, it might be less expensive in the long run to throw away the product and recode 
it rather than try to determine which of the many constants need to be changed and how to 
make the modifi cations. 
  The real-time real world also is constantly changing. The missiles with which a jet fi ghter 
is armed may be replaced by a new model, requiring a change to the weapons control com-
ponent of the associated avionics system. A six-cylinder engine is to be offered as an option 
in a popular four-cylinder automobile; this implies changing the onboard computers that 
control the fuel injection system, timing, and so on. 
  But just how much time (= money) is devoted to postdelivery maintenance? The pie 
chart in  Figure 1.3(a)  shows that, some 40 years ago, approximately two-thirds of total 
software costs went to postdelivery maintenance; the data were obtained by averaging 
information from various sources, including [Elshoff, 1976], [Daly, 1977], [Zelkowitz, 
Shaw, and Gannon, 1979], and [Boehm, 1981]. Newer data show that an even larger pro-
portion is devoted to postdelivery maintenance. Many organizations devote 70–80 percent 
or more of their software budget to postdelivery maintenance [Yourdon, 1992; Hatton, 
1998], as shown in  Figure 1.3(b) . 
  Surprisingly, the average cost percentages of the classical development phases have 
hardly changed. This is shown in  Figure 1.4 , which compares the data used to derive 
 Figure 1.3(a)  with more recent data on 132 Hewlett-Packard projects [Grady, 1994]. 
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  FIGURE 1.4   A comparison of the approximate average cost percentages of the classical 
development phases for various projects between 1976 and 1981 and for 132 more recent Hewlett-
Packard projects.          

        Various Projects     132 More Recent   
        between 1976 and 1981     Hewlett-Packard Projects    

      Requirements and analysis     21%     18%   
      (specifi cation) phases             
     Design phase     18     19   
     Implementation phase             
      Coding (including unit testing)     36     34   
      Integration     24     29       

  Now consider again the software organization currently using coding technique CT old  
that learns that CT new  will reduce coding time by 10 percent. Even if CT new  has no ad-
verse effect on maintenance, an astute software manager will think twice before chang-
ing coding practices. The entire staff has to be retrained, new software development tools 
purchased, and perhaps additional staff members hired who are experienced in the new 
technique. All this expense and disruption has to be endured for a decrease of at most 0.85 
percent in software costs because, as shown in  Figures 1.3(b)  and  1.4 , coding together 
with unit testing constitutes on average only 34 percent of 25 percent or 8.5 percent of 
total software costs. 
  Now suppose a new technique that reduces postdelivery maintenance costs by 10 percent 
is developed. This probably should be introduced at once, because on average, it will reduce 
overall costs by 7.5 percent. The overhead involved in changing to this technique is a small 
price to pay for such large overall savings. 
  Because postdelivery maintenance is so important, a major aspect of software engineer-
ing consists of those techniques, tools, and practices that lead to a reduction in postdelivery 
maintenance costs.    

  1.4 Requirements, Analysis, and Design Aspects 
  Software professionals are human and therefore sometimes make a mistake while develop-
ing a product. As a result, there will be a fault in the software. If the mistake is made while 
eliciting the requirements, the resulting fault will probably also appear in the specifi cations, 
the design, and the code. Clearly, the earlier we correct a fault, the better. 
  The relative costs of fi xing a fault at various phases in the classical software life cycle are 
shown in  Figure 1.5  [Boehm, 1981]. The fi gure refl ects data from IBM [Fagan, 1974], GTE 
[Daly, 1977], the Safeguard project [Stephenson, 1976], and some smaller TRW projects 
[Boehm, 1980]. The solid line in  Figure 1.5  is the best fi t for the data relating to the larger 
projects, and the dashed line is the best fi t for the smaller projects. For each of the phases 
of the classical software life cycle, the corresponding relative cost to detect and correct a 
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fault is depicted in  Figure 1.6 . Each step on the solid line in  Figure 1.6  is constructed by 
taking the corresponding point on the solid straight line of  Figure 1.5  and plotting the data 
on a linear scale. 
  Suppose it costs $40 to detect and correct a specific fault during the design phase. 
From the solid line in  Figure 1.6  (projects between 1974 and 1980), that same fault 
would cost only about $30 to fix during the analysis phase. But during postdelivery 
maintenance, that fault would cost around $2000 to detect and correct. Newer data 
show that now it is even more important to detect faults early. The dashed line in 
 Figure 1.6  shows the cost of detecting and correcting a fault during the development 
of system software for the IBM AS/400 [Kan et al., 1994]. On average, the same 
fault would have cost $3680 to fix during postdelivery maintenance of the AS/400 
software. 
  The reason that the cost of correcting a fault increases so steeply is related to what has to 
be done to correct a fault. Early in the development life cycle, the product essentially exists 
only on paper, and correcting a fault may simply mean making a change to a document. 
The other extreme is a product already delivered to a client. At the very least, correcting 
a fault at that time means editing the code, recompiling and relinking it, and then care-
fully testing that the problem is solved. Next, it is critical to check that making the change 
has not created a new problem elsewhere in the product. All the relevant documentation, 
including manuals, needs to be updated. Finally, the corrected product must be delivered 
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 FIGURE 1.5     The relative cost of fi xing a fault at each phase of the classical software life cycle. 
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© 1981, p. 40. Adapted by permission of Prentice Hall, Inc.,   Englewood Cliffs  , NJ.) 
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and reinstalled. The moral of the story is this: We must fi nd faults early or else it will cost us 
money. We therefore should employ techniques for detecting faults during the requirements 
and analysis (specifi cation) phases. 
  There is a further need for such techniques. Studies have shown [Boehm, 1979] that 
between 60 and 70 percent of all faults detected in large projects are requirements, 
analysis, or design faults. Newer results from inspections bear out this preponderance 
of requirements, analysis, or design faults (an inspection is a meticulous examination 
of a document by a team, as described in Section 6.2.3). During 203 inspections of Jet 
Propulsion Laboratory software for the NASA unmanned interplanetary space pro-
gram, on average, about 1.9 faults were detected per page of a specifi cation document, 
0.9 faults per page of a design, but only 0.3 faults per page of code [Kelly, Sherif, and 
Hops, 1992]. 
  Therefore it is important that we improve our requirements, analysis, and design tech-
niques, not only so that faults can be found as early as possible but also because require-
ments, analysis, and design faults constitute such a large proportion of all faults. Just as the 
example in Section 1.3 showed that reducing postdelivery maintenance costs by 10 percent 
reduces overall costs by about 7.5 percent, reducing requirements, analysis, and design 
faults by 10 percent reduces the overall number of faults by 6–7 percent. 
  That so many faults are introduced early in the software life cycle highlights another 
important aspect of software engineering: techniques that yield better requirements, speci-
fi cations, and designs. 
  Most software is produced by a team of software engineers rather than by a single indi-
vidual responsible for every aspect of the development and maintenance life cycle. We now 
consider the implications of this.   

14  Chapter 1  The Scope of Software Engineering
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  1.5 Team Development Aspects 
  The cost of hardware continues to decrease rapidly. A mainframe computer of the 1950s 
that cost in excess of a million preinfl ation dollars was considerably less powerful in every 
way than a laptop computer of today costing less than $1000. As a result, organizations easily 
can afford hardware that can run large products, that is, products too large (or too complex) 
to be implemented by one person within the allowed time constraints. For example, if a 
product has to be delivered within 18 months but would take a single software profes-
sional 15 years to complete, then the product must be developed by a team. However, team 
development leads to interfacing problems among code components and communication 
problems among team members. 
  For example, Jeff and Juliet code modules p and q, respectively, where module p 
calls module q. When Jeff codes p, he inserts a call to q with fi ve arguments in the 
argument list. Juliet codes q with fi ve arguments, but in a different order from those of 
Jeff. Some software tools, such as the Java interpreter and loader, or   lint   for C (Section 
8.11.4), detect such a type violation but only if the interchanged arguments are of dif-
ferent types; if they are of the same type, then the problem may not be detected for a 
long period of time. It may be debated that this is a design problem, and if the modules 
had been more carefully designed, this problem would not have happened. That may be 
true, but in practice a design often is changed after coding commences, and notifi cation 
of a change may not be distributed to all members of the development team. Therefore, 
when a design that affects two or more programmers has been changed, poor com-
munication can lead to the interface problems Jeff and Juliet experienced. This sort of 
problem is less likely to occur when only one individual is responsible for every aspect 
of the product, as was the case before powerful computers that can run huge products 
became affordable. 
  But interfacing problems are merely the tip of the iceberg when it comes to problems 
that can arise when software is developed by teams. Unless the team is properly organized, 
an inordinate amount of time can be wasted in conferences between team members. Sup-
pose that a product takes a single programmer 1 year to complete. If the same task is 
assigned to a team of six programmers, the time for completing the task frequently is closer 
to 1 year than the expected 2 months, and the quality of the resulting code may well be 
lower than if the entire task had been assigned to one individual (see Section 4.1). Because 
a considerable proportion of today’s software is developed and maintained by teams, the 
scope of software engineering must include techniques for ensuring that teams are properly 
organized and managed. 
  As has been shown in the preceding sections, the scope of software engineering is 
extremely broad. It includes every step of the software life cycle, from requirements to 
postdelivery retirement. It also includes human aspects, such as team organization; eco-
nomic aspects; and legal aspects, such as copyright law. All these aspects implicitly are 
incorporated in the defi nition of software engineering given at the beginning of this chap-
ter, that software engineering is a discipline whose aim is the production of fault-free soft-
ware delivered on time, within budget, and satisfying the user’s needs. 
  We return to the classical phases of  Figure 1.2  to ask why there is no planning, testing, 
or documentation phase.   
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  1.6 Why There Is No Planning Phase 
  Clearly it is impossible to develop a software product without a plan. Accordingly, it appears 
to be essential to have a   planning phase   at the very beginning of the project. 
  The key point is that, until it is known exactly what is to be developed, there is 
no way an accurate, detailed plan can be drawn up. Therefore, three types of plan-
ning activities take place when a software product is developed using the classical 
paradigm:

   1. At the beginning of the project, preliminary planning takes place for managing the 
requirements and analysis phases.  

  2. Once what is going to be developed is known precisely, the   software project manage-
ment plan   (SPMP) is drawn up. This includes the budget, staffi ng requirements, and 
detailed schedule. The earliest we can draw up the project management plan is when the 
specifi cation document has been approved by the client, that is, at the end of the analysis 
phase. Until that time, planning has to be preliminary and partial.  

  3. All through the project, management needs to monitor the SPMP and be on the watch 
for any deviation from the plan.    

  For example, suppose that the SPMP for a specifi c project states that the project as a 
whole will take 16 months and that the design phase will take 4 of those months. After a 
year, management notices that the project as a whole seems to be progressing much more 
slowly than anticipated. A detailed investigation shows that, so far, 8 months have been 
devoted to the design phase, which is still far from complete. The project almost certainly 
will have to be abandoned, and the funds spent to date are wasted. Instead, management 
should have tracked progress by phase, and noticed, after at most 2 months, a serious 
problem in the design phase. At that time, a decision could have been made how best to 
proceed. The usual initial step in such a situation is to call in a consultant to determine if 
the project is feasible and to determine whether the design team is competent to carry out 
the task or the risk of proceeding is too great. Based on the report of the consultant, vari-
ous alternatives are now considered, including reducing the scope of the target product, 
and then designing and implementing a less ambitious one. Only if all other alternatives 
are considered unworkable does the project have to be canceled. In the case of the specifi c 
project, this cancellation would have taken place some 6 months earlier if management 
had monitored the plan closely, saving a considerable sum of money. 
  In conclusion, there is no separate planning phase. Instead, planning activities are car-
ried out all through the life cycle. However, there are times when planning activities pre-
dominate. These include the beginning of the project (preliminary planning) and directly 
after the specifi cation document has been signed off on by the client (software project 
management plan).   

  1.7 Why There Is No Testing Phase 
  It is essential to check a software product meticulously after it has been developed. 
Accordingly, it is reasonable to ask why there is no testing phase after the product has been 
implemented. 

16  Chapter 1  The Scope of Software Engineering
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  Unfortunately, checking a software product once it is ready to be delivered to the client 
is far too late. For instance, if there is a fault in the specifi cation document, this fault will 
have been carried forward into the design and implementation. There are times in the soft-
ware process when testing is carried out almost to the total exclusion of other activities. This 
occurs toward the end of each phase (  verifi cation  ) and is especially true before the product 
is handed over to the client (  validation  ). Although there are times when testing predomi-
nates, there should never be times when no testing is being performed. If testing is treated as 
a separate (  testing  )   phase  , then there is a very real danger that testing will not be carried out 
constantly throughout every phase of the product development and maintenance process. 
  But even this is not enough. What is needed is continual checking of a software product. 
Meticulous checking should automatically accompany every software development and 
maintenance activity. A separate testing phase is incompatible with the goal of ensuring 
that a software product is as fault free as possible at all times. 
  Every software development organization should contain an independent group whose 
primary responsibility is to ensure that the delivered product is what the client needs and 
that the product has been built correctly in every way. This group is called the   software 
quality assurance   (SQA) group. The   quality   of software is the extent to which it meets 
its specifi cations. Quality and software quality assurance are described in more detail in 
 Chapter 6 , as is the role of SQA in setting and enforcing standards.   

  1.8 Why There Is No Documentation Phase 
  Just as there should never be a separate planning phase or testing phase, there also should 
never be a separate   documentation phase  . On the contrary, at all times, the documenta-
tion of a software product must be complete, correct, and up to date. For instance, during 
the analysis phase, the specifi cation document must refl ect the current version of the speci-
fi cations, and this is also true for the other phases. 

   1. One reason why it is essential to ensure that the documentation is always up to date is 
the large turnover in personnel in the software industry. For example, suppose that the 
design documentation has not been kept current and the chief designer leaves to take 
another job. It is now extremely hard to update the design document to refl ect all the 
changes made while the system was being designed.  

  2. It is almost impossible to perform the steps of a specifi c phase unless the documentation 
of the previous phase is complete, correct, and up to date. For instance, an incomplete 
specifi cation document must inevitably result in an incomplete design and then in an 
incomplete implementation.  

  3. It is virtually impossible to test whether a software product is working correctly unless 
documents are available that state how that software product is supposed to behave.  

  4. Maintenance is almost impossible unless there is a complete and correct set of docu-
mentation that describes precisely what the current version of the product does.   

  Therefore, just as there is no separate planning phase or testing phase, there is no sepa-
rate documentation phase. Instead, planning, testing, and documentation should be activi-
ties that accompany all other activities while a software product is being constructed. 
  Now we examine the object-oriented paradigm.   
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  1.9 The Object-Oriented Paradigm 
  Before 1975, most software organizations used no specifi c techniques; each individual 
worked his or her own way. Major breakthroughs were made between approximately 1975 
and 1985, with the development of the so-called   structured   or   classical paradigm  . The 
techniques constituting the classical paradigm include structured systems analysis (Section 
12.3), data fl ow analysis (Section 14.3), structured programming, and structured testing 
(Section 15.13.2). These techniques seemed extremely promising when fi rst used. How-
ever, as time passed, they proved to be somewhat less successful in two respects:

   1. The techniques sometimes were unable to cope with the increasing size of software 
products. That is, the classical techniques were adequate when dealing with small-scale 
products (typically 5000 lines of code) or even medium-scale products of 50,000 lines 
of code. Today, however, large-scale products of 500,000 lines of code are relatively 
common; even products of 5 million or more lines of code are not considered unusual. 
However, the classical techniques frequently could not scale up suffi ciently to handle the 
development of today’s larger products.  

  2. The classical paradigm did not live up to earlier expectations during postdelivery main-
tenance. A major driving force behind the development of the classical paradigm some 
40 years ago was that, on average, two-thirds of the software budget was being devoted 
to postdelivery maintenance (see  Figure 1.3 ). Unfortunately, the classical paradigm has 
not solved this problem; as pointed out in Section 1.3.2, many organizations still spend 
70–80 percent or more of their time and effort on postdelivery maintenance [Yourdon, 
1992; Hatton, 1998].    

  A major reason for the limited success of the classical paradigm is that classical tech-
niques are either operation oriented or attribute (data) oriented but not both. The basic 
components of a software product are the operations of the product and the attributes on 
which those operations operate. For example, determine_average_height  1   is an opera-
tion that operates on a collection of heights (attributes) and returns the average of those 
heights (attribute). Some classical techniques, such as data fl ow analysis (Section 14.3), are 
operation oriented. That is, such techniques concentrate on the operations of the product; 
the attributes are of secondary importance. Conversely, techniques such as Jackson system 
development (Section 14.5) are attribute oriented. The emphasis here is on the attributes; 
the operations that operate on the attributes are less signifi cant. 
  In contrast, the object-oriented paradigm considers both attributes and operations to be 
equally important. A simplistic way of looking at an object is as a unifi ed software artifact 
that incorporates both the attributes and the operations performed on the attributes (an 
  artifact   is a component of a software product, such as a specifi cation document, a code 
module, or a manual). This defi nition of an object is incomplete and is fl eshed out later 
in the book, once   inheritance   has been defi ned (Section 7.8). Nevertheless, the defi nition 
captures much of the essence of an object. 
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  1 In this book, the name of a variable in a classical software product is written using the classical convention of 
separating the parts of a variable name with underscores, for example, this_is_a_classical_variable.  A variable 
in an object-oriented software product is written using the object-oriented convention of using an uppercase 
letter to mark the start of a new part of the name of a variable; for example, thisIsAnObjectOrientedVariable. 
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  A bank account is one example of an object (see  Figure 1.7 ). The attribute component 
of the object is the accountBalance. The operations that can be performed on that account 
balance include deposit money in the account, withdraw money from the account, and 
determineBalance. The bank account object combines an attribute with the three opera-
tions performed on that attribute in a single artifact. From the viewpoint of the classical 
paradigm, a product that deals with banking would have to incorporate an attribute, the 
account_balance, and three operations, deposit, withdraw, and determine_balance. 
  Up to now, there seems to be little difference between the two approaches. However, 
a key point is the way in which an object is implemented. Specifi cally, details as to how 
the attributes of an object are stored are not known from outside the object. This is an 
instance of “information hiding,” discussed in more detail in Section 7.6. In the case of 
the bank account object shown in  Figure 1.7(b) , the rest of the software product is aware 
that there is such a thing as a balance within a bank account object, but it has no idea as 
to the format of accountBalance. That is, there is no knowledge outside the object as to 
whether the account balance is implemented as an integer or a fl oating-point number or a 
fi eld (component) of some larger structure. This information barrier surrounding the object 
is denoted by the solid black line in  Figure 1.7(b) , which depicts an implementation using 
the object-oriented paradigm. In contrast, a dashed line surrounds account_balance in 
 Figure 1.7(a) , because all the details of account_balance are known to the modules in the 
implementation using the classical paradigm, and the value of account_balance therefore 
can be changed by any of them. 
  Returning to  Figure 1.7(b) , the object-oriented implementation, if a customer deposits 
$10 in an account, then a   message   is sent to the deposit method of the relevant object tell-
ing it to increment the accountBalance attribute by $10 (a   method   is an implementation 
of an operation). The deposit method is within the bank account object and knows how 
the accountBalance is implemented; this is denoted by the dashed circular line inside the 
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 FIGURE 1.7     A comparison of implementations of a bank account using (a) the classical paradigm and (b) the object-
oriented paradigm. The solid black line surrounding the object denotes that details as to how accountBalance is 
implemented are not known outside the object. 
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object. But no entity external to the object needs this knowledge. That the three methods in 
 Figure 1.7(b)  shield accountBalance from the rest of the product symbolizes this localiza-
tion of knowledge. The fact that implementation details are local to an object illustrates the 
fi rst of the many strengths of the object-oriented paradigm:

   1. Consider postdelivery maintenance. Suppose that the banking product has been con-
structed using the classical paradigm. If the way an account_balance is represented 
is changed from (say) an integer to a fi eld of a structure, then every part of that product 
that has anything to do with an account_balance has to be changed, and these changes 
have to be made consistently. In contrast, if the object-oriented paradigm is used, then 
changes need be made only within the bank account object itself. No other part of the 
product has knowledge of how an accountBalance is implemented, so no other part 
can have access to an accountBalance. Consequently, no other part of the banking 
product needs to be changed. Accordingly, the object-oriented paradigm makes mainte-
nance quicker and easier, and the chance of introducing a   regression fault   (that is, a 
fault inadvertently introduced into one part of a product as a consequence of making an 
apparently unrelated change to another part of the product) is greatly reduced.  

  2. In addition to maintenance, the object-oriented paradigm also makes development eas-
ier. In many instances, an object has a physical counterpart. For example, a bank account 
object in the bank product corresponds to an actual bank account in the bank for which 
this product is being implemented. As will be shown in Part B, modeling plays a major 
role in the object-oriented paradigm. The close correspondence between the objects in a 
product and their counterparts in the real world should lead to better-quality software.  

  3. Well-designed objects are independent units. As has been explained, an object consists 
of both attributes and the operations performed on the attributes. If all the operations 
performed on the attributes of an object are included in that object, then the object 
can be considered a conceptually independent entity. Everything in the product that 
relates to the portion of the real world modeled by that object can be found in the 
object itself. This conceptual independence sometimes is termed   encapsulation   
(Section 7.4). But there is an additional form of independence, physical indepen-
dence. In a well-designed object, information hiding ensures that implementation 
details are hidden from everything outside that object. The only allowable form 
of communication is sending a message to the object to carry out a specifi c op-
eration. The way that the operation is carried out is entirely the responsibility of 
the object itself. For this reason, object-oriented design sometimes is referred to 
as   responsibility-driven design   [Wirfs-Brock, Wilkerson, and Wiener, 1990] or 
  design by contract   [Meyer, 1992]. (For another view of responsibility-driven de-
sign, see Just in Case You Wanted to Know Box 1.5, derived from an example in 
[Budd, 2002].) Another way of looking at both encapsulation and information hiding 
is as instances of separation of concerns (Section 5.4).    

   4. A product built using the classical paradigm is implemented as a set of modules, but 
conceptually it is essentially a single unit. This is one reason why the classical paradigm 
has been less successful when applied to larger products. In contrast, when the object-
oriented paradigm is used correctly, the resulting product consists of a number of smaller, 
largely independent units. The object-oriented paradigm reduces the level of complexity 
of a software product and hence simplifi es both development and maintenance.  
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  5.  The object-oriented paradigm promotes reuse; because objects are independent entities, they 
can generally be utilized in future products (but see Problem 1.17). This reuse of objects 
reduces the time and cost of both development and maintenance, as explained in  Chapter 8 .   

  When the object-oriented paradigm is utilized, the classical software life cycle of  Figure 
1.2  has to be modifi ed.  Figure 1.8  compares the life-cycle model of the classical paradigm 
with that of the object-oriented paradigm. 
  The fi rst difference appears to be purely terminological; the word   phase   is used for the 
classical paradigm, whereas   workfl ow   is used for the object-oriented paradigm. In fact, as 
will be explained in detail in  Chapter 2 , there is no correspondence between a phase and a 
workfl ow. On the contrary, the two terms are totally distinct, and this distinction epitomizes 
the differences between the life-cycle models that underlie the two paradigms. 
  In this chapter, we consider another difference between the two paradigms, the role 
played by modules (in the classical paradigm) versus that played by objects (in the object-
oriented paradigm). First consider the design phase of the classical paradigm. As stated 
in Section 1.3, this phase is divided into two subphases: architectural design followed by 
detailed design. In the architectural design subphase, the product is decomposed into com-
ponents, called   modules  . Then, during the detailed design subphase, the data structures and 
algorithms of each module are designed in turn. Finally, during the implementation phase, 
these modules are implemented. 
  If the object-oriented paradigm is used instead, one of the steps of the object-
oriented analysis workfl ow is to determine the classes. Because a class is a kind of 
module, architectural design is performed during the object-oriented analysis workfl ow. 

 Just in Case You Wanted to Know Box 1.5 
 Suppose that you live in New Orleans, and you want to send a Mother’s Day bouquet to 
your mother in Chicago. One strategy would be to consult the Chicago yellow pages (on 
the World Wide Web), determine which fl orist is located closest to your mother’s apart-
ment, and place your order with that fl orist. A more convenient way is to order the fl owers 
at 1-800-fl owers.com, leaving the total responsibility for delivering the fl owers to that 
company. It is irrelevant where 1-800-fl owers.com is physically located or which fl orist is 
given your order to deliver. In any event, the company does not divulge that information, 
an instance of information hiding. 
  In exactly the same way, when a message is sent to an object, not only is it entirely 
irrelevant how the request is carried out, but the unit that sends the message is not even 
allowed to know the internal structure of the object.  The object itself is entirely responsible 
for every detail of carrying out the message. 

 FIGURE 1.8 
 Comparison of 
the life-cycle 
models of 
the classical 
paradigm and 
the object-
oriented 
paradigm.        

   Classical Paradigm     Object-Oriented Paradigm   

   1. Requirements phase     1. Requirements workfl ow    

    2. Analysis (specifi cation) phase     2�. Object-oriented analysis workfl ow   

   3. Design phase     3�. Object-oriented design workfl ow   

   4. Implementation phase     4�. Object-oriented implementation workfl ow   

   5. Postdelivery maintenance     5. Postdelivery maintenance   

   6. Retirement     6. Retirement      
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Consequently, object-oriented analysis goes further than the corresponding analysis (speci-
fi cation) phase of the classical paradigm. This is shown in  Figure 1.9 . 
  This difference between the two paradigms has major consequences. When the classical 
paradigm is used, there almost always is a sharp transition between the analysis phase and 
the design phase. After all, the aim of the analysis phase is to determine   what   the product is 
to do, whereas the purpose of the design phase is to decide   how   to do it. In contrast, when 
object-oriented analysis is used, objects enter the life cycle from the very beginning. The 
objects are extracted in the analysis workfl ow, designed in the design workfl ow, and coded 
in the implementation workfl ow. The object-oriented paradigm is therefore an integrated 
approach; the transition from workfl ow to workfl ow is far smoother than with the classical 
paradigm, reducing the number of faults introduced during development. 
  As already mentioned, it is inadequate to defi ne an object merely as a software artifact that 
encapsulates both attributes and operations and implements the principle of information hid-
ing. A more complete defi nition is given in  Chapter 7 , where objects are examined in depth.   

  1.10 The Object-Oriented Paradigm in Perspective 
   Figure 1.1  is evidence of the many shortcomings of the classical (structured) paradigm. 
However, the object-oriented paradigm is by no means a panacea for all ills:

   • Like all approaches to software production, the object-oriented paradigm has to be used 
correctly; it is just as easy to misuse the object-oriented paradigm as any other paradigm.  

 •  When correctly applied, the object-oriented paradigm can solve some (but not all) of the 
problems of the classical paradigm.  

  • The object-oriented paradigm has some problems of its own, as described in Section 7.9.  
  • The object-oriented paradigm is the best approach available today. However, like all 

technologies, it is certain to be superseded by a superior technology in the future.    

  In this book, strengths and weaknesses of both the classical and the object-oriented 
paradigm are pointed out within the context of the specifi c topic under discussion. Con-
sequently, the comparison of the two paradigms does not appear in one single place but is 
spread over the entire book. 
  We now defi ne a number of software engineering terms.   
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 FIGURE 1.9 
 Differences 
between the 
classical 
paradigm and 
the object-
oriented 
paradigm.        

   Classical Paradigm     Object-Oriented Paradigm    
    2. Analysis (specifi cation)     phase  2�. Object-oriented analysis workfl ow   

     • Determine what the product is to do        • Determine what the product is to do   

            • Extract the classes   

   3. Design phase     3�. Object-oriented design workfl ow   

     • Architectural design (extract the modules)        • Detailed design   

         • Detailed design   

   4. Implementation phase     4�. Object-oriented implementation workfl ow   

     • Code the modules in an appropriate        • Code the classes in an appropriate   

       programming language       object-oriented programming language   

         • Integrate     • Integrate      
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  1.11 Terminology 
  The   client   is the individual who wants a product to be built (developed). The   developers   
are the members of a team responsible for building that product. The developers may be 
responsible for every aspect of the software process, from the requirements onward, or they 
may be responsible for only the implementation of an already designed product. 
  Both the client and developers may be part of the same organization. For example, the 
client may be the head actuary of an insurance company and the developers a team headed 
by the vice-president for software development of that insurance company. This is termed 
  internal software development  . On the other hand, with   contract software   the cli-
ent and developers are members of totally independent organizations. For instance, the 
client may be a senior offi cial in the Department of Defense and the developers employees 
of a major defense contractor specializing in software for weapons systems. On a much 
smaller scale, the client may be an accountant in a one-person practice and the developer a 
student who earns income by developing software on a part-time basis. 
  The third party involved in software production is the   user  . The user is the person or 
persons on whose behalf the client has commissioned the product and who will utilize the 
software. In the insurance company example, the users may be insurance agents, who will 
use the software to select the most appropriate policies. In some instances, the client and 
the user are the same person (for example, the accountant discussed previously). 
  As opposed to expensive custom software developed for one client, multiple copies 
of software, such as word processors or spreadsheets, are sold at much lower prices to a 
large numbers of buyers. That is, the manufacturers of such software (such as Microsoft 
or Borland) recover the cost of developing a product by volume selling. This type of 
software usually is called   commercial off-the-shelf (COTS) software  . The earlier 
term for this type of software was   shrink-wrapped software   because the box con-
taining the CD or diskettes, the manuals, and the license agreement almost always was 
shrink-wrapped. Nowadays, COTS software often is downloaded over the World Wide 
Web—there is no box to shrink-wrap. For this reason, COTS software nowadays some-
times is referred to as   clickware  . COTS software is developed for “the market”; that is, 
the software is not targeted to a specifi c client or users until it has been developed and is 
available for purchase. 
    Open-source software   is becoming extremely popular. An open-source software 
product is developed and maintained by a team of volunteers and may be downloaded 
and used free of charge by anyone. Widely used open-source products include the Linux 
operating system, the Firefox Web browser, and the Apache Web server. The term   open 
source   refers to the availability of the source code to all, unlike most commercial products 
where only the executable version is sold. Because any user of an open-source product can 
scrutinize the source code and report faults to the developers, many open-source software 
products are of high quality. The expected consequence of the public nature of faults in 
open-source software was formalized by Raymond in   The Cathedral and the Bazaar   as 
  Linus’s Law  , named after Linus Torvalds, the creator of Linux [Raymond, 2000].   Linus’s 
Law   states that “given enough eyeballs, all bugs are shallow.” In other words, if enough 
individuals scrutinize the source code of an open-source software product, someone should 
be able to locate that fault and suggest how to fi x it (but see Just in Case You Wanted to 
Know Box 1.6). A related principle is “Release early. Release often” [Raymond, 2000]. 
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That is, open-source developers tend to spend less time on testing than closed-source de-
velopers, preferring to release a new version of a product virtually as soon as it is fi nished, 
leaving much of the responsibility for testing to users. 
  A word used on almost every page of this book is   software  . Software consists of not 
just code in machine-readable form but also all the documentation that is an intrinsic com-
ponent of every project. Software includes the specifi cation document, the design docu-
ment, legal and accounting documents of all kinds, the software project management plan, 
and other management documents as well as all types of manuals. 
  Since the 1970s, the difference between a   program   and a   system   has become blurred. 
In the “good old days,” the distinction was clear. A program was an autonomous piece of 
code, generally in the form of a deck of punched cards that could be executed. A system 
was a related collection of programs. A system might consist of programs P, Q, R, and S. 
Magnetic tape T1 was mounted, and then program P was run. It caused a deck of data cards 
to be read in and produced as output tapes T2 and T3. Tape T2 then was rewound, and pro-
gram Q was run, producing tape T4 as output. Program R now merged tapes T3 and T4 into 
tape T5; T5 served as input for program S, which printed a series of reports. 
  Compare that situation with a product, running on a machine with a front-end com-
munications processor and a back-end database manager, that performs real-time control 
of a steel mill. The single piece of software controlling the steel mill does far more than 
the old-fashioned system, but in terms of the classic defi nitions of program and system, 
this software undoubtedly is a program. To add to the confusion, the term   system   now is 
also used to denote the hardware–software combination. For example, the fl ight control 
system in an aircraft consists of both the in-fl ight computers and the software running 
on them. Depending on who is using the term, the fl ight control system also may include 
the controls, such as the joystick, that send commands to the computer and the parts of 
the aircraft, such as the wing fl aps, controlled by the computer. Furthermore, within the 
context of traditional software development, the term   systems analysis   refers to the fi rst 
two phases (requirements and analysis phases) and   systems design   refers to the third 
phase (design phase). 
  To minimize confusion, this book uses the term   product   to denote a nontrivial piece of 
software. There are two reasons for this convention. The fi rst is simply to obviate the pro-
gram versus system confusion by using a third term. The second reason is more important. 
This book deals with the process of software production, that is, the way we produce soft-
ware, and the end result of a process is termed a   product  . Finally, the term   system   is used 
in its modern sense, that is, the combined hardware and software, or as part of universally 
accepted phrases, such as operating system and management information system. 
  Two words widely used within the context of software engineering are   methodology   
and   paradigm  . In the 1970s, the word   methodology   began to be used in the sense of 
“a way of developing a software product”; the word actually means the “science of meth-
ods.” Then, in the 1980s, the word   paradigm   became a major buzzword of the busi-
ness world, as in the phrase, “It’s a whole new paradigm.” The software industry soon 

 Just in Case You Wanted to Know Box 1.6 
 It is self-evident that the more people who carefully examine a piece of code, the more likely 
it is that someone will be able to fi nd and fi x a fault in that code. Accordingly, Linus’s Law 
should perhaps be called “Torvalds’s Truism.” 
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started using the word   paradigm   in the phrases   object-oriented paradigm   and classical 
(or   traditional  )   paradigm   to mean “a style of software development.” This was another 
unfortunate choice of terminology, because a paradigm is a model or a pattern. Erudite 
readers offended by this corruption of the English language are warmly invited to take up 
the cudgels of linguistic accuracy on the author’s behalf; he is tired of tilting at windmills. 
  A methodology or a paradigm is a component of the software process as a whole. In 
contrast, a   technique   is a component of a portion of the software process. Examples 
include coding techniques, documentation techniques, and planning techniques. 
  When a programmer makes a   mistake  , the consequence of that mistake is a   fault   in the 
code. Executing the software product then results in a   failure  , that is, the observed incor-
rect behavior of the product as a consequence of the fault. An   error   is the amount by which 
a result is incorrect. The terms   mistake  ,   fault  ,   failure  , and   error   are defi ned in IEEE Stan-
dard 610.12, “A Glossary of Software Engineering Terminology” [IEEE 610.12, 1990], 
reaffi rmed in 2002 [IEEE Standards, 2003]. The word   defect   is a generic term that refers 
to a fault, failure, or error. In the interests of precision, in this book we therefore minimize 
use of the umbrella term   defect  . 
  One term that is avoided as far as possible is   bug   (the history of this word is in Just in 
Case You Wanted to Know Box 1.7). The term   bug   nowadays is simply a euphemism for 
a   fault  . Although there generally is no real harm in using euphemisms, the word bug has 
overtones that are not conducive to good software production. Specifi cally, instead of say-
ing, “I made a mistake,” a programmer will say, “A bug crept into the code” (not   my   code 
but   the   code), thereby transferring responsibility for the mistake from the programmer to 
the bug. No one blames a programmer for coming down with a case of infl uenza, because 
the fl u is caused by the fl u bug. Referring to a mistake as a bug is a way of casting off 
responsibility. In contrast, the programmer who says, “I made a mistake,” is a computer 
professional who takes responsibility for his or her actions. 
  Considerable confusion surrounds object-oriented terminology. For example, in addi-
tion to the term   attribute   for a data component of an object, the term   state variable   
sometimes is used in the object-oriented literature. In Java, the term is   instance variable  . 
In C++ the term   fi eld   is used, and in Visual Basic .NET, the term is   property  . With regard 
to the implementation of the operations of an object, the term   method   usually is used; in 

  Just in Case You Wanted to Know Box 1.7 
 The fi rst use of the word   bug   to denote a fault is attributed to the late Rear Admiral Grace 
Murray Hopper, one of the designers of COBOL. On September 9, 1945, a moth fl ew into 
the Mark II computer that Hopper and her colleagues used at Harvard and lodged between 
the contact plates of a relay. Accordingly, there was actually a bug in the system. Hopper 
taped the bug to the logbook and wrote, “First actual case of bug being found.” The 
logbook, with moth still attached, is in the Naval Museum at the Naval Surface Weapons 
Center, in Dahlgren, Virginia. 
  Although this may have been the fi rst use of   bug   in a computer context, the word was 
used in engineering slang in the 19th century [Shapiro, 1994].  For example, Thomas Alva 
Edison wrote on November 18, 1878, “This thing gives out and then that—‘Bugs’—as such 
little faults and diffi culties are called . . .” [Josephson, 1992]. One of the defi nitions of   bug   in 
the 1934 edition of   Webster’s New English Dictionary   is, “A defect in apparatus or its opera-
tion.” It is clear from Hopper’s remark that she, too, was familiar with the use of the word 
in that context; otherwise, she would have explained what she meant.  
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C++, however, the term is   member function  . In C++, a   member   of an object refers to 
either an attribute (“fi eld”) or a method. In Java, the term   fi eld   is used to denote either an 
attribute (“instance variable”) or a method. To avoid confusion, wherever possible, the ge-
neric terms   attribute   and   method   are used in this book. 
  Fortunately, some terminology is widely accepted. For example, when a method 
within an object is invoked, this almost universally is termed   sending a message   to 
the object.   

  1.12 Ethical Issues 

  We conclude this chapter on a cautionary note. Software products are developed and 
maintained by humans. If those individuals are hard working, intelligent, sensible, up 
to date, and above all,   ethical  , then the chances are good that the way that the software 
products they develop and maintain will be satisfactory. Unfortunately, the converse is 
equally true. 
  Most societies for professionals have a code of   ethics   to which all its members must 
adhere. The two major societies for computer professionals, the Association for Computing 
Machinery (ACM) and the Computer Society of the Institute of Electrical and Electronics 
Engineers (IEEE-CS) jointly approved a Software Engineering Code of Ethics and Profes-
sional Practice as the standard for teaching and practicing software engineering [IEEE/
ACM, 1999]. It is lengthy, so a short version, consisting of a preamble and eight principles, 
was also produced. Here is the short version: 

  Software Engineering Code of Ethics and Professional Practice  2   (Version 5.2) 

as recommended by the IEEE-CS/ACM Joint Task Force on 
Software Engineering Ethics and Professional Practices 

Short Version 
Preamble  

  The short version of the code summarizes aspirations at a high level of abstraction; the 
clauses that are included in the full version give examples and details of how these aspira-
tions change the way we act as software engineering professionals. Without the aspira-
tions, the details can become legalistic and tedious; without the details, the aspirations can 
become high sounding but empty; together, the aspirations and the details form a cohesive 
code. 
  Software engineers shall commit themselves to making the analysis, specifi cation, design, 
development, testing and maintenance of software a benefi cial and respected profession. In 
accordance with their commitment to the health, safety and welfare of the public, software 
engineers shall adhere to the following Eight Principles:

   1.   Public  —Software engineers shall act consistently with the public interest.  
  2.    Client and Employer—  Software engineers shall act in a manner that is in the best interests 

of their client and employer consistent with the public interest.  

26  Chapter 1  The Scope of Software Engineering

  2 © 1999 by the Institute of Electrical and Electronics Engineers, Inc., and the Association for Computing 
Machinery, Inc. 
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  3.    Product  —Software engineers shall ensure that their products and related modifi cations 
meet the highest professional standards possible.  

  4.    Judgment  —Software engineers shall maintain integrity and independence in their profes-
sional judgment.  

  5.    Management  —Software engineering managers and leaders shall subscribe to and promote 
an ethical approach to the management of software development and maintenance.  

  6.    Profession  —Software engineers shall advance the integrity and reputation of the profes-
sion consistent with the public interest.  

  7.   Colleagues  —Software engineers shall be fair to and supportive of their colleagues.  
  8.    Self—  Software engineers shall participate in lifelong learning regarding the practice of 

their profession and shall promote an ethical approach to the practice of the profession.    

  The codes of ethics of other societies for computer professionals express similar senti-
ments. It is vital for the future of our profession that we adhere rigorously to such codes of 
ethics. 
  In  Chapter 2 , we examine various life-cycle models to shed further light on the differ-
ences between the classical and the object-oriented paradigm.    

   Chapter 
Review 
  Software engineering is defi ned (Section 1.1) as a discipline whose aim is the production of fault-free 

software that satisfi es the user’s needs and is delivered on time and within budget. To achieve this goal, 
appropriate techniques have to be used throughout software production, including when performing 
analysis (specifi cation) and design (Section 1.4) and postdelivery maintenance (Section 1.3). Software 
engineering addresses all the steps of the software life cycle and incorporates aspects of many different 
areas of human knowledge, including economics (Section 1.2) and the social sciences (Section 1.5). 
There is no separate planning phase (Section 1.6), no testing phase (Section 1.7), and no documenta-
tion phase (Section 1.8). In Section 1.9, objects are introduced, and a comparison between the classi-
cal and object-oriented paradigms is made. Then the object-oriented paradigm is evaluated (Section 
1.10). Next, in Section 1.11, the terminology used in this book is explained. Finally, ethical issues are 
discussed in Section 1.12.  

  For 
Further 
Reading 

  The earliest source of information on the scope of software engineering is [Boehm, 1976]. The future of 
software engineering is discussed in [Finkelstein, 2000]. The current state of the practice of software 
engineering is described in a variety of articles in the November–December 2003 issue of   IEEE Soft-
ware.   An investigation of the factors leading to successful software development appears in [Procac-
cino, Verner, and Lorenzet, 2006]. 
  For a view on the importance of postdelivery maintenance in software engineering and how to 
plan for it, see [Parnas, 1994]. Software development for COTS-based products is the subject of 
[Brownsword, Oberndorf, and Sledge, 2000]. Acquiring COTS components is described in [Ulkuni-
emi and Seppanen, 2004] and in [Keil and Tiwana, 2005]. Risk management when software is devel-
oped using COTS components is described in [Li et al., 2008]. The July–August 2005 issue of   IEEE 
Software   contains six articles on integrating COTS components into software products, including 
[Donzelli et al., 2005] and [Yang, Bhuta, Boehm, and Port, 2005]. A reassessment of risk manage-
ment appears in [Bannerman, 2008]. 
  Risks in enterprise systems are described in [Scott and Vessey, 2002] and in information systems 
in general in [Longstaff, Chittister, Pethia, and Haimes, 2000]. Zvegintzov [1998] explains just how 
little accurate data on software engineering practice actually are available. 
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  The fact that mathematics underpins software engineering is stressed in [Devlin, 2001]. The 
importance of economics in software engineering is discussed in [Boehm and Huang, 2003]. 
The November–December 2002 issue of   IEEE Software   contains a number of articles on software 
engineering economics. 
  Two classic books on the social sciences and software engineering are [Weinberg, 1971] and 
[Shneiderman, 1980]. Neither book requires prior knowledge of psychology or the behavioral sci-
ences in general. 
  Brooks’s [1975] timeless work,   The Mythical Man-Month  , is a highly recommended introduction 
to the realities of software engineering. The book includes material on all the topics mentioned in this 
chapter. 
  An excellent introduction to open-source software is [Raymond, 2000]. Paulsen, Succi, and 
Eberlein [2004] present an empirical study comparing open- and closed-source software products. 
Reuse of open-source components is described in [Madanmohan and De’, 2004]. A variety of 
articles on open-source software appears in the January/February 2004 issue of   IEEE Software   and 
in issue No. 2, 2005, of   IBM Systems Journal  . The issue of whether open-source software leads to 
increased security is discussed in [Hoepman and Jacobs, 2007]. The interplay between business 
and open-source software is the subject of [Watson et al., 2008], [Ven, Verelst, and Mannaert, 
2008], and [Wesselius, 2008]. 
  An excellent introduction to the object-oriented paradigm is [Budd, 2002]. Three successful 
projects carried out using the object-oriented paradigm are described in [Capper, Colgate, Hunter, 
and James, 1994], with a detailed analysis. A survey of the attitudes of 150 experienced software 
developers toward the object-oriented paradigm is reported in [Johnson, 2000]. With regard to eth-
ics, an ethical code common to both business and software professionals is presented in [Payne and 
Landry, 2006].  
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   1.1 You are in charge of automating a multi-site architectural practice. The cost of developing the 
software has been estimated to be $530,000. Approximately how much additional money will 
be needed for postdelivery maintenance of the software?  

   1.2  Is there a way of reconciling the classical temporal defi nition of maintenance with the opera-
tional defi nition we now use? Explain your answer.  

   1.3  You are a software-engineering consultant. The chief information offi cer of a regional gaso-
line distribution corporation wants you to develop a software product that will carry out all the 
accounting functions of the company and provide online information to the head offi ce staff re-
garding orders and inventory in the various company storage tanks. Computers are required for 
21 accounting clerks, 15 order clerks, and 37 storage tank clerks. In addition, 14 managers need 
access to the data. The company is willing to pay $30,000 for the hardware and the software to-
gether and wants the complete software product in 4 weeks. What do you tell him? Bear in mind 
that your company wants his corporation’s business, no matter how unreasonable his request.  

   1.4  You are a vice-admiral in the Velorian Navy. It has been decided to call in a software develop-
ment organization to develop the control software for a new generation of ship-to-ship missiles. 
You are in charge of supervising the project. To protect the government of Veloria, what clauses 
do you include in the contract with the software developers?  

   1.5  You are a software engineer whose job is to supervise the development of the software in Prob-
lem 1.4. List ways your company can fail to satisfy the contract with the navy. What are the 
probable causes of such failures?  

   1.6 Nine months after delivery, a fault is detected in the software of a product that analyzes mRNA 
using the Stein–Röntgen reagent. The cost of fi xing the fault is $18,900. The cause of the fault 
is an ambiguous sentence in the specifi cation document. Approximately how much would it 
have cost to correct the fault during the analysis phase?  

   1.7  Suppose that the fault in Problem 1.6 had been detected during the implementation phase. 
Approximately how much would it have cost to fi x then?  

   1.8 You are the president of an organization that builds large-scale software. You show  Figure 1.6  to 
your employees, urging them to fi nd faults early in the software life cycle. Someone responds 
that it is unreasonable to expect anyone to remove faults before they have entered the product. 
For example, how can anyone remove a fault while the design is being produced if the fault in 
question is a coding fault? What do you reply?  

   1.9  Describe a situation in which the client, developer, and user are the same person.  

   1.10  What problems can arise if the client, developer, and user are the same person? How can these 
problems be solved?  
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  1.11  What potential advantages accrue if the client, developer, and user are the same person?  

   1.12  Look up the word   system   in a dictionary. How many different defi nitions are there? Write 
down those defi nitions that are applicable within the context of software engineering.  

  1.13  It is your fi rst day at your fi rst job. Your manager hands you a program listing and says, “See if 
you can fi nd the bug.” What do you reply?  

  1.14  You are in charge of developing the product in Problem 1.1. Will you use the object-oriented 
paradigm or the classical paradigm? Give reasons for your answer.  

  1.15  Instead of implementing component c9 of a software product, the developers decide to buy a 
COTS component with the same specifi cations as component c9. What are the advantages and 
disadvantages of this approach?  

  1.16  Instead of implementing component c37 of a software product, the developers decide to uti-
lize an open-source component with the same specifi cations as component c37. What are the 
advantages and disadvantages of this approach?  

  1.17  Object P invokes method m1 of object Q. Suppose we wish to reuse object P in a new soft-
ware product. Can P be reused without reusing Q as well? What does this say about objects as 
“independent entities” (as stated in Section 1.9)?  

  1.18  Is it correct to state that, as a consequence of Linus’s Law, all open-source software is of high 
quality?  

  1.19  (Term Project) Suppose that the product for Chocoholics Anonymous of Appendix A has been 
implemented exactly as described. Now the product has to be modifi ed to include endocrinolo-
gists as providers. In what ways will the existing product have to be changed? Would it be better 
to discard everything and start again from scratch?  

  1.20  (Readings in Software Engineering) Your instructor will distribute copies of Schach et al. 
[2003]. What is your opinion of the relative merits of results based on managers’ estimates 
compared to results computed from actual data?     
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  Software 
Engineering 
Concepts 

Part 

A
  Chapters 2 through 9 of this book play a dual role: They introduce the reader to the 
software process, and they provide the foundation for the material in the second half of 
the book, where the workfl ows (activities) of software development are described. 
  The software process is the way we produce software. It starts with concept 
exploration and ends when the product is fi nally decommissioned. During this period, 
the product goes through a series of steps such as requirements, analysis (specifi cation), 
design, implementation, integration, postdelivery maintenance, and ultimately, retirement. 
The software process includes the tools and techniques we use to develop and maintain 
software as well as the software professionals involved. 
  A variety of different software life-cycle models are discussed in detail in  Chapter 2 , 
“Software Life-Cycle Models.” These include the evolution-tree model, the waterfall 
model, the rapid-prototyping model, the synchronize-and-stabilize model, the open-
source model, the agile process model, the spiral model, and most important of all, 
the iterative-and-incremental model. To enable the reader to decide on an appropriate 
life-cycle model for a specifi c project, the various life-cycle models are compared and 
contrasted. 
  “The Software Process” is the title of  Chapter 3 . The emphasis in this chapter is on 
the Unifi ed Process, currently the most promising way of developing software. Agile 
processes, an alternative approach to software development gaining in popularity, are also 
treated in detail. The chapter concludes with material on software process improvement. 
   Chapter 4  is entitled “Teams.” Today’s projects are too large to be completed by 
a single individual within the given time constraints. Instead, a team of software 
professionals collaborate on the project. The major topic of this chapter is how teams 
should be organized so that team members work together productively. Various ways of 
organizing teams are discussed, including democratic teams, chief programmer teams, 
synchronize-and-stabilize teams, open-source teams, and agile process teams. 
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  A software engineer needs to be able to use a number of different tools, both analytical 
and practical. In  Chapter 5 , “The Tools of the Trade,” the reader is introduced to a variety 
of software engineering tools. One such tool is stepwise refi nement, a technique for 
decomposing a large problem into smaller, more tractable problems. Another tool is cost–
benefi t analysis, a technique for determining whether a software project is fi nancially 
feasible. Then, computer-aided software engineering (CASE) tools are described. A 
CASE tool is a software product that helps software engineers to develop and maintain 
software. Finally, to manage the software process, it is necessary to measure various 
quantities to determine whether the project is on track. These measures (metrics) are 
critical to the success of a project. 
  The last two topics of  Chapter 5 , CASE tools and metrics, are treated in detail in 
Chapters 11 through 16, which describe the specifi c workfl ows of the software life 
cycle. There is a discussion of the CASE tools that support each workfl ow, as well as a 
description of the metrics needed to manage that workfl ow adequately. 
   Chapter 6 , “Testing,” discusses the concepts underlying testing. The consideration of 
testing techniques specifi c to each workfl ow of the software life cycle is deferred until 
Chapters 11 through 16. 
   Chapter 7 , “From Modules to Objects,” gives a detailed explanation of classes and 
objects and why the object-oriented paradigm is proving more successful than the 
classical paradigm. The concepts of this chapter are utilized in the rest of the book, 
particularly  Chapter 11 , “Requirements”;  Chapter 13 , “Object-Oriented Analysis”; and 
 Chapter 14 , “Design,” in which object-oriented design is presented. 
  The ideas of  Chapter 7  are extended in  Chapter 8 , “Reusability and Portability.” It is 
important to be able to implement reusable software that can be ported to a variety of 
different hardware. The fi rst part of the chapter is devoted to reuse; the topics include a 
variety of reuse case studies as well as reuse strategies such as object-oriented patterns 
and frameworks. Portability is the second major topic; portability strategies are presented 
in some depth. A recurring theme of this chapter is the role of objects in achieving 
reusability and portability. 
  The last chapter in Part A is  Chapter 9 , “Planning and Estimating.” Before starting 
a software project, it is essential to plan the entire operation in detail. Once the project 
begins, management must closely monitor progress, noting deviations from the plan 
and taking corrective action where necessary. Also, it is vital that the client be provided 
accurate estimates of how long the project will take and how much it will cost. Different 
estimation techniques are presented, including function points and COCOMO II. A 
detailed description of a software project management plan is given. The material of this 
chapter is utilized in  Chapters 12  and  13 . When the classical paradigm is used, major 
planning and estimating activities take place at the end of the classical analysis phase, as 
explained in  Chapter 12 . When software is developed using the object-oriented paradigm, 
this planning takes place at the end of the object-oriented analysis workfl ow ( Chapter 13 ). 
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  Chapter 2
Software Life-Cycle 
Models 
   Learning Objectives 

 After studying this chapter, you should be able to

  •  Describe how software products are developed in practice.  

  • Understand the evolution-tree life-cycle model.  

  • Appreciate the negative impact of change on software products.  

  • Utilize the iterative-and-incremental life-cycle model.  

  • Comprehend the impact of Miller’s Law on software production.  

  • Describe the strengths of the iterative-and-incremental life-cycle model.  

  • Realize the importance of mitigating risks early.  

  • Describe agile processes, including extreme programming.  

  • Compare and contrast a variety of other life-cycle models.      

37

   Chapter 1  describes how software products would be developed in an ideal world. The 
theme of this chapter is what happens in practice. As will be explained, there are vast dif-
ferences between theory and practice. 

  2.1 Software Development in Theory 
  In an ideal world, a software product is developed as described in  Chapter 1 . As depicted 
schematically in  Figure 2.1 , the system is developed from scratch; � denotes the empty 
set. (See Just in Case You Wanted to Know Box 2.1 if you want to know the origin of the 
term   from scratch  .) First the client’s Requirements are determined, and then the Analysis 
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is performed. When the analysis artifacts are complete, the Design is produced. This is 
followed by the Implementation of the complete software product, which is then installed 
on the client’s computer. 
  However, software development is considerably different in practice for two reasons. 
First, software professionals are human and therefore make mistakes. Second, the client’s 
requirements can change while the software is being developed. In this chapter, both these 
issues are discussed in some depth, but fi rst we present a mini case study, based on the case 
study in [Tomer and Schach, 2000], that illustrates the issues involved. 

 FIGURE 2.1   
 Idealized 
software 
development. 

Development

Requirements

Implementation

Analysis

Design

�

 Winburg Mini Case Study 

  To reduce traffi c congestion in downtown Winburg, Indiana, the mayor convinces the 
city to set up a public transportation system. Bus-only lanes are to be established, 
and commuters will be encouraged to “park and ride”; that is, to park their cars in 
suburban parking lots and then take buses from there to work and back at a cost of 
one dollar per ride. Each bus is to have a fare machine that accepts only dollar bills. 
Passengers insert a bill into the slot as they enter the bus. Sensors inside the fare 
machine scan the bill, and the software in the machine uses an image recognition 

C
2.22.2

   Mini  ase Study 

Just in Case You Wanted to Know Box 2.1

The term from scratch, meaning “starting with nothing,” comes from 19th century sports 
terminology. Before roads (and running tracks) were paved, races had to be held on open 
ground. In many cases, the starting line was a scratch in the sand. A runner who had no 
advantage or handicap had to start from that line, that is, “from [the] scratch.”
 The term scratch has a different sporting connotation nowadays. A “scratch golfer” is 
one whose golfi ng handicap is zero.
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algorithm to decide whether the passenger has indeed inserted a valid dollar bill into 
the slot. It is important that the fare machine be accurate because, once the news gets 
out that any piece of paper will do the trick, fare income will plummet to effectively 
zero. Conversely, if the machine regularly rejects valid dollar bills, passengers will be 
reluctant to use the buses. In addition, the fare machine must be rapid. Passengers will 
be equally reluctant to use the buses if the machine spends 15 seconds coming to a 
decision regarding the validity of a dollar bill—it would take even a relatively small 
number of passengers many minutes to board a bus. Therefore, the requirements for 
the fare machine software include an average response time of less than 1 second and 
an average accuracy of at least 98 percent. 

     Episode 1    The fi rst version of the software is implemented.  
    Episode 2    Tests show that the required constraint of an average response time of 
1 second for deciding on the validity of a dollar bill is not achieved. In fact, on 
average, it takes 10 seconds to get a response. Senior management discovers the 
cause. It seems that, to get the required 98 percent accuracy, a programmer has been 
instructed by her manager to use double-precision numbers for all mathematical cal-
culations. As a result, every operation takes at least twice as long as it would with the 
usual single-precision numbers. The result is that the program is much slower than it 
should be, resulting in the long response time. Calculations then show that, despite 
what the manager told the programmer, the stipulated 98 percent accuracy can be at-
tained even if single-precision numbers are used. The programmer starts to make the 
necessary changes to the implementation.  
    Episode 3    Before the programmer can complete her work, further tests of the sys-
tem show that, even if the indicated changes to the implementation were made, the 
system would still have an average response time of over 4.5 seconds, nowhere near 
the stipulated 1 second. The problem is the complex image recognition algorithm. 
Fortunately, a faster algorithm has just been discovered, so the fare machine software 
is redesigned and reimplemented using the new algorithm. This results in the average 
response time being successfully achieved.  
    Episode 4    By now, the project is considerably behind schedule and way over 
budget. The mayor, a successful entrepreneur, has the bright idea of asking the 
software development team to try to increase the accuracy of the dollar bill rec-
ognition component of the system as much as possible, to sell the resulting pack-
age to vending machine companies. To meet this new requirement, a new design 
is adopted that improves the average accuracy to over 99.5 percent. Management 
decides to install that version of the software in the fare machines. At this point, 
development of the software is complete. The city is later able to sell its system 
to two small vending machine companies, defraying about one-third of the cost 
overrun.  
    Epilogue    A few years later, the sensors inside the fare machine become obsolete 
and need to be replaced by a newer model. Management suggests taking advantage 
of the change to upgrade the hardware at the same time. The software professionals 
point out that changing the hardware means that new software also is needed. They 
suggest reimplementing the software in a different programming language. At the 
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time of writing, the project is 6 months behind schedule and 25 percent over budget. 
However, everyone involved is confi dent that the new system will be more reliable 
and of higher quality, despite “minor discrepancies” in meeting its response time and 
accuracy requirements.   

   Figure 2.2  depicts the   evolution-tree life-cycle model   of the mini case study. 
The leftmost boxes represent Episode 1. As shown in the fi gure, the system was 
developed from scratch (�). The requirements (Requirements 1 ), analysis (Analysis 1 ), 
design (Design 1 ), and implementation (Implementation 1 ) followed in turn. Next, as 
previously described, trials of the fi rst version of the software showed that the average 
response time of 1 second could not be achieved and the implementation had to be 
modifi ed. The modifi ed implementation appears in  Figure 2.2  as Implementation 2 . 
However, Implementation 2  was never completed. That is why the rectangle repre-
senting Implementation 2  is drawn with a dotted line. 
  In Episode 3, the design had to be changed. Specifi cally, a faster image recogni-
tion algorithm was used. The modifi ed design (Design 3 ) resulted in a modifi ed imple-
mentation (Implementation 3 ). 
  Finally, in Episode 4, the requirements were changed (Requirements 4 ) to in-
crease the accuracy. This resulted in modifi ed specifi cations (Analysis 4 ), modifi ed 
design (Design 4 ), and modifi ed implementation (Implementation 4 ). 
  In  Figure 2.2 , the solid arrows denote development and the dashed arrows de-
note maintenance. For example, when the design is changed in Episode 3, Design 3  
replaced Design 1  as the design of Analysis 1 . 
  The evolution-tree model is an example of a   life-cycle model   (or   model  , 
for short), that is, the series of steps to be performed while the software product is 
developed and maintained. Another life-cycle model that can be used for the mini 

 FIGURE 2.2     The evolution-tree life-cycle model for the Winburg mini case study. (The rectangle drawn with a
dotted line denotes the implementation that was not completed.) 

Implementation2

Design4
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case study is the   waterfall life-cycle model   [Royce, 1970]; a simplifi ed version 
of the waterfall model is depicted in  Figure 2.3 . This classical life-cycle model can 
be viewed as the linear model of  Figure 2.1  with feedback loops. Then, if a fault is 
found during the design that was caused by a fault in the requirements, following the 
dashed upward arrows, the software developers can backtrack from the design up to 
the analysis and hence to the requirements and make the necessary corrections there. 
Then, they move down to the analysis, correct the specifi cation document to refl ect 
the corrections to the requirements, and in turn, correct the design document. Design 
activities can now resume where they were suspended when the fault was discovered. 
Again, the solid arrows denote development; the dashed arrows, maintenance. 
  The waterfall model can certainly be used to represent the Winburg mini case study, 
but, unlike the evolution-tree model of  Figure 2.2 , it cannot show the order of events. 
The evolution-tree model has a further advantage over the waterfall model. At the end 
of each episode we have a   baseline  , that is, a complete set of artifacts (recall that an 
  artifact   is a constituent component of a software product). There are four baselines 
in  Figure 2.2 . They are 

  At the end of Episode 1: Requirements 1 , Analysis 1 , Design 1 , Implementation 1   
  At the end of Episode 2: Requirements 1 , Analysis 1 , Design 1 , Implementation 2   
  At the end of Episode 3: Requirements 1 , Analysis 1 , Design 3 , Implementation 3   
  At the end of Episode 4: Requirements 4 , Analysis 4 , Design 4 , Implementation 4     

  The fi rst baseline is the initial set of artifacts; the second baseline refl ects the modifi ed 
(but never completed) Implementation 2  of Episode 2, together with the unchanged 
requirements, analysis, and design of Episode 1. The third baseline is the same as the 
fi rst baseline but with the design and implementation changed. The fourth baseline is the 
complete set of new artifacts shown in  Figure 2.2 . We revisit the concept of a baseline in 
 Chapters 5  and  16 .      
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 FIGURE 2.3     
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waterfall life-
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  2.3 Lessons of the Winburg Mini Case Study 
  The Winburg mini case study depicts the development of a software product that goes awry 
for a number of unrelated causes, such as a poor implementation strategy (the unnecessary 
use of double-precision numbers) and the decision to use an algorithm that was too slow. 
In the end, the project was a success. However, the obvious question is, Is software devel-
opment really as chaotic in practice? In fact, the mini case study is far less traumatic than 
many, if not the majority of, software projects. In the Winburg mini case study, there were 
only two new versions of the software because of faults (the inappropriate use of double-
precision numbers; the utilization of an algorithm that could not meet the response time 
requirement), and only one new version because of a change made by the client (the need 
for increased accuracy). 
  Why are so many changes to a software product needed? First, as previously stated, soft-
ware professionals are human and therefore make mistakes. Second, a software product is a 
model of the real world, and the real world is continually changing. This issue is discussed 
at greater length in Section 2.4. 
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 Teal Tractors Mini Case Study 

  Teal Tractors, Inc., sells tractors in most areas of the United States. The company 
has asked its software division to develop a new product that can handle all aspects 
of its business. For example, the product must be able to handle sales, inventory, and 
commissions paid to the sales staff, as well as providing all necessary accounting 
functions. While this software product is being implemented, Teal Tractors buys a 
Canadian tractor company. The management of Teal Tractors decides that, to save 
money, the Canadian operations are to be integrated into the U.S. operations. That 
means that the software has to be changed before it is completed:

   1. It must be modifi ed to handle additional sales regions.  
  2. It must be extended to handle those aspects of the business that are handled differ-

ently in Canada, such as taxes.  
  3. It must be extended to handle two different currencies, U.S. dollars and Canadian 

dollars.    

  Teal Tractors is a rapidly growing company with excellent future prospects. The 
takeover of the Canadian tractor company is a positive development, one that may 
well lead to even greater profi ts in future years. But, from the viewpoint of the soft-
ware division, the purchase of the Canadian company could be disastrous. Unless the 
requirements, analysis, and design have been performed with a view to incorporating 
possible future extensions, the work involved in adding the Canadian sales regions may 
be so great that it might be more effective to discard everything done to date and start 
from scratch. The reason is that changing the product at this stage is similar to trying to 
fi x a software product late in its life cycle (see  Figure 1.6 ). Extending the software to 
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handle aspects specifi c to the Canadian market, as well as Canadian currency, may be 
equally hard. 
  Even if the software has been well thought out and the original design is indeed 
extensible, the design of the resulting patched-together product cannot be as cohesive as 
it would have been if it had been developed from the very beginning to cater to both the 
United States and Canada. This can have severe implications for future maintenance. 
  The software division of Teal Tractors is a victim of the   moving-target problem  . 
That is, while the software is being developed, the requirements change. It does not 
matter that the reason for the change is otherwise extremely worthwhile. The fact is 
that the takeover of the Canadian company could well be detrimental to the quality of 
the software being developed.    

  In some cases, the reason for the moving target is less benign. Sometimes a powerful 
senior manager within an organization keeps changing his or her mind regarding the func-
tionality of a software product being developed. In other cases, there is   feature creep  , a 
succession of small, almost trivial, additions to the requirements. But whatever the reason 
may be, frequent changes, no matter how minor they may seem, are harmful to the health 
of a software product. It is important that a software product be designed as a set of com-
ponents that are as independent as possible, so that a change to one part of the software 
does not induce a fault in an apparently unrelated part of the code, a so-called   regression 
fault  . When numerous changes are made, the effect is to induce dependencies within the 
code. Finally, there are so many dependencies that virtually any change induces one or 
more regression faults. At that time, the only thing that can be done is to redesign the entire 
software product and reimplement it. 
  Unfortunately, there is no known solution to the moving-target problem. With regard 
to positive changes to requirements, growing companies are always going to change, and 
these changes have to be refl ected in the mission-critical software products of the company. 
As for negative changes, if the individual calling for those changes has suffi cient clout, 
nothing can be done to prevent the changes being implemented, to the detriment of the 
further maintainability of the software product.   

  2.5 Iteration and Incrementation 
  As a consequence of both the moving-target problem and the need to correct the inevitable 
mistakes made while a software product is being developed, the life cycle of actual soft-
ware products resembles the evolution-tree model of  Figure 2.2  or the waterfall model of 
 Figure 2.3 , rather than the idealized chain of  Figure 2.1 . One consequence of this reality 
is that it does not make much sense to talk about (say) “  the   analysis phase.” Instead, the 
operations of the analysis phase are spread out over the life cycle. Similarly,  Figure 2.2  
shows four different versions of the implementation, one of which (Implementation 2 ) 
was never completed because of the moving-target problem. 
  Consider successive versions of an artifact, for example, the specifi cation document or 
a code module. From this viewpoint, the basic process is iterative. That is, we produce the 
fi rst version of the artifact, then we revise it and produce the second version, and so on. Our 

Chapter 2  Software Life-Cycle Models  43

sch76183_ch02_035-073.indd   43sch76183_ch02_035-073.indd   43 04/06/10   12:34 PM04/06/10   12:34 PM



intent is that each version is closer to our target than its predecessor and fi nally we con-
struct a version that is satisfactory.   Iteration   is an intrinsic aspect of software engineering, 
and iterative life-cycle models have been used for over 30 years [Larman and Basili, 2003]. 
For example, the waterfall model, which was fi rst put forward in 1970, is iterative (but not 
incremental). 
  A second aspect of developing real-world software is the restriction imposed on us by 
  Miller’s Law  . In 1956, George Miller, a professor of psychology, showed that, at any one 
time, we humans are capable of concentrating on only approximately seven chunks (units 
of information) [Miller, 1956]. However, a typical software artifact has far more than seven 
chunks. For example, a code artifact is likely to have considerably more than seven variables, 
and a requirements document is likely to have many more than seven requirements. One way 
we humans handle this restriction on the amount of information we can handle at any one 
time is to use   stepwise refi nement  . That is, we concentrate on those aspects that are cur-
rently the most important and postpone until later those aspects that are currently less critical. 
In other words, every aspect is eventually handled but in order of current importance. This 
means that we start off by constructing an artifact that solves only a small part of what we 
are trying to achieve. Then, we consider further aspects of the problem and add the resulting 
new pieces to the existing artifact. For example, we might construct a requirements document 
by considering the seven requirements we consider the most important. Then, we would con-
sider the seven next most important requirements, and so on. This is an incremental process. 
  Incrementation   is also an intrinsic aspect of software engineering; incremental software 
development is over 45 years old [Larman and Basili, 2003]. 
  In practice, iteration and incrementation are used in conjunction with one another. That is, 
an artifact is constructed piece by piece (incrementation), and each increment goes through 
multiple versions (iteration). These ideas are illustrated in  Figure 2.2 , which represents the life 
cycle for the Winburg mini case study (Sections 2.2 and 2.3). As shown in that fi gure, there 
is no single “requirements phase” as such. Instead, the client’s requirements are extracted 
and analyzed twice, yielding the original requirements (Requirements 1 ) and the modifi ed 
requirements (Requirements 4 ). Similarly, there is no single “implementation phase,” but 
rather four separate episodes in which the code is produced and then modifi ed. 
  These ideas are generalized in  Figure 2.4 , which refl ects the basic concepts underly-
ing the   iterative-and-incremental life-cycle model   [Jacobson, Booch, and Rumbaugh, 
1999]. The fi gure shows the development of a software product in four increments, labeled 
Increment A, Increment B, Increment C, and Increment D. The horizontal axis is time, 
and the vertical axis is person-hours (one person-hour is the amount of work that one person 
can do in 1 hour), so the shaded area under each curve is the total effort for that increment. 
  It is important to appreciate that  Figure 2.4  depicts just one possible way a software 
product can be decomposed into increments. Another software product may be constructed 
in just 2 increments, whereas a third may require 14. Furthermore, the fi gure is not intended 
to be an accurate representation of precisely how a software product is developed. Instead, 
it shows how the emphasis changes from iteration to iteration. 
  The sequential phases of  Figure 2.1  are artifi cial constructs. Instead, as explicitly 
refl ected in  Figure 2.4 , we must acknowledge that different   workfl ows   (activities) are 
performed over the entire life cycle. There are fi ve   core workfl ows  , the   requirements 
workfl ow  ,   analysis workfl ow  ,   design workfl ow  ,   implementation workfl ow  , and 
  test workfl ow  , and, as stated in the previous sentence, all fi ve are performed over the life 
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cycle of a software product. However, there are times when one workfl ow predominates 
over the other four. 
  For example, at the beginning of the life cycle, the software developers extract an initial 
set of requirements. In other words, at the beginning of the iterative-and-incremental life 
cycle, the requirements workfl ow predominates. These requirements artifacts are extended 
and modifi ed during the remainder of the life cycle. During that time, the other four 
workfl ows (analysis, design, implementation, and test) predominate. In other words, the 
requirements workfl ow is the major workfl ow at the beginning of the life cycle, but its rela-
tive importance decreases thereafter. Conversely, the implementation and test workfl ows 
occupy far more of the time of the members of the software development team toward the 
end of the life cycle than they do at the beginning. 
  Planning and documentation activities are performed throughout the iterative-and-
incremental life cycle. Furthermore, testing is a major activity during each iteration, and 
particularly at the end of each iteration. In addition, the software as a whole is thoroughly 
tested once it has been completed; at that time, testing and then modifying the implemen-
tation in the light of the outcome of the various tests is virtually the sole activity of the 
software team. This is refl ected in the test workfl ow of  Figure 2.4 . 
   Figure 2.4  shows four increments. Consider Increment A, depicted by the column on 
the left. At the beginning of this increment, the requirements team members determine the 
client’s requirements. Once most of the requirements have been determined, the fi rst ver-
sion of part of the analysis can be started. When suffi cient progress has been made with 
the analysis, the fi rst version of the design can be started. Even some coding is often done 
during this fi rst increment, perhaps in the form of a proof-of-concept prototype to test 
the feasibility of part of the proposed software product. Finally, as previously mentioned, 
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 FIGURE 2.4     The construction of a software product in four increments. 
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planning, testing, and documentation activities start on Day One and continue from then 
on, until the software product is fi nally delivered to the client. 
  Similarly, the primary concentration during Increment B is on the requirements and 
analysis workfl ows, and then on the design workfl ow. The emphasis during Increment C 
is fi rst on the design workfl ow, and then on the implementation workfl ow and test workfl ow. 
Finally, during Increment D, the implementation workfl ow and test workfl ow dominate. 
  As refl ected in  Figure 1.4 , about one-fi fth of the total effort is devoted to the require-
ments and analysis workfl ows (together), another one-fi fth to the design workfl ow, and 
about three-fi fths to the implementation workfl ow. The relative total sizes of the shaded 
areas in  Figure 2.4  refl ect these values. 
  There is iteration during each increment of  Figure 2.4 . This is shown in  Figure 2.5 , 
which depicts three iterations during Increment B. ( Figure 2.5  is an enlarged view of the 
second column of  Figure 2.4 .) As shown in  Figure 2.5 , each iteration involves all fi ve work-
fl ows but again in varying proportions. 
  Again, it must be stressed that  Figure 2.5  is not intended to show that every incre-
ment involves exactly three iterations. The number of iterations varies from increment to 
increment. The purpose of  Figure 2.5  is to show the iteration within each increment and 
repeat that all fi ve workfl ows (requirements, analysis, design, implementation, and testing, 
together with planning and documentation) are carried out during almost every iteration, 
although in varying proportions each time. 
  As previously explained,  Figure 2.4  refl ects the incrementation intrinsic to the devel-
opment of every software product.  Figure 2.5  explicitly displays the iteration that under-
lies incrementation. Specifi cally,  Figure 2.5  depicts three consecutive iterative steps, as 
opposed to one large incrementation. In more detail, Iteration B.1 consists of requirements, 

 FIGURE 2.5  
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and-incremental 
life-cycle model 
of  Figure 2.4 . 

Increment B

Requirements
workflow

Analysis
workflow

Design
workflow

Implementation
workflow

Iteration B.1 Iteration B.2 Iteration B.3

Test
workflow

Pe
rs

on
-h

ou
rs

Time

Baseline

46  Part A  Software Engineering Concepts

sch76183_ch02_035-073.indd   46sch76183_ch02_035-073.indd   46 04/06/10   12:34 PM04/06/10   12:34 PM



analysis, design, implementation, and test workfl ows, represented by the leftmost dashed 
rectangle with rounded corners. The iteration continues until the artifacts of each of the fi ve 
workfl ows are satisfactory. 
  Next, all fi ve sets of artifacts are iterated in Iteration B.2. This second iteration is simi-
lar in nature to the fi rst. That is, the requirements artifacts are improved, which in turn trig-
gers improvements to the analysis artifacts, and so on, as refl ected in the second iteration 
of  Figure 2.5 , and similarly for the third iteration. 
  The process of iteration and incrementation starts at the beginning of Increment A and 
continues until the end of Increment D. The completed software product is then installed 
on the client’s computer. 
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C   Mini  ase Study 

2.62.6  Winburg Mini Case Study Revisited 

   Figure 2.6  shows the evolution-tree model of the Winburg mini case study ( Figure 2.2 ) 
superimposed on the iterative-and-incremental model (the test workfl ow is not shown 
because the evolution-tree model assumes continual testing, explained in Section 1.7). 
 Figure 2.6  sheds additional light on the nature of incrementation:

   • Increment A corresponds to Episode 1, Increment B corresponds to Episode 2, 
and so on.  

 FIGURE 2.6     The evolution-tree life-cycle model for the Winburg mini case study ( Figure 2.2 ) superimposed on 
the iterative-and-incremental life-cycle model. 
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 •  From the viewpoint of the iterative-and-incremental model, two of the increments 
do not include all four workfl ows. In more detail, Increment B (Episode 2) in- 
cludes only the implementation workfl ow, and Increment C (Episode 3) includes 
only the design workfl ow and the implementation workfl ow. The iterative-and-
incremental model does not require that every workfl ow be performed during 
every increment.  

 •  Furthermore, in  Figure 2.4  most of the requirements workfl ow is performed 
in Increment A and Increment B, whereas in  Figure 2.6  it is performed in 
Increment A and Increment D. Also, in  Figure 2.4  most of the analysis is per-
formed in Increment B, whereas in  Figure 2.6  the analysis workfl ow is performed 
in Increment A and Increment D. This indicates that neither  Figure 2.4  nor 
 Figure 2.6  represents the way every software product is built. Instead, each fi gure 
shows the way that one particular software product is built, highlighting the under-
lying iteration and incrementation.  

 •  The small size and abrupt termination of the implementation workfl ow during 
Increment B (Episode 2) of  Figure 2.6  shows that Implementation 2  was not 
completed. The gray piece refl ects the part of the implementation workfl ow that 
was not performed.  

 •  The three dashed arrows of the evolution-tree model show that each incre-
ment constitutes maintenance of the previous increment. In this example, the 
second and third increments are instances of corrective maintenance. That 
is, each increment corrects faults in the previous increment. As previously 
explained, Increment B (Episode 2) corrects the implementation workfl ow by 
replacing double-precision variables with the usual single-precision variables. 
Increment C (Episode 3) corrects the design workfl ow by using a faster image 
recognition algorithm, thereby enabling the response time requirement to be 
met. Corresponding changes then have to be made to the implementation work-
fl ow. Finally, in Increment D (Episode 4) the requirements are changed to 
stipulate improved overall accuracy, an instance of perfective maintenance. Cor-
responding changes are then made to the analysis workfl ow, design workfl ow, 
and implementation workfl ow.         

  2.7  Risks and Other Aspects of Iteration 
and Incrementation 

  Another way of looking at iteration and incrementation is that the project as a whole is 
divided into smaller mini projects (or increments). Each mini project extends the require-
ments, analysis, design, implementation, and testing artifacts. Finally, the resulting set of 
artifacts constitutes the complete software product. 
  In fact, each mini project consists of more than just extending the artifacts. It is essential 
to check that each artifact is correct (the test workfl ow) and make any necessary changes 
to the relevant artifacts. This process of checking and modifying, then rechecking and 
remodifying, and so on, is clearly iterative in nature. It continues until the members of the 
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development team are satisfi ed with all the artifacts of the current mini project (or incre-
ment). When that happens, they proceed to the next increment. 
  Comparing  Figure 2.3  (the waterfall model) with  Figure 2.5  (view of the iterations within 
Increment B) shows that each iteration can be viewed as a small but complete waterfall 
model. That is, during each iteration the members of the development team go through the 
classical requirements, analysis, design, and implementation phases on a specifi c portion of 
the software product. From this viewpoint, the iterative-and-incremental model of  Figures 2.4  
and  2.5  can be viewed as a consecutive series of waterfall models. 
  The iterative-and-incremental model has many strengths:

   1. Multiple opportunities are offered for checking that the software product is correct. 
Every iteration incorporates the test workfl ow, so every iteration is another chance to 
check all the artifacts developed up to this point. The later faults are detected and cor-
rected, the higher is the cost, as shown in  Figure 1.6 . Unlike the classical waterfall 
model, each of the many iterations of the iterative-and-incremental model offers a fur-
ther opportunity to fi nd faults and correct them, thereby saving money.  

  2. The robustness of the underlying architecture can be determined relatively early in 
the life cycle. The   architecture   of a software product includes the various compo-
nent artifacts and how they fit together. An analogy is the architecture of a cathe-
dral, which might be described as Romanesque, Gothic, or Baroque, among other 
possibilities. Similarly, the architecture of a software product might be described 
as object-oriented ( Chapter 7 ), pipes and filters (UNIX or Linux components), or 
client–server (with a central server providing file storage for a network of client 
computers). The architecture of a software product developed using the iterative-
and-incremental model must have the property that it can be extended continually 
(and, if necessary, easily changed) to incorporate the next increment. Being able 
to handle such extensions and changes without falling apart is called   robustness  . 
Robustness is an important quality during development of a software product; it is 
vital during postdelivery maintenance. So, if a software product is to last through 
the usual 12, 15, or more years of postdelivery maintenance, the underlying archi-
tecture has to be robust. When an iterative-and-incremental model is used, it soon 
becomes apparent whether or not the architecture is robust. If, in the course of 
incorporating (say) the third increment, it is clear that the software developed to 
date has to be drastically reorganized and large parts reimplemented, then it is clear 
that the architecture is not sufficiently robust. The client must decide whether to 
abandon the project or start again from scratch. Another possibility is to redesign 
the architecture to be more robust, and then reuse as much of the current artifacts 
as possible before proceeding to the next increment. Another reason why a robust 
architecture is so important is the moving-target problem (Section 2.4). It is all but 
certain that the client’s requirements will change, either because of growth within 
the client’s organization or because the client keeps changing his or her mind as 
to what the target software has to do. The more robust the architecture, the more 
resilient to change the software will be. It is not possible to design an architecture 
that can cope with too many drastic changes. But, if the required changes are rea-
sonable in scope, a robust architecture should be capable of incorporating those 
changes without having to be drastically restructured.  
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  3. The iterative-and-incremental model enables us to mitigate risks early.   Risks   are invariably 
involved in software development and maintenance. In the Winburg mini case study, for 
example, the original image recognition algorithm was not fast enough; there is an ever-
present risk that a completed software product will not meet its time constraints. Develop-
ing a software product incrementally enables us to mitigate such risks early in the life cycle.
For example, suppose a new local area network (LAN) is being developed and there 
is concern that the current network hardware is inadequate for the new software prod-
uct. Then, the fi rst one or two iterations are directed toward constructing those parts of 
the software that interface with the network hardware. If it turns out that, contrary to the 
developers’ fears, the network has the necessary capability, the developers can proceed with 
the project, confi dent that this risk has been mitigated. On the other hand, if the network 
indeed cannot cope with the additional traffi c that the new LAN generates, this is reported 
to the client early in the life cycle, when only a small proportion of the budget has been 
spent. The client can now decide whether to cancel the project, extend the capabilities of the 
existing network, buy a new and more powerful network, or take some other action.  

  4. We always have a working version of the software. Suppose a software product is developed 
using the classical life-cycle model of  Figure 2.1 . Only at the very end of the project is there 
a working version of the software product. In contrast, when the iterative-and-incremental 
life-cycle model is used, at the end of each iteration, there is a working version of part of the 
overall target software product. The client and the intended users can experiment with that 
version and determine what changes are needed to ensure that the future complete imple-
mentation meets their needs. These changes can be made to a subsequent increment, and 
the client and users can then determine if further changes are needed. A variation on this is 
to deliver partial versions of the software product, not only for experimentation but also to 
smooth the introduction of the new software product in the client organization. Change is 
almost always perceived as a threat. All too often, users fear that the introduction of a new 
software product within the workplace will result in them losing their jobs to a computer. 
However, introducing a software product gradually can have two benefi ts. First, the under-
standable fear of being replaced by a computer is diminished. Second, it is generally easier 
to learn the functionality of a complex software product if that functionality is introduced 
stepwise over a period of months, rather than as a whole.  

  5. There is empirical evidence that the iterative-and-incremental life cycle works. The pie 
chart of  Figure 1.1  shows the results of the report from the Standish Group on projects 
completed in 2006 [Rubenstein, 2007]. In fact, this report (the so-called CHAOS Report—
see Just in Case You Wanted to Know Box 2.2) is produced every 2 years.  Figure 2.7  
shows the results for 1994 through 2006. The percentage of successful products increased 
steadily from 16 percent in 1994 to 34 percent in 2002, but then decreased to 29 percent in 
2004. In both the 2002 [Softwaremag.com, 2004] and 2004 [Hayes, 2004] reports, one of 
the factors associated with the successful projects was the use of an iterative process. (The 
reasons given for the decrease in the percentage of successful projects in 2004 included: 
more large projects than in 2002, use of the waterfall model, lack of user involvement, and 
lack of support from senior executives [Hayes, 2004].) Then, the percentage of successful 
projects increased again in the 2006 study to 35 percent. The president of the Standish 
Group, Jim Johnson, attributed this increase to three factors: better project management, 
the emerging Web infrastructure, and (again) iterative development [Rubenstein, 2007].    
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  2.8 Managing Iteration and Incrementation 
  At fi rst glance, the iterative-and-incremental model of  Figures 2.4  and  2.5  looks totally cha-
otic. Instead of the orderly progression from requirements to implementation of the waterfall 
model ( Figure 2.3 ), it appears that developers do whatever they like, perhaps some coding in 
the morning, an hour or two of design after lunch, and then half an hour of specifying before 
going home. That is   not   the case. On the contrary, the iterative-and-incremental model is as 
regimented as the waterfall model, because as previously pointed out, developing a software 
product using the iterative-and-incremental model is nothing more or less than developing a 
series of smaller software products, all using the waterfall model. 

  FIGURE 2.7     
 Results of the 
Standish Group 
CHAOS Report 
from 1994 to 
2006.    

0% 20% 40% 60% 100%80%

2004

2006

2002

2000

1998

1996

1994

29% 53% 18%

35% 46% 19%

34% 51% 15%

28% 49% 23%

26% 46% 28%

27% 33% 40%

16% 53% 31%

Completed on time and within budget
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 Just in Case You Wanted to Know Box 2.2 

 The term   CHAOS   is an acronym. For some unknown reason, the Standish Group keeps the 
acronym top secret. They state [Standish, 2003]: 

 Only a few people at The Standish Group, and any one of the 360 people who received and 
saved the T-shirts we gave out after they completed the fi rst survey in 1994, know what the 
CHAOS letters represent. 
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  In more detail, as shown in  Figure 2.3 , developing a software product using the 
waterfall model means successively performing the requirements, analysis, design, and 
implementation phases (in that order) on the software product as a whole. If a problem 
is encountered, the feedback loops of  Figure 2.3  (dashed arrows) are followed; that is, 
iteration (maintenance) is performed. However, if the same software product is devel-
oped using the iterative-and-incremental model, the software product is treated as a 
set of increments. For each increment in turn, the requirements, analysis, design, and 
implementation phases (in that order) are repeatedly performed   on that increment   until 
it is clear that no further iteration is needed. In other words, the project as a whole is 
broken up into a series of waterfall mini projects. During each mini project, iteration is 
performed as needed, as shown in  Figure 2.5 . Therefore, the reason the previous para-
graph stated that the iterative-and-incremental model is as regimented as the waterfall 
model is because the iterative-and-incremental model   is   the waterfall model, applied 
successively.   

  2.9 Other Life-Cycle Models 
  We now consider a number of other life-cycle models, including the spiral model and the 
synchronize-and-stabilize model. We begin with the infamous code-and-fi x model. 

  2.9.1 Code-and-Fix Life-Cycle Model 
 It is unfortunate that so many products are developed using what might be termed the 
  code-and-fi x life-cycle model  . The product is implemented without requirements or 
specifi cations, or any attempt at design. Instead, the developers simply throw code together 
and rework it as many times as necessary to satisfy the client. This approach is shown in 
 Figure 2.8 , which clearly displays the absence of requirements, specifi cations, and design. 
Although this approach may work well on short programming exercises 100 or 200 lines 
long, the code-and-fi x model is totally unsatisfactory for products of any reasonable size. 
 Figure 1.6  shows that the cost of changing a software product is relatively small if the 
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change is made during the requirements, analysis, or design phases but grows unaccept-
ably large if changes are made after the product has been coded or, worse, if it has already 
been delivered and installed on the client’s computer. Hence, the cost of the code-and-fi x 
approach is actually far greater than the cost of a properly specifi ed and meticulously de-
signed product. In addition, maintenance of a product can be extremely diffi cult without 
specifi cation or design documents, and the chances of a regression fault occurring are con-
siderably greater. Instead of the code-and-fi x approach, it is essential that, before develop-
ment of a product begins, an appropriate life-cycle model be chosen. 
  Regrettably, all too many projects use the code-and-fi x model. The problem is particu-
larly acute in organizations that measure progress solely in terms of lines of code, so mem-
bers of the software development team are pressured into churning out as many lines of 
code as possible, starting on Day One of the project. The code-and-fi x model is the easiest 
way to develop software—and by far the worst way. 
  A simplifi ed version of the waterfall model was presented in Section 2.2. We now con-
sider that model in more detail.  

  2.9.2 Waterfall Life-Cycle Model 
 The   waterfall life-cycle model   was fi rst put forward by Royce [1970].  Figure 2.9  shows 
the feedback loops for maintenance while the product is being developed, as refl ected in 
 Figure 2.3 , the simplifi ed waterfall model.  Figure 2.9  also shows the feedback loops for 
postdelivery maintenance. 
  A critical point regarding the waterfall model is that no phase is complete until the 
documentation for that phase has been completed and the products of that phase have been 
approved by the software quality assurance (SQA) group. This carries over into modifi ca-
tions; if the products of an earlier phase have to be changed as a consequence of following 
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a feedback loop, that earlier phase is deemed to be complete only when the documentation 
for the phase has been modifi ed and the modifi cations have been checked by the SQA 
group. Inherent in every phase of the waterfall model is testing. Testing is not a separate 
phase to be performed only after the product has been constructed, nor is it to be performed 
only at the end of each phase. Instead, as stated in Section 1.7, testing should proceed con-
tinually throughout the software process. In particular, during maintenance, it is necessary 
to ensure not only that the modifi ed version of the product still does what the previous ver-
sion did—and still does it correctly (regression testing)—but that it also satisfi es any new 
requirements imposed by the client. 
  The waterfall model has many strengths, including the enforced disciplined 
approach—the stipulation that documentation be provided at each phase and the require-
ment that all the products of each phase (including the documentation) be meticulously 
checked by SQA. However, the fact that the waterfall model is documentation driven 
can also be a weakness. To see this, consider the following two somewhat bizarre 
scenarios. 
  First, Joe and Jane Johnson decide to build a house. They consult with an architect. 
Instead of showing them sketches, plans, and perhaps a scale model, the architect gives 
them a 20-page single-spaced typed document describing the house in highly technical 
terms. Even though both Joe and Jane have no previous architectural experience and hardly 
understand the document, they enthusiastically sign it and say, “Go right ahead, build the 
house!” 
  Another scenario is as follows: Mark Marberry buys his suits by mail order. Instead 
of mailing him pictures of their suits and samples of available cloths, the company sends 
Mark a written description of the cut and the cloth of their products. Mark then orders a suit 
solely on the basis of a written description. 
  The preceding two scenarios are highly unlikely. Nevertheless, they typify precisely the 
way software is often constructed using the waterfall model. The process begins with the 
specifi cations. In general, specifi cation documents are long, detailed, and, quite frankly, 
boring to read. The client is usually inexperienced in the reading of software specifi cations, 
and this diffi culty is compounded by the fact that specifi cation documents are usually writ-
ten in a style with which the client is unfamiliar. The diffi culty is even worse when the 
specifi cations are written in a formal specifi cation language like Z [Spivey, 1992] (Section 
12.9). Nevertheless, the client proceeds to sign off on the specifi cation document, whether 
properly understood or not. In many ways there is little difference between Joe and Jane 
Johnson contracting to have a house built from a written description that they only partially 
comprehend and clients approving a software product described in terms of a specifi cation 
document that they only partially understand. 
  Mark Marberry and his mail-order suits may seem bizarre in the extreme, but that is 
precisely what happens when the waterfall model is used in software development. The fi rst 
time that the client sees a working product is only after the entire product has been coded. 
Small wonder that software developers live in fear of the sentence, “I know this is what I 
asked for, but it isn’t really what I wanted.” 
  What has gone wrong? There is a considerable difference between the way a client un-
derstands a product as described by the specifi cation document and the actual product. The 
specifi cations exist only on paper; the client therefore cannot really understand what the 
product itself will be like. The waterfall model, depending as it does so crucially on written 

54  Part A  Software Engineering Concepts

sch76183_ch02_035-073.indd   54sch76183_ch02_035-073.indd   54 04/06/10   12:34 PM04/06/10   12:34 PM



specifi cations, can lead to the construction of products that simply do not meet the client’s 
real needs. 
  In fairness it should be pointed out that, just as an architect can help a client understand 
what is to be built by providing scale models, sketches, and plans, so the software engineer 
can use graphical techniques, such as data fl ow diagrams (Section 12.3) or UML diagrams 
( Chapter 17 ) to communicate with the client. The problem is that these graphical aids do 
not describe how the fi nished product will work. For example, there is a considerable dif-
ference between a fl owchart (a diagrammatic description of a product) and the working 
product itself.   In this book, two solutions are put forward for solving the problem that the 
specifi cation document generally does not describe a product in a way that enables the cli-
ent to determine whether the proposed product meets his or her needs. The object-oriented 
solution is described in  Chapters 11  and  13 . The classical solution is the rapid-prototyping 
model, described in Section 2.9.3.  

  2.9.3 Rapid-Prototyping Life-Cycle Model 
 A   rapid prototype   is a working model that is functionally equivalent to a subset of the 
product. For example, if the target product is to handle accounts payable, accounts receiv-
able, and warehousing, then the rapid prototype might consist of a product that performs 
the screen handling for data capture and prints the reports, but does no fi le updating or error 
handling. A rapid prototype for a target product that is to determine the concentration of 
an enzyme in a solution might perform the calculation and display the answer, but without 
doing any validation or reasonableness checking of the input data. 
  The fi rst step in the   rapid-prototyping life-cycle model   depicted in  Figure 2.10  is 
to build a rapid prototype and let the client and future users interact and experiment with 
the rapid prototype. Once the client is satisfi ed that the rapid prototype indeed does most of 
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what is required, the developers can draw up the specifi cation document with some assur-
ance that the product meets the client’s real needs. 
  Having produced the rapid prototype, the software process continues as shown in 
 Figure 2.10 . A major strength of the rapid-prototyping model is that the development 
of the product is essentially linear, proceeding from the rapid prototype to the delivered 
product; the feedback loops of the waterfall model ( Figure 2.9 ) are less likely to be 
needed in the rapid-prototyping model. There are a number of reasons for this. First, the 
members of the development team use the rapid prototype to construct the specifi cation 
document. Because the working rapid prototype has been validated through interaction 
with the client, it is reasonable to expect that the resulting specifi cation document will be 
correct. Second, consider the design. Even though the rapid prototype has (quite rightly) 
been hurriedly assembled, the design team can gain insight from it—at worst it will be of 
the “how not to do it” variety. Again, the feedback loops of the waterfall model are less 
likely to be needed here. 
  Implementation comes next. In the waterfall model, implementation of the design some-
times leads to design faults coming to light. In the rapid-prototyping model, the fact that a 
preliminary working version of the software product has already been built tends to lessen 
the need to repair the design during or after implementation. The prototype has given some 
insights to the design team, even though it may refl ect only partial functionality of the 
complete target product. 
  Once the product has been accepted by the client and installed, postdelivery main-
tenance begins. Depending on the specifi c maintenance task that has to be performed, 
the cycle is reentered either at the requirements, analysis, design, or implementation 
phase. 
  An essential aspect of a rapid prototype is embodied in the word   rapid  . The develop-
ers should endeavor to construct the rapid prototype as rapidly as possible to speed up the 
software development process. After all, the sole use of the rapid prototype is to determine 
what the client’s real needs are; once this has been determined, the rapid prototype imple-
mentation is discarded but the lessons learned are retained and used in subsequent develop-
ment phases. For this reason, the internal structure of the rapid prototype is not relevant. 
What is important is that the prototype be built rapidly and modifi ed rapidly to refl ect the 
client’s needs. Therefore, speed is of the essence. 
  Rapid prototyping is discussed in greater detail in  Chapter 11 .  

  2.9.4 Open-Source Life-Cycle Model 
 Almost all successful   open-source software   projects go through two informal phases. 
First, a single individual has an idea for a program, such as an operating system (Linux), a 
Net browser (Firefox), or a Web server (Apache). He or she builds an initial version, which 
is then made available for distribution free of charge to anyone who would like a copy; 
nowadays, this is done via the Internet, at sites like SourceForge.net and FreshMeat.net. 
If someone downloads a copy of the initial version and thinks that the program fulfi lls a 
need, he or she will start to use that program. 
  If there is suffi cient interest in the program, the project moves gradually into informal 
phase two. Users become co-developers, in that some users report defects and others sug-
gest ways of fi xing those defects. Some users put forward ideas for extending the program, 
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and others implement those ideas. As the program expands in functionality, yet other users 
port the program so that it can run on additional operating system/hardware combinations. 
A key aspect is that individuals usually work on an open-source project in their spare time 
on a voluntary basis; they are not paid to participate. 
  Now look more closely at the three activities of the second informal phase:

   1. Reporting and correcting defects is corrective maintenance.  
  2. Adding additional functionality is perfective maintenance.  
  3. Porting the program to a new environment is adaptive maintenance.    

  In other words, the second informal phase of the open-source life-cycle model consists 
solely of postdelivery maintenance, as shown in  Figure 2.11 . In fact, the term   co-developers   
in the second paragraph of this section should rather be   co-maintainers  . 
  There are a number of key differences between closed-source and open-source software 
life-cycle models: 

  • Closed-source software is maintained and tested by teams of employees of the organiza-
tion that owns the software. Users sometimes submit defect reports. However, these are 
restricted to   failure reports   (reports of observed incorrect behavior); users have no 
access to the source code, so they cannot possibly submit   fault reports   (reports that 
describe where the source code is incorrect and how to correct it). 

   In contrast, open-source software is generally maintained by unpaid volunteers. Users 
are strongly encouraged to submit defect reports. Although all users have access to the 
source code, only the minority have the inclination and the time, as well as the necessary 
skills, to peruse the source code and submit fault reports (“fi xes”); most defect reports 
are therefore failure reports. There is generally a   core group   of dedicated maintainers 
who take responsibility for managing the open-source project. Some members of the 
  peripheral group  , that is, the users who are not members of the core group, choose to 
submit defect reports from time to time. The members of the core group are responsible 
for ensuring that these defects are corrected. In more detail, when a fault report is sub-
mitted, a core group member checks that the fi x indeed solves the problem and modifi es 
the source code appropriately. When a failure report is submitted, a member of the core 
group will either personally determine the fi x or assign that task to another volunteer, 
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often a member of the peripheral group who is eager to become more involved in the 
open-source project. Again, the power to install the fi x in the software is restricted to 
members of the core group.  

 •  New versions of closed-source software are typically released roughly once a year. Each 
new version is carefully checked by the software quality assurance group before release; 
a wide variety of test cases are run. 

   In contrast, a dictum of the open-source movement is “Release early. Release often” 
[Raymond, 2000]. That is, the core group releases a new version of an open-source prod-
uct as soon as it is ready, which may be a month or even only a day after the previous 
version was released. This new version is released after minimal testing; it is assumed 
that more extensive testing will be performed by the members of the peripheral group. 
A new version may be installed by literally hundreds of thousands of users within a day 
or two of its release. These users do not run test cases as such. However, in the course of 
utilizing the new version on their computer, they encounter failures, which they report 
via e-mail. In this way, faults in the new version (as well as deeper faults in previous 
versions) come to light and are corrected.    

  Comparing  Figures 2.8 ,  2.10 , and  2.11 , we see that the open-source life-cycle model 
has features in common with both the code-and-fi x model and the rapid-prototyping 
model. In all three life-cycle models, an initial working version is produced. In the case 
of the rapid-prototyping model, this initial version is discarded, and the target product 
is then specifi ed and designed before being coded. In both the code-and-fi x and open-
source life-cycle models, the initial version is reworked until it becomes the target 
product. Accordingly, in an open-source project, there are generally no specifi cations 
or design. 
  Bearing in mind the great importance of having specifi cations and designs, how have 
some open-source projects been so successful? In the closed-source world, some software 
professionals are more skilled and some are less skilled (see Section 9.2). The challenge 
of producing open-source software has attracted some of the fi nest software experts. In 
other words, an open-source project can be successful, despite the lack of specifi cations or 
design, if the skills of the individuals who work on that project are so superb that they can 
function effectively without specifi cations or design. 
  The open-source life-cycle model is restricted in its applicability. On the one hand, 
the open-source model has been exceedingly successfully used for certain infrastruc-
ture software projects, such as operating systems (Linux, OpenBSD, Mach, Darwin), 
Web browsers (Firefox, Netscape), compilers (gcc), Web servers (Apache), or database 
management systems (MySQL). On the other hand, it is hard to conceive of open-source 
development of a software product to be used only in one commercial organization. A 
key to open-source software development is that the members of both the core group and 
the periphery are users of the software being developed. Consequently, the open-source 
life-cycle model is inapplicable unless the target product is viewed by a wide range of 
users as useful to them. 
  At the time of writing, there are about 350,000 open-source projects at SourceForge.
net and FreshMeat.net. About half them have never even attracted a team to work on the 
project. Of those where work has started, the overwhelming preponderance have never been 
completed and are unlikely to ever progress much further. But when the open-source model 
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has worked, it has sometimes been incredibly successful. The open-source products listed 
in parentheses in the previous paragraph are widely used; most of them are utilized on a 
regular basis by literally millions of users. 
  Explanations for the success of the open-source life-cycle model are presented in 
 Chapter 4  within the context of team organizational aspects of open-source software 
projects.  

  2.9.5 Agile Processes 
   Extreme programming   [Beck, 2000] is a somewhat controversial new approach to 
software development based on the iterative-and-incremental model. The fi rst step is 
that the software development team determines the various features (  stories  ) the client 
would like the product to support. For each such feature, the team informs the client 
how long it will take to implement that feature and how much it will cost. This fi rst step 
corresponds to the requirements and analysis workfl ows of the iterative-and-incremental 
model ( Figure 2.4 ). 
  The client selects the features to be included in each successive build using cost–
benefi t analysis (Section 5.2), that is, on the basis of the duration and the cost estimates 
provided by the development team as well as the potential benefi ts of the feature to 
his or her business. The proposed build is broken down into smaller pieces termed 
  tasks  . A programmer fi rst draws up test cases for a task; this is termed   test-driven 
development   (TDD). Two programmers work together on one computer (  pair 
programming  ) [Williams, Kessler, Cunningham, and Jeffries, 2000], implementing 
the task and ensuring that all the test cases work correctly. The two programmers alter-
nate typing every 15 or 20 minutes; the programmer who is not typing carefully checks 
the code while it is being entered by his or her partner. The task is then integrated into 
the current version of the product. Ideally, implementing and integrating a task should 
take no more than a few hours. In general, a number of pairs will implement tasks in 
parallel, so integration is essentially continuous. Team members change coding part-
ners daily, if possible; learning from the other team members increases everyone’s 
skill level. The TDD test cases used for the task are retained and utilized in all further 
integration testing. 
  Some drawbacks to pair programming have been observed in practice [Drobka, Noftz, 
and Raghu, 2004]. For example, pair programming requires large blocks of uninterrupted 
time, and software professionals can have diffi culty in fi nding 3- to 4-hour blocks of time. 
In addition, pair programming does not always work well with shy or overbearing individu-
als, or with two inexperienced programmers. 
  A number of features of extreme programming (XP) are somewhat different from the 
way in which software is usually developed:

   • The computers of the XP team are set up in the center of a large room lined with small 
cubicles.  

  • A client representative works with the XP team at all times.  
 •  No individual can work overtime for two successive weeks.  
  • There is no specialization. Instead, all members of the XP team work on requirements, 

analysis, design, code, and testing.  
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  • There is no overall design step before the various builds are constructed. Instead, the de-
sign is modifi ed while the product is being built. This procedure is termed   refactoring  . 
Whenever a test case will not run, the code is reorganized until the team is satisfi ed that 
the design is simple, straightforward, and runs all the test cases satisfactorily.    

  Two acronyms now associated with extreme programming are YAGNI (you aren’t gonna 
need it) and DTSTTCPW (do the simplest thing that could possibly work). In other words, 
a principle of extreme programming is to minimize the number of features; there is no need 
to build a product that does any more than what the client actually needs. 
  Extreme programming is one of a number of new paradigms that are collectively referred 
to as   agile processes  . Seventeen software developers (later dubbed the Agile Alliance) met 
at a Utah ski resort for two days in February 2001 and produced the   Manifesto for Agile Soft-
ware Development   [Beck et al., 2001]. Many of the participants had previously authored their 
own software development methodologies, including Extreme Programming [Beck, 2000], 
Crystal [Cockburn, 2001], and Scrum [Schwaber, 2001]. Consequently, the Agile Alliance 
did not prescribe a specifi c life-cycle model, but rather laid out a group of underlying prin-
ciples that were common to their individual approaches to software development. 
  Agile processes are characterized by considerably less emphasis on analysis and design 
than in almost all other modern life-cycle models. Implementation starts much earlier in 
the life cycle because working software is considered more important than detailed docu-
mentation. Responsiveness to changes in requirements is another major goal of agile pro-
cesses, and so is the importance of collaborating with the client. 
  One of the principles in the   Manifesto   is to deliver working software frequently, ideally every 
2 or 3 weeks. One way of achieving this is to use   timeboxing   [Jalote, Palit, Kurien, and Peeth-
amber, 2004], which has been used for many years as a time management technique. A specifi c 
amount of time is set aside for a task, and the team members then do the best job they can during 
that time. Within the context of agile processes, typically 3 weeks are set aside for each iteration. 
On the one hand, it gives the client confi dence to know that a new version with additional func-
tionality will arrive every 3 weeks. On the other hand, the developers know that they will have 
3 weeks (but no more) to deliver a new iteration without client interference of any kind; once 
the client has chosen the work for an iteration, it cannot be changed or increased. However, if it 
is impossible to complete the entire task in the timebox, the work may be reduced (“descoped”). 
In other words, agile processes demand fi xed time, not fi xed features. 
  Another common feature of agile processes is to have a short meeting at a regular time 
each day. All team members have to attend the meeting. Making all the participants stand 
in a circle, rather than sit around a table, helps to ensure that the meeting lasts no more than 
the stipulated 15 minutes. Each team member in turn answers fi ve questions:

  •  What have I done since yesterday’s meeting?  
 •  What am I working on today?  
 •  What problems are preventing me from achieving this?  
 •  What have we forgotten?  
  • What did I learn that I would like to share with the team?    

  The aim of the   stand-up meeting   is to raise problems, not solve them; solutions 
are found at follow-up meetings, preferably held directly after the stand-up meeting. 
Like timeboxing, stand-up meetings are a successful management technique now utilized 
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within the context of agile processes. Both timeboxed iterations and stand-up meetings are 
instances of two basic principles that underlie all agile methods: communication and satis-
fying the client’s needs as quickly as possible. 
  Agile processes have been successfully used on a number of small-scale projects. How-
ever, agile processes have not yet been used widely enough to determine whether this 
approach will fulfi ll its early promise. Furthermore, even if agile processes turn out to be 
good for small-scale software products, that does not necessarily mean that they can be 
used for medium- or large-scale software products, as will now be explained. 
  To appreciate why many software professionals have expressed doubts about agile pro-
cesses within the context of medium- and especially large-scale software products [Reifer, 
Maurer, and Erdogmus, 2003], consider the following analogy by Grady Booch [2000]. 
Anyone can successfully hammer together a few planks to build a doghouse, but it would 
be foolhardy to build a three-bedroom home without detailed plans. In addition, skills in 
plumbing, wiring, and roofi ng are needed to build a three-bedroom home, and inspections 
are essential. (That is, being able to build small-scale software products does not neces-
sarily mean that one has the skills for building medium-scale software products.) Further-
more, the fact that a skyscraper is the height of 1000 doghouses does not mean that one can 
build a skyscraper by piling 1000 doghouses on top of one another. In other words, building 
large-scale software products requires even more specialized and sophisticated skills than 
those needed to cobble together small-scale software products. 
  A key determinant in deciding whether agile processes are indeed a major breakthrough in 
software engineering will be the cost of future postdelivery maintenance (Section 1.3.2). That 
is, if the use of agile processes results in a reduction in the cost of postdelivery maintenance, 
XP and other agile processes will become widely adopted. On the other hand, refactoring is an 
intrinsic component of agile processes. As previously explained, the product is not designed as 
a whole; instead, the design is developed incrementally, and the code is reorganized whenever 
the current design is unsatisfactory for any reason. This refactoring then continues during 
postdelivery maintenance. If the design of a product when it passes its acceptance test is open-
ended and fl exible, then perfective maintenance should be easy to achieve at a low cost. How-
ever, if the design has to be refactored whenever additional functionality is added, then the cost 
of postdelivery maintenance of that product will be unacceptably high. As a consequence of 
the newness of the approach, there are still essentially no data on the maintenance of software 
developed using agile processes. However, preliminary maintenance data indicate that refac-
toring can consume a large percentage of the overall cost [Li and Alshayeb, 2002]. 
  Experiments have shown that certain features of agile processes can work well. For ex-
ample, Williams, Kessler, Cunningham, and Jeffries [2000] showed that pair programming 
leads to the development of higher-quality code in a shorter time, with greater job satisfac-
tion. However, an extensive experiment to evaluate pair programming within the context of 
software maintenance described in Section 4.6 [Arisholm, Gallis, Dybå, and Sjøberg, 2007] 
came to the same conclusion as an analysis of 15 published studies comparing the effective-
ness of individual and pair programming [Dybå et al., 2007]: It depends on both the program-
mer’s expertise and the complexity of the software product and the tasks to be solved. 
  The   Manifesto for Agile Software Development   essentially claims that agile processes are 
superior to more disciplined processes like the Unifi ed Process ( Chapter 3 ). Skeptics respond 
that proponents of agile processes are little more than hackers. However, there is a middle 
ground. The two approaches are not incompatible; it is possible to incorporate proven features 
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of agile processes within the framework of disciplined processes. This integration of the two 
approaches is described in books such as the one by Boehm and Turner [2003]. 
  In conclusion, agile processes appear to be a useful approach to building small-scale soft-
ware products when the client’s requirements are vague. In addition, some of the features of 
agile processes can be effectively utilized within the context of other life-cycle models.  

  2.9.6 Synchronize-and-Stabilize Life-Cycle Model 
 Microsoft, Inc., is the world’s largest manufacturer of COTS software. The majority of its 
packages are built using a version of the iterative-and-incremental model that has been termed 
the   synchronize-and-stabilize life-cycle model   [Cusumano and Selby, 1997]. 
  The requirements analysis phase is conducted by interviewing numerous potential clients 
for the package and extracting a list of features of highest priority to the clients. A specifi ca-
tion document is now drawn up. Next, the work is divided into three or four builds. The fi rst 
build consists of the most critical features, the second build consists of the next most critical 
features, and so on. Each build is carried out by a number of small teams working in parallel. 
At the end of each day, all the teams   synchronize  ; that is, they put the partially completed 
components together and test and debug the resulting product.   Stabilization   is performed at 
the end of each of the builds. Any remaining faults that have been detected so far are fi xed, and 
they now   freeze   the build; that is, no further changes will be made to the specifi cations. 
  The repeated synchronization step ensures that the various components always work 
together. Another advantage of this regular execution of the partially constructed product 
is that the developers obtain early insight into the operation of the product and can modify 
the requirements if necessary during the course of a build. The life-cycle model can be 
used even if the initial specifi cation is incomplete. The synchronize-and-stabilize model is 
considered further in Section 4.5, where team organizational details are discussed. 
  The spiral model has been left to last because it incorporates aspects of all the other 
models described in Section 2.9.  

  2.9.7 Spiral Life-Cycle Model 
 As stated in Section 2.5, an element of risk is always involved in the development of 
software. For example, key personnel can resign before the product has been adequately 
documented. The manufacturer of hardware on which the product is critically dependent 
can go bankrupt. Too much, or too little, can be invested in testing and quality assurance. 
After spending hundreds of thousands of dollars on developing a major software product, 
technological breakthroughs can render the entire product worthless. An organization may 
research and develop a database management system, but before the product can be mar-
keted, a lower-priced, functionally equivalent package is announced by a competitor. The 
components of a product may not fi t together when integration is performed. For obvious 
reasons, software developers try to minimize such risks wherever possible. 
  One way of minimizing certain types of risk is to construct a prototype. As described in 
Section 2.9.3, one approach to reducing the risk that the delivered product will not satisfy the 
client’s real needs is to construct a rapid prototype during the requirements phase. During 
subsequent phases, other sorts of prototypes may be appropriate. For example, a telephone 
company may devise a new, apparently highly effective algorithm for routing calls through 
a long-distance network. If the product is implemented but does not work as expected, the 
telephone company will have wasted the cost of developing the product. In addition, angry or 
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inconvenienced customers may take their business elsewhere. This outcome can be avoided 
by constructing a   proof-of-concept prototype   to handle only the routing of calls and 
testing it on a simulator. In this way, the actual system is not disturbed; and for the cost of 
implementing just the routing algorithm, the telephone company can determine whether it is 
worthwhile to develop an entire network controller incorporating the new algorithm. 
  A proof-of-concept prototype is not a rapid prototype constructed to be certain that the 
requirements have been accurately determined, as described in Section 2.9.3. Instead, it is more 
like an engineering prototype, that is, a scale model constructed to test the feasibility of construc-
tion. If the development team is concerned whether a particular part of the proposed software 
product can be constructed, a proof-of-concept prototype is constructed. For example, the de-
velopers may be concerned whether a particular computation can be performed quickly enough. 
In that case, they build a prototype to test the timing of just that computation. Or they may be 
worried that the font they intend to use for all screens will be too small for the average user to 
read without eyestrain. In this instance, they construct a prototype to display a number of differ-
ent screens and determine by experiment whether the users fi nd the font uncomfortably small. 
  The idea of minimizing risk via the use of prototypes and other means is the idea under-
lying the   spiral life-cycle model   [Boehm, 1988]. A simplifi ed way of looking at this life-
cycle model is as a waterfall model with each phase preceded by risk analysis, as shown in 
 Figure 2.12 . Before commencing each phase, an attempt is made to   mitigate   (control)   the 
risks  . If it is impossible to mitigate all the signifi cant risks at that stage, then the project is 
immediately terminated. 

 FIGURE 2.12    
 A simplifi ed 
version of the 
spiral life-cycle 
model. 
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  Prototypes can be used effectively to provide information about certain classes of risk. 
For example, timing constraints can generally be tested by constructing a prototype and 
measuring whether the prototype can achieve the necessary performance. If the prototype 
is an accurate functional representation of the relevant features of the product, then mea-
surements made on the prototype should give the developers a good idea as to whether the 
timing constraints can be achieved. 
  Other areas of risk are less amenable to prototyping, for example, the risk that the 
software personnel necessary to build the product cannot be hired or that key personnel 
may resign before the project is complete. Another potential risk is that a particular team 
may not be competent enough to develop a specifi c large-scale product. A successful 
contractor who builds single-family homes would probably not be able to build a high-
rise offi ce complex. In the same way, there are essential differences between small-scale 
and large-scale software, and prototyping is of little use. This risk cannot be mitigated 
by testing team performance on a much smaller prototype, in which team organizational 
issues specifi c to large-scale software cannot arise. Another area of risk for which pro-
totyping cannot be employed is evaluating the delivery promises of a hardware supplier. 
A strategy the developer can adopt is to determine how well previous clients of the sup-
plier have been treated, but past performance is by no means a certain predictor of future 
performance. A penalty clause in the delivery contract is one way of trying to ensure that 
essential hardware is delivered on time, but what if the supplier refuses to sign an agree-
ment that includes such a clause? Even with a penalty clause, late delivery may occur 
and eventually lead to legal action that can drag on for years. In the meantime, the soft-
ware developer may have gone bankrupt because nondelivery of the promised hardware 
caused nondelivery of the promised software. In short, whereas prototyping helps reduce 
risk in some areas, in other areas it is at best a partial answer, and in still others it is no 
answer at all. 
  The full spiral model is shown in  Figure 2.13 . The radial dimension represents cumula-
tive cost to date, and the angular dimension represents progress through the spiral. Each 
cycle of the spiral corresponds to a phase. A phase begins (in the top left quadrant) by 
determining objectives of that phase, alternatives for achieving those objectives, and con-
straints imposed on those alternatives. This process results in a strategy for achieving those 
objectives. Next, that strategy is analyzed from the viewpoint of risk. Attempts are made to 
mitigate every potential risk, in some cases by building a prototype. If certain risks cannot 
be mitigated, the project may be terminated immediately; under some circumstances, how-
ever, a decision could be made to continue the project but on a signifi cantly smaller scale. 
If all risks are successfully mitigated, the next development step is started (bottom right 
quadrant). This quadrant of the spiral model corresponds to the classical waterfall model. 
Finally, the results of that phase are evaluated and the next phase is planned. 
  The spiral model has been used successfully to develop a wide variety of products. In 
one set of 25 projects in which the spiral model was used in conjunction with other means 
of increasing productivity, the productivity of every project increased by at least 50 percent 
over previous productivity levels and by 100 percent in most of the projects [Boehm, 1988]. 
To be able to decide whether the spiral model should be used for a given project, the 
strengths and weaknesses of the spiral model are now assessed. 
  The spiral model has a number of strengths. The emphasis on alternatives and con-
straints supports the reuse of existing software (Section 8.1) and the incorporation of 
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software quality as a specifi c objective. In addition, a common problem in software devel-
opment is determining when the products of a specifi c phase have been adequately tested. 
Spending too much time on testing is a waste of money, and delivery of the product may 
be unduly delayed. Conversely, if too little testing is performed, then the delivered software 
may contain residual faults, resulting in unpleasant consequences for the developers. The 
spiral model answers this question in terms of the risks that would be incurred by not doing 
enough testing or by doing too much testing. Perhaps most important, within the structure 
of the spiral model, postdelivery maintenance is simply another cycle of the spiral; there is 
essentially no distinction between postdelivery maintenance and development. Therefore, 
the problem that postdelivery maintenance is sometimes maligned by ignorant software 
professionals does not arise, because postdelivery maintenance is treated the same way as 
development. 

 FIGURE 2.13     Full spiral life-cycle model   [Boehm, 1988]. (© 1988 IEEE.) 
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  There are restrictions on the applicability of the spiral model. Specifi cally, in its present form, 
the model is intended exclusively for internal development of large-scale software [Boehm, 
1988]. Consider an internal project, that is, one where the developers and client are members 
of the same organization. If risk analysis leads to the conclusion that the project should be 
terminated, then in-house software personnel can simply be reassigned to a different project. 
However, once a contract has been signed between a development organization and an exter-
nal client, an attempt by either side to terminate that contract can lead to a breach-of-contract 
lawsuit. Therefore, in the case of contract software, all risk analysis must be performed by both 
client and developers before the contract is signed, not as in the spiral model. 
  A second restriction on the spiral model relates to the size of the project. Specifi cally, 
the spiral model is applicable to only large-scale software. It makes no sense to perform 
risk analysis if the cost of performing the risk analysis is comparable to the cost of the 
project as a whole, or if performing the risk analysis would signifi cantly affect the profi t 
potential. Instead, the developers should fi rst decide how much is at risk and then how 
much risk analysis, if any, to perform. 
  A major strength of the spiral model is that it is risk driven, but this can also be a weakness. 
Unless the software developers are skilled at pinpointing the possible risks and analyzing the 
risks accurately, there is a real danger that the team may believe that all is well at a time when 
the project, in fact, is headed for disaster. Only if the members of the development team are 
competent risk analysts should management decide to use the spiral model. 
  Overall, however, the major weakness of the spiral model, as well as the waterfall model 
and the rapid-prototyping model, is that it assumes that software is developed in discrete 
phases. In reality, however, software development is iterative and incremental, as refl ected in 
the evolution-tree model (Section 2.2) or the iterative-and-incremental model (Section 2.5).    

  2.10 Comparison of Life-Cycle Models 
  Nine different software life-cycle models have been examined with special attention paid to 
some of their strengths and weaknesses. The code-and-fi x model (Section 2.9.1) should be 
avoided. The waterfall model (Section 2.9.2) is a known quantity. Its strengths are understood, 
and so are its weaknesses. The rapid-prototyping model (Section 2.9.3) was developed as a 
reaction to a specifi c perceived weakness in the waterfall model, namely, that the delivered 
product may not be what the client really needs. However, there is still insuffi cient evidence 
that this approach is superior to the waterfall model in other respects. The open-source life-
cycle model has been incredibly successful in a small number of cases when used to con-
struct infrastructure software (Section 2.9.4). Agile processes (Section 2.9.5) are a set of 
controversial new approaches that, so far, appear to work, but for only small-scale software. 
The synchronize-and-stabilize model (Section 2.9.6) has been used with great success by 
Microsoft, but as yet there is no evidence of comparable success in other corporate cultures. 
Yet another alternative is to use the spiral model (Section 2.9.7), but only if the developers are 
adequately trained in risk analysis and risk resolution. The evolution-tree model (Section 2.2) 
and the iterative-and-incremental model (Section 2.5) are closest to the way that software is 
produced in the real world. An overall comparison appears in  Figure 2.14 . 
  Each software development organization should decide on a life-cycle model that is 
appropriate for that organization, its management, its employees, and its software process 
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and should vary the life-cycle model depending on the features of the specifi c product cur-
rently under development. Such a model incorporates appropriate aspects of the various 
life-cycle models, utilizing their strengths and minimizing their weaknesses.    

 FIGURE 2.14  
 Comparison 
of life-cycle 
models 
described in 
this chapter, 
including the 
section in which 
each is defi ned.          

   Life-Cycle Model     Strengths     Weaknesses   

     Evolution-tree model     Closely models real-world        
   (Section 2.2)      software production        

        Equivalent to the iterative-        
         and-incremental model        
   Iterative-and-incremental life-     Closely models real-world        
    cycle model (Section 2.5)      software production        
        Underlies the Unifi ed        
         Process        
   Code-and-fi x life-cycle model     Fine for short programs that     Totally unsatisfactory for   
    (Section 2.9.1)      require no maintenance      nontrivial programs   
   Waterfall life-cycle model     Disciplined approach     Delivered product may   
    (Section 2.9.2)     Document driven      not meet client’s needs   
   Rapid-prototyping life-cycle     Ensures that the delivered     Not yet proven beyond   
    model (Section 2.9.3)      product meets the client’s      all doubt   
         needs        
   Open-source life-cycle     Has worked extremely well in     Limited applicability   
    model (Section 2.9.4)      a small number of instances     Usually does not work   
   Agile processes (Section 2.9.5)     Work well when the client’s     Appear to work on only   
         requirements are vague      small-scale projects   
   Synchronize-and-stabilize life-     Future users’ needs are met     Has not been widely   
    cycle model (Section 2.9.6)     Ensures that components      used other than at   
         can be successfully integrated      Microsoft   
   Spiral life-cycle model     Risk driven     Can be used for only   
    (Section 2.9.7)           large-scale, in-house   
              products   
             Developers have to be   
              competent in risk analysis   
              and risk resolution      

   Chapter 
Review 
  There are signifi cant differences between the way that software is developed in theory (Section 2.1) and the 

way it is developed in practice. The Winburg mini case study is used to introduce the evolution-tree model 
(Section 2.2). Lessons of this mini case study, especially that requirements change, are presented in Sec-
tion 2.3. Change is discussed in greater detail in Section 2.4, where the moving-target problem is presented 
using the Teal Tractors mini case study. In Section 2.5, the importance of iteration and incrementation 
in real-world software engineering is stressed, and the iterative-and-incremental model is presented. The 
Winburg mini case study is then re-examined in Section 2.6 to illustrate the equivalence of the evolution-
tree model and the iterative-and-incremental model. In Section 2.7, the strengths of the iterative-and-
incremental model are presented, particularly that it enables us to resolve risks early. Management of the 
iterative-and-incremental model is discussed in Section 2.8. A number of different life-cycle models are 
now described, including the code-and-fi x life-cycle model (Section 2.9.1), waterfall life-cycle model 
(Section 2.9.2), rapid-prototyping life-cycle model (Section 2.9.3), open-source life-cycle model (Section 
2.9.4), agile processes (Section 2.9.5), synchronize-and-stabilize life-cycle model (Section 2.9.6), and spi-
ral life-cycle model (Section 2.9.7). In Section 2.10, these life-cycle models are compared and suggestions 
are made regarding the choice of a life-cycle model for a specifi c project.  
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  For 
Further 
Reading 

  The waterfall model was fi rst put forward in [Royce, 1970]. An analysis of the waterfall model is given 
in the fi rst chapter of [Royce, 1998]. 
  The synchronize-and-stabilize model is outlined in [Cusumano and Selby, 1997] and described 
in detail in [Cusumano and Selby, 1995]. The spiral model is explained in [Boehm, 1988], and its 
application to the TRW Software Productivity System appears in [Boehm et al., 1984]. 
  Extreme programming is described in [Beck, 2000]; refactoring is the subject of [Fowler et al., 
1999]. The   Manifesto for Agile Software Development   may be found at [Beck et al., 2001]. Books have 
been published on a variety of agile methods, including [Cockburn, 2001] and [Schwaber, 2001]. Agile 
methods are advocated in [Highsmith and Cockburn, 2001], [Boehm, 2002], [DeMarco and Boehm, 
2002], and [Boehm and Turner, 2003], whereas the case against agile methods is presented in [Stephens 
and Rosenberg, 2003]. Refactoring is surveyed in [Mens and Tourwe, 2004]. The use of XP in four 
mission-critical projects is described in [Drobka, Noftz, and Raghu, 2004]. Issues that can arise when 
introducing agile processes within an organization that currently is using traditional methodologies are 
discussed in [Nerur, Mahapatra, and Mangalaraj, 2005] and in [Boehm and Turner, 2005]. 
  A number of papers on extreme programming appear in the May–June 2003 issue of   IEEE Soft-
ware  , including [Murru, Deias, and Mugheddu, 2003] and [Rasmusson, 2003], both of which describe 
successful projects developed using extreme programming. The June 2003 issue of   IEEE Computer   
contains several articles on agile processes. The May–June 2005 issue of   IEEE Software   has four 
articles on agile processes, especially [Ceschi, Sillitti, Succi, and De Panfi lis, 2005] and [Karlström 
and Runeson, 2005]. The extent to which agile methods are used in the software industry is analyzed 
in [Hansson, Dittrich, Gustafsson, and Zarnak, 2006]. A survey of the critical success factors in agile 
software products is presented in [Chow and Cao, 2008]. Approaches to assist in the transition to 
agile methods are given in [Qumer and Henderson-Sellers, 2008]. Refactoring poses problems for 
software confi guration management tools; a solution is put forward in [Dig, Manzoor, Johnson, and 
Nguyen, 2008]. 
  Agile testing of a large-scale software product is described in [Talby, Keren, Hazzan, and Dubin-
sky, 2006]. The effectiveness of test-driven development is discussed in [Erdogmus, Morisio, and 
Torchiano, 2005]. The May–June 2007 issue of   IEEE Software   has a variety of articles on test-driven 
development, including [Martin, 2007]. 
  Risk analysis is described in [Ropponen and Lyttinen, 2000], [Longstaff, Chittister, Pethia, and 
Haimes, 2000], and [Scott and Vessey, 2002]. Managing risks in offshore software development is 
presented in [Sakthivel, 2007] and in [Iacovou and Nakatsu, 2008]. Risk management when software 
is developed using COTS components is described in [Li et al., 2008]. 
  A major iterative-and-incremental model is described in detail in [Jacobson, Booch, and Rumbaugh, 
1999]. However, many other iterative-and-incremental models have been put forward over the past 
30 years, as recounted in [Larman and Basili, 2003]. The use of an incremental model to build an air-
traffi c control system is discussed in [Goth, 2000]. An iterative approach to re-engineering legacy systems 
is given in [Bianchi, Caivano, Marengo, and Visaggio, 2003]. A tool for supporting incremental software 
development while ensuring that the artifacts evolve consistently is described in [Reiss, 2006]. 
  Many other life-cycle models have been put forward. For example, Rajlich and Bennett [2000] 
describe a maintenance-oriented life-cycle model. The July–August 2000 issue of   IEEE Software   has a 
variety of papers on software life-cycle models, including [Williams, Kessler, Cunningham, and Jeffries, 
2000] which describes an experiment on pair programming, one component of agile methods. 
  Rajlich [2006] goes further and suggests that many of the topics of this chapter have led us to a 
new paradigm for software engineering. 
  The proceedings of the International Software Process Workshops are a useful source of informa-
tion on life-cycle models. [ISO/IEC 12207, 1995] is a widely accepted standard for software life-
cycle processes.  
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  Problems      2.1  Represent the Winburg mini case study of Sections 2.2 and 2.3 using the waterfall model. Is this 
more or less effective than the evolution-tree model? Explain your answer.  

   2.2 Assume that the programmer in the Winburg mini case study had used single-precision numbers 
from the beginning. Draw the resulting evolution tree.  

   2.3  What is the connection between Miller’s Law and stepwise refi nement?  

   2.4  Does stepwise refi nement correspond to iteration or incrementation?  

   2.5  How are a workfl ow, an artifact, and a baseline related?  

   2.6  What is the connection between the waterfall model and the iterative-and-incremental model?  

   2.7  Suppose you have to build a product to determine the cube root of 9384.2034 to four decimal 
places. Once the product has been implemented and tested, it will be thrown away. Which 
life-cycle model would you use? Give reasons for your answer.  

   2.8 You are a software engineering consultant and have been called in by the vice-president for 
fi nance of a corporation that manufactures tires and sells them via its large chain of retail 
outlets. She wants your organization to build a product that will monitor the company’s stock, 
starting with the purchasing of the raw materials and keeping track of the tires as they are manu-
factured, distributed to the individual stores, and sold to customers. What criteria would you use 
in selecting a life-cycle model for the project?  

   2.9  List the risks involved in developing the software of Problem 2.8. How would you attempt to 
mitigate each risk?  

  2.10  Your development of the stock control product for the tire company is so successful that your 
organization decides that it must be reimplemented as a package to be sold to a variety of 
different organizations that manufacture and sell products via their own retailers. The new prod-
uct must therefore be portable and easily adapted to new hardware and/or operating systems. 
How would the criteria you use in selecting a life-cycle model for this project differ from those 
in your answer to Problem 2.8?  

  2.11  Describe the sort of product that would be an ideal application for open-source software 
development.  
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  2.12   Now describe the type of situation where open-source software development is inappropriate.  

  2.13   Describe the sort of product that would be an ideal application for an agile process.  

  2.14   Now describe the type of situation where an agile process is inappropriate.  

  2.15   Describe the sort of product that would be an ideal application for the spiral life-cycle model.  

  2.16   Now describe the type of situation where the spiral life-cycle model is inappropriate.  

  2.17   Describe a risk inherent in using the waterfall life-cycle model.  

  2.18   Describe a risk inherent in using the code-and-fi x life-cycle model.  

  2.19   Describe a risk inherent in using the open-source life-cycle model.  

  2.20   Describe a risk inherent in using agile processes.  

  2.21   Describe a risk inherent in using the spiral life-cycle model.  

  2.22   (Term Project) Which software life-cycle model would you use for the Chocoholics Anonymous 
product described in Appendix A? Give reasons for your answer.  

  2.23   (Readings in Software Engineering) Your instructor will distribute copies of [Rajlich, 2006]. Do 
you agree that software engineering has embarked on a new paradigm? Explain your answer.    
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 Chapter 3
The Software Process 
  Learning Objectives

 After studying this chapter, you should be able to 

    • Explain why two-dimensional life-cycle models are important.  

  • Describe the fi ve core workfl ows of the Unifi ed Process.  

  • List the artifacts tested in the test workfl ow.  

  • Describe the four phases of the Unifi ed Process.  

  • Explain the difference between the workfl ows and the phases of the Unifi ed 
Process.  

  • Appreciate the importance of software process improvement.  

  • Describe the capability maturity model (CMM).      

74

  The software process is the way we produce software. It incorporates the methodology 
(Section 1.11) with its underlying software life-cycle model ( Chapter 2 ) and techniques, 
the tools we use (Sections 5.6 through 5.12), and most important of all, the individuals 
building the software. 
  Different organizations have different software processes. For example, consider the 
issue of documentation. Some organizations consider the software they produce to be self-
documenting; that is, the product can be understood simply by reading the source code. 
Other organizations, however, are documentation intensive. They punctiliously draw up 
specifi cations and check them methodically. Then they perform design activities pains-
takingly, check and recheck their designs before coding commences, and give extensive 
descriptions of each code artifact to the programmers. Test cases are preplanned, the result 
of each test run is logged, and the test data are meticulously fi led away. Once the product 
has been delivered and installed on the client’s computer, any suggested change must be pro-
posed in writing, with detailed reasons for making the change. The proposed change can be 
made only with written authorization, and the modifi cation is not integrated into the product 
until the documentation has been updated and the changes to the documentation approved. 
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  Intensity of testing is another measure by which organizations can be compared. Some 
organizations devote up to half their software budgets to testing software, whereas others 
feel that only the user can thoroughly test a product. Consequently, some companies devote 
minimal time and effort to testing the product but spend a considerable amount of time 
fi xing problems reported by users. 
  Postdelivery maintenance is a major preoccupation of many software organizations. 
Software that is 10, 15, or even 20 years old is continually enhanced to meet changing 
needs; in addition, residual faults continue to appear, even after the software has been suc-
cessfully maintained for many years. Almost all organizations move their software to newer 
hardware every 3 to 5 years; this, too, constitutes postdelivery maintenance. 
  In contrast, yet other organizations essentially are concerned with research, leaving 
development—let alone maintenance—to others. This applies particularly to university 
computer science departments, where graduate students build software to prove that a par-
ticular design or technique is feasible. The commercial exploitation of the validated con-
cept is left to other organizations. (See Just in Case You Wanted to Know Box 3.1 regarding 
the wide variation in the ways different organizations develop software.) 
  However, regardless of the exact procedure, the software development process is 
structured around the fi ve workfl ows of  Figure 2.4 : requirements, analysis (specifi -
cation), design, implementation, and testing. In this chapter, these workfl ows are 
described, together with potential challenges that may arise during each workfl ow. 
Solutions to the challenges associated with the production of software usually are non-
trivial, and the rest of this book is devoted to describing suitable techniques. In the 
fi rst part of this chapter, only the challenges are highlighted, but the reader is guided 
to the relevant sections or chapters for solutions. Accordingly, this part of the chapter 
not only is an overview of the software process, but a guide to much of the rest of the 
book. The chapter concludes with national and international initiatives to improve the 
software process. 
  We now examine the Unifi ed Process. 

 Just in Case You Wanted to Know      Box 3.1 
 Why does the software process vary so drastically from organization to organization? A 
major reason is lack of software engineering skills. All too many software professionals 
simply do not keep up to date. They continue to develop software Ye Olde Fashioned 
Way, because they know no other way. 
  Another reason for differences in the software process is that many software managers 
are excellent managers but know precious little about software development or mainte-
nance. Their lack of technical knowledge can result in the project slipping so badly behind 
schedule that there is no point in continuing. This frequently is the reason why many 
software projects are never completed. 
  Yet another reason for differences among processes is management outlook. For 
example, one organization may decide that it is better to deliver a product on time, even if 
it is not adequately tested. Given the identical circumstances, a different organization might 
conclude that the risk of delivering that product without comprehensive testing would be 
far greater than taking the time to test the product thoroughly and consequently delivering 
it late. 
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  3.1 The Unifi ed Process 
  As stated at the beginning of this chapter, methodology is one component of a software 
process. The primary object-oriented methodology today is the   Unifi ed Process  . As 
explained in Just in Case You Wanted to Know Box 3.2, the Unifi ed “Process” is actually 
a methodology, but the name Unifi ed Methodology already had been used as the name 
of the fi rst version of the   Unifi ed Modeling Language   (UML). The three precursors of 
the Unifi ed Process (OMT, Booch’s method, and Objectory) are no longer supported, and 
the other object-oriented methodologies have had little or no following. As a result, the 
Unifi ed Process is usually the primary choice today for object-oriented software produc-
tion. Fortunately, as will be demonstrated in Part B of this book, the Unifi ed Process is an 
excellent object-oriented methodology in almost every way. 
  The Unifi ed Process is not a specifi c series of steps that, if followed, will result in the 
construction of a software product. In fact, no such single “one size fi ts all” methodology 
could exist because of the wide variety of types of software products. For example, there 
are many different application domains, such as insurance, aerospace, and manufacturing. 
Also, a methodology for rushing a COTS package to market ahead of its competitors is 
different from one used to construct a high-security electronic funds transfer network. In 
addition, the skills of software professionals can vary widely. 
  Instead, the Unifi ed Process should be viewed as an adaptable methodology. That is, it 
is modifi ed for the specifi c software product to be developed. As will be seen in Part B, 
some features of the Unifi ed Process are inapplicable to small- and even medium-scale 
software. However, much of the Unifi ed Process is used for software products of all sizes. 
The emphasis in this book is on this common subset of the Unifi ed Process, but aspects 
of the Unifi ed Process applicable to only large-scale software also are discussed, to ensure 
that the issues that need to be addressed when larger software products are constructed are 
thoroughly appreciated.   

  3.2  Iteration and Incrementation within 
the Object-Oriented Paradigm 

  The object-oriented paradigm uses modeling throughout. A   model   is a set of UML dia-
grams that represent one or more aspects of the software product to be developed. (UML 
diagrams are introduced in  Chapter 7 .) Recall that UML stands for Unifi ed   Modeling   Lan-
guage. That is, UML is the tool that we use to represent (model) the target software product. 
A major reason for using a graphical representation like UML is best expressed by the old 
proverb, a picture is worth a thousand words. UML diagrams enable software professionals 
to communicate with one another more quickly and more accurately than if only verbal 
descriptions were used. 
  The object-oriented paradigm is an iterative-and-incremental methodology. Each work-
fl ow consists of a number of steps, and to carry out that workfl ow, the steps of the workfl ow 
are repeatedly performed until the members of the development team are satisfi ed that 
they have an accurate UML model of the software product they want to develop. That is, 
even the most experienced software professionals iterate and reiterate until they are fi nally 
satisfi ed that the UML diagrams are correct. The implication is that software engineers, no 
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 Just in Case You Wanted to Know     Box 3.2 
 Until recently, the most popular object-oriented software development methodologies were 
object modeling technique (OMT) [Rumbaugh et al., 1991] and Grady Booch’s method 
[Booch, 1994]. OMT was developed by Jim Rumbaugh and his team at the General Elec-
tric Research and Development Center in Schenectady, New York, whereas Grady Booch 
developed his method at Rational, Inc., in Santa Clara, California. All object-oriented soft-
ware development methodologies essentially are equivalent, so the differences between 
OMT and Booch’s method are small. Nevertheless, there always was a friendly rivalry 
between the supporters of the two camps. 
  This changed in October 1994, when Rumbaugh joined Booch at Rational. The two 
methodologists immediately began to work together to develop a methodology that would 
combine OMT and Booch’s method. When a preliminary version of their work was pub-
lished, it was pointed out that they had not developed a methodology but merely a notation 
for representing an object-oriented software product. The name   Unifi ed Methodology   was 
quickly changed to   Unifi ed Modeling Language   (UML). In 1995, they were joined at Rational 
by Ivar Jacobson, author of the Objectory methodology. Booch, Jacobson, and Rumbaugh, 
affectionately called the “Three Amigos” (after the 1986 John Landis movie   Three Amigos!   
with Chevy Chase and Steve Martin), then worked together. Version 1.0 of UML, published 
in 1997, took the software engineering world by storm. Until then, there had been no 
universally accepted notation for the development of a software product. Almost overnight 
UML was used all over the world. The Object Management Group (OMG), an association of 
the world’s leading companies in object technology, took the responsibility for organizing 
an international standard for UML, so that every software professional would use the same 
version of UML, thereby promoting communication among individuals within an organi-
zation as well as companies worldwide. UML [Booch, Rumbaugh, and Jacobson, 1999] is 
today the unquestioned international standard notation for representing object-oriented 
software products. 
  An orchestral score shows which musical instruments are needed to play the piece, the 
notes each instrument is to play and when it is to play them, as well as a whole host of 
technical information such as the key signature, tempo, and loudness. Could this informa-
tion be given in English, rather than a diagram? Probably, but it would be impossible to play 
music from such a description. For example, there is no way a pianist and a violinist could 
perform a piece described as follows: “The music is in march time, in the key of B minor. The 
fi rst bar begins with the A above middle C on the violin (a quarter note). While this note is 
being played, the pianist plays a chord consisting of seven notes. The right hand plays the 
following four notes: E sharp above middle C . . .” 
  It is clear that, in some fi elds, a textual description simply cannot replace a diagram. 
Music is one such fi eld; software development is another. And for software development, 
the best modeling language available today is UML. 
  Taking the software engineering world by storm with UML was not enough for the Three 
Amigos. Their next endeavor was to publish a complete software development methodol-
ogy that unifi ed their three separate methodologies. This unifi ed methodology was fi rst 
called the   Rational Unifi ed Process   (RUP);   Rational   is in the name of the methodology not 
because the Three Amigos considered all other approaches to be irrational, but because at 
that time all three were senior managers at Rational, Inc. (Rational was bought by IBM in 
2003). In their book on RUP [Jacobson, Booch, and Rumbaugh, 1999], the name   Unifi ed 
Software Development Process   (USDP) was used. The term   Unifi ed Process   is generally used 
today, for brevity. 
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matter how outstanding they may be, almost never get the various work products right the 
fi rst time. How can this be? 
  The nature of software products is such that virtually everything has to be developed 
iteratively and incrementally. After all, software engineers are human, and therefore subject 
to Miller’s Law (Section 2.5). That is, it is impossible to consider everything at the same time, 
so just seven or so chunks (units of information) are handled initially. Then, when the next set 
of chunks is considered, more knowledge about the target software product is gained, and the 
UML diagrams are modifi ed in the light of this additional information. The process continues 
in this way until eventually the software engineers are satisfi ed that all the models for a given 
workfl ow are correct. In other words, initially the best possible UML diagrams are drawn in the 
light of the knowledge available at the beginning of the workfl ow. Then, as more knowledge 
about the real-world system being modeled is gained, the diagrams are made more accurate 
(iteration) and extended (incrementation). Accordingly, no matter how experienced and skillful 
a software engineer may be, he or she repeatedly iterates and increments until satisfi ed that the 
UML diagrams are an accurate representation of the software product to be developed. 
  Ideally, by the end of this book, the reader would have the software engineering skills 
necessary for constructing the large, complex software products for which the Unifi ed Pro-
cess was developed. Unfortunately, there are three reasons why this is not feasible. 

   1. Just as it is not possible to become an expert on calculus or a foreign language in one 
single course, gaining profi ciency in the Unifi ed Process requires extensive study and, 
more important, unending practice in object-oriented software engineering.  

  2. The Unifi ed Process was created primarily for use in developing large, complex soft-
ware products. To be able to handle the many intricacies of such software products, the 
Unifi ed Process is itself large. It would be hard to cover every aspect of the Unifi ed 
Process in a textbook of this size.  

  3. To teach the Unifi ed Process, it is necessary to present a case study that illustrates the 
features of the Unifi ed Process. To illustrate the features that apply to large software 
products, such a case study would have to be large. For example, just the specifi cations 
typically would take over 1000 pages.   

  For these three reasons, this book presents most, but not all, of the Unifi ed Process. 
  The fi ve   core workfl ows   of the Unifi ed Process (requirements workfl ow, analysis 
workfl ow, design workfl ow, implementation workfl ow, and test workfl ow) and their chal-
lenges are now discussed.   

  3.3 The Requirements Workfl ow 

  Software development is expensive. The development process usually begins when the 
client approaches a development organization with regard to a software product that, in 
the opinion of the client, is either essential to the profi tability of his or her enterprise or 
somehow can be justifi ed economically. The aim of the   requirements workfl ow   is for 
the development organization to determine the client’s needs. The fi rst task of the develop-
ment team is to acquire a basic understanding of the   application domain   (  domain   for 
short), that is, the specifi c environment in which the target software product is to operate. 
The domain could be banking, automobile manufacturing, or nuclear physics. 
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  At any stage of the process, if the client stops believing that the software will be cost 
effective, development will terminate immediately. Throughout this chapter the assumption 
is made that the client feels that the cost is justifi ed. Therefore, a vital aspect of software 
development is the   business case  , a document that demonstrates the cost-effectiveness of 
the target product. (In fact, the “cost” is not always purely fi nancial. For example, military 
software often is built for strategic or tactical reasons. Here, the cost of the software is the 
potential damage that could be suffered in the absence of the weapon being developed.) 
  At an initial meeting between client and developers, the client outlines the product as 
he or she conceptualizes it. From the viewpoint of the developers, the client’s description 
of the desired product may be vague, unreasonable, contradictory, or simply impossible 
to achieve. The task of the developers at this stage is to determine exactly what the client 
needs and to fi nd out from the client what constraints exist. 

  •  A major constraint is almost always the   deadline  . For example, the client may stipulate 
that the fi nished product must be completed within 14 months. In almost every application 
domain, it is now commonplace for a target software product to be mission critical. That 
is, the client needs the software product for core activities of his or her organization, and 
any delay in delivering the target product is detrimental to the organization.  

  • A variety of other constraints often are present, such as   reliability   (for example, the 
product must be operational 99 percent of the time, or the mean time between failures 
must be at least 4 months). Another common constraint is the size of the executable load 
image (for example, it has to run on the client’s personal computer or on the hardware 
inside the satellite).  

  • The   cost   is almost invariably an important constraint. However, the client rarely tells 
the developers how much money is available to build the product. Instead, a common 
practice is that, once the specifi cations have been fi nalized, the client asks the developers 
to name their price for completing the project. Clients follow this bidding procedure in 
the hope that the amount of the developers’ bid is lower than the amount the client has 
budgeted for the project.   

  The preliminary investigation of the client’s needs sometimes is called   concept explo-
ration  . In subsequent meetings between members of the development team and the client 
team, the functionality of the proposed product is successively refi ned and analyzed for 
technical feasibility and fi nancial justifi cation. 
  Up to now, everything seems to be straightforward. Unfortunately, the requirements 
workfl ow often is performed inadequately. When the product fi nally is delivered to the 
user, perhaps a year or two after the specifi cations have been signed off on by the client, the 
client may say to the developers, “I know that this is what I asked for, but it isn’t really what 
I wanted.” What the client asked for and, therefore, what the developers thought the client 
wanted, was not what the client actually   needed  . There can be a number of reasons for this 
predicament. First, the client may not truly understand what is going on in his or her own 
organization. For example, it is no use asking the software developers for a faster operating 
system if the cause of the current slow turnaround is a badly designed database. Or, if the 
client operates an unprofi table chain of retail stores, the client may ask for a fi nancial man-
agement information system that refl ects such items as sales, salaries, accounts payable, 
and accounts receivable. Such a product will be of little use if the real reason for the losses 

sch76183_ch03_074-106.indd   79sch76183_ch03_074-106.indd   79 04/06/10   6:35 PM04/06/10   6:35 PM



is shrinkage (theft by employees and shoplifting). If that is the case, then a stock control 
system rather than a fi nancial management information system is required. 
  But the major reason why the client frequently asks for the wrong product is that soft-
ware is complex. If it is diffi cult for a software professional to visualize a piece of software 
and its functionality, the problem is far worse for a client who is barely computer literate. 
As will be shown in  Chapter 11 , the Unifi ed Process can help in this regard; the many UML 
diagrams of the Unifi ed Process assist the client in gaining the necessary detailed under-
standing of what needs to be developed.   

  3.4 The Analysis Workfl ow 
  The aim of the   analysis workfl ow   is to analyze and refi ne the requirements to achieve 
the detailed understanding of the requirements essential for developing a software product 
correctly and maintaining it easily. At fi rst sight, however, there is no need for an analysis 
workfl ow. Instead, an apparently simpler way to proceed would be to develop a software 
product by continuing with further iterations of the requirements workfl ow until the neces-
sary understanding of the target software product has been obtained. 
  The key point is that the output of the requirements workfl ow must be totally compre-
hended by the client. In other words, the artifacts of the requirements workfl ow must be 
expressed in the language of the client, that is, in a natural (human) language such as English, 
Armenian, or Zulu. But all natural languages, without exception, are somewhat imprecise and 
lend themselves to misunderstanding. For example, consider the following paragraph: 

  A part record and a plant record are read from the database. If it contains the letter A directly 
followed by the letter Q, then calculate the cost of transporting that part to that plant.  

  At fi rst sight, this requirement seems perfectly clear. But to what does   it   (the second 
word in the second sentence) refer: the part record, the plant record, or the database? 
  Ambiguities of this kind cannot arise if the requirements are expressed (say) in a math-
ematical notation. However, if a mathematical notation is used for the requirements, then 
the client is unlikely to understand much of the requirements. As a result, there may well be 
miscommunication between client and developers regarding the requirements, and conse-
quently, the software product developed to satisfy those requirements may not be what the 
client needs. 
  The solution is to have two separate workfl ows. The requirements workfl ow is couched 
in the language of the client; the analysis workfl ow, in a more precise language that ensures 
that the design and implementation workfl ows are correctly carried out. In addition, more 
details are added during the analysis workfl ow, details not relevant to the client’s under-
standing of the target software product but essential for the software professionals who will 
develop the software product. For example, the initial state of a statechart (Section 13.6) 
would surely not concern the client in any way but has to be included in the specifi cations 
if the developers are to build the target product correctly. 
  The specifi cations of the product constitute a contract. The software developers are 
deemed to have completed the contract when they deliver a product that satisfi es the 
acceptance criteria of the specifi cations. For this reason, the specifi cations should not 
include imprecise terms like   suitable, convenient, ample  , or   enough  , or similar terms that 

80  Part A  Software Engineering Concepts

sch76183_ch03_074-106.indd   80sch76183_ch03_074-106.indd   80 04/06/10   6:35 PM04/06/10   6:35 PM



Chapter 3  The Software Process  81

sound exact but in practice are equally imprecise, such as   optimal   or   98 percent complete  . 
Whereas contract software development can lead to a lawsuit, there is no chance of the 
specifi cations forming the basis for legal action when the client and developers are from 
the same organization. Nevertheless, even in the case of internal software development, the 
specifi cations always should be written as if they will be used as evidence in a trial. 
  More important, the specifi cations are essential for both testing and maintenance. Unless 
the specifi cations are precise, there is no way to determine whether they are correct, let 
alone whether the implementation satisfi es the specifi cations. And it is hard to change the 
specifi cations unless some document states exactly what the specifi cations currently are. 
  When the Unifi ed Process is used, there is no specifi cation document in the usual sense of 
the term. Instead, a set of UML artifacts are shown to the client, as described in  Chapter 13 . 
These UML diagrams and their descriptions can obviate many (but by no means all) of the 
problems of the classical specifi cation document. 
  One mistake that can be made by a classical analysis team is that the specifi cations are 
ambiguous; as previously explained,   ambiguity   is intrinsic to natural languages.   Incom-
pleteness   is another problem in the specifi cations; that is, some relevant fact or require-
ment may be omitted. For instance, the specifi cation document may not state what actions 
are to be taken if the input data contain errors. Moreover, the specifi cation document may 
contain   contradictions  . For example, one place in the specifi cation document for a prod-
uct that controls a fermentation process states that if the pressure exceeds 35 psi, then 
valve M17 immediately must be shut. However, another place states that, if the pressure 
exceeds 35 psi, then the operator immediately must be alerted; only if the operator takes 
no remedial action within 30 seconds should valve M17 be shut automatically. Software 
development cannot proceed until such problems in the specifi cations have been corrected. 
As pointed out in the previous paragraph, many of these problems can be reduced by using 
the Unifi ed Process. This is because UML diagrams together with descriptions of those 
diagrams are less likely to contain ambiguity, incompleteness, and contradictions. 
  Once the client has approved the specifi cations, detailed planning and estimating com-
mences. No client authorizes a software project without knowing in advance how long the 
project will take and how much it will cost. From the viewpoint of the developers, these 
two items are just as important. If the developers underestimate the cost of a project, then 
the client pays the agreed-upon fee, which may be signifi cantly less than the develop-
ers’ actual cost. Conversely, if the developers overestimate what the project costs, then the 
client may turn down the project or have the job done by other developers whose estimate 
is more reasonable. Similar issues arise with regard to duration estimates. If the developers 
underestimate how long completing a project will take, then the resulting late delivery of 
the product, at best, results in a loss of confi dence by the client. At worst, lateness penalty 
clauses in the contract are invoked, causing the developers to suffer fi nancially. Again, if 
the developers overestimate how long it will take for the product to be delivered, the client 
may well award the job to developers who promise faster delivery. 
  For the developers, merely estimating the duration and total cost is not enough. 
The developers need to assign the appropriate personnel to the various workfl ows of the 
development process. For example, the implementation team cannot start until the relevant 
design artifacts have been approved by the software quality assurance (SQA) group, and 
the design team is not needed until the analysis team has completed its task. In other words, 
the developers have to plan ahead. A software project management plan (SPMP) must be 
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drawn up that refl ects the separate workfl ows of the development process and shows which 
members of the development organization are involved in each task, as well as the deadlines 
for completing each task. 
  The earliest that such a detailed plan can be drawn up is when the specifi cations have 
been fi nalized. Before that time, the project is too amorphous for complete planning. Some 
aspects of the project certainly must be planned right from the start, but until the developers 
know exactly what is to be built, they cannot specify all aspects of the plan for building it. 
  Therefore, once the specifi cations have been approved by the client, preparation of the 
software project management plan commences. Major components of the plan are the 
  deliverables   (what the client is going to get), the   milestones   (when the client gets them), 
and the   budget   (how much it is going to cost). 
  The plan describes the software process in fullest detail. It includes aspects such as the 
life-cycle model to be used, the organizational structure of the development organization, 
project responsibilities, managerial objectives and priorities, the techniques and CASE 
tools to be used, and detailed schedules, budgets, and resource allocations. Underlying the 
entire plan are the duration and cost estimates; techniques for obtaining such estimates are 
described in Section 9.2. 
  The analysis workfl ow is described in  Chapters 12  and  13 : classical analysis techniques 
are described in  Chapter 12 , and object-oriented analysis is the subject of  Chapter 13 . 
A major artifact of the analysis workfl ow is the software project management plan. An 
explanation of how to draw up the SPMP is given in Sections 9.3 though 9.5. 
  Now the design workfl ow is examined.   

  3.5 The Design Workfl ow 
  The specifi cations of a product spell out   what   the product is to do; the design shows   how   
the product is to do it. More precisely, the aim of the   design workfl ow   is to refi ne the 
artifacts of the analysis workfl ow until the material is in a form that can be implemented 
by the programmers. 
  As explained in Section 1.3, during the classical design phase, the design team determines 
the internal structure of the product. The designers decompose the product into   modules  , 
independent pieces of code with well-defi ned interfaces to the rest of the product. The 
interface of each module (that is, the arguments passed to the module and the arguments 
returned by the module) must be specifi ed in detail. For example, a module might measure 
the water level in a nuclear reactor and cause an alarm to sound if the level is too low. A 
module in an avionics product might take as input two or more sets of coordinates of an 
incoming enemy missile, compute its trajectory, and invoke another module to advise the 
pilot as to possible evasive action. Once the team has completed the decomposition into 
modules (the   architectural design  ), the   detailed design   is performed. For each mod-
ule, algorithms are selected and data structures chosen. 
  Turning now to the object-oriented paradigm, the basis of that paradigm is the   class  , a 
specifi c type of module. Classes are extracted during the analysis workfl ow and designed 
during the design workfl ow. Consequently, the object-oriented counterpart of architectural 
design is performed as a part of the object-oriented analysis workfl ow, and the object-
oriented counterpart of detailed design is part of the object-oriented design workfl ow. 
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  The design team must keep a meticulous record of the design decisions that are made. 
This information is essential for two reasons. 

   1. While the product is being designed, a dead end will be reached at times and the design 
team must backtrack and redesign certain pieces. Having a written record of why specifi c 
decisions were made assists the team when this occurs and helps it get back on track.  

  2. Ideally, the design of the product should be open-ended, meaning future enhancements 
(postdelivery maintenance) can be done by adding new classes or replacing existing 
classes without affecting the design as a whole. Of course, in practice, this ideal is dif-
fi cult to achieve. Deadline constraints in the real world are such that designers struggle 
against the clock to complete a design that satisfi es the original specifi cations, without 
worrying about any later enhancements. If future enhancements (to be added after the 
product is delivered to the client) are included in the specifi cations, then these must be 
allowed for in the design, but this situation is extremely rare. In general, the specifi ca-
tions, and hence the design, deal with only present requirements. In addition, while 
the product is still being designed, there is no way to determine all possible future 
enhancements. Finally, if the design has to take   all   future possibilities into account, 
at best it will be unwieldy; at worst, it will be so complicated that implementation is 
impossible. So the designers have to compromise, putting together a design that can be 
extended in many reasonable ways without the need for total redesign. But, in a product 
that undergoes major enhancement, the time will come when the design simply cannot 
handle further changes. When this stage is reached, the product must be redesigned as 
a whole. The task of the redesign team is considerably easier if the team members are 
provided a record of the reasons for all the original design decisions.     

  3.6 The Implementation Workfl ow 
  The aim of the   implementation workfl ow   is to implement the target software product 
in the chosen implementation language(s). A small software product is sometimes imple-
mented by the designer. In contrast, a large software product is partitioned into smaller sub-
systems, which are then implemented in parallel by coding teams. The subsystems, in turn, 
consist of   components   or   code artifacts   implemented by an individual programmer. 
  Usually, the only documentation given a programmer is the relevant design artifact. For 
example, in the case of the classical paradigm, the programmer is given the detailed design 
of the module he or she is to implement. The detailed design usually provides enough 
information for the programmer to implement the code artifact without too much diffi culty. 
If there are any problems, they can quickly be cleared up by consulting the responsible 
designer. However, there is no way for the individual programmer to know if the architec-
tural design is correct. Only when integration of individual code artifacts commences do 
the shortcomings of the design as a whole start coming to light. 
  Suppose that a number of code artifacts have been implemented and integrated and the 
parts of the product integrated so far appear to be working correctly. Suppose further that 
a programmer has correctly implemented artifact a45, but when this artifact is integrated 
with the other existing artifacts, the product fails. The cause of the failure lies not in artifact 
a45 itself, but rather in the way that artifact a45 interacts with the rest of the product, as 
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specifi ed in the architectural design. Nevertheless, in this type of situation the program-
mer who just coded artifact a45 tends to be blamed for the failure. This is unfortunate, 
because the programmer has simply followed the instructions provided by the designer and 
implemented the artifact exactly as described in the detailed design for that artifact. The 
members of the programming team are rarely shown the “big picture,” that is, the archi-
tectural design, let alone asked to comment on it. Although it is grossly unfair to expect an 
individual programmer to be aware of the implications of a specifi c artifact for the product 
as a whole, this unfortunately happens in practice all too often. This is yet another reason 
why it is so important for the design to be correct in every respect. 
  The correctness of the design (as well as the other artifacts) is checked as part of the test 
workfl ow.   

  3.7 The Test Workfl ow 
  As shown in  Figure 2.4 , in the Unifi ed Process, testing is carried out in parallel with the 
other workfl ows, starting from the beginning. There are two major aspects to testing. 

   1. Every developer and maintainer is personally responsible for ensuring that his or her 
work is correct. Therefore, a software professional has to test and retest each artifact he 
or she develops or maintains.  

  2. Once the software professional is convinced that an artifact is correct, it is handed over to 
the software quality assurance group for independent testing, as described in  Chapter 6 .   

  The nature of the   test workfl ow   changes depending on the artifacts being tested. How-
ever, a feature important to all artifacts is traceability. 

  3.7.1 Requirements Artifacts 
 If the requirements artifacts are to be testable over the life cycle of the software product, 
then one property they must have is   traceability  . For example, it must be possible to trace 
every item in the analysis artifacts back to a requirements artifact and similarly for the 
design artifacts and the implementation artifacts. If the requirements have been presented 
methodically, properly numbered, cross-referenced, and indexed, then the developers 
should have little diffi culty tracing through the subsequent artifacts and ensuring that they 
are indeed a true refl ection of the client’s requirements. When the work of the members of 
the requirements team is subsequently checked by the SQA group, traceability simplifi es 
their task, too.  

  3.7.2 Analysis Artifacts 
 As pointed out in  Chapter 1 , a major source of faults in delivered software is faults in the 
specifi cations that are not detected until the software has been installed on the client’s 
computer and used by the client’s organization for its intended purpose. Both the analy-
sis team and the SQA group must therefore check the analysis artifacts assiduously. In 
addition, they must ensure that the specifi cations are feasible, for example, that a specifi c 
hardware component is fast enough or that the client’s current online disk storage capacity 
is adequate to handle the new product. An excellent way of checking the analysis artifacts 
is by means of a review. Representatives of the analysis team and of the client are present. 
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The meeting usually is chaired by a member of the SQA group. The aim of the review is to 
determine whether the analysis artifacts are correct. The reviewers go through the analysis 
artifacts, checking to see if there are any faults. Walkthroughs and inspections are two types 
of reviews, and they are described in Section 6.2. 
  We turn now to the checking of the detailed planning and estimating that takes place 
once the client has signed off on the specifi cations. Whereas it is essential that every aspect 
of the SPMP be meticulously checked by the development team and then by the SQA 
group, particular attention must be paid to the plan’s duration and cost estimates. One way 
to do this is for management to obtain two (or more) independent estimates of both dura-
tion and cost when detailed planning starts, and then reconcile any signifi cant differences. 
With regard to the SPMP document, an excellent way to check it is by a review similar to 
the review of the analysis artifacts. If the duration and cost estimates are satisfactory, the 
client will give permission for the project to proceed.  

  3.7.3 Design Artifacts 
 As mentioned in Section 3.7.1, a critical aspect of testability is traceability. In the case of 
the design, this means that every part of the design can be linked to an analysis artifact. A 
suitably cross-referenced design gives the developers and the SQA group a powerful tool 
for checking whether the design agrees with the specifi cations and whether every part of 
the specifi cations is refl ected in some part of the design. 
  Design reviews are similar to the reviews that the specifi cations undergo. However, in 
view of the technical nature of most designs, the client usually is not present. Members of 
the design team and the SQA group work through the design as a whole as well as through 
each separate design artifact, ensuring that the design is correct. The types of faults to look 
for include logic faults, interface faults, lack of exception handling (processing of error 
conditions), and most important, nonconformance to the specifi cations. In addition, the 
review team always should be aware of the possibility that some analysis faults were not 
detected during the previous workfl ow. A detailed description of the review process is given 
in Section 6.2.  

  3.7.4 Implementation Artifacts 
 Each component should be tested while it is being implemented (desk checking); and after 
it has been implemented, it is run against test cases. This informal testing is done by the pro-
grammer. Thereafter, the quality assurance group tests the component methodically; this is 
termed   unit testing  . A variety of unit-testing techniques are described in  Chapter 15 . 
  In addition to running test cases, a code review is a powerful, successful technique for 
detecting programming faults. Here, the programmer guides the members of the review 
team through the listing of the component. The review team must include an SQA repre-
sentative. The procedure is similar to reviews of specifi cations and designs described previ-
ously. As in all the other workfl ows, a record of the activities of the SQA group are kept as 
part of the test workfl ow. 
  Once a component has been coded, it must be combined with the other coded components 
so that the SQA group can determine whether the (partial) product as a whole functions 
correctly. The way in which the components are integrated (all at once or one at a time) and 
the specifi c order (from top to bottom or from bottom to top in the component interconnec-
tion diagram or class hierarchy) can have a critical infl uence on the quality of the resulting 
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product. For example, suppose the product is integrated bottom up. A major design fault, if 
present, will show up late, necessitating an expensive reimplementation. Conversely, if the 
components are integrated top down, then the lower-level components usually do not receive 
as thorough a testing as would be the case if the product were integrated bottom up. These and 
other problems are discussed in detail in  Chapter 15 . A detailed explanation is given there as 
to why coding and integration must be performed in parallel. 
  The purpose of this   integration testing   is to check that the components combine 
correctly to achieve a product that satisfi es its specifi cations. During integration testing, 
particular care must be paid to testing the component interfaces. It is important that the 
number, order, and types of formal arguments match the number, order, and types of actual 
arguments. This strong type checking [van Wijngaarden et al., 1975] is best performed by 
the compiler and linker. However, many languages are not strongly typed. When such a 
language is used, members of the SQA group must check the interfaces. 
  When the integration testing has been completed (that is, when all the components have 
been coded and integrated), the SQA group performs   product testing  . The functionality 
of the product as a whole is checked against the specifi cations. In particular, the constraints 
listed in the specifi cations must be tested. A typical example is whether the response time 
has been met. Because the aim of product testing is to determine whether the specifi cations 
have been correctly implemented, many of the test cases can be drawn up once the specifi -
cations are complete. 
  Not only must the correctness of the product be tested but its robustness must also be 
tested. That is, intentionally erroneous input data are submitted to determine whether the 
product will crash or whether its error-handling capabilities are adequate for dealing with 
bad data. If the product is to be run together with the client’s currently installed software, 
then tests also must be performed to check that the new product will have no adverse effect 
on the client’s existing computer operations. Finally, a check must be made as to whether 
the source code and all other types of documentation are complete and internally consistent. 
Product testing is discussed in Section 15.21. On the basis of the results of the product test, 
a senior manager in the development organization decides whether the product is ready to 
be released to the client. 
  The fi nal step in testing the implementation artifacts is   acceptance testing  . The soft-
ware is delivered to the client, who tests it on the actual hardware, using actual data as 
opposed to test data. No matter how methodical the development team or the SQA group 
might be, there is a signifi cant difference between test cases, which by their very nature are 
artifi cial, and actual data. A software product cannot be considered to satisfy its specifi ca-
tions until the product has passed its acceptance test. More details about acceptance testing 
are given in Section 15.22. 
  In the case of COTS software (Section 1.11), as soon as product testing is complete, 
versions of the complete product are supplied to selected possible future clients for testing 
on site. The fi rst such version is termed the   alpha release  . The corrected alpha release 
is called the   beta release  ; in general, the beta release is intended to be close to the fi nal 
version. (The terms alpha release and beta release are generally applied to all types of 
software products, not just COTS.) 
  Faults in COTS software usually result in poor sales of the product and huge losses for the 
development company. So that as many faults as possible come to light as early as possible, 
developers of COTS software frequently give alpha or beta releases to selected companies, in 
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the expectation that on-site tests will uncover any latent faults. In return, the alpha and beta 
sites frequently are promised free copies of the delivered version of the software. Risks are 
involved for a company participating in alpha or beta testing. In particular, alpha releases 
can be fault laden, resulting in frustration, wasted time, and possible damage to databases. 
However, the company gets a head start in using the new COTS software, which can give it 
an advantage over its competitors. A problem occurs sometimes when software organizations 
use alpha testing by potential clients in place of thorough product testing by the SQA group. 
Although alpha testing at a number of different sites usually brings to light a large variety of 
faults, there is no substitute for the methodical testing that the SQA group can provide.    

  3.8 Postdelivery Maintenance 
  Postdelivery maintenance is not an activity grudgingly carried out after the product has been 
delivered and installed on the client’s computer. On the contrary, it is an integral part of the 
software process that must be planned for from the beginning. As explained in Section 3.5, 
the design, as far as is feasible, should take future enhancements into account. Coding must be 
performed with future maintenance kept in mind. After all, as pointed out in Section 1.3, more 
money is spent on postdelivery maintenance than on all other software activities combined. 
It therefore is a vital aspect of software production. Postdelivery maintenance must never be 
treated as an afterthought. Instead, the entire software development effort must be carried out in 
such a way as to minimize the impact of the inevitable future postdelivery maintenance. 
  A common problem with postdelivery maintenance is documentation or, rather, lack of it. 
In the course of developing software against a time deadline, the original analysis and design 
artifacts frequently are not updated and, consequently, are almost useless to the maintenance 
team. Other documentation such as the database manual or the operating manual may never 
be written, because management decided that delivering the product to the client on time was 
more important than developing the documentation in parallel with the software. In many 
instances, the source code is the only documentation available to the maintainer. The high rate 
of personnel turnover in the software industry exacerbates the maintenance situation, in that 
none of the original developers may be working for the organization at the time when main-
tenance is performed. Postdelivery maintenance frequently is the most challenging aspect of 
software production for these reasons and the additional reasons given in  Chapter 16 . 
  Turning now to testing, there are two aspects to testing changes made to a product when 
postdelivery maintenance is performed. The fi rst is checking that the required changes have 
been implemented correctly. The second aspect is ensuring that, in the course of making 
the required changes to the product, no other inadvertent changes were made. Therefore, 
once the programmer has determined that the desired changes have been implemented, the 
product must be tested against previous test cases to make certain that the functionality 
of the rest of the product has not been compromised. This procedure is called   regres-
sion testing  . To assist in regression testing, it is necessary that all previous test cases be 
retained, together with the results of running those test cases. Testing during postdelivery 
maintenance is discussed in greater detail in  Chapter 16 . 
  A major aspect of postdelivery maintenance is a record of all the changes made, together 
with the reason for each change. When software is changed, it has to be regression tested. 
Therefore, the regression test cases are a central form of documentation.   
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  3.9 Retirement 
  The fi nal stage in the software life cycle is   retirement  . After many years of service, a stage 
is reached when further postdelivery maintenance no longer is cost effective. 

   • Sometimes the proposed changes are so drastic that the design as a whole would have 
to be changed. In such a case, it is less expensive to redesign and recode the entire 
product.  

  • So many changes may have been made to the original design that interdependencies 
inadvertently have been built into the product, and even a small change to one minor 
component might have a drastic effect on the functionality of the product as a whole.  

  • The documentation may not have been adequately maintained, thereby increasing the 
risk of a regression fault to the extent that it would be safer to recode than maintain.  

  • The hardware (and operating system) on which the product runs is to be replaced; it may 
be more economical to reimplement from scratch than to modify.   

  In each of these instances the current version is replaced by a new version, and the soft-
ware process continues. 
  True retirement, on the other hand, is a somewhat rare event that occurs when a product 
has outgrown its usefulness. The client organization no longer requires the functionality 
provided by the product, and it fi nally is removed from the computer.   

  3.10 The Phases of the Unifi ed Process 
   Figure 3.1  differs from  Figure 2.4  in that the labels of the increments have been changed. 
Instead of Increment A, Increment B, and so on, the four increments are now labeled 
Inception phase, Elaboration phase, Construction phase, and Transition phase. In 
other words, the phases of the Unifi ed Process correspond to increments. 

 FIGURE 3.1     
The core 
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  Although in theory the development of a software product could be performed in any 
number of increments, development in practice often seems to consist of four increments. 
The increments or phases are described in Sections 3.10.1 through 3.10.4, together with the 
deliverables of each phase, that is, the artifacts that should be completed by the end of that 
phase. 
  Every step performed in the Unifi ed Process falls into one of fi ve core workfl ows and 
  also   into one of four phases, the inception phase, elaboration phase, construction phase, 
and transition phase. The various steps of these four phases are already described in Sec-
tions 3.3 through 3.7. For example, building a business case is part of the requirements 
workfl ow (Section 3.3). It is also part of the inception phase. Nevertheless, each step has to 
be considered twice, as will be explained. 
  Consider the requirements workfl ow. To determine the client’s needs, one of the steps 
is, as just stated, to build a business case. In other words, within the framework of the 
requirements workfl ow, building a business case is presented within a   technical   context. In 
Section 3.10.1, a description is presented of building a business case within the framework 
of the inception phase, the phase in which management decides whether or not to develop 
the proposed software product. That is, building a business case shortly is presented within 
an   economic   context (Section 1.2). 
  At the same time, there is no point in presenting each step twice, both times at the same 
level of detail. Accordingly, the inception phase is described in depth to highlight the dif-
ference between the technical context of the workfl ows and the economic context of the 
phases, but the other three phases are simply outlined. 

  3.10.1 The Inception Phase 
 The aim of the   inception phase   (fi rst increment) is to determine whether it is worthwhile 
to develop the target software product. In other words, the primary aim of this phase is to 
determine whether the proposed software product is economically viable. 
  Two steps of the requirements workfl ow are to understand the domain and build a 
business model. Clearly, there is no way the developers can give any kind of opinion 
regarding a possible future software product unless they fi rst understand the domain in 
which they are considering developing the target software product. It does not matter if 
the domain is a television network, a machine tool company, or a hospital specializing in 
liver disease—if the developers do not fully understand the domain, little reliance can be 
placed on what they subsequently build. Hence, the fi rst step is to obtain domain knowl-
edge. Once the developers have a full comprehension of the domain, the second step is 
to build a business model, that is, a description of the client’s business processes. In 
other words, the fi rst need is to understand the domain itself, and the second need is to 
understand precisely how the client organization operates in that domain. 
  Now the scope of the target project has to be delimited. For example, consider a pro-
posed software product for a new highly secure ATM network for a nationwide chain 
of banks. The size of the business model of the banking chain as a whole is likely to be 
huge. To determine what the target software product should incorporate, the developers 
have to focus on only a subset of the business model, namely, the subset covered by the 
proposed software product. Therefore, delimiting the scope of the proposed project is the 
third step. 
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  Now the developers can begin to make the initial business case. The questions that 
need to be answered before proceeding with the project include [Jacobson, Booch, and 
Rumbaugh, 1999]: 

   • Is the proposed software product cost effective? That is, will the benefi ts to be gained 
as a consequence of developing the software product outweigh the costs involved? How 
long will it take to obtain a return on the investment needed to develop the proposed 
software product? Alternatively, what will be the cost to the client if he or she decides 
not to develop the proposed software product? If the software product is to be sold in the 
marketplace, have the necessary marketing studies been performed?  

  • Can the proposed software product be delivered in time? That is, if the software product 
is delivered late to the market, will the organization still make a profi t or will a competi-
tive software product obtain the lion’s share of the market? Alternatively, if the software 
product is to be developed to support the client organization’s own activities (presum-
ably including mission-critical activities), what is the impact if the proposed software 
product is delivered late?  

 •  What risks are involved in developing the software product, and how can these risks 
be mitigated? Do the team members who will develop the proposed software product 
have the necessary experience? Is new hardware needed for this software product 
and, if so, is there a risk that it will not be delivered in time? If so, is there a way 
to mitigate that risk, perhaps by ordering backup hardware from another supplier? 
Are software tools ( Chapter 5 ) needed? Are they currently available? Do they have 
all the necessary functionality? Is it likely that a COTS package (Section 1.11) 
with all (or almost all) the functionality of the proposed custom software prod-
uct will be put on the market while the project is under way, and how can this be 
determined?   

  By the end of the inception phase the developers need answers to these questions so that 
the initial business case can be made. 
  The next step is to identify the risks. There are three major risk categories: 

   1.   Technical risks  . Examples of technical risks were just listed.  
  2.   Not getting the requirements right  . This risk can be mitigated by performing the require-

ments workfl ow correctly.  
  3.   Not getting the architecture right  . The architecture may not be suffi ciently robust. 

(Recall from Section 2.7 that the architecture of a software product consists of the vari-
ous components and how they fi t together, and that the property of being able to handle 
extensions and changes without falling apart is its robustness.) In other words, while the 
software product is being developed, there is a risk that trying to add the next piece to 
what has been developed so far might require the entire architecture to be redesigned 
from scratch. An analogy would be to build a house of cards, only to fi nd the entire 
edifi ce tumbling down when an additional card is added.   

  The risks need to be ranked so that the critical risks are mitigated fi rst. 
  As shown in  Figure 3.1 , a small amount of the analysis workfl ow is performed during 
the inception phase. All that is usually done is to extract the information needed for the 
design of the architecture. This design work is also refl ected in  Figure 3.1 . 

sch76183_ch03_074-106.indd   90sch76183_ch03_074-106.indd   90 04/06/10   6:35 PM04/06/10   6:35 PM



Chapter 3  The Software Process  91

  Turning now to the implementation workfl ow, during the inception phase frequently 
no coding is performed. However, on occasion, it is necessary to build a proof-of-concept 
prototype to test the feasibility of part of the proposed software product, as described in 
Section 2.9.7. 
  The test workfl ow commences at the start of the inception phase. The major aim here is 
to ensure that the requirements are accurately determined. 
  Planning is an essential part of every phase. In the case of the inception phase, the developers 
have insuffi cient information at the beginning of the phase to plan the entire development, so the 
only planning done at the start of the project is the planning for the inception phase itself. For 
the same reason, a lack of information, the only planning that can meaningfully be done at the 
end of the inception phase is to plan for just the next phase, the elaboration phase. 
  Documentation, too, is an essential part of every phase. The deliverables of the inception 
phase include [Jacobson, Booch, and Rumbaugh, 1999] 

  •  The initial version of the domain model.  
  • The initial version of the business model.  
  • The initial version of the requirements artifacts.  
  • A preliminary version of the analysis artifacts.  
  • A preliminary version of the architecture.  
  • The initial list of risks.  
  • The initial use cases (see  Chapter 11 ).  
  • The plan for the elaboration phase.  
  • The initial version of the business case.   

  Obtaining the last item, the initial version of the business case, is the overall aim of the 
inception phase. This initial version incorporates a description of the scope of the software 
product as well as fi nancial details. If the proposed software product is to be marketed, the 
business case includes revenue projections, market estimates, and initial cost estimates. 
If the software product is to be used in-house, the business case includes the initial cost–
benefi t analysis (Section 5.2).  

  3.10.2 The Elaboration Phase 
 The aim of the   elaboration phase   (second increment) is to refi ne the initial require-
ments, refi ne the architecture, monitor the risks and refi ne their priorities, refi ne the busi-
ness case, and produce the software project management plan. The reason for the name 
  elaboration phase   is clear; the major activities of this phase are refi nements or elaborations 
of the previous phase. 
   Figure 3.1  shows that these tasks correspond to all but completing the requirements 
workfl ow ( Chapter 11 ), performing virtually the entire analysis workfl ow ( Chapter 13 ), and 
then starting the design of the architecture (Section 8.5.4). 
  The deliverables of the elaboration phase include [Jacobson, Booch, and Rumbaugh, 1999] 

   • The completed domain model.  
 •  The completed business model.  
 •  The completed requirements artifacts.  
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  • The completed analysis artifacts.  
 •  An updated version of the architecture.  
 •  An updated list of risks.  
  • The software project management plan (for the remainder of the project).  
  • The completed business case.    

  3.10.3 The Construction Phase 
 The aim of the   construction phase   (third increment) is to produce the fi rst operational-
quality version of the software product, the so-called beta release (Section 3.7.4). Consider 
 Figure 3.1  again. Even though the fi gure is only a symbolic representation of the phases, 
it is clear that the emphasis in this phase is on implementation and testing the software 
product. That is, the various components are coded and unit tested. The code artifacts are 
then compiled and linked (integrated) to form subsystems, which are integration tested. 
Finally, the subsystems are combined into the overall system, which is product tested. This 
was described in Section 3.7.4. 
  The deliverables of the construction phase include [Jacobson, Booch, and Rumbaugh, 1999] 

  •  The initial user manual and other manuals, as appropriate.  
  • All the artifacts (beta release versions).  
 •  The completed architecture.  
 •  The updated risk list.  
 •  The software project management plan (for the remainder of the project).  
  • If necessary, the updated business case.    

  3.10.4 The Transition Phase 
 The aim of the   transition phase   (fourth increment) is to ensure that the client’s require-
ments have indeed been met. This phase is driven by feedback from the sites at which the 
beta version has been installed. (In the case of a custom software product developed for 
a specifi c client, there is just one such site.) Faults in the software product are corrected. 
Also, all the manuals are completed. During this phase, it is important to try to discover any 
previously unidentifi ed risks. (The importance of uncovering risks even during the transi-
tion phase is highlighted in Just in Case You Wanted to Know Box 3.3.) 
  The deliverables of the transition phase include [Jacobson, Booch, and Rumbaugh, 
1999] 

   • All the artifacts (fi nal versions).  
  • The completed manuals.      

  3.11 One- versus Two-Dimensional Life-Cycle Models 
  A classical life-cycle model (like the waterfall model of Section 2.9.2) is a one-dimensional 
model, as represented by the single axis in  Figure 3.2 (a). Underlying the Unifi ed Process is 
a two-dimensional life-cycle model, as represented by the two axes in  Figure 3.2 (b). 
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 Just in Case You Wanted to Know      Box 3.3 

 A real-time system frequently is more complex than most people, even its developers, real-
ize. As a result, sometimes subtle interactions take place among components that even the 
most skilled testers usually would not detect. An apparently minor change therefore can 
have major consequences. 
  A famous example of this is the fault that delayed the fi rst space shuttle orbital fl ight in 
April 1981 [Garman, 1981]. The space shuttle avionics are controlled by four identical syn-
chronized computers. Also, an independent fi fth computer is ready for backup in case the 
set of four computers fails. Two years earlier, a change had been made to the module that 
performs initialization before the avionics computers are synchronized. An unfortunate side 
effect of this change was that a record containing a time just slightly later than the current 
time was erroneously sent to the data area used for synchronization of the avionics comput-
ers. The time sent was suffi ciently close to the actual time for this fault not to be detected. 
About 1 year later, the time difference was slightly increased, just enough to cause a 1 in 
67 chance of a failure. Then, on the day of the fi rst space shuttle launch, with hundreds 
of millions of people watching on television all over the world, the synchronization failure 
occurred and three of the four identical avionics computers were synchronized one cycle 
late relative to the fi rst computer. 
  A fail-safe device that prevents the independent fi fth computer from receiving informa-
tion from the other four computers unless they are in agreement had the unanticipated 
consequence of preventing initialization of the fi fth computer, and the launch had to be 
postponed. An all too familiar aspect of this incident was that the fault was in the initializa-
tion module, a module that apparently had no connection whatsoever with the synchroni-
zation routines. 
  Unfortunately, this was by no means the last real-time software fault affecting a space 
launch. For example, in April 1999, a Milstar military communications satellite was hurled 
into a uselessly low orbit at a cost of $1.2 billion; the cause was a software fault in the upper 
stage of the Titan 4 rocket [  Florida Today  , 1999]. 
  Not just space launches are affected by real-time faults but landings, too. In May 2003, 
a Soyuz TMA-1 spaceship launched from the international space station landed 300 miles 
off course in Kazakhstan after a ballistic descent. The cause of the landing problems was, yet 
again, a real-time software fault [CNN.com, 2003]. 

  The one-dimensional nature of the waterfall model is clearly refl ected in  Figure 2.3 . In 
contrast,  Figure 2.2  shows the evolution-tree model of the Winburg mini case study. This 
model is two-dimensional and should therefore be compared to  Figure 3.2 (b). 
  Are the additional complications of a two-dimensional model necessary? The answer 
was given in  Chapter 2 , but this is such an important issue that it is repeated here. During 
the development of a software product, in an ideal world, the requirements workfl ow would 
be completed before proceeding to the analysis workfl ow. Similarly, the analysis workfl ow 
would be completed before starting the design workfl ow, and so on. In reality, however, all 
but the most trivial software products are too large to handle as a single unit. Instead, the 
task has to be divided into increments (phases), and within each increment the develop-
ers have to iterate until they have completed the task under construction. As humans, we 
are limited by Miller’s Law [Miller, 1956], which states that we can actively process only 
seven concepts at a time. We therefore cannot deal with software products as a whole, but 
instead we have to break those systems into subsystems. Even subsystems can be too large 
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at times—components may be all that we can handle until we have a fuller understanding 
of the software product as a whole. 
  The Unifi ed Process is the best solution to date for treating a large problem as a set of 
smaller, largely independent subproblems. It provides a framework for incrementation and 
iteration, the mechanism used to cope with the complexity of large software products. 
  Another challenge that the Unifi ed Process handles well is the inevitable changes. One 
aspect of this challenge is changes in the client’s requirements while a software product is 
being developed, the so-called moving-target problem (Section 2.4). 
  For all these reasons, the Unifi ed Process is currently the best methodology available. 
However, in the future, the Unifi ed Process will doubtless be superseded by some new 
methodology. Today’s software professionals are looking beyond the Unifi ed Process to the 
next major breakthrough. After all, in virtually every fi eld of human endeavor, the discov-
eries of today are often superior to anything that was put forward in the past. The Unifi ed 
Process is sure to be superseded, in turn, by the methodologies of the future. The important 
lesson is that, based on   today’s   knowledge, the Unifi ed Process appears to be better than the 
other alternatives currently available. 
  The remainder of this chapter is devoted to national and international initiatives aimed 
at process improvement.   

  3.12 Improving the Software Process 
  Our global economy depends critically on computers and hence on software. For this rea-
son, the governments of many countries are concerned about the software process. For 
example, in 1987, a task force of the U.S. Department of Defense (DoD) reported, “After 
two decades of largely unfulfi lled promises about productivity and quality gains from 

 FIGURE 3.2     
Comparison of 
(a) a classical 
one-dimensional 
life-cycle model 
and (b) the two-
dimensional 
Unifi ed Process 
life-cycle 
model. 

Incep
tion

p
hase

Elaboration
p

hase

C
onstruction

p
hase

Transition
p

hase
Requirements

phase

Analysis
phase

Phases

Design
phase

Implementation
phase

Requirements
workflow

Analysis
workflow

Workflows
(technical contexts)

Design
workflow

Phases/
increments
(business
contexts)

Implementation
workflow

(a) (b)

sch76183_ch03_074-106.indd   94sch76183_ch03_074-106.indd   94 04/06/10   6:35 PM04/06/10   6:35 PM



Chapter 3  The Software Process  95

applying new software methodologies and technologies, industry and government organi-
zations are realizing that their fundamental problem is the inability to manage the software 
process” [Brooks et al., 1987]. 
  In response to this and related concerns, the DoD founded the Software Engineering In-
stitute (SEI) and set it up at Carnegie Mellon University in Pittsburgh on the basis of a com-
petitive procurement process. A major success of the SEI has been the capability maturity 
model (CMM) initiative. Related software process improvement efforts include the ISO 
9000-series standards of the International Organization for Standardization, and ISO/IEC 
15504, an international software improvement initiative involving more than 40 countries. 
We begin by describing the CMM.   

  3.13 Capability Maturity Models 
  The   capability maturity models   of the SEI are a related group of strategies for 
improving the software process, irrespective of the actual life-cycle model used. (The 
term   maturity   is a measure of the goodness of the process itself.) The SEI has developed 
CMMs for software (SW–CMM), for management of human resources (P–CMM; the   P   
stands for “people”), for systems engineering (SE–CMM), for integrated product develop-
ment (IPD–CMM), and for software acquisition (SA–CMM). There are some inconsisten-
cies between the models and an inevitable level of redundancy. Accordingly, in 1997, it was 
decided to develop a single integrated framework for maturity models, capability maturity 
model integration (CMMI), which incorporates all fi ve existing capability maturity mod-
els. Additional disciplines may be added to CMMI in the future [SEI, 2002]. 
  For reasons of space, only one capability maturity model, SW–CMM, is examined here, 
and an overview of the P–CMM is given in Section 4.8. The SW–CMM was fi rst put 
forward in 1986 by Watts Humphrey [Humphrey, 1989]. Recall that a software process 
encompasses the activities, techniques, and tools used to produce software. It therefore 
incorporates both technical and managerial aspects of software production. Underlying the 
SW–CMM is the belief that the use of new software techniques in itself will not result in 
increased productivity and profi tability, because our problems are caused by how we man-
age the software process. The strategy of the SW–CMM is to improve the management 
of the software process in the belief that improvements in technique are a natural conse-
quence. The resulting improvement in the process as a whole should result in better-quality 
software and fewer software projects that suffer from time and cost overruns. 
  Bearing in mind that improvements in the software process cannot occur overnight, the 
SW–CMM induces change incrementally. More specifi cally, fi ve levels of maturity are 
defi ned, and an organization advances slowly in a series of small evolutionary steps toward 
the higher levels of process maturity [Paulk, Weber, Curtis, and Chrissis, 1995]. To under-
stand this approach, the fi ve levels now are described. 

     Maturity Level 1. Initial Level 
 At the   initial level  , the lowest level, essentially no sound software engineering manage-
ment practices are in place in the organization. Instead, everything is done on an ad hoc 
basis. A specifi c project that happens to be staffed by a competent manager and a good 
software development team may be successful. However, the usual pattern is time and cost 
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overruns caused by a lack of sound management in general and planning in particular. 
As a result, most activities are responses to crises rather than preplanned tasks. In level-1 
organizations, the software process is unpredictable, because it depends totally on the cur-
rent staff; as the staff changes, so does the process. As a consequence, it is impossible to 
predict with any accuracy such important items as the time it will take to develop a product 
or the cost of that product. 
  It is unfortunate that the vast majority of software organizations all over the world are 
still level-1 organizations.  

  Maturity Level 2. Repeatable Level 
 At the   repeatable level  , basic software project management practices are in place. Plan-
ning and management techniques are based on experience with similar products; hence, 
the name   repeatable  . At level 2, measurements are taken, an essential fi rst step in achieving 
an adequate process. Typical measurements include the meticulous tracking of costs and 
schedules. Instead of functioning in a crisis mode, as in level 1, managers identify problems 
as they arise and take immediate corrective action to prevent them from becoming crises. 
The key point is that, without measurements, it is impossible to detect problems before 
they get out of hand. Also, measurements taken during one project can be used to draw up 
realistic duration and cost schedules for future projects.  

  Maturity Level 3. Defi ned Level 
 At the   defi ned level  , the process for software production is fully documented. Both 
the managerial and technical aspects of the process are clearly defi ned, and continual 
efforts are made to improve the process wherever possible. Reviews (Section 6.2) are 
used to achieve software quality goals. At this level, it makes sense to introduce new 
technology, such as CASE environments (Section 5.8), to increase quality and produc-
tivity further. In contrast, “high tech” only makes the crisis-driven level-1 process even 
more chaotic. 
  Although a number of organizations have attained maturity levels 2 and 3, few have 
reached levels 4 or 5. The two highest levels therefore are targets for the future.  

  Maturity Level 4. Managed Level 
 A   managed-level   organization sets quality and productivity goals for each project. 
These two quantities are measured continually and corrective action is taken when there 
are unacceptable deviations from the goal. Statistical quality controls ([Deming, 1986], 
[Juran, 1988]) are in place to enable management to distinguish a random deviation from a 
meaningful violation of quality or productivity standards. (A simple example of a statistical 
quality control measure is the number of faults detected per 1000 lines of code. A corre-
sponding objective is to reduce this quantity over time.)  

  Maturity Level 5. Optimizing Level 
 The goal of an   optimizing-level   organization is continuous process improvement. Sta-
tistical quality and process control techniques are used to guide the organization. The 
knowledge gained from each project is utilized in future projects. The process therefore 
incorporates a positive feedback loop, resulting in a steady improvement in productivity 
and quality. 
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  These fi ve maturity levels are summarized in  Figure 3.3 , which also shows the key 
process areas (KPAs) associated with each maturity level. To improve its software process, 
an organization fi rst attempts to gain an understanding of its current process and then 
formulates the intended process. Next, actions to achieve this process improvement are 
determined and ranked in priority. Finally, a plan to accomplish this improvement is drawn 
up and executed. This series of steps is repeated, with the organization successively im-
proving its software process; this progression from level to level is refl ected in  Figure 3.3 . 
Experience with the capability maturity model has shown that advancing a complete 
maturity level usually takes from 18 months to 3 years, but moving from level 1 to level 2 
can sometimes take 3 or even 5 years. This is a refl ection of how diffi cult it is to instill a 
methodical approach in an organization that up to now has functioned on a purely ad hoc 
and reactive basis. 

 FIGURE 3.3     
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  For each maturity level, the SEI has highlighted a series of   key process areas   (KPAs) that 
an organization should target in its endeavor to reach the next maturity level. For example, as 
shown in  Figure 3.3 , the KPAs for level 2 (repeatable level) include confi guration management 
(Section 5.10), software quality assurance (Section 6.1.1), project planning ( Chapter 9 ), project 
tracking (Section 9.2.5), and requirements management ( Chapter 11 ). These areas cover the 
basic elements of software management: Determine the client’s needs (requirements manage-
ment), draw up a plan (project planning), monitor deviations from that plan (project tracking), 
control the various pieces that make up the software product key process area (confi guration 
management), and ensure that the product is fault free (quality assurance). Within each KPA is a 
group of between two and four related goals that, if achieved, result in that maturity level being 
attained. For example, one project planning goal is the development of a plan that appropriately 
and realistically covers the activities of software development. 
  At the highest level, maturity level 5, the KPAs include fault prevention, technology 
change management, and process change management. Comparing the KPAs of the two 
levels, it is clear that a level-5 organization is far in advance of one at level 2. For example, 
a level-2 organization is concerned with software quality assurance, that is, with detecting 
and correcting faults (software quality is discussed in more detail in  Chapter 6 ). In con-
trast, the process of a level-5 organization incorporates fault prevention, that is, trying to 
ensure that no faults are in the software in the fi rst place. To help an organization to reach 
the higher maturity levels, the SEI has developed a series of questionnaires that form the 
basis for an assessment by an SEI team. The purpose of the assessment is to highlight cur-
rent shortcomings in the organization’s software process and to indicate ways in which the 
organization can improve its process. 
  The CMM program of the Software Engineering Institute was sponsored by the U.S. 
Department of Defense. One of the original goals of the CMM program was to raise the 
quality of defense software by evaluating the processes of contractors who produce soft-
ware for the DoD and awarding contracts to those contractors who demonstrate a mature 
process. The U.S. Air Force stipulated that any software development organization that 
wished to be an Air Force contractor had to conform to SW–CMM level 3 by 1998, and the 
DoD as a whole subsequently issued a similar directive. Consequently, pressure is put on 
organizations to improve the maturity of their software processes. However, the SW–CMM 
program has moved far beyond the limited goal of improving DoD software and is being 
implemented by a wide variety of software organizations that wish to improve software 
quality and productivity.     

  3.14 Other Software Process Improvement Initiatives 
  A different attempt to improve software quality is based on the   International Organiza-
tion for Standardization   (ISO) 9000-series standards, a series of fi ve related standards 
applicable to a wide variety of industrial activities, including design, development, produc-
tion, installation, and servicing; ISO 9000 certainly is not just a software standard. Within 
the ISO 9000 series, standard   ISO 9001   [1987] for quality systems is the standard most 
applicable to software development. Because of the broadness of ISO 9001, ISO has pub-
lished specifi c guidelines to assist in applying ISO 9001 to software:   ISO 9000-3   [1991]. 
(For more information on ISO, see Just in Case You Wanted to Know Box 1.4.) 
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  ISO 9000 has a number of features that distinguish it from the CMM [Dawood, 1994]. 
ISO 9000 stresses documenting the process in both words and pictures to ensure consis-
tency and comprehensibility. Also, the ISO 9000 philosophy is that adherence to the stan-
dard does not guarantee a high-quality product but rather reduces the risk of a poor-quality 
product. ISO 9000 is only part of a quality system. Also required are management commit-
ment to quality, intensive training of workers, and setting and achieving goals for continual 
quality improvement. ISO 9000-series standards have been adopted by over 60 countries, 
including the United States, Japan, Canada, and the countries of the European Union (EU). 
This means, for example, that if a U.S. software organization wishes to do business with a 
European client, the U.S. organization must fi rst be certifi ed as ISO 9000 compliant. A cer-
tifi ed registrar (auditor) has to examine the company’s process and certify that it complies 
with the ISO standard. 
  Following their European counterparts, more and more U.S. organizations are requiring 
ISO 9000 certifi cation. For example, General Electric Plastic Division insisted that 340 
vendors achieve the standard by June 1993 [Dawood, 1994]. It is unlikely that the U.S. gov-
ernment will follow the EU lead and require ISO 9000 compliance for non-U.S. companies 
that wish to do business with organizations in the United States. Nevertheless, pressures 
both within the United States and from its major trading partners ultimately may result in 
signifi cant worldwide ISO 9000 compliance. 
    ISO/IEC 15504   is an international process improvement initiative, like ISO 9000. 
The initiative was formerly known as   SPICE  , an acronym formed from Software Process 
Improvement Capability dEtermination. Over 40 countries actively contributed to the 
SPICE endeavor. SPICE was initiated by the British Ministry of Defence (MOD) with 
the long-term aim of establishing SPICE as an international standard (MOD is the UK 
counterpart of the U.S. DoD, which initiated the CMM). The fi rst version of SPICE was 
completed in 1995. In July 1997, the SPICE initiative was taken over by a joint committee 
of the International Organization for Standardization and the International Electrotechni-
cal Commission. For this reason, the name of the initiative was changed from SPICE to 
ISO/IEC 15504, or 15504 for short.   

  3.15 Costs and Benefi ts of Software Process Improvement 
  Does implementing software process improvement lead to increased profi tability? Results 
indicate that this indeed is the case. For example, the Software Engineering Division of 
Hughes Aircraft in Fullerton, California, spent nearly $500,000 between 1987 and 1990 
for assessments and improvement programs [Humphrey, Snider, and Willis, 1991]. During 
this 3-year period, Hughes Aircraft moved up from maturity level 2 to level 3, with every 
expectation of future improvement to level 4 and even level 5. As a consequence of improv-
ing its process, Hughes Aircraft estimated its annual savings to be on the order of $2 million. 
These savings accrued in a number of ways, including decreased overtime hours, fewer cri-
ses, improved employee morale, and lower turnover of software professionals. 
  Comparable results have been reported at other organizations. For example, the Equip-
ment Division at Raytheon moved from level 1 in 1988 to level 3 in 1993. A twofold 
increase in productivity resulted, as well as a return of $7.70 for every dollar invested in 
the process improvement effort [Dion, 1993]. As a consequence of results like these, the 
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capability maturity models are being applied rather widely within the U.S. software indus-
try and abroad. 
  For example, Tata Consultancy Services in India used both the ISO 9000 framework 
and CMM to improve its process [Keeni, 2000]. Between 1996 and 2000, the errors in 
effort estimation decreased from about 50 percent to only 15 percent. The effectiveness 
of reviews (that is, the percentage of faults found during reviews) increased from 40 to 
80 percent. The percentage of effort devoted to reworking projects dropped from nearly 
12 percent to less than 6 percent. 
  Motorola Government Electronics Division (GED) has been actively involved in SEI’s 
software process improvement program since 1992 [Diaz and Sligo, 1997].  Figure 3.4  
depicts 34 GED projects, categorized according to the maturity level of the group that 
developed each project. As can be seen from the fi gure, the relative duration (that is, the 
duration of a project relative to a baseline project completed before 1992) decreased with 
increasing maturity level. Quality was measured in terms of faults per million equivalent 
assembler source lines (MEASL); to be able to compare projects implemented in different 
languages, the number of lines of source code was converted into the number of equiva-
lent lines of assembler code [Jones, 1996]. As shown in  Figure 3.4 , quality increased with 
increasing maturity level. Finally, productivity was measured as MEASL per person-hour. 
For reasons of confi dentiality, Motorola does not publish actual productivity fi gures, so 
 Figure 3.4  refl ects productivity relative to the productivity of a level-2 project. (No quality 
or productivity fi gures are available for the level-1 projects because these quantities cannot 
be measured when the team is at level 1.) 
  Galin and Avrahami [2006] analyzed 85 projects that had previously been reported in the 
literature as having advanced by one level as a consequence of implementing CMM. These 
projects were divided into four groups (CMM level 1 to level 2, CMM level 2 to level 3, and 
so on). For the four groups, the median fault density (number of faults per KLOC) decreased 
by between 26 and 63 percent. The median productivity (KLOC per person month) increased 
by between 26 and 187 percent. Median rework decreased by between 34 and 40 percent. The 
median project duration decreased by between 28 and 53 percent. Fault detection effective-
ness (percentage of faults detected during development of the total detected project faults) 
increased as follows: For the three lowest groups, the median increased by between 70 and 
74 percent, and 13 percent for the highest group (CMM level 4 to level 5). The return on 
investment varied between 120 and 650 percent, with a median value of 360 percent. 

 FIGURE 3.4     Results of 34 Motorola GED projects (MEASL stands for “million equivalent assembler source lines”) 
[Diaz and Sligo, 1997]. (© 1997, IEEE.)   

                          Relative     Faults per MEASL        
        Number of     Decrease in     Detected during     Relative   
   CMM Level     Projects     Duration     Development     Productivity    

    Level 1     3     1.0      —      —   
   Level 2     9     3.2     890     1.0   
   Level 3     5     2.7     411     0.8   
   Level 4     8     5.0     205     2.3   
   Level 5     9     7.8     126     2.8      
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  As a consequence of published studies such as those described in this section and those 
listed in the For Further Reading section of this chapter, more and more organizations 
worldwide are realizing that process improvement is cost effective. 
  An interesting side effect of the process improvement movement has been the interac-
tion between software process improvement initiatives and software engineering stan-
dards. For example, in 1995 the International Organization for Standardization published 
ISO/IEC 12207, a full life-cycle software standard [ISO/IEC 12207, 1995]. Three years 
later, a U.S. version of the standard [IEEE/EIA 12207.0-1996, 1998] was published by the 
Institute of Electrical and Electronic Engineers (IEEE) and the Electronic Industries Alli-
ance (EIA). This version incorporates U.S. software “best practices,” many of which can 
be traced back to CMM. To achieve compliance with IEEE/EIA 12207, an organization 
must be at or near CMM capability level 3 [Ferguson and Sheard, 1998]. Also, ISO 9000-3 
now incorporates parts of ISO/IEC 12207. This interplay between software engineering 
standards organizations and software process improvement initiatives surely will lead to 
even better software processes. 
  Another dimension of software process improvement appears in Just in Case You Wanted 
to Know Box 3.4.    

 Just in Case You Wanted to Know      Box 3.4 
 There are constraints on the speed of hardware because electrons cannot travel faster than 
the speed of light. In a famous article entitled “No Silver Bullet,” Brooks [1986] suggested 
that inherent problems exist in software production, and that these problems can never be 
solved because of analogous constraints on software. Brooks argued that intrinsic proper-
ties of software, such as its complexity, the fact that software is invisible and unvisualizable, 
and the numerous changes to which software is typically subjected over its lifetime, make 
it unlikely that there will ever be an order-of-magnitude increment (or “silver bullet”) in 
software process improvement. 

   Chapter 
Review 
  After some preliminary defi nitions, the Unifi ed Process is introduced in Section 3.1. The impor-

tance of iteration and incrementation within the object-oriented paradigm is described in Section 
3.2. Now the core workfl ows of the Unifi ed Process are explained in detail; the requirements 
workfl ow (Section 3.3), analysis workfl ow (Section 3.4), design workfl ow (Section 3.5), imple-
mentation workfl ow (Section 3.6), and test workfl ow (Section 3.7). The various artifacts tested 
during the test workfl ow are described in Sections 3.7.1 through 3.7.4. Postdelivery maintenance 
is discussed in Section 3.8, and retirement in Section 3.9. The relationship between the work-
fl ows and the phases of the Unifi ed Process is analyzed in Section 3.10, and a detailed descrip-
tion is given of the four phases of the Unifi ed Process: the inception phase (Section 3.10.1), the 
elaboration phase (Section 3.10.2), the construction phase (Section 3.10.3), and the transition 
phase (Section 3.10.4). The importance of two-dimensional life-cycle models is discussed in 
Section 3.11. 
  The last part of the chapter is devoted to software process improvement (Section 3.12). Details 
are given of various national and international software improvement initiatives, including the capa-
bility maturity models (Section 3.13), and ISO 9000 and ISO/IEC 15504 (Section 3.14). The cost-
effectiveness of software process improvement is discussed in Section 3.15.  
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  The March–April 2003 issue of   IEEE Software   contains a number of articles on the software process, 
including [Eickelmann and Anant, 2003], a discussion of statistical process control. Practical applications 
of statistical process control are described in [Weller, 2000] and [Florac, Carleton, and Barnard, 2000]. 
  With regard to testing during each workfl ow, an excellent source is [Ammann and Offutt, 2008]. 
More specifi c references are given in  Chapter 6  of this book and in the For Further Reading section 
at the end of that chapter. 
  A detailed description of the original SEI capability maturity model is given in [Humphrey, 
1989]. Capability maturity model integration is described in [SEI, 2002]. Humphrey [1996] 
describes a personal software process (PSP); results of applying the PSP appear in [Ferguson 
et al., 1997]. The results of an experiment to measure the effectiveness of PSP training are pre-
sented in [Prechelt and Unger, 2000]. Extensions needed to the Unifi ed Process for it to comply 
with CMM levels 2 and 3 are presented in [Manzoni and Price, 2003]. Implementing SW–CMM 
in small organizations is described in [Guerrero and Eterovic, 2004] and [Dangle, Larsen, Shaw, 
and Zelkowitz, 2005]. The July–August 2000 issue of   IEEE Software   has three papers on software 
process maturity, and there are four papers on the PSP in the November–December 2000 issue of 
  IEEE Software  . 
  A compendium of the results of many studies of process improvement appears in [Galin and 
Avrahami, 2006]. 
  Pitterman [2000] describes how a group at Telecordia Technologies reached level 5; a study of how 
a Computer Sciences Corporation group attained level 5 appears in [McGarry and Decker, 2002]. 
Insights into the nature of level-5 organizations appear in [Eickelmann, 2003] and [Agrawal and 
Chari, 2007]. Cost–benefi t analysis of software process improvement is described in [van Solingen, 
2004]. An empirical investigation of the key factors for success in software process improvement is 
presented in [Dybå, 2005]. 
  Problems of software product improvement appear in [Conradi and Fuggetta, 2002]. The results of 
18 different software process improvement initiatives conducted at Ericsson are described in [Borjes-
son and Mathiassen, 2004]. A wealth of information on the CMM is available at the SEI CMM 
website  www.sei.cmu.edu . An assessment of the success of the SPICE project can be found in 
[Rout et al., 2007]. The ISO/IEC 15504 (SPICE) home page is at  www.sei.cmu.edu/technology/
process/spice/ . 
  A comparison between CMM and IEEE/EIA 12207 is given in [Ferguson and Sheard, 1998], and 
a comparison between CMM and Six Sigma (another approach to process improvement) appears in 
[Murugappan and Keeni, 2003]. An approach to implementing both ISO 9001 and CMMI appears 
in [Yoo et al., 2006]. A repository containing the results of some 400 software improvement experi-
ments is described in [Blanco, Gutiérrez, and Satriani, 2001].  

  For 
Further 
Reading 
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     3.1  Defi ne the terms   software process   and   Unifi ed Process  .  

   3.2 In the software engineering context, what is meant by the term   model  ?  

   3.3  What is meant by a   phase   of the Unifi ed Process?  

   3.4  Distinguish clearly between an ambiguity, a contradiction, and incompleteness.  

   3.5  Consider the requirements workfl ow and the analysis workfl ow. Would it make more sense to 
combine these two activities into one workfl ow than to treat them separately?  

   3.6 More testing is performed during the implementation workfl ow than in any other workfl ow. 
Would it be better to divide this workfl ow into two separate workfl ows, one incorporating the 
nontesting aspects, the other all the testing?  

   3.7 “Correctness is the responsibility of the SQA group.” Discuss this statement.  

   3.8 Maintenance is the most important activity of software production and the most diffi cult to 
perform. Nevertheless, it is looked down on by many software professionals, and maintenance 
programmers often are paid less than developers. Do you think that this is reasonable? If not, 
how would you try to change it?  

   3.9 Why do you think that, as stated in Section 3.9, true retirement is a rare event?  

  3.10  Because of a fi re at Elmer’s Software, all documentation for a product is destroyed just before 
it is delivered. What is the impact of the resulting lack of documentation?  

  3.11  You have just purchased Antedeluvian Software Developers, an organization on the verge of 
bankruptcy because the company is at maturity level 1. What is the fi rst step you will take to 
restore the organization to profi tability?  

  3.12  Section 3.13 states that it makes little sense to introduce CASE environments within organiza-
tions at maturity level 1 or 2. Explain why this is so.  

  3.13  What is the effect of introducing CASE tools (as opposed to environments) within organiza-
tions with a low maturity level?  

  3.14  Maturity level 1, the initial level, refers to an absence of good software engineering manage-
ment practices. Would it not have been better for the SEI to have labeled the initial level as 
maturity level 0?  

  3.15  (Term Project) What differences would you expect to fi nd if the Chocoholics Anonymous prod-
uct of Appendix A were developed by an organization at CMM level 1, as opposed to an orga-
nization at level 5?  

  3.16  (Readings in Software Engineering) Your instructor will distribute copies of [Agrawal and 
Chari, 2007]. Would you like to work in a level-5 organization? Explain your answer.    

  Problems 
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 Chapter 4
Teams 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Explain the importance of a well-organized team.  

  • Describe how modern hierarchical teams are organized.  

  • Analyze the strengths and weaknesses of a variety of different team 
organizations.  

  • Appreciate the issues that arise when choosing an appropriate team organization.      

107

  Without competent, well-trained software engineers, a software project is doomed to fail-
ure. However, having the right people is not enough; teams must be organized in such a 
way that the team members can work productively in cooperation with one another. Team 
organization is the subject of this chapter. 

  4.1 Team Organization 

  Most products are too large to be completed by a single software professional within the 
given time constraints. As a result, the product must be assigned to a group of professionals 
organized as a   team  . For example, consider the analysis workfl ow. To specify the target 
product within 2 months, it may be necessary to assign the task to three analysis specialists 
organized as a team under the direction of the analysis manager. Similarly, the design task 
may be shared between members of the design team. 
  Suppose now that a product has to be coded within 3 months, even though 1 person-year 
of coding is involved (a person-year is the amount of work that can be done by one person 
in 1 year). The solution is apparently simple: If one programmer can code the product in 
1 year, four programmers can do it in 3 months. 
  This, of course, does not work. In practice, the four programmers may take nearly a 
year, and the quality of the resulting product may well be lower than if one programmer 
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had coded the entire product. The reason is that some tasks can be shared, but others must 
be done individually. For instance, if one farmhand can pick a strawberry fi eld in 10 days, 
the same strawberry fi eld can be picked by 10 farmhands in 1 day. On the other hand, one 
elephant can produce a calf in 22 months, but this feat cannot possibly be accomplished in 
1 month by 22 elephants. 
  In other words, tasks like strawberry picking can be fully shared; others, like elephant 
production, cannot be shared at all. Unlike elephant production, it is possible to share 
implementation tasks between members of a team by distributing the coding among the 
team members. However, team programming also is unlike strawberry picking in that team 
members have to interact with one another in a meaningful and effective way. For example, 
suppose Sheila and Harry have to code two modules, m1 and m2. A number of things can 
go wrong. For instance, both Sheila and Harry may code m1 and ignore m2. Or Sheila may 
code m1, and Harry may code m2. But when m1 calls m2 it passes four arguments; Harry 
has coded m2 in such a way that it requires fi ve arguments. Or the order of the arguments 
in m1 and m2 may be different. Or the order may be the same, but the data types may be 
slightly different. Such problems usually are caused by a decision made while the design 
workfl ow is performed that is not propagated throughout the development organization. 
The issue has nothing whatsoever to do with the technical competency of the programmers. 
Team organization is a managerial issue; management must organize the programming 
teams so that each team is highly productive. 
  A different type of diffi culty that arises from team development of software is shown 
in  Figure 4.1 . Three channels of communication exist between the three software pro-
fessionals working on the project. Now, suppose that the work is slipping, a deadline 
is rapidly approaching, and the task is not nearly complete. The obvious thing to do is 
to add a fourth professional to the team. But the fi rst thing that must happen when the 
fourth professional joins the team is for the other three to explain in detail what has been 
accomplished to date and what is still incomplete. In other words, adding personnel to 
a late software project makes it even later. This principle is known as   Brooks’s Law   
after Fred Brooks who observed it while managing the development of OS/360 [Brooks, 
1975], an operating system for IBM 360 mainframe computers. 
  In a large organization, teams are used in every workfl ow of software production, but espe-
cially when the implementation workfl ow is performed; during that workfl ow, programmers 
work independently on separate code artifacts. Accordingly, the implementation workfl ow is 

 FIGURE 4.1  
   Communication 
paths between 
three software 
professionals 
(solid lines) and 
when a fourth 
professional 
joins them 
(dashed lines). 
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a prime candidate for sharing the task among several software professionals. In some 
smaller organizations, one individual may be responsible for the requirements, analysis, 
and design, after which the implementation is done by a team of two or three program-
mers. Because teams are used most heavily when performing the implementation work-
fl ow, the problems of team organization are felt most acutely during implementation. 
In the remainder of this chapter, team organization therefore is presented within the 
context of implementation, even though the problems and their solutions are equally 
applicable to all the other workfl ows. 
  There are two extreme approaches to programming-team organization, democratic 
teams and chief programmer teams. The approach taken here is to describe each of the two 
approaches, highlight its strengths and weaknesses, and then suggest other ways of organiz-
ing a programming team that incorporate the best features of the two extremes.   

  4.2 Democratic Team Approach 
  The democratic team organization was fi rst described by Weinberg in 1971 [Weinberg, 
1971]. The basic concept underlying the democratic team is   egoless programming  . 
Weinberg points out that programmers can be highly attached to their code. Sometimes, 
they even name their modules after themselves: They therefore see their modules as an 
extension of themselves. The diffi culty with this is that a programmer who sees a module as 
an extension of his or her ego is certainly not going to try to fi nd all the faults in “his” code 
or “her” code. And, if there is a fault, it is termed a   bug  , like some insect that crept unasked 
into the code and could have been prevented if only the code had been guarded more zeal-
ously against invasion (see Just in Case You Wanted to Know Box 4.1). 
  Weinberg’s solution to the problem of programmers being too closely attached to their 
own code is egoless programming. The social environment must be restructured and so 
must programmer values. Every programmer must encourage the other members of the 
team to fi nd faults in his or her code. The presence of a fault must not be considered some-
thing bad but a normal and accepted event; the attitude of the reviewer should be apprecia-
tion at being asked for advice, rather than ridicule of the programmer for making coding 
mistakes. The team as a whole thereby develops an ethos, a group identity; and modules 
belong to the team as a whole rather than to any one individual. 
  A group of up to 10 egoless programmers constitutes a   democratic team.   Weinberg 
warns that management may have diffi culty working with such a team. After all, consider 
the managerial career path. When a programmer is promoted to a management position, his 
or her fellow programmers are not promoted and must strive to attain the higher level at the 
next round of promotions. In contrast, a democratic team is a group working for a common 

 Just in Case You Wanted to Know               Box 4.1 
 Some 40 years ago, when software was still input on punched cards, all too many pro-
grammers regarded “bugs” in software in the same light as insects that would invade their 
card deck unless prevented from doing so. This attitude was amusingly lampooned by the 
marketing of an aerosol spray named   Shoo-Bug  . The instructions on the label solemnly 
explained that spraying one’s card deck with Shoo-Bug would ensure that no bugs could 
possibly infest the code. Of course, the spray can contained nothing but air. 
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cause with no single leader, with no programmers trying to get promoted to the next level. 
What is important is team identity and mutual respect. 
  Weinberg tells of a democratic team that developed an outstanding product. Manage-
ment decided to give a cash award to the team’s nominal manager (by defi nition, a demo-
cratic team has no leader). He refused to accept it personally, saying that it had to be shared 
equally among all members of the team. Management thought that he was angling for more 
money and that the team (and especially its nominal manager) had some rather unorthodox 
ideas. Management forced the nominal manager to accept the money, which he then di-
vided equally among the team. Next, the entire team resigned and joined another company 
as a team. 
  The strengths and weaknesses of democratic teams are now presented. 

  4.2.1 Analysis of the Democratic Team Approach 
 A major strength of the democratic team approach is the positive attitude toward the fi nding 
of faults. The more found, the happier are the members of a democratic team. This positive 
attitude leads to more rapid detection of faults and hence to high-quality code. But there are 
some major problems. As pointed out previously, managers may have diffi culty accepting 
egoless programming. In addition, a programmer with, say, 15 years of experience is likely 
to resent having his or her code appraised by fellow programmers, especially beginners. 
  Weinberg feels that egoless teams spring up spontaneously and cannot be imposed from 
outside. Little experimental research has been done on democratic programming teams, but 
the experience of Weinberg is that democratic teams are enormously productive. Mantei 
[1981] has analyzed the democratic team organization using arguments based on theories 
of and experiments on group organization in general rather than specifi cally on program-
ming teams. She points out that decentralized groups work best when the problem is dif-
fi cult and suggests that democratic teams should function well in a research environment. 
It has been my experience that a democratic team also works well in an industrial setting 
when a hard problem must be solved. On a number of occasions I have been a member of 
democratic teams that have sprung up spontaneously among software professionals with 
research experience. But, once the task has been reduced to the implementation of a hard-
won solution, the team must then be reorganized in a more hierarchical fashion, such as the 
chief programmer team approach described in Section 4.3.    

  4.3 Classical Chief Programmer Team Approach 
  Consider the six-person team shown in  Figure 4.2 , with 15 two-person communication chan-
nels. In fact, the total number of two-, three-, four-, fi ve-, and six-person groups is 57. This 
multiplicity of communication channels is the major reason why a six-person team structured 
as in  Figure 4.2  is unlikely to be able to perform 36 person-months of work in 6 months; many 
hours are wasted in meetings involving two or more team members at a time. 
  Now consider the six-person team shown in  Figure 4.3 . Again, there are six program-
mers, but now only fi ve lines of communication. This is the basic concept behind what 
now is termed the   chief programmer team  . A related idea was put forward by Brooks 
[1975], who drew the analogy of a chief surgeon directing an operation. The surgeon is 
assisted by other surgeons, the anesthesiologist, and a variety of nurses. In addition, when 
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necessary, the team uses experts in other areas, such as cardiologists or nephrologists. This 
analogy highlights two key aspects of a chief programmer team. The fi rst is   specialization  : 
Each member of the team carries out only those tasks for which he or she has been trained. 
The second aspect is   hierarchy  : The chief surgeon directs the actions of all the other members 
of the team and is responsible for every aspect of the operation. 
  The chief programmer team concept was formalized by Mills [Baker, 1972]. A classical 
chief programmer team, as described by Baker some 40 years ago, is shown in  Figure 4.3 . 
It consisted of the chief programmer, who was assisted by the backup programmer, the 
programming secretary, and from one to three programmers. When necessary, the team was 
assisted by specialists in other areas, such as legal or fi nancial matters, or the job control 
language (JCL) statements used to give operating system commands to the mainframe com-
puters of that era. The   chief programmer   was both a successful manager and a highly 
skilled programmer who did the architectural design and any critical or complex sections 
of the code. The other team members worked on the detailed design and the coding, under 
the direction of the chief programmer. As shown in  Figure 4.3 , no lines of communica-
tion existed between the programmers; all interfacing issues were handled by the chief 
programmer. Finally, the chief programmer reviewed the work of the other team members, 
because the chief programmer was personally responsible for every line of code. 
  The position of   backup programmer   was necessary only because the chief program-
mer was human and could therefore become ill, fall under a bus, or change jobs. Therefore, 

 FIGURE 4.2  
   Communication 
paths between 
six software 
professionals. 

 FIGURE 4.3        
The structure of 
a classical chief 
programmer 
team. 
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the backup programmer had to be as competent as the chief programmer in every respect 
and had to know as much about the project as the chief programmer. In addition, to free 
the chief programmer to concentrate on the architectural design, the backup programmer 
did black-box test case planning (Section 15.11) and other tasks independent of the design 
process. 
  The word   secretary   has a number of meanings. A secretary can be a person who assists 
a busy executive by answering the telephone, typing correspondence, and so on. But when 
we talk about the American Secretary of State or the British Foreign Secretary, we refer 
to one of the most senior members of the Cabinet. The   programming secretary   was 
not a part-time clerical assistant but a highly skilled, well-paid, central member of a chief 
programmer team. The programming secretary was responsible for maintaining the project 
production library, the documentation of the project. This included source code listings, 
JCL, and test data. The programmers handed their source code to the secretary, who was 
responsible for its conversion to machine-readable form, compilation, linking, loading, 
execution, and running test cases.   Programmers   therefore did nothing but program. All 
other aspects of their work were handled by the programming secretary. (Because the pro-
gramming secretary maintained the project production library, some organizations used the 
title   librarian  .) 
  Recall that what is described here are Mills’s and Baker’s original ideas, dating back to 
1971, when keypunches still were widely used. Coding no longer is done that way. Pro-
grammers now have their own terminals or workstations in which they enter their code, edit 
it, test it, and so on. A modern version of the classical chief programmer team is described 
in Section 4.4. 

  4.3.1   The     New York Times   Project 
 The chief programmer team concept was fi rst used in 1971 by IBM to automate the clip-
ping fi le (“morgue”) of   The     New York Times.   The clipping fi le contains abstracts and full 
articles from   The     New York Times   and other publications. Reporters and other members of 
the editorial staff use this information bank as a reference source. 
  The facts of the project are astounding. For example, 83,000 lines of code (LOC) were 
implemented in 22 calendar months, an effort of 11 person-years. After the fi rst year, only the 
fi le maintenance system consisting of 12,000 LOC had been implemented. Most of the code 
was implemented in the last 6 months. Only 21 faults were detected in the fi rst 5 weeks of 
acceptance testing; only 25 further faults were detected in the fi rst year of operation. Principal 
programmers averaged one detected fault and 10,000 LOC per person-year. The fi le main-
tenance system, delivered 1 week after coding was completed, operated 20 months before a 
single fault was detected. Almost half the subprograms, usually 200 to 400 lines of PL/I, a 
language developed by IBM, were correct on the fi rst compilation [Baker, 1972]. 
  Nevertheless, after this fantastic success, no comparable claims for the chief program-
mer team concept have been made. Yes, many successful projects have been carried out 
using chief programmer teams, but the fi gures reported, although satisfactory, are not as 
impressive as those obtained for   The     New York Times   project. Why was   The     New York Times   
project such a success, and why have similar results not been obtained on other projects? 
  One possible explanation is that this was a prestige project for IBM. It was the fi rst real 
trial for PL/I. An organization known for its superb software experts, IBM set up a team 
comprising what can only be described as its crème de la crème from one division. Second, 
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technical backup was extremely strong. PL/I compiler writers were on hand to assist the 
programmers in every way they could, and JCL experts assisted with the job control lan-
guage. A third possible explanation was the expertise of the chief programmer, F. Terry 
Baker. He is what is now called a   superprogrammer  , a programmer whose output is four 
or fi ve times that of an average good programmer. In addition, Baker is a superb manager 
and leader, and his skills, enthusiasm, and personality could be the reasons underlying the 
success of the project. 
  If the chief programmer is competent, then the chief programmer team organization 
works well. Although the remarkable success of   The New York Times   project has not 
been repeated, many successful projects have employed variants of the chief programmer 
approach. The reason for the phrase   variants of the approach   is that the classical chief pro-
grammer team as described in [Baker, 1972] is impractical in many ways.  

  4.3.2  Impracticality of the Classical Chief Programmer 
Team Approach 

 Consider the chief programmer, a combination of a highly skilled programmer and suc-
cessful manager. Such individuals are diffi cult to fi nd due to a shortage of highly skilled 
programmers as well as a shortage of successful managers; and the job description of a 
chief programmer requires both abilities. Also, the qualities needed to be a highly skilled 
programmer appear to be different from those needed to be a successful manager; there-
fore, the chances of fi nding a chief programmer are small. 
  If chief programmers are hard to fi nd, backup programmers are as rare as hen’s teeth. 
After all, the backup programmer is expected to be as good as the chief programmer but 
has to take a backseat and a lower salary while waiting for something to happen to the chief 
programmer. Few top programmers or top managers would accept such a role. 
  A programming secretary also is diffi cult to fi nd. Software professionals are notorious 
for their aversion to paperwork, and the programming secretary is expected to do nothing 
but paperwork all day. 
  Therefore, chief programmer teams, at least as proposed by Baker, are impractical to 
implement. Democratic teams also were shown to be impractical but for different reasons. 
Furthermore, neither technique seems to be able to handle products that require 20, let 
alone 120, programmers for the implementation workfl ow. What is needed is a way of 
organizing programming teams that uses the strengths of democratic teams and chief pro-
grammer teams and can be extended to the implementation of larger products.    

  4.4 Beyond Chief Programmer and Democratic Teams 

  Democratic teams have a major strength: a positive attitude toward fi nding faults. A num-
ber of organizations use chief programmer teams in conjunction with code reviews (Sec-
tion 6.2), creating a potential pitfall. The chief programmer is personally responsible for 
every line of code and, therefore, must be present during all code reviews. However, a chief 
programmer also is a manager and, as explained in  Chapter 6 , reviews should not be used 
for any sort of performance appraisal. So, because the chief programmer is also the man-
ager responsible for the primary evaluation of the team members, it is strongly inadvisable 
for that individual to be present at a code review. 
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  The way out of this contradiction is to remove much of the managerial role from the chief 
programmer. After all, the diffi culty of fi nding one individual who is both a highly skilled 
programmer and successful manager has been pointed out. Instead, the chief programmer 
should be replaced by two individuals: a   team leader   in charge of the technical aspects 
of the team’s activities and a   team manager   responsible for all nontechnical managerial 
decisions. The structure of the resulting team is shown in  Figure 4.4 . It is important to real-
ize that this organizational structure does not violate the fundamental managerial principle 
that no employee should report to more than one manager. The areas of responsibility are 
clearly delineated. The team leader is responsible for only technical management. Conse-
quently, budgetary and legal issues are not handled by the team leader nor are performance 
appraisals. On the other hand, the team leader has sole responsibility on technical issues. 
The team manager therefore has no right to promise, say, that the product will be delivered 
within 4 weeks; promises of that sort have to be made by the team leader. The team leader 
naturally participates in all code reviews; after all, he or she is personally responsible for 
every aspect of the code. At the same time, the team manager is not permitted at a review, 
because programmer performance appraisal is a function of the team manager. Instead, the 
team manager acquires knowledge of the technical skills of each programmer in the team 
during regularly scheduled team meetings. 
  Before implementation begins, it is important to demarcate clearly those areas that 
appear to be the responsibility of both the team manager and the team leader. For example, 
consider the issue of annual leave. The situation can arise that the team manager approves a 
leave application because leave is a nontechnical issue, only to fi nd the application vetoed 
by the team leader because a deadline is approaching. The solution to this and related issues 
is for higher management to draw up a policy regarding areas that both the team manager 
and the team leader consider to be their responsibility. 
  What about larger projects? This approach can be scaled up as shown in  Figure 4.5 , 
which shows the technical managerial organizational structure; the nontechnical side is 
similarly organized. Implementation of the product as a whole is under the direction of the 
project leader. The programmers report to their team leaders, and the team leaders report to 
the project leader. For even larger products, additional levels can be added to the hierarchy. 
  Another way of drawing on the best features of both democratic and chief program-
mer teams is to decentralize the decision-making process where appropriate. The resulting 
channels of communication are shown in  Figure 4.6 . This scheme is useful for the sorts of 
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 FIGURE 4.6     The decentralized decision-making version of the team organization of  Figure 4.5  showing the communication channels for technical 
management. 
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problems for which the democratic approach is good, that is, in a research environment or 
whenever a hard problem requires the synergistic effect of group interaction for its solu-
tion. Notwithstanding the decentralization, the arrows from level to level still point down-
ward; allowing programmers to dictate to the project leader can lead only to chaos. 

    4.5 Synchronize-and-Stabilize Teams 
  An alternative approach to team organization is the synchronize-and-stabilize team utilized 
by Microsoft [Cusumano and Selby, 1997]. Microsoft builds large products; for example, 
Windows 2000 consists of more than 30 million lines of code, built by over 3000 program-
mers and testers, reusing much of Windows NT 4.0 [Business Week Online, 1999]. Team 
organization is a vital aspect of the successful construction of a product of this size. 
  The synchronize-and-stabilize life-cycle model was described in Section 2.9.6. The suc-
cess of this model is largely a consequence of the way the teams are organized. Each of the 
three or four sequential builds of the synchronize-and-stabilize model is constructed by a 
number of small parallel teams led by a manager and consisting of between three and eight 
developers together with three to eight testers who work one-to-one with the developers. 
The team is provided the specifi cations of its overall task; individual team members then 
are given the freedom to design and implement their portions of that task as they wish. The 
reason that this does not rapidly devolve into hacker-induced chaos is the synchronization 
step performed each day: The partially completed components are tested and debugged on 
a daily basis. Accordingly, even though individual creativity and autonomy are nurtured, 
the individual components always work together. 
  The strength of this approach is that, on the one hand, individual programmers are 
encouraged to be creative and innovative, a characteristic of a democratic team. On the 
other hand, the daily synchronization step ensures that the hundreds of developers work 
together toward a common goal without requiring the communication and coordination 
characteristic of a chief programmer team ( Figure 4.3 ). 
  Microsoft developers must follow very few rules, but one of them is that they must 
adhere strictly to the time laid down to enter their code into the product database for that 
day’s synchronization. Cusumano and Selby [1997] liken this to telling children that 
they can do what they like all day but have to be in bed by 9 P.M. Another rule is that, if 
a developer’s code prevents the product from being compiled for that day’s synchroni-
zation, the problem must be fi xed immediately so that the rest of the team can test and 
debug that day’s work. 
  Will use of the synchronize-and-stabilize model and associated team organization guar-
antee that every other software organization will be as successful as Microsoft? This is 
extremely unlikely. Microsoft, Inc., is more than just the synchronize-and-stabilize model. 
It is an organization consisting of a highly talented set of managers and software developers 
with an evolved group ethos. Merely using the synchronize-and-stabilize model does not 
magically turn an organization into another Microsoft. At the same time, the use of many 
of the features of the model in other organizations could lead to process improvement. On 
the other hand, it has been suggested that the synchronize-and-stabilize model is simply a 
way of allowing a group of hackers to develop large products and that Microsoft’s success 
is due to superb marketing, rather than quality software.   
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  4.6 Teams for Agile Processes 
  Section 2.9.5 gives an overview of agile processes [Beck et al., 2001]. In this section, we 
describe how teams are organized when agile processes are used. 
  A somewhat unusual feature of agile processes is that all code is implemented by a team 
of two programmers sharing a single computer; this is referred to as   pair programming   
[Williams, Kessler, Cunningham, and Jeffries, 2000]. The reasons for this approach include:

   • As explained in Section 2.9.5, pair programmers fi rst draw up test cases and then imple-
ment that piece of code (  task  ). As explained in Section 6.6, it is highly inadvisable for 
a programmer to test his or her own code. Agile processes get around this problem by 
having one pair programmer in a team draw up the test cases for a task and the other pair 
programmer jointly implement the code using those test cases.  

  •  In a more conventional life-cycle model, when a developer leaves a project, all the 
knowledge accumulated by that developer leaves as well. In particular, the software on 
which that developer was working may not yet have been documented and may have to 
be redeveloped from scratch. In contrast, if one member of a pair programming team 
leaves, the other is suffi ciently knowledgeable to continue working on the same part of 
the software with a new pair programmer. Furthermore, the presence of the test cases 
assists in highlighting a fault, should the new team accidentally damage the software by 
making an ill-advised modifi cation.  

 •  Working closely in pairs enables a less experienced software professional to acquire the 
skills of the more experienced team member.  

  •  As mentioned in Section 2.9.5, all the computers used by the various pair teams are 
placed together in the middle of a large room. This promotes group ownership of code, 
a positive feature of egoless teams (Section 4.2).    

  So, even though the idea of two programmers working together on the same computer 
may seem somewhat unusual, the practice can have distinct advantages. 
  An interesting experiment on pair programming is described in [Arisholm, Gallis, Dybå, 
and Sjøberg, 2007]. A total of 295 professional programmers (99 individuals and 98 pairs) 
were hired to take part in a carefully conducted one-day experiment on pair programming. 
The subjects were required to perform several maintenance tasks on two Java software 
products, one simple and one complex. The pair programmers required 84 percent more 
effort to perform the tasks correctly. In light of this result, some software engineers may 
reconsider using pair programming, and, hence, agile processes. 
  Furthermore, as stated in Section 2.9.5, an analysis of 15 published studies compared 
the effectiveness of individual and pair programming [Dybå et al., 2007] and came to the 
conclusion that it depends on both the programmer’s expertise and the complexity of the 
system and the specifi c tasks to be solved. Clearly, more research, preferably performed on 
large samples of professional programmers, needs to be conducted in this area.   

  4.7 Open-Source Programming Teams 
  It is surprising that   any   open-source projects have succeeded, let alone that some of the 
most successful software products ever developed used the open-source life-cycle model. 
After all, open-source projects are generally staffed by teams of unpaid volunteers. They 
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communicate asynchronously (i.e., via e-mail), with no team meetings and no managers—
informality reigns in every respect. Furthermore, no specifi cations or designs exist; in fact, 
documentation of any kind is extremely rare, even in mature projects. But despite these 
virtually insurmountable obstacles, a small number of open-source projects such as Linux 
and Apache have attained the highest levels of success. 
  Individuals volunteer to take part in an open-source project for two main reasons: for the 
sheer enjoyment of accomplishing a worthwhile task, or for the learning experience. 

  •  To attract volunteers to an open-source project and keep them interested, it is essential 
that at all times they view the project as “worthwhile.” Individuals are unlikely to devote 
a considerable portion of their spare time to a project unless they truly believe that the 
project will succeed and that the product will be widely utilized. Participants will start 
to drift away if they start viewing the project as futile.  

  •  With regard to the second reason, many software professionals join an open-source 
project to gain skills in a technology that is new to them, such as a modern programming 
language or an operating system with which they are unfamiliar. They can then leverage 
the knowledge they gain to obtain a promotion within their own organization or acquire 
a better position in another organization. After all, employers frequently view experi-
ence gained working on a large, successful open-source project as more desirable than 
acquiring additional academic qualifi cations. Conversely, there is no point in devoting 
months of hard work to a project that ultimately fails.   

  In other words, unless a project is viewed at all times as a winner, it will not attract and 
retain volunteers to work on that project. Furthermore, the members of the open-source 
team must at all times feel that they are making a contribution. For all these reasons, it 
is essential that the key individual behind an open-source project be a superb motivator. 
Unless this is the case, the project is doomed to inevitable failure. 
  Another prerequisite for successful open-source development is the skills of the team mem-
bers. As explained in detail in Section 9.2, large differences in skill levels have been observed 
between programmers. Bearing in mind the obstacles to successful open-source software pro-
duction listed in the fi rst paragraph of this section, there is virtually no way that an open-source 
project can succeed unless the members of the core group (Section 2.9.4) are top-caliber indi-
viduals with fi nely honed skills of the highest order. Such top-class individuals will thrive in 
almost any environment, including one as unstructured as an open-source team. 
  In other words, an open-source project succeeds because of the nature of the target prod-
uct, the personality of the instigator, and the talents of the members of the core group. The 
way that a successful open-source team is organized is essentially irrelevant.   

  4.8 People Capability Maturity Model 
  The people capability maturity model (P–CMM) describes best practices for managing and 
developing the workforce of an organization [Curtis, Hefl ey, and Miller, 2002]. As with the 
software capability maturity model, SW–CMM (Section 3.13), an organization progresses 
through fi ve maturity levels with the aim of continuously improving individual skills and 
engendering effective teams. 
  Every maturity level has its own   key process areas   (KPAs), each of which needs to be 
addressed satisfactorily before an organization can be deemed to have attained that maturity 
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level. For example, for level 2, the managed level, the KPAs are staffi ng, communication and 
coordination, work environment, performance management, training and development, and 
compensation. In contrast, the KPAs for level 5, the optimizing level, are continuous capability 
improvement, organizational performance alignment, and continuous workforce innovation. 
  The SW–CMM is a framework for improving an organization’s software process—no 
specifi c process or methodology is recommended. In the same way, the P–CMM is a frame-
work for improving an organization’s processes for managing and developing its work-
force, and no specifi c approach to team organization is put forward.   

  4.9 Choosing an Appropriate Team Organization 
  A comparison of the various types of team organization appears in  Figure 4.7 , which 
also shows the section in which each team organization is described. Unfortunately, no 
one solution solves the problem of programming team organization or, by extension, the 

            Team Organization     Strengths     Weaknesses    

    Democratic teams     High-quality code as     Experienced staff resent   
    (Section 4.2)      consequence of positive      their code being appraised   
         attitude to fi nding faults      by beginners   
        Particularly good with     Cannot be externally   
         hard problems      imposed   

   Classical chief     Major success of  The New      Impractical   
    programmer teams       York Times  project        
    (Section 4.3)               

   Modifi ed chief     Many successes     No successes comparable to The    
    programmer teams            New York Times  project   
    (Section 4.3.1)             

   Modern hierarchical     Team manager/team leader     Problems can arise unless   
    programming teams      structure obviates need      areas of responsibility of   
    (Section 4.4)      for chief programmer      the team manager and the   
        Scales up      team leader are clearly   
        Supports decentralization      delineated   
         when needed        

   Synchronize-and-     Encourages creativity     No evidence so far that this   
    stabilize teams     Ensures that a huge number      method can be utilized   
    (Section 4.5)      of developers can work      outside Microsoft   
         toward a common goal        

   Agile process teams     Programmers do not test     Still too little evidence regarding   
     (Section 4.6)      their own code      effi cacy   
        Knowledge is not lost if one        
         programmer leaves        
        Less-experienced programmers        
         can learn from others        
        Group ownership of code        

   Open-source teams     A few projects are extremely     Narrowly applicable   
    (Section 4.7)      successful     Must be led by a superb   

               motivator   

             Requires top-caliber participants      

 FIGURE 4.7     
Comparison 
of approaches 
to team 
organization 
and the section 
in this chapter 
in which each is 
described. 
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problem of organizing teams for all the other workfl ows. The optimal way of organiz-
ing a team depends on the product to be built, previous experience with various team 
structures, and most important, the culture of the organization. For example, if senior 
management is uncomfortable with decentralized decision making, then it will not be 
implemented. 
  In practice, most teams are currently organized as described in Section 4.4. That is, 
some variant of the chief programmer team is the usual practice. 
  Not much research has been done on software development team organization, and 
many of the generally accepted principles are based on research on group dynamics in 
general and not on software development teams. Even when studies on software teams have 
been conducted, the sample sizes have generally been small, so the results have not been 
convincing. 
  Until experimental results on team organization have been obtained within the soft-
ware industry, it will not be easy to determine the optimal team organization for a spe-
cifi c product.    

   Chapter 
Review 
  The issue of team organization (Section 4.1) is approached by fi rst considering democratic teams 

(Section 4.2) and chief programmer teams (Section 4.3). The success of   The New York Times   
project (Section 4.3.1) is contrasted with the impracticality of classic chief programmer teams 
(Section 4.3.2). A team organization that uses the strengths of both approaches is suggested in 
Section 4.4. Synchronize-and-stabilize teams (used by Microsoft) are described in Section 4.5. 
Teams for agile processes are discussed in Section 4.6 and for open-source software in Section 
4.7. The people capability maturity model (P–CMM) is described in Section 4.8. Finally, Sec-
tion 4.9 describes the factors involved in choosing the optimal team organization for a given 
project.  

  For 
Further 
Reading 

  The classic works on team organization are [Weinberg, 1971], [Baker, 1972], and [Brooks, 1975]. 
Newer books on the subject include [DeMarco and Lister, 1987] and [Cusumano and Selby, 1995]. 
An interesting description of how team interactions evolve is found in [Mackey, 1999].  Chapter 11  
of [Royce, 1998] contains useful information on the roles played by team members. A promising 
approach is the use of personality type analysis in selecting team members; see, for example, [Gorla 
and Lam, 2004]. 
  Synchronize-and-stabilize teams are outlined in [Cusumano and Selby, 1997] and described in 
detail in [Cusumano and Selby, 1995]. Extreme programming teams are described in [Beck, 2000]. 
The May–June 2003 issue of   IEEE Software   includes a number of papers on extreme programming, 
especially [Reifer, 2003] and [Murru, Deias, and Mugheddue, 2003]. 
  Views on agile processes are expressed in [Boehm, 2002] and [DeMarco and Boehm, 2002], and 
in the May–June 2005 issue of   IEEE Software  . Williams, Kessler, Cunningham, and Jeffries [2000] 
describes an experiment on pair programming, one component of extreme programming. Pair pro-
gramming is evaluated in [Drobka, Noftz, and Raghu, 2004], [Flor, 2006], and [Lui, Chan, and Nosek, 
2008]. The results of [Arisholm, Gallis, Dybå, and Sjøberg, 2007] regarding the possible benefi ts of 
pair programming should be studied in detail. 
  P–CMM is described in [Curtis, Hefl ey, and Miller, 2002]. Globally distributed (remote) pair 
programming is put forward in [Flor, 2006].  
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   backup programmer   111 
   Brooks’s Law   108 
   chief programmer   111 
   chief programmer team   110 
   democratic team   109 
   egoless programming   109 

   hierarchy   111 
   key process area (KPA)   119 
   librarian   112 
   pair programming   118 
   programmer   112 
   programming secretary   112 

   specialization   111 
   superprogrammer   113 
   task   118 
   team   107 
   team leader   114 
   team manager   114 

  Key Terms 

   Problems      4.1 How would you organize a team to develop a payroll project? Explain your answer.  

   4.2 How would you organize a team for developing state-of-the-art military communications soft-
ware? Explain your answer.  

   4.3 State Brooks’s Law. Explain why it holds.  

   4.4 You have just started a new software company. All your employees are recent college gradu-
ates; this is their fi rst programming job. Is it possible to implement democratic teams in your 
organization, and if so, how?  

   4.5 A student programming team is organized as a democratic team. What can be deduced about 
the students in the team?  

   4.6 A student programming team is organized as a chief programming team. What can be deduced 
about the students in the team?  

   4.7 To compare two different team organizations, TO 1  and TO 2 , within a large software company, 
the following experiment is proposed. The same software product will be built by two different 
teams, one organized according to TO 1  and the other according to TO 2 . The company estimates 
that each team will take about 18 months to build the product. Give three reasons why this 
experiment is impractical and unlikely to yield meaningful results.  

   4.8 The company you own has just taken over a smaller competitor, and you discover that one of 
their programmers is a superprogrammer. How do you ensure that she does not leave and take 
a job in another company?  

   4.9 Why do teams for agile processes have to share a computer?  

  4.10 What are the differences between a democratic team and an open-source team?  

  4.11 How would you organize an open-source team?  

  4.12 Would you like to work in an organization that uses synchronize-and-stabilize teams? Explain 
your answer.  

  4.13 Which team organizations conform to P–CMM?  

  4.14 You are the vice president for software development in a large company. How would you imple-
ment P–CMM in your company?  

  4.15 (Term Project) What type of team organization would be appropriate for developing the Choco-
holics Anonymous product described in Appendix A?  

  4.16 (Readings in Software Engineering) Your instructor will distribute copies of [Arisholm, Gallis, 
Dybå, and Sjøberg, 2007]. What are the implications of this paper for agile processes?    

  [Arisholm, Gallis, Dybå, and Sjøberg, 2007] E. ARISHOLM, H. GALLIS, T. DYBÅ, AND D. I. K. SJØBERG, 
“Evaluating Pair Programming with Respect to System Complexity and Programmer Expertise,” 
  IEEE Transactions on Software Engineering     33   (February 2007), pp. 65–86. 

 [Baker, 1972] F. T. BAKER, “Chief Programmer Team Management of Production Programming,” 
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 [Beck, 2000] K. BECK,   Extreme Programming Explained: Embrace Change,   Addison-Wesley Long-
man, Reading, MA, 2000. 
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 Chapter 5
The Tools of 
the Trade 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Appreciate the importance of stepwise refi nement and utilize it in practice.  

  • Understand divide-and-conquer.  

  • Appreciate the importance of separation of concerns.  

  • Apply cost–benefi t analysis.  

  • Select appropriate software metrics.  

  • Discuss the scope and taxonomy of CASE.  

 •  Describe version-control tools, confi guration-control tools, and build tools.  

 •  Understand the importance of CASE.      

124

  Software engineers need two types of tools. First are the analytical tools used in software devel-
opment, such as stepwise refi nement and cost–benefi t analysis. Then come the software tools, 
that is, products that assist the teams of software engineers in developing and maintaining soft-
ware. These usually are termed   CASE   tools (CASE is an acronym for Computer-Aided Software 
Engineering). This chapter is devoted to these two types of tools of the trade, fi rst theoretical 
(analytical) tools and then software (CASE) tools. We begin with stepwise refi nement. 

  5.1 Stepwise Refi nement 
  Stepwise refi nement, introduced in Section 2.5, is a problem-solving technique that 
underlies many software engineering techniques.   Stepwise refi nement   can be defi ned 
as a means to postpone decisions on details until as late as possible to concentrate on the 
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important issues. As a consequence of Miller’s Law (Section 2.5), we can concentrate on 
only approximately seven chunks (units of information) at a time. Accordingly, we use 
stepwise refi nement to defer nonessential decisions until later while focusing on the key 
issues. 
  As will be seen during the course of this book, stepwise refi nement underlies many anal-
ysis techniques, design and implementation techniques, and even testing and integration 
techniques. Stepwise refi nement is of critical importance within the context of the object-
oriented paradigm, because the underlying life-cycle model is iterative and incremental. 
  The following mini case study illustrates how stepwise refi nement can be used in the 
design of a product. 

 Stepwise Refi nement Mini Case Study 

  The mini case study presented in this section may seem almost trivial in that it involves 
updating a sequential master fi le, a common operation in many application areas. 
This choice of a simple, familiar problem is to enable you to concentrate on stepwise 
refi nement rather than on the application domain. 
  Design a product to update the sequential master fi le containing name and address 
data for the monthly magazine   True Life Software Disasters  . There are three types 
of transactions: insertions, modifi cations, and deletions, with transaction codes 1, 2, 
and 3, respectively. The transaction types are

   Type 1: INSERT (a new subscriber into the master fi le)  
  Type 2: MODIFY (an existing subscriber record)  
  Type 3: DELETE (an existing subscriber record)    

  Transactions are sorted into alphabetical order by name of subscriber. If more than 
one transaction is performed for a given subscriber, the transactions for that subscriber 
are sorted so that insertions occur before modifi cations and modifi cations before 
deletions. 
  The fi rst step in designing a solution is to set up a typical fi le of input transactions, 
such as that shown in  Figure 5.1 . The fi le contains fi ve records: DELETE Brown, INSERT 
Harris, MODIFY Jones, DELETE Jones, and INSERT Smith. (It is not unusual to perform 
both a modifi cation and a deletion of the same subscriber in one run.) 

C  Mini  ase Study 

5.1.15.1.1

  FIGURE 5.1  
   Input transaction 
records for 
the sequential 
master fi le 
update. 

            Transaction Type     Name     Address    

       3     Brown        

      1     Harris     2 Oak Lane, Townsville   

      2     Jones     Box 345, Tarrytown   

      3     Jones        

      1     Smith     1304 Elm Avenue, Oak City       
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  The problem may be represented as shown in  Figure 5.2 . There are two input fi les:

   1. Old master fi le name and address records  
  2. Transaction fi le    

 and three output fi les:

   3. New master fi le name and address records  
  4. Exception report  
  5. Summary and end-of-job message    

  To begin the design process, the starting point is the single box update master fi le 
shown in  Figure 5.3 . This box can be decomposed into three boxes, input, process, 
and output. The assumption is that, when process requires a record, our level of 
competence is such that the correct record can be produced at the right time. Similarly, 
we are capable of writing the correct record to the correct fi le at the right time. There-
fore, the technique is to separate out the input and output aspects and concentrate on 
the process. What is this process? To determine what it does, consider the example 
shown in  Figure 5.4 . The key of the fi rst transaction record (Brown) is compared with 
the key of the fi rst old master fi le record (Abel). Because Brown comes after Abel, 
the Abel record is written to the new master fi le, and the next old master fi le record 

 FIGURE 5.2     
A representation 
of the sequential 
master fi le 
update. 

update
master

file

Transaction
file

Old
master

file

New
master

file

Exception
report

Summary and
end-of-job
message

 FIGURE 5.3    
 First refi nement 
of the design. 

update
master file

input process output
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(Brown) is read. In this case, the key of the transaction record matches the key of the 
old master fi le record, and because the transaction type is 3 (DELETE), the Brown record 
must be deleted. This is implemented by not copying the Brown record onto the new 
master fi le. The next transaction record (Harris) and old master fi le record (James) are 
read, overwriting the Brown records in their respective buffers. Harris comes before 
James and, therefore, is inserted into the new master fi le; the next transaction record 
(Jones) is read. Because Jones comes after James, the James record is written to the 
new master fi le, and the next old master fi le record is read; this is Jones. As can be 
seen from the transaction fi le, the Jones record is to be modifi ed and then deleted, so 
the next transaction record (Smith) and the next old master fi le record (also Smith) 
are read. Unfortunately, the transaction type is 1 (INSERT), but Smith already is in 
the master fi le. So there is an error of some sort in the data, and the Smith record is 
written to the exception report. To be more precise, the Smith transaction record is 
written to the exception report, and the Smith old master fi le record is written to the 
new master fi le. 
  Now that the process is understood, it may be represented as in  Figure 5.5 . Next, 
the process box of  Figure 5.3  may be refi ned, resulting in the second refi nement 
shown in  Figure 5.6 . The dashed lines to the input and output boxes denote that 
decisions as to how to handle input and output have been deferred until a later 
refi nement. The remainder of the fi gure is the fl owchart of the process, or rather, 

Old master file New master file

Townsend
Smith
Jones
James
Brown
Abel

Smith
James
Harris
Abel

Townsend

Exception report

Smith

Transaction file

1  Smith
3  Jones
2  Jones
1  Harris
3  Brown

 FIGURE 5.4    
 The transaction 
fi le, old master 
fi le, new 
master fi le, 
and exception 
report. 

          Transaction record key     1. INSERT: Print error message 
      = old master fi le record key     2. MODIFY: Change master fi le record   
        3. DELETE:  * Delete master fi le record   

   Transaction record key      Copy old master fi le record   
    > old master fi le record key      to new master fi le   

   Transaction record key     1. INSERT: Write transaction   
    < old master fi le record key         record to new master fi le   
        2. MODIFY: Print error message   
      3. DELETE: Print error message     

   * Deletion of a master fi le record is implemented by not copying the record onto the new 
master fi le.   

 FIGURE 5.5     
A diagrammatic 
representation of 
the process. 
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an early refi nement of the fl owchart. As already pointed out, input and output have 
been deferred. Also, there is no provision for an end-of-fi le condition, nor has it 
yet been specifi ed what to do when an error condition is encountered. The strength 
of stepwise refi nement is that these and similar problems can be solved in later 
refi nements. 
  The next step is to refi ne the input and output boxes of  Figure 5.6 , resulting in 
 Figure 5.7 . End-of-fi le conditions still have not been handled nor has the writing of 
the end-of-job message. Again, these can be done at a later iteration. What is critical, 
however, is that the design of  Figure 5.7  has a major fault. To see this, consider the 
situation with regard to the data of  Figure 5.4  when the current transaction is 2 Jones, 
that is, modify Jones, and the current old master fi le record is Jones. In the design of 
 Figure 5.7 , because the key of the transaction record is the same as the key of the old 
master fi le record, the leftmost path is followed to the test transaction type deci-
sion box. Because the current transaction type is MODIFY, the old master fi le record is 
modifi ed and written to the new master fi le, and the next transaction record is read. 
This record is 3 Jones, that is, delete Jones. But the modifi ed Jones record has already 
been written to the new master fi le. 
  The reader may wonder why an incorrect refi nement is deliberately presented. The 
point is that, when using stepwise refi nement, it is necessary to check each successive 
refi nement before proceeding to the next. If a particular refi nement turns out to be 

 FIGURE 5.6      The second refi nement of the design. 
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faulty, it is not necessary to restart the process from the beginning but merely to go 
back to the previous refi nement and proceed from there. In this instance, the second 
refi nement ( Figure 5.6 ) is correct, so it may be used as the basis for another attempt 
at a third refi nement. This time, the design uses level-1   lookahead  ; that is, a transac-
tion record is processed only after the next transaction record has been analyzed. The 
details are left as an exercise; see Problem 5.1. 
  In the fourth refi nement, details that have been ignored up to now, such as opening 
and closing fi les, have to be introduced. With stepwise refi nement, such details are 
handled last, after the logic of the design has been fully developed. Obviously, it is 

 FIGURE 5.7      The third refi nement of the design (the design has a major fault). 
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impossible to execute the product without opening and closing fi les. However, what is 
important here is the stage in the design process at which such details as fi le openings 
and closings are handled. While the design is being developed, the seven or so chunks 
on which the designer can concentrate at once should   not   include details like open-
ing and closing fi les. File openings and closings have nothing to do with the design 
itself; they are merely implementation details that are part of any design. However, in 
later refi nements, opening and closing fi les becomes vital. In other words, stepwise 
refi nement can be considered a technique for setting the priorities of the various prob-
lems that have to be solved within a workfl ow. Stepwise refi nement ensures that every 
problem is solved and each is solved at the appropriate time, without having to handle 
more than 7 ± 2 chunks at any one time.   

  The term   stepwise refi nement   was fi rst introduced by Wirth [1971]. In the preceding 
mini case study, stepwise refi nement was applied to a fl owchart, whereas Wirth applied 
the technique to pseudocode. The specifi c representation to which stepwise refi nement is 
applied is not important; stepwise refi nement is a general technique that can be used for 
every workfl ow and with almost every representation. 
  Miller’s Law is a fundamental restriction on the mental powers of humans. Because we 
cannot fi ght our nature, we must live with it, accepting our limitations and doing the best 
we can under the circumstances. 
  The power of stepwise refi nement is that it helps the software engineer to concentrate on 
the relevant aspects of the current development task and ignore details that, although essen-
tial in the overall scheme, need not be considered, and in fact should be ignored, until later. 
Unlike divide-and-conquer (Section 5.3), in which the problem as a whole is decomposed 
into subproblems of essentially equal importance, in stepwise refi nement, the importance 
of a particular aspect of the problem changes from refi nement to refi nement. Initially, a 
particular issue may be irrelevant, but later that same issue is of critical importance. The 
challenge with stepwise refi nement is deciding which issues must be handled in the current 
refi nement and which can be postponed until a later refi nement. 
  Like stepwise refi nement, cost–benefi t analysis is a fundamental theoretical software 
engineering technique used throughout the software life cycle. This technique is described 
in Section 5.2.   

  5.2 Cost–Benefi t Analysis 
  One way of determining whether a possible course of action would be profi table is to com-
pare estimated future benefi ts against projected future costs. This is termed   cost–benefi t 
analysis  . As an example of cost–benefi t analysis within the computer context, consider 
how Krag Central Electric Company (KCEC) decided in 1965 whether or not to computer-
ize its billing system. Billing was being done manually by 80 clerks who mailed bills every 
2 months to KCEC customers. Computerization would require KCEC to buy or lease the 
necessary software and hardware, including data-capture equipment for recording the input 
data on punch cards or magnetic tape. 
  One advantage of computerization would be that bills could be mailed monthly in-
stead of every 2 months, improving the company’s cash fl ow considerably. Furthermore, 
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the 80 billing clerks would be replaced by 11 data-capture clerks. As shown in  Figure 5.8 , 
salary savings over the next 7 years were estimated to be $1.575 million, and improved 
cash fl ow was projected to be worth $875,000. The total benefi ts therefore were estimated 
at $2.45 million. On the other hand, a complete data processing department would have 
to be set up, staffed by well-paid computer professionals. Over a 7-year period, costs 
were estimated as follows: The cost of hardware and software, including postdelivery 
maintenance, was estimated to be $1.25 million. In the fi rst year, there would be a con-
version cost of $350,000, and the cost of explaining the new system to customers was 
estimated at an additional $125,000. Total costs were estimated at $1.725 million, about 
$750,000 less than the estimated benefi ts for that 7-year period. KCEC immediately de-
cided to computerize. 
  Cost–benefi t analysis is not always straightforward. On the one hand, a management 
consultant can estimate salary savings, an accountant can project cash fl ow improvements, 
net present value (NPV) can be used to handle the change in the cost of money, and a soft-
ware engineering consultant can estimate the costs of hardware, software, and conversion. 
But how are we to determine the cost of dealing with customers trying to adjust to com-
puterization? How can we measure the benefi ts of inoculating an entire population against 
measles? And how can we make estimates regarding a market window, that is, the benefi t 
of being fi rst on the market with a new product or the cost of not being the fi rst (and hence 
losing customers)? 
  The point is that tangible benefi ts are easy to measure, but intangible benefi ts can be 
hard to quantify directly. A practical way of assigning a dollar value to intangible benefi ts 
is to make   assumptions  . These assumptions always must be stated in conjunction with 
the resulting estimates of the benefi ts. After all, managers have to make decisions. If no 
data are available, then making assumptions from which such data can be determined 
usually is the best that can be done under the circumstances. This approach has the fur-
ther advantage that, if someone else reviewing the data and the underlying assumptions 
can come up with better assumptions, then better data can be produced and the associated 
intangible benefi ts can be computed more accurately. The same technique can be used for 
intangible costs. 
  Cost–benefi t analysis is a fundamental technique in deciding whether a client should 
computerize his or her business, and if so, in what way. The costs and benefi ts of various 
alternative strategies are compared. For example, a product for storing the results of drug 
trials can be implemented in a number of different ways, including fl at fi les and various 
database management systems. For each possible strategy, the costs and benefi ts are com-
puted, and the one for which the difference between benefi ts and costs is the largest is 
selected as the optimal strategy.   

               Benefi ts         Costs         

    Salary savings (7 years)     1,575,000     Hardware and software (7 years)     1,250,000   

   Improved cash fl ow (7 years)     875,000     Conversion cost (fi rst year only)     350,000   

             Explanations to customers     125,000   
              (fi rst year only)        

   Total benefi ts     $2,450,000     Total costs     $1,725,000      

 FIGURE 5.8     
Cost–benefi t 
analysis data for 
KCEC. 
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  5.3 Divide-and-Conquer 
    Divide-and-conquer   is probably the oldest analytical tool in this book (see Just in Case 
You Wanted to Know Box 5.1). The idea is to break up a large problem that is hard to solve 
into smaller subproblems that hopefully will be easier to solve. 
  This approach is used in the Unifi ed Process to handle a large, complex system. As 
explained in Section 14.9, during the analysis workfl ow we partition the software product 
into analysis packages. Each package consists of a set of related classes that can be imple-
mented as a single unit. 
  The technique of divide-and-conquer is carried forward to the design workfl ow. Here, the 
objective is to break up the upcoming implementation workfl ow into manageable pieces, termed 
subsystems. The subsystems are then implemented in the chosen programming language(s). 
  A problem with divide-and-conquer is that the approach does not tell us   how   to break up 
a software product into appropriate smaller components. 
  The next theoretical tool is separation of concerns.   

  5.4 Separation of Concerns 

    Separation of concerns   was fi rst put forward by Dijkstra in a 1974 paper, which was 
republished in [Dijkstra, 1982]. It is the process of breaking a software product into com-
ponents that overlap as little as possible with regard to functionality. When separation of 
concerns is achieved, regression faults are minimized; if functionality is localized to a single 
component, changing that functionality cannot affect any other component. 
  Also, when concerns are adequately separated, components can be reused in future 
products. Conversely, suppose that object A contains an invocation of a method of object B. 
In this situation, object A cannot be reused without reusing object B as well. To maximize 
reuse, it is important to minimize interactions between components. 

 Just in Case You Wanted to Know   Box 5.1 
 The phrase   divide and conquer   has been widely attributed to Phillip II of Macedon (382–336 
B.C.E). Unfortunately, there is no evidence that he said it. Then, despite the vigorous claims 
on the Internet, the phrase   divide et impera   (“divide and rule”) does not appear in Book VII 
of Caesar’s   Commentarii de Bello Gallico   (“Commentaries on the Gallic War”), nor, for that 
matter, anywhere else in the works of Julius Caesar (100–44 B.C.E.). Also, notwithstanding 
equally strong assertions, it also does not appear in the works of Vegetius (Publius Flavius 
Vegetius Renatus, who lived in the fourth century C.E.). The phrase has been widely attrib-
uted to the diplomat and political philosopher Niccolò Machiavelli (1469–1527), but it does 
not appear anywhere in his writings, either. 
  In fact, the phrase probably fi rst appeared only about 330 years ago, in a collection of 
commentaries on Tacitus [Publius (or Gaius) Cornelius Tacitus, the Roman historian, ca. 
56–ca. 117 C.E.] by Traiano Boccalini, an Italian satirist who lived from 1556–1613. The book 
was published posthumously in 1677. It was entitled   Comentarii di Traiano Boccalini Romano 
sopra Cornelio Tacito, Come Sono Stati Lasciati dall’ Autore. Opera Non Ancora Stampata & 
Grandemente Desiderata da Tutti li Virtuosi   (“Commentaries by Traiano Boccalini, of Rome, 
on Cornelius Tacitus, as left by the author. The work has not previously been printed and is 
greatly desired by all virtuous men”). 

sch76183_ch05_124-153.indd   132sch76183_ch05_124-153.indd   132 04/06/10   6:42 PM04/06/10   6:42 PM



  In  Chapter 7 , we discuss composite/structured design [Stevens, Myers, and Constantine, 
1974], a technique for achieving modularization of a software product with maximum interac-
tion within each module (“high cohesion”) and minimum interaction between modules (“low 
coupling”). Both high cohesion and low coupling are instances of separation of concerns. 
  In Section 1.9, information hiding (or physical independence) was discussed. This, too, 
is an instance of separation of concerns; isolating implementation details within a compo-
nent minimizes the interaction between that component and the rest of the software prod-
uct. Information hiding is described in greater detail in Section 7.6. 
  Encapsulation or conceptual independence was also discussed in Section 1.9. Encapsulation 
is yet another instance of separation of concerns. Data encapsulation is discussed in Section 7.4. 
  The three-tier architecture of Section 8.5.4 is yet another instance of separation of con-
cerns. So is the model-view-controller (MVC) architecture pattern, also in that section. 
  It is clear that separation of concerns underlies much of software engineering. Some-
times, however, it is not possible to separate concerns adequately. One way of dealing with 
this situation is to use aspect-oriented programming, described in Section 18.1. 
  The fi nal theoretical tool described in this chapter is software metrics.   

  5.5 Software Metrics 
  As explained in Section 3.13, without measurements (or   metrics  ) it is impossible to detect 
problems early in the software process, before they get out of hand. Metrics therefore can 
serve as an early warning system for potential problems. A wide variety of metrics can be 
used. For example, lines of code (LOC) is one way of measuring the size of a product (see 
Section 9.2.1). If LOC measurements are taken at regular intervals, they provide a measure 
of how fast the project is progressing. In addition, the number of faults per 1000 lines of 
code is a measure of software quality. After all, it is of little use if a programmer consis-
tently turns out 2000 lines of code a month but half of them have to be thrown away because 
they are unacceptable. Accordingly, LOC in isolation is not a meaningful metric. 
  Once the product has been installed on the client’s computer, a metric such as mean time 
between failures provides management an indication of its reliability. If a certain product 
fails every other day, its quality is clearly lower than that of a similar product that on aver-
age runs for 9 months without a failure. 
  Certain metrics can be applied throughout the software process. For example, for each 
workfl ow, we can measure the effort in person-months (1 person-month is the amount of 
work done by one person in 1 month). Staff turnover is another important metric. High 
turnover adversely affects current projects because it takes time for a new employee to 
learn the relevant facts about the project (see Section 4.1). In addition, new employees 
may have to be trained in aspects of the software process; if new employees are less edu-
cated in software engineering than the individuals they replace, then the process as a whole 
may suffer. Of course, cost is an essential metric that must also be monitored continually 
throughout the entire process. 
  A number of different metrics are described in this book. Some are   product metrics  ; 
they measure some aspect of the product itself, such as its size or its reliability. Others are 
  process metrics   used by the developers to deduce information about the software pro-
cess. A typical metric of this kind is the effi ciency of fault detection during development, 
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that is, the ratio of the number of faults detected during development to the total number of 
faults detected in the product over its lifetime. 
  Many metrics are specifi c to a given workfl ow. For example, lines of code cannot be 
used before the implementation workfl ow, and the number of faults detected per hour in 
reviewing specifi cations is relevant to only the analysis workfl ow. In subsequent chapters 
describing each of the various workfl ows of the software process, the metrics relevant to 
that workfl ow are discussed. 
  A cost is involved in gathering the data needed to compute the values of metrics. Even 
if the data gathering is fully automated, the CASE tool (Section 5.6) that accumulates the 
required information is not free, and interpreting the output from the tool consumes human 
resources. Bearing in mind that hundreds (if not thousands) of metrics have been put for-
ward, an obvious question is, What should a software organization measure? There are fi ve 
essential, fundamental metrics:

   1. Size (in lines of code or, better, in a more meaningful metric, such as those of Section 
9.2.1).  

  2. Cost (in dollars).  
  3. Duration (in months).  
  4.  Effort (in person-months).  
  5.  Quality (number of faults detected).    

  Each of these metrics must be measured by workfl ow (metrics for the specifi cation, analy-
sis, design, and implementation workfl ows are described in Sections 11.17, 13.21, 14.15, and 
15.26, respectively). On the basis of the data from these fundamental metrics, management can 
identify problems within the software organization, such as high fault rates during the design 
workfl ow or code output that is well below the industry average. Once problem areas have been 
highlighted, a strategy to correct these problems can be considered. To monitor the success of 
this strategy, more-detailed metrics can be introduced. For example, it may be deemed appropri-
ate to collect data on the fault rates of each programmer or to conduct a survey of user satisfac-
tion. Consequently, in addition to the fi ve fundamental metrics, more-detailed data gathering 
and analysis should be performed only toward a specifi c objective. 
  Finally, one aspect of metrics is still fairly controversial. Questions have been raised as to the 
validity of some popular metrics; these issues are discussed in Section 15.13.2. Although it is 
agreed that we cannot control the software process unless we can measure it, there is still some 
disagreement as to precisely what should be measured. 
  We now turn from theoretical tools to software (CASE) tools. 

5.65.6
C  ase Study 

 CASE 
  During the development of a software product, a number of very different operations 
have to be carried out. Typical activities include estimating resource requirements, 
drawing up the specifi cation document, performing integration testing, and writing 
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the user manual. Unfortunately, none of these activities, nor the others in the soft-
ware process, can be fully automated and performed by a computer without human 
intervention. 
  However, computers can   assist   every step of the way. The title of this section, 
“CASE,” stands for computer-aided (or computer-assisted) software engineering 
(but see Just in Case You Wanted to Know Box 5.2). Computers can help by carrying 
out much of the drudge work associated with software development, including the 
creation and organization of artifacts of all kinds, such as plans, contracts, speci-
fi cations, designs, source code, and management information. Documentation is 
essential for software development and maintenance, but the majority of individuals 
involved in software development are not fond of creating or updating documenta-
tion. Maintaining diagrams on the computer is especially useful as it allows changes 
to be made with ease. 
  But CASE is not restricted to assisting with documentation. In particular, com-
puters can help software engineers to cope with the complexity of software develop-
ment, especially in managing all the details. CASE involves all aspects of computer 
support for software engineering. At the same time, it is important to remember that 
CASE stands for computer-  aided   software engineering, and not computer-  automated   
software engineering—no computer can yet replace a human with respect to devel-
opment or maintenance of software. For the foreseeable future at least, the computer 
must remain a tool of the software professional.     

  5.7 Taxonomy of CASE 
  The simplest form of CASE is the software   tool  , a product that assists in just one aspect 
of the production of software. CASE tools currently are being used with every workfl ow of 
the life cycle. For example, a variety of tools are on the market, many of them for use with 
personal computers, that assist in the construction of graphical representations of software 
products, such as fl owcharts and UML diagrams. CASE tools that help the developer dur-
ing the earlier workfl ows of the process (the requirements, analysis, and design workfl ows) 
sometimes are termed   upperCASE   or   front-end   tools, whereas those that assist with the 

 Just in Case You Wanted to Know     Box 5.2 
 As explained in Section 1.11, for software engineers the term   system   is frequently used to 
mean a software–hardware combination. The fi eld of   systems engineering   spans a wide 
range of activities, starting with defi ning the client’s needs and requirements until they have 
been fully implemented in the constructed system. Subsequently, after the system has been 
delivered to the client, following successful acceptance tests, it undergoes extensive modi-
fi cations throughout its entire life cycle, to remove defects or add needed improvements or 
adaptations [Tomer and Schach, 2002]. 
  Accordingly, there are strong similarities between systems engineering and software 
engineering. It is therefore not surprising that, for systems engineers, the acronym CASE 
stands for “computer-aided systems engineering.” Because of the major role often played 
by software in systems engineering, within the context of systems engineering it is some-
times hard to determine which version of the CASE acronym is meant. 
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implementation workfl ow and postdelivery maintenance are termed   lowerCASE   or   back-
end   tools (see Just in Case you Wanted to Know Box 5.3). For example,  Figure 5.9 (a) 
represents a CASE tool that assists with part of the requirements workfl ow. 
  An important class of CASE tools is the   data dictionary    ,   a computerized list of all 
data defi ned within the product. A large product contains tens (if not hundreds) of thou-
sands of data items, and the computer is ideal for storing information such as variable 
names and types, and the location where each is defi ned, as well as procedure names and 
parameters and their types. An important part of every data dictionary entry is a descrip-
tion of the item; for example, This procedure takes as input the body weight of the 
newborn infant and computes the appropriate dosage of the drug or List of aircraft 
arrival times sorted with earliest times fi rst. 
  The power of a data dictionary can be enhanced by combining it with a   consistency 
checker  , a tool to check that every data item in the specifi cation document is refl ected in 
the design and, conversely, every item in the design has been defi ned in the specifi cation 
document. 
  Another use of a data dictionary is to provide the data for report generators and screen 
generators. A   report generator   is used to generate the code needed for producing a 
report. A   screen generator   is used to assist the software developer in producing the code 
for a data capture screen. Suppose that a screen is being designed to enter the weekly sales 
at each branch of a chain of bookstores. The branch number is a four-digit integer in the 
range 1000–4500 or 8000–8999, entered on the screen three lines from the top. This infor-
mation is given to the screen generator. The screen generator then automatically generates 

 Just in Case You Wanted to Know     Box 5.3 

 When typesetting was done by hand, each character was cast in relief on a piece of metal 
called a   sort  . The sorts were combined to make words, then sentences, paragraphs, and so 
on. All the A’s were stored in one box, all the B’s in another, and so on. The capital letters 
or majuscules were kept in upper boxes of a desk or in the   upper case  , whereas the more 
frequently used minuscule letters were closer at hand in the   lower case  . That is why capital 
letters are referred to as uppercase letters, and similarly for lowercase letters. The terms 
  upperCASE   tool and   lowerCASE   tool are therefore puns. 

 FIGURE 5.9      
A representation 
of (a) a tool, (b) 
a workbench, 
and (c) an 
environment. 
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code to display the string BRANCH NUMBER _ _ _ _ three lines from the top and position 
the cursor at the fi rst underline character. As the user enters each digit, it is displayed; and 
the cursor moves on to the next underline. The screen generator also generates code for 
checking that the user enters only digits and that the resulting four-digit integer is in the 
specifi ed range. If the data entered are invalid or the user presses the ? key, help information 
is displayed. 
  Use of such generators can result in the implementation being quickly constructed. Fur-
thermore, a graphical representation tool combined with a data dictionary, consistency 
checker, report generator, and screen generator constitute a requirements, analysis, and 
design   workbench   that supports the fi rst three core workfl ows. An example of a commer-
cial workbench that incorporates all these features is Software through Pictures.  1   
  Another class of workbench is a requirements management workbench. Such a work-
bench allows systems analysts to organize and track the requirements of a software devel-
opment project. RequisitePro is a commercial example of such a workbench. 
  A CASE workbench therefore is a collection of tools that together support one or two 
activities, whereas an   activity   is a related collection of tasks. For example, the coding 
activity includes editing, compiling, linking, testing, and debugging. An activity is not the 
same as a workfl ow of a life-cycle model. In fact, the tasks of an activity can even cross 
workfl ow boundaries. For example, a project management workbench is used for every 
workfl ow of the project, and a coding workbench can be used for building a proof-of-
concept prototype, as well as for the implementation workfl ow and postdelivery mainte-
nance.  Figure 5.9 (b) represents a workbench of upperCASE tools. The workbench includes 
the requirements workfl ow tool of  Figure 5.9 (a), as well as tools for parts of the analysis 
and design workfl ows. 
  Continuing the progression of CASE technology from tools to workbenches, the next 
item is the CASE environment. Unlike the workbench, which supports one or two activi-
ties, an   environment   supports the complete software process or, at the very least, a large 
portion of the software process [Fuggetta, 1993].  Figure 5.9 (c) depicts an environment 
that supports all aspects of all workfl ows of the life cycle. Environments are discussed in 
greater detail in  Chapter 15 . 
  Having set up a CASE taxonomy (tools, workbenches, and environments), we now con-
sider the scope of CASE.   

  5.8 Scope of CASE 
  As mentioned previously, the need to have accurate and up-to-date documentation available 
at all times is a primary reason for implementing CASE technology. For example, suppose 
that specifi cations are produced manually. A member of the development team has no way 
of telling whether a particular specifi cation document is the current version or an older 
version. There is no way of knowing if the handwritten changes on that document are part 
of the current specifi cation or merely a suggestion later rejected. On the other hand, if the 

  1  The fact that a specifi c CASE tool is cited in this book in no way implies any form of endorsement of that 
CASE tool by the author or publisher. Each CASE tool mentioned in this book has been included because it is a 
typical example of the class of CASE tools of which it is an instance. 
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specifi cations of the product are produced using a CASE tool, then at any time there is 
only one copy of the specifi cations, the online version accessed via the CASE tool. Then, 
if the specifi cations are changed, members of the development team can easily access the 
document and be sure that they are seeing the current version. In addition, the consistency 
checker will fl ag any design changes without corresponding changes to the specifi cation 
document. 
  Programmers also need   online documentation  . For example, online help informa-
tion must be provided for the operating system, editor, programming language, and so on. 
In addition, programmers have to consult manuals of many kinds, such as editor manuals 
and programming manuals. It is highly desirable that, wherever possible, these manuals 
be available online. Apart from the convenience of having everything at one’s fi ngertips, 
it is generally quicker to query by computer than to try to fi nd the appropriate manual and 
plow through it to fi nd the needed item. In addition, it usually is much easier to update an 
online manual than to try to fi nd all hard-copy versions of a manual within an organization 
and make the necessary page changes. As a result, online documentation is likely to be more 
accurate than hard-copy versions of the same material—another reason for providing online 
documentation to programmers. An example of such online documentation is the UNIX 
  manual   pages [Sobell, 1995].   CASE also can assist with communication among team mem-
bers.   E-mail   is as much a part of an offi ce today as a computer or a fax machine. There are 
many advantages to e-mail. From the viewpoint of software production, storing copies of all 
e-mail relevant to a specifi c project in a particular mailbox provides a written record of the 
decisions made during the project. This can be used to resolve confl icts that may arise later. 
Many CASE environments and some CASE workbenches now incorporate e-mail systems. 
In other organizations, the e-mail system is implemented via a World Wide Web   browser   
such as Chrome or Firefox. Other tools that are equally essential are   spreadsheets   and 
  word processors  . 
  The term   coding tools   refers to CASE tools such as text editors, debuggers, and pretty 
printers designed to simplify the programmer’s task, reduce the frustration many program-
mers experience in their work, and increase programmer productivity. Before discussing 
such tools, three defi nitions are required.   Programming-in-the-small   refers to software 
development at the level of the code of a single module, whereas   programming-in-the-
large   is software development at the module level [DeRemer and Kron, 1976]. The latter 
includes aspects such as architectural design and integration.   Programming-in-the-
many   refers to software production by a team. At times, the team works at the module 
level; at times, at the code level. Accordingly, programming-in-the-many incorporates 
aspects of both programming-in-the-large and programming-in-the-small. 
  A   structure editor   is a text editor that “understands” the implementation language. That 
is, a structure editor can detect a syntax fault as soon as it has been keyed in by the programmer, 
speeding the implementation because time is not wasted on futile compilations. Structure edi-
tors exist for a wide variety of languages, operating systems, and hardware. Because a structure 
editor has knowledge of the programming language, it is easy to incorporate a   pretty printer   
(or   formatter  ) into the editor to ensure that the code always has a good visual appearance. 
For example, a pretty printer for C++ ensures that each } is indented the same amount as its 
corresponding {. Reserved words are automatically put in boldface so that they stand out, and 
indentation has been designed to aid readability. Nowadays, structure editors of this kind form 
part of numerous programming workbenches, such as Visual C++ and JBuilder. 
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  Now consider the problem of invoking a method within the code, only to discover at 
linkage time that either the method does not exist or it has been wrongly specifi ed in some 
way. What is needed is for the structure editor to support   online interface checking  . 
That is, just as the structure editor has information regarding the name of every variable 
declared by the programmer, so it must also know the name of every method defi ned within 
the product. For example, if the programmer enters a call such as

      average = dataArray.computeAverage (numberOfValues); 

 but method computeAverage has not yet been defi ned, then the editor immediately 
responds with a message such as

      Method computeAverage not known 

  At this point, the programmer is given two choices, either to correct the name of the 
method or to declare a new method named computeAverage. If the second option is 
chosen, the programmer also must specify the arguments of the new method. Argument 
types must be supplied when declaring a new method because the major reason for having 
online interface checking is precisely to be able to check full interface information, not just 
the names of methods. A common fault is for method p to call method q passing, say, four 
arguments, whereas method q has been specifi ed with fi ve arguments. It is more diffi cult to 
detect the fault when the call correctly uses four arguments, but two of the arguments are 
transposed. For example, the declaration of method q might be

        void   q (  fl oat   fl oatVar,   int   intVar, string s1, string s2) 

 whereas the call is

      q (intVar, fl oatVar, s1, s2); 

  The fi rst two arguments have been transposed in the call statement. Java compilers and 
linkers detect this fault but only when they are invoked later. In contrast, an online inter-
face checker immediately detects this and similar faults. In addition, if the editor has a 
help facility, the programmer can request online information as to the precise arguments 
of method q before attempting to code the call to q. Better yet, the editor should generate 
a template for the call, showing the type of each argument. The programmer merely has to 
replace each formal argument with an actual argument of the correct type. 
  A major advantage of online interface checking is that hard-to-detect faults caused by 
calling methods with the wrong number of arguments or arguments of the wrong type 
are immediately fl agged. Online interface information is important for the effi cient pro-
duction of high-quality software, particularly when the software is produced by a team 
(programming-in-the-many). It is essential that online interface information regarding all 
code artifacts be available to all programming team members at all times. Furthermore, if 
one programmer changes the interface of method vaporCheck, perhaps by changing the 
type of one argument from   int   to   fl oat   or by adding an additional argument, then every 
component that calls vaporCheck must automatically be disabled until the relevant call 
statements have been altered to refl ect the new state of affairs. 
  Even with a   syntax-directed editor   incorporating an online interface checker, the 
programmer still has to exit from the editor and invoke the compiler and linker. Clearly, 
there can be no compilation faults, but the compiler still has to be invoked to perform code 
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generation. Then the linker has to be called. Again, the programmer can be sure that all 
external references will be satisfi ed as a consequence of the presence of the online interface 
checker, but the linker is still needed to link the product. The solution to this is to incorporate 
an   operating system front end   within the editor. That is, a programmer should be able to 
give operating system commands from within the editor. To cause the editor to invoke the 
compiler, linker, loader, and any other system software needed to cause the code artifact to 
be executed, the programmer should be able to type a single command, named go or run, 
or use the mouse to choose the appropriate icon or menu selection. In UNIX, this can be 
achieved by using the   make   command (Section 5.11) or by invoking a shell script [Sobell, 
1995]. Such front ends can be implemented in other operating systems, as well. 
  One of the most frustrating computing experiences is for a product to execute for a sec-
ond or so, and then terminate abruptly, printing a message such as

      Overfl ow at 506 

  The programmer is working in a high-level language such as Java or C++, not a low-
level language like assembler or machine code. But when debugging support is of the 
Overfl ow at 506 variety, the programmer is forced to examine machine code core dumps, 
assembler listings, linker listings, and a variety of similar low-level documentation, thereby 
destroying the whole advantage of programming in a high-level language. A similar situa-
tion arises when the only information provided is the infamous UNIX message

      Core dumped 

 or the equally uninformative

      Segmentation fault 

 Here again, the user is forced to examine low-level information. 
  In the event of a failure, the message shown in  Figure 5.10  is a great improvement over 
the earlier terse error messages. The programmer immediately can see that the method 
failed because of an attempt to divide by 0. Even more useful is for the operating system to 
enter edit mode and automatically display the line at which the failure was detected, line 6, 
together with the preceding and following four or fi ve lines. The programmer probably can 
then see what caused the failure and make the necessary changes. 
  Another type of source-level debugging is tracing. Before the advent of CASE tools, 
programmers had to insert appropriate print statements into their code by hand that, at 
execution time, would indicate the line number and the values of relevant variables. This 
now can be done by giving commands to a   source-level debugger   that automatically 
causes trace output to be produced. Even better is an   interactive source-level debugger  . 

OVERFLOW ERROR 

    Class: cyclotronEnergy 

 Method: performComputation 

     Line 6: newValue = (oldValue + tempValue) / tempValue;
         oldValue = 3.9583    tempValue = 0.0000 

 FIGURE 5.10    
 Output from 
a source-level 
debugger.   
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Suppose that the value of variable escapeVelocity seems to be incorrect and that method 
computeTrajectory seems to be faulty. Using the interactive source-level debugger, the 
programmer can set breakpoints in the code. When a breakpoint is reached, execution stops 
and debugging mode is entered. The programmer now asks the debugger to trace the vari-
able escapeVelocity and the method computeTrajectory. That is, every time the value of 
escapeVelocity subsequently is either used or changed, execution again halts. The program-
mer then has the option of entering further debugging commands, for example, to request 
that the value of a specifi c variable be displayed. Alternatively, the programmer may choose 
to continue execution in debugging mode or return to normal execution mode. The program-
mer similarly can interact with the debugger whenever the method computeTrajectory is 
entered or exited. Such an interactive source-level debugger offers almost every conceivable 
type of assistance to the programmer when a product fails. The UNIX debugger   dbx   is an 
example of such a CASE tool. 
  As has been pointed out many times, it is essential that documentation of all kinds be 
available online. In the case of programmers, all documentation they might need should be 
accessible from within the editor. 
  What has now been described—a structure editor with online interface checking capa-
bilities, operating system front end, source-level debugger, and online documentation—
constitutes an adequate and effective programming workbench. 
  This sort of workbench is by no means new. All these features were supported by the 
FLOW software development workbench as far back as 1980 [Dooley and Schach, 1985]. 
Therefore, what has been put forward as a minimal but essential programming workbench 
does not require many years of research before a prototype can be tentatively produced. 
Quite the contrary, the necessary technology has been in place for over 30 years, and it is 
somewhat surprising that there are programmers who still implement code the “old-fash-
ioned way,” instead of using a workbench like Sun ONE Studio. 
  An essential tool, especially when software is developed by a team, is a version-control tool.   

  5.9 Software Versions 
  Whenever a product is maintained, there will be at least two   versions   of the product: the 
old version and the new version. Because a product is composed of code artifacts, there will 
also be two or more versions of each of the component artifacts that have been changed. 
  Version control is described fi rst within the context of postdelivery maintenance, and 
then broadened to include earlier parts of the process. 

  5.9.1 Revisions 
 Suppose a product has been installed at a number of different sites. If a fault is found in an 
artifact, then that artifact has to be fi xed. After appropriate changes have been made, there 
will be two versions of the artifact, the old version and the new version intended to replace it. 
The new version is termed a   revision  . The presence of multiple versions apparently is easy to 
solve—any old versions should be thrown away, leaving just the correct one. But that would be 
most unwise. Suppose that the previous version of the artifact was revision n, and that the new 
version is revision n + 1. First, there is no guarantee that revision n + 1 is any more correct than 
revision n. Even though revision n + 1 may have been thoroughly tested by the software quality 
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assurance group, both in isolation and linked to the rest of the product, there may be disastrous 
consequences when the new version of the product is run by the user on actual data. Revision 
n must be kept for a second reason. The product may have been distributed to a variety of sites, 
and not all of them may have installed revision n + 1. If a fault report is received from a site 
still using revision n, then to analyze this new fault, it is necessary to confi gure the product in 
exactly the same way it is confi gured at the user’s site, that is, incorporating revision n of the 
artifact. It therefore is necessary to retain a copy of every revision of each artifact. 
  As described in Section 1.3, perfective maintenance is performed to extend the functional-
ity of a product. In some instances, new artifacts are implemented; in other cases, existing 
artifacts are changed to incorporate this additional functionality. These new versions also 
are revisions of existing artifacts. So are artifacts that are changed when performing adaptive 
maintenance—that is, when changes are made to the product in response to changes in the 
environment in which the product operates. As with corrective maintenance, all previous ver-
sions must be retained because issues arise not just during postdelivery maintenance but from 
implementation onward. After all, once an artifact has been coded, it continually undergoes 
changes as a consequence of faults being detected and corrected. As a result, there are numer-
ous versions of every artifact, and it is vital to have some sort of control to ensure that every 
member of the development team knows which is the current version of a given artifact. Before 
we can present a solution to this problem, a further complication must be taken into account.  

  5.9.2 Variations 
 Consider the following example. Most computers support more than one type of printer. 
For example, a personal computer may support an ink-jet printer and a laser printer. The 
operating system therefore must contain two   variations   of the printer driver, one for each 
type of printer. Unlike revisions, each of which is implemented specifi cally to replace its 
predecessor, variations are designed to coexist. Another situation where variations are 
needed is when a product is to be ported to a variety of different operating systems and 
hardware. A different variation of many of the artifacts may have to be produced for each 
operating system–hardware combination. 
  Versions are schematically depicted in  Figure 5.11 , which shows both revisions and 
variations. To complicate matters further, in general, there are multiple revisions of each 

 FIGURE 5.11    
 A schematic 
representation 
of multiple 
versions of 
artifacts, 
showing 
(a) revisions and 
(b) variations. 

(a)

Revision n � 1
Revision n � 2

Revision n

Revision n � 3

(b)

Variation A Variation B Variation C
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variation. For a software organization to avoid drowning in a morass of multiple versions, 
a CASE tool is needed.  

  5.10 Confi guration Control 
 The code for every artifact exists in three forms. First is the source code, nowadays gener-
ally implemented in a high-level language like C++ or Java. Next comes the object code, 
produced by compiling the source code. In this book, because of possible confusion of the 
word   object  , we refer to object code as   compiled code  . Finally, the compiled code for each 
artifact is combined with run-time routines to produce an executable load image. This is 
shown in  Figure 5.12 . The programmer can use various different versions of each artifact. 
The specifi c version of each artifact from which a given version of the complete product is 
built is called the   confi guration   of that version of the product. 
  Suppose that a programmer is given a test report from the SQA group stating that an 
artifact failed on a specifi c set of test data. One of the fi rst things to do is attempt to 
re-create the failure. But how can the programmer determine which revisions of which 
variations went into the version of the product that crashed? Unless a confi guration-control 
tool (described in the following discussion) is used, the only way to pinpoint the cause of 
the failure is to look at the executable load image, in octal or hexadecimal format, and com-
pare it to the compiled code, also in octal or hexadecimal. Specifi cally, the various versions 
of the source code have to be compiled and compared to the compiled code that went into 
the executable load image. Although this can be done, it can take a long time, particularly 
if the product has dozens (if not hundreds) of code artifacts, each with multiple versions. 
Therefore, two problems must be solved when dealing with multiple versions. First, we 
must distinguish between versions so that the correct version of each code artifact is com-
piled and linked to the product. Second, there is the inverse problem: Given an executable 
load image, determine which version of each of its components went into it. 
  The fi rst item needed to solve this problem is a version-control tool. Many operating sys-
tems, particularly for mainframe computers, support version control. But many do not, in 

 FIGURE 5.12    
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an executable 
load image. 
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which case a separate version-control tool is needed. A common technique used in version 
control is for the name of each fi le to consist of two pieces, the fi le name itself and the revi-
sion number. For example, an artifact that acknowledges receipt of a message has revisions 
acknowledgeMessage/1, acknowledgeMessage/2, and so on, as depicted in  Figure 5.13 (a). 
A programmer then can specify exactly which revision is needed for a given task. 
  With regard to multiple variations (slightly changed versions that fulfi ll the same role in 
different situations), one useful notation is to have a basic fi le name, followed by a variation 
name in parentheses [Babich, 1986]. Accordingly, two printer drivers are given the names 
printerDriver (inkJet) and printerDriver (laser). 
  Of course, there will be multiple revisions of each variation, such as printerDriver 
(laser)/12, printerDriver (laser)/13, and printerDriver (laser)/14. This is depicted in 
 Figure 5.13 (b). 
  A version-control tool is the fi rst step toward being able to manage multiple versions. 
Once it is in place, a detailed record (or   derivation  ) of every version of the product must 
be kept. The derivation contains the name of each source code element, including the varia-
tion and revision, the versions of the various compilers and linkers used, the name of the 
person who constructed the product, and of course, the date and the time at which it was 
constructed. 
  Version control is a great help in managing multiple versions of artifacts and the product 
as a whole. But more than just version control is needed, because of additional problems 
associated with maintaining multiple variations. 
  Consider the two variations printerDriver (inkJet) and printerDriver (laser). Suppose 
that a fault is found in printerDriver (inkJet) and suppose that the fault occurs in a part of 
the artifact common to both variations. Then it is necessary to fi x not only printerDriver 
(inkJet) but also printerDriver (laser). In general, if there are   v   variations of an artifact, all 
  v   of them have to be fi xed. Not only that, they have to be fi xed in exactly the same way. 

 FIGURE 5.13      Multiple revisions and variations. (a) Four revisions of artifact acknowledgeMessage. (b) Two 
variations of artifact printerDriver, with three revisions of variation printerDriver (laser). 
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  One solution to this problem is to store just one variation, say, printerDriver (inkJet). 
Then any other variation is stored in terms of the list of changes that have to be made to go 
from the original to that variation. The list of differences is termed a   delta.   What is stored 
is one variation and   v –   1 deltas. Variation printerDriver (laser) is retrieved by accessing 
printerDriver (inkJet) and applying the delta. A change made just to printerDriver (laser) 
is implemented by changing the appropriate delta. However, any change made to printer-
Driver (inkJet), the original variation, automatically applies to all the other variations. 
  A   confi guration-control tool   can automatically manage multiple variations. But 
  confi guration control   goes beyond multiple variations. A confi guration-control tool 
can also handle problems caused by development and maintenance by teams, as described 
in Section 5.10.1.  

  5.10.1 Confi guration Control during Postdelivery Maintenance 
 All sorts of diffi culties can arise when more than one programmer simultaneously main-
tains a product. For example, suppose each of two programmers is assigned a different 
fault report on a Monday morning. By coincidence, both localize the fault they are to fi x to 
different parts of the same artifact mDual. Each programmer makes a copy of the current 
version of the artifact, mDual/16, and they start to work on the faults. The fi rst program-
mer fi xes the fi rst fault, has the changes approved, and replaces the artifact, now called 
mDual/17. A day later the second programmer fi xes the second fault, has the changes 
approved, and installs artifact mDual/18. Unfortunately, revision 17 contains the changes 
of only the fi rst programmer, whereas revision 18 contains those of only the second pro-
grammer. None of the changes of the fi rst programmer are in mDual/18, because the 
second programmer made changes to mDual/16, instead of to mDual/17. 
  Although the idea of each programmer making individual copies of an artifact is far 
better than both working together on the same piece of software, clearly it is inadequate for 
maintenance by a team. What is needed is some mechanism that allows only one user at a 
time to change an artifact.  

  5.10.2 Baselines 
 The maintenance manager must set up a   baseline  , a confi guration (set of versions) of all 
the artifacts in the product. When trying to fi nd a fault, a maintenance programmer puts 
copies of any needed artifacts into his or her   private workspace  . In this private work-
space, the programmer can change anything at all without having an impact on any other 
programmer in any way, because all changes are made to the programmer’s private copy; 
the baseline version is left untouched. 
  Once it has been decided which artifact has to be changed to fi x the fault, the program-
mer   freezes   the current version of the artifact he or she is going to alter. No other pro-
grammer may make changes to any frozen version. After the maintenance programmer 
has made changes and they have been tested, the new version of the artifact is installed, 
thereby modifying the baseline. The previous version, now frozen, is retained because 
it may be needed in the future, as explained previously, but it cannot be altered. Once a 
new version has been installed, any other maintenance programmer can freeze the new 
version and make changes to it. The resulting artifact, in turn, becomes the next baseline 
version. A similar procedure is followed if two or more artifacts have to be changed 
simultaneously. 
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  This scheme solves the problem with artifact mDual. Both programmers make private 
copies of mDual/16 and use those copies to analyze the respective faults that they have been 
assigned to fi x. The fi rst programmer decides what changes to make, freezes mDual/16 
and makes those changes to repair the fi rst fault. After the changes have been tested, the 
resulting revision, mDual/17, becomes the baseline version. In the meantime, the second 
programmer has found the second fault by experimenting with a private copy of mDual/16. 
However, changes cannot now be made to mDual/16 because it was frozen by the fi rst 
programmer. Once mDual/17 becomes the baseline, it is frozen by the second programmer 
whose changes are made to mDual/17. The resulting artifact now is installed as mDual/18, 
a version that incorporates the changes of both programmers. Revisions mDual/16 and 
mDual/17 are retained for possible future reference, but they can never be altered.  

  5.10.3 Confi guration Control during Development 
 While an artifact is in the process of being coded, versions are changing too rapidly for con-
fi guration control to be helpful. Once coding of the artifact has been completed, it should 
immediately be tested informally by its programmer, as described in Section 6.6. During 
this informal testing, the artifact again passes through numerous versions. When the pro-
grammer is satisfi ed, the artifact is handed over to the SQA group for methodical testing. 
As soon as the artifact has been passed by the SQA group, it is ready to be integrated into 
the product. From then on, it should be subject to the same confi guration-control proce-
dures as those of postdelivery maintenance. Any change to an integrated artifact can have 
an impact on the product as a whole in the same way as a change made during postdeliv-
ery maintenance. Therefore, confi guration control is needed not only during postdelivery 
maintenance but also during implementation. Furthermore, management cannot monitor 
the development process adequately unless every artifact is subject to confi guration control 
as soon as is reasonable, that is, after it has been passed by the SQA group. When confi gu-
ration control is properly applied, management is aware of the status of every artifact and 
can take early corrective action if project deadlines seem to be slipping. 
  Two major UNIX version-control tools are   sccs   (source code control system) [Rochkind, 
1975] and   rcs   (revision control system) [Tichy, 1985]. PVCS is a popular, commercially 
available confi guration-control tool. Microsoft SourceSafe is a confi guration-control tool 
for personal computers. CVS (concurrent versions system) [Loukides and Oram, 1997] 
and Subversion are open-source confi guration management tools (open-source software is 
described in Section 1.11).    

  5.11 Build Tools 
  If a software organization does not wish to purchase a complete confi guration-control tool, 
then at the very least, a version-control tool must be used in conjunction with a   build tool  , 
that is, a tool that assists in selecting the correct version of each compiled-code artifact to 
be linked to form a specifi c version of the product. At any time, multiple variations and 
revisions of each artifact are in the product library. All version-control tools assist users in 
distinguishing among different versions of artifacts of source code. But keeping track of 
compiled code is more diffi cult, because some version-control tools do not attach revision 
numbers to compiled versions. 
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  To cope with this, some organizations automatically compile the latest version of each 
artifact every night, thereby ensuring that all the compiled code is up to date. Although 
this technique works, it can be extremely wasteful of computer time because frequently a 
large number of unnecessary compilations are performed. The UNIX tool   make   can solve 
this problem [Feldman, 1979]. For each executable load image, the programmer sets up a 
Makefi le specifying the hierarchy of source and compiled fi les that go into that particular 
confi guration; such a hierarchy is shown in  Figure 5.12 . More complex dependencies, such 
as included fi les in C or C++, also can be handled by   make  . When invoked by a program-
mer, the tool works as follows: UNIX, like virtually every other operating system, attaches 
a date and time stamp to each fi le. Suppose that the stamp on a source fi le is Friday, June 6, 
at 11:24 A.M., whereas the stamp on the corresponding compiled fi le is Friday, June 6, at 
11:40 A.M. Then it is clear that the source fi le has not been changed since the compiled fi le 
was created by the compiler. On the other hand, if the date and time stamp on the source 
fi le is later than that on the compiled fi le, then   make   calls the appropriate compiler or as-
sembler to create a version of the compiled fi le that corresponds to the current version of 
the source fi le. 
  Next, the date and time stamp on the executable load image is compared to those on 
every compiled fi le in that confi guration. If the executable load image was created later 
than all the compiled fi les, then there is no need to relink. But if a compiled fi le has a later 
stamp than that of the load image, then the load image does not incorporate the latest ver-
sion of that compiled fi le. In this case,   make   calls the linker and constructs an updated load 
image. 
  In other words,   make   checks whether the load image incorporates the current version 
of every artifact. If so, then nothing further is done and no CPU time is wasted on needless 
compilations and linkage. If not, then   make   calls the relevant system software to create an 
up-to-date version of the product. 
  In addition,   make   simplifi es the task of building a compiled fi le. The user need not 
specify each time what artifacts are to be used and how they are to be connected, because 
this information already is in the Makefi le. Therefore, a single   make   command is all that is 
needed to build a product with hundreds of artifacts and ensure that the complete product 
is put together correctly. 
  Tools like   make   have been incorporated into an endless variety of programming envi-
ronments, including Visual Java and Visual C++. An open-source version of   make   is Ant 
(a product of the Apache project).   

  5.12 Productivity Gains with CASE Technology 

  Reifer (as reported in [Myers, 1992]) conducted an investigation into productivity gains as 
a consequence of introducing CASE technology. He collected data from 45 companies in 
10 industries. Half the companies were in the fi eld of information systems, 25 percent in 
scientifi c areas, and 25 percent in real-time aerospace. Average annual productivity gains 
varied from 9 percent (real-time aerospace) to 12 percent (information systems). If only 
productivity gains are considered, then these fi gures do not justify the cost of $125,000 per 
user of introducing CASE technology. However, the companies surveyed felt that the justi-
fi cation for CASE was not merely increased productivity but also shorter development time 
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and improvement in software quality. In other words, the introduction of CASE environ-
ments boosted productivity, although less than some proponents of CASE technology have 
claimed. Nevertheless, other, equally important reasons were given for introducing CASE 
technology into a software organization, such as faster development, fewer faults, better 
usability, easier maintenance, and improved morale. 
  Newer results on the effectiveness of CASE technology from over 100 development 
projects at 15 Fortune 500 companies refl ect the importance of training and the software 
process [Guinan, Cooprider, and Sawyer, 1997]. When teams using CASE were given train-
ing in application development in general as well as tool-specifi c training, user satisfaction 
increased and development schedules were met. However, when training was not provided, 
software was delivered late and users were less satisfi ed. Also, performance increased by 
50 percent when teams used CASE tools in conjunction with a structured methodology. 
These results support the assertion in Section 3.13 that CASE environments should not be 
used by groups at maturity levels 1 or 2. To put it bluntly, a fool with a tool is still a fool 
[Guinan, Cooprider, and Sawyer, 1997].   The fi nal fi gure in this chapter,  Figure 5.14 , is an 
alphabetical list of the theoretical tools and CASE tools described in this chapter, together 
with the section in which each is described.    

Analytical Tools
Cost–benefi t analysis (Section 5.2)
Divide-and-conquer (Section  5.3)
Metrics (Section 5.5)
Separation of concerns (Section 5.4)
Stepwise refi nement (Section 5.1)

CASE Taxonomy
Environment (Section 5.7)
LowerCASE tool (Section 5.7)
UpperCASE tool (Section 5.7)
Workbench (Section 5.7)

CASE Tools
Build tool (Section 5.11)
Coding tool (Section 5.8)
Confi guration-control tool (Section 5.10)
Consistency checker (Section 5.7)
Data dictionary (Section 5.7)
E-mail (Section 5.8)
Interface checker (Section 5.8)
Online documentation (Section 5.8)
Operating system front end (Section 5.8)
Pretty printer (Section 5.8)
Report generator (Section 5.7)
Screen generator (Section 5.7)
Source-level debugger (Section 5.8)
Spreadsheet (Section 5.8)
Structure editor (Section 5.8)
Version-control tool (Section 5.9)
Word processor (Section 5.8)
World Wide Web browser (Section 5.8)   

 FIGURE 5.14     
Summary of 
the theoretical 
(analytical) 
tools and 
software 
(CASE) tools 
presented in 
this chapter and 
the sections in 
which each is 
described.     
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  First, a number of analytical tools are presented. Stepwise refinement, based on Miller’s Law, 
is described in Section 5.1 and illustrated by means of an example in Section 5.1.1. Another 
analytical tool, cost–benefit analysis, is presented in Section 5.2. Separation of concerns is 
described in Section 5.3, and divide-and-conquer in Section 5.4. Software metrics are intro-
duced in Section 5.5. 
  Computer-aided software engineering (CASE) is defined in Section 5.6, and the taxon-
omy and scope of CASE are described in Sections 5.7 and 5.8, respectively. A variety of 
CASE tools are next described. When large products are constructed, version-control tools, 
configuration-control tools, and build tools are essential; these are presented in Sections 
5.9 through 5.11. Productivity gains, as a consequence of the use of CASE technology, are 
described in Section 5.12.  

   Chapter 
Review 

  For 
Further 
Reading 

  For further information regarding Miller’s Law and his theory of how the brain operates on chunks, 
consult [Tracz, 1979] as well as Miller’s original paper [Miller, 1956]. 
  Wirth’s [1971] paper on stepwise refi nement is a classic of its kind and deserves detailed study. 
Equally signifi cant from the viewpoint of stepwise refi nement are the books by Dijkstra [1976] and 
Wirth [1975]. 
  The extent to which CASE is used in the software industry is described in [Sharma and Rai, 
2000]. A tool that supports incremental software development while ensuring consistency between 
the artifacts is described in [Reiss, 2006]. Experiences with open-source software engineering tools 
are described in [Toth, 2006]. 
  In this book, CASE tools for the separate workfl ows of the software process are described in the 
chapters on each workfl ow. For information on workbenches or CASE environments, consult the For 
Further Reading section of  Chapter 15 . 
  An introduction to version control in general and CVS in particular is given in [Louridas, 2006]. 
Articles on confi guration management include [van der Hoek, Carzaniga, Heimbigner, and Wolf, 
2002], [Mens, 2002], and [Walrad and Strom, 2002]. The interaction between confi guration manage-
ment and traceability is discussed in [Mohan, Xu, and Ramesh, 2008]. Refactoring poses problems 
for software confi guration management tools; a solution is put forward in [Dig, Manzoor, Johnson, and 
Nguyen, 2008]. The proceedings of the International Workshops on Software Confi guration Manage-
ment are a useful source of information. 
  CASE tools for refactoring are presented in [Black and Murphy-Hill, 2008]. 
  There are many excellent books on cost–benefi t analysis, including [Gramlich, 1997]. Cost–
benefi t analysis of software product lines (Section 8.5.4) is discussed in [Bockle et al., 2004]. Van 
Solingen [2004] presents a cost–benefi t analysis of software process improvement. 
  Jones [1994] highlights unworkable and invalid metrics that nevertheless continue to be men-
tioned in the literature. The validity of object-oriented metrics is discussed in [El Emam, Benlarbi, 
Goel, and Rai, 2001] and [Alshayeb and Li, 2003]. Kilpi [2001] describes how a metrics program 
was implemented at Nokia. Metrics for COTS-based systems are presented in [Sedigh-Ali and Paul, 
2001]. Metrics for measuring the success of a website are put forward in [Belanger et al., 2006]. The 
May 2008 issue of the   Journal of Systems and Software   contains a number of articles on process and 
product metrics. 
  A number of articles from the Seventh International Software Metrics Symposium appear in the 
November 2001 issue of   IEEE Transactions on Software Engineering;   of particular interest is [Briand 
and Wüst, 2001].  
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   activity   137 
   assumptions   131 
   back-end tool   136 
   baseline   145 
   browser   138 
   build tool   146 
   CASE   124 
   coding tool   138 
   confi guration   143 
   confi guration control   145 
   confi guration-control tool   145 
   consistency checker   136 
   cost–benefi t analysis   130 
   data dictionary   136 
   derivation   144 
   divide-and-conquer   132 
   e-mail   138 
   environment   137 

   formatter   138 
   freeze   145 
   front-end tool   135 
   interactive source-level 

debugger   140 
   lookahead   129 
   lowerCASE tool   136 
   metrics   133 
   online documentation   138 
   online interface checker   139 
   operating system front end   140 
   pretty printer   138 
   private workspace   145 
   process metric   133 
   product metric   133 
   programming-in-the-large   138 
   programming-in-the-many   138 
   programming-in-the-small   138 

   report generator   136 
   revision   141 
   screen generator   136 
   separation of concerns   132 
   source-level debugger   140 
   spreadsheet   138 
   stepwise refi nement   124 
   structure editor   138 
   syntax-directed editor   139 
   systems engineering   135 
   tool   135 
   upperCASE tool   135 
   variation   142 
   version   141 
   word processor   138 
   workbench   137  

  Key Terms 

  Problems      5.1  Consider the effect of introducing lookahead to the design of the corrected third refi nement 
of the sequential master fi le update problem. That is, before processing a transaction the next 
transaction must be read. If both transactions apply to the same master fi le record, then the deci-
sion regarding the processing of the current transaction depends on the type of the next trans-
action. Draw up a 3 × 3 table with the rows labeled by the type of the current transaction and 
the columns labeled by the type of the next transaction and fi ll in the action to be taken in each 
instance. For example, two successive insertions of the same record clearly are an error. But 
two modifi cations may be perfectly valid; for example, a subscriber can change address more 
than once in a given month. Now develop a fl owchart for the third refi nement that incorporates 
lookahead.  

   5.2  Check whether your answer to Problem 5.1 can correctly handle a modifi cation transaction fol-
lowed by a deletion transaction, both transactions being applied to the same master fi le record. 
If not, modify your answer.  

   5.3  Check whether your answer to Problem 5.1 also can correctly handle an insertion followed by 
a modifi cation followed by a deletion, all applied to the same master fi le record. If not, modify 
your answer.  

   5.4  Check whether your answer to Problem 5.1 can also handle correctly   n   insertions, modifi-
cations, or deletions,   n   > 2, all applied to the same master file record. If not, modify your 
answer.  

   5.5  The last transaction record has no successor. Check whether your fl owchart for Problem 5.1 
takes this into account and processes the last transaction record correctly. If not, modify your 
answer.  

   5.6  In some applications, an alternative to lookahead can be achieved by cleverly ordering the trans-
actions. For example, the original problem caused by a modifi cation followed by a deletion of 
the same master fi le record could have been solved by processing a deletion before a modifi ca-
tion. This would have resulted in the master fi le being written correctly and an error message 
appearing in the exception report. Investigate whether there is an ordering of the transactions 
that can solve all the diffi culties listed in Problems 5.2 through 5.4.  

   5.7  Is separation of concerns a special case of divide-and-conquer?  
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   5.8  Carefully distinguish between   duration   and   effort  .  

   5.9  What can you deduce if the rate of fault detection during design inspections doubles?  

  5.10  Why are the fi ve fundamental metrics measured for each workfl ow, and not for the product as a 
whole?  

  5.11  A new form of gastrointestinal disease is sweeping the country of Concordia. Like histoplas-
mosis, it is transmitted as an airborne fungus. Although the disease is almost never fatal, an 
attack is extremely painful and the sufferer is unable to work for about 2 weeks. The govern-
ment of Concordia wishes to determine how much money, if any, to spend on attempting to 
eradicate the disease. The committee charged with advising the Department of Public Health 
is considering four aspects of the problem: health care costs (Concordia provides free health 
care to all its citizens), loss of earnings (and hence loss of taxes), pain and discomfort, and 
gratitude toward the government. Explain how cost–benefi t analysis can assist the commit-
tee. For each benefi t or cost, suggest how a dollar estimate for that benefi t or cost could be 
obtained.  

  5.12  Does a one-person software production organization need a version-control tool, and if so, why?  

  5.13  Does a one-person software production organization need a confi guration-control tool, and if 
so, why?  

  5.14  You are the manager in charge of the software that controls the navigation system for a midget 
submarine. Three different user-reported faults have to be fi xed, and you assign one each to 
Paul, Quentin, and Rachel. A day later you learn that, to implement each of the three fi xes, the 
same four artifacts must be changed. However, your confi guration-control tool is inoperative, 
so you will have to manage the changes yourself. How will you do it?  

  5.15  Which of the case tools listed in  Figure 5.14  promote stepwise refi nement during software 
development? Justify your answer.  

  5.16  Is it possible to interface an upperCASE workbench to a lowerCASE workbench to create a 
CASE environment?  

  5.17  (Term Project) What types of CASE tools would be appropriate for developing the Chocoholics 
Anonymous product described in Appendix A?  

  5.18  (Readings in Software Engineering) Your instructor will distribute copies of [Mohan, Xu, and 
Ramesh, 2008]. What is your view regarding the interplay of confi guration management and 
traceability?     
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 Chapter 6
Testing 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Describe quality assurance issues.  

  • Describe how to perform non-execution-based testing (inspections) of artifacts.  

  • Describe the principles of execution-based testing.  

  • Explain what needs to be tested.      

154

  Classical software life-cycle models all too frequently include a separate testing phase, 
after integration and before postdelivery maintenance. Nothing could be more dangerous 
from the viewpoint of trying to achieve high-quality software. Testing is an integral com-
ponent of the software process and an activity that must be carried out throughout the 
life cycle: During the requirements workfl ow, the requirements must be checked; during 
the analysis workfl ow, the specifi cations must be checked; and the software production 
management plan must undergo similar scrutiny. The design workfl ow requires meticulous 
checking at every stage. During the implementation workfl ow, each code artifact certainly 
must be tested; and the product as a whole needs testing when it has been fully integrated. 
After passing the acceptance test, the product is installed and postdelivery maintenance 
begins. And hand in hand with maintenance goes repeated checking of modifi ed versions 
of the product. 
  In other words, it is not suffi cient to test the product of a workfl ow merely at the end 
of that workfl ow. For example, consider the design workfl ow. The members of the design 
team must consciously and conscientiously check the design while they develop it. It is 
not much use for the team to develop the complete design artifacts only to fi nd, weeks or 
months later, that a mistake made early in the process necessitates redesigning almost the 
entire product. Therefore, continual testing must be carried out by the development team 
while it performs each workfl ow, in addition to more methodical testing at the end of each 
workfl ow. 
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  The terms   verifi cation   and   validation   were introduced in Section 1.7.   Verifi cation   
refers to the process of determining whether a workfl ow has been correctly carried out; 
this takes place at the end of each workfl ow. On the other hand,   validation   is the intensive 
evaluation process that takes place just before the product is delivered to the client. Its 
purpose is to determine whether the product as a whole satisfi es its specifi cations. Even 
though both terms are defi ned in the IEEE software engineering glossary [IEEE 610.12, 
1990] in this way, and notwithstanding the common usage of the term   V & V   to denote 
testing, the words   verifi cation   and   validation   are used as little as possible in this book. 
One reason is that, as explained in Section 6.5, the word   verifi cation   has another meaning 
within the context of testing. A second reason is that the phrase   verifi cation and validation   
(or V & V) implies that the process of checking a workfl ow can wait until the end of that 
workfl ow. On the contrary, it is essential that this checking be carried out in parallel with 
all software development and maintenance activities. Therefore, to avoid the undesirable 
implications of the phrase   V & V  , the term   testing   is used. A second reason why we use 
the word   testing   is that this is the terminology of the Unifi ed Process. For example, the fi fth 
core workfl ow is the   test workfl ow  . 
  Essentially there are two types of testing: execution-based testing and non-execution-
based testing. For example, it is impossible to execute a written specifi cation document; 
the only alternatives are to review it as carefully as possible or subject it to some form of 
analysis. However, once there is executable code, it becomes possible to run test cases, 
that is, to perform execution-based testing. Nevertheless, the existence of code does not 
preclude non-execution-based testing, because as will be explained, methodically review-
ing code can uncover as many faults as running test cases. In this chapter, the principles 
of both execution-based and non-execution-based testing are described. These principles 
are applied in  Chapters 11  through 16, where a description is given of each workfl ow of 
the process model and the specifi c testing practices applicable to it.   The fi rst two faults 
described in Just in Case You Wanted to Know Box 1.1 led to fatal consequences. For-
tunately, in most cases, the result of delivering software with residual faults is consider-
ably less catastrophic. Nevertheless, the importance of testing cannot be stressed too 
strongly. 

  6.1 Quality Issues 

  We begin this section by expanding on the defi nitions of Section 1.11 that relate to testing. 
A   fault   is injected into the software when a human makes a   mistake   [IEEE 610.12, 1990]. 
One mistake on the part of a software professional may cause several faults; conversely, 
various mistakes may cause the identical fault. A   failure   is the observed incorrect behavior 
of the software product as a consequence of a fault, and the   error   is the amount by which a 
result is incorrect [IEEE 610.12, 1990]. A specifi c failure may be caused by several faults, 
and some faults may never cause a failure. The word   defect   is a generic term for a fault, 
failure, or error. 
  Now we turn to quality issues. The term   quality   frequently is misunderstood when used 
within the software context. After all, quality implies excellence of some sort, but this 
unfortunately is seldom the meaning intended by software engineers. To put it bluntly, all 
that many software development organizations can achieve is merely to get the software 
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to function correctly—excellence is an order of magnitude more than what is generally 
possible for organizations at CMM level 1 (Section 3.13). 
  The   quality   of software is the extent to which the product satisfi es its specifi cations 
(see Just in Case You Wanted to Know Box 6.1). However, this is not enough. For example, 
to ensure that a product can be easily maintained, the product must be well designed and 
meticulously coded. Therefore, it is necessary that software have high quality, but this is by 
no means suffi cient. 
  The task of every software professional is to ensure high-quality software at all times. 
That is, each developer and maintainer is personally responsible for checking that his or her 
work is correct. Quality is not something added afterward by the   software quality assur-
ance   (SQA) group but rather must be built in by the developers from the very beginning. 
One role of the SQA group is to ensure that the developers are indeed doing high-quality 
work. The SQA group has additional responsibilities, too, as described in Section 6.1.1. 

  6.1.1 Software Quality Assurance 
 As previously stated, one aspect of the role of the SQA group is to test that the developers’ 
product is correct. More precisely, once the developers have completed a workfl ow and 
carefully checked their work, members of the SQA group have to ensure that the workfl ow 
has indeed been carried out correctly. Also, when the product is complete and the develop-
ers are confi dent that the product as a whole is correct, the SQA group has to make sure 
that this is so. However, software quality assurance goes further than just testing at the end 
of a workfl ow or the end of the development process. SQA applies to the software process 
itself. For example, the responsibilities of the SQA group include the development of the 
various standards to which the software must conform as well as the establishment of the 
monitoring procedures for ensuring compliance with those standards. In brief, the role of 
the SQA group is to ensure the quality of the software process and thereby ensure the quality 
of the product.  

  6.1.2 Managerial Independence 
 It is important to have   managerial independence   between the development team and 
the SQA group. That is, development should be under one manager, SQA under a different 
manager, and neither manager should be able to overrule the other. The reason is that, all 

 Just in Case You Wanted to Know      Box 6.1 
 The use of the term   quality   to denote “adheres to specifi cations” (as opposed to “excellent” 
or “luxurious”) is the practice in fi elds such as engineering and manufacturing. Consider, for 
example, the quality control manager at a Coca-Cola bottling plant. The job of that quality 
control manager is to ensure that every bottle or can that leaves the production line satisfi es 
the specifi cations for Coca-Cola in every way. There is no attempt to produce “excellent” 
Coca-Cola or “luxurious” Coca-Cola; the sole aim is to be certain that each bottle or can 
of Coca-Cola stringently adheres to the company’s formula (specifi cations) for that carbon-
ated beverage. 
  The word   quality   is used identically in the automobile industry. Quality Is Job One is a 
former slogan of the Ford Motor Company. In other words, the aim of Ford is to ensure 
that every car that comes off a Ford production line adheres rigorously to the specifi ca-
tions for that car; in common software engineering parlance, the car must be “bug free” 
in every way. 
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too frequently, serious defects are found in a product as the delivery deadline approaches. 
The software organization must now choose between two unsatisfactory options. Either the 
product can be released on time but full of faults, leaving the client to struggle with faulty 
software, or the developers can fi x the software but deliver it late. No matter what, the 
client probably will lose confi dence in the software organization. The decision to deliver 
faulty software on time should not be made by the manager responsible for development, 
nor should the SQA manager be able to make the decision to perform further testing and 
deliver the product late. Instead, both managers should report to a more senior manager 
who can decide which choice would be in the best interests of both the software develop-
ment organization and the client. 
  At fi rst sight, having a separate SQA group would appear to add considerably to the cost 
of software development, but this is not so. The additional cost is relatively small compared 
to the resulting benefi t—higher-quality software. Without an SQA group, every member of 
the software development organization would have to be involved to some extent with quality 
assurance activities. Suppose an organization has 100 software professionals and each devotes 
about 30 percent of his or her time to quality assurance activities. Instead, the 100 individuals 
should be divided into two groups, with 70 individuals performing software development and 
the other 30 people responsible for SQA. The same amount of time is devoted to SQA, the 
only additional expense being a manager to lead the SQA group. Quality assurance now can 
be performed by an independent group of specialists, leading to products of higher quality 
than when SQA activities are performed throughout the organization. 
  In the case of a very small software company (four employees or fewer), it may simply 
not be economically viable to have a separate SQA group. The best that can be done under 
such circumstances is to ensure that the analysis artifacts are checked by someone other 
than the person responsible for producing those artifacts and similarly for the design arti-
facts, code artifacts, and so on. The reason for this is explained in Section 6.2.    

  6.2 Non-Execution-Based Testing 
  Testing software without running test cases is termed   non-execution-based testing  . 
Examples of non-execution-based testing methods include reviewing software (carefully 
reading through it) and analyzing software mathematically (Section 6.5). 
  It is not a good idea for the person responsible for drawing up a document to be the 
only one responsible for reviewing it. Almost everyone has blind spots that allow faults to 
creep into the document, and those same blind spots prevent the faults from being detected 
on review. Therefore, the review task must be assigned to someone other than the original 
author of the document. In addition, having only one reviewer may not be adequate; we all 
have had the experience of reading through a document many times while failing to detect 
a blatant spelling mistake that a second reader picks up almost immediately. This is one 
principle underlying review techniques like walkthroughs or inspections. In both types of 
review, a document (such as a specifi cation document or design document) is painstakingly 
checked by a team of software professionals with a broad range of skills. The strength of 
a review by a team of experts is that the different skills of the participants increase the 
chances of fi nding a fault. In addition, a team of skilled individuals working together often 
generates a synergistic effect. 
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  Walkthroughs and inspections are two types of reviews. The fundamental difference 
between them is that walkthroughs have fewer steps and are less formal than inspections. 

  6.2.1 Walkthroughs 
 A walkthrough team should consist of four to six individuals. An analysis walkthrough 
team should include at least one representative from the team responsible for drawing up 
the specifi cations, the manager responsible for the analysis workfl ow, a client representa-
tive, a representative of the team that will perform the next workfl ow of the development 
(in this instance the design team), and a representative of the software quality assurance 
group. For reasons that will be explained in Section 6.2.2, the SQA group member should 
chair the walkthrough. 
  The members of the walkthrough team should, as far as possible, be experienced senior 
technical staff members because they tend to fi nd the important faults. That is, they detect 
the faults that would have a major negative impact on the project [R. New, personal com-
munication, 1992]. 
  The material for the walkthrough must be distributed to the participants well in advance 
to allow for thorough preparation. Each reviewer should study the material and develop 
two lists: a list of items the reviewer does not understand and a list of items the reviewer 
believes are incorrect.  

  6.2.2 Managing Walkthroughs 
 The walkthrough should be chaired by the SQA representative because the SQA represen-
tative has the most to lose if the walkthrough is performed poorly and faults slip through. In 
contrast, the representative responsible for the analysis workfl ow may be eager to have the 
specifi cation document approved as quickly as possible to start some other task. The client 
representative may decide that any faults not detected at the review probably will show up 
during acceptance testing and be fi xed at that time at no cost to the client organization. But 
the SQA representative has the most at stake: The quality of the product is a direct refl ec-
tion of the professional competence of the SQA group. 
  The person leading the walkthrough guides the other members of the walkthrough team 
through the document to uncover any faults. It is not the task of the team to correct faults, 
but merely to record them for later correction. There are four reasons for this:

   1. A correction produced by a committee (that is, the walkthrough team) within the time 
constraints of the walkthrough is likely to be lower in quality than a correction produced 
by an individual trained in the necessary techniques.  

  2. A correction produced by a walkthrough team of fi ve individuals takes at least as much 
time as a correction produced by one person and, therefore, costs fi ve times as much 
when the salaries of the fi ve participants are considered.  

  3. Not all items fl agged as faults actually are incorrect. In accordance with the dictum, “If 
it ain’t broke, don’t fi x it,” it is better for faults to be analyzed methodically and cor-
rected only if there really is a problem, rather than have a team attempt to “fi x” some-
thing that is completely correct.  

  4. There simply is not enough time in a walkthrough to both detect and correct faults. No 
walkthrough should last longer than 2 hours. The time should be spent detecting and 
recording faults, not correcting them.    
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  There are two ways of conducting a walkthrough. The fi rst is participant driven. 
Participants present their lists of unclear items and items they think are incorrect. The rep-
resentative of the analysis team must respond to each query, clarifying what is unclear to 
the reviewer and either agreeing that indeed there is a fault or explaining why the reviewer 
is mistaken. 
  The second way of conducting a review is document driven. A person responsible for 
the document, either individually or as part of a team, walks the participants through that 
document, with the reviewers interrupting either with their prepared comments or com-
ments triggered by the presentation. This second approach is likely to be more thorough. 
In addition, it generally leads to the detection of more faults because the majority of faults 
at a document-driven walkthrough are spontaneously detected by the presenter. Time 
after time, the presenter will pause in the middle of a sentence, his or her face will light 
up, and a fault, one that has lain dormant through many readings of the document, sud-
denly becomes obvious. A fruitful fi eld for research by a psychologist would be to deter-
mine why verbalization so often leads to fault detection during walkthroughs of all kinds, 
including requirements walkthroughs, analysis walkthroughs, design walkthroughs, plan 
walkthroughs, and code walkthroughs. Not surprisingly, the more thorough document-
driven review is the technique prescribed in the IEEE Standard for Software Reviews 
[IEEE 1028, 1997]. 
  The primary role of the walkthrough leader is to elicit questions and facilitate discussion. 
A walkthrough is an interactive process; it is not supposed to be one-sided instruction by 
the presenter. It also is essential that the walkthrough not be used as a means of evaluating 
the participants. If that happens, the walkthrough degenerates into a point-scoring session 
and does not detect faults, no matter how well the session leader tries to run it. It has been 
suggested that the manager who is responsible for the document being reviewed should be 
a member of the walkthrough team. If this manager also is responsible for the annual evalu-
ations of the members of the walkthrough team (and particularly of the presenter), the fault 
detection capabilities of the team will be compromised, because the primary motive of the 
presenter will be to minimize the number of faults that show up. To prevent this confl ict of 
interests, the person responsible for a given workfl ow should not also be directly respon-
sible for evaluating any member of the walkthrough team for that workfl ow.  

  6.2.3 Inspections 
 Inspections were fi rst proposed by Fagan [1976] for testing designs and code. An   inspec-
tion   goes far beyond a walkthrough and has fi ve formal steps.

   1. An   overview   of the document to be inspected (requirements, specifi cation, design, 
code, or plan) is given by one of the individuals responsible for producing that document. 
At the end of the overview session, the document is distributed to the participants.  

  2.  In the   preparation  , the participants try to understand the document in detail. Lists of 
fault types found in recent inspections, with the fault types ranked by frequency, are 
excellent aids. These lists help team members concentrate on the areas where the most 
faults have occurred.  

  3. To begin the inspection, one participant walks through the document with the inspec-
tion team, ensuring that every item is covered and that every branch is taken at least 
once. Then fault fi nding commences. As with walkthroughs, the purpose is to fi nd 
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and document the faults, not to correct them. Within one day the leader of the inspec-
tion team (the   moderator  ) must produce a written report of the inspection to ensure 
meticulous follow-through.  

  4. In the   rework  , the individual responsible for the document resolves all faults and prob-
lems noted in the written report.  

  5. In the   follow-up  , the moderator must ensure that every issue raised has been resolved 
satisfactorily, by either fi xing the document or clarifying items incorrectly fl agged as 
faults. All fi xes must be checked to ensure that no new faults have been introduced [Fagan, 
1986]. If more than 5 percent of the material inspected has been reworked, then the team 
must reconvene for a 100 percent reinspection.    

  The inspection should be conducted by a team of four. For example, in the case of a 
design inspection, the team consists of a moderator, designer, implementer, and tester. The 
moderator is both manager and leader of the inspection team. There must be a representa-
tive of the team responsible for the current workfl ow as well as a representative of the team 
responsible for the next workfl ow. The designer is a member of the team that produced the 
design, whereas the implementer is responsible, either individually or as part of a team, for 
translating the design into code. Fagan suggests that the tester be any programmer respon-
sible for setting up test cases; it is, of course, preferable that the tester be a member of the 
SQA group. The IEEE standard recommends a team of between three and six participants 
[IEEE 1028, 1997]. Special roles are played by the moderator, the   reader   who leads the 
team through the design, and the   recorder   responsible for producing a written report of 
the detected faults. 
  An essential component of an inspection is the checklist of potential faults. For example, 
the checklist for a design inspection should include items such as these: Is each item of 
the specifi cation document adequately and correctly addressed? For each interface, do the 
actual and formal arguments correspond? Have error-handling mechanisms been adequately 
identifi ed? Is the design compatible with the hardware resources or does it require more 
hardware than actually is available? Is the design compatible with the software resources; 
for example, does the operating system stipulated in the analysis artifacts have the func-
tionality required by the design? 
  An important component of the inspection procedure is the record of fault statistics. 
Faults must be recorded by severity (major or minor; an example of a major fault is one that 
causes premature termination or damages a database) and fault type. In the case of a design 
inspection, typical fault types include interface faults and logic faults. This information can 
be used in a number of useful ways:

   • The number of faults in a given product can be compared with averages of faults detected 
at the same stage of development in comparable products, giving management an early 
warning that something is amiss and allowing timely corrective action to be taken.  

 •  If inspecting two or three code artifacts results in the discovery of a disproportionate 
number of faults of a particular type, management can begin checking other code arti-
facts for faults of that type, and take corrective action if necessary.  

 •  If the inspection of a particular code artifact reveals far more faults than were found in 
any other code artifact in the product, there is usually a strong case for redesigning that 
artifact from scratch and implementing the new design.  
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 •  Information regarding the number and types of faults detected at an inspection of a 
design artifact aids the team performing the code inspection of the implementation of 
that artifact at a later stage.    

  The fi rst experiment of Fagan [1976] was performed on a systems product. One hundred 
person-hours were devoted to inspections, at a rate of two 2-hour inspections per day by a 
four-person team. Of all the faults found during the development of the product, 67 percent 
were located by inspections before unit testing was started. Furthermore, during the fi rst 
7 months after the product was installed, 38 percent fewer faults were detected in the 
inspected product than in a comparable product reviewed using informal walkthroughs. 
  Fagan [1976] conducted another experiment on an application product and found that 
82 percent of all detected faults were discovered during design and code inspections. A useful 
side effect of the inspections was that programmer productivity rose because less time had to be 
spent on unit testing. Using an automated estimating model, Fagan determined that, as a result 
of the inspection process, the savings on programmer resources were 25 percent despite the time 
that had to be devoted to the inspections. In a different experiment Jones [1978] found that over 
70 percent of detected faults could be detected by conducting design and code inspections. 
  Subsequent studies have produced equally impressive results. In a 6000-line business 
data-processing application, 93 percent of all detected faults were found during inspections 
[Fagan, 1986]. As reported in [Ackerman, Buchwald, and Lewski, 1989], the use of inspec-
tions rather than testing during the development of an operating system decreased the cost of 
detecting a fault by 85 percent; in a switching system product, the decrease was 90 percent 
[Fowler, 1986]. At the Jet Propulsion Laboratory (JPL), on average, each 2-hour inspection 
exposed 4 major faults and 14 minor faults [Bush, 1990]. Translated into dollar terms, this 
meant a saving of approximately $25,000   per inspection  . Another JPL study [Kelly, Sherif, 
and Hops, 1992] showed that the number of faults detected decreased exponentially by clas-
sical phase. In other words, with the aid of inspections, faults can be detected early in the 
software process. The importance of this early detection is refl ected in  Figure 1.6 . 
  One advantage that code inspections have over running test cases (execution-based test-
ing) is that the testers need not deal with failures. It frequently happens that, when a product 
under test is executed, it fails. The fault that caused the failure must now be located and 
fi xed before execution-based testing can continue. In contrast, a fault found in the code 
during non-execution-based testing is logged and the review continues. 
  A risk of the inspection process is that, like the walkthrough, it might be used for perfor-
mance appraisal. The danger is particularly acute in the case of inspections because of the 
detailed fault information available. Fagan dismisses this fear by stating that, over a period 
of 3 years, he knew of no IBM manager who used such information against a programmer, 
or as he put it, no manager tried to “kill the goose that lays the golden eggs” [Fagan, 1976]. 
However, if inspections are not conducted properly, they may not be as wildly successful as 
they have been at IBM. Unless top management is aware of the potential problem, misuse 
of inspection information is a distinct possibility.  

  6.2.4 Comparison of Inspections and Walkthroughs 
 Superfi cially, the difference between an inspection and a walkthrough is that the inspection team 
uses a checklist of queries to aid it in fi nding the faults. But the difference goes deeper than that. 
A walkthrough is a two-step process: preparation followed by team analysis of the document. 
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An inspection is a fi ve-step process: overview, preparation, inspection, rework, and follow-up; 
and the procedure to be followed in each step is formalized. Examples of such formalization are 
the methodical categorization of faults and the use of that information in the inspection of the 
documents of the succeeding workfl ows as well as in inspections of future products. 
  The inspection process takes much longer than a walkthrough. Is inspection worth the 
additional time and effort? The data of Section 6.2.3 clearly indicate that inspections are a 
powerful, cost-effective tool to detect faults.  

  6.2.5 Strengths and Weaknesses of Reviews 
 There are two major strengths of a review (walkthrough or inspection). First, a review is an 
effective way to detect a fault; second, faults are detected early in the software process, that is, 
before they become expensive to fi x. For example, design faults are detected before implementa-
tion commences, and coding faults are found before the artifact is integrated into the product. 
  However, the effectiveness of a review can be reduced if the software process is inadequate.   

• First, large-scale software is extremely hard to review unless it consists of smaller, 
largely independent components. A strength of the object-oriented paradigm is that, if 
correctly carried out, the resulting product consists of largely independent pieces.  

  • Second, a design review team sometimes has to refer to the analysis artifacts; a code 
review team often needs access to the design documents. Unless the documentation of 
the previous workfl ows is complete, updated to refl ect the current version of the project, 
and available online, the effectiveness of review teams is severely hampered.     

  6.2.6 Metrics for Inspections 
 To determine the effectiveness of inspections, a number of different metrics can be used. 
The fi rst is the   inspection rate  . When specifi cations and designs are inspected, the num-
ber of pages inspected per hour can be measured; for code inspections, an appropriate 
metric is lines of code inspected per hour. A second metric is the   fault density  , measured 
in faults per page inspected or faults per 1000 lines of code (KLOC) inspected. This metric 
can be subdivided into major faults per unit of material and minor faults per unit of mate-
rial. Another useful metric is the   fault detection rate  , that is, the number of major and 
minor faults detected per hour. A fourth metric is the   fault detection effi ciency  , that is, 
the number of major and minor faults detected per person-hour. 
  Although the purpose of these metrics is to measure the effectiveness of the inspection 
process, the results instead may refl ect defi ciencies of the development team. For example, 
if the fault detection rate suddenly rises from 20 faults per thousand lines of code to 30, this 
does not necessarily mean that the inspection team has suddenly become 50 percent more 
effi cient. Another explanation could be that the quality of code has decreased and there 
simply are more faults to be detected. 
  Having discussed non-execution-based testing, we now move on to execution-based testing.    

  6.3 Execution-Based Testing 
  It has been claimed that testing is a demonstration that faults (“bugs”) are not present. 
Even though some organizations spend up to 50 percent of their software budget on testing, 
delivered “tested” software is notoriously unreliable. 
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  The reason for this contradiction is simple. As Dijkstra put it, “Program testing can be a 
very effective way to show the presence of bugs, but it is hopelessly inadequate for show-
ing their absence” [Dijkstra, 1972]. What Dijkstra is saying is that, if a product is executed 
with test data and the output is wrong, then the product defi nitely contains a fault. But, if 
the output is correct, then there still may be a fault in the product; the only information that 
can be deduced from that particular test is that the product runs correctly on that particular 
set of test data.   

  6.4 What Should Be Tested? 
  To be able to describe what properties should be tested, it is fi rst necessary to give a pre-
cise description of execution-based testing. According to Goodenough [1979],   execution-
based testing   is a process of inferring certain behavioral properties of a product based, in 
part, on the results of executing the product in a known environment with selected inputs. 
This defi nition has three troubling implications.

   1. First, the defi nition states that testing is an inferential process. The tester takes the prod-
uct, runs it with known input data, and examines the output. The tester has to infer what, 
if anything, is wrong with the product. From this viewpoint, testing is comparable to 
trying to fi nd the proverbial black cat in a dark room, but without knowing whether or 
not a cat is in the room in the fi rst place. The tester has few clues to help fi nd any faults: 
perhaps 10 or 20 sets of inputs and corresponding outputs, possibly a user fault report, 
and thousands of lines of code. From this, the tester has to deduce if there is a fault and, 
if so, what it is.  

  2. A problem with the defi nition arises from the phrase in a   known environment  . We never 
really can know our environment, either the hardware or the software. We never can be 
certain that the operating system is functioning correctly or that the run-time routines 
are correct. An intermittent hardware fault may lie in the main memory of the computer. 
So what is observed as the behavior of the product in fact may be a correct product 
interacting with a faulty compiler or faulty hardware or some other faulty component of 
the environment.  

  3. Another worrisome part of the defi nition of execution-based testing is the phrase   with 
selected inputs  . In the case of a real-time system, frequently no control is possible over 
the inputs to the system. Consider avionics software. The fl ight control system has two 
types of inputs. The fi rst type of input is what the pilot wants the aircraft to do. If the 
pilot pulls back on the joystick to climb or opens the throttle to increase the speed of 
the aircraft, these mechanical motions are transformed into digital signals sent to the 
fl ight control computer. The second type of input is the current physical state of the 
aircraft, such as its altitude, speed, and the elevation of the wing fl aps. The fl ight control 
software uses the values of such quantities to compute what signals should be sent to 
the components of the aircraft, such as the wing fl aps and the engines, to implement 
the pilot’s directives. Whereas the pilot’s inputs can easily be set to any desired values 
simply by setting the aircraft’s controls appropriately, the inputs corresponding to the 
current physical state of the aircraft cannot be manipulated so easily. In fact, there is no 
way one can force the aircraft to provide “selected inputs.”    
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  How then can such a real-time system be tested? The answer is to use a simulator. 
A   simulator   is a working model of the environment in which the product, in this case the fl ight 
control software, executes. The fl ight control software can be tested by causing the simulator 
to send selected inputs to the fl ight control software. The simulator has controls that allow the 
operator to set an input variable to any selected value. If the purpose of the test is to determine 
how the fl ight control software performs if one engine catches fi re, then the controls of the simu-
lator are set so that the inputs sent to the fl ight control software are indistinguishable from the 
inputs that would be sent if an engine of the actual aircraft were on fi re. The output is analyzed 
by examining the output signals sent from the fl ight control software to the simulator. But, at 
best, a simulator can be a good approximation of a faithful model of some aspect of the system; 
it never can be the system itself. Using a simulator means that, whereas there indeed is a “known 
environment,” there is little likelihood that this known environment is in every way identical to 
the actual environment in which the product will be installed. 
  The preceding defi nition of   testing   speaks of “behavioral properties.” What behavioral 
properties must be tested? An obvious answer is, Test whether the product functions cor-
rectly. But, as will be shown, correctness is neither necessary nor suffi cient. Before discuss-
ing correctness, four other behavioral properties are considered: utility, reliability, robust-
ness, and performance [Goodenough, 1979]. 

  6.4.1 Utility 
   Utility   is the extent to which a user’s needs are met when a correct product is used under 
conditions permitted by its specifi cations. In other words, a product that is functioning 
correctly is now subjected to inputs that are valid in terms of the specifi cations. The user 
may test, for example, how easy the product is to use, whether the product performs use-
ful functions, and whether the product is cost effective compared to competing products. 
Irrespective of whether the product is correct or not, these vital issues have to be tested. If 
the product is not cost effective, then there is no point in buying it. And unless the product 
is easy to use, it will not be used at all or it will be used incorrectly. Therefore, when con-
sidering buying an existing product (including shrink-wrapped software), the utility of the 
product should be tested fi rst, and if the product fails on that score, testing should stop.  

  6.4.2 Reliability 
 Another aspect of a product that must be tested is its reliability.   Reliability   is a measure 
of the frequency and criticality of product failure; recall that a failure is an unacceptable 
effect or behavior, under permissible operating conditions, that occurs as a consequence of 
a fault. In other words, it is necessary to know how often the product fails (  mean time 
between failures  ) and how bad the effects of that failure can be. When a product fails, an 
important issue is how long it takes, on average, to repair it (  mean time to repair  ). But, 
often more important is how long it takes to repair the   results   of the failure. This last point 
frequently is overlooked. Suppose that the software running on a communications front 
end fails, on average, only once every 6 months; but when it fails, it completely wipes out 
a database. At best, the database can be reinitialized to its status when the last checkpoint 
dump was taken, and the audit trail can then be used to put the database into a state that 
is virtually up to date. But, if this recovery process takes the better part of 2 days, during 
which time the database and communications front end are inoperative, then the reliability 
of the product is low, notwithstanding that the mean time between failures is 6 months.  
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  6.4.3 Robustness 
 Another aspect of every product that requires testing is its robustness. Although it is 
diffi cult to come up with a precise defi nition,   robustness   essentially is a function of a 
number of factors, such as the range of operating conditions, the possibility of unaccept-
able results with valid input, and the acceptability of effects when the product is given 
invalid input. A product with a wide range of permissible operating conditions is more 
robust than a more-restrictive product. A robust product should not yield unacceptable 
results when the input satisfi es its specifi cations; for example, giving a valid command 
should not have disastrous consequences. A robust product should not crash when the 
product is   not   used under permissible operating conditions. To test for this aspect of 
robustness, test data that do not satisfy the input specifi cations are deliberately entered, 
and the tester determines how badly the product reacts. For example, when the product 
solicits a name, the tester may reply with a stream of unacceptable characters, such as 
control-A escape-% ?$#@. If the computer responds with a message such as Incorrect 
data—Try again or, better, informs the user as to why the data do not conform to what 
was expected, it is more robust than a product that crashes whenever the data deviate even 
slightly from what is required.  

  6.4.4 Performance 
   Performance   is another aspect of the product that must be tested. For example, it is 
essential to know the extent to which the product meets its constraints with regard 
to response time or space requirements. For an embedded computer system such as an 
onboard computer in a handheld antiaircraft missile, the space constraints of the system 
may be such that only 128 megabytes (MB) of main memory are available for the software. 
No matter how excellent the software may be, if it needs 256 MB of main memory, then it 
cannot be used at all. (For more information on embedded software, see Just in Case You 
Wanted to Know Box 6.2.) 
  Real-time software is characterized by hard time constraints, that is, time constraints 
of such a nature that, if a constraint is not met, information is lost. For example, a nuclear 
reactor control system may have to sample the temperature of the core and process the 
data every 10th of a second. If the system is not fast enough to handle interrupts from 
the temperature sensor every 10th of a second, then data are lost, and there is no way of 
ever recovering the data; the next time the system receives temperature data, it will be the 

 Just in Case You Wanted to Know     Box 6.2 
 An embedded computer is an integral part of a larger system whose primary purpose is 
not computation. The function of embedded software is to control the device in which 
the computer is embedded. Military examples include a network of avionics computers on 
board a warplane or a computer built into an intercontinental ballistic missile. The embed-
ded computer in the nose cone of a missile controls only that missile; it cannot be used, say, 
for printing the payroll checks for the soldiers on the missile base. 
  More familiar examples are the computer chip in a digital watch or a washing machine. 
Again, the chip in a washing machine is used exclusively to control the washing machine. 
There is no way that the owner of that washing machine could use the chip to balance a 
checkbook. 
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current temperature, not the reading that was missed. If the reactor is on the point of a melt-
down, then it is critical that all relevant information be both received and processed as laid 
down in the specifi cations. With all real-time systems, the performance must meet every 
time constraint listed in the specifi cations.  

  6.4.5 Correctness 
 Finally, a defi nition of   correctness   can be given. A product is correct if it satisfi es its 
output specifi cations, independent of its use of computing resources, when operated under 
permitted conditions [Goodenough, 1979]. In other words, if input that satisfi es the input 
specifi cations is provided and the product is given all the resources it needs, then the prod-
uct is correct if the output satisfi es the output specifi cations. 
  This defi nition of   correctness  , like the defi nition of   testing   itself, has worrisome 
implications. Suppose a product has been tested successfully against a broad variety of test 
data. Does this mean that the product is acceptable? Unfortunately, it does not. If a product 
is correct, all that means is that it satisfi es its specifi cations. But what if the specifi cations 
themselves are incorrect? To illustrate this diffi culty, consider the specifi cation shown in 
 Figure 6.1 . The specifi cations state that the input to the sort is an array p of n integers, 
whereas the output is another array q sorted in nondecreasing order. Superfi cially, the spec-
ifi cations seem perfectly correct. But consider method trickSort shown in  Figure 6.2 . In 
that method, all n elements of array q are set to 0. The method satisfi es the specifi cations 
of  Figure 6.1  and is therefore correct. 
  What happened? Unfortunately, the specifi cations of  Figure 6.1  are wrong. What has 
been omitted is a statement that the elements of q, the output array, are a permutation (rear-
rangement) of the elements of the input array p. An intrinsic aspect of sorting is that it is a 
rearrangement process. And the method of  Figure 6.2  capitalizes on this specifi cation fault. 
In other words, the method trickSort is correct, but the specifi cations of  Figure 6.1  are 
wrong. Corrected specifi cations appear in  Figure 6.3 . From this example, it is clear that the 
consequences of specifi cation faults are nontrivial. After all, the correctness of a product is 
meaningless if its specifi cations are incorrect. 
  The fact that a product is correct is not   suffi cient  , because the specifi cations in terms of 
which it was shown to be correct may be wrong. But is it   necessary  ? Consider the follow-
ing example. A software organization has acquired a superb new C++ compiler. The new 

 FIGURE 6.1     
Incorrect 
specifi cations 
for a sort. 

Input specification: p : array of n integers, n � 0.

Output specification: q : array of n integers such that
     q[0] � q[1] � … � q[n � 1]

 FIGURE 6.2 
   Method 
trickSort, which 
satisfi es the 
specifi cations of 
Figure 6.1. 

void trickSort (int p[ ], int q[ ])
{

int i;
for (i � 0; i � n; i��)

q[i] � 0;
}
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compiler can translate twice as many lines of source code per second as the old compiler, 
the object code runs nearly 45 percent faster, and the size of the object code is about 20 per-
cent smaller. In addition, the error messages are much clearer and the cost of postdelivery 
maintenance and updates is less than half of that of the old compiler. There is one problem, 
however; the fi rst time that a   for   statement appears in any class, the compiler prints a spu-
rious error message. The compiler therefore is not correct, because the specifi cations for a 
compiler implicitly or explicitly require that error messages be printed if, and only if, there 
is a fault in the source code. It is certainly possible to use the compiler—in fact, in every 
way but one the compiler is absolutely ideal. Furthermore, it is reasonable to expect that 
this minor fault will be corrected in the next release. In the meantime, the programmers 
learn to ignore the spurious error message. Not only can the organization live with the in-
correct compiler, but if anyone were to suggest replacing it with the old correct compiler, 
there would be an outcry. Therefore, the correctness of a product is neither necessary nor 
suffi cient. 
  Both preceding examples admittedly are somewhat artifi cial. But they do make the point 
that correctness simply means that the product is a correct implementation of its specifi ca-
tions. In other words, there is more to testing than just showing that the product is correct. 
  With all the diffi culties associated with execution-based testing, computer scientists 
have tried to come up with other ways of ensuring that a product does what it is supposed 
to do. One such non-execution-based alternative that has received considerable attention 
for more than 50 years is correctness proving.    

  6.5 Testing versus Correctness Proofs 
  A   correctness proof   is a mathematical technique for showing that a product is correct, 
in other words, that it satisfi es its specifi cations. The technique is sometimes termed   verifi -
cation  . However, as previously pointed out, the term has another meaning within the test-
ing context. In addition,   verifi cation   is also often used to denote all non-execution-based 
techniques, not only correctness proving. For clarity, this mathematical procedure will be 
termed   correctness proving  , to remind the reader that it is a mathematical proof process. 

  6.5.1 Example of a Correctness Proof 
 To see how correctness is proven, consider the code fragment shown in  Figure 6.4 . The 
fl owchart equivalent to the code is given in  Figure 6.5 . We now show that the code frag-
ment is correct—after the code has been executed, the variable s will contain the sum of 

 FIGURE 6.3     
Corrected 
specifi cations 
for the sort. 

Input specification: p : array of n integers, n � 0.

Output specification: q : array of n integers such that
     q[0] � q[1] � … � q[n � 1]

The elements of array q are a permutation of the
elements of array p, which are unchanged.
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the n elements of the array y. In  Figure 6.6 , an   assertion   is placed before and after each 
statement, at the places labeled with the letters   A   through   H  ; that is, a claim has been made 
at each place that a certain mathematical property holds there. The correctness of each 
assertion is now proven. 
  The input specifi cation, the condition that holds at   A   before the code is executed, is that 
the variable n is a positive integer; that is,

         A  : n ∈ {1, 2, 3, . . .} (6.1) 

  An obvious output specifi cation is that, if control reaches point   H  , the value of s contains 
the sum of the n values stored in array y, that is,

         H  : s � y[0] + y[1] + . . . + y[n − 1]  (6.2)

  In fact, the code fragment can be proven correct with respect to a stronger output 
specifi cation:

         H:   k � n and s � y[0] + y[1] + . . . + y[n − 1]  (6.3)

 FIGURE 6.4      
A code 
fragment to be 
proven correct. 

 FIGURE 6.5     
The fl owchart 
of Figure 6.4. 

int k, s;
int y[n];
k � 0;
s � 0;
while (k � n)
{

s � s � y[k];
k � k � 1;

}

Yes

No

is
k � n?

k     0

s     0

s     s � y[k]

k     k � 1
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  A natural reaction to the last sentence is to ask, From where did output specifi cation 
(6.3) come? By the end of the proof, we hope you have the answer to that question. 
  In addition to the input and output specifi cations, a third aspect of the proof process is to 
provide an invariant for the loop. That is, a mathematical expression must be provided that 
holds at point   D   irrespective of whether the loop has been executed 0, 1, or many times. The 
  loop invariant   that will be proven to hold is

         D:   k �  n and s � y[0] + y[1] + . . . + y[k − 1]  (6.4)

  Now it will be shown that if input specifi cation (6.1) holds at point   A  , then output speci-
fi cation (6.3) will hold at point   H  ; that is, the code fragment will be proven to be correct. 
  First, the assignment statement k R 0 is executed. Control now is at point   B  , where the 
following assertion holds:      

   B:   k � 0  (6.5)

  To be more precise, at point   B  , the assertion should read k � 0 and n ∈ {1, 2, 3, . . .}. 
However, the input specifi cation (6.1) holds at all points in the fl owchart. For brevity, the 
and n ∈ {1, 2, 3, . . .} therefore is omitted from now on. 
  At point   C  , as a consequence of the second assignment statement, s R 0, the following 
assertion is true:

         C:   k � 0 and s � 0  (6.6)

  Now the loop is entered. It will be proven by induction that the loop invariant (6.4) in-
deed is correct. Just before the loop is executed for the fi rst time, assertion (6.6) holds; that 

 FIGURE 6.6     
Figure 6.5 
with input 
specifi cation, 
output 
specifi cation, 
loop invariant, 
and assertions 
added. 

n � {1, 2, 3, ...}
            (Input specification)

k � 0

k � 0 and s � 0

k � n and s � y[0] � y[1] � … � y[k � 1]
(Loop invariant)

k � n and s � y[0] � y[1] � … � y[n � 1]
(Output specification)

k � n and s � y[0] � y[1] � … � y[k]

k � n and s � y[0] � y[1] � … � y[k � 1]

k � n and s � y[0] � y[1] � … � y[k � 1]

Yes

No

is
k � n?

A

B

C

D

E

H

F

G

k     0

s     0

s     s � y[k]

k     k � 1
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is, k � 0, and s � 0. Now consider loop invariant (6.4). Because k � 0 by assertion (6.6) 
and n � 1 from input specifi cation (6.1), it follows that k � n as required. Furthermore, 
because k � 0, it follows that k − 1 � −1, so the sum in (6.4) is empty and s � 0 as re-
quired. Loop invariant (6.4) therefore is true just before the fi rst time the loop is entered. 
  Next, the inductive hypothesis step is performed. Assume that, at some stage during the 
execution of the code fragment, the loop invariant holds. That is, for k equal to some value 
k 0 , 0 � k 0  � n, execution is at point   D  , and the assertion that holds is

         D:   k 0  � n and s � y[0] + y[1] + . . . + y[k 0  − 1]  (6.7)

  Control now passes to the test box. If k 0  � n, then because k 0  � n by hypothesis, it 
follows that k 0  � n. By inductive hypothesis (6.7), this implies that

         H:   k 0  � n and s � y[0] + y[1] + . . . + y[n − 1]  (6.8)

 which is precisely the output specifi cation (6.3). 
  On the other hand, if the test is k 0  � n? fails, then control passes from point   D   to point 
  E  . Because k 0  is not greater than or equal to n, k 0  � n and (6.7) becomes

         E:   k 0  � n and s � y[0] + y[1] + . . . + y[k 0  − 1]  (6.9)

  The statement s R s + y[k 0 ] now is executed, so from assertion (6.9), at point   F,   the fol-
lowing assertion must hold:

        F:   k 0  � n and s � y[0] + y[1] + . . . + y[k 0  − 1] + y[k 0 ]

       � y[0] + y[1] + . . . + y[k 0 ]      (6.10)

  The next statement to be executed is k 0  R k 0  + 1. To see the effect of this statement, 
suppose that the value of k 0  before executing this statement is 17. Then the last term in the 
sum in (6.10) is y[17]. Now the value of k 0  is increased by 1 to 18. The sum s is unchanged, 
so the last term in the sum still is y[17], which is now y[k 0  − 1]. Also, at point   F  , k 0  � n. 
Increasing the value of k 0  by 1 means that if the inequality is to hold at point   G,   then k 0  � n. 
Therefore, the effect of increasing k 0  by 1 is that the following assertion holds at point   G  :      

   G:   k 0  � n and s � y[0] + y[1] + . . . + y[k 0  − 1] (6.11) 

  Assertion (6.11) that holds at point   G   is identical to assertion (6.7) that, by assumption, 
holds at point   D.   But point   D   is topologically identical to point   G.   In other words, if (6.7) 
holds at   D   for k � k 0 , then it again will hold at   D   with k � k 0  + 1. It has been shown that 
the loop invariant holds for k � 0. By induction, it follows that loop invariant (6.4) holds 
for all values of k, 0 � k � n. 
  All that remains is to prove that the loop terminates. Initially, by assertion (6.6), the value 
of k is equal to 0. Each iteration of the loop increases the value of k by 1 when the statement 
k R k + 1 is executed. Eventually, k must reach the value n, at which time the loop is exited 
and the value of s is given by assertion (6.8), thereby satisfying output specifi cation (6.3). 
  To review, given the input specifi cation (6.1), it was proven that loop invariant (6.4) 
holds whether the loop has been executed 0, 1, or more times. Furthermore, it was proven 
that after n iterations the loop terminates; and when it does, the values of k and s satisfy 
the output specifi cation (6.3). In other words, the code fragment of  Figure 6.4  has been 
mathematically proven to be correct. 
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C
6.5.26.5.2

  Mini  ase Study 

 Correctness Proof Mini Case Study 

  An important aspect of correctness proofs is that they should be done in conjunction 
with design and coding. As Dijkstra put it, “The programmer should let the program 
proof and program grow hand in hand” [Dijkstra, 1972]. For example, when a loop 
is incorporated into the design, a loop invariant is put forward; and as the design is 
refi ned stepwise, so is the invariant. Developing a product in this way gives the pro-
grammer confi dence that the product is correct and tends to reduce the number of 
faults. Quoting Dijkstra again, “The only effective way to raise the confi dence level 
of a program signifi cantly is to give a convincing proof of its correctness” [Dijkstra, 
1972]. But even if a product is proven to be correct, it must be thoroughly tested as 
well. To illustrate the necessity for testing in conjunction with correctness proving, 
consider the following. 
  In 1969, Naur reported on a technique for constructing and proving a product correct 
[Naur, 1969]. The technique was illustrated by what Naur termed a   line-editing problem  ; 
today this would be considered a text-processing problem. It may be stated as follows: 

 Given a text consisting of words separated by blank characters or by newline (new line) 
characters, convert it to line-by-line form in accordance with the following rules:

   1. Line breaks must be made only where the given text contains a blank or newline;  

  2.  Each line is fi lled as far as possible, as long as  

  3. No line will contain more than maxpos characters.    

  Naur constructed a procedure using his technique and informally proved its cor-
rectness. The procedure consisted of approximately 25 lines of code. The paper then 
was reviewed by Leavenworth in   Computing Reviews   [Leavenworth, 1970]. The re-
viewer pointed out that, in the output of Naur’s procedure, the fi rst word of the fi rst 
line is preceded by a blank unless the fi rst word is exactly maxpos characters long. 
Although this may seem a trivial fault, it is a fault that surely would have been de-
tected had the procedure been tested, that is, executed with test data rather than only 
proven correct. But worse was to come. London [1971] detected three additional 
faults in Naur’s procedure. One is that the procedure does not terminate unless a word 
longer than maxpos characters is encountered. Again, this fault is likely to have been 
detected if the procedure had been tested. London then presented a corrected version 
of the procedure and proved formally that the resulting procedure was correct; recall 
that Naur had used only informal proof techniques. 
  The next episode in this saga is that Goodenough and Gerhart [1975] found three 
faults that London had not detected, despite his formal “proof.” These included the 
fact that the last word is not output unless it is followed by a blank or newline. Yet 
again, a reasonable choice of test data would have detected this fault without much 
diffi culty. In fact, of the total of seven faults collectively detected by Leavenworth, 
London, and Goodenough and Gerhart, four could have been detected simply by 
running the procedure on test data, such as the illustrations given in Naur’s original 
paper. The lesson from this saga is clear. Even if a product has been proven correct, 
it still must be tested thoroughly. 
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  The example in Section 6.5.1 showed that proving the correctness of even a small code 
fragment can be a lengthy process. Furthermore, the mini case study of this section showed 
that it is a diffi cult, error-prone process, even for a 25-line procedure. The following issue 
therefore must be put forward: Is correctness proving just an interesting research idea or 
is it a powerful software engineering technique whose time has come? This is answered in 
Section 6.5.3.    

  6.5.3 Correctness Proofs and Software Engineering 
 A number of software engineering practitioners have put forward reasons why correctness 
proving should not be viewed as a standard software engineering technique. First, it is 
claimed that software engineers lack adequate mathematical training. Second, it is sug-
gested that proving is too expensive to be practical; and third, proving is too hard. Each of 
these reasons will be shown to be an oversimplifi cation:

   1. Although the proof given in Section 6.5.1 can be understood with hardly more than 
high school algebra, nontrivial proofs require that input specifi cations, output specifi ca-
tions, and loop invariants be expressed in fi rst- or second-order predicate calculus or 
its equivalent. Not only does this make the proof process simpler for a mathematician, 
it allows correctness proving to be done by a computer. To complicate matters further, 
predicate calculus now is somewhat outdated. To prove the correctness of concurrent 
products, techniques using temporal or other modal logics are required [Manna and 
Pnueli, 1992]. There is no doubt that correctness proving requires training in mathemati-
cal logic. Fortunately, most computer science majors today either take courses in the 
requisite material or have the background to learn correctness-proving techniques on 
the job. Therefore, colleges now are turning out computer science graduates with suf-
fi cient mathematical skills for correctness proving. The claim that practicing software 
engineers lack the necessary mathematical training may have been true in the past, but 
it no longer applies in the light of the thousands of computer science majors joining the 
industry each year.  

  2. The claim that proving is too expensive for use in software development also is false. 
On the contrary, the economic viability of correctness proving can be determined on 
a project-by-project basis using cost–benefi t analysis (Section 5.2). For example, con-
sider the software for the international space station. Human lives are at stake, and if 
something goes wrong, a space shuttle rescue mission may not arrive in time. The cost 
of proving life-critical space station software correct is large. But the potential cost 
of a software fault that might be overlooked if correctness proving is not performed is 
even larger.  

  3. Despite the claim that correctness proving is too hard, many nontrivial products have 
successfully been proven correct, including operating system kernels, compilers, and 
communications systems [Landwehr, 1983], [Berry and Wing, 1985]. Furthermore, 
many tools such as theorem provers assist in correctness proving. A theorem prover 
takes as input a product, its input and output specifi cations, and loop invariants. The 
theorem prover then attempts to prove mathematically that the product, when given 
input data satisfying the input specifi cations, produces output data satisfying the output 
specifi cations.    
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  At the same time, there are some diffi culties with correctness proving:

  •  For example, how can we be sure that a theorem prover is correct? If the theorem prover 
prints out This product is correct, can we believe it? To take an extreme case, consider 
the so-called theorem prover shown in  Figure 6.7 . No matter what code is submitted to this 
theorem prover, it will print out This product is correct. In other words, what reliability 
can be placed on the output of a theorem prover? One suggestion is to submit a theorem 
prover to itself and see whether it is correct. Apart from the philosophical implications, 
a simple way of seeing that this will not work is to consider what would happen if the 
theorem prover of  Figure 6.7  were submitted to itself for proving. As always, it would 
print out This product is correct, thereby “proving” its own correctness.  

 •  A further diffi culty is fi nding the input and output specifi cations, and especially the loop 
invariants or their equivalents in other logics such as modal logic. Suppose a product is 
correct. Unless a suitable invariant for each loop can be found, there is no way of prov-
ing the product correct. Yes, tools do exist to assist in this task. But even with state-of-
the-art tools, a software engineer simply may not be able to come up with a correctness 
proof. One solution to this problem is to develop the product and proof in parallel, as ad-
vocated in Section 6.5.2. When a loop is designed, an invariant for that loop is specifi ed 
at the same time. With this approach, it is somewhat easier to prove that a code artifact 
is correct.  

  • Worse than not being able to fi nd loop invariants, what if the specifi cations themselves 
are incorrect? An example of this is method trickSort ( Figure 6.2 ). A good theorem 
prover, when given the incorrect specifi cations of  Figure 6.1 , undoubtedly will declare 
that the method shown in  Figure 6.2  is correct.    

  Manna and Waldinger [1978] stated that, “We can never be sure that the specifi ca-
tions are correct” and “We can never be certain that a verifi cation system is correct.” 
These statements from two leading experts in the fi eld encapsulate the various points 
made previously. 
  Does all this mean that there is no place for correctness proofs in software engineering? 
Quite the contrary. Proving products correct is an important, and sometimes vital, software 
engineering tool. Proofs are appropriate where human lives are at stake or where other-
wise indicated by cost–benefi t analysis. If the cost of proving software correct is less than 
the probable cost if the product fails, then the product should be proven. However, as the 
text-processing mini case study shows, proving alone is not enough. Instead, correctness 
proving should be viewed as an important component of the set of techniques that must be 
utilized together to check that a product is correct. Because the aim of software engineering 
is the production of quality software, correctness proving is indeed an important software 
engineering technique. 
  Even when a full formal proof is not justifi ed, the quality of software can be mark-
edly improved through the use of informal proofs. For example, a proof similar to that 

 FIGURE 6.7    
 “Theorem 
prover.” 

 void theoremProver ( )
{
  print “This product is correct”;
}
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of Section 6.5.1 assists in checking that a loop is executed the correct number of times. 
A second way of improving software quality is to insert assertions such as those of  Figure 
6.6  into the code. Then, if at execution time an assertion does not hold, the product is halted 
and the software team can investigate whether the assertion that terminated execution is 
incorrect or whether indeed a fault in the code was detected by triggering the assertion. 
Languages such as Java (from version 1.4 onward) support assertions directly by means of 
an   assert   statement. Suppose that an informal proof requires that the value of variable xxx 
be positive at a particular point in the code. Even though the members of the design team 
may be convinced that there is no way for xxx to be negative, for additional reliability they 
may specify that the statement

        assert   (xxx > 0) 

 must appear at that point in the code. If xxx is less than or equal to 0, execution terminates, 
and the situation can be investigated by the software team. Unfortunately,   Assert   in C++ is 
a debugging statement, similar to   assert   in C; it is not part of the language itself. 
  Once the users are confi dent that the product works correctly, they have the option of 
switching off assertion checking. This speeds up execution, but any fault that would have 
been detected by an assertion may not be found if assertion checking is switched off. There-
fore, there is a trade-off between run-time effi ciency and continuing assertion checking 
even after the product has been installed on the client’s computer. (Just in Case You Wanted 
to Know Box 6.3 gives an interesting insight on this issue.) 
    Model checking   is a new technology that may eventually take the place of correctness 
proving of software. Model checking is outlined in Section 18.11. 
  A fundamental issue in execution-based testing is which members of the software devel-
opment team should be responsible for carrying it out. This is discussed in Section 6.6.    

 Just in Case You Wanted to Know     Box 6.3 
 One feature of languages such as Java (but not C or C++) is bounds checking. An example 
of bounds checking is examining every array index during execution to ensure that it is 
within its declared range. 
  Hoare suggested that using bounds checking while developing a product but turning it 
off once the product is working correctly can be likened to learning to sail on dry land wear-
ing a life jacket and then taking the life jacket off when actually at sea. In his Turing Award 
lecture, Hoare [1981] described a compiler he developed in 1961. When users later were 
offered the opportunity to turn off bounds checking after the fi nal version of the compiler 
had been installed, they unanimously refused, because they had experienced so many inci-
dents of values out of range during test runs of earlier versions of the compiler. 
  Bounds checking can be viewed as a special case of a more general concept, assertion 
checking. Hoare’s life jacket analogy is equally applicable to turning off assertion checking 
once the fi nal version has been installed. 
  Hoare’s remarks were sadly prophetic. Today, a major technique used by hackers to 
penetrate computers is to send a long stream of data to an operating system to deliberately 
cause a buffer to overfl ow and overwrite a portion of the operating system with malicious 
executable code. This technique can work only if the programmers neglected to include 
bounds checking in the code for reading data into the buffer of an operating system imple-
mented in C or C++, or turned off bounds checking. 

sch76183_ch06_154-182.indd   174sch76183_ch06_154-182.indd   174 04/06/10   1:28 PM04/06/10   1:28 PM



Chapter 6  Testing  175

  6.6 Who Should Perform Execution-Based Testing? 
  Suppose a programmer is asked to test a code artifact he or she has implemented. Test-
ing has been described by Myers [1979] as the process of executing a product with the 
intention of fi nding faults. Testing therefore is a destructive process. On the other hand, 
the programmer doing the testing ordinarily does not wish to destroy his or her work. 
If the fundamental attitude of the programmer toward the code is the usual protective 
one, then the chances of that programmer using test data that will highlight faults is 
considerably lower than if the major motivation were truly destructive.   A successful 
test fi nds faults. This, too, poses a diffi culty. It means that, if the code artifact passes 
the test, then the test has failed. Conversely, if the code artifact does not perform 
according to specifi cations, then the test succeeds. A programmer who is asked to test 
a code artifact he or she has implemented is being asked to execute the code artifact 
in such a way that a failure (incorrect behavior) ensues. This goes against the creative 
instincts of programmers. 
  An inescapable conclusion is that programmers should not test their own code artifacts. 
After a programmer has been   con  structive and built a code artifact, testing that code arti-
fact requires the creator to perform a   de  structive act and attempt to destroy that creation. 
A second reason why execution-based testing should be done by someone else is that the 
programmer may have misunderstood some aspect of the design or specifi cations. If testing 
is done by someone else, such faults may be discovered. Nevertheless, debugging (fi nding 
the cause of the failure and correcting the fault) is best done by the original programmer, 
the person most familiar with the code. 
  The statement that a programmer should not test his or her own code must not be taken 
too far. Consider the programming process. The programmer begins by reading the detailed 
design of the code artifact; this may be in the form of a fl owchart or, more likely, pseudo-
code. But, whatever technique is used, the programmer must certainly   desk check   the 
code artifact before entering it into the computer. That is, the programmer must try out 
the fl owchart or pseudocode with various test cases, tracing through the detailed design to 
check that each test case is executed correctly. Only when the programmer is satisfi ed that 
the detailed design is correct should the text editor be invoked to code the artifact. 
  Once the code artifact is in machine-readable form, it undergoes a series of tests. Test 
data are used to determine that the code artifact works successfully, probably the same test 
data used to desk check the detailed design. Next, if the code artifact executes correctly 
when correct test data are used, then the programmer tries out incorrect data to test the 
robustness of the code artifact. When the programmer is satisfi ed that the code artifact 
operates correctly, systematic testing commences. This   systematic testing   should not be 
performed by the programmer. 
  If the programmer is not to perform this systematic testing, who is to do it? As stated 
in Section 6.1.2, independent testing must be performed by the SQA group. The key word 
here is   independent  . Only if the SQA group truly is independent of the development team 
can its members fulfi ll their mission of ensuring that the product indeed satisfi es its specifi -
cations, without software development managers applying pressures such as product dead-
lines that might hamper their work. SQA personnel must report to their own manager and 
thereby protect their independence. 
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  How is systematic testing performed? An essential part of a test case is a statement 
of the expected output before the test is executed. It is a complete waste of time for the 
tester to sit at a terminal, execute the code artifact, enter haphazard test data, and then 
peer at the screen and say, “I guess that looks right.” Equally futile is for the tester to 
plan test cases with great care and execute each test case in turn, look at the output, and 
say, “Yes, that certainly looks right.” It is far too easy to be fooled by plausible results. If 
programmers are allowed to test their own code, then there is always the danger that the 
programmer will see what he or she wants to see. The same danger can occur even when 
the testing is done by someone else. The solution is for management to insist that, before 
a test is performed, both the test data and the expected results of that test be recorded. 
After the test has been performed, the actual results should be recorded and compared 
with the expected results. 
  Even in small organizations and with small products, it is important that this record-
ing be done in machine-readable form, because test cases should never be thrown away. 
The reason for this is postdelivery maintenance. While the product is being maintained, 
  regression testing   must be performed. Stored test cases that the product has previously 
executed correctly must be rerun to ensure that the modifi cations made to add new func-
tionality to the product have not destroyed the product’s existing functionality. This is dis-
cussed further in  Chapter 16 .   

  6.7 When Testing Stops 
  After a product has been successfully maintained for many years, it eventually may lose 
its usefulness and be superseded by a totally different product, in much the same way that 
electronic valves were replaced by transistors. Alternatively, a product still may be useful, 
but the cost of porting it to new hardware or running it under a new operating system may 
be more than the cost of constructing a new product, using the old one as a prototype. So, 
fi nally, the software product is decommissioned and removed from service. Only at that 
point, when the software has been irrevocably discarded, is it time to stop testing. 
  Now that all the necessary background material has been covered, objects can be exam-
ined in greater detail. This is the subject of  Chapter 7 .    

   Chapter 
Review 
  A key theme of this chapter is that testing must be carried out in parallel with all activities of the 

software process. The chapter begins with a description of quality issues (Section 6.1). Next, non-
execution-based testing is described (Section 6.2), with a careful discussion of walkthroughs and 
inspections. This is followed by a defi nition of execution-based testing (Sections 6.3 and 6.4) and 
a discussion of behavioral properties of a product that must be tested, including utility, reliability, 
robustness, performance, and correctness (Sections 6.4.1 through 6.4.5). In Section 6.5, correct-
ness proving is introduced and an example of such a proof is given in Section 6.5.1. The role of 
correctness proofs in software engineering then is analyzed (Sections 6.5.2 and 6.5.3). Another 
important issue is that systematic execution-based testing must be performed by the independent 
SQA group and not by the programmer (Section 6.6). Finally, the issue of when testing can fi nally 
stop is discussed in Section 6.7.  
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  For 
Further 
Reading 

  The attitude of software producers to the testing process has changed over the years, from view-
ing testing as a means of showing that a product runs correctly to the modern attitude that testing 
should be used to prevent requirements, analysis, design, and implementation faults. This progression 
is described in [Gelperin and Hetzel, 1988]. The nature of software testing and the reasons why it is 
so hard are discussed in [Whittaker, 2000]. The pervasiveness of faults is described in [Lieberman and 
Fry, 2001]. Ways to reduce the number of faults appear in [Boehm and Basili, 2001]. 
  Whittaker and Voas [2000] present an interesting theory of reliability. Having an effective require-
ments workfl ow can have a positive impact on software quality; this is shown in [Damian and Chisan, 
2006]. The quality of open-source software is reviewed in [Aberdour, 2007]. 
  A standard technique of correctness proving uses the so-called Hoare logic, as described in [Hoare, 
1969]. An alternative approach to ensuring that products satisfy their specifi cations is to construct the 
product stepwise, checking that each step preserves correctness. This is described in [Dijkstra, 1968] 
and [Wirth, 1971]. An important article regarding acceptance of correctness proofs by the software 
engineering community is [DeMillo, Lipton, and Perlis, 1979]. Interesting views on correctness prov-
ing are given in [Hinchey et al., 2008]. 
  The IEEE   Standard for Software Reviews   [IEEE 1028, 1997] is an excellent source of information 
on non-execution-based testing. Experiments evaluating inspections of a large-scale software product 
are described in [Perry et al., 2002]. Vitharana and Ramamurthy [2003] suggest that inspections should 
be anonymous and computer mediated. The impact of group process support on inspections is presented 
in [Tyran and George, 2002]. The selection of inspection team members is discussed in [Miller and Yin, 
2004]. A review of inspections is given in [Parnas and Lawford, 2003], and the state of the practice is de-
scribed in [Ciolkowski, Laitenberger, and Biffl , 2003]. Object-oriented code inspections are discussed 
in [Dunsmore, Roper, and Wood, 2003]. The cost-effectiveness of inspections is presented in [Freimut, 
Briand, and Vollei, 2005]. Tailoring inspections to an organization’s needs is described in [Denger and 
Shull, 2007]. Design and code reviews conducted over the Internet are presented in [Meyer, 2008]. An 
experiment to test the value of the checklists is described in [Hatton, 2008]. 
  The classic work on execution-based testing is [Myers, 1979], a work that has had a signifi cant 
impact on the fi eld of testing. [DeMillo, Lipton, and Sayward, 1978] remains an excellent source of 
information on selection of test data. [Beizer, 1990] is a compendium on testing, a true handbook on 
the subject. [Ammann and Offutt, 2008] is strongly recommended as an introduction to testing. 
  Turning specifi cally to the object-oriented paradigm, [Kung, Hsia, and Gao, 1998] is a book on 
object-oriented testing, and so is [Sykes and McGregor, 2000]. 
  The proceedings of the IEEE International Symposium on Software Testing and Analysis cover 
a similar broad spectrum of testing issues. The April 2005 of   IEEE Transactions on Software Engi-
neering   contains a variety of papers from the 2004 Symposium. Two articles of particular interest are 
[Ostrand, Weyuker, and Bell, 2005], which describes a method for predicting the location and number 
of faults in large software products, and [Fu, Milanova, Ryder, Wonnacott, 2005] on the robustness 
testing of Java server applications. The July–August 2006 issue of   IEEE Software   contains a wide 
variety of papers on testing.  
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   model checking   174 
   moderator   160 
   non-execution-based testing   

157 
   overview   159 
   performance   165 
   preparation   159 

   quality   156 
   reader   160 
   recorder   160 
   regression testing   176 
   reliability   164 
   rework   160 
   robustness   165 
   simulator   164 

   software quality assurance 
(SQA)   156 

   systematic testing   175 
   test workfl ow   155 
   testing   155 
   utility   164 
   V & V   155 
   validation   155 
   verifi cation   155  

  Problems       6.1 How are the terms   correctness proving, verifi cation,   and   validation   used in this book?  

   6.2  A software development organization currently employs 91 software professionals, includ-
ing 18 managers, all of whom develop as well as test software. The latest fi gures show that 
26 percent of their time is spent on testing activities. The average annual cost to the company of 
a manager is $162,000, whereas nonmanagerial professionals cost $121,000 a year on average; 
both fi gures include overhead. Use cost–benefi t analysis to determine whether a separate SQA 
group should be set up within the organization.  

   6.3  Repeat the cost–benefi t analysis of Problem 6.2 for a fi rm with only eight software profession-
als, including three managers. Assume that the other fi gures remain unchanged.  

   6.4  You have been testing a code artifact for 11 days and found two faults. What does this tell you 
about the existence of other faults?  

   6.5  What are the similarities between a walkthrough and an inspection? What are the differences?  

   6.6  You are a member of the SQA group at Ye Olde Fashioned Software. You suggest to your man-
ager that inspections be introduced. He responds that he sees no reason why four people should 
waste their time looking for faults when one person can run test cases on the same piece of 
code. How do you respond?  

   6.7  You are the SQA manager at Farm and Field, a national chain of 1539 farm supply stores. Your 
organization is considering buying a stock-control package for use throughout the organization. 
Before authorizing the purchase of the package, you decide to test it thoroughly. What proper-
ties of the package do you investigate?  

   6.8  All 1539 stores in the Farm and Field organization are now to be connected by a communica-
tions network. A sales representative is offering you a 6-week free trial to experiment with the 
communications package he is trying to sell you. What sort of software tests would you perform 
and why?  

   6.9  You are a rear admiral in the Valerian Navy in charge of developing the software for controlling 
the ship-to-ship missile of Problem 1.4. The software has been delivered to you for acceptance 
testing. What properties of the software do you test?  

   6.10  Consider the following code fragment:

      k = 0;
g = 1;
  while   (k < n)
{
  k = k + 1;
  g = g * k;
} 
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   Prove that this code fragment correctly computes g = n! if n is a positive integer.  

   6.11 Consider the following code fragment:

      m = 1;
q = 2;
  while   (m < n)
{
  m = m + 1;
  q = q * 2;
} 

   Prove that this code fragment correctly computes q = 2n if n ∈ {1, 2, 3, . . . }.  
  6.12  Can correctness proving solve the problem that the product as delivered to the client may not be 

what the client really needs? Give reasons for your answer.  

  6.13  How should Dijkstra’s statement (Section 6.3) be changed to apply to correctness proofs rather 
than testing? Bear in mind the mini case study of Section 6.5.2.  

  6.14  Design and implement a solution to the Naur text-processing problem (Section 6.5.2) using 
the language specifi ed by your instructor. Execute it against test data and record the number of 
faults you fi nd and the cause of each fault (e.g., logic fault, loop counter fault). Do not correct 
any of the faults you detect. Now exchange products with a fellow student and see how many 
faults each of you fi nds in the other’s product and whether or not they are new faults. Again 
record the cause of each fault and compare the fault types found by each of you. Tabulate the 
results for the class as a whole.  

  6.15  Why is there a need to distinguish between a fault, a failure, and an error? Surely the use of the 
umbrella term   defect   simplifi es matters?  

  6.16  Give an example of a software product that has been successfully maintained for many years, 
but has lost its usefulness and has been superseded by a totally different product.  

  6.17  (Term Project) Explain how you would test the utility, reliability, robustness, performance, and 
correctness of the Chocoholics Anonymous product in Appendix A.  

  6.18  (Readings in Software Engineering) Your instructor will distribute copies of [Ostrand, Weyuker, 
and Bell, 2005]. What is your view on using regression models to predict fault numbers and 
locations? Justify your answer.     
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 Chapter 7 
From Modules 
to Objects 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Design modules and classes with high cohesion and low coupling.  

  • Understand the need for information hiding.  

  • Describe the software engineering implications of inheritance, polymorphism, 
and dynamic binding.  

  • Distinguish between generalization, aggregation, and association.  

  • Discuss the object-oriented paradigm in greater depth than before.      

  Some of the more lurid computer magazines seem to suggest that the object-oriented para-
digm was a sudden, dramatic new discovery of the mid-1980s, a revolutionary alternative 
to the then-popular classical paradigm.That is not the case. Instead, the theory of modu-
larity underwent steady progress during the 1970s and 1980s, and objects were simply an 
evolutionary development within the theory of modularity (but see Just in Case You Wanted 
to Know Box 7.1). This chapter describes objects within the context of modularity. 
  This approach is taken because it is extremely diffi cult to use objects correctly without 
understanding why the object-oriented paradigm is superior to the classical paradigm. And, 
to do that, it is necessary to appreciate that an object is merely the next logical step in the 
body of knowledge that begins with the concept of a module. 

  7.1 What Is a Module? 
  When a large product consists of a single monolithic block of code, maintenance is a night-
mare. Even for the author of such a monstrosity, attempting to debug the code is extremely 
diffi cult; for another programmer to understand it is virtually impossible. The solution is 
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to break the product into smaller pieces, called  modules . What is a module? Is the way a 
product is broken into modules important in itself or is it important only to break a large 
product into smaller pieces of code? 
  Stevens, Myers, and Constantine [1974] made an early attempt to describe modules. 
They defi ned a  module  as “a set of one or more contiguous program statements having a 
name by which other parts of the system can invoke it, and preferably having its own dis-
tinct set of variable names.” In other words, a module consists of a single block of code that 
can be invoked in the way that a procedure, function, or method is invoked. This defi nition 
seems to be extremely broad. It includes procedures and functions of all kinds, whether 
internal or separately compiled. It includes COBOL paragraphs and sections, even though 
they cannot have their own variables, because the defi nition states that the property of pos-
sessing a distinct set of variable names is merely “preferable.” It also includes modules 
nested inside other modules. But, broad as it is, the defi nition does not go far enough. For 
example, an assembler macro is not invoked and therefore, by the preceding defi nition, is 
not a module. In C and C++, a header fi le of declarations that is   #included   in a product 
similarly is not invoked. In short, this defi nition is too restrictive. 
  Yourdon and Constantine [1979] give a broader defi nition: “A module is a lexically 
contiguous sequence of program statements, bounded by boundary elements, having an 
aggregate identifi er.” Examples of boundary elements are  begin . . . end  pairs in a block-
structured language like Pascal or  {. . .}  pairs in C++ or Java. This defi nition not only 
includes all the cases excluded by the previous defi nition but is broad enough to be used 
throughout this book. In particular, procedures and functions of the classical paradigm are 
modules. In the object-oriented paradigm, an object is a module and so is a method within 
an object. 
  To understand the importance of modularization, consider the following somewhat fan-
ciful example. John Fence is a highly incompetent computer architect. He still has not 
discovered that both  NAND  gates and  NOR  gates are complete; that is, every circuit can 
be built with only  NAND  gates or with only  NOR  gates. John therefore decides to build 
arithmetic logic unit (ALU), shifter, and 16 registers using  AND ,  OR , and  NOT  gates. The 
resulting computer is shown in  Figure 7.1 . The three components are connected in a simple 
fashion. Now, our architect friend decides that the circuit should be fabricated on three sili-
con chips, so he designs the three chips shown in  Figure 7.2 . One chip has all the gates of 
the ALU, a second contains the shifter, and the third is for the registers. At this point John 
vaguely recalls that someone in a bar told him that it is best to build chips so that they have 

 Just in Case You Wanted to Know    Box 7.1 
 Object-oriented concepts were introduced as early as 1966 in the simulation language 
Simula 67 [Dahl and Nygaard, 1966]. However, at that time, the technology was too radical 
for practical use, so it lay dormant until the early 1980s, when it essentially was reinvented 
within the context of the theory of modularity. 
  This chapter includes other examples of the way leading-edge technology lies dormant 
until the world is ready for it. For example, information hiding (Section 7.6) was fi rst pro-
posed in 1971 within the software context by Parnas [1971], but the technology was not 
widely adopted until about 10 years later, when encapsulation and abstract data types had 
become part of software engineering. 
  We humans seem to adopt new ideas only when we are ready to use them, not neces-
sarily when they are fi rst presented. 
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only one kind of gate, so he redesigns his chips. On chip 1 he puts all the  AND  gates, on 
chip 2 all the  OR  gates, and all the  NOT  gates go onto chip 3. The resulting “work of art” 
is shown schematically in  Figure 7.3 . 
   Figures 7.2  and  7.3  are functionally equivalent; that is, they do exactly the same thing. 
But the two designs have markedly different properties: 

   1.  Figure 7.3  is considerably harder to  understand  than  Figure 7.2 . Almost anyone with 
a knowledge of digital logic immediately knows that the chips in  Figure 7.2  form an 
ALU, a shifter, and a set of registers. However, even a leading hardware expert would 
have trouble understanding the function of the various  AND ,  OR,  and  NOT  gates in 
 Figure 7.3 .  

Registers

ALU

Shifter

 FIGURE 7.1      The design of a computer. 

Registers

ALU

Shifter

Chip 2

Chip 3

Chip 1

 FIGURE 7.2      The computer of 
Figure 7.1 fabricated on three chips. 

AND gates OR gates

NOT gates

Chip 2

Chip 3

Chip 1 FIGURE 7.3
    The computer 
of Figure 7.1 
fabricated on 
three other 
chips. 
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  2.  Corrective   maintenance  of the circuits shown in  Figure 7.3  is diffi cult. Should the com-
puter have a design fault—and anyone capable of coming up with  Figure 7.3  is undoubt-
edly going to make lots and lots of mistakes—it would be diffi cult to determine where 
the fault is located. On the other hand, if the design of the computer in  Figure 7.2  has 
a fault, it can be localized by determining whether it appears to be in the way the ALU 
works, the way the shifter works, or the way the registers work. Similarly, if the com-
puter of  Figure 7.2  breaks down, it is relatively easy to determine which chip to replace; 
if the computer in  Figure 7.3  breaks down, it is probably best to replace all three chips.  

  3. The computer of  Figure 7.3  is diffi cult to  extend  or  enhance . If a new type of ALU is 
needed or faster registers are required, it is back to the drawing board. But the design 
of the computer of  Figure 7.2  makes it easy to replace the appropriate chip. Perhaps 
worst of all, the chips of  Figure 7.3  cannot be  reused  in any new product. There is no 
way that those three specifi c combinations of  AND ,  OR,  and  NOT  gates can be utilized 
for any product other than the one for which they were designed. In all probability, the 
three chips of  Figure 7.2  can be reused in other products that require an ALU, a shifter, 
or registers.   

  The point here is that software products have to be designed to look like  Figure 7.2 , 
where there is a maximal relationship within each chip and a minimal relationship between 
chips. A module can be likened to a chip, in that it performs an operation or series of 
operations and is connected to other modules. The functionality of the product as a whole 
is fi xed; what has to be determined is how to break the product into modules. Composite/
structured design [Stevens, Myers, and Constantine, 1974] provides a rationale for break-
ing a product into modules as a way to reduce the cost of maintenance, the major com-
ponent of the total software budget, as pointed out in  Chapter 1 . The maintenance effort, 
whether corrective, perfective, or adaptive, is reduced when there is maximal interaction 
within each module and minimal interaction between modules. In other words, the aim 
of composite/structured design (C/SD) is to ensure that the module decomposition of the 
product resembles  Figure 7.2  rather than  Figure 7.3 . As explained in Section 5.4, C/SD is 
an example of separation of concerns. 
  Myers [1978b] quantifi ed the ideas of module  cohesion , the degree of interaction 
within a module, and module  coupling , the degree of interaction between two modules. 
To be more precise, Myers used the term  strength  rather than  cohesion . However, cohe-
sion is preferable because modules can have high strength or low strength, and something 
is inherently contradictory in the expression  low strength —something that is not strong is 
weak. To prevent terminological inexactitude, C/SD now uses the term  cohesion . Some 
authors have used the term  binding  in place of  coupling . Unfortunately,  binding  also is 
used in other contexts in computer science, such as binding values to variables. But  coupling  
has none of these overtones and therefore is preferable. 
  It is necessary at this point to distinguish between the operation of a module, the logic 
of a module, and the context of a module. The  operation  of a module is what it does, that 
is, its behavior. For example, the operation of module  m  is to compute the square root of its 
argument. The  logic  of a module is how the module performs its operation; in the case of 
module  m,  the specifi c way of computing the square root is Newton’s method [Gerald and 
Wheatley, 1999]. The  context  of a module is the specifi c use of that module. For example, 
module  m  is used to compute the square root of a double-precision integer. A key point in 
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C/SD is that the name assigned a module is its operation and not its logic or its context. 
Therefore, in C/SD, module  m  should be named  compute_square_root;   1   its logic and its 
context are irrelevant from the viewpoint of its name.   

  7.2 Cohesion 
  Myers [1978b] defi ned seven categories or levels of cohesion. In the light of modern theo-
retical computer science, Myers’s fi rst two levels need to be interchanged because, as will 
be shown, informational cohesion supports reuse more strongly than functional cohesion. 
The resulting ranking is shown in  Figure 7.4 . This is not a linear scale of any sort. It is 
merely a relative ranking, a way of determining which types of cohesion are high (good) 
and which are low (bad). 
  To understand what constitutes a module with high cohesion, it is necessary to start at 
the other end and consider the lower cohesion levels. 

  7.2.1 Coincidental Cohesion 
 A module has  coincidental cohesion  if it performs multiple, completely unrelated oper-
ations. An example of a module with coincidental cohesion is a module named  print_the_
next_line, reverse_the_string_of_characters_comprising_the_second_argument, 
add_7_to_the_fi fth_argument, convert_the_fourth_argument_to_fl oating_point.  
An obvious question is, How can such modules possibly arise in practice? The most com-
mon cause is as a consequence of rigidly enforcing rules such as “every module shall 
consist of between 35 and 50 executable statements.” If a software organization insists 
that modules must be neither too big nor too small, then two undesirable things happen. 
First, two or more otherwise ideal smaller modules are lumped together to create a larger 
module with coincidental cohesion. Second, pieces hacked from well-designed modules 
that management considers too large are combined, again resulting in modules with coin-
cidental cohesion. 

  1  For added clarity, the underscore is used in function names like compute_square_root to highlight that the 
structured paradigm is used in this and the following sections. When the object-oriented paradigm is used (from 
Section 7.4.2 onward), the corresponding method would be named computeSquareRoot. 

7.    Informational cohesion (Good)

6.    Functional cohesion

5.    Communicational cohesion

4.    Procedural cohesion

3.    Temporal cohesion

2.    Logical cohesion

1.    Coincidental cohesion    (Bad)

 FIGURE 7.4 
    Levels of 
cohesion. 
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  Why is coincidental cohesion so bad? Modules with coincidental cohesion suffer from 
two serious drawbacks. First, such modules degrade the maintainability of the product, 
both corrective maintenance and enhancement. From the viewpoint of trying to understand 
a product, modularization with coincidental cohesion is worse than no modularization at 
all [Shneiderman and Mayer, 1975]. Second, these modules are not reusable. It is extremely 
unlikely that the module with coincidental cohesion in the fi rst paragraph of this section 
could be reused in any other product. 
  Lack of reusability is a serious drawback. The cost of building software is so great that 
it is essential to try to reuse modules wherever possible. Designing, coding, document-
ing, and above all, testing a module are time consuming and hence costly processes. If an 
existing well-designed, thoroughly tested, and properly documented module can be used in 
another product, then management should insist that the existing module be reused. But 
there is no way that a module with coincidental cohesion can be reused, and the money 
spent to develop it can never be recouped. (Reuse is discussed in detail in  Chapter 8 .) 
  It is generally easy to rectify a module with coincidental cohesion—because it per-
forms multiple operations, break the module into smaller modules that each perform 
one operation.  

  7.2.2  Logical Cohesion 
 A module has  logical cohesion  when it performs a series of related operations, one of 
which is selected by the calling module. All the following are examples of modules with 
logical cohesion. 
   Example 1   Module  new_operation,  which is invoked as follows: 

  function_code = 7;  
  new_operation (function_code, dummy_1, dummy_2, dummy_3);  
 //  dummy_1, dummy_2,  and  dummy_3  are dummy variables, 
 // not used if  function_code  is equal to  7   

  In this example,  new_operation  is called with four arguments, but as stated in the comment 
lines, three of them are not needed if  function_code  is equal to  7 . This degrades readability, with 
the usual implications for maintenance, both corrective and enhancement. 

   Example 2   An object that performs all input and output.  

   Example 3   A module that edits insertions, deletions, and modifi cations of master fi le records.  

   Example 4   A module with logical cohesion in an early version of OS/VS2 that performed 13 dif-
ferent operations; its interface contained 21 pieces of data [Myers, 1978b].  

  Two problems occur when a module has logical cohesion. First, the interface is diffi cult 
to understand (Example 1 is a case in point), and comprehensibility of the module as a 
whole may suffer as a result. Second, the code for more than one operation may be inter-
twined, leading to severe maintenance problems. For instance, a module that performs all 
input and output may be structured as shown in  Figure 7.5 . If a new tape unit is installed, it 
may be necessary to modify the sections numbered 1, 2, 3, 4, 6, 9, and 10. These changes 
may adversely affect other forms of input–output, such as laser printer output, because the 
laser printer is affected by changes to sections 1 and 3. This intertwined property is charac-
teristic of modules with logical cohesion. A further consequence of intertwining is that it is 
diffi cult to reuse such a module in other products.  
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  7.2.3 Temporal Cohesion 
 A module has  temporal cohesion  when it performs a series of operations related in 
time. An example of a module with temporal cohesion is one named  open_old_master_
fi le, new_master_fi le, transaction_fi le, and print_fi le; initialize_sales_region_table; 
read_fi rst_transaction_record_and_fi rst_old_master_fi le_record.  In the bad old days 
before C/SD, such a module would be called  perform_initialization.  
  The operations of this module are related weakly to one another but more strongly to 
operations in other modules. Consider, for example, the  sales_region_table . It is ini-
tialized in this module, but operations such as  update_sales_region_table  and  print_
sales_region_table  are located in other modules. Therefore, if the structure of the 
 sales_region_table  is changed, perhaps because the organization is expanding into areas 
of the country where it previously had not done business, a number of modules have to be 
changed. Not only is there more chance of a regression fault (a fault caused by a change 
made to an apparently unrelated part of the product), but if the number of affected modules 
is large, one or two modules are likely to be overlooked. It is much better to have all the 
operations on the  sales_region_table  in one module, as described in Section 7.2.7. These 
operations then can be invoked, when needed, by other modules. In addition, a module with 
temporal cohesion is unlikely to be reusable in a different product.  

  7.2.4 Procedural Cohesion 
 A module has  procedural cohesion  if it performs a series of operations related by the 
sequence of steps to be followed by the product. An example of a module with proce-
dural cohesion is  read_part_number_from_database_and_update_repair_record_
on_maintenance_fi le . 
  This clearly is better than temporal cohesion—at least the operations are related proce-
durally to one another. Even so, the operations are still weakly connected, and again the 
module is unlikely to be reusable in another product. The solution is to break a module with 
procedural cohesion into separate modules, each performing one operation.  

1. Code for all input and output

2. Code for input only

3. Code for output only

4. Code for disk and tape I/O

5. Code for disk I/O

6. Code for tape I/O

7. Code for disk input

8. Code for disk output

9.  Code for tape input

10. Code for tape output

37. Code for keyboard input

. .
 .

. .
 .

. .
 .

 FIGURE 7.5 
   A module 
that performs 
all input and 
output. 
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  7.2.5 Communicational Cohesion 
 A module has  communicational cohesion  if it performs a series of operations related 
by the sequence of steps to be followed by the product and if all the operations are per-
formed on the same data. Two examples of modules with communicational cohesion are 
 update_record_in_database_and_write_ it _to_the_audit_trail , and  calculate_new_
trajectory_and_send_ it _to_the_printer . This is better than procedural cohesion because 
the operations of the module are more closely connected, but it still has the same drawback 
as coincidental, logical, temporal, and procedural cohesion, namely, that the module can-
not be reused. Again the solution is to break such a module into separate modules, each 
performing one operation. 
  In passing, it is interesting to note that Dan Berry [personal communication, 1978] uses the 
term  fl owchart cohesion  to refer to temporal, procedural, and communicational cohesion, 
because the operations performed by such modules are adjacent in the product fl owchart. 
The operations are adjacent in the case of temporal cohesion because they are performed 
at the same time. They are adjacent in procedural cohesion because the algorithm requires 
the operations to be performed in series. They are adjacent in communicational cohesion 
because, in addition to being performed in series, the operations are performed on the same 
data, and therefore it is natural that these operations should be adjacent in the fl owchart.  

  7.2.6 Functional Cohesion 
 A module that performs exactly one operation or achieves a single goal has  functional 
cohesion . Examples of such modules are  get_temperature_of_furnace ,  compute_
orbital_of_electron ,  write_to_diskette ,   and  calculate_sales_commission.  
  A module with functional cohesion often can be reused because the one operation it 
performs often needs to be performed in other products. A properly designed, thoroughly 
tested, and well-documented module with functional cohesion is a valuable (economic and 
technical) asset to any software organization and should be reused as often as possible. 
However, as explained in Section 8.4, a module with functional cohesion is not self-
contained and independent, because it has to operate on data. If we wish to reuse a module 
with functional cohesion, then we also have to reuse the data on which it is to operate. If the 
data in the new product are not identical to those in the original, then either the data have 
to be changed or the module with functional cohesion has to be changed. In other words, 
contrary to what was claimed when C/SD was fi rst put forward in 1974, a module with 
functional cohesion is by no means an ideal candidate for reuse. 
  Maintenance is easier to perform on a module with functional cohesion. First, functional 
cohesion leads to fault isolation. If it is clear that the temperature of the furnace is not being 
read correctly, then the fault almost certainly is in module  get_temperature_of_furnace.  
Similarly, if the orbital of an electron is computed incorrectly, then the fi rst place to look is 
in  compute_orbital_of_electron.  
  Once the fault has been localized to a single module, the next step is to make the required 
changes. Because a module with functional cohesion performs only one operation, such a 
module generally is easier to understand than a module with lower cohesion. This ease 
in understanding also simplifi es the maintenance. Finally, when the change is made, the 
chance of that change affecting other modules is slight, especially if the coupling between 
modules is low (Section 7.3). 
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  Functional cohesion also is valuable when a product has to be extended. For example, 
suppose that a personal computer has a 120-gigabyte hard drive but the manufacturer now 
wishes to market a more powerful model of the computer with a 240-gigabyte hard drive 
instead. Reading through the list of modules, the maintenance programmer fi nds a module 
named  write_to_hard_drive.  The obvious thing to do is to replace that module with a new 
one called  write_to_larger_hard_drive.  
  In passing, it should be pointed out that the three “modules” of  Figure 7.2  have functional 
cohesion, and the arguments made in Section 7.1 for favoring the design of  Figure 7.2  over 
that of  Figure 7.3  are precisely those made in the preceding discussion for favoring func-
tional cohesion.  

  7.2.7 Informational Cohesion 
 A module has  informational cohesion  if it performs a number of operations, each with 
its own entry point, with independent code for each operation, all performed on the same 
data structure. An example is given in  Figure 7.6 . This does not violate the tenets of struc-
tured programming; each piece of code has exactly one entry point and one exit point. 
A major difference between logical cohesion and informational cohesion is that the vari-
ous operations of a module with logical cohesion are intertwined, whereas in a module 
with informational cohesion the code for each operation is completely independent. 
  A module with informational cohesion is an example of separation of concerns; see 
Section 5.4. 
  A module with informational cohesion essentially is an implementation of an abstract 
data type, as explained in Section 7.5, and all the advantages of using an abstract data type 
are gained when a module with informational cohesion is used. Because an object essen-
tially is an instantiation (instance) of an abstract data type (Section 7.7), an object, too, is a 
module with informational cohesion.  2    

  7.2.8 Cohesion Example 
 For further insight into cohesion, consider the example shown in  Figure 7.7 . Two modules in 
particular merit comment. It may seem somewhat surprising that the modules  initialize_ sums_
and_open_fi les  and  close_fi les_and_print_average_temperatures  have been labeled as 

Entry

Entry

Entry

Exit

Exit

Exit

initialize_sales_region_table

update_sales_region_table

print_sales_region_table

Definition of
sales_region_table

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

 FIGURE 7.6 
   A module with 
informational 
cohesion. 

  2  The discussion in this paragraph assumes that the abstract data type or object is well designed. If the methods 
of an object perform completely unrelated operations, then the object has coincidental cohesion. 
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having coincidental cohesion rather than temporal cohesion. First, consider module  initialize_
sums_and_open_fi les.  It performs two operations related in time, in that both have to be 
done before any calculations can be performed, and therefore it seems that the module has 
temporal cohesion. Although the two operations of  initialize_sums_and_open_fi les  indeed 
are performed at the beginning of the calculation, another factor is involved. Initializing 
the sums is related to the problem, but opening fi les is a hardware issue that has nothing 
to do with the problem itself. The rule when two or more different levels of cohesion can be 
assigned to a module is to assign the lowest possible level. Consequently, because  initialize_
sums_and_open_fi les  could have either temporal or coincidental cohesion, the lower of 
the two levels of cohesion (coincidental) is assigned that module. That also is the reason 
why  close_fi les_and_print_average_temperatures  has coincidental cohesion.    

  7.3 Coupling 

  Recall that cohesion is the degree of interaction within a module. Coupling is the degree 
of interaction between two modules. As before, a number of levels can be distinguished, as 
shown in  Figure 7.8 . To highlight good coupling, the various levels are described in order 
from the worst to the best. 

  7.3.1 Content Coupling 
 Two modules are  content coupled  if one directly references the contents of the other. All 
the following are examples of content coupling: 
   Example 1.   Module  p  modifi es a statement of module  q .  

initialize_sums_
and_

open_files

create_new_
temperature_

record

compute_average_
daily_temperatures_

at_various_sites

store_
temperature_

record

close_files_and_
print_average_
temperatures

read_in_site_
time_and_

temperature

store_record_
for_specific_

site

edit_site_time_
or_temperature_

field

Coincidental Functional CoincidentalFunctional

Functional Functional

Logical

Functional

 FIGURE 7.7      A module interconnection diagram showing the cohesion of each module. 

sch76183_ch07_183-224.indd   192sch76183_ch07_183-224.indd   192 04/06/10   1:40 PM04/06/10   1:40 PM



Chapter 7  From Modules to Objects  193

  This practice is not restricted to assembly language programming. The  alter  verb, now 
mercifully removed from COBOL, did precisely that: It modifi ed another statement. 
   Example 2.   Module  p  refers to local data of module  q  in terms of some numerical displacement 
within  q .  

   Example 3.   Module  p  branches to a local label of module  q .  

  Suppose that module  p  and module  q  are content coupled. One of the many dangers is 
that almost any change to  q , even recompiling  q  with a new compiler or assembler, requires 
a change to  p . Furthermore, it is impossible to reuse module  p  in some new product with-
out reusing module  q  as well. When two modules are content coupled, they are inextricably 
interlinked.  

  7.3.2 Common Coupling 
 Two modules are  common coupled  if both have access to the same global data. The 
situation is depicted in  Figure 7.9 . Instead of communicating with one another by passing 
arguments, modules  cca  and  ccb  can access and change the value of  global_variable.  The 
most common situation in which this arises is when both  cca  and  ccb  have access to the 
same database and can read and write the same record. For common coupling, it is neces-
sary that both modules can read  and  write to the database; if the database access mode is 
read-only, then this is not common coupling. But there are other ways of implementing 
common coupling, including use of the C++ or Java modifi er   public  . 
  This form of coupling is undesirable for a number of reasons: 

   1. It contradicts the spirit of structured programming in that the resulting code is virtu-
ally unreadable. Consider the code fragment shown in  Figure 7.10 . If  global_variable  
is a global variable, then its value may be changed by  module_3 ,  module_4 , or any 
module called by them. Determining under what conditions the loop terminates is a 

 FIGURE 7.8 
   Levels of 
coupling. 

5.    Data coupling (Good)

4.    Stamp coupling

3.    Control coupling

2.    Common coupling

1.    Content coupling    (Bad)

global_variable

cca ccb

 FIGURE 7.9      An example of common coupling. 

   whlle  (global_variable �� 0)
 {
   if  (argument_xyz � 25)
    module_3 ( );
   else 
    module_4 ( );
 } 

 FIGURE 7.10      A pseudocode 
fragment refl ecting common 
coupling. 

sch76183_ch07_183-224.indd   193sch76183_ch07_183-224.indd   193 04/06/10   1:40 PM04/06/10   1:40 PM



194  Part A  Software Engineering Concepts

nontrivial question; if a run-time failure occurs, it may be diffi cult to reconstruct what 
happened, because any of a number of modules could have changed the value of  global_
variable .  

  2. Consider the call  edit_this_transaction (record_7) . If there is common coupling, this 
call could change not just the value of  record_7  but any global variable that can be 
accessed by that module. In short, the entire module must be read to fi nd out precisely 
what it does.  

  3. If a maintenance change is made in one module to the declaration of a global variable, 
then every module that can access that global variable has to be changed. Furthermore, 
all changes must be consistent.  

  4. Another problem is that a common-coupled module is diffi cult to reuse because the 
identical list of global variables has to be supplied each time the module is reused.  

  5. Common coupling possesses the unfortunate property that the number of instances of 
common coupling between a module  p  and the other modules in a product can change 
drastically, even if module  p  itself never changes; this is termed  clandestine common 
coupling  [Schach et al., 2003a]. For example, if both module  p  and module  q  can mod-
ify global variable  gv , then there is one instance of common coupling between module  p  
and the other modules in the software product. But if 10 new modules are designed and 
implemented, all of which can modify global variable  gv , then the number of instances 
of common coupling between module  p  and the other modules increases to 11, even 
though module  p  itself has not been changed in any way. For example, between 1993 
and 2000, there were nearly 400 releases of Linux; 5332 versions of the 17 Linux kernel 
modules were unchanged between successive releases. In more than half of the 5332 
versions, the number of instances of common coupling between each of those kernel 
modules and the rest of Linux increased or decreased, even though the kernel module 
itself did not change. Considerably more modules exhibited clandestine common cou-
pling in an upward direction (2482) than downward (379) [Schach et al., 2003a].  

  6. This problem is potentially the most dangerous. As a consequence of common coupling, 
a module may be exposed to more data than it needs. This defeats any attempts to control 
data access and ultimately may lead to computer crime. Many types of computer crime 
need some form of collusion. Properly designed software should not allow any one 
programmer access to all the data and modules needed to commit a crime. For example, 
a programmer writing the check printing part of a payroll product needs to have access 
to employee records; but, in a well-designed product, such access is exclusively in read-
only mode, preventing the programmer from making unauthorized changes to his or her 
monthly salary. To make such changes, the programmer has to fi nd another dishonest 
employee, one with access to the relevant records in update mode. But if the product has 
been badly designed and every module can access the payroll database in update mode, 
then an unscrupulous programmer acting alone can make unauthorized changes to any 
record in the database.   

  Although we hope that these arguments will dissuade all but the most daring of readers 
from using common coupling, in some situations, common coupling might seem to be pref-
erable to the alternatives. Consider, for example, a product that performs computer-aided 
design of petroleum storage tanks [Schach and Stevens-Guille, 1979]. A tank is specifi ed 
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by a large number of descriptors such as height, diameter, maximum wind speed to which 
the tank will be subjected, and insulation thickness. The descriptors have to be initialized 
but do not change in value thereafter, and most of the modules in the product need access to 
the values of the descriptors. Suppose that there are 55 tank descriptors. If all these descrip-
tors are passed as arguments to every module, then the interface to each module will consist 
of at least 55 arguments and the potential for faults is huge. Even in a language like Ada, 
which requires strict type checking of arguments, two arguments of the same type still can 
be interchanged, a fault that would not be detected by a type checker. 
  One solution is to put all the tank descriptors in a database and design the product in such 
a way that one module initializes the values of all the descriptors, whereas all the other mod-
ules access the database exclusively in read-only mode. However, if the database solution is 
impractical, perhaps because the specifi ed implementation language cannot be interfaced 
with the available database management system, then an alternative is to use common cou-
pling but in a controlled way. That is, the product should be designed so that the 55 descrip-
tors are initialized by one module, but none of the other modules changes the value of a 
descriptor. This programming style has to be enforced by management, unlike the database 
solution, where enforcement is imposed by the software. Therefore, in situations where there 
is no good alternative to the use of common coupling, close supervision by management can 
reduce some of the risks. A better solution, however, is to obviate the presence of common 
coupling by using information hiding, as described in Section 7.6.  

  7.3.3 Control Coupling 
 Two modules are  control coupled  if one passes an element of control to the other mod-
ule; that is, one module explicitly controls the logic of the other. For example, control is 
passed when a function code is passed to a module with logical cohesion (Section 7.2.2). 
Another example of control coupling is when a control switch is passed as an argument. 
  If module  p  calls module  q  and  q  passes back a fl ag to  p  that says, “I am unable to com-
plete my task,” then  q  is passing  data . But if the fl ag means, “I am unable to complete my 
task; accordingly, display error message  ABC123 ,” then  p  and  q  are control coupled. In other 
words, if  q  passes information back to  p  and  p  decides what action to take as a consequence of 
receiving that information, then  q  is passing data. But, if  q  not only passes back information 
but also informs module  p  as to what action  p  must take, then control coupling is present. 
  The major diffi culty that arises as a consequence of control coupling is that the two 
modules are not independent; module  q , the called module, has to be aware of the internal 
structure and logic of module  p . As a result, the possibility of reuse is reduced. In addi-
tion, control coupling generally is associated with modules that have logical cohesion and 
includes the diffi culties associated with logical cohesion.  

  7.3.4 Stamp Coupling 
 In some programming languages, only simple variables, such as  part_number ,  satellite_
altitude,  or  degree_of_multiprogramming,  can be passed as arguments. But many lan-
guages also support passing data structures, such as records or arrays, as arguments. In such 
languages, valid arguments include  part_record ,  satellite_coordinates,  or  segment_table . 
Two modules are  stamp coupled  if a data structure is passed as an argument, but the called 
module operates on only some of the individual components of that data structure. 
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  Consider, for example, the call  calculate_withholding (employee_record).  It is 
not clear, without reading the entire  calculate_withholding  module, which fi elds of the 
 employee_record  the module accesses or changes. Passing the employee’s salary obvi-
ously is essential for computing the withholding, but it is diffi cult to see how the employee’s 
home telephone number is needed for this purpose. Instead, only those fi elds that it actually 
needs for computing the withholding should be passed to module  calculate_withholding . 
Not only is the resulting module, and particularly its interface, easier to understand, it is 
likely to be reusable in a variety of other products that also need to compute withholding. 
(See Just in Case You Wanted to Know Box 7.2 for another perspective on this.) 
  Perhaps even more important, because the call  calculate_withholding (employee_
record)  passes more data than strictly necessary, the problems of uncontrolled data access, 
and conceivably computer crime, once again arise. This issue is discussed in Section 7.3.2. 
  Nothing is at all wrong with passing a data structure as an argument, provided all 
the components of the data structure are used by the called module. For example, calls 
like  invert_matrix (original_matrix, inverted_matrix)  or  print_inventory_record 
(warehouse_record)  pass a data structure as an argument, but the called modules oper-
ate on all the components of that data structure. Stamp coupling is present when a data 
structure is passed as an argument but only some of the components are used by the 
called module. 
  A subtle form of stamp coupling can occur in languages like C or C++ when a pointer to a 
record is passed as an argument. Consider the call  check_altitude (pointer_to_position_
record).  At fi rst sight, what is being passed is a simple variable. But the called module has 
access to all the fi elds in the  position_record  pointed to by  pointer_to_position_record . 
Because of the potential problems, it is a good idea to examine the coupling closely when-
ever a pointer is passed as an argument.  

  7.3.5 Data Coupling 
 Two modules are  data coupled  if all arguments are homogeneous data items. That is, 
every argument is either a simple argument or a data structure in which all elements are 
used by the called module. Examples include  display_time_of_arrival (fl ight_number) , 

 Just in Case You Wanted to Know Box 7.2 
 Passing four or fi ve different fi elds to a module may be slower than passing a complete 
record. This situation leads to a larger issue: What should be done when optimization issues 
(such as response time or space constraints) clash with what is generally considered to be 
good software engineering practice? 
  In my experience, this question frequently turns out to be irrelevant. The recommended 
approach may slow down the response time, but by only a millisecond or so, far too small 
to be detected by users. Therefore, in accordance with Knuth’s [1974] First Law of Opti-
mization:  Don’t! —rarely is there a need for optimization of any kind, including for perfor-
mance reasons. 
  But what if optimization really is required? In this case, Knuth’s Second Law of Opti-
mization applies. The Second Law (labeled  for experts only ) is  Not yet!  In other words, fi rst 
complete the entire product using appropriate software engineering techniques. Then, if 
optimization really is required, make only the necessary changes, meticulously document-
ing what is being changed and why. If at all possible, this optimization should be done by 
an experienced software engineer. 
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 compute_product (fi rst_number, second_number, result),  and  determine_job_with_
highest_priority (job_queue) . 
  Data coupling is an example of separation of concerns—see Section 5.4. 
  Data coupling is a desirable goal. To put it in a negative way, if a product exhibits data cou-
pling exclusively, then the diffi culties of content, common, control, and stamp coupling are not 
present. From a more positive viewpoint, if two modules are data coupled, then maintenance is 
easier, because a change to one module is less likely to cause a regression fault in the other. 
  The following example clarifi es certain aspects of coupling.  

  7.3.6 Coupling Example 
 Consider the example shown in  Figure 7.11 . The numbers on the arcs represent interfaces 
that are defi ned in greater detail in  Figure 7.12 . For example, when module  p  calls module 
 q  (interface  1 ), it passes one argument, the type of the aircraft. When  q  returns control to 
 p , it passes back a status fl ag. Using the information in  Figures 7.11  and  7.12 , the coupling 
between every pair of modules can be deduced. The results are shown in  Figure 7.13 . 

 FIGURE 7.11   
 Module 
interconnection 
diagram for 
a coupling 
example. 

p

q

s

u

r

t

p, t, and u access
the same database
in update mode.

1

2

3 4

5 6

 FIGURE 7.12   
 The interface 
description for 
Figure 7.11. 

             Number     In     Out    

     1     aircraft_type     status_fl ag   
    2     list_of_aircraft_parts       —   
    3     function_code       —   
    4     list_of_aircraft_parts       —   
    5     part_number     part_manufacturer   
    6     part_number     part_name      

  FIGURE 7.13   
 Coupling 
between pairs 
of modules of 
Figure 7.11. 

                       q     r     s     t     u    

    p     Data     —      Data or     Common     Common   
   stamp
   q          Control      Data or     —     —   
   stamp
   r               —     Data       —   
   s                    —     Data   
   t                         Common       

{
{
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  Some of the entries in  Figure 7.13  are obvious. For instance, the data coupling between 
 p  and  q  (interface  1  in  Figure 7.11 ), between  r  and  t  (interface  5 ), and between  s  and  u  
(interface  6 ) is a direct consequence of the fact that a simple variable is passed in each 
direction. The coupling between  p  and  s  (interface  2 ) is data coupling if all the elements of 
the list of parts passed from  p  to  s  are used or updated, but it is stamp coupling if  s  operates 
on only certain elements of the list. The coupling between  q  and  s  (interface  4 ) is similar. 
Because the information in  Figures 7.11  and  7.12  does not completely describe the func-
tion of the various modules, there is no way of determining whether the coupling is data or 
stamp. The coupling between  q  and  r  (interface  3 ) is control coupling, because a function 
code is passed from  q  to  r . 
  Perhaps somewhat surprising are the three entries marked common coupling in  Figure 
7.13 . The three module pairs that are farthest apart in  Figure 7.11 — p  and  t ,  p  and  u,  
and  t  and  u —at fi rst appear not to be coupled in any way. After all, no interface connects 
them, so the very idea of coupling between them, let alone common coupling, requires 
some explanation. The answer lies in the annotation on the right-hand side of  Figure 7.11 , 
namely, that  p ,  t,  and  u  all access the same database in update mode. The result is that a 
number of global variables can be changed by all three modules, and hence they are pair-
wise common coupled.  

  7.3.7 The Importance of Coupling 
 Coupling is an important metric. If module  p  is tightly coupled to module  q , then a change 
to module  p  may require a corresponding change to module  q . If this change is made, as 
required, during integration or postdelivery maintenance, then the resulting product func-
tions correctly; however, progress at that stage is slower than would have been the case had 
the coupling been looser. On the other hand, if the required change is not made to module 
 q  at that time, then the fault manifests itself later. In the best case, the compiler or linker 
informs the team right away that something is amiss or a failure will occur while testing the 
change to module  p . What usually happens, however, is that the product fails either during 
subsequent integration testing or after the product has been installed on the client’s com-
puter. In both cases, the failure occurs after the change to module  p  has been completed. 
There no longer is any apparent link between the change to module  p  and the overlooked 
corresponding change to module  q . The fault therefore may be hard to fi nd. 
  It has been shown that the stronger (more undesirable) the coupling, the greater the 
fault-proneness [Briand, Daly, Porter, and Wüst, 1998]. A major reason underlying this 
phenomenon is that dependencies within the code lead to regression faults. Furthermore, 
if a module is fault-prone, then it will have to undergo repeated maintenance, and these 
frequent changes are likely to compromise its maintainability. Furthermore, these frequent 
changes will not always be restricted to the fault-prone module itself; it is not uncommon to 
have to modify more than one module to fi x a single fault. Accordingly, the fault-proneness 
of one module can adversely affect the maintainability of a number of other modules. In 
other words, it is easy to believe that strong coupling can have a deleterious effect on main-
tainability [Yu, Schach, Chen, and Offutt, 2004]. 
  Given that a design in which modules have high cohesion and low coupling is a good 
design, the obvious question is, How can such a design be achieved? Because this chap-
ter is devoted to theoretical concepts surrounding design, the answer to the question is 
presented in  Chapter 14 . In the meantime, those qualities that identify a good design are 
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examined further and refi ned. For convenience, the key defi nitions in this chapter appear 
in  Figure 7.14 , together with the section in which each defi nition appears. 

     7.4 Data Encapsulation 
  Consider the problem of designing an operating system for a large mainframe computer. 
According to the specifi cations, any job submitted to the computer is classifi ed as high pri-
ority, medium priority, or low priority. The task of the operating system is to decide which 
job to load into memory next, which of the jobs in memory gets the next time slice and how 
long that time slice should be, and which of the jobs that require disk access has highest 
priority. In performing this scheduling, the operating system must consider the priority of 
each job; the higher the priority, the sooner that job should be assigned the resources of 
the computer. One way of achieving this is to maintain separate job queues for each job-
priority level. The job queues have to be initialized, and facilities must exist for adding a 
job to a job queue when the job requires memory, CPU time, or disk access as well as for 
removing a job from a queue when the operating system decides to allocate the required 
resource to that job. 
  To simplify matters, consider the restricted problem of batch jobs queuing up for memory 
access. There are three queues for incoming batch jobs, one for each priority level. When sub-
mitted by a user, a job is added to the appropriate queue; and when the operating system decides 
that a job is ready to be run, it is removed from its queue and memory is allocated to it. 
  This portion of the product can be built in a number of different ways. One possible 
design, shown in  Figure 7.15 , depicts modules for manipulating one of the three job queues. 
A C-like pseudocode is used to highlight some of the problems that can arise in the classical 
paradigm. In Section 7.7, these problems are solved using the object-oriented paradigm. 
  Consider  Figure 7.15 . Function  initialize_job_queue  in module  m_1  is responsible for 
the initialization of the job queue, and functions  add_job_to_queue  and  remove_job_
from_queue  in modules  m_2  and  m_3,  respectively, are responsible for the addition and 

Abstract data type: a data type together with the operations performed on
instantiations of that data type (Section 7.5)

Abstraction: a means of achieving stepwise refinement by suppressing unnecessary
details and accentuating relevant details (Section 7.4.1)

Class: an abstract data type that supports inheritance (Section 7.7)

Cohesion: the degree of interaction within a module (Section 7.1)

Coupling: the degree of interaction between two modules (Section 7.1)

Data encapsulation: a data structure together with the operations performed on
that data structure (Section 7.4)

Encapsulation: the gathering together into one unit of all aspects of the real-world
entity modeled by that unit (Section 7.4.1)

Information hiding: structuring the design so that the resulting implementation
details are hidden from other modules (Section 7.6)

Object: an instantiation of a class (Section 7.7)

 FIGURE 7.14   
 Key defi nitions 
of this chapter, 
and the sections 
in which they 
appear. 
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deletion of jobs. Module  m_123  contains invocations of all three functions in order to 
manipulate the job queue. To concentrate on data encapsulation, issues such as underfl ow 
(trying to remove a job from an empty queue) and overfl ow (trying to add a job to a full 
queue) have been suppressed here, as well as in the remainder of this chapter. 
  The modules of the design of  Figure 7.15  have low cohesion, because operations 
on the job queue are spread all over the product. If a decision is made to change the 
way  job_queue  is implemented (for example, as a linked list of records instead of as a 

Definition of
job_queue

{

}

add_job_to_queue (job j)

m_2

Definition of
job_queue

{

}

remove_job_from_queue (job j)

m_3

initialize_job_queue ();

remove_job_from_queue (job_b);

add_job_to_queue (job_a);

job job_a, job_b;
{

}

Definition of
job_queue

m_123

Definition of
job_queue

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

{

}

initialize_job_queue ()

m_1 FIGURE 7.15   
 One possible 
design of the job 
queue portion 
of the operating 
system. 
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linear list), then modules  m_1 ,  m_2 , and  m_3  have to be drastically revised. Module 
 m_123  also has to be changed; at the very least, the data structure defi nition has to be 
changed. 
  Now suppose that the design of  Figure 7.16  is chosen instead. The module on the 
right-hand side of the fi gure has informational cohesion (Section 7.2.7), in that it per-
forms a number of operations on the same data structure. Each operation has its own entry 
point and exit point and independent code. Module  m_encapsulation  in  Figure 7.16  is 
an implementation of  data encapsulation , that is, a data structure, in this case the job 
queue, together with the operations to be performed on that data structure. Again, this is an 
example of separation of concerns—see Section 5.4. 
  An obvious question to ask at this point is, What is the advantage of designing a product 
using data encapsulation? This will be answered in two ways, from the viewpoint of devel-
opment and from the viewpoint of maintenance. 

  7.4.1 Data Encapsulation and Development 
 Data encapsulation is an example of  abstraction . Returning to the job queue example, a 
data structure (the job queue) has been defi ned, together with three associated operations 
(initialize the job queue, add a job to the queue, and delete a job from the queue). The 
developer can conceptualize the problem at a higher level, the level of jobs and job queues, 
rather than at the lower level of records or arrays. 
  The basic theoretical concept behind abstraction, once again, is stepwise refi nement. 
First, a design for the product is produced in terms of high-level concepts such as jobs, job 

initialize_job_queue ();

remove_job_from_queue (job_b);

add_job_to_queue (job_a);

job  job_a, job_b;
{

}

m_123

{

}

initialize_job_queue ()

{

}

add_job_to_queue (job j)

m_encapsulation

Implementation of
job_queue

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

{

}

remove_job_from_queue (job j)

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

 FIGURE 7.16   
 A design of 
the job queue 
portion of 
the operating 
system 
using data 
encapsulation. 
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queues, and the operations performed on job queues. At this stage, it is entirely irrelevant 
how the job queue is implemented. Once a complete high-level design has been obtained, 
the second step is to design the lower-level components in terms of which the data struc-
ture and operations on the data structure are implemented. In C, for example, the data 
structure (the job queue) is implemented in terms of records (structures) or arrays; the 
three operations (initialize the job queue, add a job to the queue, and remove a job from 
the queue) are implemented as functions. The key point is that, while this lower level is 
being designed, the designer totally ignores the intended use of the jobs, job queue, and 
operations. Therefore, during the fi rst step, the existence of the lower level is assumed, 
even though at this stage no thought has been given to that level; during the second step 
(the design of the lower level), the existence of the higher level is ignored. At the higher 
level, the concern is with the behavior of the data structure, the job queue; at the lower 
level, the implementation of that behavior is the primary concern. Of course, a larger 
product has many levels of abstraction. 
  Different types of abstraction exist. Consider  Figure 7.16 . That fi gure has two types of 
abstraction. Data encapsulation (that is, a data structure together with the operations to be 
performed on that data structure) is an example of  data abstraction ; the C functions 
themselves are an example of  procedural abstraction .  Abstraction , to summarize, sim-
ply is a means of achieving stepwise refi nement by suppressing unnecessary details and 
accentuating relevant details.  Encapsulation  now can be defi ned as the gathering into one 
unit of all aspects of the real-world entity modeled by that unit; this was termed  conceptual 
independence  in Section 1.9. 
  Data abstraction allows the designer to think at the level of the data structure and the 
operations performed on it and only later be concerned with the details of how the data 
structure and operations are implemented. Turning now to procedural abstraction, con-
sider the result of defi ning a C function,  initialize_job_queue . The effect is to extend 
the language by supplying the developer with another function, one that is not part of the 
language as originally defi ned. The developer can use  initialize_job_queue  in the same 
way as  sqrt  or  abs . 
  The implications of procedural abstraction for design are as powerful as those of data 
abstraction. The designer can conceptualize the product in terms of high-level operations. 
These operations can be defi ned in terms of lower-level operations, until the lowest level 
is reached. At this level, the operations are expressed in terms of the predefi ned constructs 
of the programming language. At each level, the designer is concerned only with express-
ing the product in terms of operations appropriate to that level. The designer can ignore 
the level below, which will be handled at the next level of abstraction, that is, the next 
refi nement step. The designer also can ignore the level above, a level irrelevant from the 
viewpoint of designing the current level.  

  7.4.2 Data Encapsulation and Maintenance 
 Approaching data encapsulation from the viewpoint of maintenance, a basic issue is to iden-
tify the aspects of a product likely to change and design the product to minimize the effects 
of future changes. Data structures as such are unlikely to change; if a product includes job 
queues, for instance, then future versions are likely to incorporate them. At the same time, 
the specifi c way that job queues are implemented may well change, and data encapsulation 
provides a means of coping with that change. 
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   Figure 7.17  depicts an implementation   in C++ of the job queue data structure as a 
  JobQueueClass  ;  Figure 7.18  is the corresponding Java implementation. (Just in Case 
You Wanted to Know Box 7.3 has comments on the programming style in  Figures 7.17  
and  7.18 , as well as in the subsequent code examples in this chapter.) In  Figures 7.17  and 
 7.18 , the queue is implemented as an array of up to 25 job numbers; the fi rst element is 
 queue[0]  and the 25th is  queue[24] . Each job number is represented as an integer. The 
reserved word   public   allows  queueLength  and  queue  to be visible everywhere in the 
operating system. The resulting common coupling is extremely poor practice and is cor-
rected in Section 7.6. 
  Because they are   public  , the methods in   JobQueueClass   may be invoked from any-
where in the operating system. In particular,  Figure 7.19  shows how   JobQueueClass   
may be used by method  queueHandler  using C++, and  Figure 7.20  is the correspond-
ing Java implementation. Method  queueHandler  invokes methods  initializeJobQueue, 
addJobToQueue , and  removeJobFromQueue  of   JobQueueClass   without having any 
knowledge as to how the job queue is implemented; the only information needed to use 
  JobQueueClass   is interface information regarding the three methods. 
  Now suppose that the job queue currently is implemented as a linear list of job numbers, 
but a decision has been made to reimplement it as a two-way linked list of job records. Each 
job record will have three components: the job number as before, a pointer to the job record 
in front of it in the linked list, and a pointer to the job record behind it. This is specifi ed in 
C++ as shown in  Figure 7.21  and in Java as shown in  Figure 7.22 . What changes must be 
made to the software product as a whole as a consequence of this modifi cation to the way 
the job queue is implemented? In fact, only   JobQueueClass   itself has to be changed. 
 Figure 7.23  shows the outline of a C++ implementation of   JobQueueClass   using the 
two-way linked list of  Figure 7.21 . Implementation details have been suppressed to high-
light that the interface between   JobQueueClass   and the rest of the product (including 
method  queueHandler ) has not changed (but see Problem 7.17). That is, the three methods 

 Just in Case You Wanted to Know Box 7.3 
 I deliberately implemented the code examples of  Figures 7.17  and  7.18  as well as the sub-
sequent code examples in this chapter in such a way as to highlight data abstraction issues 
at the cost of good programming practice. For example, the number 25 in the defi nition 
of   JobQueueClass   in  Figures 7.17  and  7.18  certainly should be coded as a parameter, that 
is, as a   const   in C++ or a   public static fi nal   variable in Java. Also, for simplicity, I omitted 
checks for conditions such as underfl ow (trying to remove an item from an empty queue) or 
overfl ow (trying to add an item to a full queue). In any real product, it is absolutely essential 
to include such checks. 
  In addition, language-specifi c features have been minimized. For instance, a C++ pro-
grammer usually uses the construct 

      queueLength++;  

 to increment the value of  queueLength  by  1 , rather than 

      queueLength = queueLength + 1;  

 Similarly, use of constructors and destructors has been minimized. 
  In summary, I implemented the code in this chapter for pedagogic purposes only. It 
should not be utilized for any other purpose. 
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 FIGURE 7.17   
 A C++ 
implementation 
of  JobQueue-
Class . 
(Problems 
caused by 
 public  
attributes will 
be solved in 
Section 7.6.) 

 //
//   Warning:  
//  This code has been implemented in such a way as to be accessible to readers 
//  who are not C ++  experts, as opposed to using good C ++  style. Also, vital 
//  features such as checks for overfl ow and underfl ow have been omitted for simplicity. 
//  See Just in Case You Wanted to Know Box 7.3 for details. 
// 
 class JobQueueClass 
{
 //  attributes 
  public: 
   int  queueLength; // length of job queue
   int  queue[25]; // queue can contain up to 25 jobs

 //  methods 
  public: 
   void  initializeJobQueue ( )
  /*
   *  an empty job queue has length 0 
   */
  {
   queueLength = 0;
  }

   void  addJobToQueue ( int  jobNumber)
  /*
   *  add the job to the end of the job queue 
   */
  {
   queue[queueLength] = jobNumber;
   queueLength = queueLength + 1;
  }

   int  removeJobFromQueue ( )
  /*
   *  set  jobNumber  equal to the number of the job stored at the head of the queue, 
   *  remove the job at the head of the job queue, move up the remaining jobs, 
   *  and return  jobNumber
   */
  {
    int  jobNumber = queue[0];
   queueLength = queueLength − 1;
    for  ( int  k = 0; k < queueLength; k++)
    queue[k] = queue[k + 1];
    return  jobNumber;
  }
}//  class JobQueueClass  
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 FIGURE 7.18   
 A Java 
implementation 
of Class 
 JobQueue . 
(Problems 
caused by 
 public  
attributes will 
be solved in 
Section 7.6.) 

 //
//   Warning:  
//  This code has been implemented in such a way as to be accessible to readers 
//  who are not Java experts, as opposed to using good Java style. 
//  Also, vital features such as checks for overfl ow and underfl ow 
//  have been omitted for simplicity. 
//  See Just in Case You Wanted to Know Box 7.3 for details. 
//
 class JobQueueClass 
{
 //  attributes 
  public int  queueLength; //  length of job queue 
  public int  queue[ ] =  new int [25]; //  queue can contain up to 25 jobs 

 //  methods 
  public void  initializeJobQueue ( )
 /*
  *  an empty job queue has length 0 
  */
 {
  queueLength = 0;
 }

  public void  addJobToQueue ( int  jobNumber)
 /*
  *  add the job to the end of the job queue 
  */
 {
  queue[queueLength] = jobNumber;
  queueLength = queueLength + 1;
 }

  public int  removeJobFromQueue ( )
 /*
  *  set  jobNumber  equal to the number of the job stored at the head of the queue, 
  *  remove the job at the head of the job queue, move up the remaining jobs, 
  *  and return  jobNumber
  */
 {
   int  jobNumber = queue[0];
  queueLength = queueLength − 1;
   for  ( int  k = 0; k < queueLength; k++)
   queue[k] = queue[k + 1];
   return  jobNumber;
 }
}//  class JobQueueClass  
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 initializeJobQueue ,  addJobToQueue , and  removeJobFromQueue  are invoked in 
exactly the same way as before. Specifi cally, when method  addJobToQueue  is invoked, 
it still passes an integer value ,  and  removeJobFromQueue  still returns an integer value, 
even though the job queue itself has been implemented in an entirely different way. 
Consequently, the source code of method  queueHandler  ( Figure 7.19 ) need not be changed 
at all. Accordingly, data encapsulation supports the implementation of data abstraction in a 
way that simplifi es maintenance and reduces the chance of a regression fault. 

 FIGURE 7.19      A C++ implementation of 
 queueHandler . 

  class SchedulerClass 
{
 . . .
  public: 
  void  queueHandler ( ) 
  { 
    int  jobA, jobB;
    JobQueueClass  jobQueueJ; 

     //  various statements  
   jobQueueJ.initializeJobQueue ( );
     //  more statements  
   jobQueueJ.addJobToQueue (jobA);
     //  still more statements  
   jobB = jobQueueJ.removeJobFromQueue ( );
     //  further statements  
  }// queueHandler
 . . . 
}//  class SchedulerClass  

 FIGURE 7.20      A Java implementation of queueHandler. 

  class SchedulerClass 
{
 . . .
  public void  queueHandler ( ) 
 { 
   int  jobA, jobB;  
  JobQueueClass  jobQueueJ; =  new JobQueueClass  ( );

    //  various statements  
  jobQueueJ.initializeJobQueue ( );
    //  more statements  
  jobQueueJ.addJobToQueue (jobA);
    //  still more statements  
  jobB = jobQueueJ.removeJobFromQueue ( );
    //  further statements  
 }// queueHandler
 . . .
}//  class SchedulerClass  

 FIGURE 7.21      A C++ implementation of a two-way linked  JobRecordClass . 
(Problems caused by  public  attributes will be solved in Section 7.6.) 

  class JobRecordClass 
{
  public : 
    int  jobNo; //  number of the job (integer) 
    JobRecordClass  *inFront; //  pointer to the job record in front 
    JobRecordClass  *inRear; //  pointer to the job record behind 
}//  class JobRecordClass  

 FIGURE 7.22      A Java implementation of a two-way linked  JobRecordClass . 
(Problems caused by  public  attributes will be solved in Section 7.6.) 

  class JobRecordClass 
{
  public   int   jobNo; //  number of the job (integer) 
  public JobRecordClass  inFront; //  reference to the job record in front 
  public JobRecordClass  inRear; //  reference to the job record behind 
} //  class JobRecordClass  
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  Comparing  Figures 7.17  and  7.18  and  Figures 7.19  and  7.20 , it is clear that, in these 
instances, the differences between the C++ and Java implementations essentially are syn-
tactic. In the remainder of this chapter, we give only one implementation, together with a 
description of the syntactic differences in the other implementation. Specifi cally, the rest of 
the job queue code is in C++ and all the other code examples are in Java.    

  7.5  Abstract Data Types 
   Figure 7.17  (equivalently,  Figure 7.18 ) is an implementation of a job queue   class  , that is, 
a data type together with the operations to be performed on instantiations of that data type. 
Such a construct is called an  abstract data type . 

 FIGURE 7.23   
 Outline 
of a C++ 
implementation 
of  JobQueue-
Class  using a 
two-way linked 
list. 

  class JobQueueClass 
{
  public: 
  JobRecordClass   *frontOfQueue; //  pointer to the front of the queue 
   JobRecordClass   *rearOfQueue; //  pointer to the rear of the queue 

   void  initializeJobQueue ( )
  {
   /*
    *  initialize the job queue by setting  frontOfQueue  and  rearOfQueue  to  NULL
    */
  }

   void  addJobToQueue ( int  JobNumber)
  {
   /*
    *  Create a new job record, 
    *  place  jobNumber  in its  jobNo  fi eld, 
    *  set its  inFront  fi eld to point to the current  rearOfQueue
    *  (thereby linking the new record to the rear of the queue), 
    *  and set its  inRear  fi eld to  NULL.
    *  Set the  inRear  fi eld of the record pointed to by the current  rearOfQueue
    *  to point to the new record (thereby setting up a two-way link), and 
    *  fi nally, set  rearOfQueue  to point to this new record. 
    */
  }

   int  removeJobFromQueue ( )
  {
   /*
    *  set  jobNumber  equal to the  jobNo  fi eld of the record at the front of the queue 
    *  update  frontOfQueue  to point to the next item in the queue, 
    *  set the  inFront  fi eld of the record that is now the head of the queue to  NULL,
    *  and return  jobNumber
    */
  }
}//  class JobQueueClass  
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   Figure 7.24  shows how this abstract data type may be utilized in C++ for the three job 
queues of the operating system. Three job queues are instantiated:  highPriorityQueue,  
 mediumPriorityQueue,  and  lowPriorityQueue . (The Java version differs only in the 
syntax of the data declarations of the three job queues.) The statement  highPriorityQueue.
initializeJobQueue ( )  means “apply method  initializeJobQueue  to data structure  high-
PriorityQueue ,” and similarly for the other two statements. 
  Abstract data types are a widely applicable design tool. For example, suppose that 
a product is to be implemented in which a large number of operations have to be 
performed on rational numbers, that is, numbers that can be represented in the form 
 n/d , where  n  and  d  are integers,  d � 0 . Rational numbers can be represented in a 
variety of ways, such as two elements of a one-dimensional array of integers or two 
attributes of a class. To implement rational numbers in terms of an abstract data type, 
a suitable representation for the data structure is chosen. In Java, it could be defined 
as shown in  Figure 7.25 , together with the various operations that are performed on 
rational numbers, such as constructing a rational number from two integers, adding 
two rational numbers, or multiplying two rational numbers. (The problems induced by 
  public   attributes such as  numerator  and  denominator  in  Figure 7.25  will be fixed 
in Section 7.6.) The corresponding C++ implementation differs in the placement of 
the reserved word   public  . Also, an ampersand is needed when an argument is passed 
by reference. 
  Abstract data types support both data abstraction and procedural abstraction (Section 
7.4.1). In addition, when a product is modifi ed, it is unlikely that the abstract data types will 
be changed; at worst, additional operations may have to be added to an abstract data type. 
Therefore, from both the development and the maintenance viewpoints, abstract data types 
are an attractive tool for software producers.   

 FIGURE 7.24   
 C++ method 
queueHandler 
implemented 
using the 
abstract data 
type of 
Figure 7.17. 

  class SchedulerClass 
{
 . . .
  public: 
  void  queueHandler ( )
  {
    int  job1, job2;
    JobQueueClass  highPriorityQueue;
    JobQueueClass  mediumPriorityQueue;
    JobQueueClass  lowPriorityQueue;

     //  some statements 
   highPriorityQueue.initializeJobQueue ( );
     //  some more statements 
   mediumPriorityQueue.addJobToQueue (job1);
     //  still more statements 
   job2 = lowPriorityQueue.removeJobFromQueue ( );
     //  even more statements 
  }// queueHandler
 . . .
}//  class SchedulerClass  
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  7.6  Information Hiding 
  The two types of abstraction discussed in Section 7.4.1 (data abstraction and procedural 
abstraction) are in turn instances of a more general design concept put forward by Parnas, 
 information hiding  [Parnas, 1971, 1972a, 1972b]. Parnas’s ideas are directed toward 
future maintenance. Before a product is designed, a list should be made of implementa-
tion decisions likely to change in the future. Modules then should be designed so that the 
implementation details of the resulting design are hidden from other modules. As a result, 
each future change is localized to one specifi c module. Because the details of the original 
implementation decision are not visible to other modules, changing the design clearly can-
not affect any other module. As explained in Section 5.4, information hiding is an example 
of separation of concerns. (See Just in Case You Wanted to Know Box 7.4 for a further 
insight into information hiding.) 
  To see how these ideas can be used in practice, consider  Figure 7.24 , which uses the 
abstract data type implementation of  Figure 7.17 . A primary reason for using an abstract 
data type is to ensure that the contents of a job queue can be changed only by invoking one 
of the three methods of  Figure 7.17 . Unfortunately, the nature of that implementation is 
such that job queues can be changed in other ways as well. Attributes  queueLength  and 
 queue  are both declared   public   in  Figure 7.17  and therefore accessible inside  queue-
Handler . As a result, in  Figure 7.24 , it is perfectly legal C++ (or Java) to use an assignment 
statement such as

     highPriorityQueue.queue[7] = –5678;    

 anywhere in  queueHandler  to change  highPriorityQueue . In other words, the contents of a 
job queue can be changed without using any of the three operations of the abstract data type. 

 FIGURE 7.25   
 Java abstract 
data type 
implementation 
of a rational 
number. 
(Problems 
caused by 
 public  
attributes will 
be solved in 
Section 7.6.) 

  class RationalClass 
{
  public int   numerator;
  public int   denominator;

  public void  sameDenominator ( RationalClass  r,  RationalClass  s)
 {
  //  code to reduce  r  and  s  to the same denominator 
 }

  public boolean  equal ( RationalClass  t,  RationalClass  u)
 {
   RationalClass    v, w;
  v = t;
  w = u;
  sameDenominator (v, w);
   return  (v.numerator == w.numerator);
 }

 //  methods to add, subtract, multiply, and divide two rational numbers 

}//  class RationalClass  
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In addition to the implications this might have with regard to lowering cohesion and increas-
ing coupling, management must recognize that the product may be vulnerable to computer 
crime as described in Section 7.3.2. 
  Fortunately, there is a way out. The designers of both C++ and Java provided for infor-
mation hiding within a class specifi cation. This is shown in  Figure 7.26  for C++ (the Java 
syntactic differences are as before). Other than changing the visibility modifi er for the 
attributes from   public   to   private  ,  Figure 7.26  is identical to  Figure 7.17 . Now the only 
information visible to other modules is that   JobQueueClass   is a class and that three 
operations with specifi ed interfaces can operate on the resulting job queues. But the exact 
way job queues are implemented is   private  , that is, invisible to the outside. The diagram 
in  Figure 7.27  shows how a class with   private   attributes enables a C++ or Java user to 
implement an abstract data type with full information hiding. 
  Information hiding techniques also can be used to obviate common coupling, as 
mentioned at the end of Section 7.3.2. Consider again the product described in that 
section, a computer-aided design tool for petroleum storage tanks specifi ed by 55 
descriptors. If the product is implemented with   private   operations for initializing 
a descriptor and   public   operations for obtaining the value of a descriptor, then there 

 Just in Case You Wanted to Know Box 7.4 
 The term  information hiding  is somewhat of a misnomer. A more accurate description 
would be “details hiding,” because what is hidden is not information but implementation 
details. 

 FIGURE 7.26   
 A C++ abstract 
data type 
implementation 
with information 
hiding, 
correcting the 
problem of 
Figures 7.17, 
7.18, 7.21, 7.22, 
and 7.25. 

  class JobQueueClass 
{
 //  attributes 
  private: 
   int   queueLength; //  length of job queue 
   int   queue[25]; //  queue can contain up to 25 jobs 

 //  methods 
  public: 
   void  initializeJobQueue ( )
  {
   //  body of method unchanged from Figure 7.17 
  }

   void  addJobToQueue ( int  jobNumber)
  {
   //  body of method unchanged from Figure 7.17 
  }

   int  removeJobFromQueue ( )
  {
   //  body of method unchanged from Figure 7.17 
  }
}//  class JobQueueClass  
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is no common coupling. This type of solution is characteristic of the object-oriented 
paradigm, because as described in Section 7.7, objects support information hiding. 
This is another strength of object technology.   

  7.7  Objects 
  As stated at the beginning of this chapter, objects simply are the next step in the progres-
sion shown in  Figure 7.28 . Nothing is special about objects; they are as ordinary as abstract 
data types or modules with informational cohesion. The importance of objects is that they 
have all the properties possessed by their predecessors in  Figure 7.28 , as well as additional 
properties of their own. 
  An incomplete defi nition of an object is that an object is an instantiation (instance) of 
an abstract data type. That is, a product is designed in terms of abstract data types, and 
the variables (objects) of the product are instantiations of the abstract data types. But 
defi ning an object as an instantiation of an abstract data type is too simplistic. Something 
more is needed, namely,  inheritance , a concept fi rst introduced in Simula 67 [Dahl 
and Nygaard, 1966]. Inheritance is supported by all object-oriented programming lan-
guages, such as Smalltalk [Goldberg and Robson, 1989], C++ [Stroustrup, 2003], and 
Java [Flanagan, 2005]. The basic idea behind inheritance is that new data types can be 
defi ned as extensions of previously defi ned types, rather than having to be defi ned from 
scratch [Meyer, 1986]. 
  In an object-oriented language, a  class  can be defi ned as an abstract data type that sup-
ports inheritance. An  object  then is an instantiation of a class. To see how classes are used, 

highPriorityQueue.initializeJobQueue ();

job2 = lowPriorityQueue.removeJobFromQueue ();

mediumPriorityQueue.addJobToQueue (job1);

{

}

SchedulerClass

Implementation details of
int job1, job2;

JobQueueClass

Interface information regarding

initializeJobQueue
addJobToQueue

removeJobFromQueue

queue
queueLength

initializeJobQueue
addJobToQueue

removeJobFromQueue

Visible outside JobQueueClassInvisible outside JobQueueClass

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

 FIGURE 7.27      Representation of an abstract data type with information hiding achieved via private attributes 
(Figure 7.26 with Figure 7.24). 
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consider the following example. Defi ne   Human Being Class   to be a class and  Joe  to be 
an object, an instance of that class. Every instance of   Human Being Class   has certain 
attributes such as age and height, and values can be assigned to those attributes when 
describing the object  Joe . Now suppose that   Parent Class   is defi ned to be a  subclass  
(or derived class) of   Human Being Class  . This means that an instance of a   Parent   
has all the attributes of an instance of   Human Being Class   and, in addition, may have 
attributes of his or her own such as name of oldest child and number of children. This is 
depicted in  Figure 7.29 . In object-oriented terminology, a  Parent    isA    Human Being . That 
is why the arrow in  Figure 7.29  seems to be going in the wrong direction. In fact, the arrow 

Objects (Section 7.7)

Information hiding (Section 7.6)

Abstract data types (Section 7.5)

Data encapsulation (Section 7.4)

Modules with high cohesion and low coupling (Sections 7.2 and 7.3)

Modules (Section 7.1)

 FIGURE 7.28   
 The major 
concepts of 
Chapter 7 and 
the section in 
which each is 
described. 

inherits from (“isA”)

(Base class)

(Derived class)

Parent Class

Derived
part

Incremental
part

Human Being Class FIGURE 7.29   
 UML diagram 
showing derived 
types and 
inheritance. 
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depicts the   isA    relationship  and therefore points from the derived class to the base class. 
(The use of the open arrowhead to denote inheritance is a UML convention; another is 
that class names appear in boldface with the fi rst letter of each word capitalized. Finally, 
the open rectangle with the turned-over corner is a UML  note . UML is discussed in more 
detail in Part B, especially in  Chapter 17 .) 
    Parent Class    inherits  all the attributes of   Human Being Class  , because   Parent 
Class   is a derived class (or subclass) of base class   Human Being Class  . If  Fred  is 
an object (instance) of   Parent Class  , then  Fred  has all the attributes of an instance of 
  Parent     Class   and also inherits all the attributes of an instance of   Human Being Class  . 
A Java implementation is shown in  Figure 7.30 . The C++ version differs in the placement 
of the   private   and   public   modifi ers. Also, the Java syntax   extends   is replaced in C++ 
by   : public   in this example. 
  The property of inheritance is an essential feature of all object-oriented programming 
languages. However, neither inheritance nor the concept of a class is supported by classical 
languages such as C or LISP. Therefore, the object-oriented paradigm cannot be directly 
implemented in these languages (but see Section 8.11.4). 
  In the terminology of the object-oriented paradigm, there are two other ways of looking 
at the relationship between   Parent Class   and   Human Being Class   in  Figure 7.29 . 
We can say that   Parent Class   is a  specialization  of   Human Being Class   or that 
  Human Being Class   is a  generalization  of   Parent Class  . In addition to specializa-
tion and generalization, classes have two other basic relationships [Blaha, Premerlani, and 
Rumbaugh, 1988]: aggregation and association.  Aggregation  refers to the components 
of a class. For example, class   Personal Computer Class   might consist of compo-
nents   CPU Class  ,   Monitor Class  ,   Keyboard Class  , and   Printer Class  . This is 
depicted in  Figure 7.31 ; the use of a diamond to denote aggregation is another UML con-
vention. Nothing is new about this; it occurs whenever a language supports records, such 
as a   struct   in C. Within the object-oriented context, however, it is used to group related 
items, resulting in a reusable class (Section 8.1). 

 FIGURE 7.30   
 Java 
implementation 
of Figure 7.29. 

  class HumanBeingClass 
{
  private int  age;
  private fl oat  height;

 //  public   declarations of operations on   HumanBeingClass 

}//  class HumanBeingClass 

 class ParentClass extends HumanBeingClass 
{
  private String  nameOfOldestChild;
  private int  numberOfChildren;

 //  public   declarations of operations on   ParentClass 

}//  class ParentClass  
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   Association  refers to a relationship of some kind between two apparently unrelated 
classes. For example, there seems to be no connection between a radiologist and a lawyer, 
but a radiologist may consult a lawyer for advice regarding a contract for leasing a new 
MRI machine. Association is depicted using UML in  Figure 7.32 . The nature of the asso-
ciation in this instance is indicated by the word  consults . In addition, the solid triangle 
(termed a  navigation triangle  in UML) indicates the direction of the association; after 
all, a lawyer with a broken ankle might consult a radiologist. 
  In passing, one aspect of Java and C++ notation, like that of other object-oriented lan-
guages, explicitly refl ects the equivalence of operation and data. First, consider a classical 
language that supports records; C, for example. Suppose that  record_1  is a   struct   (record) 
and  fi eld_2  is a fi eld within the class. Then, the fi eld is referred to as  record_1.fi eld_2.  
That is, the period . denotes membership within the record. If  function_3  is a function 
within a C module, then  function_3  ( ) denotes an invocation of that function. 
  In contrast, suppose that   AClass   is a   class  , with attribute  attributeB  and method 
 methodC . Suppose further that  ourObject  is an instance of   AClass  . Then the fi eld is 
referred to as  ourObject.attributeB . Furthermore,  ourObject.methodC ( )  denotes an 
invocation of the method. Hence, the period is used to denote membership within an object, 
whether the member is an attribute or a method. 
  The advantages of using objects (or, rather, classes) are precisely those of using abstract 
data types, including data abstraction and procedural abstraction. In addition, the inheri-
tance aspects of classes provide a further layer of data abstraction, leading to easier and less 
fault-prone product development. Yet another strength follows from combining inheritance 
with polymorphism and dynamic binding, the subject of Section 7.8.   

Monitor ClassCPU Class Printer ClassKeyboard Class

Personal Computer Class

 FIGURE 7.31      UML aggregation example. 

Radiologist Class Lawyer Class

consults

 FIGURE 7.32   
 UML 
association 
example. 
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  7.8  Inheritance, Polymorphism, and Dynamic Binding 
  Suppose that the operating system of a computer is called on to open a fi le. That fi le could 
be stored on a number of different media. For example, it could be a disk fi le, a tape fi le, 
or a diskette fi le. Using the classical paradigm, there would be three differently named 
functions,  open_disk_fi le ,  open_tape_fi le , and  open_diskette_fi le ; this is shown in 
 Figure 7.33(a) . If  my_fi le  is declared to be a fi le, then at run time, it is necessary to 
test whether it is a disk fi le, a tape fi le, or a diskette fi le to determine which function to 
invoke. The corresponding classical code is shown in  Figure 7.34(a) . 
  In contrast, when the object-oriented paradigm is used, a class named   File Class   is 
defi ned, with three derived classes:   Disk File Class  ,   Tape File Class  , and   Diskette 
File Class  . This is shown in  Figure 7.33(b) ; recall that the UML open arrowhead denotes 
inheritance. 
  Now, suppose that method  open  were defi ned in parent class   File Class   and inherited 
by the three derived classes. Unfortunately, this would not work, because different opera-
tions need to be carried out to open the three different types of fi les. 
  The solution is as follows: In parent class   File Class  , a dummy method  open  is 
declared. In Java, such a method is declared to be   abstract  ; in C++, the reserved word 
  virtual   is used instead. A specifi c implementation of the method appears in each of the 
three derived classes and each method is given an identical name, that is,  open , as shown 
in  Figure 7.33(b) . Again, suppose that  myFile  is declared to be a fi le. At run time, the 
message

     myFile.open ( )    

function open_tape_filefunction open_disk_file function open_diskette_file

(b)

(a)

Implementation of
method open

for a diskette file

Diskette File Class

Implementation of
method open
for a tape file

Tape File Class

abstract method
open

File Class

Implementation of
method open
for a disk file

Disk File Class

 FIGURE 7.33      Operations needed to open a fi le. (a) Classical implementation. (b) Object-oriented 
fi le class hierarchy using UML notation. 
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 is sent. The object-oriented system now determines whether  myFile  is a disk fi le, a tape 
fi le, or a diskette fi le and invokes the appropriate version of  open . That is, the system 
determines at run time whether object  myFile  is an instance of   Disk File Class  ,   Tape 
File Class  , or   Diskette File Class   and automatically invokes the correct method. 
Because this has to be done at run time (dynamically) and not at compile time (stati-
cally), the act of connecting an object to the appropriate method is termed  dynamic 
binding . Furthermore, because the method  open  can be applied to objects of differ-
ent classes, it is termed  polymorphic , which means “of many shapes.” Just as carbon 
crystals come in many different shapes, including hard diamonds and soft graphite, so 
the method  open  comes in three different versions. In Java, these versions are denoted 
 DiskFileClass.open, TapeFileClass.open , and  DisketteFileClass.open.  (In C++, the 
period is replaced by two colons, and the methods are denoted  DiskFileClass::open, 
TapeFileClass::open , and  DisketteFileClass::open. ) However, because of dynamic 
binding, it is not necessary to determine which method to invoke to open a specifi c fi le. 
Instead, at run time, it is necessary to send only the message  myFile.open ( )  and the 
system will determine the type (class) of  myFile  and invoke the correct method; this is 
shown in  Figure 7.34(b) . 
  These ideas are applicable to more than just   abstract   (  virtual  ) methods. Consider a 
hierarchy of classes, as shown in  Figure 7.35 . All classes are derived by inheritance from 
the   Base   class. Suppose method  checkOrder (b :    Base   )  takes as an argument an instance 
of class   Base  . Then, as a consequence of inheritance, polymorphism, and dynamic bind-
ing, it is valid to invoke  checkOrder  with an argument not just of class   Base   but also of 
any subclass of class   Base  , that is, any class derived from   Base  . All that is needed is to 
invoke  checkOrder  and everything is taken care of at run time. This technique is extremely 
powerful, in that the software professional need not be concerned about the precise type of 
an argument at the time that a message is sent. 

 FIGURE 7.34   
 (a) Classical 
code to 
open a fi le, 
corresponding 
to Figure 
7.33(a). 
(b) Object-
oriented code 
to open a fi le, 
corresponding 
to Figure 
7.33(b). 

  switch  (fi le_type)
{
   case  1:
   open_disk_fi le ( ); // fi le_type 1  corresponds to a disk fi le 
    break ;
   case  2:
   open_tape_fi le ( ); // fi le_type 2  corresponds to a tape fi le 
    break ;
   case  3:
   open_diskette_fi le ( ); // fi le_type 3  corresponds to a diskette fi le 
       break ;
}

(a)

myFile.open ( );

(b) 
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  However, polymorphism and dynamic binding also have major weaknesses. 

   1. It generally is not possible to determine at compilation time which version of a specifi c 
polymorphic method will be invoked at run time. Accordingly, the cause of a failure can 
be extremely diffi cult to determine.  

  2. Polymorphism and dynamic binding can have a negative impact on maintenance. The fi rst 
task of a maintenance programmer usually is to try to understand the product (as explained 
in  Chapter 16 , the maintainer rarely is the person who developed that code). However, this 
can be laborious if there are multiple possibilities for a specifi c method. The programmer 
has to consider all the possible methods that could be invoked dynamically at a specifi c 
place in the code, a time-consuming task.   

  Accordingly, polymorphism and dynamic binding add both strengths and weaknesses to 
the object-oriented paradigm. 
  We conclude this chapter with a discussion of the object-oriented paradigm.   

  7.9  The Object-Oriented Paradigm 
  There are two ways of looking at every software product. One way is to consider just the 
data, including local and global variables, arguments, dynamic data structures, and fi les. 
Another way of viewing a product is to consider just the operations performed on the data, 
that is, the procedures and the functions. In terms of this division of software into data and 
operations, the classical techniques essentially fall into two groups. Operation-oriented 
techniques primarily consider the operations of the product. The data are of secondary 

Base
 FIGURE 7.35   
 A hierarchy of 
classes. 
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importance, considered only after the operations of the product have been analyzed in 
depth. Conversely, data-oriented techniques stress the data of the product; the operations 
are examined only within the framework of the data. 
  A fundamental weakness of both the data- and operation-oriented approaches is that 
data and operation are two sides of the same coin; a data item cannot change unless an 
operation is performed on it, and operations without associated data are equally mean-
ingless. Therefore, techniques that give equal weight to data and operations are needed. 
It should not come as a surprise that the object-oriented techniques do this. After all, an 
object comprises both data and operations. Recall that an object is an instance of an abstract 
data type (more precisely, of a class). It therefore incorporates both data and the operations 
performed on those data, and the data and the operations are present in objects as equal 
partners. Similarly, in all the object-oriented techniques, data and operations are considered 
of the same importance; neither takes precedence over the other. 
  It is inaccurate to claim that data and operations are considered simultaneously in the 
techniques of the object-oriented paradigm. From the material on stepwise refi nement 
(Section 5.1), it is clear that sometimes data have to be stressed and other times operations 
are more critical. Overall, however, data and operations are given equal importance during 
the workfl ows of the object-oriented paradigm. 
  Many reasons are given in  Chapter 1  and this chapter as to why the object-oriented 
paradigm is superior to the classical paradigm. Underlying all these reasons is that a well-
designed object, that is, an object with high cohesion and low coupling, models all the 
aspects of one physical entity. That is, there is a clear mapping between a real-world entity 
and the object that models it. 
  The details of how this is implemented are hidden; the only communication with an 
object is via messages sent to that object. As a result, objects essentially are independent 
units with a well-defi ned interface. Consequently, they can be maintained easily and safely; 
the chance of a regression fault is reduced. Furthermore, as will be explained in  Chapter 
8 , objects are reusable, and this reusability is enhanced by the property of inheritance. 
Turning now to development using objects, it is safer to construct a large-scale product by 
combining these fundamental building blocks of software than to use the classical para-
digm. Because objects essentially are independent components of a product, development 
of the product, as well as management of that development, is easier and hence less likely 
to induce faults. 
  All these aspects of the superiority of the object-oriented paradigm raise a question: If the 
classical paradigm is so inferior to the object-oriented paradigm, why has the classical para-
digm had so much success? This can be explained by realizing that the classical paradigm 
was adopted at a time when software engineering was not widely practiced. Instead, soft-
ware was simply “written.” For managers, the most important thing was for programmers to 
churn out lines of code. Little more than lip service was paid to the requirements and analy-
sis ( systems analysis ) of a product, and design was almost never performed. The code-and-
fi x model (Section 2.9.1) was typical of the techniques of the 1970s. Therefore, use of the 
classical paradigm exposed the majority of software developers to methodical techniques 
for the fi rst time. Small wonder, then, that the so-called structured techniques of the classi-
cal paradigm led to major improvements in the software industry worldwide. However, as 
software products grew in size, inadequacies of the structured techniques started to become 
apparent, and the object-oriented paradigm was proposed as a better alternative. 
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  This, in turn, leads to another question: How do we know for certain that the object-
oriented paradigm is superior to all other present-day techniques? No data are available 
that prove beyond all doubt that object-oriented technology is better than anything else 
currently available, and it is hard to imagine how such data could be obtained. The best we 
can do is to rely on the experiences of organizations that have adopted the object-oriented 
paradigm. Although not all reports are favorable, the majority (if not the overwhelming 
majority) attest that using the object-oriented paradigm is a wise decision. 
  For example, IBM has reported on three totally different projects that were devel-
oped using object-oriented technology [Capper, Colgate, Hunter, and James, 1994]. In 
almost every respect, the object-oriented paradigm greatly outperformed the classical 
paradigm. Specifi cally, there were major decreases in the number of faults detected, 
far fewer change requests during both development and postdelivery maintenance that 
were not the result of unforeseeable business changes, and signifi cant increases in 
both adaptive and perfective maintainability. Also improvement in usability was found, 
although not as large as the previous four improvements, and no meaningful difference 
in performance. 
  A survey of 150 experienced U.S. software developers was undertaken to determine 
their attitudes toward the object-oriented paradigm [Johnson, 2000]. The sample consisted 
of 96 developers who used the object-oriented paradigm and 54 who still used the clas-
sical paradigm to develop software. Both groups felt that the object-oriented paradigm 
was superior, although the positive attitude of the object-oriented group was signifi cantly 
stronger. Both groups essentially discounted the various weaknesses of the object-oriented 
paradigm. 
  Notwithstanding the many strengths of the object-oriented paradigm, some diffi culties 
and problems indeed have been reported. A frequently reported problem concerns develop-
ment effort and size. The fi rst time anything new is done, it takes longer than on subsequent 
occasions; this initial period is sometimes referred to as the  learning curve . But when 
the object-oriented paradigm is used for the fi rst time by an organization, it often takes 
longer than anticipated, even allowing for the learning curve, because the size of the prod-
uct is larger than when structured techniques are used. This is particularly noticeable when 
the product has a graphical user interface (GUI) (see Section 11.14). Thereafter, things 
improve greatly. First, postdelivery maintenance costs are lower, reducing the overall life-
time cost of the product. Second, the next time that a new product is developed, some of the 
classes from the previous project can often be reused, further reducing software costs. This 
has been especially signifi cant when a GUI has been used for the fi rst time; much of the 
effort that went into the GUI can be recouped in subsequent products. 
  Problems of inheritance are harder to solve. 

   1. A major reason for using inheritance is to create a new subclass that differs slightly 
from its parent class without affecting the parent class or any other ancestor class in the 
inheritance hierarchy. Conversely, however, once a product has been implemented, any 
change to an existing class directly affects all its descendants in the inheritance hierar-
chy; this often is referred to as the  fragile base class problem . At the very least, the 
affected units have to be recompiled. In some cases, the methods of the relevant objects 
(instantiations of the affected subclasses) have to be recoded; this can be a nontrivial 
task. To minimize this problem, it is important that all classes be meticulously designed 

sch76183_ch07_183-224.indd   219sch76183_ch07_183-224.indd   219 04/06/10   1:40 PM04/06/10   1:40 PM



220  Part A  Software Engineering Concepts

during the development process. This will reduce the ripple effect induced by a change 
to an existing class.  

  2. A second problem can result from a cavalier use of inheritance. Unless explicitly pre-
vented, a subclass inherits all the attributes of its parent class(es). Usually, subclasses 
have additional attributes of their own. As a consequence, objects lower in the inheri-
tance hierarchy quickly can get large, with resulting storage problems [Bruegge, Blythe, 
Jackson, and Shufelt, 1992]. One way to prevent this is to change the dictum “use in-
heritance wherever possible” to “use inheritance wherever appropriate.” In addition, if a 
descendent class does not need an attribute of an ancestor, then that attribute should be 
explicitly excluded.  

  3. A third group of problems stem from polymorphism and dynamic binding. These were 
described in Section 7.8.  

  4. Fourth, it is possible to code badly in any language. However, it is easier to code badly 
in an object-oriented language than in a classical language because object-oriented lan-
guages support a variety of constructs that, when misused, add unnecessary complexity 
to a software product. Therefore, when using the object-oriented paradigm, extra care 
needs to be taken to ensure that the code is always of the highest quality.   

  One fi nal question is this: Someday might there be something better than the object-
oriented paradigm? That is, in the future will a new technology appear in the space above 
the topmost arrow in  Figure 7.28 ? Even its strongest proponents do not claim that the 
object-oriented paradigm is the ultimate answer to all software engineering problems. 
Furthermore, today’s software engineers are looking beyond objects to the next major 
breakthrough. After all, in few fi elds of human endeavor are the discoveries of the past 
superior to anything that is being put forward today. The object-oriented paradigm is sure 
to be superseded by the methodologies of the future. It has been suggested that  aspect-
oriented programming  (AOP) (Section 18.1) may play a role. It remains to be seen 
whether AOP will indeed be the next major concept in future versions of  Figure 7.28  or 
whether some other technology will be widely adopted as the successor to the object-
oriented paradigm. The important lesson is that, based on today’s knowledge, the object-
oriented paradigm appears to be better than the alternatives.    

  The chapter begins with a description of a module (Section 7.1). The next two sections analyze what 
constitutes a well-designed module in terms of module cohesion and module coupling (Sections 7.2 
and 7.3). Specifi cally, a module should have high cohesion and low coupling. A description is given of 
the different types of cohesion and coupling. Various types of abstraction are presented in Sections 7.4 
through 7.7. In data encapsulation (Section 7.4), a module comprises a data  structure  and the actions 
performed on that data structure. An abstract data type (Section 7.5) is a data  type,  together with the 
actions performed on instances of that type. Information hiding (Section 7.6) consists of designing a 
module in such a way that implementation details are hidden from other modules. The progression 
of increasing abstraction culminates in the description of a class, an abstract data type that supports 
inheritance (Section 7.7). An object is an instance of a class. Inheritance, polymorphism, and dynamic 
binding are the subjects of Section 7.8. The chapter concludes with a discussion of the object-oriented 
paradigm (Section 7.9).  

   Chapter 
Review 
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  Objects were fi rst described in [Dahl and Nygaard, 1966]. Many of the ideas in this chapter originally 
were put forward by Parnas [1971, 1972a, 1972b]. The use of abstract data types in software develop-
ment was put forward in [Liskov and Zilles, 1974]; another important early paper is [Guttag, 1977]. 
  The primary source on cohesion and coupling is [Stevens, Myers, and Constantine, 1974]. The 
ideas of composite/structured design have been extended to objects [Binkley and Schach, 1997]. The 
importance of abstraction is discussed in [Kramer, 2007]. 
  The proceedings of the annual Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA) include a wide selection of research papers as well as reports 
describing successful object-oriented projects. The successful use of the object-oriented paradigm in 
three IBM projects is described in [Capper, Colgate, Hunter, and James, 1994]. A survey of attitudes 
toward the object-oriented paradigm appears in [Johnson, 2000]. Metrics for measuring the quality 
of modularization of large-scale object-oriented software are presented in [Sarkar, Kak, and Rama, 
2008]. Issue no. 2, 2005, of the  IBM Systems Journal  contains articles on object technology. 
  Eleven articles on aspect-oriented programming appear in the October 2001 issue of the  Com-
munications of the ACM ; [Elrad et al., 2001] and [Murphy et al., 2001] are of particular interest. 
Weaknesses of aspect-oriented programming are discussed in [R. Alexander, 2003]. 
  An investigation of the impact of inheritance on fault densities appears in [Cartwright and Shep-
perd, 2000].  

  For 
Further 
Reading 

     7.1 Choose any programming language with which you are familiar. Consider the two defi nitions 
of modularity given in Section 7.1. Determine which of the two defi nitions includes what you 
intuitively understand to constitute a module in the language you have chosen.  

   7.2 Determine the cohesion of the following modules: 

     editProfi tAndTaxRecord   

     editProfi tRecordAndTaxRecord   

     readDeliveryRecordAndCheckSalaryPayments   

     computeTheOptimalCostUsingAksen’sAlgorithm   

     measureVaporPressureAndSoundAlarmIfNecessary      

  Problems 

   abstract data type   207 
   abstraction   201 
   aggregation   213 
   aspect-oriented programming 

(AOP)   230 
   association   214 
   binding   186 
   class   211 
   cohesion   186 
   coincidental cohesion   187 
   common coupling   193 
   communicational 

cohesion   190 
   content coupling   192 
   context   186 
   control coupling   195 

   coupling   186 
   data abstraction   202 
   data coupling   196 
   data encapsulation   201 
   dynamic binding   216 
   encapsulation   202 
   fl owchart cohesion   190 
   fragile base class 

problem   219 
   functional cohesion   190 
   generalization   213 
   information hiding   209 
   informational cohesion   191 
   inheritance   211 
    isA  relationship   213 
   learning curve   219 

   logic   186 
   logical cohesion   188 
   module   184 
   navigation triangle   214 
   note   213 
   object   211 
   operation   186 
   polymorphism   216 
   procedural 

abstraction   202 
   procedural cohesion   189 
   specialization   213 
   stamp coupling   195 
   strength   186 
   subclass   212 
   temporal cohesion   189  

  Key Terms 
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   7.3 You are a software engineer involved in product development. Your manager asks you to inves-
tigate ways of ensuring that modules designed by your group will be as reusable as possible. 
What do you tell her?  

   7.4 Your manager now asks you to determine how existing modules can be reused. Your fi rst sug-
gestion is to break each module with coincidental cohesion into separate modules with func-
tional cohesion. Your manager correctly points out that the separate modules have not been 
tested nor have they been documented. What do you say now?  

   7.5 What is the infl uence of cohesion on maintenance?  

   7.6 What is the infl uence of coupling on maintenance?  

   7.7 Which of the seven levels of cohesion described in Section 7.2 promote reuse?  

   7.8 Which of the fi ve levels of coupling described in Section 7.3 promote reuse?  

   7.9 Module  p  does not invoke module  q . Nevertheless, modules  p  and  q  are coupled. How can this 
happen?  

   7.10 Distinguish between data encapsulation and abstract data types.  

  7.11 Distinguish between abstraction and information hiding.  

  7.12 Is inheritance a subset of association?  

  7.13 Distinguish between polymorphism and dynamic binding.  

  7.14 What happens if we use polymorphism without dynamic binding?  

  7.15 What happens if we use dynamic binding without polymorphism?  

  7.16 Can we implement dynamic binding in a language that does not support inheritance?  

  7.17 Convert the comments in  Figure 7.23  to C++ or Java, as specifi ed by your instructor. Make sure 
that the resulting module executes correctly.  

  7.18 It has been suggested that C++ and Java support implementation of abstract data types but only 
at the cost of giving up information hiding. Discuss this claim.  

  7.19 As pointed out in Just in Case You Wanted to Know Box 7.1, objects were fi rst put forward in 
1966. Only after essentially being reinvented nearly 20 years later did objects begin to receive 
widespread acceptance. Can you explain this phenomenon?  

  7.20 Your instructor will distribute a classical software product. Analyze the modules from the view-
points of information hiding, levels of abstraction, coupling, and cohesion.  

  7.21 Your instructor will distribute an object-oriented software product. Analyze the modules from 
the viewpoints of information hiding, levels of abstraction, coupling, and cohesion. Compare 
your answer with that of Problem 7.20.  

  7.22 What are the strengths and weaknesses of inheritance?  

  7.23 (Term Project) Suppose that the Chocoholics Anonymous product of Appendix A was devel-
oped using the classical paradigm. Give examples of modules of functional cohesion that you 
would expect to fi nd. Now suppose that the product was developed using the object-oriented 
paradigm. Give examples of classes that you would expect to fi nd.  

  7.24 (Readings in Software Engineering) Your instructor will distribute copies of [Kramer, 2007]. 
Do you agree that abstraction is indeed as important as claimed in that paper?     

  [R. Alexander, 2003] R. ALEXANDER, “The Real Costs of Aspect-Oriented Programming,”  IEEE Soft-
ware 20  (November–December 2003), pp. 92–93. 

 [Binkley and Schach, 1997] A. B. BINKLEY AND S. R. SCHACH, “Toward a Unifi ed Approach to Object-
Oriented Coupling,”  Proceedings of the 35th Annual ACM Southeast Conference , Murfreesboro, 
TN, April 2–4, 1997, ACM, pp. 91–97. 
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 Chapter 8
Reusability and 
Portability 
   Learning Objectives 

 After studying this chapter, you should be able to 

 •  Explain why reuse is so important.  

  • Appreciate the obstacles to reuse.  

  • Describe techniques for achieving reuse during the various workfl ows.  

  • Appreciate the importance of design patterns.  

  • Discuss the impact of reuse on maintainability.  

  • Explain why portability is essential.  

 •  Understand the obstacles to achieving portability.  

  • Develop portable software.      

  If reinventing the wheel were a criminal offense, many software professionals would today 
be languishing in jail. For example, there are tens of thousands (if not hundreds of thou-
sands) of different COBOL payroll programs, all doing essentially the same thing. Surely, 
the world needs just one payroll program that can run on a variety of hardware and be 
tailored, if necessary, to cater to the specifi c needs of an individual organization. However, 
instead of utilizing previously developed payroll programs, myriad organizations all over 
the world have built their own payroll programs from scratch. In this chapter, we investigate 
why software engineers delight in continually reinventing the wheel, and what can be done 
to achieve portable software built using reusable components. We begin by distinguishing 
between portability and reusability. 
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  8.1 Reuse Concepts 
  A product is   portable   if it is signifi cantly easier to modify the product as a whole to run 
it on another compiler–hardware–operating system confi guration than to recode it from 
scratch. In contrast,   reuse   refers to using components of one product to facilitate the 
development of a different product with a different functionality. A reusable component 
need not necessarily be a module or a code fragment—it could be a design, a part of a 
manual, a set of test data, or a duration and cost estimate. (For a different view on reuse, 
see Just in Case You Wanted to Know Box 8.1.) 
  There are two types of reuse, opportunistic reuse and deliberate reuse. If the developers 
of a new product realize that a component of a previously developed product can be reused 
in the new product, then this is   opportunistic reuse  , sometimes referred to as   accidental 
reuse  . On the other hand, utilization of software components constructed specifi cally for 
possible future reuse is   systematic reuse   or   deliberate reuse  . A potential advantage 
of systematic reuse over opportunistic reuse is that components specially constructed 

 Reuse is not restricted to software. For example, lawyers nowadays rarely draft wills from 
scratch. Instead, they use a word processor to store wills they have previously drafted, and 
then make appropriate changes to an existing will. Other legal documents, like contracts, 
are usually drafted in the same way from existing documents. 
  Classical composers frequently reused their own music. For example, in 1823 Franz 
Schubert wrote an entr’acte for Helmina von Chezy’s play,   Rosamunde, Fürstin von Zypern   
(  Rosamunde, Princess of Cyprus  ) and the following year he reused that material in the slow 
movement of his String Quartet No. 13. Ludwig van Beethoven’s Opus 66, “Variations for 
Cello on Mozart’s   Ein Mädchen oder Weibchen  ,” is a good example of one great composer 
reusing the music of another great composer; Beethoven simply took the aria “A Girlfriend 
or Little Wife” from Scene 22 of Wolfgang Amadeus Mozart’s opera   Der Zauberfl öte   (  The 
Magic Flute  ) and wrote a series of seven variations on that aria for the cello with piano 
accompaniment. 
  In my opinion, the greatest reuser of all time was William Shakespeare. His genius lay 
in reusing the plots of others—I cannot think of a single story line he made up himself. 
For example, his historical plays heavily reused parts of Raphael Holinshed’s 1577 work, 
  Chronicles of England, Scotland and Ireland  . Then, Shakespeare’s   Romeo and Juliet   (1594) is 
borrowed, on an almost line-for-line basis, from Arthur Brooke’s lengthy poem   The Tragicall 
Historye of Romeus and Iuliet   published in 1562, two years before Shakespeare was born. 
  But this reuse saga didn’t begin there. In fact, the earliest known version appeared around 
200 C.E. in   Ephesiaka   (Ephesian tale) by the Greek novelist Xenophon of Ephesus. In 1476, 
Tommaso Guardati (more commonly known as Masuccio Salernitano) reused Xenophon’s 
tale in novella 33 in his collection of 50 novellas,   Il Novellino  . In 1530, Luigi da Porto reused 
that story in   Historia Novellamente Ritrovata di Due Nobili Amanti   (  A Newly Found Story of 
Two Noble Lovers  ), for the fi rst time setting it in Verona, Italy. Brooke’s poem reuses parts of 
  Giulietta e Romeo   (1554) by Matteo Bandello, a reuse of da Porto’s version. 
  And this reuse saga didn’t end with   Romeo and Juliet  , either. In 1957,   West Side Story   
opened on Broadway. The musical, with book by Arthur Laurents, lyrics by Stephen Sond-
heim, and score by Leonard Bernstein, reused Shakespeare’s version of the story. The 
Broadway musical was then reused in a Hollywood movie, which won 10 Academy Awards 
in 1961. 

 Just in Case You Wanted to Know     Box 8.1 
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for use in future products are more likely to be easy and safe to reuse; such components 
generally are robust, well documented, and thoroughly tested. In addition, they usually dis-
play a uniformity of style that makes maintenance easier. The other side of the coin is that 
implementing systematic reuse within a company can be expensive. It takes time to specify, 
design, implement, test, and document a software component. However, there can be no 
guarantee that such a component will be reused and thereby recoup the money invested in 
developing the potentially reusable component. 
  When computers were fi rst constructed, nothing was reused. Every time a product was 
developed, items such as multiplication routines, input–output routines, or routines for 
computing sines and cosines were constructed from scratch. Quite soon, however, it was 
realized that this was a considerable waste of effort, and subroutine libraries were con-
structed. Programmers then simply could invoke square root or sine functions whenever 
they wished. These subroutine libraries have become more and more sophisticated and 
developed into run-time support routines. Therefore, when a programmer calls a C++ or 
Java method, there is no need to write code to manage the stack or pass the arguments 
explicitly; it is handled automatically by calling the appropriate run-time support routines. 
The concept of subroutine libraries has been extended to large-scale statistical libraries 
such as SPSS [Norušis, 2005] and numerical analysis libraries like NAG [2003]. Class 
libraries also play a major role in assisting users of object-oriented languages. For example, 
the success of Smalltalk is due at least partly to the wide variety of items in the Smalltalk 
library together with the presence of a browser, a CASE tool that helps the user to scan a 
class library. With regard to C++, a large number of different libraries are available, many 
in the public domain. One example is the C++ Standard Template Library (STL) [Musser 
and Saini, 1996]. 
  An   application programming interface (API)   generally is a set of operating sys-
tem calls that facilitate programming. For example, Win32 is an API for Microsoft operat-
ing systems such as Windows 2000 and Windows XP; and Cocoa is an API for Mac OS X, 
a Macintosh operating system. Although an API usually is implemented as a set of operat-
ing system calls, to the programmer the routines constituting the API can be viewed as a 
subroutine library. For example, the Java Application Programming Interface consists of a 
number of packages (libraries). 
  No matter how high the quality of a software product may be, it will not sell if it takes 
2 years to get it onto the market when a competitive product can be delivered in only 1 year. 
The length of the development process is critical in a market economy. All other criteria as 
to what constitutes a “good” product are irrelevant if the product cannot compete timewise. 
For a corporation that has repeatedly failed to get a product to market fi rst, software reuse 
offers a tempting technique. After all, if an existing component is reused, then there is no 
need to specify, design, implement, test, and document that component. The key point is 
that, on average, only about 15 percent of any software product serves a truly original pur-
pose [Jones, 1984]. The other 85 percent of the product in theory could be standardized and 
reused in future products. 
  The fi gure of 85 percent is essentially a theoretical upper limit for the reuse rate; nev-
ertheless, reuse rates on the order of 40 percent can be achieved in practice. This leads 
to an obvious question: If such reuse rates are attainable in practice and reuse is by no 
means a new idea, why do so few organizations employ reuse to shorten the develop-
ment process?   
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  8.2 Impediments to Reuse 
  There are a number of impediments to reuse: 

   • All too many software professionals would rather rewrite a routine from scratch than 
reuse a routine implemented by someone else, the implication being that a routine can-
not be any good unless they implemented it themselves, otherwise known as the   not 
invented here (NIH) syndrome   [Griss, 1993]. NIH is a management issue, and, 
if management is aware of the problem, it can be solved, usually by offering fi nancial 
incentives to promote reuse.  

  • Many developers would be willing to reuse a routine provided they could be sure 
that the routine in question would not introduce faults into the product. This atti-
tude toward software quality is perfectly easy to understand. After all, every software 
professional has seen faulty software implemented by others. The solution here is to 
subject potentially reusable routines to exhaustive testing before making them avail-
able for reuse.  

  • A large organization may have hundreds of thousands of potentially useful components. 
How should these components be stored for effective later retrieval? For example, a 
reusable components database might consist of 20,000 items, 125 of which are sort rou-
tines. The database must be organized so that the designer of a new product can quickly 
determine which (if any) of those 125 sort routines is appropriate for the new product. 
Solving the storage/retrieval problem is a technical issue for which a wide variety of 
solutions have been proposed.  

  • Reuse can be expensive. Tracz [1994] has stated that three costs are involved: the 
cost of making something reusable, the cost of reusing it, and the cost of defin-
ing and implementing a reuse process. He estimates that just making a component 
reusable increases its cost by at least 60 percent. Some organizations have reported 
cost increases of 200 percent and even up to 480 percent, whereas the cost of mak-
ing a component reusable was only 11 percent in one Hewlett-Packard reuse proj-
ect [Lim, 1994].  

  • Legal issues can arise with contract software. In terms of the type of contract usually 
drawn up between a client and a software development organization, the software 
product belongs to the client. Therefore, if the software developer reuses a compo-
nent of one client’s product in a new product for a different client, this essentially 
constitutes a violation of the fi rst client’s copyright. For internal software, that is, 
when the developers and client are members of the same organization, this problem 
does not arise.  

  • Another impediment arises when commercial off-the-shelf (COTS) components are 
reused. Rarely are developers given the source code of a COTS component, so software 
that reuses COTS components has limited extensibility and modifi ability.   

  The fi rst four impediments can be overcome, at least in principle. So, other than certain 
legal issues and problems with COTS components, essentially no major impediments pre-
vent implementing reuse within a software organization (but see Just in Case You Wanted 
to Know Box 8.2).   
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  8.3 Reuse Case Studies 
  Many published case studies show how reuse has been successfully achieved in practice; 
reuse case studies that have had a major impact include [Matsumoto, 1984, 1987]; [Selby, 
1989]; and [Lim, 1994]. Here, we analyze two case studies. The fi rst, which describes 
a reuse project that took place between 1976 and 1982, is important because the reuse 
mechanism used then for COBOL designs is the same as the reuse mechanism used today 
in object-oriented application frameworks (Section 8.5.2). This case study therefore serves 
to clarify modern reuse practices. 

 Just in Case You Wanted to Know     Box 8.2  
The World Wide Web is a great source of “urban myths,” that is, apparently true stories that 
somehow just do not stand up under scrutiny when they are investigated closely. One such 
urban myth concerns code reuse. 
  The story is told that the Australian Air Force set up a virtual reality training simulator 
for helicopter combat training. To make the scenarios as realistic as possible, programmers 
included detailed landscapes and (in the Northern Territory) herds of kangaroos. After all, 
the dust from a herd disturbed by a helicopter might reveal the position of that helicopter 
to the enemy. 
  The programmers were instructed to model both the movements of the kangaroos and 
their reaction to helicopters. To save time, the programmers reused code originally used to 
simulate the reaction of infantry to attack by a helicopter. Only two changes were made: 
They changed the icon from a soldier to a kangaroo, and they increased the speed of move-
ment of the fi gures. 
  One fi ne day, a group of Australian pilots wanted to demonstrate their prowess with the 
fl ight simulator to some visiting American pilots. They “buzzed” (fl ew very low over) the 
virtual kangaroos. As expected, the kangaroos scattered, and then reappeared from behind 
a hill and launched Stinger missiles at the helicopter. The programmers had forgotten to 
remove that part of the code when they reused the virtual infantry implementation. 
  However, as reported in   The Risks Digest  , it appears that the story is not totally an urban 
myth—much of it actually happened [Green, 2000]. Dr. Anne-Marie Grisogono, head of 
the Simulation Land Operations Division at the Australian Defence Science and Technology 
Organisation, told the story at a meeting in Canberra, Australia, on May 6, 1999. Although 
the simulator was designed to be as realistic as possible (it even included over 2 million 
virtual trees, as indicated on aerial photographs), the kangaroos were included for fun. 
The programmers indeed reused Stinger missile detachments so that the kangaroos could 
detect the arrival of helicopters, but the behavior of the kangaroos was set to “retreat” so 
that the kangaroos, correctly, would fl ee if a helicopter approached. However, when the 
software team tested their simulator in their laboratory (not in front of visitors), they discov-
ered that they had forgotten to remove both the weapons and “fi re” behavior. Also, they 
had not specifi ed what weapons were to be used by the simulated fi gures, so when the 
kangaroos fi red on the helicopters, they fi red the default weapon, which happened to be 
large multicolored beach balls. 
  Grisogono confi rmed that the kangaroos were immediately disarmed and therefore it is 
now safe to fl y over Australia. But notwithstanding this happy ending, software profession-
als still must take care when reusing code not to reuse too much of it. 
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  8.3.1 Raytheon Missile Systems Division  
In 1976, a study was undertaken at Raytheon’s Missile Systems Division to determine 
whether systematic reuse of designs and code was feasible within the context of busi-
ness applications [Lanergan and Grasso, 1984]. Over 5000 COBOL products in use were 
analyzed and classifi ed. The researchers determined that only six basic operations are 
performed in a business application product. As a result, between 40 and 60 percent of 
business application designs and modules could be standardized and reused. The basic 
operations were found to be sort data, edit or manipulate data, combine data, explode data, 
update data, and report on data. For the next 6 years, a concerted attempt was made to reuse 
both design and code wherever possible. 
  The Raytheon approach employed reuse in two ways, what the researchers termed   func-
tional modules   and   COBOL program logic structures  . In Raytheon’s terminology a   func-
tional module   is a COBOL code fragment designed and coded for a specifi c purpose, such 
as an edit routine, database procedure division call, tax computation routine, or date aging 
routine for accounts receivable. Use of the 3200 reusable modules resulted in applications 
that, on average, consisted of 60 percent reused code. Functional modules were carefully 
designed, tested, and documented. Products that used these functional modules were found 
to be more reliable, and less testing of the product as a whole was needed. 
  The modules were stored in a standard copy library and obtained with the    copy    verb. 
That is, the code was not physically present within the application product but included by 
the COBOL compiler at compilation time, a mechanism similar to  #  include    in C or C++. 
The resulting source code therefore was shorter than if the copied code were physically 
present. As a consequence, maintenance was easier. 
  The Raytheon researchers also used what they termed a   COBOL program logic 
structure  . This is a framework that has to be fl eshed out into a complete product. One 
example of a logic structure is the update logic structure. This is used to perform a sequen-
tial update, such as the mini case study in Section 5.1.1. Error handling is built in, as is 
sequence checking. The logic structure is 22 paragraphs (units of a COBOL program) in 
length. Many of the paragraphs can be fi lled in by using functional modules such as  get-
transaction, print-page-headings , and  print-control-totals .  Figure 8.1  is a symbolic 

 FIGURE 8.1     
A symbolic 
representation 
of the Raytheon 
Missile Systems 
Division reuse 
mechanism. 

COBOL program
logic structure

Functional module
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depiction of the framework of a COBOL program logic structure with the paragraphs fi lled 
in by functional modules. 
  The use of such templates has many advantages. It makes the design and coding of a 
product quicker and easier, because the framework of the product already is present; all that 
is needed is to fi ll in the details. Fault-prone areas such as end-of-fi le conditions already 
have been tested. In fact, testing as a whole is easier. But Raytheon believed that the major 
advantage would occur when the users requested modifi cations or enhancements. Once a 
maintenance programmer was familiar with the relevant logic structure, it was almost as if 
he or she had been a member of the original development team. 
  By 1983, logic structures had been used over 5500 times in developing new products. 
About 60 percent of the code consisted of functional modules, that is, reusable code. This 
meant that design, coding, module testing, and documentation time also was reduced by 
60 percent, leading to an estimated 50 percent increase in productivity in software product 
development. But, for Raytheon, the real benefi t of the technique lay in the hope that the 
readability and understandability resulting from the consistent style would reduce the cost 
of maintenance by between 60 and 80 percent. Unfortunately, Raytheon closed the division 
before the necessary maintenance data could be obtained. 
  The second reuse case study is a cautionary tale, rather than a success story.  

  8.3.2 European Space Agency 
 On June 4, 1996, the European Space Agency launched the Ariane 5 rocket for the fi rst 
time. As a consequence of a software fault, the rocket crashed about 37 seconds after liftoff. 
The cost of the rocket and payload was about $500 million [Jézéquel and Meyer, 1997]. 
  The primary cause of the failure was an attempt to convert a 64-bit integer into a 16-bit 
unsigned integer. The number being converted was larger than 2 16 , so an Ada    exception    
(run-time failure) occurred. Unfortunately, there was no explicit exception handler in the 
code to deal with this exception, so the software crashed. This caused the onboard comput-
ers to crash which, in turn, caused the Ariane 5 rocket to crash. 
  Ironically, the conversion that caused the failure was unnecessary. Certain computa-
tions are performed before liftoff to align the inertial reference system. These computations 
should stop 9 seconds before liftoff. However, if there is a subsequent hold in the count-
down, resetting the inertial reference system after the countdown has recommenced can 
take several hours. To prevent that happening, the computations continue for 50 seconds 
after the start of fl ight mode, that is, well into the fl ight (notwithstanding that, once liftoff 
has occurred, there is no way to align the inertial reference system). This futile continuation 
of the alignment process caused the failure. 
  The European Space Agency uses a careful software development process that 
incorporates an effective software quality assurance component. Then, why was there 
no exception handler in the Ada code to handle the possibility of such an overfl ow? To 
prevent overloading the computer, conversions that could not possibly result in over-
fl ow were left unprotected. The code in question was 10 years old. It had been reused, 
unchanged and without any further testing, from the software controlling the Ariane 
4 rocket (the precursor of the Ariane 5). Mathematical analysis had proven that the com-
putation in question was totally safe for the Ariane 4. However, the analysis was per-
formed on the basis of certain assumptions that were true for the Ariane 4 but not for the 
Ariane 5. Therefore, the analysis no longer was valid, and the code needed the protection 
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of an exception handler to cater to the possibility of an overfl ow. Were it not for the 
performance constraint, there surely would have been exception handlers throughout the 
Ariane 5 Ada code. Alternatively, the use of the    assert       pragma    both during testing 
and after the product had been installed (Section 6.5.3), could have prevented the Ariane 
5 crash if the relevant module had included an assertion that the number to be converted 
was smaller than 2 16  [Jézéquel and Meyer, 1997]. 
  The major lesson of this reuse experience is that software developed in one context must 
be retested when reused in another context. That is, a reused software module does not need 
to be retested by itself, but it must be retested after it has been integrated into the product 
in which it is reused. Another lesson is that it is unwise to rely exclusively on the results of 
mathematical proofs, as discussed in Section 6.5.2. 
  We now examine the impact of the object-oriented paradigm on reuse.    

  8.4 Objects and Reuse 
  When the theory of composite/structured design fi rst was put forward about 30 years ago, 
the claim was made that an ideal module has functional cohesion (Section 7.2.6). That is, 
if a module performed only one operation, it was thought to be an exemplary candidate 
for reuse, and maintenance of such a module was expected to be easy. The fl aw in this 
reasoning is that a module with functional cohesion is not self-contained and independent. 
Instead, it has to operate on data. If such a module is reused, then the data on which it is to 
operate must be reused, too. If the data in the new product are not identical to those in the 
original, then either the data have to be changed or the module with functional cohesion 
has to be changed. Therefore, contrary to what we used to believe, functional cohesion is 
not ideal for reuse. 
  According to classical C/SD, the next best type of module is one with informational 
cohesion (Section 7.2.7). Nowadays, we appreciate that such a module essentially is an 
object, that is, an instance of a class. A well-designed object is the fundamental building 
block of software because it models all aspects of a particular real-world entity (concep-
tual independence, or encapsulation) but conceals the implementation of both its data and 
the operations that operate on the data (physical independence, or information hiding). 
Therefore, when the object-oriented paradigm is utilized correctly, the resulting modules 
(objects) have informational cohesion, and this promotes reuse.   

  8.5 Reuse during Design and Implementation 
  Dramatically different types of reuse are possible during design. The reused material 
can vary from just one or two artifacts to the architecture of the complete software 
product. We now examine various types of design reuse, some of which carry over into 
implementation. 

  8.5.1 Design Reuse  
When designing a product, a member of the design team may realize that a class from an 
earlier design can be reused in the current project, with or without minor modifi cations. 
This type of reuse is particularly common in an organization that develops software in 
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one specifi c application domain, such as banking or air traffi c control systems. The orga-
nization can promote this type of reuse by setting up a repository of design components 
likely to be reused in the future and encouraging designers to reuse them, perhaps by a 
cash bonus for each such reuse. This type of reuse, limited though it may be, has two 
advantages. 

   • First, tested designs are incorporated into the product. The overall design therefore can 
be produced more quickly and is likely to have a higher quality than when the entire 
design is produced from scratch.  

 •  Second, if the design of a class can be reused, then it is likely that the implementation of 
that class also can be reused, if not the actual code then at least conceptually.   

  This approach can be extended to library reuse, depicted in  Figure 8.2(a) . A library 
is a set of related reusable routines. For example, developers of scientifi c software rarely 
write the methods to perform such common tasks as matrix inversion or fi nding eigen-
values. Instead, a scientifi c class library such as LAPACK++ [2000] is purchased. Then, 
whenever possible, the classes in the scientifi c library are utilized in future software. 
  Another example is a library for a graphical user interface. Instead of writing the GUI 
methods from scratch, it is far more convenient to use a GUI class library or   toolkit  , that 
is, a set of classes that can handle every aspect of the GUI. Many GUI toolkits of this kind 
are available, including the Java Abstract Windowing Toolkit [Flanagan, 2005]. 
  A problem with library reuse is that libraries frequently are presented in the format of 
a set of reusable code artifacts rather than reusable designs. Toolkits, too, generally pro-
mote code reuse rather than design reuse. This problem can be alleviated with the help of 
a browser, that is, a CASE tool for displaying the inheritance tree. The designer then can 
traverse the inheritance tree of the library, examine the fi elds of the various classes, and 
determine which class is applicable to the current design. 

 FIGURE 8.2      A symbolic representation of four types of design reuse.  Shading denotes design reuse within (a) a 
library or a toolkit, (b) a framework, (c) a design pattern, and (d) a software architecture comprising a framework, a 
toolkit, and three design patterns. 

(a) (b) (c) (d)
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  A key aspect of library and toolkit reuse is that, as depicted in  Figure 8.2(a) , the designer 
is responsible for the control logic of the product as a whole. The library or toolkit contrib-
utes to the software development process by supplying parts of the design that incorporate 
the specifi c operations of the product. 
  On the other hand, an application framework is the converse of a library or toolkit in that 
it supplies the control logic; the developers are responsible for the design of the specifi c 
operations. This is described in Section 8.5.2.  

  8.5.2 Application Frameworks  
As shown in  Figure 8.2(b) , an   application framework   incorporates the control logic of a 
design. When a framework is reused, the developers have to design the application-specifi c 
operations of the product being built. The places where the application-specifi c operations 
are inserted frequently are referred to as   hot spots  . 
  The term   framework   nowadays usually refers to an object-oriented application frame-
work. For example, in [Gamma, Helm, Johnson, and Vlissides, 1995], a   framework   is 
defi ned as a “set of cooperating classes that make up a reusable design for a specifi c class 
of software.” However, consider the Raytheon Missile Systems Division case study of 
Section 8.3.1.  Figure 8.1  is identical to  Figure 8.2(b) . In other words, the Raytheon COBOL 
program logic structure of the 1970s is a classical precursor of today’s object-oriented 
application framework. 
  An example of an application framework is a set of classes for the design of a compiler. 
The design team merely has to provide classes specifi c to the language and desired target 
machine. These classes then are inserted into the framework, as depicted by the white boxes 
in  Figure 8.2(b) . Another example of a framework is a set of classes for the software con-
trolling an ATM. Here, the designers need to provide the classes for the specifi c banking 
services offered by the ATMs of that banking network. 
  Reusing a framework results in faster product development than reusing a toolkit, 
for two reasons. First, more of the design is reused with a framework, so there is less to 
design from scratch. Second, the portion of the design that is reused with a framework 
(the control logic) generally is harder to design than the operations, so the quality of the 
resulting design also is likely to be higher than when a toolkit is reused. As with library 
or toolkit reuse, often the implementation of the framework can be reused as well. The 
developers probably have to use the names and calling conventions of the framework, 
but that is a small price to pay. Also, the resulting product is likely to be maintained 
easily because the control logic has been tested in other products that reuse the applica-
tion framework and the maintainer previously may have maintained another product that 
reused that same framework. 
  IBM’s WebSphere (formerly known as   e-Components  , and originally as   San Francisco  ) 
is a framework for building online information systems in Java. It utilizes Enterprise 
JavaBeans, that is, classes that provide services for clients distributed throughout a 
network. 
  In addition to application frameworks, many code frameworks are available. One of 
the fi rst commercially successful code frameworks was MacApp, a framework for writing 
application software on the Macintosh. Borland’s Visual Component Library (VCL) is an 
object-oriented set of frameworks for building GUIs in Windows-based applications. VCL 
applications can perform standard windowing operations, such as moving and resizing 
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windows, processing input via dialog boxes, and handling events like mouse clicks or menu 
selections. 
  We now consider design patterns.  

  8.5.3 Design Patterns  
Christopher Alexander (see Just in Case You Wanted to Know Box 8.3) said, “Each pat-
tern describes a problem which occurs over and over again in our environment, and then 
describes the core of the solution to that problem, in such a way that you can use this 
solution a million times over, without ever doing it the same way twice” [Alexander et 
al., 1977]. Although he was writing within the context of patterns in buildings and other 
architectural objects, his remarks are equally applicable to design patterns. 
  A   design pattern   is a solution to a general design problem in the form of a set of 
interacting classes that have to be customized to create a specifi c design. This is depicted 
in  Figure 8.2(c) . The shaded boxes connected by lines denote the interacting classes. The 
white boxes inside the shaded boxes denote that these classes must be customized for a 
specifi c design. 
  To understand how patterns can assist with software development, consider the follow-
ing example. Suppose that a software engineer wishes to reuse two existing classes,  P  and 
 Q , say, but that their interfaces are incompatible. For example, when  P  sends a message to 
 Q , it passes four parameters, but Q’s interface is such that it expects only three parameters. 
Changing the interface of  P  or  Q  would create a whole host of incompatibility problems 
in all the applications that currently incorporate  P  or  Q . Instead, a class  A  needs to be con-
structed that accepts a message from  P  with four parameters, and sends a message to  Q  
with only three parameters. (A class of this kind is sometimes called a   wrapper  .) 
  What we have described is a specifi c solution to a more general problem, namely, enabling 
any two incompatible classes to work together. Instead of designing this one solution, we 
need a design pattern, the   adapter   pattern. Just as an instance of a class is an object, an 
instance of the   adapter   pattern is a solution to the incompatibility problem tailored to the 
two classes involved. This pattern is described in more detail in Section 8.6.2. 

 Just in Case You Wanted to Know     Box 8.3  
One of the most infl uential individuals in the fi eld of object-oriented software engineering 
is Christopher Alexander, a world-famous architect who freely admits to knowing little or 
nothing about objects or software engineering. In his books, and especially in [Alexander 
et al., 1977], he describes a pattern language for architecture, that is, for describing towns, 
buildings, rooms, gardens, and so on. His ideas were adopted and adapted by object-
oriented software engineers, especially the so-called Gang of Four (Erich Gamma, Rich-
ard Helm, Ralph Johnson, and John Vlissides). Their best-selling book on design patterns 
[Gamma, Helm, Johnson, and Vlissides, 1995] resulted in Alexander’s ideas being widely 
accepted by the object-oriented community. 
  Patterns occur in other contexts as well. For example, when approaching an airport, 
pilots have to know the appropriate landing pattern, that is, the sequence of directions, 
altitudes, and turns needed to land the plane on the correct runway. Also, a dressmaking 
pattern is a series of shapes that can be used repeatedly to create a particular dress. The 
concept of a pattern itself is by no means novel. What is new is the application of patterns 
to software development and especially design. 
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  Patterns can interact with other patterns. This is represented symbolically in  Figure 
8.2(d)  where the bottom-left block of the middle pattern again is a pattern. A case study of 
a document editor in [Gamma, Helm, Johnson, and Vlissides, 1995] contains eight interact-
ing patterns. That is what happens in practice; it is unusual for the design of a product to 
contain only one pattern. 
  As with toolkits and frameworks, if a design pattern is reused, then an implementation 
of that pattern probably also can be reused. In addition, analysis patterns can assist with 
the analysis workfl ow [Fowler, 1997]. Finally, in addition to patterns, there are antipatterns; 
these are described in Just in Case You Wanted to Know Box 8.4. 
  Because of the importance of design patterns, we return to this topic in Section 8.6, after 
we have concluded our overview of reuse in design and implementation.  

  8.5.4 Software Architecture  
The architecture of a cathedral might be described as Romanesque, Gothic, or Baroque. 
Similarly, the architecture of a software product might be described as object-oriented, 
pipes and fi lters (UNIX components), or client–server (with a central server providing fi le 
storage and computing facilities for a network of client computers).  Figure 8.2(d)  sym-
bolically depicts an architecture composed of a toolkit, a framework, and three design 
patterns. 
  Because it applies to the design of a product as a whole, the fi eld of   software archi-
tecture   encompasses a variety of design issues, including the organization of the product 
in terms of its components; product-level control structures; issues of communication and 
synchronization; databases and data access; the physical distribution of the components; 
performance; and choice of design alternatives [Shaw and Garlan, 1996]. Accordingly, 
software architecture is a considerably more wide-ranging concept than design patterns. 
  In fact, Shaw and Garlan [1996] state, “Abstractly, software architecture involves the 
description of elements from which systems are built, interactions among those elements, 
  patterns that guide their composition,   and   constraints on those patterns  ” [emphasis added]. 
Consequently, in addition to the many items listed in the previous paragraph, software 
architecture includes patterns as a subfi eld. This is one reason why  Figure 8.2(d)  shows 
three design patterns as components of a software architecture. 
  The many strengths of design reuse are even greater when a software architecture is 
reused. One way that reuse of architectures is achieved in practice is with a software prod-
uct line [Clements and Northrop, 2002]. A   software product line   is a set of software 
products in the same application domain that are built by reusing   core assets   (that is, 
common software artifacts that are available for acquisition as building blocks for specifi c 
products), together with other artifacts [Tomer et al., 2004]. 

 Just in Case You Wanted to Know     Box 8.4  
An antipattern is a practice that can cause a project to fail, such as “analysis paralysis” 
(spending far too much time and effort on the analysis workfl ow) or designing an object-
oriented product in which just one object does almost all the work. A major motivation for 
writing the fi rst antipattern book was that, in 1998, nearly one-third of all software projects 
were canceled, two-thirds of all software projects encountered cost overruns in excess of 
200 percent, and over 80 percent of all software projects were deemed failures [Brown 
et al., 1998]. 
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  The idea is to develop a software architecture common to a number of software 
products and instantiate this architecture when developing a new product. For example, 
Hewlett-Packard manufactures a broad variety of printers, and new models constantly 
are being developed. Hewlett-Packard now has a fi rmware architecture that is instanti-
ated for each new printer model. The results have been impressive. For example, between 
1995 and 1998, the number of person-hours to develop the fi rmware for a new printer 
model decreased by a factor of 4 and the time to develop the fi rmware decreased by a 
factor of 3. Also, reuse has increased. For more recent printers, over 70 percent of the 
components of the fi rmware are reused, almost unchanged, from earlier products [Toft, 
Coleman, and Ohta, 2000]. 
  Architecture patterns are another way of achieving architectural reuse. One popular 
architecture pattern is the   model-view-controller (MVC) architecture pattern  . As 
shown in Section 5.1, a traditional way of designing software is to decompose it into three 
pieces: input, processing, and output. The MVC pattern can be viewed as an extension 
of the input–processing–output architecture to the GUI domain. The correspondence is 
shown in  Figure 8.3 . The view(s) and the controller provide the GUI. The decomposition 
of the architecture into model, view, and controller allows each of the components to be 
changed independently of the other two, thereby enhancing the reusability. 
  Another popular architectural pattern is the   three-tier architecture  . The   presenta-
tion logic tier   accepts user input and generates user output—this tier corresponds to the 
GUI. The   business logic tier   incorporates the processing of the business rules. The   data 
access logic tier   communicates with the underlying database. Again, this architectural 
pattern permits each of the three components to be changed independently of the other two 
(see Problem 8.14). This independence is a major reason why the three-tier architecture 
promotes reuse.  

  8.5.5 Component-Based Software Engineering  
The goal of   component-based software engineering   is to construct a standard col-
lection of reusable components. This emerging technology is outlined in Section 18.3.    

  8.6 More on Design Patterns 
  Because of the importance of design patterns in object-oriented software engineering, we 
now examine design patterns in greater detail. We begin with a mini case study that illus-
trates the   adapter   design pattern (Section 8.5.3). 

 FIGURE 8.3       The correspondence between the components of the MVC model and 
the input–processing–output model. 

            MVC component     Description     Corresponds to    

    Model     Core functionality, data     Processing   
   View     Displays information     Output   
   Controller     Handles user input     Input      
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C Mini  ase Study 

8.6.18.6.1   FLIC Mini Case Study   

Until recently, premiums at Flintstock Life Insurance Company (FLIC) depended on 
both the age and the gender of the person applying for insurance. FLIC has recently 
decided that certain policies will now be gender-neutral, that is, the premium for 
those policies will depend solely on the age of the applicant. 
  Up to now, premiums have been computed by sending a message to method  com-
putePremium  of class    Applicant   , passing the age and gender of the applicant. 
Now, however, a different computation has to be made, based solely on the applicant’s 
gender. A new class is written,    Neutral Applicant   , and premiums are computed 
by sending a message to method  computeNeutralPremium  in that class. However, 
there has not been enough time to change the whole system. The situation is therefore 
as shown in  Figure 8.4 . 
  There are serious interfacing problems. First, an    Insurance    object passes a mes-
sage to an object of type    Applicant   , instead of    Neutral Applicant   . Second, the 
message is sent to method  computePremium  instead of method  computeNeutral-
Premium . Third, parameters  age  and  gender  are passed, instead of just  age . The 
three question marks on the lower arrow in  Figure 8.4  represent these three interfac-
ing problems. 
  To solve these problems, we need to interpose class    Wrapper   , as shown in 
 Figure 8.5 . An object of class    Insurance    sends the same message  computePre-
mium  passing the same two parameters ( age  and  gender ), but now the message 
is sent to an object of type    Wrapper   . This object then sends message  compute-
NeutralPremium  to an object of class    Neutral Applicant   , passing only  age  as a 
parameter. The three interfacing problems have been solved. 

 FIGURE 8.4    
UML diagram 
showing 
interfacing 
problems 
between 
classes. 

{

}

determinePremium ()

Insurance

applicant.computePremium (age, gender); 

Neutral Applicant

computeNeutralPremium (age) 

Client

???
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    8.6.2   Adapter   Design Pattern 
 Generalizing the solution of  Figure 8.5  leads to the   adapter design pattern   shown in 
 Figure 8.6  [Gamma, Helm, Johnson, and Vlissides, 1995]. In this fi gure, the names of 
abstract classes and their abstract (virtual) methods are in    sans serif italics   . (An   abstract 
class   is a class that cannot be instantiated, although it can be used as a base class. An 
abstract class usually contains at least one   abstract method  , that is, a method with an 
interface but without an implementation.) Method    request    is defi ned as an abstract method 
of class   Abstract Target  . It is then implemented in (concrete) class    Adapter    to send 
message  specifi cRequest  to an object of class    Adaptee  .  This solves the implementation 
incompatibilities. Class    Adapter    is a concrete subclass of abstract class   Abstract Target  , 
as refl ected by the open arrow denoting inheritance in  Figure 8.6 . 
   Figure 8.6  depicts a general solution to the problem of permitting communication 
between two objects with incompatible interfaces. In fact, the   adapter   design pattern is 
even more powerful than that. It provides a way for an object to permit access to its internal 
implementation in such a way that clients are not coupled to the structure of that internal 

 FIGURE 8.5     Wrapper solution to the 
interfacing problems of Figure 8.4. 

 FIGURE 8.6     The adapter design pattern. 

{

}

computePremium (age, gender)

Wrapper

neutralApplicant.computeNeutralPremium (age);

{

}

determinePremium ()

Insurance

wrapper.computePremium (age, gender);

Neutral Applicant

computeNeutralPremium (age) 

Client

Adaptee

specificRequest ()

Abstract Target

abstract request ()

Client

{

}

request ()

Adapter

adaptee.specificRequest ();

Inheritance References
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implementation. That is, it provides all the advantages of information hiding (Section 7.6) 
without having to actually hide the implementation details. 
  We now turn to the   bridge   design pattern.  

  8.6.3   Bridge   Design Pattern  
The aim of the   bridge design pattern   is to decouple an abstraction from its implemen-
tation so that the two can be changed independently of one another. The   bridge   pattern is 
sometimes called a   driver   (for example, a printer driver or video driver). 
  Suppose that part of a design is hardware-dependent, but the rest is not. The design 
then consists of two pieces. Those parts of the design that are hardware-dependent are 
put on one side of the bridge, the hardware-independent pieces on the other side. In 
this way, the abstract operations are uncoupled from the hardware-dependent parts; 
there is a “bridge” between the two parts. Now, if the hardware changes, the modifi ca-
tions to the design and the code are localized to only one side of the bridge. The   bridge   
design pattern can therefore be viewed as a way of achieving information hiding via 
encapsulation. 
  This is shown in  Figure 8.7 . The implementation-independent piece is in classes 
  Abstract Conceptualization   and    Refi ned Conceptualization   , and the imple-
mentation-dependent piece is in classes   Abstract Implementation   and    Concrete 
Implementation   . 

 FIGURE 8.7     The   bridge   design pattern. 

Inheritance References

Refined Conceptualization

Client

{

}

operation ()

Abstract Conceptualization

impl.operationImplementation ();

Abstract Implementation

abstract operationImplementation ()

Concrete Implementation

operationImplementation ()
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  The   bridge   design pattern is also useful for decoupling operating system-dependent 
pieces or compiler-dependent pieces, thereby supporting multiple implementations. This is 
shown in  Figure 8.8 .  

  8.6.4   Iterator   Design Pattern  
An   aggregate   object (or   container   or   collection  ) is an object that contains other objects 
grouped together as a unit. Examples include a linked list and a hash table. An iterator is a 
programming construct that allows a programmer to traverse the elements of an aggregate 
object without exposing the implementation of that aggregate. An iterator is frequently 
referred to as a   cursor  , especially within a database context. 
  An iterator may be viewed as a pointer with two main operations:   element access  , 
or referencing a specifi c element in the collection; and   element traversal  , or modifying 
itself so it points to the next element in the collection. 
  A well-known example of an iterator is a television remote control. Every remote con-
trol has a key (often labeled  Up  or ▲) that increases the channel number by one, and a key 
(often labeled  Down  or ▼) that decreases the channel number by one. The remote control 
increases or decreases the channel number without the viewer having to specify (or even 
having to know) the current channel number, let alone the program that is being carried on 
that channel. That is, the device implements element traversal without exposing the imple-
mentation of the aggregate. 
  The   iterator design pattern   is shown in  Figure 8.9 . A  Client  object deals with only 
the   Abstract Aggregate   and   Abstract Iterator   (essentially an interface). The  Client  
object asks the   Abstract Aggregate   object to create an iterator for the    Concrete 
Aggregate    object, and then utilizes the returned    Concrete Iterator    to traverse the 
contents of the aggregate. The   Abstract Aggregate   object has to have an abstract method, 
   createIterator  ,  as a way of returning an iterator to the  Client  object within the application 
program, whereas the   Abstract Iterator   interface needs to defi ne only the basic four 
abstract traversal operations,    fi rst   ,    next   ,    isDone   , and    currentItem   . Implementation of these 
fi ve methods is achieved at the next level of abstraction, in    Concrete Aggregate    ( cre-
ateIterator ) and    Concrete Iterator    ( fi rst ,  next ,  isDone , and  currentItem ). 
  The key aspect of the   iterator   design pattern is that implementation details of the ele-
ments are hidden from the iterator itself. Accordingly, we can use an iterator to process 
every element in a collection, independently of the implementation of the container of the 
elements. 
  Furthermore, the pattern allows different traversal methods. It even allows multiple 
traversals to be in progress concurrently, and these traversals can be achieved without hav-
ing the specifi c operations listed in the interface. Instead, we have one uniform interface, 
namely, the four abstract operations    fi rst   ,    next   ,    isDone   , and    currentItem    in   Abstract 
Iterator  , with the specifi c traversal method(s) implemented in    Concrete Iterator  .   

  8.6.5   Abstract Factory   Design Pattern 
 Suppose that a software organization wishes to build a widget generator, a tool that assists 
developers in constructing a graphical user interface. Instead of having to develop the vari-
ous   widgets   (such as windows, buttons, menus, sliders, and scroll bars) from scratch, a 
developer can use the set of classes created by the widget generator that defi ne the widgets 
to be utilized within the application program. 

sch76183_ch08_225-267.indd   241sch76183_ch08_225-267.indd   241 04/06/10   6:41 PM04/06/10   6:41 PM



 FIGURE 8.8     Using the bridge design pattern to support multiple implementations. 

Inheritance References

Refined Conceptualization

Client

{

}

operation ()

Abstract Conceptualization

impl.operationImplementation ();

Abstract Implementation

abstract operationImplementation ()

Concrete Implementation A

operationImplementation ()

Concrete Implementation B

operationImplementation ()

242

sch76183_ch08_225-267.indd   242
sch76183_ch08_225-267.indd   242

04/06/10   6:41 P
M

04/06/10   6:41 P
M



  FIGURE 8.9     The iterator design pattern. 
 

Client

{

}

createIterator ()

Concrete Aggregate

return new concreteIterator (this);

Concrete Iterator

 first ()
 next ()
 isDone () : Boolean
 currentItem () : Item

Abstract Iterator

abstract first ()
abstract next ()
abstract isDone () : Boolean
abstract currentItem () : Item

Abstract Aggregate

abstract createIterator () : Iterator
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  The problem is that the application program (and, therefore, the widgets) may have to run 
under many different operating systems, including Linux, Mac OS, and Windows. The widget 
generator is to support all three operating systems. However, if the widget generator hard-codes 
routines that run under one specifi c system into an application program, it will be diffi cult to 
modify that application program in the future, replacing the generated routines with different 
routines that run under a different operating system. For example, suppose that the application 
program is to run under Linux. Then, every time a menu is to be generated, message  create 
Linux menu  is sent. However, if that application program now needs to run under Mac OS, 
every instance of  create Linux menu  must be replaced by  create Mac OS menu . For a large 
application program, such a conversion from Linux to Mac OS is laborious and fault prone. 
  The solution is to design the widget generator in such a way that the application program 
is uncoupled from the specifi c operating system. This can be achieved using the   abstract 
factory design pattern   [Gamma, Helm, Johnson, and Vlissides, 1995].  Figure 8.10  
shows the resulting design of the graphical user interface toolkit. Again, the names of 
abstract classes and their abstract (virtual) methods are in    sans serif italics   . At the top 
of  Figure 8.10  is abstract class   Abstract Widget Factory  . This abstract class contains 
numerous abstract methods; for simplicity, only two are shown here:    create menu    and    cre-
ate window   . Moving down in the fi gure,    Linux Widget Factory   ,    Mac OS Widget 
Factory  ,  and    Windows Widget Factory    are concrete subclasses of   Abstract Wid-
get Factory .  Each class contains the specifi c methods for creating widgets that run under 
a given operating system. For example,  create menu  within    Linux Widget Factory    
causes a menu object to be created that will run under Linux. 
  There are also abstract classes for each widget. Two are shown here,   Abstract Menu   
and   Abstract Window  . Each has concrete subclasses, one for each of the three operating 
systems. For example,    Linux Menu    is one concrete subclass of   Abstract Menu  . Method 
 create menu  within concrete subclass    Linux Widget Factory    causes an object of type 
   Linux Menu    to be created. 
  To create a window, a    Client    object within the application program need only send a mes-
sage to abstract method    create window    of   Abstract Widget Factory   and polymorphism 
ensures that the correct widget is created. Suppose that the application program has to run under 
Linux. First, an object  Widget Factory  of type (class)    Linux Widget Factory    is created. 
Then a message to virtual (abstract) method    create window    of   Abstract Widget Factory   
passing  Linux  as a parameter is interpreted as a message to method  create window  within con-
crete subclass    Linux Widget Factory   . Method  create window  in turn sends a message to 
create a    Linux Window   ; this is indicated by the leftmost vertical dashed line in  Figure 8.10 . 
  The critical aspect of this fi gure is that the three interfaces between the    Client    within 
the application program and the widget generator, classes   Abstract Widget Factory  , 
  Abstract Menu  , and   Abstract Window  , all are abstract classes. None of these inter-
faces is specifi c to any one operating system because the methods of the abstract classes 
are    abstract    (   virtual    in C++). Consequently, the design of  Figure 8.10  indeed has 
uncoupled the application program from the operating system. 
  The design of  Figure 8.10  is an instance of the   abstract factory   design pattern shown in 
 Figure 8.11 . To use this pattern, specifi c classes replace the generic names like    Concrete 
Factory 2    and    Product B3   . That is why  Figure 8.2(c) , the symbolic representation of a 
design pattern, contains white rectangles within the shaded rectangles; the white rectangles 
represent the details that have to be supplied to reuse this pattern in a design.    
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  8.7 Categories of Design Patterns 
  The defi nitive list of 23 design patterns given in [Gamma, Helm, Johnson, and Vlis-
sides, 1995] is presented in  Figure 8.12 . The patterns are divided into three categories: 
creational patterns, structural patterns, and behavioral patterns.   Creational design 
patterns   solve design problems by creating objects; the   abstract factory   pattern (Sec-
tion 8.6.5) is an example.   Structural design patterns   solve design problems by 

 FIGURE 8.10     
Design of 
graphical user 
interface toolkit.  
The names of 
abstract classes 
and their virtual 
functions are 
italicized. 

Abstract Widget Factory

abstract create menu ()
abstract create window ()

Abstract Menu

Mac OS MenuLinux Menu
Client

Windows Menu

Mac OS WindowLinux Window Windows Window

Abstract Window

Windows
Widget Factory

create menu ()
create window ()

Mac OS Widget
Factory

create menu ()
create window ()

Linux Widget
Factory

create menu ()
create window ()

Inheritance Creates References
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identifying a simple way to realize relationships between entities. Examples include 
the   adapter   pattern (Section 8.6.2) and the   bridge   pattern of Section 8.6.3. Finally, 
  behavioral design patterns   solve design problems by identifying common com-
munication patterns between objects. An example of this type of design pattern is the 
  iterator   pattern (Section 8.6.4). 
  Many other lists of design patterns, organized into a variety of different categories, have 
been put forward. These categories are either for design patterns in general, or for specifi c 

 FIGURE 8.11 
    Abstract  
factory   
design pattern. 
The names 
of abstract 
classes and 
their virtual 
functions are 
italicized. 

Abstract Widget Factory

abstract create product A ()
abstract create product B ()

Abstract Product A
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domains, such as design patterns for Web pages or computer games. However, these alter-
native lists of patterns have not been widely accepted.   

  8.8 Strengths and Weaknesses of Design Patterns 
  Design patterns have many strengths: 

   1. As pointed out in Section 8.5.3, design patterns promote reuse by solving a general 
design problem. The reusability of a design pattern can be enhanced by careful incorpo-
ration of features that can be used to further enhance reuse, such as inheritance.  

  2.  A design pattern provides high-level documentation of the design, because patterns 
specify design abstractions.  

  3.  Implementations of many design patterns exist. In such cases, there is no need to code 
or document those parts of a program that implement design patterns. (Testing of those 
parts of the program is still essential, of course.)  

  4.  If a maintenance programmer is familiar with design patterns, it will be easier to com-
prehend a program that incorporates design patterns, even if he or she has never seen 
that specifi c program before.  

  5.  Research into automated detection of design patterns is starting to produce results.   

 FIGURE 8.12     
The 23 design 
patterns listed in 
[Gamma, Helm, 
Johnson, and 
Vlissides, 1995]. 

           Creational patterns         
      Abstract factory      Creates an instance of several families of classes (Section 8.6.5)   
      Builder      Allows the same construction process to create different representations   
      Factory method      Creates an instance of several possible derived classes   
      Prototype      A class to be cloned   
      Singleton      Restricts instantiation of a class to a single instance   

    Structural patterns         
      Adapter      Matches interfaces of different classes (Section 8.6.2)   
      Bridge      Decouples an abstraction from its implementation (Section 8.6.3)   
      Composite      A class that is a composition of similar classes   
      Decorator      Allows additional behavior to be dynamically added to a class   
      Façade      A single class that provides a simplifi ed interface   
      Flyweight      Uses sharing to support large numbers of fi ne-grained classes effi ciently   
      Proxy      A class functioning as an interface   

    Behavioral patterns         
      Chain-of-responsibility      A way of processing a request by a chain of classes   
      Command      Encapsulates an action within a class   
      Interpreter      A way to implement specialized language elements   
      Iterator      Sequentially access the elements of a collection (Section 8.6.4)   
      Mediator      Provides a unifi ed interface to a set of interfaces   
      Memento      Captures and restores an object’s internal state   
      Observer      Allows the observation of the state of an object at run time   
      State      Allows an object to partially change its type at run time   
      Strategy      Allows an algorithm to be dynamically selected at run time   
      Template method      Defers implementations of an algorithm to its subclasses   
      Visitor      Adds new operations to a class without changing it      
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 However, design patterns have a number of weaknesses, too: 

   1. The use of the 23 standard design patterns in [Gamma, Helm, Johnson, and Vlissides, 
1995] in a software product may be an indication that the language we are using is not 
powerful enough. Norwig [1996] examined the C++ implementations of those patterns, 
and found that 16 out of the 23 have simpler implementations in Lisp or Dylan than in 
C++, for at least some uses of each pattern.  

  2.  A major problem is that there is as yet no systematic way to determine when and how to 
apply design patterns. Design patterns are still described informally, using natural lan-
guage text. Accordingly, we have to decide manually when to apply a pattern; a CASE 
tool ( Chapter 5 ) cannot yet be used.  

  3. To obtain maximal benefi t from design patterns, multiple interacting patterns are 
employed. For example, as stated in Section 8.5.3, a case study of a document editor in 
[Gamma, Helm, Johnson, and Vlissides, 1995] contains eight interacting patterns. As 
pointed out in paragraph 2 of this section, we do not yet have a systematic way of know-
ing when and how to use one pattern, let alone multiple interacting patterns.  

  4. When performing maintenance on a software product built using the classical paradigm, 
it is essentially impossible to retrofi t classes and objects. It is similarly all but impossible 
to retrofi t patterns to an existing software product, whether classical or object oriented.   

  However, the weaknesses of design patterns are outweighed by their strengths. Further-
more, once current research efforts to formalize and hence automate design patterns have 
succeeded, patterns will be much easier to use than at present.   

  8.9 Reuse and the World Wide Web 
  When a programmer is particularly proud of a piece of code that he or she has written, the 
programmer may decide to post the code on the World Wide Web. There is now a plethora of 
code of all kinds, ranging from a student’s fi rst programming exercise to intricate code imple-
mented by professional programmers. The Web has code in a wide variety of programming 
languages, for an impressively broad range of application areas. Designs and patterns are also 
available on the Web for reuse, but in much smaller numbers than code segments. 
  As a result, the Web supports code reuse on a previously unimagined scale. Anyone can 
download this code from the Web and use it, free of charge and with no restrictions (although, 
as a courtesy, the programmer should acknowledge the source of any code he or she has 
downloaded and reused). However, there are two problems with reusing code from the Web. 

  •  First, the quality of the code varies widely. There is no guarantee that code that has been 
posted on the Web can even be successfully compiled, let alone that it is correct; and 
reuse of incorrect code is clearly unproductive.  

  • Second, when a code segment is reused within an organization, a record is kept of that 
reuse instance so that, if a fault is later found in the original code, the reused code can 
also be fi xed. Now suppose that a fault is found in a code segment that has been posted 
on the Web and downloaded many times. In general, there is no way for the author of 
that code to determine who downloaded the code, and whether or not it was actually 
reused after downloading.   
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  Consequently, on the one hand, the World Wide Web promotes widespread reuse of 
code and, to a much lesser extent, of designs and patterns. On the other hand, however, the 
quality of the downloaded material may be abysmal, and the consequences of reuse may be 
severe.   

  8.10 Reuse and Postdelivery Maintenance 
  The traditional reason for promoting reuse is that it can shorten the development process. 
For example, a number of major software organizations are trying to halve the time needed 
to develop a new product, and reuse is a primary strategy in these endeavors. However, as 
refl ected in Figure 1.3, for every $1 spent on developing a product, $2 or more are spent on 
maintaining that product. Therefore, a second important reason for reuse is to reduce the 
time and cost of maintaining a product. In fact, reuse has a greater impact on postdelivery 
maintenance than on development. 
  Suppose now that 40 percent of a product consists of components reused from earlier 
products and this reuse is evenly distributed across the entire product. That is, 40 percent 
of the specifi cation document consists of reused components, 40 percent of the design, 
40 percent of the code artifacts, 40 percent of the manuals, and so on. Unfortunately, this 
does not mean that the time to develop the product as a whole will be 40 percent less than 
it would have been without reuse. First, some of the components have to be tailored to the 
new product. Suppose that one-quarter of the reused components are changed. If a compo-
nent has to be changed, then the documentation for that component also has to be changed. 
Furthermore, the changed component has to be tested. Second, if a code artifact is reused 
unchanged, then unit testing of that code artifact is not required. However, integration test-
ing of that code artifact still is needed. So, even if 30 percent of a product consists of com-
ponents reused unchanged and a further 10 percent are reused changed, the time needed to 
develop the complete product at best is only about 27 percent less [Schach, 1992]. Suppose 
that, as in Figure 1.3(a), 33 percent of a software budget is devoted to development. Then, 
if reuse reduces development costs by about 27 percent, the overall cost of that product over 
its 12- to 15-year lifetime is reduced by only about 9 percent as a consequence of reuse; this 
is refl ected in  Figure 8.13 . 
  Similar but lengthier arguments can be applied to the postdelivery maintenance compo-
nent of the software process [Schach, 1994]. Under the assumptions of the previous para-
graph, the effect of reuse on postdelivery maintenance is an overall cost saving of about 
18 percent, as shown in  Figure 8.13 . Clearly, the major impact of reuse is on postdelivery 

 FIGURE 8.13     Average percentage cost savings under the assumption that 40 percent of a new 
product consists of reused components, three-quarters of which are reused unchanged. 

                 Percentage of Total Cost     Percentage Savings over   
   Activity     over Product Lifetime     Product Lifetime due to Reuse    

    Development        33%           9.3%   
   Postdelivery maintenance     67     17.9      
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maintenance rather than development. The underlying reason is that reused components 
generally are well designed, thoroughly tested, and comprehensively documented, thereby 
simplifying all three types of postdelivery maintenance. 
  If the actual reuse rates in a given product are lower (or higher) than assumed in this 
section, then the benefi ts of reuse are different. But the overall result is still the same: Reuse 
affects postdelivery maintenance more than it does development. 
  We turn now to portability.   

  8.11 Portability 
  The ever-rising cost of software makes it imperative that some means be found to contain 
costs. One way is to ensure that the product as a whole can be adapted easily to run on a 
variety of different hardware–operating system combinations. Some of the cost of imple-
menting the product may then be recouped by selling versions that run on other computers. 
But, the most important reason for developing software that can be implemented easily on 
other computers is that, every 4 years or so, the client organization purchases new hard-
ware, and all its software then must be converted to run on the new hardware. A product 
is considered portable if it is signifi cantly less expensive to adapt the product to run on the 
new computer than to implement a new product from scratch [Mooney, 1990]. 
  More precisely,   portability   may be defi ned as follows: Suppose a product   P   is compiled 
by compiler   C   and then runs on the   source computer  , namely, hardware confi guration   H   
under operating system   O  . A product   P  � is needed that functionally is equivalent to   P   but 
must be compiled by compiler   C  � and run on the   target computer  , namely, hardware 
confi guration   H  � under operating system   O�  . If the cost of converting   P   into   P  � is signifi -
cantly less than the cost of coding   P  � from scratch, then   P   is said to be   portable  . 
  Overall, the problem of porting software is nontrivial because of incompatibilities 
among different hardware confi gurations, operating systems, and compilers. Each of these 
aspects is examined in turn. 

  8.11.1 Hardware Incompatibilities  
Product   P   currently running on hardware confi guration   H   is to be installed on hardware 
confi guration   H  �. Superfi cially, this is simple; copy   P   from the hard drive of   H   onto DAT 
tape and transfer it to   H  �. However, this will not work if   H �  uses a Zip drive for backup; 
DAT tape cannot be read on a Zip drive. 
  Suppose now that the problem of physically copying the source code of product   P   to com-
puter   H�   has been solved. There is no guarantee that   H  � can interpret the bit patterns created 
by   H  . A number of different character codes exist, the most popular of which are Extended 
Binary Coded Decimal Interchange Code (EBCDIC) and American Standard Code for Infor-
mation Interchange (ASCII), the American version of the 7-bit ISO code [Mackenzie, 1980]. 
If   H   uses EBCDIC but   H  � uses ASCII, then   H  � will treat   P   as so much garbage. 
  Although the original reason for these differences is historical (that is, researchers work-
ing independently for different manufacturers developed different ways of doing the same 
thing), there are defi nite economic reasons for perpetuating them. To see this, consider the 
following imaginary situation. MCM Computer Manufacturers has sold thousands of its 
MCM-1 computer. MCM now wishes to design, manufacture, and market a new computer, 
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the MCM-2, which is more powerful in every way than the MCM-1 but costs considerably 
less. Suppose further that the MCM-1 uses ASCII code and has 36-bit words consisting 
of four 9-bit bytes. Now, the chief computer architect of MCM decides that the MCM-2 
should employ EBCDIC and have 16-bit words consisting of two 8-bit bytes. The sales 
force then has to tell current MCM-1 owners that the MCM-2 is going to cost them $35,000 
less than any competitor’s equivalent machine but will cost them up to $200,000 to convert 
existing software and data from MCM-1 format to MCM-2 format. No matter how good 
the scientifi c reasons for designing the MCM-2, marketing considerations will ensure that 
the new computer is compatible with the old one. A salesperson then can point out to an 
existing MCM-1 owner that, not only is the MCM-2 computer $35,000 less expensive than 
any competitor’s machine, but any customer ill-advised enough to buy from a different 
manufacturer will be spending $35,000 too much and also will have to pay some $200,000 
to convert existing software and data to the format of the non-MCM machine. 
  Moving from the preceding imaginary situation to the real world, the most successful 
line of computers to date has been the IBM System/360-370 series [Gifford and Spector, 
1987]. The success of this line of computers is due largely to full compatibility between 
machines; a product that runs on an IBM System/360 Model 30 built in 1964 runs un-
changed on an IBM System z10 EC built in 2009. However, the product that runs on the 
IBM System/360 Model 30 under OS/360 may require considerable modifi cation before it 
can run on a totally different 2009 machine, such as a Sun Fire E2900 server under Solaris. 
Part of the diffi culty may be due to hardware incompatibilities. But part may be caused by 
operating system incompatibilities.  

  8.11.2 Operating System Incompatibilities  
The job control languages (JCL) of any two computers usually are vastly different. Some of 
the difference is syntactic—the command for executing an executable load image might be 
 @xeq  on one computer,  //xqt  on another, and  .exc  on a third. When porting a product to 
a different operating system, syntactic differences are relatively straightforward to handle 
by simply translating commands from the one JCL into the other. But other differences can 
be more serious. For example, some operating systems support virtual memory. Suppose 
that a certain operating system allows products to be up to 1024 MB in size, but the actual 
area of main memory allocated to a particular product may be only 64 MB. What happens 
is that the user’s product is partitioned into pages 2048 KB in size, and only 32 of these 
pages can be in main memory at any one time. The rest of the pages are stored on disk and 
swapped in and out as needed by the virtual memory operating system. As a result, prod-
ucts can be implemented with no effective constraints as to size. But, if a product that has 
been successfully implemented under a virtual memory operating system is to be ported to 
an operating system with physical constraints on product size, the entire product may have 
to be reimplemented and then linked using overlay techniques to ensure that the size limit 
is not exceeded.  

  8.11.3 Numerical Software Incompatibilities  
When a product is ported from one machine to another or even compiled using a different 
compiler, the results of performing arithmetic may differ. On a 16-bit machine, that is, 
a computer with a word size of 16 bits, an integer ordinarily is represented by one word 
(16 bits) and a double-precision integer by two adjacent words (32 bits). Unfortunately, 
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 Just in Case You Wanted to Know     Box 8.5  
In 1991, James Gosling of Sun Microsystems developed Java. While developing the lan-
guage, he frequently stared out the window at a large oak tree outside his offi ce. In fact, 
he did this so often that he decided to name his new language   Oak  . However, his choice of 
name was unacceptable to Sun because it could not be trademarked, and without a trade-
mark Sun would lose control of the language. 
  After an intensive search for a name that could be trademarked and was easy to remember, 
Gosling’s group came up with   Java  . During the 18th century, much of the coffee imported 
into England was grown in Java, the most populous island in the Dutch East Indies (now 
Indonesia). As a result,   Java   now is a slang word for coffee, the third most popular bever-
age among software engineers. Unfortunately, the names of the Big Two carbonated cola 
beverages are already trademarked. 
  To understand why Gosling designed Java, it is necessary to appreciate the source of 
the weaknesses he perceived in C++. And, to do that, we have to go back to C, the parent 
language of C++. 
  In 1972, the programming language C was developed by Dennis Ritchie at AT&T Bell 
Laboratories (now Alcatel-Lucent Technologies) for use in systems software. The language 
was designed to be extremely fl exible. For example, it permits arithmetic on pointer variables, 
that is, on variables used to store memory addresses. From the viewpoint of the average 
programmer, this poses a distinct danger; the resulting programs can be extremely insecure 
because control can be passed to anywhere in the computer. Also, C does not embody arrays 
as such. Instead, a pointer to the address of the beginning of the array is used. As a result, 
the concept of an out-of-range array subscript is not intrinsic to C. This is a further source of 
possible insecurity. 
  These and other insecurities were no problem at Bell Labs. After all, C was designed by an 
experienced software engineer for use by other experienced software engineers at Bell Labs. 
These professionals could be relied on to use the powerful and fl exible features of C in a secure 
way. A basic philosophy in the design of C was that the person using C knows exactly what he 
or she is doing. Software failures that occurred when C was used by less competent or inex-
perienced programmers should not be blamed on Bell Labs; there never was any intent that C 
should be widely employed as a general-purpose programming language, as it is today. 

some language implementations do not include double-precision integers. Therefore, a 
product that functions perfectly on a compiler–hardware–operating system confi guration 
in which integers are represented using 32 bits may fail to run correctly when ported to 
a computer in which integers are represented by only 16 bits. The obvious solution—
representing integers larger than 2 16  by fl oating-point numbers (type    real   )—does not 
work because integers are represented exactly whereas fl oating-point numbers in general 
are only approximated using a mantissa (fraction) and exponent. 
  This problem can be solved in Java, because each of the eight primitive data types has 
been carefully specifi ed. For example, type    int    always is implemented as a signed 32-bit 
two’s complement integer, and type    fl oat    always occupies 32 bits and satisfi es ANSI/
IEEE (Standard) 754 [1985] for fl oating-point numbers. The problem of ensuring that a 
numerical computation is performed correctly on every target hardware–operating system 
therefore cannot arise in Java. (For more insights into the design of Java, see Just in Case 
You Wanted to Know Box 8.5.) However, where a numerical computation is performed 
in a language other than Java, it is important, but often diffi cult, to ensure that numerical 
computations are performed correctly on the target hardware–operating system.  
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  8.11.4 Compiler Incompatibilities  
Portability is diffi cult to achieve if a product is implemented in a language for which few 
compilers exist. If the product has been implemented in a specialized language such as 
CLU [Liskov, Snyder, Atkinson, and Schaffert, 1977], it may be necessary to reimplement 
it in a different language if the target computer has no compiler for that language. On the 
other hand, if a product is implemented in a popular language such as COBOL, Fortran, 
Lisp, C, C++, or Java, the chances are good that a compiler or interpreter for that language 
can be found for a target computer. 
  Suppose that a product is implemented in a popular high-level language such as standard 
Fortran. In theory, there should be no problem in porting the product from one machine to 
another—after all, standard Fortran is standard Fortran. Regrettably, that is not the case; in 
practice, there is no such thing as standard Fortran. Even though there is an ISO/IEC Fortran 
standard, Fortran 2003 [ISO/IEC 1539–1, 2004], there is no reason for a compiler writer 
to adhere to it (see Just in Case You Wanted to Know Box 8.6 for more on the name For-
tran 2003). For example, a decision may be made to support additional features not usually 
found in Fortran so that the marketing division can tout a “new, extended Fortran compiler.” 

  With the rise of the object-oriented paradigm, a number of object-oriented program-
ming languages based on C were developed, including Object C, Objective C, and C++. 
The idea behind these languages was to embed object-oriented constructs within C, which 
by then was a popular programming language. It was argued that it would be easier for 
programmers to learn a language based on a familiar language than to learn a totally new 
syntax. However, only one of the many C-based object-oriented languages became widely 
accepted, C++, developed by Bjarne Stroustrup, also of AT&T Bell Laboratories. 
  It has been suggested that the reason behind the success of C++ was the enormous 
fi nancial clout of AT&T (now part of SBC Communications). However, if corporate size and 
fi nancial strength were relevant features in promoting a programming language, today 
we would all be using PL/I, a language developed and strongly promoted by IBM. The 
reality is that PL/I, notwithstanding the prestige of IBM, has retreated into obscurity.   The 
real reason for the success of C++ is that it is a true superset of C. That is, unlike any of the 
other C-based object-oriented programming languages, virtually any C program is also 
valid C++. Therefore, organizations realized that they could switch from C to C++ without 
changing any of their existing C software. They could advance from the classical paradigm 
to the object-oriented paradigm without disruption. A remark frequently encountered in 
the Java literature is, “Java is what C++ should have been.” The implication is that, if only 
Stroustrup had been as smart as Gosling, C++ would have turned out to be Java. On the 
contrary, if C++ had not been a true superset of C, it would have gone the way of all other 
C-based object-oriented programming languages; that is, it essentially would have disap-
peared. Only after C++ had taken hold as a popular language was Java designed in reaction 
to perceived weaknesses in C++. Java is not a superset of C; for example, Java has no pointer 
variables. Therefore, it would be more accurate to say that, “Java is what C++ could not 
possibly have been.” 
  Finally, it is important to realize that Java, like every other programming language, has 
weaknesses of its own. In addition, in some areas (such as access rules), C++ is superior 
to Java [Schach, 1997]. It will be interesting to see, in the coming years, whether C++ 
continues to be the predominant object-oriented programming language or whether it is 
supplanted by Java or some other language. 
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Conversely, a microcomputer compiler may not be a full Fortran implementation. Also, with 
a deadline to produce a compiler, management may decide to bring out a less-than-complete 
implementation, intending to support the full standard in a later revision. Suppose that the 
compiler on the source computer supports a superset of Fortran 2003. Suppose further that 
the target computer has an implementation of standard Fortran 2003. When a product imple-
mented on that source computer is ported to the target, any portions of the product that use 
nonstandard Fortran 2003 constructs from the superset have to be recoded. Therefore, to 
ensure portability, programmers should use only standard Fortran language features. 
  Early COBOL standards were developed by the COnference on DAta SYstems Lan-
guages (CODASYL), a committee of American computer manufacturers and government 
and private users. Joint Technical Committee 1 of Subcommittee 22 of the International 
Organization for Standardization (ISO) and the International Electrotechnical Commis-
sion (IEC) now are responsible for COBOL standards [Schricker, 2000]. Unfortunately, 
COBOL standards do not promote portability. A COBOL standard has an offi cial life of 
5 years, but each successive standard is not necessarily a superset of its predecessor. In fact, 
COBOL 85 was incompatible with the earlier standard, COBOL 74. 
  Equally worrisome is that many features are left to the individual implementer, subsets 
may be termed   standard COBOL  , and there is no restriction on extending the language to 
form a superset. COBOL 2002, the language of the current COBOL standard, is object-
oriented [ISO/IEC 1989, 2002], as is Fortran 2003 [ISO/IEC 1539–1, 2004]. 
  The American National Standards Institute (ANSI) approved a standard for the program-
ming language C [ANSI X3.159, 1989]. The standard was approved by the ISO in 1990. 
Most C compilers adhere quite closely to the original language specifi cation [Kernighan 
and Ritchie, 1978]. This is because almost all C compiler writers use the standard front 
end of the portable C compiler,    pcc    [Johnson, 1979]; as a result, the language accepted by 
the vast majority of compilers is identical. C products, in general, are easily ported from 
one implementation to another. An aid to C portability is the    lint    processor, which can be 
used to determine implementation-dependent features as well as constructs that may lead 
to diffi culties when the product is ported to a target computer. Unfortunately,    lint    checks 
only the syntax and the static semantics and therefore is not foolproof. However, it can be 

 Just in Case You Wanted to Know     Box 8.6  
Names of programming languages are spelled in uppercase when the name is an acro-
nym. Examples include ALGOL (ALGOrithmic Language), COBOL (COmmon Business 
Oriented Language), and FORTRAN (FORmula TRANslator). Conversely, all other pro-
gramming languages begin with an uppercase letter and the remaining letters in the 
name (if any) are in lowercase. Examples include Ada, C, C++, Java, and Pascal.   Ada   is 
not an acronym; the language was named after Ada, Countess of Lovelace (1815–1852). 
Daughter of the poet Lord Alfred Byron, Ada was the world’s fi rst programmer by virtue 
of her work on Charles Babbage’s difference engine.   Pascal   is not an acronym either—
this language was named after the French mathematician and philosopher, Blaise Pascal 
(1623–1662). And I am sure that you have read all about the name   Java   in Just in Case 
You Wanted to Know Box 8.5. 
  There is one exception: Fortran. The FORTRAN Standards Committee decided that, 
effective with the 1990 version, the name of the language would thenceforth be written 
  Fortran  . 
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of considerable help in reducing future problems. For example, in C, it is legal to assign an 
integer value to a pointer and vice versa, but this is forbidden by    lint   . In some implementa-
tions, the size (number of bits) of an integer and a pointer are the same, but the sizes may 
be different on other implementations; this sort of potential future portability problem can 
be fl agged by    lint    and obviated by recoding the offending portions. 
  The standard for C++ [ISO/IEC 14882, 1998] was unanimously approved by the various 
national standards committees (including ANSI) in November 1997. The standard received 
fi nal ratifi cation in 1998. 
  The only truly successful language standard so far has been the Ada 83 standard, embodied 
in the Ada Reference Manual [ANSI/MIL-STD-1815A, 1983]. (For background information 
on Ada, see Just in Case You Wanted to Know Box 8.6.) Until the end of 1987, the name Ada 
was a registered trademark of the U.S. government, Ada Joint Program Offi ce (AJPO). As 
owner of the trademark, the AJPO stipulated that the name Ada legally could be used only for 
language implementations that complied exactly with the standard; subsets and supersets were 
expressly forbidden. A mechanism was set up for validating Ada compilers, and only a compiler 
that successfully passed the validation process could be called an Ada compiler. Accordingly, 
the trademark was used as a means of enforcing standards and hence portability. 
  Now that the name Ada no longer is a trademark, enforcement of the standard is being 
achieved via a different mechanism. There is little or no market for an Ada compiler 
that has not been validated. Therefore, strong economic forces encourage Ada compiler 
developers to have their compilers validated and hence certifi ed as conforming to the Ada 
standard. This has applied to compilers for both Ada 83 [ANSI/MIL-STD-1815A, 1983] 
and Ada 95 [ISO/IEC 8652, 1995].  
  For Java to be a totally portable language, it is essential for the language to be stan-
dardized and to ensure that the standard is strictly obeyed. Sun Microsystems, like the 
Ada Joint Program Offi ce, uses the legal system to achieve standardization. As mentioned 
in Just in Case You Wanted to Know Box 8.5, Sun chose a name for its new language 
that could be copyrighted so that Sun could enforce its copyright and bring legal action 
against alleged violators (which happened when Microsoft developed nonstandard Java 
classes). After all, portability is one of the most powerful features of Java. If multiple ver-
sions of Java are permitted, the portability of Java suffers; Java can be truly portable only 
if every Java program is handled identically by every Java compiler. To try to infl uence 
public opinion, in 1997 Sun ran a “Pure Java” advertising campaign. 
  Version 1.0 of Java was released early in 1997. A series of revised versions followed in 
response to comments and criticisms. The latest version at the time of writing is Java J2SE 
(Java 2 Platform, Standard Edition), version 6. This process of stepwise refi nement of Java 
will continue. When the language eventually stabilizes, it is likely that a standards organi-
zation such as ANSI or ISO will publish a draft standard and elicit comments from all over 
the world. These comments will be used to put together the offi cial Java standard.    

  8.12 Why Portability? 
  In the light of the many barriers to porting software, the reader might well wonder if it is 
worthwhile to port software at all. An argument in favor of portability stated in Section 8.10 
is that the cost of software may be partially recouped by porting the product to a different 

sch76183_ch08_225-267.indd   255sch76183_ch08_225-267.indd   255 04/06/10   6:41 PM04/06/10   6:41 PM



256  Part A  Software Engineering Concepts

hardware–operating system confi guration. However, selling multiple variants of the software 
may not be possible. The application may be highly specialized, and no other client may need 
the software. For instance, a management information system developed for one major car 
rental corporation may simply be inapplicable to the operations of other car rental corpora-
tions. Alternatively, the software itself may give the client a competitive advantage, and sell-
ing copies of the product would be tantamount to economic suicide. In the light of all this, is 
it not a waste of time and money to engineer portability into a product when it is designed? 
  The answer to this question is an emphatic   No  . The major reason why portability is 
essential is that the life of a software product generally is longer than the life of the hard-
ware for which it was fi rst implemented. Good software products can have a life of 15 years 
or more, whereas hardware frequently is changed every 4 years. Therefore, good software 
can be implemented, over its lifetime, on three or more different hardware confi gurations. 
  One way to solve this problem is to buy upwardly compatible hardware. The only expense 
is the cost of the hardware; the software need not be changed. Nevertheless, in some cases 
it may be economically more sound to port the product to different hardware entirely. For 
example, the fi rst version of a product may have been implemented 7 years ago on a main-
frame. Although it may be possible to buy a new mainframe on which the product can run 
with no changes, it may be considerably less expensive to implement multiple copies of the 
product on a network of personal computers, one on the desk of each user. In this instance, 
if the software has been implemented in a way that would promote portability, then porting 
the product to the personal computer network makes good fi nancial sense. 
  But there are other kinds of software. For example, many organizations that develop 
software for personal computers make their money by selling multiple copies of COTS 
software. For instance, the profi t on a spreadsheet package is small and cannot possibly 
cover the cost of development. To make a profi t, 50,000 (or even 500,000) copies may have 
to be sold. After this point, additional sales are pure profi t. So, if the product can be ported 
to additional types of hardware with ease, even more money can be made. 
  Of course, as with all software, the product is not just the code but also the documen-
tation, including the manuals. Porting the spreadsheet package to other hardware means 
changing the documentation as well. Therefore, portability also means being able to change 
the documentation easily to refl ect the target confi guration, instead of having to write new 
documentation from scratch. Considerably less training is needed if a familiar, existing 
product is ported to a new computer than if a completely new product were to be imple-
mented. For this reason, too, portability is to be encouraged. 
  Techniques to facilitate portability now are described.   

  8.13 Techniques for Achieving Portability 
  One way to try to achieve portability is to forbid programmers to use constructs that might 
cause problems when ported to another computer. For example, an obvious principle would 
seem to be this: Implement all software in a standard version of a high-level programming 
language. But how is a portable operating system to be implemented? After all, it is incon-
ceivable that an operating system could be implemented without at least some assembler 
code. Similarly, a compiler has to generate object code for a specifi c computer. Here, too, 
it is impossible to avoid all implementation-dependent components. 
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  8.13.1 Portable System Software 
 Instead of forbidding all implementation-dependent aspects, which would prevent almost 
all system software from being implemented, a better technique is to isolate any necessary 
implementation-dependent pieces. An example of this technique is the way the original 
UNIX operating system was constructed [Johnson and Ritchie, 1978]. About 9000 lines 
of the operating system were implemented in C. The remaining 1000 lines constituted the 
kernel. The kernel was implemented in assembler and had to be reimplemented for each 
implementation. About 1000 lines of the C code consisted of device drivers; this code, too, 
had to be reimplemented each time. However, the remaining 8000 lines of C code remained 
largely unchanged from implementation to implementation. 
  Another useful technique for increasing the portability of system software is to use 
levels of abstraction (Section 7.4.1). Consider, for example, graphical display routines for 
a workstation. A user inserts a command such as  drawLine  into his or her source code. 
The source code is compiled and then linked with graphical display routines. At run time, 
 drawLine  causes the workstation to draw a line on the screen as specifi ed by the user. This 
can be implemented using two levels of abstraction. The upper level, implemented in a 
high-level language, interprets the user’s command and calls the appropriate lower-level 
code artifact to execute that command. If the graphical display routines are ported to a new 
type of workstation, then no changes need be made to the user’s code or the upper level of 
the graphical display routines. However, the lower-level code artifacts of the routines have 
to be reimplemented, because they interface with the actual hardware, and the hardware 
of the new workstation is different from that of the workstation on which the package 
was previously implemented. This technique also has been used successfully for porting 
communications software that conforms to the seven levels of abstraction of the ISO-OSI 
model [Tanenbaum, 2002].  

  8.13.2 Portable Application Software 
 With regard to application software, rather than system software such as operating systems 
and compilers, it generally is possible to implement the product in a high-level language. 
Section 15.1 points out that frequently no choice can be made with regard to implementa-
tion language, but that when it is possible to select a language, the choice should be made 
on the basis of cost–benefi t analysis (Section 5.2). One factor that must enter into the 
cost–benefi t analysis is the impact on portability. 
  At every stage in the development of a product, decisions can be made that result in a 
more portable product. For example, some compilers distinguish between uppercase and 
lowercase letters. For such a compiler,  This_Is_A_Name  and  this_is_a_name  are different 
variables. But other compilers treat the two names the same. A product that relies on dif-
ferences between uppercase letters and lowercase letters can lead to hard-to-discover faults 
when the product is ported. 
  Just as frequently no choice can be made of programming language; also no choice 
may be allowed in the operating system. However, if at all possible, the operating system 
under which the product runs should be a popular one. This is an argument in favor of the 
UNIX operating system. UNIX has been implemented on a wide range of hardware. In 
addition, UNIX, or more precisely, UNIX-like operating systems, have been implemented 
on top of mainframe operating systems such as IBM VM/370 and VAX/VMS. For personal 
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computers, it remains to be seen whether Linux will overtake Windows as the most widely 
used operating system. Just as use of a widely implemented programming language pro-
motes portability, so too does use of a widely implemented operating system. 
  To facilitate the moving of software from one UNIX-based system to another, the Por-
table Operating System Interface for Computer Environments (POSIX) was developed 
[NIST 151, 1988]. POSIX standardizes the interface between an application program and 
a UNIX operating system and has been implemented on a number of non-UNIX operating 
systems as well, broadening the number of computers to which application software can be 
ported with little or no problem. 
  Language standards can play their part in achieving portability. If the coding standards 
of a development organization stipulate that only standard constructs may be used, then the 
resulting product is more likely to be portable. To this end, programmers must be provided 
a list of nonstandard features supported by the compiler but whose use is forbidden without 
prior managerial approval. Like other sensible coding standards, this one can be checked by 
machine. 
  Graphical user interfaces similarly are becoming portable via the introduction of stan-
dard GUI languages. Examples of these include Motif and X11. The standardization of 
GUI languages is in reaction to the growing importance of GUIs, and the resulting need for 
portability of human–computer interfaces. 
  It is also necessary to plan for potential lack of compatibility between the operating 
system under which the product is being constructed and any future operating systems to 
which the product may be ported. If at all possible, operating system calls should be local-
ized to one or two code artifacts. In any event, every operating system call must be care-
fully documented. The documentation standard for operating system calls should assume 
that the next programmer to read the code will have no familiarity with the current operat-
ing system, often a reasonable assumption. 
  Documentation in the form of an installation manual should be provided to assist with 
future porting. That manual points out what parts of the product have to be changed when 
porting the product and what parts may have to be changed. In both instances, a careful 
explanation must be provided of what has to be done and how to do it. Finally, lists of 
changes that have to be made in other manuals, such as the user manual or the operator 
manual, also must appear in the installation manual.  

  8.13.3 Portable Data 
 The problem of portability of data can be vexing. Problems of hardware incompatibili-
ties were pointed out in Section 8.11.1. But, even after such problems have been solved, 
software incompatibilities remain. For instance, the format of an indexed-sequential fi le is 
determined by the operating system; a different operating system generally implies a dif-
ferent format. Many fi les require headers containing information such as the format of the 
data in that fi le. The format of a header almost always is unique to the specifi c compiler and 
operating system under which that fi le was created. The situation can be even worse when 
database management systems are used. 
  The safest way of porting data is to construct an unstructured (sequential) fi le, which can 
then be ported with minimal diffi culty to the target machine. From this unstructured fi le, 
the desired structured fi le can be reconstructed. Two special conversion routines have to be 
implemented, one running on the source machine to convert the original structured fi le into 
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sequential form and one running on the target machine to reconstruct the structured fi le from 
the ported sequential fi le. Although this solution seems simple enough, the two routines are 
nontrivial when conversions between complex database models have to be performed.  

  8.13.4 Model-Driven Architecture 
 The   model-driven architecture (MDA)   is an emerging technology that achieves por-
tability by entirely decoupling the functionality of a software product from its implementa-
tion. MDA is outlined in Section 18.2. 
  We conclude this chapter with a summary of the strengths of and impediments to reuse 
and portability ( Figure 8.14 ); the section in which each item is discussed is stated.     

 FIGURE 8.14     
Strengths 
of and 
impediments 
to reuse and 
portability, 
and the 
section in 
which the 
topic is 
discussed. 

          Strengths     Impediments    

      Reuse          
   Shorter development time (Section 8.1)     NIH syndrome (Section 8.2)   
   Lower development cost (Section 8.1)     Potential quality issues (Section 8.2)   
   Higher-quality software (Section 8.1)     Retrieval issues (Section 8.2)   
   Shorter maintenance time (Section 8.10)     Cost of making a component reusable
Lower maintenance cost (Section 8.10)  (opportunistic reuse) (Section 8.2)   
        Cost of making a component for future 
  reuse (systematic reuse) (Section 8.2)   
        Legal issues (contract software only) 
  (Section 8.2)   
        Lack of source code for COTS 
  components (Section 8.2)   
     Portability          
   Software has to be ported to new     Potential incompatibilities:   
    hardware every 4 years or so        Hardware (Section 8.11.1)   
    (Section 8.12)      Operating systems (Section 8.11.2)   
   More copies of COTS software can be      Numerical software (Section 8.11.3)   
    sold (Section 8.12)      Compilers (Section 8.11.4)   
         Data formats (Section 8.13.3)      

   Chapter 
Review  
 Reuse is described in Section 8.1. Various impediments to reuse are described in Section 8.2. Two 

reuse case studies are presented in Section 8.3. The impact of the object-oriented paradigm on reuse 
is analyzed in Section 8.4. Reuse during design and implementation is the subject of Section 8.5; the 
topics covered include frameworks, patterns, software architecture, and component-based software 
engineering. Design patterns are then described in greater detail in Section 8.6. In Section 8.7, catego-
ries of designs are presented. The strengths and weaknesses of design patterns are analyzed in Section 
8.8. The impact of the World Wide Web on reuse is discussed in Section 8.9, and the impact of reuse 
on postdelivery maintenance in Section 8.10. 
  Portability is discussed in Section 8.11. Portability can be hampered by incompatibilities caused by 
hardware (Section 8.11.1), operating systems (Section 8.11.2), numerical software (Section 8.11.3), 
or compilers (Section 8.11.4). Nevertheless, it is extremely important to try to make all products as 
portable as possible (Section 8.12). Ways of facilitating portability include using popular high-level lan-
guages, isolating the nonportable pieces of a product (Section 8.13.1), adhering to language standards 
(Section 8.13.2), portable data (Section 8.13.3), and model-driven architecture (Section 8.13.4).  
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  For 
Further 
Reading  

 A variety of reuse case studies can be found in [Lanergan and Grasso, 1984]; [Matsumoto, 1984, 
1987]; [Selby, 1989]; [Lim, 1994]; [Jézéquel and Meyer, 1997]; and [Toft, Coleman, and Ohta, 2000]. 
Successful reuse experiences at four European companies are described in [Morisio, Tully, and Ezran, 
2000]. 
  Factors that affect the success of reuse programs are presented in [Morisio, Ezran, and Tully, 2002]. 
Reuse strategies are discussed in [Ravichandran and Rothenberger, 2003]. A comprehensive model for 
evaluating software reuse alternatives is presented in [Tomer et al., 2004]. Ways of achieving reuse in 
the development of large-scale systems are described in [Selby, 2005]. The status of research into reuse 
is outlined in [Frakes and Kang, 2005]. When code is replicated, that is, reused via copy-and-paste, mul-
tiple copies of faults will be present; this problem is analyzed in [Li, Lu, Myagmar, and Zhou, 2006]. 
The utilization of wikis to support reuse is described in [Rech, Bogner, and Haas, 2007]. 
  The October 2000 issue of   Communications of the ACM   includes articles on component-based 
frameworks, including [Fingar, 2000] and [Kobryn, 2000], which describes how to model compo-
nents and frameworks using UML. Achieving reuse via frameworks and patterns is described in 
[Fach, 2001]. 
  Design patterns were put forward by Alexander within the context of architecture, as described 
in [Alexander et al., 1977]. A fi rst-hand account of the origins of pattern theory appears in [Alex-
ander, 1999]. The primary work on software design patterns is [Gamma, Helm, Johnson, and Vlis-
sides, 1995]. Analysis patterns are described in [Fowler, 1997], and requirements patterns in [Hagge 
and Lappe, 2005]. Design patterns for managing product life-cycle information are described in 
[Främling, Ala-Risku, Kärkkäinen, and Holmström, 2007]. Extraction of design patterns is presented 
in [Tsantalis, Chatzigeorgiou, Stephanides, and Halkidis, 2006] and [Guéhéneuc and Antoniol, 2008], 
and visualization of design patterns in [Jing, Sheng, and Kang, 2007]. The quality of design patterns 
is the subject of [Hsueh, Chu, and Chu, 2008]. 
  Experiments to assess the impact of design pattern documentation on maintenance are described 
in [Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002]. Antipatterns are described in [Brown 
et al., 1998]. Patterns for designing embedded systems are discussed in [Pont and Banner, 2004]. 
Vokac [2004] describes the impact of patterns on fault rates in a 500-KLOC product. 
  The primary source of information on software architectures is [Shaw and Garlan, 1996]. Newer 
works on software architectures include [Bosch, 2000] and [Bass, Clements, and Kazman, 2003]. An 
approach to the analysis and design of architectures is given in [Kazman, Bass, and Klein, 2006]. The 
March–April 2006 issue of   IEEE Software   contains several papers on software architecture, especially 
[Kruchten, Obbink, and Stafford, 2006], [Shaw and Clements, 2006], and [Lange, Chaudron, and 
Muskens, 2006]. Articles on software architecture in the September 2008 issue of the   Journal of 
Systems and Software   include [Bass et al., 2008] and [Ferrari and Madhavji, 2008]. 
  Software product lines are described in [Clements and Northrop, 2002]. The state of the practice 
of software product lines is discussed in [Birk et al., 2003]. Cost–benefi t analysis of software product 
lines is presented in [Bockle et al., 2004]. The management of software product lines is described in 
[Clements, Jones, Northrop, and McGregor, 2005]. Testing of software product lines is presented in [Pohl 
and Metzger, 2006]. The December 2006 issue of the   Communications of the ACM   contains 13 articles 
on software product lines. A variety of articles on agile software product line engineering can be found 
in the June 2008 issue of the   Journal of Systems and Software  , including [Hanssen and Fægri, 2008]. 
  Brereton and Budgen [2000] discuss the key issues in component-based software products. 
Articles on experiences with component-based software engineering include [Sparling, 2000] and 
[Baster, Konana, and Scott, 2001]. Strengths and weaknesses of component-based software engineer-
ing are discussed in [Vitharana, 2003]. The underlying software component models are described in 
[Lau and Wang, 2007]. 
  Strategies for achieving portability can be found in [Mooney, 1990]. Portability of C and UNIX is 
discussed in [Johnson and Ritchie, 1978].  
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  Problems      8.1 Explain in detail the differences between reusability and portability.  

   8.2 A code artifact is reused, unchanged, in a new product. In what ways does this reuse reduce the 
overall cost of the product? In what ways is the cost unchanged?  

   8.3 Suppose that a code artifact is reused with one change, an addition operation is changed to a 
subtraction. What impact does this minor change have on the savings of Problem 8.2?  

   8.4 What is the infl uence of cohesion on reusability?  

   8.5 What is the infl uence of coupling on reusability?  

   8.6 You have just joined a large organization that manufactures a variety of pollution control prod-
ucts. The organization has hundreds of software products consisting of some 95,000 different 
Fortran modules. You have been hired to come up with a plan for reusing as many of these 
modules as possible in future products. What is your proposal?  

   8.7 Consider an automated library circulation system. Every book has a bar code, and every bor-
rower has a card bearing a bar code. When a borrower wishes to check out a book, the librarian 
scans the bar codes on the book and the borrower’s card, and enters  C  at the computer terminal. 
Similarly, when a book is returned, it is again scanned and the librarian enters  R . Librarians can 
add books ( + ) to the library collection or remove them ( − ). Borrowers can go to a terminal and 
determine all the books in the library by a particular author (the borrower enters  A=  followed by 
the author’s name), all the books with a specifi c title ( T=  followed by the title), or all the books 
in a particular subject area ( S=  followed by the subject area). Finally, if a borrower wants a book 
currently checked out, the librarian can place a hold on the book so that, when it is returned, 
it will be held for the borrower who requested it ( H=  followed by the number of the book). 
Explain how you would ensure a high percentage of reusable code artifacts.  

   8.8 You are required to build a product for determining whether a bank statement is correct. The 
data needed include the balance at the beginning of the month; the number, date, and amount 
of each check; the date and amount of each deposit; and the balance at the end of the month. 
Explain how you would ensure that as many code artifacts as possible from this product can be 
reused in future products.  
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   8.9 Consider an automated teller machine (ATM). The user puts a card into a slot and enters a 
four-digit personal identifi cation number (PIN). If the PIN is incorrect, the card is ejected. Oth-
erwise, the user may perform the following operations on up to four different bank accounts: 

    (i)  Deposit any amount. A receipt is printed showing the date, amount deposited, and account 
number.  

    (ii)  Withdraw up to $200 in units of $20 (the account may not be overdrawn). In addition to the 
money, the user is given a receipt showing the date, amount withdrawn, account number, 
and account balance after the withdrawal.  

    (iii) Determine the account balance. This is displayed on the screen.  

    (iv)  Transfer funds between two accounts. Again, the account from which the funds are trans-
ferred must not be overdrawn. The user is given a receipt showing the date, amount trans-
ferred, and the two account numbers.  

    (v) Quit. The card is ejected.    

   Explain how you would ensure that as many code artifacts as possible from this product can be 
reused in future products.  

  8.10  How early in the software life cycle could the developers have caught the fault in the Ari-
ane 5 software (Section 8.3.2)?  

  8.11  Section 8.5.2 states that “the Raytheon COBOL program logic structure of the 1970s is a clas-
sical precursor of today’s object-oriented application framework.” What are the implications of 
this for technology transfer?  

  8.12  What is the difference between a   framework   and a   software product line  ?  

  8.13  Compare the output from a software product line with the output from an automobile assembly 
line. (Hint: A modern automobile assembly line does   not   produce multiple instances of the 
identical automobile.)  

  8.14  Of which theoretical tool in  Chapter 5  is the three-tier architecture an instance?  

  8.15  Of which theoretical tool in  Chapter 5  is the model-view-controller (MVC) architecture pattern 
an instance?  

  8.16  Of which theoretical tool in  Chapter 5  are the design patterns of Section 8.6 an instance?  

  8.17  Explain the role played by the abstract class   Abstract Widget Factory   in the design pattern 
of  Figure 8.10 .  

  8.18  Explain how you would ensure that the automated library circulation system (Problem 8.7) is as 
portable as possible.  

  8.19  Explain how you would ensure that the product that checks whether a bank statement is correct 
(Problem 8.8) is as portable as possible.  

  8.20  Explain how you would ensure that the software for the automated teller machine (ATM) of 
Problem 8.9 is as portable as possible.  

  8.21  Your organization is developing a real-time control system for a new type of laser that will be 
used in cancer therapy. You are in charge of implementing two assembler modules. How will 
you instruct your team to ensure that the resulting code will be as portable as possible?  

  8.22  You are responsible for porting a 750,000-line COBOL product to your company’s new com-
puter. You copy the source code to the new machine but discover when you try to compile it that 
every one of the over 15,000 input–output statements has been implemented in a nonstandard 
COBOL syntax that the new compiler rejects. What do you do now?  

  8.23  In what ways does the object-oriented paradigm promote portability and reusability?  

  8.24  (Term Project) Suppose that the Chocoholics Anonymous product of Appendix A is developed 
using the classical paradigm. What parts of the product could be reused in future products? 
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Now suppose that the product is developed using the object-oriented paradigm. What parts of 
the product could be reused in future products?  

  8.25  (Readings in Software Engineering) Your instructor will distribute copies of [Tomer et al., 
2004]. What data would you need to accumulate to use the model?     

  References   [Alexander, 1999] C. ALEXANDER, “The Origins of Pattern Theory,”   IEEE Software     16   (September–
October 1999), pp. 71–82. 

 [Alexander et al., 1977] C. ALEXANDER, S. ISHIKAWA, M. SILVERSTEIN, M. JACOBSON, I. FIKSDAHL-
KING, AND S. ANGEL,   A Pattern Language  , Oxford University Press, New York, 1977. 

 [ANSI X3.159, 1989]   The Programming Language C  , ANSI X3.159-1989, American National Stan-
dards Institute, New York, 1989. 

 [ANSI/IEEE 754, 1985]   Standard for Binary Floating Point Arithmetic  , ANSI/IEEE 754, American 
National Standards Institute, Institute of Electrical and Electronic Engineers, New York, 1985. 

 [ANSI/MIL-STD-1815A, 1983]   Reference Manual for the Ada Programming Language  , ANSI/
MIL-STD-1815A, American National Standards Institute, United States Department of Defense, 
Washington, DC, 1983. 

 [Bass, Clements, and Kazman, 2003] L. BASS, P. CLEMENTS, AND R. KAZMAN,   Software Architecture 
in Practice,   2nd ed., Addison-Wesley, Reading, MA, 2003. 

 [Bass et al., 2008] L. BASS, R. NORD, W. WOOD, D. ZUBROW, AND I. OZKAYA, “Architectural Knowl-
edge Discovery with Latent Semantic Analysis: Constructing a Reading Guide for Software Prod-
uct Audits,”   Journal of Systems and Software     81   (September 2008), pp. 1443–55. 

 [Baster, Konana, and Scott, 2001] G. BASTER, P. KONANA, AND J. E. SCOTT, “Business Components: 
A Case Study of Bankers Trust Australia Limited,”   Communications of the ACM     44   (May 2001), 
pp. 92–98. 

 [Birk et al., 2003] A. BIRK, G. HELLER, I. JOHN, K. SCHMID, T. VON DER MASSEN, AND K. MULLER, 
“Product Line Engineering, the State of the Practice,”   IEEE Software     20   (November–December 
2003), pp. 52–60. 

 [Bockle et al., 2004] G. BOCKLE, P. CLEMENTS, J. D. MCGREGOR, D. MUTHIG, AND K. SCHMID, “Calcu-
lating ROI for Software Product Lines,”   IEEE Software     21   (May–June 2004), pp. 23–31. 

 [Bosch, 2000] J. BOSCH,   Design and Use of Software Architectures,   Addison-Wesley, Reading, MA, 
2000. 

 [Brereton and Budgen, 2000] P. BRERETON AND D. BUDGEN, “Component-Based Systems: A Clas-
sifi cation of Issues,”   IEEE Computer     33   (November 2000), pp. 54–62. 

 [Brown et al., 1998] W. J. BROWN, R. C. MALVEAU, W. H. BROWN, H. W. MCCORMICK III, AND T. J. 
MOWBRAY,   AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis,   John Wiley 
and Sons, New York, 1998. 

 [Clements and Northrop, 2002] P. CLEMENTS AND L. NORTHROP,   Software Product Lines: Practices 
and Patterns  , Addison-Wesley, Reading, MA, 2002. 

 [Clements, Jones, Northrop, and McGregor, 2005] P. C. CLEMENTS, L. G. JONES, L. M. NORTHROP, 
AND J. D. MCGREGOR, “Project Management in a Software Product Line Organization,”   IEEE 
Software     22   (September–October 2005), pp. 54–62. 

 [Fach, 2001] P. W. FACH, “Design Reuse through Frameworks and Patterns,”   IEEE Software     18   (Sep-
tember–October 2001), pp. 71–76. 

 [Ferrari and Madhavji, 2008] R. FERRARI AND N. H. MADHAVJI, “Software Architecting without 
Requirements Knowledge and Experience: What Are the Repercussions?”   Journal of Systems 
and Software     81   (September 2008), pp. 1470–90. 

Chapter 8  Reusability and Portability  263

sch76183_ch08_225-267.indd   263sch76183_ch08_225-267.indd   263 10/06/10   2:17 PM10/06/10   2:17 PM



264  Part A  Software Engineering Concepts

 [Fingar, 2000] P. FINGAR, “Component-Based Frameworks for e-Commerce,”   Communications of the 
ACM     43   (October 2000), pp. 61–66. 

 [Flanagan, 2005] D. FLANAGAN,   Java in a Nutshell: A Desktop Quick Reference  , 5th ed., O’Reilly and 
Associates, Sebastopol, CA, 2005. 

 [Fowler, 1997] M. FOWLER,   Analysis Patterns: Reusable Object Models  , Addison-Wesley, Reading, 
MA, 1997. 

 [Frakes and Kang, 2005] W. B. FRAKES AND K. KANG, “Software Reuse Research: Status and Future,” 
  IEEE Transactions on Software Engineering     31   (July 2005), pp. 529–536. 

 [Främling, Ala-Risku, Kärkkäinen, and Holmström, 2007] K. FRÄMLING, T. ALA-RISKU, M. KÄRK-
KÄINEN, AND J. HOLMSTRÖM, “Design Patterns for Managing Product Life Cycle Information,” 
  Communications of the ACM     50   (June 2007), pp. 75–79. 

 [Gamma, Helm, Johnson, and Vlissides, 1995] E. GAMMA, R. HELM, R. JOHNSON, AND J. VLISSIDES,   Design 
Patterns: Elements of Reusable Object-Oriented Software  , Addison-Wesley, Reading, MA, 1995. 

 [Gifford and Spector, 1987] D. GIFFORD AND A. SPECTOR, “Case Study: IBM’s System/360-370 
Architecture,”   Communications of the ACM     30   (April 1987), pp. 292–307. 

 [Green, 2000] P. GREEN, “FW: Here’s an Update to the Simulated Kangaroo Story,”   The Risks Digest   
  20   (January 23, 2000), catless.ncl.ac.uk/Risks/20.76.html. 

 [Griss, 1993] M. L. GRISS, “Software Reuse: From Library to Factory,”   IBM Systems Journal     32   (No. 
4, 1993), pp. 548–66. 

 [Guéhéneuc and Antoniol, 2008] Y.-G. GUÉHÉNEUC AND G. ANTONIOL, “DeMIMA: A Multilayered 
Approach for Design Pattern Identifi cation,”   IEEE     Transactions on Software Engineering     34   
(September–October 2008), pp. 667–84. 

 [Hagge and Lappe, 2005] L. HAGGE AND K. LAPPE, “Sharing Requirements Engineering Experience 
Using Patterns,”   IEEE Software     22   (January–February 2005), pp. 24–31. 

 [Hanssen and Fægri, 2008] G. K. HANSSEN AND T. E. FÆGRI, “Process Fusion: An Industrial Case 
Study on Agile Software Product Line Engineering,”   Journal of Systems and Software     81   (April 
2008), pp. 502–16. 

 [Hsueh, Chu, and Chu, 2008] N. HSUEH, P. CHU, AND W. CHU, “A Quantitative Approach for Eval-
uating the Quality of Design Patterns,”   Journal of Systems and Software     81   (August 2008), 
pp. 1430–39. 

 [ISO/IEC 1539–1, 2004]   Information Technology—Programming Languages—Fortran—Part 1: 
Base Language  , ISO/IEC 1539–1, International Organization for Standardization, International 
Electrotechnical Commission, Geneva, 2004. 

 [ISO/IEC 1989, 2002]   Information Technology—Programming Language COBOL  , ISO 1989:2002, 
International Organization for Standardization, International Electrotechnical Commission, 
Geneva, 2002. 

 [ISO/IEC 8652, 1995]   Programming Language Ada: Language and Standard Libraries  , ISO/IEC 
8652, International Organization for Standardization, International Electrotechnical Commission, 
Geneva, 1995. 

 [ISO/IEC 14882, 1998]   Programming Language C++  , ISO/IEC 14882, International Organization 
for Standardization, International Electrotechnical Commission, Geneva, 1998. 

 [Jézéquel and Meyer, 1997] J.-M. JÉZÉQUEL AND B. MEYER, “Put It in the Contract: The Lessons of 
Ariane,”   IEEE Computer     30   (January 1997), pp. 129–30. 

 [Jing, Sheng, and Kang, 2007] D. JING, Y. SHENG, AND Z. KANG, “Visualizing Design Patterns in Their 
Applications and Compositions,”   IEEE     Transactions on Software Engineering     32   (July 2007), 
pp. 433–53. 

sch76183_ch08_225-267.indd   264sch76183_ch08_225-267.indd   264 04/06/10   6:41 PM04/06/10   6:41 PM



Chapter 8  Reusability and Portability  265

 [Johnson, 1979] S. C. JOHNSON, “A Tour through the Portable C Compiler,” 7th ed.,   UNIX Program-
mer’s Manual,   Bell Laboratories, Murray Hill, NJ, January 1979. 

 [Johnson and Ritchie, 1978] S. C. JOHNSON AND D. M. RITCHIE, “Portability of C Programs and the 
UNIX System,”   Bell System Technical Journal     57   (No. 6, Part 2, 1978), pp. 2021–48. 

 [Jones, 1984] T. C. JONES, “Reusability in Programming: A Survey of the State of the Art,”   IEEE 
Transactions on Software Engineering     SE-10   (September 1984), pp. 488–94. 

 [Kazman, Bass, and Klein, 2006] R. KAZMAN, L. BASS, AND M. KLEIN, “The Essential Components 
of Software Architecture Design and Analysis,”   Journal of Systems and Software     79   (August 
2006), pp. 1207–16. 

 [Kernighan and Ritchie, 1978] B. W. KERNIGHAN AND D. M. RITCHIE,   The C Programming Language  , 
Prentice Hall, Englewood Cliffs, NJ, 1978. 

 [Kobryn, 2000] C. KOBRYN, “Modeling Components and Frameworks with UML,”   Communications 
of the ACM     43   (October 2000), pp. 31–38. 

 [Kruchten, Obbink, and Stafford, 2006] P. KRUCHTEN, H. OBBINK, AND J. STAFFORD, “The Past, Pres-
ent, and Future for Software Architecture,”   IEEE Software     23   (March–April 2006), pp. 22–30. 

 [Lanergan and Grasso, 1984] R. G. LANERGAN AND C. A. GRASSO, “Software Engineering with Reus-
able Designs and Code,”   IEEE Transactions on Software Engineering     SE-10   (September 1984), 
pp. 498–501. 

 [Lange, Chaudron, and Muskens, 2006] C. F. J. LANGE, M. R. V. CHAUDRON, AND J. MUSKENS, “In 
Practice: UML Software Architecture and Design Description,”   IEEE Software     23   (March–April 
2006), pp. 40–46. 

 [LAPACK++, 2000] “LAPACK++: Linear Algebra Package in C++,” at math.nist.gov/lapack++, 2000. 

 [Lau and Wang, 2007] K.-K. LAU AND Z. WANG, “Software Component Models,”   IEEE     Transactions 
on Software Engineering     33   (October 2007), pp. 709–24. 

 [Li, Lu, Myagmar, and Zhou, 2006] Z. LI, S. LU, S. MYAGMAR, AND Y. ZHOU, “CP-Miner: Finding 
Copy-Paste and Related Bugs in Large-Scale Software Code,”   IEEE Transactions on Software 
Engineering     32   (March 2006), pp. 176–92. 

 [Lim, 1994] W. C. LIM, “Effects of Reuse on Quality, Productivity, and Economics,”   IEEE Software   
  11   (September 1994), pp. 23–30. 

 [Liskov, Snyder, Atkinson, and Schaffert, 1977] B. LISKOV, A. SNYDER, R. ATKINSON, AND C. 
SCHAFFERT, “Abstraction Mechanisms in CLU,”   Communications of the ACM     20   (August 1977), 
pp. 564–76. 

 [Mackenzie, 1980] C. E. MACKENZIE,   Coded Character Sets: History and Development  , Addison-
Wesley, Reading, MA, 1980. 

 [Matsumoto, 1984] Y. MATSUMOTO, “Management of Industrial Software Production,”   IEEE Com-
puter     17   (February 1984), pp. 59–72. 

 [Matsumoto, 1987] Y. MATSUMOTO, “A Software Factory: An Overall Approach to Software Produc-
tion,” in:   Tutorial: Software Reusability  , P. Freeman (Editor), Computer Society Press, Washing-
ton, DC, 1987, pp. 155–78. 

 [Mooney, 1990] J. D. MOONEY, “Strategies for Supporting Application Portability,”   IEEE Computer   
  23   (November 1990), pp. 59–70. 

 [Morisio, Ezran, and Tully, 2002] M. MORISIO, M. EZRAN, AND C. TULLY, “Success and Failure 
Factors in Software Reuse,”   IEEE Transactions on Software Engineering     28   (April 2002), 
pp. 340–57. 

 [Morisio, Tully, and Ezran, 2000] M. MORISIO, C. TULLY, AND M. EZRAN, “Diversity in Reuse Pro-
cesses,”   IEEE Software     17   (July–August 2000), pp. 56–63. 

sch76183_ch08_225-267.indd   265sch76183_ch08_225-267.indd   265 04/06/10   6:41 PM04/06/10   6:41 PM



266  Part A  Software Engineering Concepts

 [Musser and Saini, 1996] D. R. MUSSER AND A. SAINI,   STL Tutorial and Reference Guide: C++ Pro-
gramming with the Standard Template Library  , Addison-Wesley, Reading, MA, 1996. 

 [NAG, 2003] “NAG The Numerical Algorithms Group Ltd,” at www.nag.co.uk, 2003. 

 [NIST 151, 1988] “POSIX: Portable Operating System Interface for Computer Environments,” 
Federal Information Processing Standard 151, National Institute of Standards and Technology, 
Washington, DC, 1988. 

 [Norušis, 2005] M. J. NORUšIS,   SPSS 13.0 Guide to Data Analysis,   Prentice Hall, Upper Saddle River, 
NJ, 2005. 

 [Norwig, 1996] P. NORWIG, “Design Patterns in Dynamic Programming,” norvig.com/design-patterns/ 
ppframe.htm/, 1996. 

 [Pohl and Metzger, 2006] K. POHL AND A. METZGER, “Software Product Line Testing,”   Communica-
tions of the ACM     49   (December 2006), pp. 78–81. 

 [Pont and Banner, 2004] M. J. PONT AND M. P. BANNER, “Designing Embedded Systems Using Pat-
terns: A Case Study,”   Journal of Systems and Software     71   (May 2004), pp. 201–13. 

 [Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002] L. PRECHELT, B. UNGER-LAMPRECHT, M. 
PHILIPPSEN, AND W. F. TICHY, “Two Controlled Experiments in Assessing the Usefulness of Design 
Pattern Documentation in Program Maintenance,”   IEEE Transactions on Software Engineering   
  28   (June 2002), pp. 595–606. 

 [Ravichandran and Rothenberger, 2003] T. RAVICHANDRAN AND M. A. ROTHENBERGER, “Software 
Reuse Strategies and Component Markets,”   Communications of the ACM     46   (August 2003), 
pp. 109–14. 

 [Rech, Bogner, and Haas, 2007] J. RECH, C. BOGNER, AND V. HAAS, “Using Wikis to Tackle Reuse in 
Software Projects,”   IEEE Software     24   (November–December 2007), pp. 99–104. 

 [Schach, 1992] S. R. SCHACH,   Software Reuse: Past, Present, and Future  , videotape, 150 min, US-
VHS format, IEEE Computer Society Press, Los Alamitos, CA, November 1992. 

 [Schach, 1994] S. R. SCHACH, “The Economic Impact of Software Reuse on Maintenance,”   Journal 
of Software Maintenance—Research and Practice     6   (July–August 1994), pp. 185–96. 

 [Schach, 1997] S. R. SCHACH,   Software Engineering with Java  , Richard D. Irwin, Chicago, 1997. 

 [Schricker, 2000] D. SCHRICKER, “Cobol for the Next Millennium,”   IEEE Software     17   (March–April 
2000), pp. 48–52. 

 [Selby, 1989] R. W. SELBY, “Quantitative Studies of Software Reuse,” in:   Software Reusability,   Vol. 
2,   Applications and Experience  , T. J. Biggerstaff and A. J. Perlis (Editors), ACM Press, New York, 
1989, pp. 213–33. 

 [Selby, 2005] R. W. SELBY, “Enabling Reuse-Based Software Development of Large-Scale Systems,” 
  IEEE Transactions on Software Engineering     31   (June 2005), pp. 495–510. 

 [Shaw and Clements, 2006] M. SHAW AND P. CLEMENTS, “The Golden Age of Software Architecture,” 
  IEEE Software     23   (March–April 2006), pp. 31–39. 

 [Shaw and Garlan, 1996] M. SHAW AND D. GARLAN,   Software Architecture: Perspectives on an 
Emerging Discipline  , Prentice Hall, Upper Saddle Valley, NJ, 1996. 

 [Sparling, 2000] M. SPARLING, “Lessons Learned through Six Years of Component-Based Develop-
ment,”   Communications of the ACM     43   (October 2000), pp. 47–53. 

 [Tanenbaum, 2002] A. S. TANENBAUM,   Computer Networks,   4th ed., Prentice Hall, Upper Saddle 
River, NJ, 2002. 

 [Toft, Coleman, and Ohta, 2000] P. TOFT, D. COLEMAN, AND J. OHTA, “A Cooperative Model for 
Cross-Divisional Product Development for a Software Product Line,” in:   Software Product Lines: 

sch76183_ch08_225-267.indd   266sch76183_ch08_225-267.indd   266 04/06/10   6:41 PM04/06/10   6:41 PM

www.nag.co.uk


Chapter 8  Reusability and Portability  267

Experience and Research Directions  , P. Donohoe (Editor), Kluwer Academic Publishers, Boston, 
2000, pp. 111–32. 

 [Tomer et al., 2004] A. TOMER, L. GOLDIN, T. KUFLIK, E. KIMCHI, AND S. R. SCHACH, “Evaluating 
Software Reuse Alternatives: A Model and Its Application to an Industrial Case Study,”   IEEE 
Transactions on Software Engineering     30   (September 2004), 601–12. 

 [Tracz, 1994] W. TRACZ, “Software Reuse Myths Revisited,”   Proceedings of the 16th International 
Conference on Software Engineering  , Sorrento, Italy, May 1994, pp. 271–72. 

 [Tsantalis, Chatzigeorgiou, Stephanides, and Halkidis, 2006] N. TSANTALIS, A. CHATZIGEORGIOU, G. 
STEPHANIDES, AND S. T. HALKIDIS, “Design Pattern Detection Using Similarity Scoring,”   IEEE   
  Transactions on Software Engineering     32   (November 2006), pp. 896–909. 

 [Vitharana, 2003] P. VITHARANA, “Risks and Challenges of Component-Based Software Develop-
ment,”   Communications of the ACM     46   (August 2003), pp. 67–72. 

 [Vokac, 2004] M. VOKAC, “Defect Frequency and Design Patterns: An Empirical Study of Industrial 
Code,”   IEEE Transactions on Software Engineering     30   (December 2004), pp. 904–17.                          

sch76183_ch08_225-267.indd   267sch76183_ch08_225-267.indd   267 04/06/10   6:41 PM04/06/10   6:41 PM



 Chapter 9 
Planning and 
Estimating 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Explain the importance of planning.  

  • Estimate the size and cost of building a software product.  

  • Appreciate the importance of updating and tracking estimates.  

  • Draw up a project management plan that conforms to the IEEE standard.      

268

  The challenges of constructing a software product have no easy solution. To put together 
a large software product takes time and resources. And, like any other large construction 
project, careful planning at the beginning of the project perhaps is the single most impor-
tant factor that distinguishes success from failure. This initial planning, however, by no 
means is enough. Planning, like testing, must continue throughout the software develop-
ment and maintenance process. Notwithstanding the need for continual planning, these 
activities reach a peak after the specifi cations have been drawn up but before design activi-
ties commence. At this point in the process, meaningful duration and cost estimates are 
computed and a detailed plan for completing the project produced. 
  In this chapter, we distinguish these two types of   planning  , the planning that proceeds 
throughout the project and the intense planning that must be carried out once the specifi ca-
tions are complete. 

  9.1 Planning and the Software Process   
Ideally, we would like to plan the entire software project at the very beginning of the pro-
cess, and then follow that plan until the target software fi nally has been delivered to the 
client. This is impossible, however, because we lack enough information during the initial 
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workfl ows to be able to draw up a meaningful plan for the complete project. For example, 
during the requirements workfl ow, any sort of planning (other than just for the require-
ments workfl ow itself) is futile. 
  There is a world of difference between the information at the developers’ disposal at the 
end of the requirements workfl ow and at the end of the analysis workfl ow, analogous to the 
difference between a rough sketch and a detailed blueprint. By the end of the requirements 
workfl ow, the developers at best have an informal understanding of what the client needs. 
In contrast, by the end of the analysis workfl ow, at which time the client signs a document 
stating precisely what is going to be built, the developers have a detailed appreciation of 
most (but usually still not all) aspects of the target product. This is the earliest point in the 
process at which accurate duration and cost estimates can be determined. 
  Nevertheless, in some situations, an organization may be required to produce duration 
and cost estimates before the specifi cations can be drawn up. In the worst case a client may 
insist on a bid on the basis of an hour or two of preliminary discussion.  Figure 9.1  shows 
how problematic this can be. Based on a model in [Boehm et al., 2000], it depicts the rela-
tive range of cost estimates for the various workfl ows of the life cycle. For example, suppose 
that, when a product passes its acceptance test at the end of the implementation workfl ow 
and is delivered to the client, its cost is found to be $1 million. If a cost estimate had 
been made midway through the requirements workfl ow, it is likely that it would have been 
somewhere in the range ($0.25 million, $4 million), as shown in  Figure 9.2 . Similarly, if 
the cost estimate had been made midway through the analysis workfl ow, the range of likely 
estimates would have shrunk to ($0.5 million, $2 million). Furthermore, if the cost estimate 
had been made at the end of the analysis workfl ow, that is, at the appropriate time, the result 
probably would have been in the still relatively wide range of ($0.67 million, $1.5 million). 
All four points are marked on the upper and lower bound lines in  Figure 9.2 , which has a 
logarithmic scale on the vertical axis. This model is called the   cone of uncertainty  . It is 
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clear from  Figures 9.1  and  9.2  that cost estimation is not an exact science; reasons for this 
are given in Section 9.2. 
  The data on which the cone of uncertainty model is based are old, including fi ve pro-
posals submitted to the U.S. Air Force Electronic Systems Division [Devenny, 1976], and 
estimation techniques have improved since that time. Nevertheless, the overall shape of the 
curve in  Figure 9.1  probably has not changed overmuch. Consequently, a premature dura-
tion or cost estimate, that is, an estimate made before the specifi cations have been signed 
off on by the client, is likely to be considerably less accurate than an estimate made when 
suffi cient data have accumulated. 
  We now examine techniques for estimating duration and cost. The assumption through-
out the remainder of this chapter is that the analysis workfl ow has been completed; that is, 
meaningful estimating and planning now can be carried out.   

  9.2 Estimating Duration and Cost   
The budget is an integral part of any software project management plan. Before design 
commences, the client needs to know how much he or she will have to pay for the product. 
If the development team underestimates the actual cost, the development organization can 
lose money on the project. On the other hand, if the development team overestimates, then 
the client may decide that, on the basis of cost–benefi t analysis or return on investment, 
there is no point in having the product built. Alternatively, the client may give the job to 
another development organization whose estimate is more reasonable. Either way, it is clear 
that accurate cost estimation is critical. 
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  In fact, two types of costs are associated with software development. The fi rst is the 
  internal cost  , the   cost   to the developers; the second is the   external cost  , the   price   that 
the client will pay. The internal cost includes the salaries of the development teams, manag-
ers, and support personnel involved in the project; the cost of the hardware and software 
for developing the product; and the cost of overhead such as rent, utilities, and salaries of 
senior management. Although the price generally is based on the cost plus a profi t margin, 
in some cases economic and psychological factors are important. For example, developers 
who desperately need the work may be prepared to charge the client at cost. A different 
situation arises when a contract is to be awarded on the basis of bids. The client may reject 
a bid that is signifi cantly lower than all the other bids on the grounds that the quality of the 
resulting product probably also would be signifi cantly lower. A development team therefore 
may try to come up with a bid that will be slightly, but not signifi cantly, lower than what it 
believes will be the competitors’ bids. 
  Another important part of any plan is estimating the duration of the project. The client 
certainly wants to know when the fi nished product will be delivered. If the development 
organization is unable to keep to its schedule, then at best the organization loses credibility, 
at worst penalty clauses are invoked. In all cases, the managers responsible for the software 
project management plan have a lot of explaining to do. Conversely, if the development 
organization overestimates the time needed to build the product, then there is a good chance 
that the client will go elsewhere. 
  Unfortunately, it is by no means easy to obtain an accurate   cost estimate   and   duration 
estimate  . Too many variables are involved to be able to get an accurate handle on either 
cost or duration. One big diffi culty is the human factor. Over 40 years ago, Sackman and 
coworkers observed differences of up to 28 to 1 between pairs of programmers [Sackman, 
Erikson, and Grant, 1968]. It is easy to try to brush off their results by saying that experi-
enced programmers always outperform beginners, but Sackman and his colleagues compared 
matched pairs of programmers. They observed, for example, two programmers with 10 years 
of experience on similar types of projects and measured the time it took them to perform 
tasks like coding and debugging. Then they observed, say, two beginners who had been in the 
profession for the same short length of time and had similar educational backgrounds. Com-
paring worst and best performances, they observed differences of 6 to 1 in product size, 8 to 
1 in product execution time, 9 to 1 in development time, 18 to 1 in coding time, and 28 to 1 in 
debugging time. A particularly alarming observation is that the best and worst performances 
on one product were by two programmers, each of whom had 11 years of experience. Even 
when the best and worst cases were removed from Sackman et al.’s sample, observed differ-
ences were still on the order of 5 to 1. On the basis of these results, clearly, we cannot hope 
to estimate software cost or duration with any degree of accuracy (unless we have detailed 
information regarding all the skills of all the employees, which would be most unusual). It 
has been argued that, on a large project, differences among individuals tend to cancel out, 
but this perhaps is wishful thinking; the presence of one or two very good (or very bad) team 
members can cause marked deviations from schedules and signifi cantly affect the budget. 
  Another human factor that can affect estimation is that, in a free country, there is no way 
of ensuring that a critical staff member will not resign during the project. Time and money 
then are spent attempting to fi ll the vacated position and integrate the replacement into the 
team, or in reorganizing the remaining team members to compensate for the loss. Either 
way, schedules slip and estimates come unstuck. 
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  Underlying the cost estimation problem is another issue: How is the size of a product to 
be measured? 

  9.2.1 Metrics for the Size of a Product 
 The most common metric for the size of a product is the number of lines of code. Two units 
commonly are used:   lines of code   (LOC) and   thousand delivered source instruc-
tions   (KDSI). Many problems are associated with the use of lines of code [van der Poel and 
Schach, 1983]. 

•    Creation of source code is only a small part of the total software development effort. 
It seems somewhat far-fetched that the time required for the requirements, analysis, 
design, implementation, and testing workfl ows (which include planning and documen-
tation activities) can be expressed solely as a function of the number of lines of code in 
the fi nal product.  

•   Implementing the same product in two different languages results in versions with dif-
ferent numbers of lines of code. Also, with languages such as Lisp or with many non-
procedural 4GLs (Section 15.2), the concept of a line of code is not defi ned.  

•   It often is unclear exactly how to count lines of code. Should only executable lines of 
code be counted or data defi nitions as well? And should comments be counted? If not, 
there is a danger that programmers will be reluctant to spend time on what they perceive 
to be “nonproductive” comments, but if comments are counted, then the opposite danger 
is that programmers will write reams of comments in an attempt to boost their apparent 
productivity. Also, what about counting job control language statements? Another prob-
lem is how changed lines or deleted lines are counted—in the course of enhancing a prod-
uct to improve its performance, sometimes the number of lines of code is decreased. 
Reuse of code (Section 8.1) also complicates line counting: If reused code is modifi ed, 
how is it counted? And, what if code is inherited from a parent class (Section 7.8)? In 
short, the apparently straightforward metric of lines of code is anything but straightfor-
ward to count.  

•   Not all the code implemented is delivered to the client. It is not uncommon for half the 
code to consist of tools needed to support the development effort.  

•   Suppose that a software developer uses a code generator, such as a report generator, 
a screen generator, or a graphical user interface (GUI) generator. After a few minutes 
of design activity on the part of the developer, the tool may generate many thousands 
of lines of code.  

•   The number of lines of code in the fi nal product can be determined only when the 
product is completely fi nished. Therefore, basing cost estimation on lines of code is 
doubly dangerous. To start the estimation process, the number of lines of code in the 
fi nished product must be estimated. Then, this estimate is used to estimate the cost of 
the product. Not only is there uncertainty in every costing technique, but if the input to 
an uncertain cost estimator itself is uncertain (that is, the number of lines of code in a 
product that has not yet been built), then the reliability of the resulting cost estimate is 
unlikely to be very high.   

  Because the number of lines of code is so unreliable, other metrics must be considered. 
An alternative approach to estimating the size of a product is the use of metrics based on 
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measurable quantities that can be determined early in the software process. For example, 
van der Poel and Schach [1983] put forward the   FFP metric   for cost estimation of medium-
scale data-processing products. The three basic structural elements of a data-processing 
product are its fi les, fl ows, and processes; the name FFP is an acronym formed from the 
initial letters of those elements. A   fi le   is defi ned as a collection of logically or physically 
related records permanently resident in the product; transaction and temporary fi les are 
excluded. A   fl ow   is a data interface between the product and the environment, such as a 
screen or a report. A   process   is a functionally defi ned logical or arithmetic manipulation of 
data; examples include sorting, validating, or updating. Given the number of fi les   Fi  , fl ows 
  Fl  , and processes   Pr   in a product, its size   S   and cost   C   are given by      

   S   �   Fi   �   Fl   �   Pr           (9.1)

   C � d   �   S     (9.2)

 where   d   is a constant that varies from organization to organization. Constant   d   is a mea-
sure of the   effi ciency   (  productivity  ) of the software development process within that 
organization. The size of a product simply is the sum of the number of fi les, fl ows, and 
processes, a quantity that can be determined once the architectural design is complete. The 
cost then is proportional to the size, the constant of proportionality   d   being determined by 
a least-squares fi t to cost data relating to products previously developed by that organiza-
tion. Unlike metrics based on the number of lines of code, the cost can be estimated before 
coding begins. 
  The validity and reliability of the FFP metric were demonstrated using a purposive 
sample that covered a range of medium-scale data-processing applications. Unfortunately, 
the metric was never extended to include databases, an essential component of many data-
processing products. 
  A similar, but independently developed, metric for the size of a product was developed 
by Albrecht [1979] based on function points; Albrecht’s metric is based on the number of 
input items   Inp  , output items   Out  , inquiries   Inq  , master fi les   Maf  , and interfaces   Inf  . In its 
simplest form the number of   function points     FP   is given by the equation      

   FP   � 4 �   Inp   � 5 �   Out   � 4 �   Inq   � 10 �   Maf   � 7 �   Inf     (9.3)

  Because this is a measure of the product’s size, it can be used for cost estimation and 
productivity estimation. 
  Equation (9.3) is an oversimplifi cation of a three-step calculation. First, the unadjusted 
function points are computed: 

   1. Each of the components of a product—  Inp  ,   Out  ,   Inq  ,   Maf  , and   Inf—  must be classifi ed 
as simple, average, or complex (see  Figure 9.3 ).  

  2. Each component is assigned a number of function points depending on its level. For 
example, an average input is assigned four function points, as refl ected in equation (9.3), 
but a simple input is assigned only three, whereas a complex input is assigned six func-
tion points. The data needed for this step appear in  Figure 9.3 .  

  3. The function points assigned to each component are then summed, yielding the   unad-
justed function points   (  UFP  ).   
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  Second, the   technical complexity factor   (  TCF  ) is computed. This is a measure of 
the effect of 14 technical factors, such as high transaction rates, performance criteria (for 
example, throughput or response time), and online updating; the complete set of factors is 
shown in  Figure 9.4 . Each of these 14 factors is assigned a value from 0 (“not present or 
no infl uence”) to 5 (“strong infl uence throughout”). The resulting 14 numbers are summed, 
yielding the total degree of infl uence (  DI  ). The   TCF   is then given by      

   TCF   � 0.65 � 0.01 �   DI      (9.4)

  Because   DI   can vary from 0 to 70,   TCF   varies from 0.65 to 1.35. 
  Third,   FP  , the number of function points, is given by      

   FP   �   UFP   �   TCF    (9.5)

  Experiments to measure software productivity rates have shown a better fi t using func-
tion points than using KDSI. For example, Jones [1987] has stated that he observed errors 

 FIGURE 9.3    
Table of 
function point 
values.           

                 Level of Complexity    

    Component     Simple     Average     Complex   

   Input item     3      4      6   
   Output item     4      5      7   
   Inquiry     3      4      6   
   Master fi le     7     10     15   
   Interface     5      7     10      

1. Data communication

2. Distributed data processing

3. Performance criteria

4. Heavily utilized hardware

5. High transaction rates

6. Online data entry

7. End-user efficiency

8. Online updating

9. Complex computations

10. Reusability

11. Ease of installation

12. Ease of operation

13. Portability

14.  Maintainability

 FIGURE 9.4 
   Technical 
factors for 
function point 
computation. 
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in excess of 800 percent counting KDSI, but   only   [emphasis added] 200 percent in count-
ing function points, a most revealing remark. 
  To show the superiority of function points over lines of code, Jones [1987] cites the 
example shown in  Figure 9.5 . The same product was coded both in assembler and in Ada 
and the results compared. First, consider KDSI per person-month. This metric tells us that 
coding in assembler is apparently 60 percent more effi cient than coding in Ada, which 
is patently false. Third-generation languages like Ada have superseded assembler simply 
because it is much more effi cient to code in a third-generation language. Now consider the 
second metric, cost per source statement. Note that one Ada statement in this product is 
equivalent to 2.8 assembler statements. Use of cost per source statement as a measure of 
effi ciency again implies that it is more effi cient to code in assembler than in Ada. However, 
when function points per person-month is taken as the metric of programming effi ciency, 
the superiority of Ada over assembler is refl ected clearly. 
  On the other hand, both function points and the FFP metric of equations (9.1) and (9.2) 
suffer from the same weakness: Product maintenance often is inaccurately measured. When 
a product is maintained, major changes to the product can be made without changing the 
number of fi les, fl ows, and processes or the number of inputs, outputs, inquiries, master 
fi les, and interfaces. Lines of code is no better in this respect. To take an extreme case, it is 
possible to replace every line of a product with a completely different line without chang-
ing the total number of lines of code. 
  At least 40 variants of and extensions to Albrecht’s function points have been proposed 
[Maxwell and Forselius, 2000]. Mk II function points were put forward by Symons [1991] 
to provide a more accurate way of computing the unadjusted function points (  UFP  ). The 
software is decomposed into a set of component transactions, each consisting of an input, 
a process, and an output. The value of   UFP   then is computed from these inputs, processes, 
and outputs. Mk II function points are widely used all over the world.  

  9.2.2 Techniques of Cost Estimation  
Notwithstanding the diffi culties with estimating size, it is essential that software developers 
simply do the best they can to obtain accurate estimates of both project duration and proj-
ect cost, while taking into account as many as possible of the factors that can affect their 
estimates. These include the skill levels of the personnel, the complexity of the project, the 
size of the project (cost increases with size but much more than linearly), familiarity of the 
development team with the application area, the hardware on which the product is to be 

 FIGURE 9.5    
A comparison 
of assembler and 
Ada products 
[Jones, 1987]. 
(© 1987 IEEE.)     

               Assembler Version     Ada Version    

    Source code size     70 KDSI     25 KDSI   
   Development costs     $1,043,000     $590,000   
   KDSI per person-month     0.335     0.211   
   Cost per source statement     $14.90     $23.60   
   Function points per person-month     1.65     2.92   
   Cost per function point     $3,023     $1,170      
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run, and availability of CASE tools. Another factor is the deadline effect. If a project has to 
be completed by a certain time, the effort in person-months is greater than if no constraint 
is placed on completion time; hence, the greater the cost. This shows that duration and cost 
are not independent; the shorter the deadline, the greater the effort and, hence, the greater 
the cost. 
  From the preceding list, which is by no means comprehensive, clearly estimation is a 
diffi cult problem. A number of approaches have been used, with greater or lesser success. 

  1. Expert Judgment by Analogy
  In the   expert judgment by analogy   technique, a number of experts are consulted. An 
expert arrives at an estimate by comparing the target product to completed products with 
which the expert was actively involved and noting the similarities and differences. For ex-
ample, an expert may compare the target product to a similar product developed 2 years ago 
for which the data were entered in batch mode, whereas the target product is to have online 
data capture. Because the organization is familiar with the type of product to be developed, 
the expert reduces development time and effort by 15 percent. However, the graphical user 
interface is somewhat complex; this increases time and effort by 25 percent. Finally, the 
target product has to be developed in a language with which most of the team members 
are unfamiliar, thereby increasing time by 15 percent and effort by 20 percent. Combining 
these three fi gures, the expert decides that the target product will take 25 percent more 
time and 30 percent more effort than the previous one. Because the previous product took 
12 months to complete and required 100 person-months, the target product is estimated to 
take 15 months and consume 130 person-months. 
  Two other experts within the organization compare the same two products. One con-
cludes that the target product will take 13.5 months and 140 person-months. The other 
comes up with the fi gures of 16 months and 95 person-months. How can the predictions 
of these three experts be reconciled? One technique is the   Delphi technique  : It allows 
experts to arrive at a consensus without having group meetings, which can have the un-
desirable side effect of one persuasive member swaying the group. In this technique, the 
experts work independently. Each produces an estimate and a rationale for that estimate. 
These estimates and rationales then are distributed to all the experts, who now produce a 
second estimate. This process of estimation and distribution continues until the experts 
can agree within an accepted tolerance. No group meetings take place during the iteration 
process. 
  Valuation of real estate frequently is done on the basis of expert judgment by analogy. An 
appraiser arrives at a valuation by comparing a house with similar houses that have been sold 
recently. Suppose that house A is to be valued, house B next door has just sold for $205,000, 
and house C on the next street sold 3 months ago for $218,000. The appraiser may reason 
as follows: House A has one more bathroom than house B, and the yard is 5000 square feet 
larger. House C is approximately the same size as house A, but its roof is in poor condition. 
On the other hand, house C has a Jacuzzi. After careful thought, the appraiser may arrive at a 
fi gure of $215,000 for house A. 
  In the case of software products, expert judgment by analogy is less accurate than real 
estate valuation. Recall that our fi rst software expert claimed that using an unfamiliar lan-
guage would increase time by 15 percent and effort by 20 percent. Unless the expert has 
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some validated data from which the effect of each difference can be determined (a highly 
unlikely possibility), errors induced by what can be described only as guesses will result 
in hopelessly incorrect cost estimates. In addition, unless the experts are blessed with total 
recall (or have kept detailed records), their recollections of completed products may be 
suffi ciently inaccurate as to invalidate their predictions. Finally, experts are human and, 
therefore, have biases that may affect their predictions. At the same time, the results of 
estimation by a group of experts should refl ect their collective experience; if this is broad 
enough, the result well may be accurate.  

  2. Bottom-Up Approach
  One way of trying to reduce the errors resulting from evaluating a product as a whole is to 
break the product into smaller components. Estimates of duration and cost are made for 
each component separately and combined to provide an overall fi gure. This   bottom-up 
approach   has the advantage that estimating costs for several smaller components gener-
ally is quicker and more accurate than for one large one. In addition, the estimation process 
is likely to be more detailed than with one large, monolithic product. The weakness of this 
approach is that a product is more than the sum of its components. 
  With the object-oriented paradigm, the independence of the various classes helps the 
bottom-up approach. However, interactions among the various objects in the product com-
plicate the estimation process.  

  3. Algorithmic Cost Estimation Models 
 In this approach, a metric, such as function points or the FFP metric, is used as input to 
a model for determining product cost. The estimator computes the value of the metric; 
duration and cost estimates then can be computed using the model. On the surface, an 
  algorithmic cost estimation model   is superior to expert opinion, because a human 
expert, as pointed out previously, is subject to biases and may overlook certain aspects of 
both the completed and target products. In contrast, an algorithmic cost estimation model 
is unbiased; every product is treated the same way. The danger with such a model is that 
its estimates are only as good as the underlying assumptions. For example, underlying 
the function point model is the assumption that every aspect of a product is embodied in 
the fi ve quantities on the right-hand side of equation (9.3) and the 14 technical factors. 
A further problem is that a signifi cant amount of subjective judgment often is needed in 
deciding what values to assign to the parameters of the model. For example, frequently it 
is unclear whether a specifi c technical factor of the function point model should be rated 
a 3 or a 4. 
  Many algorithmic cost estimation models have been proposed. Some are based on math-
ematical theories as to how software is developed. Other models are statistically based; 
large numbers of projects are studied and empirical rules determined from the data. Hybrid 
models incorporate mathematical equations, statistical modeling, and expert judgment. 
The most important hybrid model is Boehm’s COCOMO, which is described in detail in 
Section 9.2.3. (See Just in Case You Wanted to Know Box 9.1 for a discussion of the 
acronym COCOMO.)   
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  9.2.3 Intermediate COCOMO
    COCOMO   actually is a series of three models, ranging from a macroestimation model that 
treats the product as a whole to a microestimation model that treats the product in detail. In 
this section, a description is given of intermediate COCOMO, which has a middle level of 
complexity and detail. COCOMO is described in detail in [Boehm, 1981]; an overview is 
presented in [Boehm, 1984]. 
  Computing development time using intermediate COCOMO is done in two stages. First, 
a rough estimate of the development effort is provided. Two parameters have to be esti-
mated: the length of the product in KDSI and the product’s development mode, a measure 
of the intrinsic level of diffi culty of developing that product. There are three modes:   organic   
(small and straightforward),   semidetached   (medium sized), and   embedded   (complex). 
  From these two parameters, the   nominal effort   can be computed. For example, if the 
project is judged to be essentially straightforward (organic), then the nominal effort (in 
person-months) is given by the equation      

 Nominal effort � 3.2 � (KDSI) 1.05  person-months  (9.6)

  The constants 3.2 and 1.05 are the values that best fi tted the data on the organic mode 
products used by Boehm to develop intermediate COCOMO. 
  For example, if the product to be built is organic and estimated to be 12,000 delivered 
source statements (12 KDSI), then the nominal effort is      

 3.2 � (12) 1.05  � 43 person-months 

 (but read Just in Case You Wanted to Know Box 9.2 for a comment on this value). 
  Next, this nominal value must be multiplied by 15   software development effort 
multipliers  . These multipliers and their values are given in  Figure 9.6 . Each multiplier 
can have up to six values. For example, the product complexity multiplier is assigned the 
values 0.70, 0.85, 1.00, 1.15, 1.30, or 1.65, according to whether the developers rate the 
project complexity as very low, low, nominal (average), high, very high, or extra high. As 
can be seen from  Figure 9.6 , all 15 multipliers take on the value 1.00 when the correspond-
ing parameter is nominal. 
  Boehm provides guidelines to help the developer determine whether the parameter 
should indeed be rated nominal or whether the rating is lower or higher. For example, 
consider again the module complexity multiplier. If the control operations of the module 
essentially consist of a sequence of the constructs of structured programming (such as    
if  -  then  -  else   ,    do  -  while   ,    case   ), then the complexity is rated   very low  . If these operators are 
nested, then the rating is   low  . Adding intermodule control and decision tables increases the 
rating to   nominal  . If the operators are highly nested, with compound predicates, and queues 
and stacks, then the rating is   high.   The presence of reentrant and recursive coding and 

 Just in Case You Wanted to Know      Box 9.1
  COCOMO is an acronym formed from the fi rst two letters of each word in COnstructive 
COst MOdel. Any connection with Kokomo, Indiana, is purely coincidental. 
  The   MO   in COCOMO stands for “model,” so the phrase   COCOMO model   should not be 
used. That phrase falls into the same category as “ATM machine” and “PIN number,” both 
of which were dreamed up by the Department of Redundant Information Department. 
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fi xed-priority interrupt handling pushes the rating to   very high  . Finally, multiple resource 
scheduling with dynamically changing priorities and microcode-level control ensures that 
the rating is   extra high.   These ratings apply to control operations. A module also has to be 
evaluated from the viewpoint of computational operations, device-dependent operations, 
and data management operations. For details on the criteria for computing each of the 
15 multipliers, refer to [Boehm, 1981]. 
  To see how this works, Boehm [1984] gives the example of microprocessor-based com-
munications processing software for a highly reliable new electronic funds transfer net-
work, with performance, development schedule, and interface requirements. This prod-
uct fi ts the description of embedded mode and is estimated to be 10,000 delivered source 
instructions (10 KDSI) in length, so the nominal development effort is given by      

 Nominal effort � 2.8 � (KDSI) 1.20   (9.7)

 FIGURE 9.6     Intermediate COCOMO software development effort multipliers [Boehm, 1984].  (© 1984 IEEE)   

                         Rating   

   Cost Drivers     Very Low     Low     Nominal     High     Very High     Extra High    

    Product Attributes                                 
     Required software reliability     0.75     0.88     1.00     1.15     1.40        
     Database size          0.94     1.00     1.08     1.16        
     Product complexity     0.70     0.85     1.00     1.15     1.30     1.65   

   Computer Attributes                                 
     Execution time constraint               1.00     1.11     1.30     1.66   
     Main storage constraint               1.00     1.06     1.21     1.56   
     Virtual machine volatility*      0.87     1.00     1.15     1.30            
     Computer turnaround time          0.87     1.00     1.07     1.15        

   Personnel Attributes                                 
     Analyst capabilities     1.46     1.19     1.00     0.86     0.71        
     Applications experience     1.29     1.13     1.00     0.91     0.82        
     Programmer capability     1.42     1.17     1.00     0.86     0.70        
     Virtual machine experience*     1.21     1.10     1.00     0.90             
     Programming language experience     1.14     1.07     1.00     0.95             

   Project Attributes                                 
     Use of modern programming practices     1.24     1.10     1.00     0.91     0.82        
     Use of software tools     1.24     1.10     1.00     0.91     0.83        
     Required development schedule     1.23     1.08     1.00     1.04     1.10          

  *For a given software product, the underlying virtual machine is the complex of hardware and software (operating system, database 
management system) it calls on to accomplish its task.   

 Just in Case You Wanted to Know      Box 9.2  
One reaction to the value of the nominal effort might be, “If 43 person-months of effort are 
needed to produce 12,000 delivered source instructions, then on average each program-
mer is turning out fewer than 300 lines of code a month—I have implemented more than 
that in one night!” 
  A 300-line product usually is just that: 300 lines of code. In contrast, a maintainable 
12,000-line product has to go through all the workfl ows of the life cycle. In other words, 
the total effort of 43 person-months is shared among many activities, including coding. 
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  (Again, the constants 2.8 and 1.20 are the values that best fi tted the data on embedded 
products.) Because the project is estimated to be 10 KDSI in length, the nominal effort is      

 2.8 � (10) 1.20  � 44 person-months 

  The estimated development effort is obtained by multiplying the nominal effort by the 
15 software development effort multipliers. The ratings of these multipliers and their val-
ues are given in  Figure 9.7 . Using these values, the product of the multipliers is found to be 
1.35, so the estimated effort for the project is      

 1.35 � 44 � 59 person-months 

  This number is then used in additional formulas to determine dollar costs, development 
schedules, phase and activity distributions, computer costs, annual maintenance costs, and 
other related items; for details, see [Boehm, 1981]. Intermediate COCOMO is a complete 
algorithmic cost estimation model, giving the user virtually every conceivable assistance in 
project planning. 
  Intermediate COCOMO has been validated with respect to a broad sample of 63 proj-
ects covering a wide variety of application areas. The results of applying intermediate 
COCOMO to this sample are that the actual values come within 20 percent of the predicted 
values about 68 percent of the time. Attempts to improve on this accuracy make little sense 
because in most organizations, the input data for intermediate COCOMO generally are 
accurate to within only about 20 percent. Nevertheless, the accuracy obtained by expe-
rienced estimators placed intermediate COCOMO at the cutting edge of cost estimation 
research during the 1980s; no other technique was consistently as accurate. 

 FIGURE 9.7    
Intermediate 
COCOMO 
effort multiplier 
ratings for 
microprocessor 
communications 
software 
[Boehm, 1984]. 
(© 1984 IEEE)   

   Effort
              Cost Drivers     Situation     Rating     Multiplier    

    Required software reliability     Serious fi nancial consequences     High     1.15   
  of software fault

   Database size     20,000 bytes     Low     0.94   

   Product complexity     Communications processing     Very high     1.30   

   Execution time constraint     Will use 70% of available time     High     1.11   

   Main storage constraint     45K of 64K store (70%)     High     1.06   

   Virtual machine volatility     Based on commercial     Nominal     1.00   
  microprocessor hardware

   Computer turnaround time     2 hour average turnaround time     Nominal     1.00   

   Analyst capabilities     Good senior analysts     High     0.86   

   Applications experience     3 years     Nominal     1.00   

   Programmer capability     Good senior programmers     High     0.86   

   Virtual machine experience     6 months     Low     1.10   

   Programming language experience     12 months     Nominal     1.00   

   Use of modern programming     Most techniques in use over     High     0.91   
 practices  1 year

   Use of software tools     At basic minicomputer     Low     1.10   
  tool level

   Required development schedule     9 months     Nominal     1.00      
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  The major problem with intermediate COCOMO is that its most important input is the 
number of lines of code in the target product. If this estimate is incorrect, then every single 
prediction of the model may be incorrect. Because of the possibility that the predictions of 
intermediate COCOMO or any other estimation technique may be inaccurate, management 
must monitor all predictions throughout software development.  

  9.2.4 COCOMO II 
 COCOMO was put forward in 1981. At that time, the only life-cycle model in use was the 
waterfall model. Most software was run on mainframes. Technologies such as client–server 
and object orientation essentially were unknown. Accordingly, COCOMO did not incor-
porate any of these factors. However, as newer technologies began to become accepted 
software engineering practice, COCOMO started to become less accurate. 
    COCOMO II   [Boehm et al., 2000] is a major revision of the 1981 COCOMO. 
COCOMO II can handle a wide variety of modern software engineering techniques, including 
object-orientation, the various life-cycle models described in  Chapter 2 , rapid prototyping 
(Section 11.13), fourth-generation languages (Section 15.2), reuse (Section 8.1), and COTS 
software (Section 1.11). COCOMO II is both fl exible and sophisticated. Unfortunately, to 
achieve this goal, COCOMO II is considerably more complex than the original COCOMO. 
Accordingly, the reader who wishes to utilize COCOMO II should study [Boehm et al., 2000] 
in detail; only an overview of the major differences between COCOMO II and intermediate 
COCOMO is given here. 
  First, intermediate COCOMO consists of one overall model based on lines of code 
(KDSI). On the other hand, COCOMO II consists of three different models. The   application 
composition model  , based on object points (similar to function points), is applied at the 
earliest workfl ows, when minimal knowledge is available regarding the product to be built. 
Then, as more knowledge becomes available, the   early design model   is used; this model is 
based on function points. Finally, when the developers have maximal information, the   post-
architecture model   is used. This model uses function points or lines of code (KDSI). The 
output from intermediate COCOMO is a cost and size estimate; the output from each of the 
three models of COCOMO II is a range of cost and size estimates. Accordingly, if the most 
likely estimate of the effort is   E  , then the application composition model returns the range 
(0.50  E  , 2.0  E  ), and the postarchitecture model returns the range (0.80  E  , 1.25  E  ). This refl ects 
the increasing accuracy of the progression of models of COCOMO II. 
  A second difference lies in the effort model underlying COCOMO:      

 Effort �   a   � (size)   b     (9.8)

 where   a   and   b   are constants. In intermediate COCOMO, the exponent   b   takes on three dif-
ferent values, depending on whether the mode of the product to be built is organic (  b   = 1.05), 
semidetached (  b   = 1.12), or embedded (  b   = 1.20). In COCOMO II, the value of   b   varies 
between 1.01 and 1.26, depending on a variety of parameters of the model. These include 
familiarity with products of that type, process maturity level (Section 3.13), extent of risk 
resolution (Section 2.7), and degree of team cooperation (Section 4.1). 
  A third difference is the assumption regarding reuse. Intermediate COCOMO assumes 
that the savings due to reuse are directly proportional to the amount of reuse. COCOMO II 
takes into account that small changes to reused software incur disproportionately large 
costs (because the code has be understood in detail for even a small change and the cost of 
testing a modifi ed module is relatively large). 
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  Fourth, there now are 17 multiplicative cost drivers, instead of 15 in intermediate 
COCOMO. Seven of the cost drivers are new, such as required reusability in future products, 
annual personnel turnover, and whether the product is being developed at multiple sites. 
  COCOMO II has been calibrated using 83 projects from a variety of different domains. 
The model still is too new for there to be many results regarding its accuracy and, in par-
ticular, the extent to which it is an improvement over its predecessor, the original (1981) 
COCOMO.  

  9.2.5 Tracking Duration and Cost Estimates 
 While the product is being developed, the actual development effort must constantly be 
compared against predictions. For example, suppose that the estimation metric used by 
the software developers predicted that the   duration   of the analysis workfl ow would last 
3 months and require 7 person-months of effort. However, 4 months have gone by and 
10 person-months of effort have been expended, yet the specifi cations are by no means 
complete. Deviations of this kind can serve as an early warning that something has gone 
wrong and corrective action must be taken. The problem could be that the size of the prod-
uct was seriously underestimated or the development team is not as competent as it was 
thought to be. Whatever the reason, there are going to be serious duration and cost over-
runs, and management must take appropriate action to minimize the effects. 
  Careful tracking of predictions must be done throughout the development process, irre-
spective of the techniques by which the predictions were made. Deviations could be due to 
metrics that are poor predictors, ineffi cient software development, a combination of both, 
or some other reason. The important thing is to detect deviations early and take immediate 
corrective action. In addition, it is essential to continually update predictions in the light of 
additional information as it becomes available. 
  Now that metrics for estimating duration and cost have been discussed, the components 
of the software project management plan are described.    

  9.3 Components of a Software Project Management Plan   
A software project management plan has three main components: the work to be done, the 
resources with which to do it, and the money to pay for it all. In this section, these three 
ingredients of the plan are discussed. The terminology is taken from [IEEE 1058, 1998], 
which is discussed in greater detail in Section 9.4. 
  Software development requires   resources  . The major   resources   required are the people 
who will develop the software, the hardware on which the software is run, and the support 
software such as operating systems, text editors, and version control software (Section 5.9). 
  Use of resources such as personnel varies with time. Norden [1958] has shown that 
for large projects, the   Rayleigh distribution   is a good approximation of the way that 
resource consumption,   Rc  , varies with time,   t  , that is,       

 Rc �   
t
 —  
k 2

 e�t 2/ 2k 2  0 � t � � (9.9)

  Parameter   k   is a constant, the time at which consumption is at its peak, and e = 2.71828. . . , 
the base of Naperian (natural) logarithms. A typical Rayleigh curve is shown in  Figure 9.8 . 
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Resource consumption starts small, climbs rapidly to a peak, and then decreases at a slower 
rate. Putnam [1978] investigated the applicability of Norden’s results to software develop-
ment and found that personnel and other resource consumption was modeled with some 
degree of accuracy by the Rayleigh distribution. 
  It therefore is insuffi cient in a software plan merely to state that three senior program-
mers with at least 5 years of experience are required. What is needed is something like the 
following: 

  Three senior programmers with at least 5 years of experience in real-time programming are 
needed, two to start 3 months after the project commences, the third to start 6 months after 
that. Two will be phased out when product testing commences, the third when postdelivery 
maintenance begins.  

  The fact that resource needs depend on time applies not only to personnel but also 
to computer time, support software, computer hardware, offi ce facilities, and even travel. 
Consequently, the software project management plan is a function of time. 
  The work to be done falls into two categories. First is work that continues throughout the 
project and does not relate to any specifi c workfl ow of software development. Such work 
is termed a   project function  . Examples are project management and quality control. 
Second is work that relates to a specifi c workfl ow in the development of the product; such 
work is termed an   activity   or a   task  . An   activity   is a major unit of work that has precise 
beginning and ending dates; consumes resources, such as computer time or person-days; 
and results in   work products  , such as a budget, design documents, schedules, source 
code, or a user’s manual. An activity, in turn, comprises a set of tasks, a   task   being the 
smallest unit of work subject to management accountability. There are therefore three kinds 
of work in a software project management plan: project functions carried on throughout the 
project, activities (major units of work), and tasks (minor units of work). 

 FIGURE 9.8    
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  A critical aspect of the plan concerns completion of work products. The date on which 
a work product is deemed completed is termed a   milestone  . To determine whether a work 
product indeed has reached a milestone, it must fi rst pass a series of   reviews   performed by 
fellow team members, management, or the client. A typical milestone is the date on which 
the design is completed and passes review. Once a work product has been reviewed and 
agreed on, it becomes a   baseline   and can be changed only through formal procedures, as 
described in Section 5.10.2. 
  In reality, there is more to a work product than merely the product itself. A   work pack-
age   defi nes not just the work product but also the staffi ng requirements, duration, resources, 
name of the responsible individual, and acceptance criteria for the work product.   Money   of 
course is a vital component of the plan. A detailed budget must be worked out and the money 
allocated, as a function of time, to the project functions and activities. 
  The issue of how to draw up a plan for software production is addressed next.   

  9.4 Software Project Management Plan Framework
   There are many ways of drawing up a project management plan. One of the best is IEEE 
Standard 1058 [1998]. The components of the plan are shown in  Figure 9.9 . 

•    The standard was drawn up by representatives of numerous major organizations 
involved in software development. Input came from both industry and universi-
ties, and the members of the working group and reviewing teams had many years of 
experience in drawing up project management plans. The standard incorporates this 
experience.  

•   The IEEE project management plan is designed for use with all types of software prod-
ucts. It does not impose a specifi c life-cycle model or prescribe a specifi c methodology. 
The plan essentially is a framework, the contents of which are tailored by each organiza-
tion for a particular domain, development team, or technique.  

•   The IEEE project management plan framework supports process improvement. For 
example, many of the sections of the framework refl ect CMM key process areas 
(Section 3.13) such as confi guration management and metrics.  

•   The IEEE project management plan framework is ideal for the Unifi ed Process. For 
instance, one section of the plan is devoted to requirements control and another to risk 
management, both central aspects of the Unifi ed Process.   

  On the other hand, although the claim is made in IEEE Standard 1058 [1998] that the 
IEEE project management plan is applicable to software projects of all sizes, some of 
the sections are not relevant to small-scale software. For example, section 7.7 of the plan 
framework is headed “Subcontractor Management Plan,” but it is all but unheard of for 
subcontractors to be used in small-scale projects. 
  Accordingly, we now present the plan framework in two different ways. First, the full 
framework is described in Section 9.5. Second, a slightly abbreviated version of the frame-
work is used in Appendix F for a management plan for a small-scale project, the MSG 
Foundation case study.   
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 FIGURE 9.9    
The IEEE 
project 
management 
plan framework. 
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  9.5 IEEE Software Project Management Plan
   The   IEEE software project management plan   (SPMP) framework itself now is described 
in detail. The numbers and headings in the text correspond to the entries in  Figure 9.9 . The 
various terms used have been defi ned in Section 9.3. 

     1 Overview.    
    1.1 Project summary.    
    1.1.1 Purpose, scope, and objectives.   A brief description is given of the purpose 
and scope of the software product to be delivered, as well as project objectives. Business 
needs are included in this subsection.  
    1.1.2 Assumptions and constraints.   Any assumptions underlying the project are 
stated here, together with constraints, such as the delivery date, budget, resources, and 
artifacts to be reused.  
    1.1.3 Project deliverables.   All the items to be delivered to the client are listed here, 
together with the delivery dates.  
    1.1.4 Schedule and budget summary.   The overall schedule is presented here, 
together with the overall budget.  
    1.2 Evolution of the project management plan.   No plan can be cast in concrete. 
The project management plan, like any other plan, requires continual updating in the light of 
experience and change within both the client organization and the software development or-
ganization. In this section, the formal procedures and mechanisms for changing the plan are 
described, including the mechanism for placing the project management plan itself under con-
fi guration control.  
    2 Reference materials.   All documents referenced in the project management plan 
are listed here.  
    3 Defi nitions and acronyms.   This information ensures that the project management 
plan will be understood the same way by everyone.  
    4 Project organization.    
    4.1 External interfaces.   No project is constructed in a vacuum. The project members 
have to interact with the client organization and other members of their own organization. 
In addition, subcontractors may be involved in a large project. Administrative and manage-
rial boundaries between the project and these other entities must be laid down.  
    4.2 Internal structure.   In this section, the structure of the development organization 
itself is described. For example, many software development organizations are divided into 
two types of groups: development groups that work on a single project and support groups 
that provide support functions, such as confi guration management and quality assurance, 
on an organization-wide basis. Administrative and managerial boundaries between the 
project group and the support groups also must be defi ned clearly.  
    4.3 Roles and responsibilities.   For each project function, such as quality assurance, 
and for each activity, such as product testing, the individual responsible must be identifi ed.  
    5 Managerial process plans.    
    5.1 Start-up plan.    
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    5.1.1 Estimation plan.   The techniques used to estimate project duration and cost are 
listed here, as well as the way these estimates are tracked and, if necessary, modifi ed while 
the project is in progress.  
    5.1.2 Staffi ng plan.   The numbers and types of personnel required are listed, together 
with the durations for which they are needed.  
    5.1.3 Resource acquisition plan.   The way of acquiring the necessary resources, 
including hardware, software, service contracts, and administrative services, is given here.  
    5.1.4 Project staff training plan.   All training needed for successful completion of 
the project is listed in this subsection.  
    5.2 Work plan.    
    5.2.1 Work activities.   In this subsection, the work activities are specifi ed, down to the 
task level if appropriate.  
    5.2.2 Schedule allocation.   In general, the work packages are interdependent and 
further dependent on external events. For example, the implementation workfl ow follows 
the design workfl ow and precedes product testing. In this subsection, the relevant depen-
dencies are specifi ed.  
    5.2.3 Resource allocation.   The various resources previously listed are allocated to 
the appropriate project functions, activities, and tasks.  
    5.2.4 Budget allocation.   In this subsection, the overall budget is broken down at the 
project function, activity, and task levels.  
    5.3 Control plan.    
    5.3.1 Requirements control plan.   As described in Part B of this book, while a 
software product is being developed, the requirements frequently change. The mechanisms 
used to monitor and control the changes to the requirements are given in this section.  
    5.3.2 Schedule control plan.   In this subsection, mechanisms for measuring prog-
ress are listed, together with a description of the actions to be taken if actual progress lags 
behind planned progress.  
    5.3.3 Budget control plan.   It is important that spending should not exceed the bud-
geted amount. Control mechanisms for monitoring when actual cost exceeds budgeted cost, 
as well as the actions to be taken should this happen, are described in this subsection.  
    5.3.4 Quality control plan.   The ways in which quality is measured and controlled 
are described in this subsection.  
    5.3.5 Reporting plan.   To monitor the requirements, schedule, budget, and quality, 
reporting mechanisms need to be in place. These mechanisms are described in this subsection.  
    5.3.6 Metrics collection plan.   As explained in Section 5.5, it is not possible to 
manage the development process without measuring relevant metrics. The metrics to be 
collected are listed in this subsection.  
    5.4 Risk management plan.   Risks have to be identifi ed, prioritized, mitigated, and 
tracked. All aspects of risk management are described in this section.  
    5.5 Project close-out plan.   The actions to be taken once the project is completed, 
including reassignment of staff and archiving of artifacts, are presented here.  
    6 Technical process plans.    
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    6.1 Process model.   In this section, a detailed description is given of the life-cycle 
model to be used.  
    6.2 Methods, tools, and techniques.   The development methodologies and pro-
gramming languages to be used are described here.  
    6.3 Infrastructure plan.   Technical aspects of hardware and software are described in 
detail in this section. Items that should be covered include the computing systems (hard-
ware, operating systems, network, and software) to be used for developing the software 
product, as well as the target computing systems on which the software product will be run 
and CASE tools to be employed.  
    6.4 Product acceptance plan.   To ensure that the completed software product passes 
its acceptance test, acceptance criteria must be drawn up, the client must agree to the criteria 
in writing, and the developers must then ensure that these criteria are indeed met. The way that 
these three stages of the acceptance process will be carried out is described in this section.  
    7 Supporting process plans.    
    7.1 Confi guration management plan.   In this section, a detailed description is 
given of the means by which all artifacts are put under confi guration management.  
    7.2 Testing plan.   Testing, like all other aspects of software development, needs careful 
planning.  
    7.3 Documentation plan.   A description of documentation of all kinds, whether or 
not to be delivered to the client at the end of the project, is included in this section.  
    7.4 Quality assurance plan.   All aspects of quality assurance, including testing, 
standards, and reviews, are encompassed by this section.  
    7.5 Reviews and audits plan.   Details as to how reviews are conducted are presented 
in this section.  
    7.6 Problem resolution plan.   In the course of developing a software product, prob-
lems are all but certain to arise. For example, a design review may bring to light a critical 
fault in the analysis workfl ow that requires major changes to almost all the artifacts already 
completed. In this section, the way such problems are handled is described.  
    7.7 Subcontractor management plan.   This section is applicable when subcon-
tractors are to supply certain work products. The approach to selecting and managing sub-
contractors then appears here.  
    7.8 Process improvement plan.   Process improvement strategies are included in 
this section.  
    8 Additional plans.   For certain projects, additional components may need to appear 
in the plan. In terms of the IEEE framework, they appear at the end of the plan. Additional 
components may include security plans, safety plans, data conversion plans, installation 
plans, and the software project postdelivery maintenance plan.     

  9.6 Planning Testing   
One component of the SPMP frequently overlooked is   test planning  . Like every other 
activity of software development, testing must be planned. The SPMP must include 
resources for testing, and the detailed schedule must explicitly indicate the testing to be 
done during each workfl ow. 
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  Without a test plan, a project can go awry in a number of ways. For example, during prod-
uct testing (Section 3.7.4), the SQA group must check that every aspect of the specifi cation 
document, as signed off on by the client, has been implemented in the completed product. A 
good way of assisting the SQA group in this task is to require that the development be trace-
able (Section 3.7). That is, it must be possible to connect each statement in the specifi cation 
document to a part of the design, and each part of the design must be refl ected explicitly in 
the code. One technique for achieving this is to number each statement in the specifi cation 
document and ensure that these numbers are refl ected in both the design and the resulting 
code. However, if the test plan does not specify that this is to be done, it is highly unlikely that 
the analysis, design, and code artifacts will be labeled appropriately. Consequently, when the 
product testing fi nally is performed, it will be extremely diffi cult for the SQA group to deter-
mine that the product is a complete implementation of the specifi cations. In fact, traceabil-
ity should start with the requirements; each statement in the requirements artifacts (or each 
portion of the rapid prototype) must be connected to part of the analysis artifacts. 
  One powerful aspect of inspections is the detailed list of faults detected during an inspec-
tion. Suppose that a team is inspecting the specifi cations of a product. As explained in Section 
6.2.3, the list of faults is used in two ways. First, the fault statistics from this inspection must 
be compared with the accumulated averages of fault statistics from previous specifi cation 
inspections. Deviations from previous norms indicate problems within the project. Second, 
the fault statistics from the current specifi cation inspection must be carried forward to the 
design and code inspections of the product. After all, if there is a large number of faults of a 
particular type, it is possible that not all of them were detected during the inspection of the 
specifi cations, and the design and code inspections provide an additional opportunity for 
locating any remaining faults of this type. However, unless the test plan states that details of 
all faults have to be carefully recorded, it is unlikely that this task will be done. 
  An important way of testing code modules is so-called black-box testing (Section 15.11) 
in which the code is executed with test cases based on the specifi cations. Members of the 
SQA group read through the specifi cations and draw up test cases to check whether the code 
obeys the specifi cation document. The best time to draw up black-box test cases is at the end 
of the analysis workfl ow, when the details of the specifi cation document still are fresh in the 
minds of the members of the SQA group that inspected them. However, unless the test plan 
explicitly states that the black-box test cases are to be selected at this time, in all probability 
only a few black-box test cases will be hurriedly thrown together later. That is, a limited 
number of test cases will be rapidly assembled only when pressure starts mounting from the 
programming team for the SQA group to approve its modules so that they can be integrated 
into the product as a whole. As a result, the quality of the product as a whole suffers. 
  Therefore, every test plan must specify what testing is to be performed, when it is to be 
performed, and how it is to be performed. Such a test plan is an essential part of section 7.2 
of the SPMP. Without it, the quality of the overall product undoubtedly will suffer.   

  9.7 Planning Object-Oriented Projects   
Suppose the classical paradigm is used. From a conceptual viewpoint, the resulting product 
generally is one large unit, even though it is composed of separate modules. In contrast, use 
of the object-oriented paradigm results in a product consisting of a number of relatively 
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independent smaller components, namely, the classes. This makes planning considerably 
easier, in that cost and duration estimates can be computed more easily and more accurately 
for smaller units. Of course, the estimates must take into account that a product is more 
than just the sum of its parts. The separate components are not totally independent; they can 
invoke one another, and these effects must not be overlooked. 
  Are the techniques for estimating cost and duration described in this chapter applica-
ble to the object-oriented paradigm? COCOMO II (Section 9.2.4) was designed to handle 
modern software technology, including object orientation, but what about earlier metrics 
such as function points (Section 9.2.1) and intermediate COCOMO (Section 9.2.3)? In the 
case of intermediate COCOMO, minor changes to some of the cost multipliers are required 
[Pittman, 1993]. Other than that, the estimation tools of the classical paradigm appear to 
work reasonably well on object-oriented projects—provided that there is no reuse. Reuse 
enters the object-oriented paradigm in two ways: reuse of existing components during 
development and the deliberate production (during the current project) of components to be 
reused in future products. Both forms of reuse affect the estimating process. Reuse during 
development clearly reduces the cost and duration. Formulas have been published showing 
the savings as a function of this reuse [Schach, 1994], but these results relate to the classical 
paradigm. At present, no information is available as to how the cost and duration change 
when reuse is utilized in the development of an object-oriented product. 
  We turn now to the goal of reusing parts of the current project. It can take about 
three times as long to design, implement, test, and document a reusable component as 
a similar nonreusable component [Pittman, 1993]. Cost and duration estimates must be 
modifi ed to incorporate this additional labor, and the SPMP as a whole must be adjusted 
to incorporate the effect of the reuse endeavor. Therefore, the two reuse activities work in 
opposite directions. Reuse of existing components reduces the overall effort in develop-
ing an object-oriented product, whereas designing components for reuse in future prod-
ucts increases the effort. It is expected that, in the long term, the savings due to reuse of 
classes will outweigh the costs of the original developments, and already some evidence 
supports this [Lim, 1994].   

  9.8 Training Requirements
   When the subject of   training   is raised in discussions with the client, a common response 
is, “We don’t need to worry about training until the product is fi nished, then we can train the 
users.” This is a somewhat unfortunate remark, implying as it does that only users require 
training. In fact, training also may be needed by members of the development team, start-
ing with training in software planning and estimating. When new software development 
techniques, such as new design techniques or testing procedures, are used, training must be 
provided to every member of the team using the new technique. 
  Introduction of the object-oriented paradigm has major training consequences. The 
introduction of hardware or software tools such as workstations or an integrated environment 
(see Section 15.24.2) also requires training. Programmers may need training in the operat-
ing system of the machine to be used for product development as well as in the implemen-
tation language. Documentation preparation training frequently is overlooked, as evidenced 
by the poor quality of so much documentation. Computer operators certainly require some 
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sort of training to be able to run the new product; they also may require additional training 
if new hardware is utilized. 
  The required training can be obtained in a number of ways. The easiest and least dis-
ruptive is in-house training, by either fellow employees or consultants. Many companies 
offer a variety of training courses, and colleges often offer training courses in the evenings. 
World Wide Web–based courses are another alternative. 
  Once the training needs have been determined and the training plan drawn up, the plan 
must be incorporated into the SPMP.   

  9.9 Documentation Standards   
The development of a software product is accompanied by a wide variety of   documen-
tation  . Jones found that 28 pages of documentation were generated per 1000 instruc-
tions (KDSI) for an IBM internal commercial product around 50 KDSI in size, and about 
66 pages per KDSI for a commercial software product of the same size. Operating system 
IMS/360 Version 2.3 was about 166 KDSI in size, and 157 pages of documentation per 
KDSI were produced. The documentation was of various types, including planning, con-
trol, fi nancial, and technical [Jones, 1986a]. In addition to these types of documentation, 
the source code itself is a form of documentation; comments within the code constitute 
further documentation. 
  A considerable portion of the software development effort is absorbed by documen-
tation. A survey of 63 development projects and 25 postdelivery maintenance projects 
showed that, for every 100 hours spent on activities related to code, 150 hours were spent 
on activities related to documentation [Boehm, 1981]. For large TRW products, the propor-
tion of time devoted to documentation-related activities rose to 200 hours per 100 code-
related hours [Boehm et al., 1984]. 
  Standards are needed for every type of documentation. For instance, uniformity in 
design documentation reduces misunderstandings between team members and aids the 
SQA group. Although new employees have to be trained in the documentation standards, 
no further training is needed when existing employees move from project to project within 
the organization. From the viewpoint of postdelivery maintenance, uniform coding stan-
dards assist maintenance programmers in understanding source code. Standardization is 
even more important for user manuals, because these have to be read by a wide variety of 
individuals, few of whom are computer experts. The IEEE has developed a standard for 
user manuals (IEEE Standard 1063 for Software User Documentation). 
  As part of the planning process, standards must be established for all documentation to 
be produced during software production. These standards are incorporated in the SPMP. 
  Where an existing standard is to be used, such as the ANSI/IEEE Standard for Software 
Test Documentation [ANSI/IEEE 829, 1991], the standard is listed in section 2 of the 
SPMP (reference materials). If a standard is specially written for the development effort, 
then it appears in section 6.2 (methods, tools, and techniques). 
  Documentation is an essential aspect of the software production effort. In a very real 
sense, the product   is   the documentation, because without documentation the product cannot 
be maintained. Planning the documentation effort in every detail, and then ensuring that the 
plan is adhered to, is a critical component of successful software production.   
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 Weinberg’s four-volume work [Weinberg, 1992; 1993; 1994; 1997] provides detailed information on 
many aspects of software management, as do [Bennatan, 2000] and [Reifer, 2000]. The September–
October 2005 issue of   IEEE Software   contains a number of articles on software management, especially 
[Royce, 2005] and [Venugopal, 2005]; there are additional articles in the May–June 2008 issue. The way 

  The main theme of this chapter is the importance of planning in the software process (Section 9.1). 
A vital component of any software project management plan is estimating the duration and the cost 
(Section 9.2). Several metrics are put forward for estimating the size of a product, including function 
points (Section 9.2.1). Next, various metrics for cost estimation are described, especially intermediate 
COCOMO (Section 9.2.3) and COCOMO II (Section 9.2.4). As described in Section 9.2.5, it is essential 
to track all estimates. The three major components of a software project management plan—the work 
to be done, the resources with which to do it, and the money to pay for it—are explained in Section 9.3. 
One particular SPMP, the IEEE standard, is outlined in Section 9.4 and described in detail in Section 9.5. 
Next follow sections on planning testing (Section 9.6), planning object-oriented projects (Section 9.7), 
and training requirements and documentation standards and their implications for the planning process 
(Sections 9.8 and 9.9). CASE tools for planning and estimating are described in Section 9.10. The chapter 
concludes with material on testing the software project management plan (Section 9.11).  

  9.10 CASE Tools for Planning and Estimating
   A number of tools are available that automate intermediate COCOMO and COCOMO II. For 
speed of computation when the value of a parameter is modifi ed, several implementations of 
intermediate COCOMO have been implemented in spreadsheet languages such as Lotus 1-2-3 
and Excel. For developing and updating the plan itself, a word processor is essential. 
  Management information tools also are useful for planning. For example, suppose that 
a large software organization has 150 programmers. A scheduling tool can help planners 
keep track of which programmers already are assigned to specifi c tasks and which are 
available for the current project. 
  More general types of management information also are needed. A number of commer-
cially available management tools can be used both to assist with the planning and estimat-
ing process and to monitor the development process as a whole. These include MacProject 
and Microsoft Project.   

  9.11 Testing the Software Project Management Plan   
As pointed out at the beginning of this chapter, a fault in the software project manage-
ment plan can have serious fi nancial implications for the developers. It is critical that the 
development organization neither overestimate nor underestimate the cost of the project or 
its duration. For this reason, the entire SPMP must be checked by the SQA group before 
estimates are given to the client. The best way to test the plan is by a plan inspection. 
  The plan inspection team must review the SPMP in detail, paying particular attention to 
the cost and duration estimates. To reduce risks even further, irrespective of the metrics used, 
the duration and cost estimates should be computed independently by a member of the SQA 
group as soon as the members of the planning team have determined their estimates.    

   Chapter 
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managers defi ne success is explained in [Procaccino and Verner, 2006]. The mechanisms used by proj-
ect managers to monitor and control software development projects are discussed in [McBride, 2008]. 
  For further information on IEEE Standard 1058 for Software Project Management Plans, the stan-
dard itself should be read carefully [IEEE 1058, 1998]. The need for careful planning is described in 
[McConnell, 2001]. 
  Sackman’s classic work is described in [Sackman, Erikson, and Grant, 1968]. A more detailed 
source is [Sackman, 1970]. The impact of programmer expertise on pair programming is described in 
[Arisholm, Gallis, Dybå, and Sjøberg, 2007]. 
  A careful analysis of function points, as well as suggested improvements, appears in [Symons, 
1991]. Strengths and weaknesses of function points are presented in [Furey and Kitchenham, 1997]. 
Class points, an extension of function points to classes, are introduced in [Costagliola, Ferrucci, 
Tortora, and Vitiello, 2005]. 
  The theoretical justifi cation for intermediate COCOMO, together with full details for imple-
menting it, appears in [Boehm, 1981]. COCOMO II is described in [Boehm et al., 2000]. Ways of 
enhancing COCOMO predictions are presented in [Smith, Hale, and Parrish, 2001]. An extension of 
COCOMO to software product lines appears in [In, Baik, Kim, Yang, and Boehm, 2006]. 
  Briand and Wüst [2001] describe how to estimate the development effort for object-oriented 
products. Estimating both the size and defects of object-oriented software products is described in 
[Cartwright and Shepperd, 2000]. 
  Software productivity data for a variety of business data-processing products are presented in 
[Maxwell and Forselius, 2000]; the unit of productivity utilized is function points per hour. Other 
measures of productivity are discussed in [Kitchenham and Mendes, 2004]. Errors in estimating soft-
ware effort are analyzed in [Jorgensen and Moløkken-Østvold, 2004]. A critique of a frequently used 
research procedure for comparing estimation models is given in [Myrtveit, Stensrud, and Shepperd, 
2005]. A probabilist model for predicting software development effort appears in [Pendharkar, Sub-
ramanian, and Rodger, 2005]. An analysis of cost overruns for software products constructed with 
various life-cycle models appears in [Moløkken-Østvold and Jorgensen, 2005]. Having an effective 
requirements workfl ow can have a positive impact on productivity; this is shown in [Damian and 
Chisan, 2006]. The impact of the cone of uncertainty on schedule estimate is analyzed in [Little, 
2006]. A comprehensive review of 304 development cost estimation studies in 76 journals is pre-
sented in [Jorgensen and Shepperd, 2007]. An evidence-based approach to selecting an appropriate 
cost-estimation model for a given project is described in [Menzies and Hihn, 2006].  
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  Problems

   task   283 
   technical complexity factor 

(TCF)   274 
   test planning   288 

   thousand delivered 
source instructions 
(KDSI)   272 

   training   290 

   unadjusted function points 
(UFP)   273 

   work package   284 
   work product   283  

      9.1 Why do you think that some cynical software organizations refer to   milestones   as   millstones  ? 
(Hint: Look up the fi gurative meaning of   millstone   in a dictionary.)  

   9.2 You are a software engineer at Pretoriuskop Software Developers. A year ago, your manager 
announced that your next product would comprise 8 fi les, 48 fl ows, and 91 processes.

     (i) Using the FFP metric, determine its size.  

    (ii)  For Pretoriuskop Software Developers, the constant   d   in equation (9.2) has been deter-
mined to be $1021. What cost estimate did the FFP metric predict?  

    (iii)  The product recently was completed at a cost of $135,200. What does this tell you about 
the productivity of your development team?     

   9.3 A target product has 8 simple inputs, 3 average inputs, and 11 complex inputs. There are 57 aver-
age outputs, 9 simple inquiries, 13 average master fi les, and 18 complex interfaces. Determine 
the unadjusted function points (  UFP  ).  

   9.4 If the total degree of infl uence for the product of Problem 9.3 is 47, determine the number of 
function points.  

   9.5 Why do you think that, despite its drawbacks, lines of code (LOC or KDSI) is so widely used 
as a metric of product size?  

   9.6 You are in charge of developing a 62-KDSI embedded product that is nominal except that 
the database size is rated very high and the use of software tools is low. Using intermediate 
COCOMO, what is the estimated effort in person-months?  

   9.7 You are in charge of developing two 31-KDSI organic-mode products. Both are nominal in 
every respect except that product P1 has extra-high complexity and product P2 has extra-low 
complexity. To develop the product, you have two teams at your disposal. Team A has very high 
analyst capability, applications experience, and programmer capability. Team A also has high 
virtual machine experience and programming language experience. Team B is rated very low 
on all fi ve attributes.

     (i)  What is the total effort (in person-months) if team A develops product P1 and team B 
develops product P2?  

    (ii)  What is the total effort (in person-months) if team B develops product P1 and team A 
develops product P2?  

    (iii)  Which of the two preceding staffi ng assignments makes more sense? Is your intuition 
backed by the predictions of intermediate COCOMO?     

   9.8 You are in charge of developing a 48-KDSI organic-mode product that is nominal in every 
respect.

     (i)  Assuming a cost of $10,100 per person-month, how much is the project estimated to 
cost?  

    (ii)  Your entire development team resigns at the start of the project. You are fortunate enough 
to be able to replace the nominal team with a very highly experienced and capable team, 
but the cost per person-month will rise to $13,400. How much money do you expect to 
gain (or lose) as a result of the personnel change?     

   9.9 You are in charge of developing the software for a product that uses a set of newly devel-
oped algorithms to compute the most cost-effective routes for a large trucking company. Using 
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[Albrecht, 1979] A. J. ALBRECHT, “Measuring Application Development Productivity,”   Proceedings 
of the IBM SHARE/GUIDE Applications Development Symposium  , Monterey, CA, October 1979, 
pp. 83–92. 

 [ANSI/IEEE 829, 1991]   Software Test Documentation  , ANSI/IEEE 829-1991, American National 
Standards Institute, Institute of Electrical and Electronic Engineers, New York, 1991. 

 [Arisholm, Gallis, Dybå, and Sjøberg, 2007] E. ARISHOLM, H. GALLIS, T. DYBÅ, AND D. I. K. SJØBERG, 
“Evaluating Pair Programming with Respect to System Complexity and Programmer Expertise,” 
  IEEE Transactions on Software Engineering     33   (February 2007), pp. 65–86. 

 [Bennatan, 2000] E. M. BENNATAN,   On Time within Budget: Software Project Management Practices 
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 [Boehm, 1984] B. W. BOEHM, “Software Engineering Economics,”   IEEE Transactions on Software 
Engineering     SE-10   (January 1984), pp. 4–21. 

 [Boehm et al., 1984] B. W. BOEHM, M. H. PENEDO, E. D. STUCKLE, R. D. WILLIAMS, AND A. B. PYSTER, 
“A Software Development Environment for Improving Productivity,”   IEEE Computer     17   (June 
1984), pp. 30–44. 

 [Boehm et al., 2000] B. W. BOEHM, C. ABTS, A. W. BROWN, S. CHULANI, B. K. CLARK, E. HOROWITZ, 
R. MADACHY, D. REIFER, AND B. STEECE,   Software Cost Estimation with COCOMO II  , Prentice 
Hall, Upper Saddle River, NJ, 2000. 

 [Briand and Wüst, 2001] L. C. BRIAND AND J. WÜST, “Modeling Development Effort in Object-
Oriented Systems Using Design Properties,”   IEEE Transactions on Software Engineering     27   
(November 2001), pp. 963–86. 

 [Cartwright and Shepperd, 2000] M. CARTWRIGHT AND M. SHEPPERD, “An Empirical Investigation of 
an Object-Oriented Software System,”   IEEE Transactions on Software Engineering     26   (August 
2000), pp. 786–95. 

 [Costagliola, Ferrucci, Tortora, and Vitiello, 2005] G. COSTAGLIOLA, F. FERRUCCI, G. TORTORA, AND 
G. VITIELLO, “Class Point: An Approach for the Size Estimation of Object-Oriented Systems,” 
  IEEE Transactions on Software Engineering     31   (January 2005), pp. 52–74. 

intermediate COCOMO, you determine that the cost of the product will be $470,000. However, 
as a check, you ask a member of your team to estimate the effort using function points. She 
reports that the function point metric predicts a cost of $985,000, more than twice as large as 
your COCOMO prediction. What do you do now?  

   9.10 Show that the Rayleigh distribution [equation (9.9)] attains its maximum value when   t   =   k  . Find 
the corresponding resource consumption.  

   9.11 A product postdelivery maintenance plan is considered an “additional component” of an IEEE 
software project management plan. Bearing in mind that every nontrivial product is maintained 
and that the cost of postdelivery maintenance, on average, is about twice or three times the cost 
of developing the product, how can this be justifi ed?  

   9.12 Why do software development projects generate so much documentation?  

   9.13 (Term project) Consider the Chocoholics Anonymous project described in Appendix A. Why 
is it not possible to estimate the cost and duration purely on the basis of the information in 
Appendix A?  

   9.14 (Readings in Software Engineering) Your instructor will distribute copies of [Costagliola, Ferrucci, 
Tortora, and Vitiello, 2005]. Are you convinced by the empirical validation of class points?     
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  The Workfl ows 
of the Software 
Life Cycle 

Part 

B 
  In Part B, the workfl ows of the software life cycle are described in depth. For each 
workfl ow, the activities, CASE tools, metrics, and testing techniques appropriate to that 
workfl ow are presented, as well as the challenges of that workfl ow. 
  As explained in the Preface,  Chapter 10 , “Key Material from Part A,” is taught when 
students start their team-based projects at the same time as they take their software 
engineering course. The material in  Chapter 10  enables them to understand the material of 
Part B, that is, the techniques of software engineering, without covering the whole of Part A. 
   Chapter 11 , “Requirements,” examines the requirements workfl ow. The aim of this 
workfl ow is to determine the client’s real needs. Various requirements analysis techniques 
are examined. 
  Once the requirements have been determined, the next step is to draw up the specifi ca-
tions. The classical approach is described in  Chapter 12 , “Classical Analysis.” Three basic 
approaches to specifi cations are presented: informal, semiformal, and formal. Instances of 
each approach are described. Techniques described in depth and illustrated by case studies 
include structured systems analysis, fi nite state machines, Petri nets, and Z. A comparison 
of the various techniques is presented. 
  All the analysis techniques in  Chapter 12  are from the classical paradigm. The object-
oriented approach is described in  Chapter 13 , “Object-Oriented Analysis.” This object-
oriented technique is presented as an alternative to the classical analysis techniques of the 
previous chapter. 
  In  Chapter 14 , “Design,” a variety of design techniques are compared, including clas-
sical techniques like data fl ow analysis and transaction analysis as well as object-oriented 
design. Particular attention is paid to object-oriented design, including case studies. 
Again, the emphasis is on comparison and contrast. 
  Implementation issues are discussed in  Chapter 15 , “Implementation.” Areas covered 
include implementation, integration, good programming practice, and programming 
standards. 
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   Chapter 16  is entitled “Postdelivery Maintenance.” Topics covered in this chapter 
include the importance and challenges of postdelivery maintenance. The management of 
postdelivery maintenance is considered in some detail. 
  In  Chapter 17 , “More on UML,” additional information is provided about the Unifi ed 
Modeling Language. 
  By the end of Part B, you should have a clear understanding of all the workfl ows of the 
software process, the challenges associated with each workfl ow, and how to meet those 
challenges. 
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301

  Chapter

  As previously explained, this chapter contains material that is needed for the student to 
understand Part B (and start his or her team-based term project), without covering Part A. 
The material in this chapter has been kept to a bare minimum, because the broader issues 
will be discussed when the instructor has completed Part B and then teaches Part A. 
  There are no references in this summary chapter, nor are its contents indexed. Instead, 
there are footnotes connecting each section in this chapter to the corresponding section(s) 
in Part A, should further information be needed. 

  10.1 Software Development: Theory versus Practice  1   
  In an ideal world, a software product would be developed as described in  Chapter 1 . As depicted 
schematically in  Figure 10.1 , the system is developed from scratch; Ø denotes the empty set. 
First the client’s  Requirements  are determined, and then the  Analysis  is performed. When the 
analysis artifacts are complete, the  Design  is produced. This is followed by the  Implementa-
tion  of the complete software product, which is then installed on the client’s computer. (The 
model depicted in  Figure 10.1  is a simplifi ed   waterfall life-cycle model  .) 
  There are two reasons why this is a   life-cycle model   (that is, a theoretical description 
of how to build software), rather than a   life cycle   (the actual series of steps followed in the 

10
Key Material 
from Part A 
   Learning Objective 

 After studying this chapter, you should be able to 

  • Understand Part B of this book.      

  1  This section summarizes key points of Sections 2.1 and 2.4. 
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building of a specifi c product). First, software professionals are human and therefore make 
mistakes. It is common for the development team to start the design, but discover a major fault in 
the requirements or specifi cations that has to be fi xed before development can proceed. During 
implementation, design fl aws often come to light, as well as omissions, ambiguities, or contradic-
tions in the specifi cations. In short, “to err is human” applies to all software professionals. When 
a defect comes to light, the current phase or workfl ow has to be suspended. The team now has to 
return to the defective phase or workfl ow and make the necessary corrections before continuing 
development. When this occurs, the linear life-cycle model of  Figure 10.1  breaks down. 
  The second reason why software cannot be developed as shown in  Figure 10.1  is that a 
software product is a model of the real world, and the real world is continually changing. In 
particular, the client’s requirements frequently change while the software is being developed. 
There can be many reasons why the requirements charge. For example, the client may be 
expanding into new markets and need additional functionality; the client company may be 
losing money and can now afford only a scaled-back version of the software previously 
requested; or the decision maker may keep changing his or her mind. These are all instances 
of the so-called   moving-target problem  , that is, changes to the requirements before the 
product is complete. And whenever the requirements change, the partially developed product 
has to be changed and, again, the model of  Figure 10.1  breaks down.   

  10.2 Iteration and Incrementation  2   
  As a consequence of both the moving-target problem and the need to correct the inevitable 
mistakes made while a software product is being developed, the life cycle of actual software 
cannot be linear, but has to keep returning to earlier phases or workfl ows. Accordingly, it 
makes little or no sense to talk about (say) “  the   design workfl ow.” Instead, the operations of 
the design workfl ow are spread out over the life cycle. 

 FIGURE 10.1 
   Idealized 
software 
development. 

Development

Requirements

Implementation

Analysis

Design

�

  2  This section summarizes key points of Section 2.5. 
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  Consider successive versions of an artifact, for example, the specifi cation document or 
a code module. From this viewpoint, the basic process is iterative. That is, we produce the 
fi rst version of the artifact, then we revise it and produce the second version, and so on. Our 
intent is that each version is closer to our target than its predecessor and fi nally we con-
struct a version that is satisfactory.   Iteration   is an intrinsic aspect of software engineering, 
and iterative life-cycle models have been used for over 30 years. 
  A second aspect of developing real-world software is the restriction imposed on us by 
  Miller’s Law  . In 1956, George Miller, a professor of psychology, showed that, at any one 
time, we humans are capable of concentrating on only approximately seven chunks (units 
of information). However, a typical software artifact has far more than seven chunks. For 
example, a code artifact is likely to have considerably more than seven variables, and a 
requirements document is likely to have many more than seven requirements. One way 
we humans handle this restriction on the amount of information we can handle at any one 
time is to use   stepwise refi nement  . That is, we concentrate on those aspects that are 
currently the most important and postpone until later those aspects that are currently less 
critical. In other words, every aspect is eventually handled but in order of current impor-
tance. This means that we start off by constructing an artifact that solves only a small part 
of what we are trying to achieve. Then, we consider further aspects of the problem and add 
the resulting new pieces to the existing artifact. For example, we might construct a require-
ments document by considering the seven requirements we consider the most important. 
Then, we would consider the seven next most important requirements, and so on. This is an 
incremental process.   Incrementation   is also an intrinsic aspect of software engineering; 
incremental software development is over 45 years old. 
  In practice, iteration and incrementation are used in conjunction with one another. That 
is, an artifact is constructed piece by piece (incrementation), and each increment goes 
through multiple versions (iteration). Another way of looking at iteration and incrementa-
tion is that incrementation adds functionality, whereas iteration improves the quality of an 
increment. 
  These ideas are illustrated in  Figure 10.2 , which refl ects the basic concepts underlying 
the   iterative-and-incremental life-cycle model  . The fi gure shows the development of 
a software product in four increments, labeled  Increment A, Increment B, Increment C,  
and  Increment D . The horizontal axis is time, and the vertical axis is person-hours (one 
person-hour is the amount of work that one person can do in 1 hour), so the shaded area 
under each curve is the total effort for that increment. 
  It is important to appreciate that  Figure 10.2  depicts just one possible way a software 
product can be decomposed into increments. Another software product may be constructed 
in just 2 increments, whereas a third may require 13. Furthermore, the fi gure is not intended 
to be an accurate representation of precisely how a software product is developed. Instead, 
it shows how the emphasis changes from iteration to iteration. 
  The sequential phases of  Figure 10.1  are artifi cial constructs. Instead, as explicitly 
refl ected in  Figure 10.2 , we must acknowledge that different   workfl ows   (activities) are 
performed over the entire life cycle. There are fi ve   core workfl ows  , the   requirements 
workfl ow  ,   analysis workfl ow  ,   design workfl ow  ,   implementation workfl ow  , and 
  test workfl ow   and, as stated in the previous sentence, all fi ve are performed over the life 
cycle of a software product. However, there are times when one workfl ow predominates 
over the other four. 
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  For example, at the beginning of the life cycle, the software developers extract an initial 
set of requirements. In other words, at the beginning of the iterative-and-incremental life 
cycle, the requirements workfl ow predominates. These requirements artifacts are extended 
and modifi ed during the remainder of the life cycle. During that time, the other four work-
fl ows (analysis, design, implementation, and test) predominate. In other words, the require-
ments workfl ow is the major workfl ow at the beginning of the life cycle, but its relative 
importance decreases thereafter. Conversely, the implementation and test workfl ows oc-
cupy far more of the time of the members of the software development team toward the end 
of the life cycle than they do at the beginning. 
  Planning and documentation activities are performed throughout the iterative-and-in-
cremental life cycle. Furthermore, testing is a major activity during each iteration, and 
particularly at the end of each iteration. In addition, the software as a whole is thoroughly 
tested once it has been completed; at that time, testing and then modifying the implemen-
tation in the light of the outcome of the various tests is virtually the sole activity of the 
software team. This is refl ected in the test workfl ow of  Figure 10.2 . 
   Figure 10.2  shows four increments. Consider  Increment A , depicted by the column on 
the left. At the beginning of this increment, the requirements team members determine the 
client’s requirements. Once most of the requirements have been determined, the fi rst ver-
sion of part of the analysis can be started. When suffi cient progress has been made with 
the analysis, the fi rst version of the design can be started. Even some coding is often done 
during this fi rst increment, perhaps to test the feasibility of part of the proposed software 
product. Finally, as previously mentioned, planning, testing, and documentation activities 
start on Day One and continue from then on, until the software product is fi nally delivered 
to the client. 

Increment A Increment DIncrement CIncrement B 

Requirements
workflow

Analysis
workflow

Design
workflow

Implementation
workflow

Test
workflow

Pe
rs

on
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Time

 FIGURE 10.2      The construction of a software product in four increments. 
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  Similarly, the primary concentration during  Increment B  is on the require-
ments and analysis workfl ows, and then on the design workfl ow. The emphasis during 
 Increment C  is fi rst on the design workfl ow, and then on the implementation workfl ow 
and test workfl ow. Finally, during  Increment D , the implementation workfl ow and test 
workfl ow dominate. 
  As refl ected in Figure 1.4, about one-fi fth of the total effort is devoted to the require-
ments and analysis workfl ows (together), another one-fi fth to the design workfl ow, and 
about three-fi fths to the implementation workfl ow. The relative total sizes of the shaded 
areas in  Figure 10.2  refl ect these values. 
  There is iteration during each increment of  Figure 10.2 . This is shown in  Figure 10.3 , 
which depicts three iterations during  Increment B . ( Figure 10.3  is an enlarged view of the 
second column of  Figure 10.2 .) As shown in  Figure 10.3 , each iteration involves all fi ve 
workfl ows but again in varying proportions. 
  Again, it must be stressed that  Figure 10.3  is not intended to show that every increment 
involves exactly three iterations. The number of iterations varies from increment to incre-
ment. The purpose of  Figure 10.3  is to show the iteration within each increment and to 
repeat that all fi ve workfl ows (requirements, analysis, design, implementation, and testing, 
together with planning and documentation) are carried out during almost every iteration, 
although in varying proportions each time. 
  As previously explained,  Figure 10.2  refl ects the incrementation intrinsic to the develop-
ment of every software product.  Figure 10.3  explicitly displays the iteration that underlies 
incrementation. Specifi cally,  Figure 10.3  depicts three consecutive iterative steps, as 
opposed to one large incrementation. In more detail,  Iteration B .1 consists of requirements, 

 FIGURE 10.3   
 The three 
iterations of 
Increment B of 
the iterative-
and-incremental 
life-cycle model 
of Figure 10.2 .
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analysis, design, implementation, and test workfl ows, represented by the leftmost dashed 
rectangle with rounded corners. The iteration continues until the artifacts of each of the fi ve 
workfl ows are satisfactory. 
  Next, all fi ve sets of artifacts are iterated in  Iteration B .2. This second iteration is simi-
lar in nature to the fi rst. That is, the requirements artifacts are improved, which in turn trig-
gers improvements to the analysis artifacts, and so on, as refl ected in the second iteration 
of  Figure 10.3 , and similarly for the third iteration. 
  The process of iteration and incrementation starts at the beginning of  Increment A  and 
continues until the end of  Increment D . The completed software product is then installed 
on the client’s computer. 
  The iterative-and-incremental model has many strengths; these are described in detail 
in Section 2.7. But the most important reason why the iterative-and-incremental life-cycle 
model is used in this book is because it models the way that software is actually developed 
in the real world.   

  10.3 The Unifi ed Process  3    
 The software process is the way we produce software. It incorporates the methodology 
(Section 1.11) with its underlying software life-cycle model (Section 2.1) and techniques, 
the tools we use (Sections 5.6 through 5.12), and most important of all, the individuals 
building the software. 
  Different organizations have different software processes. Some use processes that are 
documentation intensive, whereas other organizations consider the software they produce 
to be self-documenting, that is, the product can be understood simply by reading the source 
code.  Some organizations test intensively; others rely on users to test the product after it 
has been delivered. Some organizations do only development and no maintenance, whereas 
others concentrate almost exclusively on maintenance. However, in all cases the software 
development process is structured around the fi ve workfl ows of  Figure 10.2 : requirements, 
analysis (specifi cation), design, implementation, and testing. 
  The major object-oriented methodology used in the software industry today is the   Uni-
fi ed Process.   Despite its name, the Unifi ed Process is actually a methodology—see Just in 
Case You Wanted to Know Box 3.2. Bearing in mind the vast variety of different processes 
in use today, no single “one size fi ts all” methodology could possibly exist. In fact, the Uni-
fi ed Process is not a specifi c series of steps that, if followed, result in the construction of a 
software product. Instead, the Unifi ed Process can be viewed as an adaptable methodology. 
That is, it is modifi ed for the specifi c software product to be developed. In Part B of this 
book, a version of the Unifi ed Process is presented that can be used to develop most small- 
and medium-scale software. 
  The Unifi ed Process uses a graphical language, the   Unifi ed Modeling Language 
(UML)   to represent the software being developed. The object-oriented paradigm uses mod-
eling throughout. A   model   is a set of UML diagrams that represent one or more aspects 
of the software product to be developed. That is, UML is the tool that we use to represent 
(model) the target software product. UML diagrams, being a graphical representation, enable 

  3  This section summarizes key points of Sections 3.1 and 3.2. 
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software professionals to communicate with one another more quickly and more accurately 
than if only verbal descriptions were used. 
  The object-oriented paradigm is an iterative-and-incremental methodology. Each work-
fl ow consists of a number of steps, and to carry out that workfl ow, the steps of the workfl ow 
are repeatedly performed until the members of the development team are satisfi ed that they 
have an accurate UML model of the software product they want to develop. In other words, 
initially the best possible UML diagrams are drawn in the light of the knowledge available 
at the beginning of the workfl ow. Then, as more knowledge about the real-world system 
being modeled is gained, the diagrams are made more accurate (iteration) and extended 
(incrementation). Accordingly, no matter how experienced and skillful a software engineer 
may be, he or she repeatedly iterates and increments until he or she is satisfi ed that the 
UML diagrams are an accurate representation of the software product to be developed.   

  10.4 Workfl ow Overview  4   
  In this section, key aspects of the fi ve core workfl ows are listed. 

   • The aim of the   requirements workfl ow   is to determine exactly what the client needs. 
One aspect of this is to fi nd out from the client what constraints exist, such as the dead-
line for completing the product and the required reliability.  

  • The aim of the   analysis workfl ow   is to analyze and refi ne the requirements to achieve 
the detailed understanding of the requirements essential for developing a software prod-
uct correctly and maintaining it easily.  

  • The specifi cations of a product spell out   what   the product is to do; the design shows   how   
the product is to do it. Accordingly, the aim of the   design workfl ow   is to refi ne the 
artifacts of the analysis workfl ow until the material is in a form that can be implemented 
by the programmers.  

  • The aim of the   implementation workfl ow   is to implement the target software prod-
uct in the chosen implementation language(s).  

  • With regard to the   test workfl ow  , in the Unifi ed Process testing is carried out in paral-
lel with the other workfl ows, starting from the beginning; this is shown in  Figure 10.2 . 
There are two major aspects to testing: First, every developer and maintainer is person-
ally responsible for ensuring that his or her work is correct. Therefore, a software profes-
sional has to test and retest each artifact he or she develops or maintains.  Second, once 
the software professional is convinced that an artifact is correct, it is handed over to the 
software quality assurance group for independent testing, as described in  Chapter 6 .     

  10.5 Teams  5   
  Nowadays, most software products are too large (or too complex) to be built by one soft-
ware engineering professional within the given time constraints. Consequently, the work 
has to be shared among a group of professionals organized as a   team  . The team approach 

  4  This section summarizes key points of Sections 3.3 through 3.9. 

  5  This section summarizes key points of Section 4.1. 
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is used throughout the life cycle, that is, for each of the workfl ows. In larger organizations 
there are specialized teams; the requirements workfl ow of a product will be handled by a 
requirements team, the analysis workfl ow by an analysis team, and so on.   

  10.6 Cost–Benefi t Analysis  6   
  One way of determining whether a possible course of action would be profi table is to compare 
estimated future benefi ts against projected future costs. This is termed   cost–benefi t analysis.   
  Cost–benefi t analysis is a fundamental technique in deciding whether a client should 
computerize his or her business, and if so, in what way. The costs and benefi ts of various 
alternative strategies are compared. For each possible strategy, the costs and benefi ts are 
computed, and the one for which the difference between benefi ts and costs is the largest is 
selected as the optimal strategy.   

  10.7 Metrics  7   
  Without measurements (or   metrics  ), there is no way to detect problems early in the soft-
ware process, before they get out of hand. Accordingly, during software development and 
maintenance we continually take measurements. 
  There are fi ve fundamental metrics, each of which must be measured and monitored for 
each workfl ow: 

   1. Size (in lines of code or, better, in a more meaningful metric, such as those of Section 9.2.1).  
  2. Cost (in dollars).  
  3. Duration (in months).  
  4. Effort (in person-months).  
  5. Quality (number of faults detected).   
  Metrics serve as an early warning system for potential problems. Management uses the 
fundamental metrics to identify problems, such as high fault rates during the design work-
fl ow or code output that is well below the industry average. More specialized metrics can 
then be utilized to analyze these problems in greater depth.   

  10.8 CASE  8   

  The term   CASE   is an acronym that stands for   computer-aided software engineering  , 
that is, software that assists with software development and maintenance. 
  The simplest form of CASE is the software   tool  , a product that assists in just one aspect 
of the production of software. Examples include: a tool that draws UML diagrams; a   data 
dictionary    ,   a computerized list of all items defi ned within a product; a   report generator  , 
which     generates the code needed for producing a report; and a   screen generator  , which 
assists the software developer in producing the code for a data capture screen. 

   6  This section summarizes key points of Section 5.2.  

   7  This section summarizes key points of Section 5.5.  

   8  This section summarizes key points of Sections 5.6 and 5.7.  
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  A CASE   workbench   is a collection of tools that together support one or two activities. 
One example is a   requirements, analysis, and design workbench   that incorporates a 
UML diagram tool and a consistency checker; another is a   project management work-
bench   that is used in every workfl ow. 
  Finally, a CASE   environment   supports the complete software process.   

  10.9 Versions and Confi gurations  9   
  Whenever an artifact is changed, whether during development or maintenance, there will 
be two   versions   of the artifact: the old version and the new version. Because a product 
is composed of code artifacts, there will also be two or more versions of each of the com-
ponent artifacts that have been changed. Because the new version of an artifact may be 
less correct than the previous version, it is necessary to keep all versions of all artifacts; 
a CASE tool that does this is called a   version control tool  . 
  The set of specifi c versions of each artifact from which a given version of the com-
plete product is built is called the   confi guration   of that version of the product. A 
  confi guration-control tool   can handle problems caused by development and mainte-
nance by teams, in particular, when more than one person attempts to change the same ar-
tifact. A key concept is a   baseline  , a confi guration of all the artifacts in the product. After 
each group of changes has been made to the artifacts, a new baseline is attained. 
  If a software organization does not wish to purchase a complete confi guration-control 
tool, then, at the very least, a version-control tool must be used in conjunction with a   build 
tool  , that is, a tool that assists in selecting the correct version of each compiled-code arti-
fact to be linked to form a specifi c version of the product. Build tools, such as    make   , have 
been incorporated into a wide variety of programming environments.   

  10.10 Testing Terminology  10   
  A   fault   is injected into a software product when a human makes a   mistake  . A   failure   is 
the observed incorrect behavior of the software product as a consequence of a fault, and 
the   error   is the amount by which a result is incorrect. The word   defect   is a generic term 
for a fault, failure, or error. 
  The   quality   of software is the extent to which the product satisfi es its specifi cations. 
Within a software organization, the primary task of the   software quality assurance   
(  SQA  ) group is to test that the developers’ product is correct.   

  10.11 Execution-Based and Non-Execution-Based Testing  11   
  There are two basic forms of testing: execution-based testing (running test cases), and non-
execution-based testing (carefully reading through an artifact). In a   review   (a less formal 
  walkthrough   or a more formal   inspection)  , a team of software professionals with a 

  9  This section summarizes key points of Sections 5.9 through 5.11. 

   10  This section summarizes key points of Section 6.1.  

   11  This section summarizes key points of Section 6.2.  
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broad range of skills painstakingly checks through a document, such as a specifi cation 
document, a design document, or a code artifact. 
  Clearly, non-execution-based testing has to be used when testing artifacts of the require-
ments, analysis, and design workfl ows; execution-based testing can be applied only to the 
code of the implementation workfl ow. Surprisingly, non-execution-based testing of code 
(code review) has been shown to be as effective as execution-based testing (running test 
cases).   

  10.12 Modularity  12   
  A module is a lexically contiguous sequence of program statements, bounded by boundary 
elements, having an aggregate identifi er. An example of boundary elements is  {. . .}  pairs in 
C++ or Java. Procedures and functions of the classical paradigm are modules. In the object-
oriented paradigm, an object is a module and so is a method within an object.    A design 
objective is to ensure that the   coupling   (degree of interaction between two modules) is as 
low as possible. Ideally, we would like the entire product to exhibit only   data coupling  ; 
that is, every argument is either a simple argument or a data structure for which all elements 
are used by the called module. Furthermore, we want the   cohesion   (degree of interaction 
within a module) to be as high as possible. 
  Furthermore, we wish to maximize   information hiding  , that is, ensuring that im-
plementation details are not visible outside the module in which they are declared; in 
the object-oriented paradigm, this can be achieved by careful use of the    private    and 
   protected    visibility modifi ers.   

  10.13 Reuse  13   
    Reuse   refers to using components of one product to facilitate the development of a differ-
ent product with a different functionality. A reusable component need not necessarily be a 
module, a class, or a code fragment—it could be a design, a part of a manual, a set of test 
data, a contract, or a duration and cost estimate. 
  The reason why reuse is so important is that it takes time (= money) to specify, design, im-
plement, test, and document a software component. If a component is reused, it will be neces-
sary to retest the component in its new context, but the other tasks need not be repeated.   

  10.14 Software Project Management Plan  14   

  A   software project management plan   has three main components: the work to 
be done, the resources with which to do it, and the money to pay for it all. The major 
  resources   required are the people who will develop the software, the hardware on which 
the software is run, and the support software such as operating systems, text editors, and 
version control software. 

  12  This section summarizes key points of Sections 7.1 to 7.3 and 7.6. 

   13  This section summarizes key points of Section 8.1.  

   14  This section summarizes key points of Section 9.3.  
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  Use of resources varies with time. Consequently, the software project management plan 
is a function of time. 
  The   work   to be done falls into two categories. First is work that continues throughout 
the project and does not relate to any specifi c workfl ow of software development. Such 
work is termed a   project function  . Examples are project management and quality control. 
Second is work that relates to a specifi c workfl ow in the development of the product; such 
work is termed an   activity   or a   task  . An   activity   is a major unit of work that has precise be-
ginning and ending dates; consumes resources, such as computer time or person-days; and 
results in   work products  , such as a budget, design documents, schedules, source code, or 
a user’s manual. An activity, in turn, comprises a set of tasks, a   task   being the smallest unit 
of work subject to management accountability. There are therefore three kinds of work in 
a software project management plan: project functions carried on throughout the project, 
activities (major units of work), and tasks (minor units of work). 
  A critical aspect of the plan concerns completion of work products. The date on which 
a work product is deemed completed is termed a   milestone  . To determine whether a work 
product indeed has reached a milestone, it must fi rst pass a series of   reviews   performed by 
fellow team members, management, or the client. A typical milestone is the date on which 
the design is completed and passes review. Once a work product has been reviewed and 
agreed on, it becomes a baseline and can be changed only through formal procedures. 
  In reality, there is more to a work product than merely the product itself. A   work 
package   defi nes not just the work product but also the staffi ng requirements, duration, 
resources, name of the responsible individual, and acceptance criteria for the work product. 
  Money   of course is a vital component of the plan. A detailed budget must be worked out 
and the money allocated, as a function of time, to the project functions and activities. Key 
components of the plan include the   cost estimate   and   duration estimate  .    

    This chapter contains a summary of material on theory versus practice of software development 
(Section 10.1); iteration and incrementation (Section 10.2); the Unifi ed Process (Section 10.3); 
workfl ows (Section 10.4); teams (Section 10.5); cost–benefi t analysis (Section 10.6); metrics 
(Section 10.7); CASE (Section 10.8); versions and confi gurations (Section 10.9); testing terminol-
ogy (Section 10.10); execution-based and non-execution-based testing (Section 10.11); modularity 
(Section 10.12); reuse (Section 10.13); and the software project management plan (Section 10.14).  
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 10.1 Distinguish between a life cycle and a life-cycle model.  

    10.2 Why is the moving target problem so prevalent?  

    10.3 Distinguish between iteration and incrementation.  
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 Chapter 11
Requirements 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Perform the requirements workfl ow.  

  • Draw up the initial business model.  

  • Draw up the requirements.  

  • Construct a rapid prototype.      

  The chances of a product being developed on time and within budget are somewhat slim 
unless the members of the software development team agree on what the software product is 
to do. The fi rst step in achieving this unanimity is to analyze the client’s current situation as 
precisely as possible. For example, it is inadequate to say, “The client needs a computer-aided 
design system because they claim their manual design system is lousy.” Unless the develop-
ment team knows exactly what is wrong with the current manual system, there is a high 
probability that aspects of the new computerized system will be equally “lousy.” Similarly, if 
a personal computer manufacturer is contemplating development of a new operating system, 
the fi rst step is to evaluate the fi rm’s current operating system and analyze carefully exactly 
why it is unsatisfactory. To take an extreme example, it is vital to know whether the problem 
exists only in the mind of the sales manager who blames the operating system for poor sales, 
or whether users of the operating system are thoroughly disenchanted with its functionality 
and reliability. Only after a clear picture of the present situation has been gained can the team 
attempt to answer the critical question, What must the new product be able to do? The process 
of answering this question is the primary objective of the requirements workfl ow. 

  11.1  Determining What the Client Needs 
  A commonly held misconception is that, during the requirements workfl ow, the developers 
must determine what software the client  wants . On the contrary, the real objective of the 
requirements workfl ow is to determine what software the client  needs . One problem is that 
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many clients do not know what they need. Furthermore, even a client who has a good idea 
of what is needed may have diffi culty in accurately conveying these ideas to the developers 
because most clients are less computer literate than the members of the development team. 
(For more insight into this issue, see Just in Case You Wanted to Know Box 11.1.) 
  Another problem is that the client may not appreciate what is going on in his or her own 
organization. For example, it is no use for a client to ask for a faster software product when 
the real reason why the current software product has such a long response time is that the 
database is badly designed. What needs to be done is to reorganize and improve the way that 
data are stored in the current software product, otherwise a new software product will be just 
as slow. Or, if the client operates an unprofi table chain of retail stores, the client may ask for a 
fi nancial management information system that refl ects such items as sales, salaries, accounts 
payable, and accounts receivable. Such an information system will be of little use if the real 
reason for the losses is shrinkage (shoplifting and theft by employees). If that is the case, then 
a stock control system rather than a fi nancial management information system is required. 
  At fi rst sight, determining what the client needs is straightforward—the members of the 
development team simply ask him or her. However, there are two reasons why this direct 
approach usually does not work very well. 
  First, as has just been stated, the client may not appreciate what is going on in his or her 
own organization. But the major reason why a client so often asks for the wrong software 
product is that software is complex. It is diffi cult enough for a software engineer to visual-
ize a software product and its functionality—the problem is far worse for the client, who 
usually is not an expert in software engineering. 
  Without the assistance of a skilled software development team, the client may be a poor source 
of information regarding what needs to be developed. On the other hand, unless there is face-
to-face communication with the client, there is no way of fi nding out what really is needed. 
  The classical attempt at solving this challenge is described in Section 11.12. The object-
oriented approach is to obtain initial information from the client and future users of the target 
product and to use this initial information as an input to the requirements workfl ow of the 
Unifi ed Process [Jacobson, Booch, and Rumbaugh, 1999]. This is described in Section 11.2.   

  11.2 Overview of the Requirements Workfl ow  
 The overall aim of the  requirements workfl ow  is for the development organization 
to determine the client’s needs. The fi rst step toward this goal is to gain an understanding 
of the  application domain  (or  domain , for short), that is, the specifi c environment 

 S. I. Hayakawa (1906–1992), U.S. Senator from California, once told a group of reporters, 
“I know you believe you understood what you think I said, but I am not sure you realize 
that what you heard is not what I meant.” This excuse applies equally well to the issue of 
requirements analysis. The software engineers hear their client’s requests, but what they 
hear is not what the client should be saying. 
  That quotation has been wrongly attributed to former U.S. presidential candidate George 
Romney (1907–1995) who once announced at a press conference, “I didn’t say that I didn’t 
say it. I said that I didn’t say I said it. I want to make that very clear.” Romney’s “clarifi cation” 
highlights another challenge of requirements analysis—it is easy to misunderstand what the 
client says. 

 Just in Case You Wanted to Know  Box 11.1 
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in which the target product is to operate. The domain could be banking, space explora-
tion, automobile manufacturing, or telemetry. Once the members of the development team 
understand the domain to a suffi cient depth, they can build a business model, that is, use 
UML diagrams to describe the client’s business processes. The business model is used to 
determine what the client’s initial requirements are. Then iteration is applied. 
  In other words, the starting point is an initial understanding of the domain. This information 
is used to build the initial business model. The initial business model is utilized to draw up an 
initial set of the client’s requirements. Then, in the light of what has been learned about the client’s 
requirements, a deeper understanding of the domain is gained; and this knowledge is utilized in 
turn to refi ne the business model and hence the client’s requirements. This iteration continues 
until the team is satisfi ed with the set of requirements. At this point, the iteration stops. 
  The term  requirements engineering  is sometimes used to describe what is performed 
during the requirements workfl ow. The process of discovering the client’s requirements is 
termed  requirements elicitation  (or  requirements capture ). Once the initial set of 
requirements has been drawn up, the process of refi ning and extending them is termed 
 requirements analysis . 
  We now examine each of these steps in detail.   

  11.3 Understanding the Domain 
  To elicit the client’s needs, the members of the requirements team must be familiar with the 
application domain, that is, the general area in which the target product is to be used. For 
example, it is not easy to ask meaningful questions of a banker or a neurosurgeon without 
fi rst acquiring some familiarity with banking or neurosurgery. Therefore, an initial task of 
each member of the requirements analysis team is to acquire familiarity with the applica-
tion domain, unless he or she already has experience in that general area. It is particularly 
important to use correct terminology when communicating with the client and potential users 
of the target software. After all, it is hard to be taken seriously by a person working in a spe-
cifi c domain unless the interviewer uses the nomenclature appropriate for that domain. More 
important, use of an inappropriate word may lead to a misunderstanding, eventually resulting 
in a faulty product being delivered. The same problem can arise if the members of the require-
ments team do not understand the subtleties of the terminology of the domain. For example, 
to a layperson words like  brace, beam, girder,  and  strut  may appear to be synonyms, but to a 
civil engineer they are distinct terms. If a developer does not appreciate that a civil engineer 
is using these four terms in a precise way and if the civil engineer assumes that the developer 
is familiar with the distinctions among the terms, the developer may treat the four terms as 
equivalent; the resulting computer-aided bridge design software may contain faults that result 
in a bridge collapsing. Computer professionals hope that the output of every program will be 
scrutinized carefully by a human before decisions are made based on that program, but the 
growing popular faith in computers means that it is distinctly unwise to rely on the likelihood 
of such a check being made. So, it is by no means far-fetched that a misunderstanding in ter-
minology could lead to the software developers being sued for negligence. 
  One way to address the problem with terminology is to construct a  glossary , a list of 
technical words used in the domain, together with their meanings. The initial entries are 
inserted into the glossary while the team members are busy learning as much as they can 
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about the application domain. Then, the glossary is updated whenever the members of the 
requirements team encounter new terminology. Every so often, the glossary can be printed 
out and distributed to team members or downloaded to a PDA (such as a Palm Pilot or Black-
Berry). Not only does such a glossary reduce confusion between client and developers, it also 
is useful in lessening misunderstandings between the members of the development team. 
  Once the requirements team has acquired familiarity with the domain, the next step is to 
build the business model.   

  11.4 The Business Model 
  A  business model  is a description of the business processes of an organization. For 
example, some of the business processes of a bank include accepting deposits from clients, 
loaning money to clients, and making investments. 
  The reason for building a business model fi rst is that the business model provides an 
understanding of the client’s business as a whole. With this knowledge, the developers can 
advise the client as to which portions of the client’s business to computerize. Alternatively, 
if the task is to extend an existing software product, the developers have to understand the 
existing business as a whole to determine how to incorporate the extension and to learn 
what parts, if any, of the existing product need to be modifi ed to add the new piece. 
  To build a business model, a developer needs to obtain a detailed understanding of the 
various business processes. These processes are now  refi ned , that is, analyzed in greater 
detail. A number of different techniques can be used to obtain the information needed to 
build the business model, primarily interviewing. 

  11.4.1 Interviewing 
 The members of the requirements team meet with members of the client organization until 
they are convinced that they have elicited all relevant information from the client and future 
users of the target software product. 
  There are two basic types of questions. A closed-ended question requires a specifi c 
answer. For example, the client might be asked how many salespeople the company employs 
or how fast a response time is required. Open-ended questions are asked to encourage the 
person being interviewed to speak out. For instance, asking the client, “Why is your current 
software product unsatisfactory?” may explain many aspects of the client’s approach to 
business. Some of these facts might not come to light if the question were closed ended. 
  Similarly, there are two basic types of interviews, structured and unstructured. In a 
 structured interview , specifi c preplanned questions are asked, frequently closed ended. 
In an  unstructured interview , the interviewer may start with one or two prepared closed-
ended questions, but subsequent questions are posed in response to the answers he or she 
receives from the person being interviewed. Many of these subsequent questions are likely 
to be open ended in nature to provide the interviewer with wide-ranging information. 
  At the same time, it is not a good idea if the interview is too unstructured. Saying to 
the client, “Tell me about your business” is unlikely to yield much relevant knowledge. In 
other words, questions should be posed in such a way as to encourage the person being 
interviewed to give wide-ranging answers but always within the context of the specifi c 
information needed by the interviewer. 
  Conducting a good interview is not always easy. First, the interviewer must be fully 
familiar with the application domain. Second, there is no point in interviewing a member 
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of the client organization if the interviewer has already made up his or her mind regarding 
the client’s needs. No matter what the interviewer has previously been told or what he or 
she has learned by other means, the interviewer must approach every interview with the 
intention of listening carefully to what the person being interviewed has to say, while fi rmly 
suppressing any preconceived notions regarding the client company or the needs of the 
client and the potential users of the target product to be developed. 
  After the interview is concluded, the interviewer must prepare a written report outlining the 
results of the interview. It is strongly advisable to give a copy of the report to the person who 
was interviewed; he or she may want to clarify certain statements or add overlooked items.  

  11.4.2 Other Techniques 
 Interviewing is the primary technique for obtaining information for the business model. This 
section describes some other techniques that may be used in conjunction with interviewing. 
  One way of gaining knowledge about the activities of the client organization is to send a 
 questionnaire  to the relevant members of the client organization. This technique is useful 
when the opinions of, say, hundreds of individuals need to be determined. Furthermore, a 
carefully thought-out written answer from an employee of the client organization may be 
more accurate than an immediate verbal response to a question posed by an interviewer. 
However, an unstructured interview conducted by a methodical interviewer who listens 
carefully and poses questions that elicit amplifi cations of initial responses usually yields far 
better information than a thoughtfully worded questionnaire. Because questionnaires are 
preplanned, there is no way that a question can be posed in response to an answer. 
  A different way of eliciting requirements is to examine the various  forms  used by the 
business. For example, a form in a printing works might refl ect press number, paper roll 
size, humidity, ink temperature, paper tension, and so on. The various fi elds in this form 
shed light on the fl ow of print jobs and the relative importance of the steps in the printing 
process. Other documents, such as operating procedures and job descriptions, also can be 
powerful tools for fi nding out exactly what is done and how. If a software product is being 
used, the user manuals should also be carefully studied. A comprehensive set of different 
types of data regarding how the client currently does business can be extraordinarily help-
ful in determining the client’s needs. Therefore, a good software professional carefully 
studies client documentation, treating it as a valuable potential source of information that 
can lead to an accurate assessment of the client’s needs. 
  Another way of obtaining such information is by  direct observation  of the users, 
that is, by members of the requirements team observing and writing down the actions of 
the employees while they perform their duties. A modern version of this technique is to set 
up  videotape cameras  within the workplace to record (with the prior written permis-
sion of those being observed) exactly what is being done. One diffi culty of this technique 
is that it can take a long time to analyze the tapes. In general, one or more members of 
the requirements team has to spend an hour playing back the tape for every hour that the 
cameras record. This time is in addition to what is needed to assess what was observed. 
More seriously, this technique has been known to backfi re badly because employees may 
view the cameras as an unwarranted invasion of privacy. It is important that members of the 
requirements team have the full cooperation of all employees; it can be extremely diffi cult 
to obtain the necessary information if people feel threatened or harassed. The possible risks 
should be considered carefully before introducing cameras or, for that matter, taking any 
other action that has the potential to annoy or even anger employees.  
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  11.4.3 Use Cases 
 As stated in Section 3.2, a  model  is a set of UML diagrams that represent one or more 
aspects of the software product to be developed (recall that the  ML  in UML stands 
for “modeling language”). A primary UML diagram used in business modeling is the 
use case. 
  A  use case  models an interaction between the software product itself and the users 
of that software product ( actors ). For example,  Figure 11.1  depicts a use case from a 
banking software product. There are two actors, represented by the UML stick fi gures, the 
  Customer   and the   Teller  . The label inside the oval describes the business activity rep-
resented by the use case, in this instance  Withdraw Money . 
  Another way of looking at a use case is that it shows the interaction between the soft-
ware product and the environment in which the software product operates. That is, an actor 
is a member of the world outside the software product, whereas the rectangle in the use case 
represents the software product itself. 
  It is usually easy to identify an actor. 

   • An actor is frequently a user of the software product. In the case of a banking software 
product, the users of that software product are the customers of the bank and the staff of 
the bank, including tellers and managers.  

  • In general, an actor plays a role with regard to the software product. This role may be as 
a user of the software product. However, an initiator of a use case or someone who plays 
a critical part in a use case is also playing a role and is therefore regarded as an actor, 
irrespective of whether that person is also a user of the software product. An example of 
this is given in Section 11.7.   

  A user of the system can play more than one role. For example, a customer of the 
bank can be a   Borrower   (when he or she takes out a loan) or a   Lender   (when he or 
she deposits money in the bank—a bank makes much of its profi t by investing the 
money deposited by customers). Conversely, one actor can participate in multiple use cases. 
For example, a   Borrower   may be an actor in the  Borrow Money  use case, the  Pay 
Interest on Loan  use case, and the  Repay Loan Principal  use case. Also, the 
actor   Borrower   may stand for many thousands of bank customers. 
  An actor need not be a human. Recall that an actor is a user of a software product, and in 
many cases another software product can be a user. For example, an e-commerce informa-
tion system that allows purchasers to pay with credit cards has to interact with the credit 
card company information system. That is, the credit card company information system is 
an actor from the viewpoint of the e-commerce company information system. Similarly, the 
e-commerce information system is an actor from the viewpoint of the credit card company 
information system. 

 FIGURE 11.1 
   The  Withdraw 
Money  use case 
of the banking 
software 
product. 

Banking Software
Product

Withdraw Money

Customer Teller
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  As previously stated, identifi cation of actors is easy. Generally, the only diffi culty that 
arises in this part of the paradigm is that an overzealous software professional sometimes 
identifi es overlapping actors. For example, in a hospital software product, having a use 
case with actor   Nurse   and a different use case with actor   Medical Staff   is not a good 
idea, because all nurses are medical staff, but some medical staff (such as physicians) are 
not nurses. It would be better to have actors   Physician   and   Nurse  . Alternatively, actor 
  Medical   Staff   can be defi ned with two specializations,   Physician   and   Nurse .  This is 
depicted in  Figure 11.2 . In Section 7.7, it was pointed out that inheritance is a special case 
of generalization. Generalization was applied to classes in Section 7.7.  Figure 11.2  shows 
how generalization can be applied to actors, too. 

     11.5 Initial Requirements 
  To determine the client’s requirements, initial requirements are drawn up based on the 
initial business model. Then, as the understanding of the domain and the business model is 
refi ned on the basis of further discussions with the client, the requirements are refi ned. 
  The requirements are dynamic. That is, there are frequent changes not just to the require-
ments themselves but also to the attitudes of the development team, client, and future users 
toward each requirement. For example, a particular requirement may fi rst appear to the 
development team to be optional. After further analysis, that requirement may now seem 
to be critically important. However, after discussion with the client, the requirement is 
rejected. A good way to handle these frequent changes is to maintain a list of likely require-
ments, together with use cases of the requirements that have been agreed to by the members 
of the development team and approved by the client. 
  It is important to bear in mind that the object-oriented paradigm is iterative and the 
glossary, the business model, or the requirements therefore may have to be modifi ed at any 
time. In particular, additions to the requirements list, modifi cations to items already on the 
list, and removal of items from the list can be triggered by a wide variety of events, ranging 
from a casual remark made by a user to a suggestion from the client at a formal meeting of 
the systems analysts on the requirements team. Any such change may trigger correspond-
ing changes to the business model. 

Medical Staff

Physician Nurse

 FIGURE 11.2    
Generalization 
of medical staff. 
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  Requirements fall into two categories, functional and nonfunctional. A  functional 
requirement  specifi es an action that the target product must be able to perform. Func-
tional requirements are often expressed in terms of inputs and outputs: Given a spe-
cifi c input, the functional requirement stipulates what the output must be. Conversely, a 
 nonfunctional requirement  (or  quality requirement ) specifi es properties of the tar-
get product itself, such as  platform constraints  (“The software product shall run under 
Linux”),  response times  (“On average, queries of Type 3B shall be answered within 2.5 
seconds”), or  reliability  (“The software product shall run 99.5 percent of the time”). 
  Functional requirements are handled while the requirements and analysis workfl ows 
are being performed, whereas some nonfunctional requirements may have to wait until the 
design workfl ow. The reason is that, to be able to handle certain nonfunctional requirements, 
detailed knowledge about the target software product may be needed, and this knowledge 
is usually not available until the requirements and analysis workfl ows have been completed 
(see Problems 11.1 and 11.2). However, wherever possible, nonfunctional requirements 
should also be handled during the requirements and analysis workfl ows. 
  The requirements workfl ow is now illustrated by a running case study. 

  Initial Understanding of the Domain: 
The MSG Foundation Case Study 
  When Martha Stockton Greengage died at the age of 87, she left her entire $2.3 billion 
fortune to charity. Specifi cally, her will set up the Martha Stockton Greengage (MSG) 
Foundation to assist young couples in purchasing their own homes by providing low-
cost loans. 
  To reduce operating expenses, the trustees of the MSG Foundation are investigat-
ing computerization. Because none of the trustees has any experience with comput-
ers, they decide to commission a small software development organization to imple-
ment a pilot project, namely, a software product that will perform the calculations 
needed to determine how much money is available each week to purchase homes. 
  The fi rst step, as always, is to understand the application domain, home mortgages 
in this instance. Not many people can afford to pay cash to buy a home. Instead, they 
pay a small percentage of the purchase price out of their own savings and borrow the 
rest of the money. This type of loan, where real estate is pledged as security for the 
loan, is termed a  mortgage  (see Just in Case You Wanted to Know Box 11.2). 
  For example, suppose that someone wishes to buy a house for $100,000. (Many 
houses nowadays cost much more than that, particularly in the larger cities, but the round 
number makes the arithmetic easier.) The person buying the house pays a  deposit  of 
(say) 10 percent, or $10,000, and borrows the remaining $90,000 from a fi nancial insti-
tution such as a bank or a savings and loan company in the form of a mortgage for that 
amount. Accordingly, the  principal  (or  capital ) borrowed is $90,000. 
  Suppose that the terms of the mortgage are that the loan is to be repaid in monthly 
installments over 30 years at an interest rate of 7.5 percent per annum (or 0.625 percent 

Case Study
11.611.6
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per month). Each month, the borrower pays the fi nance company $629.30. Part of 
this amount is the interest on the outstanding balance; the rest is used to reduce the 
principal. This monthly payment is therefore often referred to as  P & I  ( principal 
and interest ). For example, in the fi rst month the outstanding balance is $90,000. 
Monthly interest at 0.625 percent on $90,000 is $562.50. The remainder of the P & I 
payment of $629.30, namely $66.80, is used to reduce the principal. Consequently, at 
the end of the fi rst month, after the fi rst payment has been made, only $89,933.20 is 
owed to the fi nance company. 
  The interest for the second month is 0.625 percent of $89,933.20, or $562.08. 
The P & I payment is $629.30, as before, and the balance of the P & I payment (now 
$67.22) again is used to reduce the principal, this time to $89,865.98. 
  After 15 years (180 months), the monthly P & I payment is still $629.30, but now 
the principal has been reduced to $67,881.61. The monthly interest on $67,881.61 is 
$424.26, so the remaining $205.04 of the P & I payment is used to reduce the princi-
pal. After 30 years (360 months), the entire loan will have been repaid. 
  The fi nance company wants to be certain that it will be repaid the $90,000 it is 
owed, plus interest. It ensures this in a number of different ways. 

   • First, the borrower signs a legal document (the mortgage deed) that states that, if 
the monthly payments are not made, the fi nance company may sell the house and 
use the proceeds to pay off the outstanding balance of the loan.  

  • Second, the fi nance company requires the borrower to insure the house, so that 
if (say) the house burns down, the insurance company will cover the loss and 
the check from the insurance company will then be used to repay the loan. The 
insurance premium is usually paid once a year by the fi nance company. To obtain 
the money for the premium from the borrower, the fi nance company requires the 
borrower to pay monthly insurance installments. It deposits the installments in an 
 escrow account , essentially a savings account managed by the fi nance com-
pany. When the annual insurance premium is due, the money is taken from the 
escrow account. Real-estate taxes paid on a home are treated the same way; that 
is, monthly installments are deposited in the escrow account and the annual real-
estate tax payment is made from that account.  

  • Third, the fi nance company wants to be sure that the borrower can afford to pay 
for the mortgage. Typically, a mortgage will not be granted if the total monthly 

 Just in Case You Wanted to Know  Box 11.2 
 Have you ever wondered why the word  mortgage  is pronounced “more gidge” with the accent on the fi rst syl-
lable? The word, which was fi rst used in Middle English in the fourteenth century, comes from the Old French 
word  mort  meaning “dead” and the Germanic word  gage  meaning “a pledge,” that is, a promise to forfeit 
property if the debt is not paid. Strangely enough, a mortgage is a “dead pledge” in two different senses. If 
the loan is not repaid, the property is forfeited, or “dead” to the borrower, forever. And if the loan is repaid, 
then the promise to repay is dead. This two-way explanation was fi rst given by the English judge Sir Edward 
Coke (1552–1634). 
  And the strange pronunciation? The fi nal letter in a French word like  mort  is silent—hence the “more.” 
And the suffi x  -age  is frequently pronounced “idge” in English. Examples include the words carriage, marriage, 
disparage, and encourage. 
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payment (P & I plus insurance plus real-estate taxes) exceeds 28 percent of the 
borrower’s total income.   

  In addition to the monthly payments, the fi nance company almost always wants to 
be paid a lump sum up front in return for lending the money to the borrower. Typi-
cally, the fi nance company will want 2 percent of the principal (“2  points ”). In the 
case of the $90,000 loan, this amounts to $1800. 
  Finally, there are other costs involved in buying a house, such as legal costs and 
various taxes. Consequently, when the contract to buy the $100,000 house is signed 
(when the deal is “closed”), the  closing costs  (legal costs, taxes, and so on) plus the 
points can easily amount to $7000. 
  The initial glossary of the MSG Foundation domain is shown in  Figure 11.3 . 
  The initial business model of the MSG Foundation case study is now constructed.   

  Initial Business Model: The MSG Foundation 
Case Study 
  Members of the development organization interview various managers and staff 
members of the MSG Foundation and discover the way the Foundation operates. 
At the start of each week, the MSG Foundation estimates how much money will be 

Balance:  the amount of the loan still owing

Capital:  synonym for principal

Closing costs:  other costs involved in buying a house, such as legal costs and various

taxes

Deposit:  an initial installment toward the total cost of the house

Escrow account: a savings account managed by the finance company into which the

weekly installments toward the annual insurance premium and annual real-estate tax

payment are deposited, and from which the annual insurance premium and the

annual real-estate tax payment are paid

Interest:  a cost of borrowing money, computed as a fraction of the amount owing

Mortgage: a loan in which real estate is pledged as security for the loan

P & I:  abbreviation for “principal and interest“

Points:  a cost of borrowing money, computed as a fraction of the total amount

borrowed

Principal:  the lump sum borrowed 

Principal and interest:  an installment payment consisting of the interest plus the

fraction of the principal for that installment

 FIGURE 11.3     The initial glossary of the MSG Foundation case study. 
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available that week to fund mortgages. Couples whose income is too low to afford a 
standard mortgage to buy a home can apply at any time to the MSG Foundation for 
a mortgage. An MSG Foundation staff member fi rst determines whether the couple 
qualifi es for an MSG mortgage and then determines whether the MSG Foundation 
still has suffi cient funds on hand that week to purchase the home. If so, the mortgage 
is granted and the weekly mortgage repayment is computed according to the MSG 
Foundation’s rules. This repayment amount may vary from week to week, depending 
on the couple’s current income. 
  The corresponding part of the business model consists of three use cases:  Esti-
mate Funds Available for Week ,  Apply for an MSG Mortgage , 
and  Compute Weekly Repayment Amount . These  use cases  are shown in 
 Figures 11.4 ,  11.5 , and  11.6 , respectively, and the corresponding initial  use-case 
descriptions  appear in  Figures 11.7 ,  11.8 , and  11.9 , respectively. 
  Consider the use case  Apply for an MSG Mortgage  ( Figure 11.5 ). The actor 
on the right is   Applicants  . But is   Applicants   really an actor? Recall from Section 
11.4.3 that an actor is a user of a software product. However, applicants do not use the 
software product. They fi ll in a form. Their answers are then entered into the software 
product by an MSG staff member. In addition, they may ask questions of the staff mem-
ber or answer questions put to them by the staff member. But regardless of their interac-
tions with MSG staff members, applicants never interact with the software product.  1   
  However,

   • First, the   Applicants   initiate the use case. That is, if a couple does not apply for 
a mortgage, this use case never occurs.  

  • Second, the information that the   MSG Staff Member   gives to the software 
product is provided by the   Applicants  .  

  • Third, in a sense, the real actor is the   Applicants  ; the   MSG Staff Member   is 
merely an agent of the   Applicants  .    

 For all these reasons,   Applicants   is indeed an actor. 
  Now consider  Figure 11.6 , which depicts the use case  Compute Weekly 
Repayment Amount . The actor on the right is now   Borrowers  . Once an 

 FIGURE 11.4     The  Estimate Funds 
Available for Week  use case of the initial 
business model of the MSG Foundation case study. 

MSG Foundation
Information System

Estimate Funds
Available for

Week

MSG Staff
Member

  1  This will change if the MSG Foundation ever decides to accept applications over the Web. Specifi cally, 
 Applicants  will then become the only actor in Figure 10.6;  MSG Staff Member  will no longer 
play a role. 
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application has been granted, the couple who applied for the mortgage (the 
  Applicants  ) become   Borrowers  . But even as borrowers they do not interact 
with the software product. As before, only MSG staff members can enter informa-
tion into the software product. Nevertheless, again the use case is initiated by actor 
  Borrowers   and again the information entered by the   MSG Staff Member   is 
supplied by the   Borrowers  . Accordingly,   Borrowers   is indeed an actor in the 
use case shown in  Figure 11.6 . 
  Another aspect of the MSG Foundation business model concerns the investments 
of the MSG Foundation. At this initial stage details are not yet known regarding the 

 FIGURE 11.5     The  Apply for an MSG Mortgage  use case 
of the initial business model of the MSG Foundation case study. 
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 FIGURE 11.6     The  Compute Weekly Repayment 
Amount  use case of the initial business model of the MSG 
Foundation case study. 
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 FIGURE 11.7     The description of the  Estimate Funds 
Available for Week  use case of the initial business model of the 
MSG Foundation case study. 

         Brief Description  

 The  Estimate Funds Available for Week  use case 
enables an MSG Foundation staff member to estimate how 
much money the Foundation has available that week to fund 
mortgages.   

    Step-by-Step Description  

 Not applicable at this initial stage.      
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buying and selling of investments or how investment income becomes available for 
mortgages, but it is certainly clear that the use case  Manage an Investment  
shown in  Figure 11.10  is an essential part of the initial business model. The initial 
description appears in  Figure 11.11 ; in a future iteration, details of how investments 
are handled will be inserted. 
  For conciseness, the four use cases of  Figures 11.4 ,  11.5 ,  11.6 , and  11.10  are com-
bined into the  use-case diagram  of  Figure 11.12 . 
  Now the initial requirements have to be drawn up.   

MSG Foundation
Information System

Manage an
Investment

MSG Staff
Member

 FIGURE 11.10     The  Manage an 
Investment  use case of the initial business 
model of the MSG Foundation case study. 

 FIGURE 11.8     The description of the  Apply for an MSG Mortgage  use case of the initial 
business model of the MSG Foundation case study. 

         Brief Description  

 When a couple applies for a mortgage, the  Apply for an MSG Mortgage  use case 
enables an MSG Foundation staff member to determine whether they qualify for an 
MSG mortgage and, if so, whether funds are currently available for the mortgage.   

    Step-by-Step Description  

 Not applicable at this initial stage.      

 FIGURE 11.9      The description of the  Compute Weekly 
Repayment Amount  use case of the initial business model of the 
MSG Foundation case study. 

         Brief Description  

 The  Compute Weekly Repayment Amount  use case 
enables an MSG Foundation staff member to compute how 
much borrowers have to repay each week.   

    Step-by-Step Description  

 Not applicable at this initial stage.      
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 FIGURE 11.12     The use-case diagram of the initial business model of 
the MSG Foundation case study. 
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 FIGURE 11.11     The description of the  Manage an Investment  
use case of the initial business model of the MSG Foundation case study. 

         Brief Description  

 The  Manage an Investment  use case enables an MSG 
Foundation staff member to buy and sell investments and 
manage the investment portfolio.   

    Step-by-Step Description  

 Not applicable at this initial stage.      

  Initial Requirements: The MSG Foundation 
Case Study   
The four use cases of  Figure 11.12  comprise the business model of the MSG 
Foundation. However, it is not immediately obvious whether they are all require-
ments of the MSG Foundation software product that is to be developed. Recall that 
what the client  wants  is “a pilot project, namely, a software product that will perform 

Case Study
11.811.8
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the calculations needed to determine how much money is available each week to 
purchase homes.” As always, the task of the developers is to determine, with the aid 
of the client, what the client  needs . At this early stage, however, there is not enough 
information at the analysts’ disposal to be able to decide whether just this “pilot proj-
ect” will be what is needed. In situations like this, the best way to proceed is to draw 
up the initial requirements on the basis of what the client wants, and then iterate. 
  Accordingly, each of the use cases of  Figure 11.12  in turn is considered. Use case 
 Estimate Funds Available for Week  is obviously part of the initial 
requirements. On the other hand,  Apply for an MSG Mortgage  does not 
seem to have anything to do with the pilot project, so it is excluded from the initial 
requirements. At fi rst sight, the third use case,  Compute Weekly Repayment 
Amount , seems equally irrelevant to the pilot project. However, the pilot project 
deals with the “money that is available each week to purchase homes.” Part of that 
money surely comes from the weekly repayment of existing mortgages, so the third 
use case is indeed part of the initial requirements. The fourth use case,  Manage an 
Investment , is also part of the initial requirements for a similar reason—income 
from investments also must be used to fund new mortgages. 
  The initial requirements then consist of three use cases and their descriptions, 
namely,  Estimate Funds Available for Week  ( Figures 11.4  and  11.7 ), 
 Compute Weekly Repayment Amount  ( Figures 11.6  and  11.9 ), and  Manage 
an Investment  ( Figures 11.10  and  11.11 ). These three use cases appear in 
 Figure 11.13 . 
  The next step is to iterate the requirements workfl ow; that is, the steps are per-
formed again to obtain a better model of the client’s needs.   

 FIGURE 11.13     The use-case diagram of the initial requirements of 
the MSG Foundation case study. 

MSG Foundation
Information System

Estimate Funds
Available for

Week

Manage an
Investment

MSG Staff
Member

Compute Weekly
Repayment
Amount

Borrowers

sch76183_ch11_313-359.indd   327sch76183_ch11_313-359.indd   327 07/06/10   11:38 AM07/06/10   11:38 AM



328  Part B   The Workfl ows of the Software Life Cycle

  Continuing the Requirements Workfl ow: 
The MSG Foundation Case Study 
  Armed with domain knowledge and familiarity with the initial business model, mem-
bers of the development team now interview the MSG Foundation managers and staff 
in greater depth. They discover the following information. 
  The MSG Foundation grants a 100 percent mortgage to buy a home under the fol-
lowing conditions: 

   • The couple has been married for at least 1 year but not more than 10 years.  
  • Both husband and wife are gainfully employed. Specifi cally, proof must be provided 

that both were employed full time for at least 48 weeks of the preceding year.  
  • The price of the home must be below the published median price for homes in that 

area for the past 12 months.  
  • The installments on a fi xed-rate, 30-year, 90 percent mortgage would exceed 

28 percent of their combined gross income and/or they do not have suffi cient savings 
to pay 10 percent of the cost of the home plus $7000. (The $7000 is an estimate of 
the additional costs involved, including closing costs and points.)  

  • The Foundation has suffi cient funds to purchase the home; this is described later in 
more detail.   

  If the application is approved, then the amount that the couple should pay the 
MSG Foundation every week for the next 30 years is the total of the principal and 
interest payment, which never changes over the life of the mortgage, and the escrow 
payment, which is 1—

52
       nd of the sum of the annual real-estate tax and the annual 

homeowner’s insurance premium. If this total is greater than 28 percent of the couple’s 
gross weekly income, then the MSG Foundation will pay the difference in the form 
of a grant. Consequently, the mortgage is paid in full each week, but the couple will 
never have to pay more than 28 percent of their combined gross income. 
  The couple must provide a copy of their income tax return each year so that the 
MSG Foundation has proof of their previous year’s income. In addition, the couple 
may fi le copies of pay slips as proof of current gross income. The amount the couple 
has to pay for their mortgage may therefore vary from week to week. 
  The MSG Foundation uses the following algorithm to determine whether it has 
the funds to approve a mortgage application: 

   1. At the beginning of each week, the estimated annual income from its investments 
is computed and divided by 52.  

  2. The estimated annual MSG Foundation operating expenses are divided by 52.  
  3. The total of the estimated mortgage payments for that week is computed.  
  4. The total of the estimated grants for that week is computed.  
  5. The amount available at the beginning of the week is then (Item 1) � (Item 2) � 

(Item 3) � (Item 4).  

Case Study
11.911.9
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  6. During the week, if the cost of the home is no more than the amount available for 
mortgages, then the MSG Foundation deems that it has the funds needed to pur-
chase the home; the amount available for mortgages that week is reduced by the 
cost of that home.  

  7. At the end of each week, the MSG Foundation investment advisors invest any 
unspent funds.   

  To keep the cost of the pilot project as low as possible, the developers are told 
that only those data items needed for the weekly funds computation should be 
incorporated into the software product. The rest can be added later if the MSG 
Foundation decides to computerize all aspects of its operation. Therefore, only 
three types of data are needed, namely, investment data, operating expenses data, 
and mortgage data. 
  With regard to investments, the following data are required:

   Item number.  
  Item name.  
  Estimated annual return. (This fi gure is updated whenever new information 
becomes available. On average, this occurs about four times a year.)  
  Date estimated annual return was last updated.    

  With regard to operating expenses, the following data are required:

   Estimated annual operating expenses. (This fi gure is currently determined four 
times a year.)  
  Date estimated annual operating expenses were last updated.    

  For each mortgage, the following data are required:

   Account number.  
  Last name of mortgagees.  
  Original purchase price of home.  
  Date mortgage was issued.  
  Weekly principal and interest payment.  
  Current combined gross weekly income.  
  Date combined gross weekly income was last updated.  
  Annual real-estate tax.  
  Date annual real-estate tax was last updated.  
  Annual homeowner’s insurance premium.  
  Date annual homeowner’s insurance premium was last updated.    

  In the course of further discussions with MSG managers, the developers learn that 
three types of reports are needed:

   The results of the funds computation for the week.  
  A listing of all investments (to be printed on request).  
  A listing of all mortgages (to be printed on request).      
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  Revising the Requirements: The MSG 
Foundation Case Study 
  Recall that the initial requirements model (Section 11.8) includes three use cases, 
namely,  Estimate Funds Available for Week ,  Compute Weekly 
Repayment Amount , and  Manage an Investment . These use cases are 
shown in  Figure 11.13 . Now, in the light of the additional information that has been 
received, the initial requirements can be revised. 
  The formula given in Section 11.9 for determining how much money is available 
at the beginning of a week is as follows: 

   1. The estimated annual income from investments is computed and divided by 52.  
  2. The estimated annual MSG Foundation operating expenses are divided by 52.  
  3. The total of the estimated mortgage payments for that week is computed.  
  4. The total of the estimated grants for that week is computed.  
  5. The amount available is then (Item 1) � (Item 2) � (Item 3) � (Item 4).   

 Consider each of these items in turn. 

   1.  Estimated annual income from investments . For each investment in turn, sum the 
estimated annual return on each investment, and divide the result by 52. To do this, 
an additional use case is needed, namely,  Estimate Investment Income 
for Week . (Use case  Manage an Investment  is still needed for adding, 
deleting, and modifying investments.) This new use case is depicted in  Figure 11.14  
and described in  Figure 11.15 . In  Figure 11.14 , the dashed line with the open 
arrowhead labeled   «include »  denotes that use case  Estimate Investment 
Income for Week  is part of use case  Estimate Funds Available 
for Week . The resulting fi rst iteration of the revised use-case diagram is shown 
in  Figure 11.16  with the new use case shaded.  

  2.  Estimated annual operating expenses . Up to now, the estimated annual operating 
expenses have not been considered. To incorporate these expenses, two additional 

Case Study
11.1011.10

 FIGURE 11.14     The  Estimate Investment Income for Week  use case of 
the revised requirements of the MSG Foundation case study. 
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use cases are needed. Use case  Update Estimated Annual Operating 
Expenses  models adjustments to the value of the estimated annual operating 
expenses, and use case  Estimate Operating Expenses for Week  
provides the estimate of the operating expenses that is required. The use cases 
are shown in  Figures 11.17  through  11.20 . In  Figure 11.19 , use case  Estimate 
Operating Expenses for Week  is similarly part of use case  Estimate 
Funds Available for Week , as indicated by the dashed line with the open 
arrowhead labeled   «include » . The resulting second iteration of the revised 
use-case diagram is shown in  Figure 11.21 . The two new use cases,  Estimate 
Operating Expenses for Week  and  Update Estimated Annual 
Operating Expenses , are shaded.  

  3.  Total estimated mortgage payments for the week . (See item 4.)  

 FIGURE 11.15     The description of the  Estimate Investment Income for Week  use 
case of the revised requirements of the MSG Foundation case study. 

         Brief Description  

 The  Estimate Investment Income for Week  use case enables the  Estimate 
Funds Available for Week  use case to estimate how much investment income is 
available for this week.   

    Step-by-Step Description  

 1. For each investment, extract the estimated annual return on that investment. 
 2. Sum the values extracted in Step 1 and divide the result by 52.      

 FIGURE 11.16     The fi rst iteration of the use-case diagram of the revised requirements of the 
MSG Foundation case study. The new use case is shaded. 
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  4.  Total estimated grant payments for the week . The weekly repayment amount from 
use case  Compute Weekly Repayment Amount  is the total estimated 
mortgage payment less the estimated total grant payment. In other words, use case 
 Compute Weekly Repayment Amount  models the computation of both 
the estimated mortgage payment and the estimated grant payment for each mort-
gage separately. Summing these separate quantities will yield the total estimated 
mortgage payments for the week as well as the total estimated grant payments for 
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 FIGURE 11.17     The  Update Estimated 
Annual Operating Expenses  use case of 
the revised requirements of the MSG Foundation 
case study. 
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 FIGURE 11.19     The  Estimate Operating Expenses for Week  use case of 
the revised requirements of the MSG Foundation case study. 

 FIGURE 11.18     The description of the  Update Estimated 
Annual Operating Expenses  use case of the revised 
requirements of the MSG Foundation case study. 

         Brief Description  

 The  Update Estimated Annual Operating Expenses  
use case enables an MSG Foundation staff member to update 
the estimated annual operating expenses.   

    Step-by-Step Description  

 1. Update the estimated annual operating expenses.      

sch76183_ch11_313-359.indd   332sch76183_ch11_313-359.indd   332 07/06/10   11:38 AM07/06/10   11:38 AM



Chapter 11  Requirements  333

the week. However,  Compute Weekly Repayment Amount  also models the 
borrowers changing the amount of their weekly income. Accordingly,  Compute 
Weekly Repayment Amount  needs to be split into two separate use cases, 
namely,  Estimate Payments and Grants for Week  and  Update 
Borrowers’ Weekly Income . The two new use cases are described in 

 FIGURE 11.20     The description of the  Estimate Operating 
Expenses for Week  use case of the revised requirements of the 
MSG Foundation case study. 

         Brief Description  

 The  Estimate Operating Expenses for Week  use case 
enables the  Estimate Funds Available for Week  use 
case to estimate the operating expenses for the week.   

    Step-by-Step Description  

 1. Divide the estimated annual operating expenses by 52.      

 FIGURE 11.21     The second iteration of the use-case diagram of the revised requirements of the 
MSG Foundation case study. The two new use cases,  Estimate Operating Expenses for 
Week  and  Update Estimated Annual Operating Expenses , are shaded. 
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 Figures 11.22  through  11.25 . Once more, one of the new use cases, namely, 
 Estimate Payments and Grants for Week , is part of use case  Esti-
mate Funds Available for Week , as indicated by the dashed line with the 
open arrowhead labeled   «include »  in  Figure 11.22 . The resulting third iteration of 
the revised use-case diagram is shown in  Figure 11.26  with the two use cases derived 
from use case  Compute Weekly Repayment Amount  shaded.   

  Consider  Figure 11.26  again. Use case  Estimate Funds Available for 
Week  models the computation that uses the data obtained from three other use cases, 
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 FIGURE 11.22     The  Estimate Payments  and  Grants for Week  use case of 
the revised requirements of the MSG Foundation case study. 

 FIGURE 11.23     The description of the  Estimate Payments and Grants 
for Week  use case of the revised requirements of the MSG Foundation case study. 

         Brief Description  

 The  Estimate Payments and Grants for Week  use case enables the 
 Estimate Funds Available for Week  use case to estimate the total 
estimated mortgage payments paid by borrowers to the MSG Foundation 
for this week and the total estimated grants paid by the MSG Foundation 
for this week.   

    Step-by-Step Description  

 1. For each mortgage: 
  1.1  The amount to be paid this week is the total of the principal and 

interest payment and 
 
      1—
52

nd of the sum of the annual real-estate tax 
and the annual homeowner’s insurance premium. 

  1.2  Compute 28 percent of the couple’s current gross weekly income. 
  1.3  If the result of Step 1.1 is greater than the result of Step 1.2, then 

the mortgage payment for this week is the result of Step 1.2, and 
the amount of the grant for this week is the difference between the 
result of Step 1.1 and the result of Step 1.2. 

  1.4  Otherwise, the mortgage payment for this week is the result of 
Step 1.1 and there is no grant this week. 

 2.  Summing the mortgage payments of Steps 1.3 and 1.4 yields the 
estimated mortgage payments for the week. 

 3.  Summing the grant payments of Step 1.3 yields the estimated grant 
payments for the week.      
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namely,  Estimate Investment Income for Week ,  Estimate Oper-
ating Expenses for Week , and  Estimate Payments and Grants 
for Week . This is shown in  Figure 11.27 , which shows the second iteration of the 
use case  Estimate Funds Available for Week ; this fi gure has been ex-
tracted from the use-case diagram of  Figure 11.26 .  Figure 11.28  is the corresponding 
description of the use case. 
  Why is it so important to indicate the   «include»    relationship  in UML diagrams? 
For example,  Figure 11.29  shows two versions of  Figure 11.22 , the correct version 
on top and an incorrect version below. The top diagram correctly models use case 
 Estimate Funds Available for Week  as part of use case  Estimate 
Payments and Grants for Week . The bottom diagram of  Figure 11.29  
models use cases  Estimate Funds Available for Week  and  Estimate 
Payments and Grants for Week  as two independent use cases. However, as 
stated in Section 11.4.3, a use case models an interaction between the software product 
itself and users of the software product (actors). This is fi ne for use case  Estimate 
Funds Available for Week . However, use case  Estimate Payments 
and Grants for Week  does not interact with an actor and, therefore, cannot 
be a use case in its own right. Instead, it is a portion of use case  Estimate Funds 
Available for Week , as refl ected in the top diagram of  Figure 11.29 . 

 FIGURE 11.24     The  Update Borrowers’ Weekly 
Income  use case of the revised requirements of the MSG 
Foundation case study. 
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 FIGURE 11.25     The description of the  Update Borrowers’ 
Weekly Income  use case of the revised requirements of the MSG 
Foundation case study. 

         Brief Description  

 The  Update Borrowers’ Weekly Income  use case 
enables an MSG Foundation staff member to update the 
weekly income of a couple who have borrowed money 
from the Foundation.   

    Step-by-Step Description  

 1. Update the borrower’s weekly income.      
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 FIGURE 11.26     The third iteration of the use-case diagram of the revised requirements of 
the MSG Foundation case study. The two use cases derived from use case  Compute Weekly 
Repayment Amount  are shaded. 
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 FIGURE 11.27     The second iteration of the  Estimate Funds Available for 
Week  use case of the revised requirements of the MSG Foundation case study. 
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 FIGURE 11.28     The second iteration of the description of the  Estimate Funds Available 
for Week  use case of the revised requirements of the MSG Foundation case study. 

         Brief Description  

 The  Estimate Funds Available for Week  use case enables an MSG Foundation 
staff member to estimate how much money the Foundation has available that week to 
fund mortgages.   

    Step-by-Step Description  

 1.  Determine the estimated income from investments for the week utilizing use case 
 Estimate Investment Income for Week . 

 2.  Determine the operating expenses for the week utilizing use case  Estimate 
Operating Expenses for Week . 

 3.  Determine the total estimated mortgage payments for the week utilizing use case 
 Estimate Payments and Grants for Week . 

 4.  Determine the total estimated grants for the week utilizing use case  Estimate 
Payments and Grants for Week . 

 5.  Add the results of Steps 1 and 3 and subtract the results of Steps 2 and 4. This is the 
total amount available for mortgages for the current week.      
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 FIGURE 11.29     Correct (top) and incorrect (bottom) versions of Figure 11.22. 
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    The Test Workfl ow: The MSG Foundation 
Case Study 
  A common side effect of the iterative-and-incremental life-cycle model is that details 
that have been correctly postponed somehow get forgotten. That is one of the many 
reasons why continual testing is essential. In this instance, the details of the use case 
 Manage an Investment  have been overlooked. This is remedied in  Figures 
11.30  and  11.31 . 
  Further review brings to light the omission of use case  Manage a Mortgage  
to model the addition of a new mortgage, the modifi cation of an existing mort-
gage, or the removal of an existing mortgage, analogous to use case  Manage an 
Investment .  Figures 11.32  and  11.33  correct this omission, and the fourth itera-
tion of the revised use-case diagram is shown in  Figure 11.34  with the new use case, 
 Manage a Mortgage , shaded. 

Case Study
11.1111.11
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 FIGURE 11.30     The  Manage an 
Investment  use case of the revised 
requirements of the MSG Foundation case study. 

 FIGURE 11.31      The description of the  Manage an 
Investment  use case of the revised requirements of the MSG 
Foundation case study. 

 Brief Description

The Manage an Investment use case enables an MSG 
Foundation staff member to add and delete investments 
and manage the investment portfolio.

Step-by-Step Description

1. Add, modify, or delete an investment.
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Chapter 11  Requirements  339

  Furthermore, the use case for printing the various reports has also been over-
looked. Accordingly, use case  Produce a Report , which models the printing of 
the three reports, is added. The details of the use case appear in  Figures 11.35  and 
 11.36 . The fi fth iteration of the revised use-case diagram is shown in  Figure 11.37  
with the new use case,  Produce a Report , shaded. 
  The revised requirements are checked yet again, and two new problems are uncov-
ered. First, a use case has been partially duplicated. Second, two of the use cases need 
to be reorganized. 
  The fi rst change to be made is to remove the partially duplicated use case. Con-
sider the use case  Manage a Mortgage  ( Figures 11.32  and  11.33 ). As stated in 
 Figure 11.33 , one of the actions of this use case is to modify a mortgage. Now con-
sider the use case  Update Borrowers’ Weekly Income  ( Figures 11.24  and 
 11.25 ). The only purpose of this use case ( Figure 11.25 ) is to update the borrowers’ 
weekly income. But the borrowers’ weekly income is an attribute of the mortgage. 
That is, use case  Manage a Mortgage  already includes the use case  Update 
Borrowers’ Weekly Income . Accordingly, use case  Update Borrowers’ 
Weekly Income  is superfl uous and should be deleted. The result is shown in 
 Figure 11.38 , the sixth iteration of the revised use-case diagram. The modifi ed use 
case,  Manage a Mortgage , is shaded. 

MSG Foundation
Information System

Manage a
Mortgage

MSG Staff
Member

 FIGURE 11.32     The  Manage a Mortgage  
use case of the revised requirements of the MSG 
Foundation case study. 

 FIGURE 11.33     The description of the  Manage a Mortgage  use case 
of the revised requirements of the MSG Foundation case study. 

         Brief Description  

 The  Manage a Mortgage  use case enables an MSG Foundation 
staff member to add and delete mortgages and manage the 
mortgage portfolio.   

    Step-by-Step Description  

 1. Add, modify, or delete a mortgage.      
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 FIGURE 11.35     The  Produce a Report  
use case of the revised requirements of the MSG 
Foundation case study. 
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 FIGURE 11.34     The fourth iteration of the use-case diagram of the revised requirements of the 
MSG Foundation case study. The new use case,  Manage a Mortgage , is shaded. 
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  This is the fi rst iteration that has resulted in a decrement rather than an increment. 
That is, this is the fi rst time in this book that the result of an iteration has been to 
delete an artifact (the  Update Borrowers’ Weekly Income  use case). In 
fact, deletion occurs all too often, namely, whenever a mistake is made. Sometimes 
an incorrect artifact can be fi xed, but frequently an artifact has to be deleted. The key 
point is that, when a fault is discovered, there is no need to abandon everything done 
to date and start the whole requirements process from scratch. Instead, an attempt is 

 FIGURE 11.36     The description of the  Produce a Report  use case of the 
revised requirements of the MSG Foundation case study. 

         Brief Description  

 The  Produce a Report  use case enables an MSG Foundation 
staff member to print the results of the weekly computation of funds 
available for new mortgages or to print a listing of all investments or all 
mortgages.   

    Step-by-Step Description  

 1. The following reports must be generated: 
 1.1  Investments report—printed on demand:
   The information system prints a list of all investments. For each 

investment, the following attributes are printed: 
    Item number 
    Item name 
    Estimated annual return
   Date estimated annual return was last updated 
 1.2  Mortgages report—printed on demand:
   The information system prints a list of all mortgages. For each 

mortgage, the following attributes are printed: 
    Account number 
    Name of mortgagee 
    Original price of home 
    Date mortgage was issued 
    Principal and interest payment 
    Current combined gross weekly income 
     Date current combined gross weekly income was last 

updated 
    Annual real-estate tax 
    Date annual real-estate tax was last updated 
    Annual homeowner’s insurance premium 
     Date annual homeowner’s insurance premium was last 

updated 
 1.3  Results of the weekly computation—printed each week:
   The information system prints the total amount available for new 

mortgages during the current week      
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342  Part B   The Workfl ows of the Software Life Cycle

made to fi x the current iteration, as was done in this case study. If this strategy fails 
(because the mistake really is serious), we backtrack to the previous iteration and try 
to fi nd a better way to go forward from there. 
  The second change that must be made to improve the requirements is to reorga-
nize two use cases. Consider the descriptions of the use cases  Estimate Funds 
Available for Week  ( Figure 11.28 ) and  Produce a Report  ( Figure 11.36 ). 
Suppose that an MSG staff member wants to determine the funds available for the 
current week. Use case  Estimate Funds Available for Week  performs 
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 FIGURE 11.37     The fi fth iteration of the use-case diagram of the revised requirements of the 
MSG Foundation case study. The new use case,  Produce a Report , is shaded. 
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the calculation, and Step 1.3 of use case  Produce a Report  prints out the re-
sult of the computation. This is ridiculous. After all, there is no point in estimating 
the funds available unless the results are printed out. 
  In other words, Step 1.3 of  Produce a Report  needs to be moved from the 
description of that use case to the end of the description of use case  Estimate 
Funds Available for Week . This does not change the use cases themselves 
( Figures 11.27  and  11.35 ) or the current use-case diagram ( Figure 11.38 ), but the 
descriptions of the two use cases ( Figures 11.28  and  11.36 ) have to be modifi ed. The 
resulting modifi ed descriptions are shown in  Figures 11.39  and  11.40 . 
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 FIGURE 11.38     The sixth iteration of the use-case diagram of the revised requirements of the 
MSG Foundation case study. The modifi ed use case,  Manage a Mortgage , is shaded. 
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 FIGURE 11.39     The second iteration of the description of the  Produce a Report  use case of 
the revised requirements of the MSG Foundation case study. 

         Brief Description  

 The  Produce a Report  use case enables an MSG Foundation staff member to print 
a listing of all investments or all mortgages.   

    Step-by-Step Description  

 1. The following reports must be generated: 
 1.1 Investments report—printed on demand: 
    The information system prints a list of all investments. For each investment, the 

following attributes are printed: 
    Item number 
    Item name 
    Estimated annual return 
   Date estimated annual return was last updated 
 1.2 Mortgages report—printed on demand: 
    The information system prints a list of all mortgages. For each mortgage, the 

following attributes are printed: 
    Account number 
    Name of mortgagee 
    Original price of home 
    Date mortgage was issued 
    Principal and interest payment 
    Current combined gross weekly income 
     Date current combined gross weekly income was last updated 

Annual real-estate tax 
    Date annual real-estate tax was last updated 
    Annual homeowner’s insurance premium 
    Date annual homeowner’s insurance premium was last updated      

 FIGURE 11.40     The third iteration of the description of the  Estimate Funds Available 
for Week  use case of the revised requirements of the MSG Foundation case study. 

         Brief Description  

 The  Estimate Funds Available for Week  use case enables an MSG Foundation 
staff member to estimate how much money the Foundation has available that week to 
fund mortgages.   

    Step-by-Step Description  

 1.  Determine the estimated income from investments for the week utilizing use case 
 Estimate Investment Income for Week . 

 2.  Determine the operating expenses for the week utilizing use case
 Estimate Operating Expenses for Week . 

 3.  Determine the total estimated mortgage payments for the week utilizing use case 
 Estimate Payments and Grants for Week . 

 4.  Determine the total estimated grants for the week utilizing use case  Estimate 
Payments and Grants for Week . 

 5.  Add the results of Steps 1 and 3 and subtract the results of Steps 2 and 4. This is the 
total amount available for mortgages for the current week. 

 6. Print the total amount available for new mortgages during the current week.      

344
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  Now the use-case diagram can be improved still further. Consider the top four 
use cases in  Figure 11.38 . The three use cases on the right, namely,  Estimate 
Investment Income for Week ,  Estimate Operating Expenses 
for Week , and  Estimate Payments and Grants for Week , are part 
of the use case  Estimate Funds Available for Week . The usual reason 
for an   «include »  relationship is when one use case is part of two or more other use 
cases. For example,  Figure 11.41  shows that use case  Print Tax Form  is part 
of use cases  Prepare Form 1040 ,  Prepare Form 1040A , and  Prepare 
Form 1040EZ , the three primary U.S. tax forms for individuals. In this situation, it 
makes sense to retain  Print Tax Form  as an independent use case. Incorporat-
ing the operations of  Print Tax Form  into the other three use cases would mean 
triplicating that use case. 
  With regard to  Figure 11.38 , however, all the included use cases are part of only 
one use case, namely,  Estimate Funds Available for Week —there is no 
duplication. Accordingly, it makes sense to incorporate those three   «include »  use 
cases into  Estimate Funds Available for Week , as shown in  Figure 11.42 , 
the seventh iteration of the use-case diagram. The resulting fourth iteration of the 
description of the  Estimate Funds Available for Week  use case is shown 
in  Figure 11.43 . 
  Now the requirements appear to be correct. 

   • First, they correspond to what the client has requested.  
  • Second, there do not seem to be any faults.  
  • Third, at this stage it would seem that what the client wants coincides with what the 

client needs.   
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 FIGURE 11.41     Use case  Print Tax Form  is part of three other use cases. 
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  Accordingly, the requirements workfl ow appears to be complete, for now. Nev-
ertheless, it is certainly possible that, during subsequent workfl ows, additional re-
quirements may surface. Also, it may be necessary to split one or more of the fi ve 
use cases into additional use cases. For example, in a future iteration the  Produce 
a Report  use case described in  Figure 11.36  may be split into two separate use 
cases, one for the investments report, the other for the mortgages report. But for now, 
everything seems to be satisfactory. 
  This concludes the description of the requirements workfl ow for the MSG Foun-
dation case study.     
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 FIGURE 11.42     The seventh iteration of the use-case diagram of 
the revised requirements of the MSG Foundation case study. The 
modifi ed use case,  Estimate Funds Available for Week , 
is shaded. 
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  11.12 The Classical Requirements Phase 
  On the one hand, there is no such thing as “object-oriented requirements,” nor should there 
be such a thing. The aim of the requirements workfl ow is to determine the client’s needs, 
that is, what the functionality of the target system should be. The requirements workfl ow 
has nothing to do with how the product is to be built. From this viewpoint, it makes no 
sense to refer to the classical paradigm or the object-oriented paradigm within the context 

 FIGURE 11.43     The fourth iteration of the description of the use case 
 Estimate Funds Available for Week  of the revised requirements 
of the MSG Foundation case study. 

         Brief Description  

 The  Estimate Funds Available for Week  use case enables 
an MSG Foundation staff member to estimate how much money the 
Foundation has available that week to fund mortgages.   

    Step-by-Step Description  

 1.  For each investment, extract the estimated annual return on that 
investment. Summing the separate returns and dividing the result 
by 52 yields the estimated investment income for the week. 

 2.  Determine the estimated MSG Foundation operating expenses 
for the week by extracting the estimated annual MSG Foundation 
operating expenses and dividing by 52. 

 3.  For each mortgage: 
  3.1  The amount to be paid this week is the total of the principal 

and interest payment and  1—
52

      nd of the sum of the annual 
real-estate tax and the annual homeowner’s insurance 
premium. 

  3.2  Compute 28 percent of the couple’s current gross weekly 
income. 

  3.3  If the result of Step 3.1 is greater than the result of Step 3.2, 
then the mortgage payment for this week is the result of 
Step 3.2, and the amount of the grant for this week is the 
difference between the result of Step 3.1 and the result of 
Step 3.2. 

  3.4  Otherwise, the mortgage payment for this week is the result 
of Step 3.1, and there is no grant this week. 

 4.  Summing the mortgage payments of Steps 3.3 and 3.4 yields the 
estimated total mortgage payments for the week. 

 5.  Summing the grant payments of Step 3.3 yields the estimated 
total grant payments for the week. 

 6.  Add the results of Steps 1 and 4 and subtract the results of Steps 
2 and 5. This is the total amount available for mortgages for the 
current week. 

 7.  Print the total amount available for new mortgages during the 
current week.      
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of the requirements workfl ow, any more than one can refer to a classical or object-oriented 
user manual. After all, the user manual describes the steps to be followed by the user when 
running the software product and has nothing to do with how the product was built. In the 
same way, the requirements workfl ow results in a statement of what the product is to do; the 
way that the product will be built does not enter into it. 
  On the other hand, the entire approach of Sections 11.2 through 11.11 is object oriented 
in nature in that it is model oriented. The use cases, together with their descriptions, form 
the basis of the requirements workfl ow. As is shown throughout Part B of this book, model-
ing is the essence of the object-oriented paradigm. 
  However, modeling in general (and UML modeling in particular) is not part of the clas-
sical paradigm. The classical requirements phase starts with requirements elicitation fol-
lowed by requirements analysis, similarly to the object-oriented paradigm (Sections 11.3 
through 11.4.2). But from that point on, the two paradigms diverge. Instead of building 
models, the next step in the classical requirements phase is to draw up a list of require-
ments. The usual step after that is to build a rapid prototype that implements the key func-
tionality underlying those requirements; this is described in Section 11.13. The client and 
future users of the target software product then experiment with the rapid prototype until 
the requirements team members are satisfi ed that the rapid prototype exhibits the key func-
tionality of the software product the client needs. 
  Building a rapid prototype for the product as a whole is not part of the object-oriented 
paradigm, for the reasons given in Section 13.18. However, it is strongly advisable to build 
a rapid prototype of the user interface, as will be described.   

  11.13 Rapid Prototyping 
  A  rapid prototype  is hastily built software that exhibits the key functionality of the 
target product. For example, a product that helps to manage an apartment complex must 
incorporate an input screen that allows the user to enter details of a new tenant and print an 
occupancy report for each month. These aspects are incorporated into the rapid prototype. 
However, error-checking capabilities, fi le-updating routines, and complex tax computa-
tions probably are not included. The key point is that a rapid prototype refl ects the func-
tionality the client sees, such as input screens and reports, but omits “hidden” aspects such 
as fi le updating. (For a different way of looking at rapid prototypes, see Just in Case You 
Wanted to Know Box 11.3.) 
  The client and intended users of the product now experiment with the rapid prototype, 
while members of the development team watch and take notes. Based on their hands-on 
experience, users tell the developers how the rapid prototype satisfi es their needs and, more 
important, identify the areas that need improvement. The developers change the rapid pro-
totype until both sides are convinced that the needs of the client are accurately encapsulated 
in the rapid prototype. The rapid prototype is then used as the basis for drawing up the 
specifi cations. 
  An important aspect of the rapid prototyping model is embodied in the word  rapid . The 
whole idea is to build the rapid prototype as quickly as possible. After all, the purpose of 
the rapid prototype is to provide the client an understanding of the product, and the sooner 
the better. It does not matter if the rapid prototype hardly works, if it crashes every few 
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minutes, or if the screen layouts are less than perfect. The purpose of the rapid prototype is 
to enable the client and the developers to agree as quickly as possible on what the product 
is to do. Therefore, any imperfections in the rapid prototype may be ignored, provided that 
they do not seriously impair the functionality of the rapid prototype and thereby give a 
misleading impression of how the product behaves. 
  A second major aspect of the rapid prototyping model is that the rapid prototype must 
be built for change. If the fi rst version of the rapid prototype is not what the client needs, 
then the prototype must be transformed rapidly into a second version that, it is hoped, 
better satisfi es the client’s requirements. To achieve rapid development throughout the 
rapid prototyping process, fourth-generation languages (4GL) and interpreted languages, 
such as Smalltalk, Prolog, and Lisp, have been used for rapid prototyping purposes. Pop-
ular rapid prototyping languages of today include HTML and Perl. Concerns have been 
expressed about the maintainability of certain interpreted languages, but from the view-
point of rapid prototyping this is irrelevant. All that counts is this: Can a given language 
be used to produce a rapid prototype? And, can the rapid prototype be changed quickly? 
If the answer to both questions is Yes, then that language is probably a good candidate for 
rapid prototyping. 
  Rapid prototyping is particularly effective when developing the user interface to a prod-
uct. This use is discussed in Section 11.14.   

  11.14 Human Factors 
  It is important that both the client and the future users of the product interact with the rapid 
prototype of the user interface. Encouraging users to experiment with the human–computer 
interface (HCI) greatly reduces the risk that the fi nished product will have to be altered. 

 Just in Case You Wanted to Know  Box 11.3 
 The idea of constructing models to show key aspects of a product goes back a long time. 
For example, a 1618 painting by Domenico Cresti (known as “Il Passignano” because he 
was born in the town of Passignano in the Chianti region of Italy) shows Michelangelo 
presenting a wooden model of his design for St. Peter’s (in Rome) to Pope Paul IV. Such 
architectural models could be huge; a model of an earlier design proposal for St. Peter’s by 
the architect Bramante is more than 20 feet long on each side. 

 Architectural models were used for a number of different purposes. First, as depicted in 
the Cresti painting (now hanging in Casa Buonarroti in Florence), models were used to try 
to interest a client in funding a project. This is analogous to the use of a rapid prototype 
to determine the client’s real needs. Second, in an age before architectural drawings, the 
model showed the builder the structure of the building and indicated to the stonemasons 
how the building was to be decorated. This is similar to the way we now build a rapid pro-
totype of the user interface, as described in Section 11.13. 

 It is not a good idea, however, to draw too close a parallel between such architec-
tural models and software rapid prototypes. Rapid prototypes are used during the classical 
requirements phase to elicit the client’s needs. Unlike architectural models, they are not 
used to represent either the architectural design or the detailed design; the design is pro-
duced two phases later, that is, during the classical design phase. 
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In particular, this experimentation helps achieve user-friendliness, a vital objective for all 
software products. 
  The term  user-friendliness  refers to the ease with which human beings can commu-
nicate with the software product. If users have diffi culty in learning how to use a product 
or fi nd the screens confusing or irritating, then they will either not use the product or use 
it incorrectly. To try to eliminate this problem, menu-driven products were introduced. 
Instead of having to enter a command such as  Perform computation  or  Print service rate 
report , the user merely has to select from a set of possible responses, such as 

   1. Perform computation  
  2. Print service rate report  
  3. Select view to be graphed   

  In this example, the user enters  1, 2 , or  3  to invoke the corresponding command. 
  Nowadays, instead of simply displaying lines of text, HCIs employ graphics. Windows, 
icons, and pull-down menus are components of a  graphical user interface  (GUI) (see Just 
in Case You Wanted to Know Box 11.4). Because of the plethora of windowing systems, stan-
dards such as X Window have evolved. Also,  point-and-click  selection is now the norm. 
The user moves a mouse (that is, a handheld pointing device) to move the screen cursor to the 
desired response (“point”), and pushes a mouse button (“click”) to select that response. 
  However, even when the target product employs modern technology, the designers must 
never forget that the product is to be used by human beings. In other words, the HCI design-
ers must consider  human factors    such as size of letters, capitalization, color, line length, 
and the number of lines on the screen. 
  Another example of human factors applies to the preceding menu. If the user chooses 
option  3. Select view to be graphed,  then another menu appears with another list of 
choices. Unless a menu-driven system is thoughtfully designed, there is the danger that 
users will encounter a lengthy sequence of menus to achieve even a relatively simple 
operation. This delay can anger users, sometimes causing them to make inappropriate menu 
selections. Also, the HCI must allow the user to change a previous selection without having 
to return to the top-level menu and start again. This problem can exist even when a GUI is 
used because many graphical user interfaces are essentially a series of menus displayed in 
an attractive screen format. 
  Sometimes it is impossible for a single user interface to cater to all users. For example, 
if a product is to be used by both computer professionals and high-school dropouts with 
no previous computer experience, then it is preferable that two different sets of HCIs be 
designed, each carefully tailored to the skill level and psychological profi le of its intended 
users. This technique can be extended by incorporating sets of user interfaces requiring var-
ied levels of sophistication. If the product deduces that the user would be more comfortable 
with a less sophisticated user interface, perhaps because the user is making frequent mis-
takes or is continually invoking help facilities, then the user is automatically shown screens 
that are more appropriate to his or her current skill level. But, as the user becomes more 
familiar with the product, streamlined screens that provide less information are displayed, 
leading to speedier completion. This automated approach reduces user frustration and leads 
to increased productivity [Schach and Wood, 1986]. 
  Many benefi ts can accrue when human factors are taken into account during the design 
of an HCI, including reduced learning times and lower error rates. Although help facilities 
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must always be provided, they are utilized less with a carefully designed HCI. This, 
too, increases productivity. Uniformity of HCI appearance across a product or group of 
products can result in users intuitively knowing how to use a screen that they have never 
seen before because it is similar to other screens with which they are familiar. Designers of 
Macintosh software have taken this principle into account; this is one of the many reasons 
that software for the Macintosh is generally so user-friendly. 
  It has been suggested that simple common sense is all that is needed to design a user-
friendly HCI. Whether or not this charge is true, it is essential that a rapid prototype of 
the HCI of every product be constructed. Intended users of the product can experiment 
with the rapid prototype of the HCI and inform the designers whether the target product 
indeed is user-friendly, that is, whether the designers have taken the necessary human 
factors into account. 
  In Section 11.15, reuse is discussed within the context of rapid prototyping.   

  11.15 Reusing the Rapid Prototype 
  After the rapid prototype has been built, it is discarded early in the software process. An 
alternate, but generally unwise, way of proceeding is to develop and refi ne the rapid pro-
totype until it becomes the product. In theory, this approach should lead to fast software 
development; after all, instead of throwing away the code constituting the rapid prototype, 

 Just in Case You Wanted to Know  Box 11.4 

 The GUI was invented at Xerox’s Palo Alto Research Centre (PARC) in the 1970s. At that 
time it was called the WIMP interface, where WIMP stands for either Window, Icon, Mouse, 
and Pull-down menu, or Window, Icon, Menu, and Pointing device, depending on whom 
you believe. The fi rst commercial computer with a WIMP interface was the Xerox 8010 
(“Star”), launched in 1981. 

 The GUI achieved popularity with the release of the Apple Lisa (1983) and the Apple 
Macintosh (1984). The Macintosh design team had been invited by PARC researchers to 
see their WIMP interface, and several PARC employees subsequently left PARC and went to 
work at Apple on the GUIs for the Lisa and the Macintosh. The Apple software engineers 
considerably extended and improved the WIMP interface. 

 Microsoft soon implemented a GUI of its own. But in 1988, Apple sued Microsoft for 
copyright infringement of the Lisa and Macintosh GUIs, claiming that the copyright of the 
“look and feel” of its GUIs had been violated. The court case lasted 4 years before almost 
all of Apple’s claims were denied, primarily due to a license Apple had negotiated with 
Microsoft for Windows 1.0. Ironically, midway through the case, Xerox fi led its own lawsuit 
against Apple, claiming Apple had infringed the copyrights Xerox held on its GUIs. The 
Xerox case was dismissed because the three-year statute of limitations had passed. Related 
legal disputes between Apple and Microsoft continued until 1997. At that time, all remain-
ing copyright infringement issues were settled by negotiation. Microsoft invested $150 
million in nonvoting Apple stock, and the two companies signed a patent cross-licensing 
agreement. 

 The GUI became the de facto user interface in 1995 with the introduction of Microsoft 
Windows 95. 
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along with the knowledge built into it, the rapid prototype is converted into the fi nal prod-
uct. The fi rst problem with this form of the rapid prototyping model follows from the fact 
that, in the course of refi ning the rapid prototype, changes have to be made to a working 
product. This is an expensive way to proceed, as shown in Figure 1.6. A second problem is 
that a primary objective when constructing a rapid prototype is speed of building. A rapid 
prototype is (correctly) hurriedly put together, rather than carefully specifi ed, designed, and 
implemented. In the absence of specifi cation and design documents, the resulting code is 
diffi cult and expensive to maintain. It might seem wasteful to construct a rapid prototype 
and then throw it away and design the product from scratch, but it is far cheaper in both 
the short term and the long term to do this rather than try to convert a rapid prototype into 
production quality software [Brooks, 1975]. 
  Another reason for discarding the rapid prototype is the issue of performance, particu-
larly of real-time systems. To ensure that time constraints are met, it is necessary to design 
the product carefully. In contrast, a rapid prototype is constructed to display key functional-
ity to the client; performance issues are not handled. As a result, if an attempt is made to 
refi ne a rapid prototype into a delivered product, it is unlikely that response times and other 
timing constraints will be met. 
  One way of ensuring that the rapid prototype is thrown away and the product is properly 
designed and implemented is to build the rapid prototype in a different language from that 
of the product. For example, the client may specify that the product must be implemented 
in Java. If the rapid prototype is implemented in HTML, for example, it must be discarded. 
First, the rapid prototype is implemented in HTML and refi ned until the client is satisfi ed 
that it does everything, or almost everything, the target product is to do. Next, the product is 
designed, relying on the knowledge and skills acquired in constructing the rapid prototype. 
Finally, the design is implemented in Java and the tested product handed over to the client 
in the usual way. 
  Nevertheless, there is one instance when it is permissible to refi ne a rapid prototype or, 
more specifi cally, portions of the rapid prototype. When portions of the rapid prototype 
are computer generated, those portions may be used in the fi nal product. For example, user 
interfaces are often a key aspect of a rapid prototype. When CASE tools such as screen 
generators and report generators (Section 5.7 and summarized in Section 10.8) have been 
utilized to generate the user interfaces, those portions of the rapid prototype may indeed be 
used as part of production-quality software. 
  The desire not to “waste” the rapid prototype has resulted in a modifi ed version of 
the rapid prototyping model being adopted by some organizations. Here, management 
decides  before  the rapid prototype is built that portions may be utilized in the fi nal prod-
uct, provided those portions pass the same quality assurance tests as other software com-
ponents. Therefore, after the rapid prototype is complete, those sections the developers 
wish to continue to use must pass design and code inspections. This approach goes 
beyond rapid prototyping. For example, components that are of suffi ciently high quality to 
pass design and code inspections are not usually found in a rapid prototype. Furthermore, 
design documents are not part of classic rapid prototyping. Nevertheless, this hybrid 
approach is attractive to some organizations hoping to recover some of the time and 
money invested in the rapid prototype. However, to ensure that the quality of the code is 
suffi ciently high, the rapid prototype has to be built somewhat more slowly than is cus-
tomary for a “rapid” prototype.   
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  11.16 CASE Tools for the Requirements Workfl ow 
  The many UML diagrams in this chapter refl ect the importance of having a graphical tool 
to assist with the requirements workfl ow. That is, what is needed is a drawing tool that 
enables the user to draw the relevant UML diagrams with ease. Such a tool has two major 
strengths. 

   • First, while iterating it is generally far easier to change a diagram stored in such a tool 
than to redraw the diagram by hand.  

  • Second, when a CASE tool of this kind is used, the details of the product are stored in 
the CASE tool itself. Therefore, the documentation is always available and up to date.   

  One weakness of such CASE tools is that they are not always user-friendly. A powerful 
graphical workbench or environment has so much functionality that it generally has a steep 
learning curve, and even experienced users sometimes have diffi culty remembering how to 
achieve a particular outcome. A second weakness is that it is almost impossible to program 
a computer to draw UML diagrams that are as aesthetically pleasing as diagrams drawn by 
hand by humans. One alternative is to spend a considerable amount of time “tweaking” a dia-
gram created by a tool. However, this approach is sometimes as slow as drawing the diagrams 
by hand. Worse, the constraints of many graphical CASE tools are such that, no matter how 
much time and effort is put into a diagram, it can never look as polished as a hand-drawn 
diagram. A third problem is that many CASE tools are expensive. It is not unusual to have to 
pay $5000 or more per user for a comprehensive CASE tool. On the other hand, a number of 
open-source CASE tools of this type can be downloaded at no cost. Overall, the two bulleted 
strengths of CASE tools listed in this section outweigh these weaknesses. 
  Many of the classical graphical CASE workbenches and environments, such as System 
Architect and Software through Pictures, have been extended to support UML diagrams. 
In addition, there are object-oriented CASE workbenches and environments, such as IBM 
Rational Rose and Together. There are also open-source CASE tools of this type, including 
ArgoUML.   

  11.17 Metrics for the Requirements Workfl ow 
  A key feature of the requirements workfl ow is how rapidly the requirements team deter-
mines the client’s real needs. So, a useful metric during this workfl ow is a measure of 
requirements volatility. Keeping a record of how frequently the requirements change during 
the requirements workfl ow gives management a way of determining the rate at which the 
requirements team converges on the actual requirements of the product. This metric has the 
further advantage that it can be applied to any requirements elicitation technique, such as 
interviewing or forms analysis. 
  Another measure of how well the requirements team is doing its job is the number of 
requirements that change during the rest of the software development process. For each 
such change in requirements, it should be recorded whether that change was initiated 
by the client or the developers. If a large number of changes in requirements are initi-
ated by the developers during the analysis, design, and subsequent workfl ows, then it is 
clear that the process used by the team to carry out the requirements workfl ow should 
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be thoroughly reviewed. Conversely, if the client makes repeated changes to the require-
ments during subsequent workfl ows, then this metric can be used to warn the client that 
the moving-target problem can adversely affect the project, and future changes should be 
held to a minimum.   

  11.18 Challenges of the Requirements Workfl ow 
  Like every other workfl ow of the software development process, potential problems and 
pitfalls are associated with the requirements workfl ow. First, it is essential to have the 
wholehearted cooperation of the potential users of the target product from the beginning of 
the process. Individuals often feel threatened by computerization, fearing that the computer 
will take their jobs. There is some truth to that fear. Over the past 30 years or so, the impact 
of computerization has been to reduce the need for unskilled workers but also to generate 
jobs for skilled workers. Overall, the number of well-paying employment opportunities 
created as a direct consequence of computerization has far exceeded the number of rela-
tively unskilled jobs made redundant, as evidenced by both decreased unemployment rates 
and increased average compensation. But the unparalleled economic growth of so many 
countries worldwide as a direct or indirect consequence of the so-called Computer Age in 
no way can compensate for the negative impact on those individuals who lose their jobs as 
a result of computerization. 
  It is essential that every member of the requirements team be aware at all times that the 
members of the client organization with whom they interact in all probability are deeply 
concerned about the potential impact of the target software product on their jobs. In the 
worst case, employees may deliberately give misleading or wrong information to try to en-
sure that the product does not meet the client’s needs and, hence, protect those employees’ 
jobs. But, even with no sabotage of this kind, some members of the client organization 
may be less than helpful simply because they have a vague feeling of being threatened by 
computerization. 
  Another challenge of the requirements workfl ow is the ability to  negotiate . For exam-
ple, it is often essential to scale down what the client wants. Not surprisingly, almost every 
client would love to have a software product that can do everything that might conceivably 
be needed. Such a product would take an unacceptably long time to build and cost far more 
than the client considers reasonable. Therefore, it often is necessary to persuade the client 
to accept less (sometimes far less) than he or she wants. Computing the costs and benefi ts 
(see Section 5.2 and summarized in Section 10.6) of each requirement in dispute can help 
in this regard. 
  Another example of the negotiating skill needed is the ability to arrive at a compromise 
among managers regarding the functionality of the target product. For example, a cunning 
manager may attempt to extend his or her power by including a requirement that can be 
implemented only by incorporating into his or her areas of responsibility certain business 
functions currently the responsibility of another manager. Not surprisingly, the other man-
ager will object strongly on discovering what is going on. The requirements team must sit 
down with both managers and resolve the issue. 
  A third challenge of the requirements workfl ow is that, in many organizations, the 
individuals who possess information the requirements team needs to elicit, simply lack the 

sch76183_ch11_313-359.indd   354sch76183_ch11_313-359.indd   354 07/06/10   11:38 AM07/06/10   11:38 AM



Chapter 11  Requirements  355

time to meet for in-depth discussions. When this happens, the team must inform the client, 
who then must decide which is more important, the individuals’ current job responsibilities 
or the software product to be constructed. And, if the client fails to insist that the software 
product comes fi rst, the developers may have no alternative but to withdraw from a project 
all but doomed to failure. 
  Finally, fl exibility and objectivity are essential for requirements elicitation. It is vital 
that the members of the requirements team approach each interview with no preconceived 
ideas. In particular, an interviewer must never make assumptions about the requirements as 
a result of earlier interviews, and then conduct subsequent interviews in the light of those 
assumptions. Instead, an interviewer must consciously suppress any information gleaned 
at previous interviews and conduct each interview in an impartial way. Making premature 
assumptions regarding the requirements is dangerous; making any assumptions during the 
requirements workfl ow regarding the software product to be built can be disastrous. 
  The chapter concludes with How to Perform Box 11.1, which summarizes the steps of 
the requirements workfl ow. 

Box 11.1 How to Perform the Requirements Workfl ow 

    •  Iterate 

     Obtain an understanding of the domain.  

    Draw up the business model.  

    Draw up the requirements.     

   •  Until  the requirements are satisfactory.   

      Chapter 
Review 

 The chapter begins with a description of the importance of determining the client’s needs (Section 
11.1), followed by an overview of the requirements workfl ow (Section 11.2). In Section 11.3, the 
need to understand the domain is described. How to draw up the business model is described in Sec-
tion 11.4. Interviewing and other techniques of requirements extraction are discussed in Sections 
11.4.1 and 11.4.2. The business model is modeled using use cases, which are introduced in 11.4.3. 
Drawing up the initial requirements is described in Section 11.5. The requirements workfl ow of the 
MSG Foundation case study is presented in the next six sections. Obtaining an initial understanding 
of the domain is described in Section 11.6; the initial business model and the initial requirements 
are presented in Sections 11.7 and 11.8, respectively. The requirements are then refi ned in Sections 
11.9 and 11.10. Finally, the test workfl ow for the MSG Foundation case study is described (Section 
11.11). In Section 11.12, the classical requirements phase is contrasted with the requirements work-
fl ow of the Unifi ed Process. Rapid prototyping is then discussed in greater detail in Sections 11.13 
and 11.14; in the latter section, the importance of constructing a rapid prototype for the user interface 
is stressed. In Section 11.15, a warning is given not to reuse a rapid prototype. CASE tools for the 
requirements workfl ow (Section 11.16) and metrics for the requirements workfl ow (Section 11.17) 
are then discussed. The chapter concludes with a description of challenges of the requirements phase 
(Section 11.18). 
  An overview of the MSG Foundation case study in this chapter appears in  Figure 11.44 . 
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   For 
Further 
Reading 

 FIGURE 11.44     Overview of the MSG Foundation case study for Chapter 11. 

Initial understanding of the domain Section 11.6
  Initial glossary   Figure 11.3

lnitial business model  Section 11.7
  lnitial use-case diagram    Figure 11.12

Initial requirements  Sections 11.8, 11.9

Revised requirements Section 11.10
  Second iteration of the use-case diagram   Figure 11.21
  Third iteration of the use-case diagram   Figure 11.26

Test workfl ow Section 11.11
  Fourth iteration of the use-case diagram   Figure 11.34
  Fifth iteration of the use-case diagram   Figure 11.37
  Sixth iteration of the use-case diagram   Figure 11.38
  Seventh iteration of the use-case diagram   Figure 11.42

 [Jackson, 1995] is an excellent introduction to requirements analysis. [Thayer and Dorfman, 
1999] is a collection of papers on requirements analysis. Berry [2004] suggests that the ripple 
effect of the inevitable changes to the requirements is the reason why there cannot be a software 
engineering silver bullet (Just in Case You Wanted to Know Box 3.4). The use of cost–benefi t 
analysis in setting priorities among requirements is described in [Karlsson and Ryan, 1997]. 
Nonfunctional requirements are discussed in [Cysneiros and do Prado Leite, 2004] and [Grego-
riades and Sutcliffe, 2005]. 
  The requirements workfl ow of the Unifi ed Process is described in detail in  Chapters 6  and  7  of 
[Jacobson, Booch, and Rumbaugh, 1999]. Misuse cases (use cases that model interactions that the 
software should prevent) are described in [I. Alexander, 2003]. 
  The importance of prototyping is described in [Schrage, 2004]. 
  Having an effective requirements process has a positive effect on the entire life cycle. This 
is demonstrated in [Damian and Chisan, 2006] by means of a case study of a large-scale soft-
ware project. An analysis of agile approaches to requirements engineering appears in [Cao and 
Ramesh, 2008]. 
  A variety of articles on requirements appear in the May–June 2006 issue of  IEEE Software ; 
[Ebert, 2006] is of particular interest. Further articles appear in the March–April 2007 issue. 
The March–April 2008 issue of  IEEE Software  contains articles on nonfunctional requirements 
(“quality requirements”), including [Blaine and Cleland-Huang, 2008], [Glinz, 2008], and 
[Feather et al., 2008]. 
  The annual Requirements Engineering conference is an excellent source of information. 
  A classic work on user interface design is [Shneiderman, 2003]. Methods for achieving good user 
interfaces are described in [Holzinger, 2005]. Articles on user interfaces can be found in the June 
2008 issue of  Communications of the ACM . The proceedings of the Annual Conference on Human 
Factors in Computer Systems (sponsored by ACM SIGCHI) are a valuable source of information on 
wide-ranging aspects of human factors.  
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   use-case description   323 
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   capital   320 
   closing costs   322 
   deposit   320 

   escrow account   321 
   interest   321 
   mortgage   320 

   P & I   321 
   points   322 
   principal   320  

  Problems      11.1  Give a nonfunctional requirement that can be handled without having detailed knowledge 
about the target software product.  

   11.2  Now, give a nonfunctional requirement that can be handled only after the requirements work-
fl ow has been completed.  

   11.3  Your client has stipulated that open-source software is to be used. Is this a functional or non-
functional requirement? How early in the life-cycle model can this requirement be handled? 
Explain your answer.  

   11.4  Your client has stipulated that all documentation has to be written in both English and isiNde-
bele. Is this a functional or nonfunctional requirement? How early in the life-cycle model can 
this requirement be handled? Explain your answer.  

   11.5 Distinguish between a  use case  and a  use-case diagram .  

   11.6  You have been asked to develop a logistics automation system for a ship chandler. How would 
you perform the domain analysis?  

   11.7  What do you consider to be the most important questions when interviewing the ship chandler 
of Problem 11.6?  

   11.8  Distinguish between a  user  and an  actor .  

   11.9  When performing the requirements workfl ow for a bank payroll product, why is it inadvisable 
to model the product with   Tellers   and   Employees   as actors?  

  11.10 Draw a fl owchart representing the requirements workfl ow.  

  11.11  Why does the same couple appear as two different actors (  Applicants   and   Borrowers  ) in 
the use-case diagram of  Figure 11.12 ?  

  11.12  Noting that only MSG Foundation staff members can use the software product, why do   
Applicants   and   Borrowers   appear as actors in the use-case diagram of  Figure 11.12 ?  

  11.13  Use a spreadsheet to show that, at the end of 30 years, monthly installments of $629.30 will pay 
off a loan for $90,000 with interest compounded monthly at an annual rate of 7.5 percent.  

  11.14  Explain why annual real-estate taxes and insurance premiums are generally paid from an 
escrow account, rather than directly by the borrower (mortgagee).  
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  11.15  Suppose that the MSG Foundation decides that it wants its software product to include the 
mortgage application process. Give the description of the  Apply for an MSG Mort-
gage  use case. Give as many details as you can.  

  11.16  Sections 11.9 and 11.10 describe the restructuring of the use cases of the MSG Foundation. 
How would this restructuring change if, as in Problem 11.15, the  Apply for an MSG 
Mortgage  use case had been included in the requirements model?  

  11.17  You have just joined Langfoss & Yosemite Software as a software manager. Langfoss & 
Yosemite has been developing accounting software for small businesses for many years using 
the waterfall model, usually with some success. On the basis of your experience, you think 
that the Unifi ed Process is a far superior way of developing software. Write a report addressed 
to the vice-president for software development explaining why you believe the organization 
should switch to the Unifi ed Process. Remember that vice-presidents do not like reports that 
are more than half a page in length.  

  11.18  You are the vice-president for software development of Langfoss & Yosemite. Reply to the 
report of Problem 11.17.  

  11.19  What is the result if a rapid prototype is not constructed rapidly?  

  11.20  Why is there an advantage to using an interpreted language for implementing a rapid proto-
type, rather than a compiled language? Is there a disadvantage?  

  11.21  (Analysis and Design Project) Perform the requirements workfl ow for the automated library 
circulation system of Problem 8.7.  

  11.22  (Analysis and Design Project) Perform the requirements workfl ow for the product for deter-
mining whether a bank statement is correct of Problem 8.8.  

  11.23  (Analysis and Design Project) Perform the requirements workfl ow for the automated teller 
machine (ATM) of Problem 8.9.  

  11.24  (Term Project) Perform the requirements workfl ow for the Chocoholics Anonymous project in 
Appendix A.  

  11.25  (Case Study) The trustees of the MSG Foundation have decided to expand their activities 
by providing scholarships for higher education to children of current borrowers with a suffi -
ciently high grade-point average. Draw the use case  Apply for an MSG Scholarship . 
Give the description of the use case, providing as much detail as you can.  

  11.26  (Case Study) A report of all scholarships awarded during the past year (Problem 11.25) has 
to be generated. Modify  Figures 11.35  and  11.36  appropriately to incorporate this additional 
report.  

  11.27  (Case Study) Using the information in Sections 11.6 through 11.11, construct a rapid prototype for 
the MSG Foundation case study. Use the software and hardware specifi ed by your instructor.  

  11.28  (Readings in Software Engineering) Your instructor will distribute copies of [Damian and 
Chisan, 2006]. In what ways did reading this article change your views on the importance of 
the requirements workfl ow?     

  References   [I. Alexander, 2003] I. ALEXANDER, “Misuse Cases: Use Cases with Hostile Intent,”  IEEE Software  
 20  (January–February 2003), pp. 58–66. 

 [Berry, 2004] D. M. BERRY, “The Inevitable Pain of Software Development: Why There Is No Sil-
ver Bullet,” in:  Radical Innovations of Software and Systems Engineering in the Future , Lecture 
Notes in Computer Science, Vol. 2941, Springer-Verlag, Berlin, 2004, pp. 50–74. 

 [Blaine and Cleland-Huang, 2008] J. D. BLAINE AND J. CLELAND-HUANG, “Software Quality 
Requirements: How to Balance Competing Priorities,”  IEEE Software   25  (March–April 2008), 
pp. 22–24. 

sch76183_ch11_313-359.indd   358sch76183_ch11_313-359.indd   358 07/06/10   11:38 AM07/06/10   11:38 AM



Chapter 11  Requirements  359

 [Brooks, 1975]   F. P. BROOKS, JR.,  The Mythical Man-Month: Essays on Software Engineering,  
Addison-Wesley, Reading, MA, 1975; Twentieth Anniversary Edition, Addison-Wesley, Reading, 
MA, 1995. 

 [Cao and Ramesh, 2008] L. CAO AND B. RAMESH, “Agile Requirements Engineering Practices: An 
Empirical Study,”  IEEE Software   25  (January–February 2008), pp. 60–67. 

 [Cysneiros and do Prado Leite, 2004] L. M. CYSNEIROS AND J. C. S. DO PRADO LEITE, “Nonfunctional 
Requirements: From Elicitation to Conceptual Models,”  IEEE Transactions on Software Engi-
neering   30  (May 2004), pp. 328–50. 

 [Damian and Chisan, 2006] D. DAMIAN AND J. CHISAN, “An Empirical Study of the Complex Rela-
tionships between Requirements Engineering Processes and Other Processes that Lead to Payoffs 
in Productivity, Quality, and Risk Management,”  IEEE   Transactions on Software Engineering   32  
(July 2006), pp. 433–53. 

 [Ebert, 2006] C. EBERT, “Understanding the Product Life Cycle: Four Key Requirements Engineer-
ing Techniques,”  IEEE Software   23  (May–June 2006), pp. 19–25. 

 [Feather et al., 2008] M. S. FEATHER, S. L. CORNFORD, K. A. HICKS, J. D. KIPER, AND T. MENZIES, 
“A Broad, Quantitative Model for Making Early Requirements Decisions,”  IEEE Software   25  
(March–April 2008), pp. 49–56. 

 [Glinz, 2008] M. GLINZ, “A Risk-Based, Value-Oriented Approach to Quality Requirements,”  IEEE 
Software   25  (March–April 2008), pp. 34–41. 

 [Gregoriades and Sutcliffe, 2005] A. GREGORIADES AND A. SUTCLIFFE, “Scenario-Based Assessment 
of Nonfunctional Requirements,”  IEEE Transactions on Software Engineering   31  (May 2005), 
pp. 392–409. 

 [Holzinger, 2005] A. HOLZINGER, “Usability Engineering Methods for Software Developers,”  Com-
munications of the ACM   48  (January 2005), pp. 71–74. 

 [Jackson, 1995] M. JACKSON,  Software Requirements and Specifi cations: A Lexicon of Practice, Prin-
ciples and Prejudices,  Addison-Wesley Longman, Reading, MA, 1995. 

 [Jacobson, Booch, and Rumbaugh, 1999] I. JACOBSON, G. BOOCH, AND J. RUMBAUGH, The Unifi ed 
Software Development Process, Addison-Wesley, Reading, MA, 1999. 

 [Karlsson and Ryan, 1997] J. KARLSSON AND K. RYAN, “A Cost-Value Approach for Prioritizing 
Requirements,”  IEEE Software   14  (September–October 1997), pp. 67–74. 

 [Schach and Wood, 1986] S. R. SCHACH AND P. T. WOOD, “An Almost Path-Free Very High-Level 
Interactive Data Manipulation Language for a Microcomputer-Based Database System,” 
 Software–Practice and Experience   16  (March 1986), pp. 243–68. 

 [Schrage, 2004] M. SCHRAGE, “Never Go to a Client Meeting without a Prototype,”  IEEE Software  
 21  (2004), pp. 42–45. 

 [Shneiderman, 2003] B. SHNEIDERMAN,  Designing the User Interface: Strategies for Effective Human-
Computer Interaction,  4th ed., Addison-Wesley Longman, Reading, MA, 2003. 

 [Thayer and Dorfman, 1999] R. H. THAYER AND M. DORFMAN,  Software Requirements Engineering , 
revised 2nd ed., IEEE Computer Society Press, Los Alamitos, CA, 1999.                                                      

sch76183_ch11_313-359.indd   359sch76183_ch11_313-359.indd   359 07/06/10   11:38 AM07/06/10   11:38 AM



Chapter 12
 Classical Analysis 
   Learning Objectives 

 After studying this chapter, you should be able to

  •  Perform structured systems analysis.  

  • Draw up formal specifi cations using fi nite state machines, Petri nets, and Z.  

  • Compare and contrast methods for classical analysis.       

 A specifi cation document must satisfy two mutually contradictory requirements. On the 
one hand, this document must be clear and intelligible to the client, who probably is not 
a computer specialist. After all, the client is paying for the product, and unless the client 
believes that he or she really understands what the new product will be like, there is a good 
chance that the client will either decide not to authorize the development of the product or 
will ask some other software organization to build it. 
  On the other hand, the specifi cation document must be complete and detailed, because this 
is virtually the sole source of information available for drawing up the design. Even if the client 
agrees that all needs have been determined accurately during the requirements, if the specifi ca-
tion document contains faults such as omissions, contradictions, or ambiguities, the inevitable 
result will be faults in the design that are carried over into the implementation. What is needed, 
therefore, are techniques for representing the target product in a format suffi ciently nontechni-
cal to be intelligible to the client yet precise enough to result in a fault-free product being deliv-
ered to the client at the end of the development cycle. These analysis (specifi cation) techniques 
are the subject of this chapter and  Chapter 13 . The emphasis in this chapter is on classical 
(structured) analysis techniques, whereas  Chapter 13  is devoted to object-oriented analysis. 

  12.1 The Specifi cation Document  
 The     specifi cation document     is a contract between client and developer. It specifi es pre-
cisely what the product must do and the     constraints     on the product. Virtually every speci-
fi cation document incorporates constraints that the product has to satisfy. Almost always, 
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a deadline is specifi ed for delivering the product. Another common stipulation is, “The prod-
uct shall be installed in such a way that it can run in parallel with the existing product,” 
until the client is satisfi ed that the new product indeed satisfi es every aspect of the specifi -
cation document. Other constraints might include portability: The product should be con-
structed to run on other hardware under the same operating system or perhaps run under a 
variety of different operating systems. Reliability may be another constraint. If the product 
has to monitor patients in an intensive care unit, then it is of paramount importance that it 
be fully operational 24 hours a day. Rapid response time may be a requirement; a typical 
constraint in this category might be “95 percent of all queries of Type 4 shall be answered 
within 0.25 seconds.” Many response-time constraints have to be expressed in probabilistic 
terms because the response time depends on the current load on the computer. In contrast, 
so-called hard real-time constraints are expressed in absolute terms. For instance, it is useless 
to develop software that informs a warplane pilot of an incoming missile within 0.25 seconds 
only 95 percent of the time—the product must meet the constraint 100 percent of the time. 
  A vital component of the specifi cation document is the set of acceptance criteria. It is 
important from the viewpoint of both the client and the developers to spell out a series of 
tests that can be used to prove to the client that the product indeed satisfi es its specifi ca-
tions and that the developer’s job is done. Some of the acceptance criteria may be restate-
ments of the constraints, whereas others address different issues. For example, the client 
might supply the developer with a description of the data that the product will handle. An 
appropriate acceptance criterion then would be that the product correctly processes data 
of this type and fi lters out nonconforming (that is, erroneous) data. Once the development 
team fully understands the problem, possible solution strategies can be suggested. A     solu-
tion strategy     is a general approach to building the product. For example, one possible 
solution strategy for a product would be to use an online database; another would be to 
use conventional fl at fi les and extract the required information using overnight batch runs. 
When determining solution strategies, it often is a good idea to come up with strategies 
without worrying about the constraints in the specifi cation document. Then, the various 
solution strategies can be evaluated in the light of the constraints and necessary modifi ca-
tions can be made. There are a number of ways of determining whether a specifi c solution 
strategy will satisfy the client’s constraints. An obvious one is prototyping, which can be 
a good technique for resolving issues relating to user interfaces and timing constraints, as 
previously discussed in  Chapter 11 . Other techniques for determining whether constraints 
will be satisfi ed include simulation [Banks, Carson, Nelson, and Nichol, 2010] and analytic 
network modeling [Kleinrock and Gail, 1996]. 
  During this process, a number of solution strategies are put forward and then discarded. 
It is important that a written record be kept of all discarded strategies and the reasons they 
were rejected. This will assist the development team if it ever is called on to justify the 
chosen strategy. But, more important, there is an ever-present danger during postdelivery 
maintenance that the process of enhancement will be accompanied by an attempt to come 
up with a new and unwise solution strategy. Having a record of why certain strategies were 
rejected during development can be extremely helpful during postdelivery maintenance. 
  By this point in the life cycle, the development team will have determined one or more 
possible solution strategies that satisfy the constraints. A two-stage decision now has to be 
made. First, should the client be advised to computerize? If so, which of the viable solution 
strategies should be adopted? The answer to the fi rst question can best be decided on the 
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basis of cost–benefi t analysis (Section 5.2). Second, if the client decides to proceed with 
the project, then the client must inform the development team as to the optimization criterion 
to be used, such as minimizing the total cost to the client or maximizing the return on 
investment. The developers then advise the client as to which of the viable solution strate-
gies best satisfi es the optimization criterion.   

  12.2 Informal Specifi cations  
 In many development projects, the specifi cation document consists of page after page of 
English, or some other     natural language     such as French or Xhosa. A typical paragraph 
of such an     informal specifi cation     reads:

  BV.4.2.5. If the sales for the current month are below the target sales, then a report is to be 
printed, unless the difference between target sales and actual sales is less than half of the dif-
ference between target sales and actual sales in the previous month or if the difference between 
target sales and actual sales for the current month is under 5 percent.   

  The background leading up to that paragraph is as follows: The management of a retail 
chain sets a target sales fi gure for each shop for each month; and if a shop does not meet this 
target, a report is to be printed. Consider the following scenario: Suppose that the January sales 
target for one particular shop is $100,000, but actual sales are only $64,000, that is, 36 percent 
below target. In this case, a report must be printed. Now suppose further that the February 
target fi gure is $120,000 and that actual sales are only $100,000, 16.7 percent below target. 
Although sales are below the target fi gure, the percentage difference for February, 16.7 percent, 
is less than half of the previous month’s percentage difference, 36 percent; management believes 
that an improvement has been made, and no report is to be printed. Next suppose that, in March, 
the target is again $100,000 but the shop makes $98,000, only 2 percent below target. Because 
the percentage difference is small, less than 5 percent, no report should be printed. 
  Careful rereading of the preceding specifi cation paragraph shows some divergence from 
what the retail chain’s management actually requested. Paragraph BV.4.2.5 speaks of the 
“difference between target sales and actual sales”; percentage difference is not mentioned. 
The difference in January was $36,000 and in February it was $20,000. The percentage 
difference, which is what management wanted, dropped from 36 percent in January to 16.7 
percent in February, less than half of the January percentage difference. However, the actual 
difference dropped from $36,000 to $20,000, which is greater than half of $36,000. So if 
the development team had faithfully implemented the specifi cation document, the report 
would have been printed, which is not what management wanted. Then the last clause 
speaks of a “difference . . . [of] 5 percent.” What is meant, of course, is a percentage differ-
ence of 5 percent, only the word percentage does not occur anywhere in the paragraph. 
  Therefore, the specifi cation document contains a number of faults. First, the wishes 
of the client have been ignored. Second, there is ambiguity—should the last clause read 
“percentage difference . . . [of] 5 percent,” or “difference . . . [of] $5000,” or something else 
entirely? In addition, the style is poor. What the paragraph says is, “If something happens, 
print a report. However, if something else happens, don’t print it. And if a third thing hap-
pens, don’t print it either.” It would have been much clearer if the specifi cations had simply 
stated when the report is to be printed. All in all, paragraph BV.4.2.5 is not a very good 
example of how to write a specifi cation document. 
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  Paragraph BV.4.2.5 is fi ctitious but, unfortunately, typical of too many specifi cation 
documents. You may think that the example is unfair and this sort of problem cannot arise 
if specifi cations are written with care by professional specifi cation writers. To refute this 
charge, the mini case study of  Chapter 6  resumes here. 

 Correctness Proof Mini Case Study Redux 

  Recall from Section 6.5.2 that in 1969 Naur wrote a paper on correctness proving 
[Naur, 1969]. He illustrated his technique by means of a text-processing problem. 
Using his technique, Naur constructed an ALGOL 60 procedure to solve the prob-
lem and informally proved the correctness of his procedure. A reviewer of Naur’s 
paper [Leavenworth, 1970] pointed out one fault in the procedure. London [1971] 
then detected three additional faults in Naur’s procedure, presented a corrected ver-
sion of the procedure, and proved its correctness formally. Goodenough and Gerhart 
[1975] found three further faults that London had not detected. Of the total of seven 
faults collectively detected by the reviewer, London, and Goodenough and Gerhart, 
two can be considered analysis faults. For example, Naur’s specifi cations do not state 
what happens if the input includes two successive adjacent breaks (blank or newline 
characters). For this reason, Goodenough and Gerhart produced a new set of specifi ca-
tions. Their specifi cations were about four times longer than Naur’s, which are given 
in Section 6.5.2. 
  In 1985, Meyer wrote an article on formal specifi cation techniques [Meyer, 1985]. 
The main thrust of his article is that a specifi cation document written in a natural lan-
guage such as English tends to have contradictions, ambiguities, and omissions. He 
recommended using mathematical terminology to express specifi cations formally. 
Meyer detected some 12 faults in Goodenough and Gerhart’s specifi cations and de-
veloped a set of mathematical specifi cations to correct all the problems. Meyer then 
paraphrased his mathematical specifi cations and constructed English specifi cations. 
In my opinion, Meyer’s English specifi cations contain a fault. Meyer points out in his 
paper that, if the maximum number of characters per line is, say, 10, and the input is, 
for instance, WHO WHAT WHEN, then, in terms of both Naur’s and Goodenough 
and Gerhart’s specifi cations, there are two equally valid outputs: WHO WHAT on 
the fi rst line and WHEN on the second or WHO on the fi rst line and WHAT WHEN 
on the second. In fact, Meyer’s paraphrased English specifi cations also contain this 
ambiguity. 
  The key point is that Goodenough and Gerhart’s specifi cations were constructed 
with the greatest of care. After all, they were constructed to correct Naur’s specifi ca-
tions. Furthermore, Goodenough and Gerhart’s paper went through two versions, 
the fi rst of which was published in the proceedings of a refereed conference and the 
second in a refereed journal [Goodenough and Gerhart, 1975]. Finally, both Good-
enough and Gerhart are experts in software engineering in general and specifi cations 
in particular. Therefore, if two experts with as much time as they needed carefully 

C
12.2.112.2.1

  Mini  ase Study 
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produced specifi cations in which Meyer detected 12 faults, what chance does an 
ordinary computer professional working under time pressure have of producing a 
fault-free specifi cation document? Worse still, the text-processing problem can be 
coded in 25 or 30 lines, whereas real-world products can consist of hundreds of thou-
sands or even millions of lines of source code. 

  Clearly, natural language is not a good way of specifying a product. In this chapter, bet-
ter alternatives are described. The order in which the analysis techniques are presented is 
from the informal to the more formal.     

  12.3 Structured Systems Analysis 
  The use of graphics to specify software was an important technique of the 1970s. Three 
techniques using graphics became particularly popular: those of DeMarco [1978], Gane 
and Sarsen [1979], and Yourdon and Constantine [1979]. All three techniques are equally 
good and essentially equivalent. Gane and Sarsen’s approach is presented here because 
their notation, currently, probably is the most widely used in the industry. 
  As an aid to understanding the technique, consider the following mini case study. 

 Sally’s Software Shop Mini Case Study 

  Sally’s Software Shop buys software from various suppliers and sells it to the public. 
Sally stocks popular software packages and orders others as required. Sally extends 
credit to institutions, corporations, and some individuals. Sally’s Software Shop is doing 
well, with a monthly turnover of 300 packages at an average retail cost of $250 each. 
Despite her business success, Sally has been advised to computerize. Should she? 
  The question, as stated, is inadequate. It should read: Which, if any, business 
functions—accounts payable, accounts receivable, and inventory—should be com-
puterized? Even this is not enough—is the system to be batch or online? Is there to be 
an in-house computer or is outsourcing to be used? But, even if the question is refi ned 
further, it still misses the fundamental issue: What is Sally’s objective in computer-
izing her business? 
  Only when Sally’s objectives are known can the analysis continue. For example, 
if she wishes to computerize simply because she sells software, then she needs an 
in-house system with a variety of sound and light effects that ostentatiously shows off 
the possibilities of a computer. On the other hand, if she uses her business to launder 
“hot” money, then she needs a product that keeps four or fi ve different sets of books 
and leaves no audit trail. 
  This example assumes that Sally wishes to computerize “to make more money.” 
This does not help very much, but it is clear that cost–benefi t analysis can determine 
whether to computerize each (or any) of the three sections of her business. The main 
danger of many standard approaches is that one is tempted to come up with the 

C  Mini  ase Study 
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solution fi rst, for example, a Lime III computer with a 50-gigabyte hard disk and 
a laser printer, and fi nd out what the problem is later. In contrast, Gane and Sarsen 
[1979] use     structured systems analysis    , a nine-step technique, to analyze the 
client’s needs. An important point is that stepwise refi nement is used in many of those 
nine steps; this will be indicated as the technique is demonstrated. 
  Having determined Sally’s requirements, the fi rst step in the structured systems 
analysis is to determine the     logical data fl ow    , as opposed to the physical data fl ow 
(that is,   what   happens, as opposed to   how   it happens). This is done by drawing a     data 
fl ow diagram     (DFD). The DFD uses the four basic symbols shown in  Figure 12.1 . 
(Gane and Sarsen’s notation is similar, but not identical, to that of DeMarco [1978] 
and Yourdon and Constantine [1979].)   

     Step 1. Draw the DFD 
 The DFD for any nontrivial product is likely to be large. The DFD is a pictorial repre-
sentation of all aspects of the logical data fl ow and, as such, is guaranteed to contain 
considerably more than 7 � 2 elements. For this reason, the DFD must be developed 
by stepwise refi nement (Section 5.1). 
  A data fl ow diagram is constructed by identifying the     data fl ows     within the 
requirements document or rapid prototype. Each fl ow of data starts and ends either 
at a     source or destination of data     (represented by a double-square box) or at a 
    data store     (represented by an open-ended rectangle). The data are transformed by 
one or more     processes     (represented by a rounded rectangle). At each successive 
refi nement, either a new fl ow of data is added to the DFD or an existing fl ow of data 
is refi ned by the addition of further details. 
  Returning to the example, the fi rst refi nement is shown in  Figure 12.2 . This diagram of 
logical data fl ow can have many interpretations. Two possible implementations follow: 
  In Implementation 1, data store PACKAGE_DATA consists of some 900 shrink-
wrapped boxes containing diskettes or CDs displayed on shelves, as well as a number 
of catalogs in a desk drawer. Data store CUSTOMER_DATA is a collection of 5 � 7 
inch cards held together by a rubber band, plus a list of customers whose payments 

FIGURE 12.1
The symbols 
of Gane and 
Sarsen’s 
structured 
systems 
analysis.
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are overdue. Process (action) process_orders is Sally looking for the appropriate 
package on the shelves, if necessary looking it up in a catalog, and then fi nding the 
correct 5 � 7 card and checking that the customer’s name is not on the list of default-
ers. This implementation is totally manual and corresponds to the way Sally currently 
conducts her business. 
  In Implementation 2, data stores PACKAGE_DATA and CUSTOMER_DATA are 
computer fi les and process_orders is Sally entering the customer’s name and the 
name of the package at a terminal. This implementation corresponds to a fully com-
puterized solution with all information available online. 
  The DFD of  Figure 12.2  represents not only the preceding two implementations but 
also an infi nity of other possibilities. The key point is that the DFD represents a fl ow of 
information—the actual package that Sally’s customer wants is not important to the fl ow. 
  The DFD is now refi ned stepwise. The second refi nement is depicted in  Figure 12.3 . 
The logical fl ow of data representing what happens when the customer requests a pack-
age Sally does not have on hand is added to the DFD. Specifi cally, details of that pack-
age are placed in the data store PENDING_ORDERS, which might be a computer fi le, 
but at this stage equally well could be a manila folder. Data store PENDING_ORDERS 
is scanned daily, by the computer or Sally; and if there are suffi cient orders for one sup-
plier, then a batched order is placed. Also, if an order has been waiting for 5 working 
days, it is ordered, regardless of how many packages are waiting to be ordered from the 
relevant supplier. This DFD does not show the logical fl ow of data when the software 
package arrives from the supplier nor does it show fi nancial functions such as accounts 
payable and accounts receivable. These will be added in the third refi nement. 
  Only a portion of the third refi nement is shown in  Figure 12.4 , because the DFD is 
starting to become large. In this refi nement, the logical fl ow of data relating to accounts 
receivable is added to the DFD. 
  The rest of the DFD relates to accounts payable and to the software suppliers. 
The fi nal DFD will be larger still, stretching over perhaps six pages. But it will be 
understood easily by Sally, who will sign off on it, confi rming that it is an accurate 
representation of the logical fl ow of data in her business. For a larger product, the 
DFD is larger. After a certain point it becomes impractical to have just one DFD, and 
a hierarchy of DFDs is needed. A single box at one level is expanded into a complete 
DFD at a lower level. 

FIGURE 12.2
The data fl ow 
diagram for 
Sally’s Software 
Shop: fi rst 
refi nement.
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  In this section, we outline the construction of the DFD for Sally’s Software Shop. 
A more detailed example of the construction of a data fl ow diagram is given in 
Section 12.4.  

  Step 2. Decide What Sections to Computerize and How (Batch or Online) 
 The choice of what to automate often depends on how much the client is prepared 
to spend. Obviously, it would be nice to automate the entire operation, but the cost 
of this may be prohibitive. To determine which sections to automate, cost–benefi t 
analysis is applied to the various possible strategies for computerizing each section. 
For example, for each section of the DFD, a decision has to be made as to whether 
that group of operations should be performed in batch or online. With large volumes 
to process and tight controls required, batch processing is often the answer; but with 
small volumes and an in-house computer, online processing appears to be better. 
Returning to the example, one alternative is to automate accounts payable in batch 
and validate orders online. A second alternative is to automate everything, with the 
editing of the software supplier consignment notes against orders being done online 
or batch, and the rest of the operations done online. A key point is that the DFD cor-
responds to all the preceding possibilities. This is consistent with not making a com-
mitment as to how to solve the problem during the classical analysis phase but rather 
waiting until the design phase. 
  The next three stages of Gane and Sarsen’s technique are the stepwise refi nement 
of the fl ows of data (arrows), processes (rounded rectangles), and data stores (open 
rectangles).  

FIGURE 12.3 The data fl ow diagram for Sally’s Software Shop: second refi nement.
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  Step 3. Determine the Details of the Data Flows 
 First, decide what data items must go into the various data fl ows. Then, refi ne each 
fl ow stepwise. 
  In the example, the data fl ow order can be refi ned as follows:   

  order: 
    order_identifi cation  
    customer_details  
    package_details    

  Next, each of the preceding components of order is refi ned further. In the case of 
a larger product, a data dictionary (Section 5.7) keeps track of all the data elements. 
 Figure 12.5  shows typical information about the data elements in the computeriza-
tion of Sally’s Software Shop that would be stored in a data dictionary.  

CUSTOMER_DATA

order

PACKAGE_DATA

verify_
order_is_

valid

credit_status

invoice

details_of_
package_
on_hand

package_
details

ACCOUNTS_
RECEIVABLE

address

invoice_
details

payment_details

delivery_
note

payment
details_of_package_received_

from_software_agency

details_of_package_
to_be_ordered

delivery_
details

CUSTOMER

assemble_
orders

create_
invoice

apply_
payment_
to_invoice

FIGURE 12.4 The data fl ow diagram for Sally’s Software Shop: part of third 
refi nement.
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  Step 4. Defi ne the Logic of the Processes 
 Now that the data elements within the product have been determined, it is time to 
investigate what happens within each process. Suppose that the example has a pro-
cess   give_educational_discount  . Sally must provide the software developers with 
details about the discount she gives to educational institutions, for example, 10 percent 
on up to four packages, 15 percent on fi ve or more. To cope with the diffi culties of 
natural language specifi cation documents, this should be translated from English into 
a decision tree. Such a tree is shown in  Figure 12.6 . 
  A decision tree makes it easy to check that all possibilities have been taken into 
account, especially in more complex cases. An example is shown in  Figure 12.7 . 
From this fi gure it is immediately obvious that the cost to an alumnus of a seat behind 
the end zone has not been specifi ed. 

   Step 5. Defi ne the Data Stores 
 At this stage it is necessary to defi ne the exact contents of each store and its repre-
sentation (format). Therefore, if the product is to be implemented in COBOL, this 

FIGURE 12.6
A decision tree 
depicting Sally’s 
Software Shop 
educational 
discount policy.

� 4 packages: 10%

� 4 packages:  15%
Other: 0%

Educational
institution

Give educational discount

FIGURE 12.5  Typical data dictionary entries for Sally’s Software Shop.

           Name of Data Element     Description     Narrative     
    order     Record comprising fi elds  The fi elds contain all details of an order
  order_identifi cation 
  customer_details 
  customer_name 
  customer_address
   . . . 
  package_details 
  package_name 
  package_price 
  . .     .   

   order_identifi cation     12-digit integer     Unique number generated by procedure
  generate_order_number. The fi rst 10 digits contain 
  the order number itself, the last 2 digits are check 
  digits.   

   verify_order_is_valid     Procedure:  This procedure takes order as input and
  Input parameter:  checks the validity of every fi eld; for each error
   order  found, an appropriate message is displayed on the
  Output parameter:  screen (the total number of errors found is returned
   number_of_errors   in parameter number_of_errors)  .     
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information must be provided down to the   pic   level; if Ada is to be used, the   digits   
or   delta   must be specifi ed. In addition, it is necessary to specify where immediate 
access is required. 
  The issue of immediate access depends on what queries are going to be put to 
the product. For example, suppose that, in the example, it is decided to validate 
orders online. A customer may order a package by name (“Do you have JBuilder 
in stock?”), by function (“What accounting packages do you have?”), or by ma-
chine (“Do you have anything new for the 786?”), but rarely by price (“What do you 
have for $149.50?”). Therefore, immediate access to PACKAGE DATA is required 
by name, function, and machine. This is depicted in the     data immediate-access 
diagram     (DIAD) of  Figure 12.8 . 

   Step 6. Defi ne the Physical Resources 
 Now that the developers know what is required online and the representation (format) of 
each element, a decision can be made regarding blocking factors. In addition, for each 
fi le, the following can be specifi ed: fi le name, organization (sequential, indexed, etc.), 
storage medium, and records, down to the fi eld level. If a database management system 
(DBMS) is to be used, then the relevant information for each table is specifi ed here.  

  Step 7. Determine the Input–Output Specifi cations 
 The input forms must be specifi ed, at least with respect to components, if not detailed 
layout. Input screens must similarly be determined. The printed output also must be 
specifi ed, where possible in detail, otherwise just estimated length.  

Determine football seat prices

Faculty:

Undergraduate: $2

Alumnus:

40-yard line: $20

End zone: $12

40-yard line: $40

FIGURE 12.7
A decision 
tree describing 
seating prices 
for college 
football games.

FIGURE 12.8
The data 
immediate-
access diagram 
for PACKAGE_ 
DATA.

price

function

machine

name

function machine

name

PACKAGE_DATA
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  Step 8. Determine the Sizing 
 It is necessary to compute the numerical data that will be used in step 9 to determine 
the hardware requirements. This includes the volume of input (daily or hourly), the fre-
quency of each printed report and its deadline, the size and number of records of each 
type that are to pass between the CPU and mass storage, and the size of each fi le.  

  Step 9. Determine the Hardware Requirements 
 From the sizing information on the disk fi les determined in step 8, mass storage 
requirements can be computed. In addition, mass storage requirements for backup can 
be determined. From knowledge of input volumes, the needs in this area can be found. 
Because the number of lines and frequency of printed reports are known, output devices 
can be specifi ed. If the client already has hardware, it can be determined whether this 
hardware is adequate or additional hardware has to be acquired. On the other hand, if 
the client lacks suitable hardware, a recommendation can be made as to what should be 
acquired and whether it should be purchased or leased. For smaller systems, advances 
in technology have made hardware decisions less critical; all the hardware needed for 
Sally’s Software Store can be purchased for under $1000. However, for larger systems, 
the cost of hardware is nontrivial, and careful decisions need to be made. 
  Determining the hardware requirements is the fi nal step of Gane and Sarsen’s 
analysis technique. After approval by the client, the resulting specifi cation document 
is handed to the design team, and the software process continues. 

  How to Perform Box 12.1 contains an overview of the nine steps of Gane and Sarsen’s 
structured systems analysis. 
  Despite its many strengths, Gane and Sarsen’s technique does not provide the answer to 
every question. For example, it cannot be used to determine response times. The number of 
input–output channels can be gauged roughly at best. Also, CPU size and timing cannot be 
estimated with any degree of accuracy. These are distinct drawbacks of Gane and Sarsen’s 
technique and, to be fair, of virtually every other technique for either analysis or design. 
Nonetheless, at the end of the classical analysis phase, hardware decisions have to be made, 
whether or not accurate information is available. This situation is considerably better than 
what was done in the past; before methodical approaches to specifying were put forward, 
decisions regarding hardware were made right at the beginning of the software develop-
ment process. Gane and Sarsen’s technique has led to major improvements in the ways 
products are specifi ed, and the fact that Gane and Sarsen and the authors of most competing 
techniques essentially ignore time as a variable should not detract from the advantages that 
these techniques have brought to the software industry. 

How to Perform Structured Systems Analysis

• Draw the data fl ow diagram.

• Decide what sections to computerize and how 
(batch or online).

• Determine the details of the data fl ows.

• Defi ne the logic of the processes.

• Defi ne the data stores.

• Defi ne the physical resources.

• Determine the input–output specifi cations.

• Perform the sizing.

• Determine the hardware requirements.

Box 12.1
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372  Part B  The Workfl ows of the Software Life Cycle

    Structured Systems Analysis: The MSG 
Foundation Case Study 
  The data fl ow diagram of the structured systems analysis for the MSG Foundation 
case study (Section 11.6) is shown in  Figure 12.9 . As refl ected in the DFD, the user 
can perform three different types of operations:

   1. Update investment data, mortgage data, or operating expenses data:

  The USER enters an update_request. To update investment data, process per-
form_selected_update solicits the updated_investment_details from the USER, 
and sends them to the INVESTMENT_DATA data store. Updating mortgage data or 
expenses data is similar.    

12.412.4
Case Study

generate_listing_
of_investments

investment_
details

updated_
investment_

details

investment_
report_
request

updated_
mortgage_

details

mortgage_
details

list_of_
mortgages

mortgage_
report_
request

generate_listing_
of_mortgages

funds_availability_
report_request

available_funds_for_week

list_of_
investments

update_
request

perform_selected_
update

INVESTMENT_DATA

updated_
annual_

operating_
expenses

EXPENSES_DATA

MORTGAGE_DATA

mortgage_
details

annual_
operating_

expenses

investment_
details

USER

compute_availability_of_funds_
and_generate_funds_report

FIGURE 12.9  The data fl ow diagram for MSG Foundation case study.
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  2. Print a listing of investments or mortgages:

  To print a list of investments, the USER enters an investment_report_request. 
Process generate_listing_of_investments then obtains investment data from store 
INVESTMENT_DATA, formats the report, and then prints the report. Printing a listing 
of mortgages is similar.    

  3. Print a report showing available funds for mortgages for the week:

  The USER enters a funds_availability_report_request. To determine how much money 
is available for mortgages for the current week, process compute_availability_of_
funds_and_generate_funds_report obtains: 

•    investment_details from store INVESTMENT_DATA and computes the expected total 
annual return on investments.  

•    mortgage_details from store MORTGAGE_DATA and computes the expected income 
for the week, expected mortgage payments for the week, and expected grants for the 
week.  

•    annual_operating_expenses from store EXPENSES_DATA and computes the expected 
annual operating expenses.         

    Process compute_availability_of_funds_and_generate_funds_report then uses 
these results to compute available_funds_for_week, formats the report, and then prints 
the report.  

  The remainder of the structured systems analysis appears in Appendix D. The organi-
zation and presentation of the material in Appendix D is such that the client can rapidly 
understand exactly what is going to be built.       

  12.5 Other Semiformal Techniques  

 Gane and Sarsen’s technique clearly is more formal than writing a specifi cation document 
in a natural language. At the same time, it is less formal than many of the techniques pre-
sented in the following discussion, such as Petri nets (Section 12.8) and Z (Section 12.9). 
Dart and her coworkers classify analysis and design techniques as informal, semiformal, 
or formal [Dart, Ellison, Feiler, and Habermann, 1987]. In terms of this classifi cation, 
Gane and Sarsen’s structured systems analysis is a     semiformal specifi cation     technique, 
whereas the other two techniques mentioned in this paragraph are formal techniques. 
  Structured systems analysis is used widely; there is a good chance you may be employed 
by an organization that uses structured systems analysis or some variant of it. However, there 
are many other good semiformal techniques; see, for example, the proceedings of the various 
international workshops on software specifi cation and design. Because of space limitations, 
all that will be given here is a brief description of a few well-known techniques. 
      PSL/PSA     [Teichroew and Hershey, 1977] is a computer-aided technique for specifying 
information-processing products. The name comes from the two components of the tech-
nique: the problem statement language (PSL) used to describe the product and the problem 
statement analyzer (PSA) that enters the PSL description into a database and produces 
reports on request. PSL/PSA is still used, particularly for documenting products. 
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      SADT     [Ross, 1985] consists of two interrelated components, a box-and-arrow diagram-
ming language termed     structural analysis     (SA) and a design technique (DT); hence, 
SADT. Stepwise refi nement underlies SADT to a greater extent than with Gane and Sars-
en’s technique; a conscious effort has been made to adhere to Miller’s Law. As Ross [1985] 
puts it, “Everything worth saying, about anything worth saying something about, must be 
expressed in six or fewer pieces.” SADT has been used successfully in specifying a wide 
variety of products, especially complex, large-scale projects. Like many other similar semi-
formal techniques, its applicability to real-time systems is less clear. 
  On the other hand,     SREM     (the software requirements engineering method, pronounced 
“shrem”) was designed explicitly for specifying the conditions under which certain actions 
are to occur [Alford, 1985]. For this reason, SREM has been particularly useful for specify-
ing real-time systems and has been extended to distributed systems. SREM consists of a 
number of components. RSL is a specifi cation language. REVS is a set of tools that per-
form a variety of specifi cation-related tasks, such as translating the RSL specifi cations into 
an automated database, automatically checking for data fl ow consistency (ensuring that 
no data item is used before it has been assigned a value), and generating simulators from 
the specifi cations that can be used to ensure that the specifi cations are correct. In addition, 
SREM has a design technique, DCDS (distributed computing design system). 
  The power of SREM comes from the model underlying the whole technique, a fi nite 
state machine (Section 12.7). As a result of this formal model underlying SREM, it is 
possible to perform the consistency checking mentioned previously and to verify that 
performance constraints on the product as a whole can be met, given the performance 
of individual components. SREM has been used by the U.S. Air Force to specify two 
C 3 I software (command, control, communications, and intelligence) systems [Scheffer, 
Stone, and Rzepka, 1985]. Although SREM proved to be of great use in the classical 
analysis phase, it appears that the REVS tools employed later in the development cycle 
were considered less useful.   

  12.6 Entity-Relationship Modeling  
 The emphasis in structured systems analysis is on the operations, rather than the data, of 
the product to be built. Certainly, the data of the product are also modeled, but the data 
are secondary to the operations. In contrast,     entity-relationship modeling     (ERM) is a 
semiformal data-oriented technique for specifying a product. It has been widely used for 
over 30 years specifying databases [Chen, 1976]. In that application area, the emphasis 
is on the data. Of course, operations are needed to access the data, and the database must 
be organized in such a way as to minimize access times. Nevertheless, the operations per-
formed on the data are less signifi cant. 
  A simple entity-relationship diagram is shown in  Figure 12.10 , which models the rela-
tionships between authors, novels, and readers. There are three entities: Author, Novel, and 
Reader. The top relationship, writes, refl ects that an author writes a novel. This is a one-to-
many relationship, because one author can write more than one novel; this is refl ected by the 
1 next to Author and the n next to Novel. The entity-relationship diagram also shows two 
relationships between Novel and Reader. Both are one-to-many relationships. The relation-
ship on the left models the fact that a reader may read many novels. Similarly, as shown on the 
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right, a reader may own many novels. Two separate relationships are shown because a reader 
can read a novel without owning it, and a reader can buy a novel but not read it. 
  The next example is taken from the domain of suppliers and the parts they supply. 
 Figure 12.11  shows a many-to-many relationship between parts and suppliers. That is, one 
supplier supplies many parts; conversely, a specifi c part can be obtained from many suppli-
ers. This many-to-many relationship is refl ected by the m next to entity Supplier and the n 
next to entity Part. 
  More complex relationships are possible as well. For example, as shown in  Figure 12.12 , 
a Part in turn may be viewed as consisting of a number of component Parts. Also, many-
to-many-to-many relationships are possible. Consider the three entities Supplier, Part, and 
Project shown in that fi gure. A particular part may be supplied by several suppliers, de-
pending on the project. Also, the various parts supplied for a specifi c project may come 
from different suppliers. A many-to-many-to-many relationship is necessary to model such 
a situation accurately. 

Part

Supplier
m

n

is supplied by
for use in

consists of

1 n

Project
p

FIGURE 12.12
A more 
complex entity-
relationship 
diagram.

FIGURE 12.10
A simple entity-
relationship diagram.

n n

1 1

1

n

reads owns

writes

Reader

Novel

Author

FIGURE 12.11
A many-to-many 
entity-relationship 
diagram.

Part

Supplier

m

n

is supplied by
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  The next topic of this chapter is formal techniques. The underlying theme of the next 
four sections is that employing     formal specifi cation     techniques can lead to more pre-
cise analysis artifacts than are possible with semiformal or informal techniques. However, 
the use of formal techniques, in general, requires lengthy training, and software engineers 
using formal techniques need exposure to the relevant mathematics. The following sec-
tions have been written with the mathematical content kept to a minimum. Furthermore, 
wherever possible, mathematical formulations are preceded by informal presentations of 
the same material. Nevertheless, the level of Sections 12.7 through 12.10 is higher than that 
of the rest of the book.   

  12.7 Finite State Machines  
 Consider the following example, originally formulated by the M202 team at the Open Uni-
versity, United Kingdom [Brady, 1977]. A safe has a combination lock that can be in one of 
three positions, labeled 1, 2, and 3. The dial can be turned left or right (L or R). Therefore, 
at any time, six dial movements are possible: 1L, 1R, 2L, 2R, 3L, and 3R. The combina-
tion to the safe is 1L, 3R, 2L; any other dial movement sets off an alarm. The situation is 
depicted in  Figure 12.13 . There is one initial state, Safe Locked. If the input is 1L, then 
the next state is A; but any other dial movement, 1R or 3L, say, brings it to the next state, 
Sound Alarm, one of the two fi nal states. If the correct combination is chosen, then the 
sequence of transitions is from Safe Locked to A to B to Safe Unlocked, the other fi nal 
state.  Figure 12.13  shows a     state transition diagram     (STD) of a fi nite state machine. 
It is not necessary to depict an STD graphically; the same information is shown in tabular 
form in  Figure 12.14 . For each state other than the two fi nal states, the transition to the next 
state is indicated, depending on the way the dial is moved. 
  A     fi nite state machine     (FSM) consists of fi ve parts: a set of states, J; a set of inputs, 
K; the transition function, T, that specifi es the next state given the current state and the cur-
rent input; the initial state, S; and the set of fi nal states, F. In the case of the combination 
lock on the safe, 

  The set of states J is {Safe Locked, A, B, Safe Unlocked, Sound Alarm}.  
  The set of inputs K is {1L, 1R, 2L, 2R, 3L, 3R}.  

FIGURE 12.13
A fi nite state 
machine 
representation 
of a combina-
tion safe.

A B

Any other
dial

movement
Any other

dial movement
Any other
dial movement

Safe Locked Safe Unlocked

Sound Alarm

1L 3R 2L

Initial state

Final state
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  The transition function T is depicted in tabular form in  Figure 12.14 .  
  The initial state S is Safe Locked.  
  The set of fi nal states F is {Safe Unlocked, Sound Alarm}.    

 In more formal terms, a fi nite state machine is a 5-tuple (J, K, T, S, F), where 

  J is a fi nite, nonempty set of     states    .  
  K is a fi nite, nonempty set of     inputs    .  
  T is a function from (J � F) � K into J, called the     transition function    .  
  S ∈ J is the     initial state    .  
  F is the set of     fi nal states    , F � J.    

  Use of the fi nite state machine approach is widespread in computing applications. For 
example, every menu-driven user interface is an implementation of a fi nite state machine. 
The display of a menu corresponds to a state, and entering an input at the keyboard or 
selecting an icon with the mouse is an     event     that causes the product to go into some other 
state. For example, selecting V when the main menu appears on the screen might cause a 
volumetric analysis to be performed on the current data set. A new menu then appears, 
and the user may select G, P, or R. Selecting G causes the results of the calculation to be 
graphed, P causes them to be printed, and R causes a return to the main menu. Each transi-
tion has the form       

    current state   [menu] and   event   [option selected] ⇒   next state    (12.1)

  To specify a product, a useful extension of FSMs is to add a sixth component to the pre-
ceding 5-tuple: a set of predicates, P, where each predicate is a function of the global state, 
Y, of the product [Kampen, 1987] (a     predicate     is something that is either true or false). 
More formally, the transition function, T, is now a function from (J � F) � K � P into J. 
    Transition rules     now have the forms       

    current state   and   event   and   predicate   ⇒   next state    (12.2)

  Finite state machines are a powerful formalism for specifying a product that can be 
modeled in terms of states and transitions between states. To see how this formalism works 
in practice, the technique is now applied to a modifi ed version of the so-called elevator 
problem; see Just in Case You Wanted to Know Box 12.1 for background information on 
the elevator problem. 

                 Table of Next States           
    Current State     Safe Locked     A     B    
Dial Movement

     1L     A     Sound alarm     Sound alarm   
    1R     Sound alarm     Sound alarm     Sound alarm   
    2L     Sound alarm     Sound alarm     Safe unlocked   
    2R     Sound alarm     Sound alarm     Sound alarm   
    3L     Sound alarm     Sound alarm     Sound alarm   
    3R     Sound alarm     B     Sound alarm     

FIGURE 12.14
The transition 
table for the 
fi nite state 
machine of 
Figure 12.13.
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 Just in Case You Wanted to Know Box 12.1 

 The elevator problem truly is a classic problem of software engineering. It fi rst appeared in 
print in 1968 in the fi rst volume of Don Knuth’s landmark book,   The Art of Computer Pro-
gramming   [Knuth, 1968]. It is based on the single elevator in the mathematics building at 
the California Institute of Technology. The example was used to illustrate coroutines in the 
mythical programming language MIX. 
  By the mid-1980s, the elevator problem had been generalized to n elevators; in addition, 
specifi c properties of the solution had to be proven, for example, that an elevator eventually 
would arrive within a fi nite time. It was now   the   problem for researchers working in the area 
of formal specifi cation languages, and any proposed formal specifi cation language had to 
work for the elevator problem. 
  The problem attained broader prominence in 1986 when it was published in   ACM SIG-
SOFT Software Engineering Notes   in the Call for Papers for the Fourth International Workshop 
on Software Specifi cation and Design [IWSSD, 1986]. The elevator problem was one of fi ve 
problems to be used as examples by researchers in their submissions to the conference, held 
in Monterey, California, in May 1987. In the form in which it appeared in the Call for Papers, 
it was termed the   lift problem   and attributed to N. (Neil) Davis of STC-IDEC (a division of 
Standard Telecommunications and Cable, in Stevenage, United Kingdom). 
  Since then, the problem has attained even wider prominence and been used to dem-
onstrate an extensive variety of techniques within software engineering in general, not just 
formal specifi cation languages. It is used in this book to illustrate every technique because, 
as you soon will discover, the problem is by no means as simple as it looks. 

    Finite State Machines: The Elevator 
Problem Case Study  
 The problem concerns the logic required to move n elevators between m fl oors ac-
cording to the following constraints:

   1. Each     elevator     has a set of m     buttons    , one for each fl oor. These illuminate when 
pressed and cause the elevator to visit the corresponding fl oor. The illumination is 
canceled when the corresponding fl oor is visited by the elevator.  

  2. Each fl oor, except the fi rst fl oor and the top fl oor, has two buttons, one to request 
an up-elevator and one to request a down-elevator. These buttons illuminate when 
pressed. The illumination is canceled when an elevator visits the fl oor and then 
moves in the desired direction.  

  3. When an elevator has no requests, it remains at its current fl oor with its doors 
closed.      

  The product now is specifi ed using an     extended fi nite state machine     [Kam-
pen, 1987]. There are two sets of buttons in the problem. In each of the n elevators, 
there is a set of m buttons, one for each fl oor. Because these n � m buttons are inside 
the elevators, they are referred to as     elevator buttons    . Then, on each fl oor there are 
two buttons, one to request an up-elevator, one to request a down-elevator. These are 
referred to as     fl oor buttons    . 

12.7.112.7.1
Case Study
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  The state transition diagram for an elevator button is shown in  Figure 12.15 . Let EB 
(e, f) denote the button in elevator e that is pressed to request fl oor f. EB (e, f) can be 
in two states, with the button on (    illuminated    ) or off. More precisely, the states are       

  EBON (e, f):   Elevator Button (e, f) ON 

  EBOFF (e, f): Elevator Button (e, f) OFF  
(12.3)

  If the button is on and the elevator has arrived at fl oor f, then the button is turned 
off. Conversely, if the button is off and it is pressed, then the button comes on. Two 
events are involved:       

  EBP (e, f):   Elevator Button (e, f) Pressed 

  EHAF (e, f): Elevator e Has Arrived at Floor f  
(12.4)

  To defi ne the state transition rules connecting these events and states, a predicate 
V (e, f) is needed.       

  V (e, f): Elevator e is Visiting (stopped at) fl oor f  (12.5)

  Now, the formal transition rules can be stated. If elevator button (e, f) is off (cur-
rent state) and elevator button (e, f) is pressed (event) and elevator e is not visiting 
fl oor f (predicate), then the button is turned on. In the format of transition rule (12.2) 
this becomes       

  EBOFF (e, f) and EBP (e, f) and not V (e, f) ⇒ EBON (e, f)  (12.6)

  If the elevator is currently visiting fl oor f, nothing happens. In Kampen’s formalism, 
events that do not trigger a transition indeed may occur; but if they do, then they are 
ignored. 
  Conversely, if the elevator has arrived at fl oor f and the elevator button is on, then 
it is turned off. This is expressed as       

  EBON (e, f) and EHAF (e, f) ⇒ EBOFF (e, f)  (12.7)

  Next, the fl oor buttons are considered. FB (d, f) denotes the button on fl oor f that 
requests an elevator traveling in direction d. The STD for fl oor button FB (d, f) is 
shown in  Figure 12.16 . More precisely, the states are       

  FBON (d, f):  Floor Button (d, f) ON 

  FBOFF (d, f): Floor Button (d, f) OFF  
(12.8)

  If the button is on and an elevator has arrived at fl oor f and is about to travel in the 
correct direction, d, then the button is turned off. Conversely, if the button is off and 
it is pressed, then the button comes on. Again, two events are involved:

EBP (e, f )

EHAF (e, f )
EBOFF (e, f ) EBON (e, f )

 FIGURE 12.15     The STD for an elevator button.  
 [Kampen, 1987]. (© 1987 IEEE) 
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         FBP (d, f):            Floor Button (d, f) Pressed 

  EHAF (1. . n, f): Elevator 1 or . . . or n Has Arrived at Floor f  
(12.9)

  Note the use of 1 . . n to denote disjunction. Throughout this section an expres-
sion such as P (a, 1 . . n, b) denotes

         P (a, 1, b) or P (a, 2, b) or . . . or P (a, n, b)  (12.10)

  To defi ne the state transition rules connecting these events and states, a predicate 
again is needed. In this case, it is S (d, e, f), which is defi ned as follows: 

        S (d, e, f): Elevator e is visiting fl oor f and the direction 
 in which it is about to move is either up (d � U),  (12.11)
 down (d � D), or no requests are pending (d = N) 

  This predicate actually is a state. In fact, the formalism allows both events and 
states to be treated as predicates. 
  Using S (d, e, f), the formal transition rules are       

  FBOFF (d, f) and FBP (d, f) and not S (d, 1 . . n, f) ⇒ 
  FBON (d, f), 
  FBON (d, f) and EHAF (1 . . n, f) and S (d, 1 . . n, f) ⇒  

(12.12)

  FBOFF (d, f), d = U or D 

  That is, if the fl oor button at fl oor f for motion in direction d is off and the but-
ton is pushed and none of the elevators currently is visiting fl oor f about to move in 
direction d, then the fl oor button is turned on. Conversely, if the button is on and at 
least one elevator has arrived at fl oor f and the elevator is about to move in direction 
d, then the button is turned off. The notation 1 . . n in S (d, 1 . . n, f) and EHAF 
(1 . . n, f) was defi ned in defi nition (12.10). The predicate V (e, f) of defi nition (12.5) 
can be defi ned in terms of S (d, e, f) as follows:       

  V (e, f) � S (U, e, f) or S (D, e, f) or S (N, e, f)  (12.13)

  The states of the elevator button and fl oor button were straightforward to defi ne. 
Turning to the elevators, complications arise. The state of an elevator essentially con-
sists of a number of component substates. Kampen [1987] identifi es several, such 
as the elevator slowing and stopping, the door opening, the door open with a timer 
running, or the door closing after a     timeout    . He makes the reasonable assumption 
that the     elevator controller     (the mechanism that directs the motion of the eleva-
tor) initiates a state such as S (d, e, f) and that the controller then moves the elevator 

 FIGURE 12.16      The STD for a fl oor button 
  [Kampen 1987]. (© 1987 IEEE) 

FBOFF (d, f ) FBON (d, f )
EHAF (1.. n, f )

FBP (d, f )
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through the substates. Three elevator states can be defi ned, one of which, S (d, e, f), 
was defi ned in defi nition (12.11) but is included here for completeness.

         M (d, e, f): Elevator e is  M oving in direction d (fl oor f is next) 

  S (d, e, f):     Elevator e is  S topped (d-bound) at fl oor f  (12.14)
  W (e, f):        Elevator e is  W aiting at fl oor f (door closed) 

  These states are shown in  Figure 12.17 . Note that the three stopped states S (U, e, f), 
S (N, e, f), and S (D, e, f) have been grouped into one larger state to simplify the 
diagram and to reduce the overall number of states. 
  The events that can trigger state transitions are DC (e, f), the closing of the     door     
of elevator e at fl oor f; ST (e, f), which occurs when the sensor on the elevator is 
triggered as it nears fl oor f and the elevator controller must decide whether to stop 
the elevator at that fl oor; and RL, which occurs whenever an elevator button or a fl oor 
button is pressed and enters its ON state:       

  DC (e, f): Door Closed for elevator e, at fl oor f 

  ST (e, f):    Sensor Triggered as elevator e nears fl oor f  (12.15)
  RL:             Request Logged (button pressed) 

  These events are indicated in  Figure 12.17 . 
  Finally, the state transition rules for an elevator can be presented. They can be 
deduced from  Figure 12.17 , but in some cases, additional predicates are necessary. 
  To be more precise,  Figure 12.17  is nondeterministic; among other reasons, the 
predicates are necessary to make the STD deterministic. The interested reader should 

S (N, e, f )

M (U, e, f � 1)

W (e, f )

M (U, e, f )

S (U, e, f ) S (D, e, f )

M (D, e, f )

M (D, e, f � 1)

RL RL

RL

RL RL

DC (e, f ) DC (e, f )

DC (e, f )

ST (e, f )

ST (e, f )

 FIGURE 12.17      The STD for the elevator   [Kampen, 1987]. (© 1987 IEEE) 
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consult [Kampen, 1987] for the complete set of rules; for the sake of brevity, the only 
rules presented here are those that declare what happens when the door closes. The 
elevator moves up, down, or enters a wait state, depending on the current state:       

  S (U, e, f) and DC (e, f) ⇒ M (U, e, f � 1) 

  S (D, e, f) and DC (e, f) ⇒ M (D, e, f � 1)  (12.16)
  S (N, e, f) and DC (e, f) ⇒ W (e, f) 

  The fi rst rule states that, if elevator e is in state S (U, e, f), that is, stopped at fl oor 
f about to go up, and the doors close, then the elevator moves up toward the next fl oor. 
The second and third rules correspond to the cases of the elevator about to go down 
or with no requests pending. 
  The format of these rules refl ects the power of fi nite state machines for specifying 
complex products. Instead of having to list a complex set of preconditions that have 
to hold for the product to do something and then having to list all the conditions that 
hold after the product has done it, the specifi cations take the simple form       

    current state   and   event   and   predicate ⇒ next state   

  This type of specifi cation is easy to write, easy to validate, and easy to convert into 
a design and into code. In fact, it is straightforward to construct a CASE tool that will 
translate a fi nite state machine specifi cation directly into source code. Maintenance 
is achieved by replay. That is, if new states or events are needed, the specifi cations 
are modifi ed and a new version of the product is generated directly from the new 
specifi cations. 
  The FSM approach is more precise than the graphical technique of Gane and 
Sarsen presented in Section 12.3.1, but it is almost as easy to understand. It has a 
drawback, in that for large systems, the number of (  state, event, predicate  ) 
triples can grow rapidly. Also, like Gane and Sarsen’s technique, timing consider-
ations are not handled in Kampen’s formalism. 
  These problems can be solved using statecharts, an extension of FSMs [Harel 
et al., 1990]. Statecharts are extremely powerful and are supported by a CASE work-
bench, Rhapsody. The approach has been successfully used for a number of large 
real-time systems. 
  Another formal technique that can handle timing issues is Petri nets.   

  12.8 Petri Nets  
 A major diffi culty with specifying concurrent systems is coping with timing. This diffi culty 
can manifest itself in many different ways, such as synchronization problems, race condi-
tions, and deadlock [Silberschatz, Galvin, and Gagne, 2002]. Although timing problems 
can arise as a consequence of a poor design or a faulty implementation, such designs and 
implementations often are the consequence of poor specifi cations. If specifi cations are not 
properly drawn up, there is a very real risk that the corresponding design and implemen-
tation will be inadequate. One powerful technique for specifying systems with potential 
timing problems is Petri nets. A further advantage of this technique is that it can be used 
for the design as well. 
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  Petri nets were invented by Carl Adam Petri [Petri, 1962]. Originally of interest only 
to automata theorists, Petri nets have found wide applicability in computer science, being 
used in such fi elds as performance evaluation, operating systems, and software engineer-
ing. In particular, Petri nets have proven to be useful for describing concurrent interrelated 
activities. But, before the use of Petri nets for specifi cations can be demonstrated, a brief 
introduction to Petri nets is given for those readers who may be unfamiliar with them. 
  A     Petri net     consists of four parts: a set of places, P; a set of transitions, T; an input 
function, I; and an output function, O. Consider the Petri net shown in  Figure 12.18 . 

  The set of places, P, is {p 1 , p 2 , p 3 , p 4 }.  
  The set of transitions, T, is {t 1 , t 2 }.    

  The input functions for the two transitions, represented by the arrows from places to 
transitions, are       

 I (t 1 ) � {p2, p 4 } 

 I (t 2 ) � {p 2 } 

  The output functions for the two transitions, represented by the arrows from transitions 
to places, are       

 O (t 1 ) � {p 1 } 

 O (t 2 ) � {p 3 , p 3 } 

 Note the duplication of p 3 ; there are two arrows from t 2  to p 3 . 
  More formally [Peterson, 1981], a Petri net structure is a 4-tuple, C = (P, T, I, O):       

 P � {p 1 , p 2 , . . . , p n } is a fi nite set of     places    , n 	 0. 
 T � {t 1 , t 2 , . . . , t m } is a fi nite set of     transitions    , m 	 0, with P and T disjoint. 
 I : T → P
 is the     input function    , a mapping from transitions to bags of places. 
 O : T → P
 is the     output function    , a mapping from transitions to bags of places. 

  (A     bag    , or     multiset    , is a generalization of a set that allows for multiple instances of an 
element.) 

 FIGURE 12.18 
   A Petri net. 

p1

p2

p4

p3

t1

t2
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384  Part B  The Workfl ows of the Software Life Cycle

      Marking     a Petri net is the assignment of     tokens     to that Petri net.  Figure 12.19  contains 
four tokens: one in p 1 , two in p 2 , none in p 3 , and one in p 4 . The marking can be represented 
by the vector (1, 2, 0, 1). Transition t 1  is     enabled     (ready to fi re), because there are tokens in 
p 2  and in p 4 ; in general, a transition is enabled if each of its input places has as many tokens 
in it as there are arcs from the place to that transition. If t 1  were to fi re, one token would be 
removed from p 2  and one from p 4 , and one new token would be placed in p 1 . The number 
of tokens is not conserved—two tokens are removed, but only one new one is placed in p 1 . 
In  Figure 12.19 , transition t 2  also is enabled, because there are tokens in p 2 . If t 2  were to fi re, 
one token would be removed from p 2 , and two new tokens would be placed in p 3 . 
  Petri nets are nondeterministic; that is, if more than one transition can fi re, then any one 
of them can be fi red.  Figure 12.19  has marking (1, 2, 0, 1); both t 1  and t 2  are enabled. 
Suppose that t 1  fi res. The resulting marking (2, 1, 0, 0) is shown in  Figure 12.20 , where 
only t 2  is enabled. It fi res, the enabling token is removed from p 2 , and two new tokens are 
placed in p 3 . The marking now is (2, 0, 2, 0), as shown in  Figure 12.21 . 
  More formally [Peterson, 1981], a marking, M, of a Petri net, C = (P, T, I, O), is a func-
tion from the set of places, P, to the set of nonnegative integers:       

 M : P → {0, 1, 2, . . . } 

 A     marked Petri net     then is a 5-tuple (P, T, I, O, M). 

p1

p2

p4

p3

t1

t2

p1

p2

p4

p3

t1

t2

 FIGURE 12.19 
   A marked Petri 
net. 

 FIGURE 12.20 
   The Petri net 
of  Figure 12.19  
after transition 
t1 fi res.    
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  An important extension to a Petri net is an     inhibitor arc    . In  Figure 12.22 , the inhibitor 
arc is marked by a small circle rather than an arrowhead. Transition t 1  is enabled because a 
token is in p 3  but no token is in p 2 . In general, a transition is enabled if at least one token is 
on each of its (normal) input arcs and no tokens are on any of its inhibitor input arcs. This 
extension is used in the Petri net specifi cation of the elevator problem case study of Section 
12.7.1 [Guha, Lang, and Bassiouni, 1987]. 

 FIGURE 12.21 
   The Petri net 
of  Figure 12.20  
after transition 
t 2  fi res.   

p1

p2

p4

p3

t1

t2

 FIGURE 12.22 
   A Petri net with 
an inhibitor arc. 

p1

p2

p3

t1

    Petri Nets: The Elevator Problem Case Study  
 Recall that an n elevator system is to be installed in a building with m fl oors. In this 
Petri net specifi cation, each fl oor in the building is represented by a place, F f , 1 � f � 
m, in the Petri net; an elevator is represented by a token. A token in F f  denotes that 
an elevator is at fl oor f.   

     First Constraint 
 Each elevator has a set of m buttons, one for each fl oor. These illuminate when 
pressed and cause the elevator to visit the corresponding fl oor. The illumination is 
canceled when the corresponding fl oor is visited by the elevator. 

12.8.112.8.1
Case Study
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386  Part B  The Workfl ows of the Software Life Cycle

  To incorporate this into the specifi cation, additional places are needed. The eleva-
tor button for fl oor f is represented in the Petri net by place EB f , 1 � f � m. More 
precisely, because there are n elevators, the place should be denoted EB f,e  with 1 � 
f � m, 1 � e � n. But, for the sake of simplicity of notation, the subscript e repre-
senting the elevator is suppressed. A token in EB f  denotes that the elevator button for 
fl oor f is illuminated. Because the button must be illuminated the fi rst time the button 
is pressed and subsequent button presses must be ignored, this is specifi ed using a 
Petri net as shown in  Figure 12.23 . First, suppose that button EB f  is not illuminated. 
Accordingly no token is in place and, because of the presence of the inhibitor arc, 
transition EB f  pressed is enabled. The button now is pressed. The transition fi res and 
a new token is placed in EB f , as shown in  Figure 12.23 . Now, no matter how many 
times the button is pressed, the combination of the inhibitor arc and the presence of 
the token means that transition EB f  pressed cannot be enabled. Therefore, no more 
than one token can ever be in place EB f . 
  Furthermore, suppose that the elevator is to travel from fl oor g to fl oor f. Because 
the elevator is at fl oor g, a token is in place F g , as shown in  Figure 12.23 . Transition 
Elevator in action is enabled and fi res. The tokens in EB f  and F g  are removed, turning 
off button EB f , and a new token appears in F f ; the fi ring of this transition brings the 
elevator from fl oor g to fl oor f. 
  This motion from fl oor g to fl oor f cannot take place instantaneously. To handle 
this and similar issues, such as the physical impossibility for a button to illuminate 
at the very instant it is pressed, timing must be added to the Petri net model. That is, 
whereas in classical Petri net theory, transitions are instantaneous, in practical situa-
tions, such as the elevator problem case study, timed Petri nets [Coolahan and Rous-
sopoulos, 1983] are needed to associate a nonzero time with a transition.  

  Second Constraint 
 Each fl oor, except the fi rst fl oor and top fl oor, has two buttons, one to request an 
up-elevator and one to request a down-elevator. These buttons illuminate when 
pressed. The illumination is canceled when an elevator visits the fl oor and then moves 
in the desired direction. 
  The fl oor buttons are represented by places FB u   f  and FB d   f  representing the buttons 
for requesting up- and down-elevators, respectively. More precisely, fl oor 1 has a 
button FB u   1 , fl oor m has a button FB d   m , and the intermediate fl oors each have two 
buttons, FB u   f  and FB d 

  f , 1 � f � m. The situation when an elevator reaches fl oor f from 

 FIGURE 12.23 
   A Petri net 
representation 
of an elevator 
button   [Guha, 
Lang, and 
Bassiouni, 
1987]. (© 1987 
IEEE.) 

Elevator in actionEBf pressed Ff

Fg

EBf
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fl oor g with one or both buttons illuminated is shown in  Figure 12.24 . In fact, that 
fi gure needs further refi nement, because if both the buttons are illuminated, one is 
turned off on a nondeterministic basis. To ensure that the correct button is turned off 
requires a Petri net model too complicated to present here; see, for example, [Ghezzi 
and Mandrioli, 1987].  

  Third Constraint 
 When an elevator has no requests, it remains at its current fl oor with its doors 
closed. 
  This is achieved easily: If there are no requests, no Elevator in action transition 
is enabled. 

  Not only can Petri nets be used to represent the specifi cations, they can be used for the 
design as well [Guha, Lang, and Bassiouni, 1987]. However, even at this stage of the devel-
opment of the product, it is clear that Petri nets possess the expressive power necessary for 
specifying the synchronization aspects of concurrent systems.     

  12.9 Z  
 A formal specifi cation language gaining widely in popularity is     Z     [Spivey, 2001]. (For 
the correct pronunciation of the name   Z  , see Just in Case You Wanted to Know Box 12.2.) 
Use of Z requires knowledge of set theory, functions, and discrete mathematics, including 
fi rst-order logic. Even for users with the necessary background (and this includes most 
computer science majors), Z initially is diffi cult to learn because, in addition to the usual 
set theoretic and logic symbols like ∃, �, and ⇒, it uses many unusual special symbols, 
such as ⊕,  , | →, and � | →. 
  For insight into how Z is used to specify a product, the elevator problem case study of 
Section 12.7.1 is considered again. 

 FIGURE 12.24 
   A Petri net 
representation 
of fl oor buttons.  
 [Guha, Lang, 
and Bassiouni, 
1987]. (© 1987 
IEEE.) 

Fg

Elevator in action

Elevator in action

FBu
f pressed FfFBu

f

FBd
f pressed FfFBd

f
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388  Part B  The Workfl ows of the Software Life Cycle
 Just in Case You Wanted to Know Box 12.2 

 The name   Z   was given to the formal specifi cation language by its inventor Jean-Raymond 
Abrial in honor of the great set theorist Ernst Friedrich Ferdinand Zermelo (1871–1953). 
Because it was developed at Oxford University [Abrial, 1980], the name   Z   is properly pro-
nounced “zed,” the way the British pronounce the 26th letter of the alphabet. 
  Lately, however, moves are afoot to acknowledge that Z is named after a German math-
ematician and to pronounce it the German way, “tzet.” In response, Francophiles and Fran-
cophones point out that Abrial is a Frenchman and that the letter   Z   is pronounced “zed” in 
French, too. 
  The one totally unacceptable pronunciation is the American style, that is, “zee.” The 
reason is that Z (pronounced “zee”) is the name of an American fourth-generation lan-
guage (see Section 15.2). However, we cannot trademark a single letter of the alphabet. 
Furthermore, we are free to pronounce the letter   Z   the way we wish. Nevertheless, within 
the programming language context, the pronunciation “zee” refers to the 4GL, not the 
formal specifi cation language. 
  Watch this space for the next round in the Z pronunciation wars. 

     Z: The Elevator Problem Case Study  
 In its simplest form, a Z specifi cation consists of four sections:

   1. Given sets, data types, and constants.  
  2. State defi nition.  
  3. Initial state.  
  4. Operations.    

  Each of these sections is examined in turn.   

     1. Given Sets 
 A Z specifi cation begins with a list of   given sets  , that is, sets that need not be 
defi ned in detail. The names of any such sets appear in brackets. For the elevator 
problem case study, the given set will be called Button, the set of all buttons. The Z 
specifi cation therefore begins       

 [Button]  

  2. State Defi nition 
 A Z specifi cation consists of a number of schemata (plural of     schema    ). Each schema 
consists of a group of variable declarations together with a list of predicates that 
constrain the possible values of the variables. The format of a schema   S   is shown in 
 Figure 12.25 . 
  In the elevator problem case study, there are four subsets of Button: the fl oor 
buttons, the elevator buttons, buttons (the set of all buttons in the elevator problem 
case study), and pushed (the set of those buttons that have been pushed and there-
fore are on).  Figure 12.26  depicts the schema   Button_State  , a     state defi nition    . 

12.9.112.9.1
Case Study
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The symbol   P   denotes the power set (the set of all subsets of a given set). The con-
straints, that is, the statements below the horizontal line, assert that the set of fl oor_
buttons and elevator_buttons are disjoint and that together they constitute the set of 
buttons. (The sets fl oor_buttons and elevator_buttons are not needed in what fol-
lows; they are included in  Figure 12.26  only to demonstrate the power of Z.) 

   3. Initial State 
 The     abstract initial state     describes the state when the system fi rst is turned on. The 
abstract initial state for the elevator problem case study is       

   Button_Init     ̂=   [  Button_State  ′ | pushed′ = ∅] 

  This is a     vertical schema defi nition    , as opposed to a     horizontal schema defi -
nition    , such as  Figure 12.26 . The vertical schema asserts that, when the elevator system 
is fi rst turned on, the set pushed initially is empty; that is, all the buttons are off.  

  4. Operations 
 If a button is pushed for the fi rst time, then that button is turned on. The button is added 
to the set pushed. This is depicted in  Figure 12.27 , in which operation   Push_Button   
is defi ned. The Δ in the fi rst line of the schema denotes that this operation changes the 
state of   Button_State  . The operation has one input variable, button?. As in various 
other languages (such as CSP [Hoare, 1985]), the question mark (?) denotes an input 
variable, whereas an exclamation mark (!) denotes an output variable. 

S
declarations

predicates

 FIGURE 12.25 
   The format of Z 
schema   S  . 

Button_State
floor_buttons, elevator_buttons : P Button
buttons : P Button
pushed : P Button

floor_buttons � elevator_buttons � �

floor_buttons � elevator_buttons � buttons

 FIGURE 12.26 
   The Z schema 
  Button_State  . 

  FIGURE 12.27 
   A Z specifi ca-
tion of operation 
  Push_Button  .  

Push_Button
Button_State
button?: Button

(button? � buttons) �
(((button? � pushed) � (pushed� � pushed � {button?})) �
((button? � pushed) � (pushed� � pushed)))
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390  Part B  The Workfl ows of the Software Life Cycle

  The predicate part of an     operation     consists of a group of preconditions that 
must hold before the operation is invoked and postconditions that must hold after the 
operation has completed execution. Provided the preconditions are met, the postcon-
ditions hold after completing execution. However, if the operation is invoked without 
the preconditions being satisfi ed, unspecifi ed (and therefore unpredictable) results 
occur. 
  The fi rst precondition of  Figure 12.27  states that button? must be a member 
of buttons, the set of all buttons in this elevator system. If the second precondi-
tion, button? ∉ pushed, is met (that is, if the button is not on), then the set of pushed 
buttons is updated to include button?. In Z, the new value of a variable is denoted 
by a prime (′). Therefore, the postcondition says that, after operation   Push_Button   
has been performed, button? must be added to the set pushed. There is no need 
to turn on the button explicitly; it is suffi cient that button? is now an element of 
pushed. 
  The other possibility is that an already pushed button is pushed again. Because 
button? ∈ pushed, the third precondition holds  1   and, as required, nothing happens. 
This is indicated by the statement pushed′ � pushed; the new state of pushed is 
the same as the old state. 
  Now, suppose an elevator arrives at a fl oor. If the corresponding fl oor button is 
on, then it must be turned off, and similarly for the corresponding elevator button. 
That is, if button? is an element of pushed, then it must be removed from the set, as 
shown in  Figure 12.28 . (The symbol \ denotes set difference.) However, if a button is 
not on, then set pushed is unchanged. 
  The solution presented in this section is an oversimplifi cation in that it does not dis-
tinguish between up and down fl oor buttons. Nevertheless, it gives an indication how Z 
can be used to specify the behavior of the buttons in the elevator problem case study.   

  12.9.2 Analysis of Z 
 Z has been used successfully in a wide variety of projects, including CASE tools [Hall, 
1990], a real-time kernel [Spivey, 1990], and an oscilloscope [Delisle and Garlan, 1990]. 

 FIGURE 12.28 
   A Z specifi cation 
of operation 
  Floor_Arrival  . 

Floor_Arrival
Button_State
button?: Button

(button? � buttons) �
(((button? � pushed) � (pushed� � pushed \ {button?})) �
((button? � pushed) � (pushed� � pushed)))

  1  Without the third precondition, the specifi cation would not state what is to happen if a button that has already 
been pushed is pushed again. The results would then be unspecifi ed. 
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Z has also been used to specify large portions of a release of CICS, the IBM transaction-
processing system [Nix and Collins, 1988]. 
  These successes perhaps are somewhat surprising, in view of the fact that, even for the 
simplifi ed version of the elevator problem case study, it is clear that Z is not straightfor-
ward to use. First is the problem caused by the notation; a new user has to learn the set 
of symbols and their meanings before being able to read Z specifi cations, let alone write 
them. Second, not every software engineer has the required training in mathematics to be 
able to use Z (although recent graduates of almost all computer science programs either 
know enough mathematics to use Z or could learn what they still need to know with little 
diffi culty). 
  Z perhaps is the most widely used formal language of its type. Why is this, and why 
has Z been so successful, especially on large-scale projects? A number of different reasons 
have been put forward: 

•   It has been found that it is easy to fi nd faults in specifi cations written in Z, especially 
during inspections of the specifi cations themselves and inspections of designs or code 
against the formal specifi cations [Nix and Collins, 1988; Hall, 1990].  

•   Writing Z specifi cations requires the specifi er to be extremely precise; as a result of this 
need for exactness, there appear to be fewer ambiguities, contradictions, and omissions 
than with informal specifi cations.  

•   As a formal language, Z allows developers to prove specifi cations correct when neces-
sary. Accordingly, although some organizations rarely do any correctness proving of Z, 
such proofs have been done, even for such practical specifi cations as the CICS storage 
manager [Woodcock, 1989].  

•   It has been suggested that software professionals with only high-school mathematics 
can be taught to write Z specifi cations in a relatively short period of time [Hall, 1990]. 
Clearly such individuals cannot prove the resulting specifi cations to be correct, but then 
formal specifi cations do not necessarily have to be proven to be correct.  

•   The use of Z has decreased the cost of software development. No doubt more time has 
to be spent on the specifi cations themselves than when informal techniques are used, but 
the overall time for the complete development process is decreased.  

•   The problem that the client cannot understand specifi cations written in Z has been solved 
in a number of ways, including rewriting the specifi cations in natural language. The 
resulting natural language specifi cations have been found to be clearer than informal 
specifi cations constructed from scratch. (This also was the experience with Meyer’s 
English paraphrase of his formal specifi cation for Naur’s text-processing problem, 
described in Section 12.2.1.)    

  The bottom line is that, notwithstanding the arguments to the contrary, Z has been suc-
cessfully used in the software industry for a number of large-scale projects. Although the 
vast majority of specifi cations continue to be written in languages considerably less formal 
than Z, there is a growing global trend toward the use of formal specifi cations. The use of 
such formal specifi cations traditionally has been largely a European practice. However, 
more and more organizations in the United States are employing formal specifi cations of 
one sort or another. The extent to which Z and similar languages will be used in the future 
remains to be seen.    
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  12.10 Other Formal Techniques  
 Many other formal techniques have been proposed. These techniques are extremely varied. 
For example,     Anna     [Luckham and von Henke, 1985] is a formal specifi cation language 
for Ada. Some formal techniques are knowledge based, such as     Gist     [Balzer, 1985]. Gist 
was designed so users could describe processes in a way as close as possible to the way 
we think about processes. This was to be achieved by formalizing the constructs used in 
natural languages. In practice, Gist specifi cations are as hard to read as most other formal 
specifi cations, so much so that a paraphraser from Gist to English has been implemented. 
      Vienna defi nition method     (VDM) [Jones, 1986b] is a technique based on denota-
tional semantics [Gordon, 1979]. The VDM can be applied, not just to the specifi cations, 
but also to the design and implementation. The VDM has been used successfully in a num-
ber of projects, most spectacularly in the Dansk Datamatik Center development of the 
DDC Ada Compiler System [Oest, 1986]. 
  A different way of looking at specifi cations is to view them in terms of sequences of 
events, where an event is either a simple action or a communication that transfers data into 
or out of the system. For example, in the elevator problem case study, one event consists of 
pushing the elevator button for fl oor f on elevator e and its resulting illumination. Another 
event is elevator e leaving fl oor f in a downward direction and canceling the illumination of 
the corresponding fl oor button. The language     Communicating Sequential Processes     
(CSP), invented by Hoare [1985], is based on the idea of describing the behavior of a 
system in terms of such events. In CSP, a process is described in terms of the sequences 
of events in which the process engages with its environment. Processes interact with each 
other by sending messages to one another. CSP allows processes to be combined in a wide 
variety of ways, such as sequentially, in parallel, or interleaved nondeterministically. 
  The power of CSP lies in the executable nature of CSP specifi cations [Delisle and 
Schwartz, 1987]; as a result, they can be checked for internal consistency. In addition, 
CSP provides a framework for going from specifi cations to design to implementation in 
a sequence of steps that preserve validity. In other words, if the specifi cations are correct 
and the transformations are performed correctly, then the design and implementation are 
correct as well. Going from design to implementation is particularly straightforward if the 
implementation language is Ada. 
  However, CSP also has its weaknesses. In particular, like Z, it is not an easy language 
to learn. An attempt was made to include a CSP specifi cation for the elevator problem case 
study [Schwartz and Delisle, 1987] in this book. But the quantity of essential prelimi-
nary material and the level of detail of explanation needed to describe each CSP statement 
adequately were simply too great to permit inclusion in a book as general as this one. 
The relationship between the power of a specifi cation language and its diffi culty of use is 
expanded in Section 12.11.   

  12.11 Comparison of Classical Analysis Techniques  
 The main lesson of this chapter is that every development organization has to decide what 
type of specifi cation language is appropriate for the product about to be developed. An 
informal technique is easy to learn but lacks the power of a semiformal or formal technique. 
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Conversely, each formal technique supports a variety of features that may include execut-
ability, correctness proving, or transformability to design and implementation through a 
series of correctness-preserving steps. Although generally the more formal the technique, 
the greater its power, formal techniques can be diffi cult to learn and use. Also, a formal 
specifi cation can be diffi cult for the client to understand. In other words, there is a trade-off 
between ease of use and the power of a specifi cation language. 
  In some circumstances, the choice of specifi cation language type is easy. For example, if the 
vast majority of the members of the development team have no training in computer science, 
then it is virtually impossible to use anything other than an informal or semiformal specifi ca-
tion technique. Conversely, where a mission-critical real-time system is being built in a re-
search laboratory, the power of a formal specifi cation technique almost certainly is required. 
  An additional complicating factor is that many of the newer formal techniques have not 
been tested under practical conditions. Considerable risk is involved in using such a technique. 
Large sums of money are needed to pay for training the relevant members of the development 
team, and more money will be spent while the team adjusts from using the language in the 
classroom to using it on the actual project. Furthermore, the language’s supporting software 
tools might not work properly, as happened with SREM [Scheffer, Stone, and Rzepka, 1985], 
resulting in additional expense and time slippage. But, if everything works and the software 
project management plan takes into account the additional time and money needed when a 
new technology is used on a nontrivial project for the fi rst time, huge gains are possible. 
  Which analysis technique should be used for a specifi c project? It depends on the proj-
ect, the development team, the management team, and myriad other factors, such as the 
client insisting that a specifi c method be used (or not used). As with so many other aspects 
of software engineering, trade-offs have to be made. Unfortunately, there is no simple rule 
for deciding which analysis technique to use. 
  Figure 12.29 is a summary of the ideas of this section. 

    12.12 Testing during Classical Analysis  
 During classical analysis, the functionality of the proposed product is expressed precisely 
in the specifi cation document. It is vital to verify that the specifi cation document is correct. 
One way to do this is by means of a walkthrough of the document (Section 6.2.1). 
  A more powerful mechanism for detecting faults in specifi cation documents is an 
inspection (Section 6.2.3). A team of inspectors reviews the specifi cations against a check-
list. Typical items on a specifi cation inspection checklist are these: Have the required hard-
ware resources been specifi ed? Have the acceptance criteria been specifi ed? 
  Inspections were suggested fi rst by Fagan [1976] in the context of testing the design and 
the code. Fagan’s work is described in detail in Section 6.2.3. However, inspections also 
have proven to be of considerable use in testing specifi cations. For example, Doolan [1992] 
used inspections to validate the specifi cations of a product that, when built, consisted of 
over 2 million lines of Fortran. From data on the cost of fi xing faults in the product, he 
could deduce that each hour invested in inspections saved 30 hours of execution-based fault 
detection and correction. 
  When a specifi cation has been drawn up using a formal technique, other testing tech-
niques can be applied. For example, correctness-proving methods (Section 6.5) can be 
employed. Even if formal proofs are not performed, informal proof techniques such as 
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those used in Section 6.5.1 can be an extremely useful way of highlighting specifi cation 
faults. In fact, the product and its proof should be developed in parallel. In this way, faults 
are detected quickly.   

  12.13 CASE Tools for Classical Analysis  

 Two classes of CASE tools are particularly helpful during classical analysis. The fi rst is 
a graphical tool. Whether a product is represented using data fl ow diagrams, Petri nets, 
entity-relationship diagrams, or any of the many other representations omitted from this 
book simply for reasons of space, drawing the entire product by hand is a lengthy process. 
In addition, making substantial changes can result in having to redraw everything from 
scratch. A drawing tool therefore is a great time saver. Tools of this type exist for the analy-
sis techniques described in this chapter, as well as many other graphical representations for 
specifi cations. A second tool needed during this phase is a data dictionary. As described in 
Section 5.7 and summarized in Section 10.8, this tool stores the name and representation 
(format) of every component of every data item in the product, including data fl ows and 
their components, data stores and their components, and processes (operations) and their 
internal variables. ( Figure 12.5  shows typical information that would be stored in a data 
dictionary for Sally’s Software Shop.) Again, a wide selection of data dictionaries run on a 
variety of hardware–operating system combinations. 
  What really is needed is not a separate graphical tool and a separate data dictionary. 
Instead, the two tools should be integrated, so that any change made to a data component is 

 FIGURE 12.29
    A summary of 
the classical 
analysis 
methods 
discussed in 
this chapter and 
the section in 
which each is 
described. 

            Classical Analysis Method     Category     Strengths     Weaknesses    

   Natural language     Informal     Easy to learn   Imprecise
 (Section 12.2)  Easy to use Specifi cations can be
  Easy for the client  ambiguous, contradictory,
   to understand    or incomplete   

   Entity-relationship modeling     Semiformal     Can be understood by     Not as precise as formal   
 (Section 12.6)    the client  techniques
PSL/PSA (Section 12.5)   More precise than Generally cannot handle
SADT (Section 12.5)    informal  timing
SREM (Section 12.5)    techniques
Structured systems analysis 
 (Section 12.3)

   Anna (Section 12.10)      Formal     Extremely precise     Hard for the development   
CSP (Section 12.10)   Can reduce analysis  team to learn
Extended fi nite state    faults Hard to use
 machines (Section 12.7)   Can reduce Almost impossible for most
Gist (Section 12.10)    development cost  clients to understand
Petri nets (Section 12.8)    and effort
VDM (Section 12.10)   Can support
Z (Section 12.9)   correctness proving
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refl ected automatically in the corresponding part of the specifi cation document. Among the 
many examples of this type of tool are Analyst/Designer, Software through Pictures, and 
System Architect. Furthermore, many such tools also incorporate an automatic consistency 
checker that ensures consistency between the specifi cation document and the correspond-
ing design document. For example, it is possible to check that every item in the specifi ca-
tion document is carried forward to the design document and that everything mentioned in 
the design has been declared in the data dictionary. 
  An analysis technique is unlikely to receive widespread acceptance unless a tool-rich 
CASE environment supports that technique. For example, SREM (Section 12.5) probably 
would be used far more widely today had REVS, its associated CASE tool set, performed bet-
ter in the U.S. Air Force tests [Scheffer, Stone, and Rzepka, 1985]. It is not easy to specify a 
system correctly, even for experienced software professionals. It is only reasonable to provide 
specifi ers with a set of state-of-the-art CASE tools to assist them in every way possible.   

  12.14 Metrics for Classical Analysis  
 As in all other phases, during classical analysis it is necessary to measure the fi ve fun-
damental metrics: size, cost, duration, effort, and quality. One measure of the size of a 
specifi cation is the number of pages in the specifi cation document. If the same technique is 
used to specify a number of similar products, then differences in specifi cation size may be 
signifi cant predictors of the effort needed to build the various products. 
  Turning to quality, a vital aspect of specifi cation inspections is the record of fault statis-
tics. Noting the number of faults of each type found during an inspection is an integral part 
of the inspection process. Also, the rate at which faults are detected can give a measure of 
the effi ciency of the inspection process. 
  Metrics for predicting the size of the target product include the number of items in the data 
dictionary. Several different counts should be taken, including the number of fi les, data items, 
and processes (operations). This information can give management a preliminary estimate 
regarding the effort required to build the product. It is important to note that this information 
is tentative at best. After all, during the classical design phase, a process in a DFD may be 
broken down into a number of different modules. Conversely, a number of processes together 
may constitute a single module. Nevertheless, metrics derived from the data dictionary can 
give management an early clue as to the eventual size of the target product. 

12.1512.15
Case Study

    Software Project Management Plan: The MSG 
Foundation Case Study  
 Now that the specifi cations are complete, the software project management plan 
(SPMP) is drawn up, including estimates of cost and duration (see  Chapter 9 ). Ap-
pendix F contains a software project management plan for development of the MSG 
Foundation product by a small (three-person) software organization. This plan fi ts the 
IEEE SPMP format (Section 9.5).     
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  12.16 Challenges of Classical Analysis  
 A repeated theme of this chapter is that a specifi cation document must be simultaneously 
informal enough for the client to understand and formal enough for the development team 
to use as the sole description of the product to be built. A major challenge of classical 
analysis is to resolve this contradiction. There are no easy answers. On the contrary, a per-
manent confl ict lies between the two competing objectives, and the development team must 
simply do its best to steer safely between Scylla and Charybdis. 
  A second challenge of classical analysis is that the boundary line between analysis (what) 
and design (how) is all too easy to cross. The specifi cation document should describe what 
the product must do; it must never say how the product is to do it. For example, suppose that 
the client requires a response time of no more than 0.05 seconds whenever a certain network 
routing computation is performed. The specifi cation document should state exactly this—and 
nothing more. In particular, the specifi cation document should   not   state which algorithm 
must be used to achieve this response time. That is, a specifi cation document has to list all 
constraints, but it must never state how those constraints are to be achieved. 
  Another example of this potential pitfall arises from data fl ow diagrams (Section 12.3.1). 
A box with rounded ends denotes a process; it does not denote a module. As explained in 
Section 12.14, a process in a DFD may be broken down into a number of different modules 
and, conversely, a number of processes may be combined into a single module. The key 
point is that this refi nement of processes into modules must take place during the classical 
design phase, not the classical analysis phase. The specifi cation document has to describe 
the operations of the target process. It must never specify how those operations are to be 
implemented, not even the modules to which each is assigned. The design team’s task is 
to study the specifi cations as a whole and decide on a design that will result in an optimal 
implementation of those specifi cations; this is described in  Chapter 14 . Until the product 
as a whole has been decomposed into modules, it is premature to try to assign operations 
to specifi c modules; the result is almost certain to be suboptimal.     

 Specifi cations (Section 12.1) can be expressed informally (Section 12.2), semiformally (Sections 12.3 
through 12.5), or formally (Sections 12.6 through 12.10). 
  The major theme of this chapter is that informal techniques are easy to use but imprecise; this is 
demonstrated by a mini case study (Section 12.2.1). Conversely, formal techniques are powerful but 
require a nontrivial investment in training time (Section 12.11). One semiformal technique, Gane 
and Sarsen’s structured systems analysis, is described in some detail (Section 12.3), followed by its 
application to the MSG Foundation case study (Section 12.4). Other semiformal techniques are then 
described (Section 12.5), including entity-relationship modeling (Section 12.6). Formal techniques 
presented in this chapter include fi nite state machines (Section 12.7), Petri nets (Section 12.8), and 
Z (Section 12.9). Other formal techniques are outlined in Section 12.10. Material on specifi cation 
reviews appears in Section 12.12. Next follows a description of CASE tools (Section 12.13) and 
metrics (Section 12.14) for classical analysis. The software project management plan for the MSG 
Foundation case study (Section 12.15) is presented next. The chapter ends with a discussion of the 
challenges of classical analysis (Section 12.16). 
  An overview of the MSG Foundation case study for Chapter 12 appears in  Figure 12.30 , and for 
the elevator problem in  Figure 12.31 . 

  Chapter 
Review 
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 The classic texts on structured systems analysis are the books by DeMarco [1978], Gane and Sarsen 
[1979], and Yourdon and Constantine [1979]. These ideas have been updated in [Modell, 1996]. SADT 
is described in [Ross, 1985], and PSL/PSA is described in [Teichroew and Hershey, 1977]. Two sources 
of information on SREM are [Alford, 1985] and [Scheffer, Stone, and Rzepka, 1985]. 
  Six formal techniques are described in [Wing, 1990]. An outstanding collection of papers on 
formal techniques can be found in the September 1990 issues of   IEEE Transactions on Software 
Engineering, IEEE Computer  ,   IEEE Software,   and   ACM SIGSOFT Software Engineering Notes  . Of 
particular interest is [Hall, 1990]; the paper should be read in its entirety. [Bowen and Hinchey, 
1995b] is a sequel to Hall’s seminal article, and [Bowen and Hinchey, 1995a] is a list of guidelines for 
use of formal techniques. Additional articles on formal techniques can be found in the August 2000 
issue of   IEEE Transactions on Software Engineering  . An empirical study comparing different types 
of formal techniques is presented in [Sobel and Clarkson, 2002]. Haxthausen and Peleska [2000] 
have applied formal verifi cation to a distributed railway control system. Palshikar [2001] describes 
the practical use of formal specifi cations in real-world software development. Hall and Chapman 
[2002] describe the construction of a commercial secure system using formal techniques. Three dif-
ferent attitudes to formal methods appear in [Hinchey et al., 2008]. 
  An early reference to the fi nite state machine approach is [Naur, 1964], where unfortunately it is referred 
to as the   Turing machine approach  . Statecharts are a powerful extension of FSMs; they are described in 
[Harel et al., 1990]. Object-oriented extensions of statecharts appear in [Harel and Gery, 1997]. 
  [Peterson, 1981] is an excellent introduction to Petri nets and their applications. The use of Petri 
nets in prototyping is described in [Bruno and Marchetto, 1986]. Timed Petri nets are described in 
[Coolahan and Roussopoulos, 1983]. 
  With regard to Z, [Diller, 1994] is a good introductory text. For the reference manual with full 
details about the specifi cation language, see [Spivey, 2001]. Using the results of an experiment in 
reading Z specifi cations, Finney [1996] questions whether Z specifi cations are as easy to read as has 
been claimed by some Z proponents. 
  The proceedings of the International Workshops on Software Specifi cation and Design are a pre-
eminent source for research ideas regarding specifi cations. 

   For 
Further 
Reading 

 FIGURE 12.30 
   Overview 
of the MSG 
Foundation 
case study for 
Chapter 12. 

         Structured systems analysis     Section 12.4, 
 Appendix D   

   Data fl ow diagram         Figure 12.9   

   Software project management plan     Section 12.15, 
 Appendix F     

 FIGURE 12.31 
   Overview of 
the elevator 
problem case 
study for 
Chapter 12. 
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   Finite state machine analysis      Section 12.7.1   

   Petri net analysis     Section 12.8.1   

   Z analysis     Section 12.9.1     
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   12.1 Why should the following constraints not appear in a specifi cation document?

   (i)   The product must signifi cantly reduce transportation expenses that arise from distributing 
our beer in central Queensland.  

  (ii) The credit card database must be set up at a reasonable cost.     

   12.2 Why is it so important that the specifi cation document should have no omissions, contradic-
tions, or ambiguities?  

   12.3 Consider the following recipe for grilled pockwester. Ingredients: 

  Problems   

    1 large onion  

    1 can of frozen orange juice  

    Freshly squeezed juice of 1 lemon  

    1 cup bread crumbs  

    Flour  

    Milk  
    3 medium-sized shallots  

  2 medium-sized eggplants  

  1 fresh pockwester  

  1/2 cup Pouilly Fuissé  

  1 garlic  

  Parmesan cheese  

  4 free-range eggs    

   The night before, take one lemon, squeeze it, strain the juice, and freeze it. Take one large onion 
and three shallots, dice them, and grill them in a skillet. When clouds of black smoke start to 
come off, add 2 cups of fresh orange juice. Stir vigorously. Slice the lemon into paper-thin 
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slices and add to the mixture. In the meantime, coat the mushrooms in fl our, dip them in milk, 
and then shake them in a paper bag with the bread crumbs. In a saucepan, heat 1/2 cup of 
Pouilly Fuissé. When it reaches 170°, add the sugar and continue to heat. When the sugar has 
caramelized, add the mushrooms. Blend the mixture for 10 minutes or until all lumps have 
been removed. Add the eggs. Now take the pockwester, and kill it by sprinkling it with frobs. 
Skin the pockwester, break it into bite-sized chunks, and add it to the mixture. Bring to a boil 
and simmer, uncovered. The eggs previously should have been vigorously stirred with a wire 
whisk for 5 minutes. When the pockwester is soft to the touch, place it on a serving platter, 
sprinkle with Parmesan cheese, and broil for not more than 4 minutes.   

      Determine the ambiguities, omissions, and contradictions in the preceding specifi cation. 
(For the record, a pockwester is an imaginary sort of fi sh and   frobs   is slang for generic hors 
d’oeuvres.)  

   12.4 Correct the specifi cation paragraph of Section 12.2 to refl ect the client’s wishes more accurately.  

  12.5 Use mathematical formulas to represent the specifi cation paragraph of Section 12.2. Compare 
your answer with your answer to Problem 12.4.  

  12.6 What are the strengths of informal specifi cations?  

  12.7 What are the weaknesses of informal specifi cations?  

  12.8 Write a precise English specifi cation for the product to determine whether a bank statement is 
correct (Problem 8.8).  

  12.9 Draw a data fl ow diagram for the specifi cation you drew up for Problem 12.8. Ensure that your 
DFD simply refl ects the fl ow of data and that no assumptions regarding computerization have 
been made.  

  12.10  Consider the automated library circulation system of Problem 8.7. Write down precise speci-
fi cations for the library circulation system.  

  12.11  Draw a data fl ow diagram showing the operation of the library circulation system of Problem 8.7.  

  12.12  Complete the specifi cation document for the library circulation system of Problem 8.7 using 
Gane and Sarsen’s technique. Where data have not been specifi ed (for example, the total num-
ber of books checked in and out each day), make your own assumptions, but make sure that 
they are indicated clearly.  

  12.13  A fi xed-point binary number consists of an optional sign followed by one or more bits, fol-
lowed by a binary point, followed by one or more bits. Examples of fi xed-point binary num-
bers include       

   11010.1010, �0.000001, and �1101101.0 

   More formally, this can be expressed as       

   <fi xed-point binary> ::� [<sign>] <bitstring> <binary point> <bitstring> 
   <sign>  ::� � | � 
   <bitstring> ::� <bit> [<bitstring>] 
   <binary point>  ::� . 
   <bit>  ::� 0 | 1 
   (The notation [ . . . ] denotes an optional item, and a | b denotes a or b.) 

   Specify a fi nite state machine that will take as input a string of characters and determine 
whether or not that string constitutes a valid fi xed-point binary number.  

  12.14  A fl oating-point binary number consists of an optional sign followed by one or more bits, fol-
lowed by the letter E, followed by another optional sign, followed by one or more bits. Examples 
of fl oating-point binary numbers include 11010E–1010, –100101E11101, and +1E0. 
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   More formally, this can be expressed as       

   <fl oating-point binary> ::� [<sign>] <bitstring> E [<sign>] <bitstring> 
   <sign> ::� � | � 
   <bitstring> ::� <bit> [<bitstring>] 
   <bit>       ::� 0 | 1 
   (The notation [. . .] denotes an optional item, and a | b denotes a or b.) 

   Specify a fi nite state machine that will take as input a string of characters and determine 
whether that string constitutes a valid fl oating-point binary number.  

  12.15  Use the fi nite state machine approach to specify the library circulation system of Problem 8.7.  

  12.16  Show how your solution to Problem 12.15 can be used to design and implement a menu-driven 
product for the library circulation system (Problem 8.7).  

  12.17  Use a Petri net to specify the circulation of a single book through the library of Problem 8.7. 
Include operations   H  ,   C  , and   R   in your specifi cation.  

  12.18  You are a software engineer working for a large company that specializes in computerizing 
library systems. Your manager asks you to specify the complete library circulation system of 
Problem 8.7 using Z. What is your reaction?  

  12.19  Why are many software organizations reluctant to use formal specifi cations?  

  12.20  (Term Project) Using the technique specifi ed by your instructor, draw up a specifi cation docu-
ment for the Chocoholics Anonymous product described in Appendix A.  

  12.21  (Term Project) Draw up a software project management plan for the Chocoholics Anonymous 
product described in Appendix A.  

  12.22  (Case Study) Draw up the requirements of the MSG Foundation product using the fi nite state 
machine approach.  

  12.23  (Case Study) Use the Petri net technique to specify the states through which a married couple 
in the MSG Foundation product passes.  

  12.24  (Case Study) Specify a portion of the MSG Foundation product using the Z constructs of 
Section 12.9.  

  12.25  (Case Study) The software project management plan of Section 12.15 is for a small software 
engineering organization consisting of three software engineers. Modify the plan so that it is 
appropriate for a medium-sized organization with over 1000 software engineers.  

  12.26  (Case Study) In what way would the software project management plan of Section 12.15 have 
to be modifi ed if the MSG Foundation product had to be completed in only 8 weeks?  

  12.27  (Readings in Software Engineering) Your instructor will distribute copies of [Hinchey et al., 
2008]. For each of the three principal co-authors (Jackson, Cousot, and Cook), state whether 
or not you agree with their views, giving careful reasons for your answers.     

   [Abrial, 1980] J.-R.  ABRIAL , “The Specifi cation Language Z: Syntax and Semantics,” Oxford University 
Computing Laboratory, Programming Research Group, Oxford, UK, April 1980. 

 [Alford, 1985] M.  ALFORD , “SREM at the Age of Eight; The Distributed Computing Design System,” 
  IEEE Computer     18   (April 1985), pp. 36–46. 

 [Balzer, 1985] R.  BALZER , “A 15 Year Perspective on Automatic Programming,”   IEEE Transactions 
on Software Engineering     SE-11   (November 1985), pp. 1257–68. 

 [Banks, Carson, Nelson, and Nichol, 2010] J.  BANKS , J. S.  CARSON , B. L.  NELSON, AND  D. M.  NICHOL , 
  Discrete-Event System Simulation,   5th ed., Prentice Hall, Upper Saddle River, NJ, 2010. 
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Chapter 13
 Object-Oriented 
Analysis 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Perform the analysis workfl ow.  

  • Extract the boundary, control, and entity classes.  

  • Perform functional modeling.  

  • Perform class modeling.  

  • Perform dynamic modeling.  

  • Perform use-case realization.      

  In  Chapter 12 , we examined various classical analysis techniques. This chapter is the 
object-oriented counterpart of  Chapter 12 . 
    Object-oriented analysis   (OOA) is a semiformal analysis technique for the object-
oriented paradigm. In  Chapter 12 , we pointed out that a number of different techniques 
are used for structured systems analysis, all essentially equivalent. Similarly, well over 60 
different techniques have been put forward for OOA. Again, all the techniques are largely 
equivalent. The “For Further Reading” section of this chapter includes references to a wide 
variety of techniques, as well as to published comparisons of different techniques. 
  However, as explained in Section 3.1, today the Unifi ed Process [Jacobson, Booch, and 
Rumbaugh, 1999] is almost always the methodology of choice for object-oriented software 
production. For this reason, the fi rst and last parts of this chapter are devoted to the analysis 
workfl ow of the Unifi ed Process. 
  Object-oriented analysis is a key component of the object-oriented paradigm. When this 
workfl ow is performed, the classes are extracted. The use cases and the classes are the basis 

404
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of the object-oriented software product to be developed. (For more insight into the object-
oriented paradigm, see Just in Case You Wanted to Know Box 13.1.) 

  13.1 The Analysis Workfl ow 
  The   analysis workfl ow   of the Unifi ed Process [Jacobson, Booch, and Rumbaugh, 1999] has 
two overall aims. From the viewpoint of the requirements workfl ow (the preceding workfl ow), 
the aim of the analysis workfl ow is to obtain a deeper understanding of the requirements. Con-
versely, from the viewpoint of the design and implementation workfl ows (the workfl ows that 
follow the analysis workfl ow), the aim of the analysis workfl ow is to describe those require-
ments in such a way that the resulting design and implementation are easy to maintain. 
  The Unifi ed Process is use-case driven. During the analysis workfl ow, the use cases are 
described in terms of the classes of the software product. The Unifi ed Process has three 
types of classes: entity classes, boundary classes, and control classes. An   entity class   
models information that is long lived. In the case of a banking software product,    Account 
Class    is an entity class because information on accounts has to stay in the software prod-
uct. For the MSG Foundation software product,    Investment Class    is an entity class; 
again, information on investments has to be long lived. 
  A   boundary class   models the interaction between the software product and its actors. 
Boundary classes are generally associated with input and output. For example, in the MSG 

 Most of the major advances in the object-oriented paradigm were made between 1990 and 
1995. Because it usually takes some 15 years for new technology to become accepted, wide-
spread adoption of the object-oriented paradigm should have started no sooner than 2005. 
However, the   millennium bug   or   Y2K problem   changed the expected timetable. 
  In the 1960s, when computers fi rst started to be used for business on a widespread basis, 
hardware was far more expensive than it is today. As a result, the vast majority of software 
products of that vintage represented a date using only the last two digits for a year; the 
leading 19 was understood. The problem with this scheme is that the year 00 is then inter-
preted as 1900, not 2000. 
  When hardware became cheaper in the 1970s and 1980s, few managers saw any point 
in spending large sums of money rewriting existing software products with four-digit dates. 
After all, by the time the year 2000 arrived, it would be someone else’s problem. As a result, 
  legacy systems   remained year-2000 noncompliant. However, as the deadline of January 1, 
2000, neared, software organizations were forced to work against the clock to fi x their soft-
ware products; there was no way to postpone the arrival of Y2K. 
  Problems facing the maintenance programmers included a lack of documentation for 
many legacy software products, as well as software products implemented in program-
ming languages that were now obsolete. When modifying an existing software product was 
impossible, the only alternative was to start again from scratch. Some companies decided 
to use COTS technology (Section 1.11). Others decided that new custom software products 
were needed. For obvious reasons, managers wanted these software products to be devel-
oped using modern technology that had already been shown to be cost effective, and that 
meant using the object-oriented paradigm. The Y2K problem was therefore a signifi cant 
catalyst for the widespread acceptance of the object-oriented paradigm. 

 Just in Case You Wanted to Know Box 13.1 
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406  Part B  The Workfl ows of the Software Life Cycle

Foundation software product, reports have to be printed listing the investments of the 
Foundation, as well as all the mortgages currently held. This means that boundary classes 
   Investments Report Class    and    Mortgages Report Class    are needed. 
  A   control class   models complex computations and algorithms. In the case of the MSG 
Foundation software product, the algorithm for estimating the funds available for the week 
is a control class, namely,    Estimate Funds for Week Class   . 
  The UML notation for these three types of classes is shown in  Figure 13.1 . These are 
  stereotypes  , that is, extensions of UML. A strength of UML is that it allows additional 
constructs to be defi ned that are not part of UML but may be needed to model a specifi c 
system accurately. 
  As stated at the beginning of this section, during the analysis workflow, the use 
cases are described in terms of the classes of the software product. The Unified Pro-
cess itself does not describe how classes are to be extracted because users of the 
Unified Process are expected to have a background in object-oriented analysis and 
design. Accordingly, this discussion of the Unified Process is temporarily suspended 
so that an explanation can be given of how classes are extracted; we return to the Uni-
fied Process in Section 13.15. 
  Entity classes, that is, classes that model long-lived information, are considered fi rst.   

  13.2 Extracting the Entity Classes 
  Entity class extraction consists of three steps that are carried out iteratively and incrementally:

   1.   Functional modeling  . Present scenarios of all the use cases (a   scenario   is an instance 
of a use case).  

  2.   Entity class modeling  . Determine the entity classes and their attributes. Then, deter-
mine the interrelationships and interactions between the entity classes. Present this 
information in the form of a class diagram.  

  3.   Dynamic modeling  . Determine the operations performed by or on each entity class 
or subclass. Present this information in the form of a statechart.    

  However, as with all iterative and incremental processes, the three steps are not neces-
sarily always performed in this order; a change in one model frequently triggers corre-
sponding revisions of the other two models. 
  To show how this is done, we now extract the entity classes of the elevator problem 
case study. 

Boundary Class Control ClassEntity Class

 FIGURE 13.1      UML stereotypes (extensions of UML) 
for representing an entity class, a boundary class, and a 
control class. 
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13.313.3
  Case Study

Object-Oriented Analysis: 
The Elevator Problem Case Study 
  The elevator problem case study is described in  Chapter 12 . For ease of reference, the 
problem is repeated here. 
  A product is to be installed to control n elevators in a building with m fl oors. The 
problem concerns the logic required to move elevators between fl oors according to 
the following constraints:

   1. Each elevator has a set of m buttons, one for each fl oor. These illuminate when 
pressed and cause the elevator to visit the corresponding fl oor. The illumination is 
canceled when the corresponding fl oor is visited by the elevator.  

  2. Each fl oor, except the fi rst fl oor and the top fl oor, has two buttons, one to request 
an up-elevator and one to request a down-elevator. These buttons illuminate when 
pressed. The illumination is canceled when an elevator visits the fl oor and then 
moves in the desired direction.  

  3. When an elevator has no requests, it remains at its current fl oor with its doors closed.    

  The fi rst step in OOA is to model the use cases.   

Elevator

User

Press an
Elevator Button

Press a
Floor Button

 FIGURE 13.2   
 Use-case 
diagram for 
the elevator 
problem case 
study. 

Functional Modeling: 
The Elevator Problem Case Study 
  A   use case   describes the interaction between the product to be constructed and 
the   actors  , that is, the external users of that product. The only interactions pos-
sible between a user and an elevator are the user pressing an elevator button to 
summon an elevator or the user pressing a fl oor button to request the elevator to 
stop at a specifi c fl oor, hence, two use cases, Press an Elevator Button 
and Press a Floor Button. The two use cases are shown in the use-case 
diagram (Section 11.7) of  Figure 13.2 . 

13.413.4
  Case Study
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408  Part B  The Workfl ows of the Software Life Cycle

  A use case provides a generic description of the overall functionality; a scenario 
is a specifi c instantiation of a use case, just as an object is an instantiation of a class. 
In general, there are a large number of scenarios, each representing one specifi c set 
of interactions. In this section, we consider the scenario of  Figure 13.3 , which incor-
porates instantiations of both use cases. 
   Figure 13.3  depicts a   normal scenario  ; that is, a set of interactions between 
users and elevators that corresponds to the way we understand elevators should be 
used.  Figure 13.3  was constructed after carefully observing different users interact-
ing with elevators (or, more precisely, with elevator buttons and fl oor buttons). The 
15 numbered events describe in detail the two interactions between User A and the 
buttons of the elevator system (event 1 and event 6) and the operations performed 
by the components of the elevator system (events 2 through 5 and 7 through 15). 
Two items,  User A enters the elevator  and  User A exits from the elevator , are 
unnumbered. Such items essentially are comments; User A does not interact with the 
components of the elevator when entering or leaving an elevator. 
  In contrast,  Figure 13.4  is an   exception scenario  . It depicts what happens when 
a user presses the Up button at fl oor 3 but actually wants to go down to fl oor 1. This 
scenario, too, was constructed by observing the actions of many users in elevators; 
it is unlikely that someone who has never used an elevator would realize that users 
sometimes press the wrong button. 
  There is a serious mistake throughout  Figures 13.3  and  13.4 . Recall that, as stated 
in Section 1.9,   responsibility-driven design   is a feature of the object-oriented 
paradigm. From the very beginning of the life cycle, that is, from the requirements 

1. User A presses the Up floor button at floor 3 to request an elevator. User A wishes
to go to floor 7.

2. The Up floor button is turned on.
3. An elevator arrives at floor 3. It contains User B, who has entered the elevator at

floor 1 and pressed the elevator button for floor 9.
4. The elevator doors open.
5. The timer starts.

User A enters the elevator.
6. User A presses the elevator button for floor 7.
7. The elevator button for floor 7 is turned on.
8. The elevator doors close after a timeout.

  9.  The Up floor button is turned off.
10. The elevator travels to floor 7.
11. The elevator button for floor 7 is turned off.
12. The elevator doors open to allow User A to exit from the elevator.
13. The timer starts.

User A exits from the elevator.
14. The elevator doors close after a timeout.
15. The elevator proceeds to floor 9 with User B.

 FIGURE 13.3      The fi rst iteration of a normal scenario (the missing responsibilities and the use 
of the passive voice will be corrected in the next iteration). 
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workfl ow onward, it is essential to specify the responsibility for each action. Consider 
event 2 in  Figure 13.3 ,  The Up fl oor button is turned on . This statement does not 
specify who is responsible for turning on the button. Instead, the scenario should 
have stated, “The system turns on the Up fl oor button.” Similarly, event 4 states,  The 
elevator doors open . But who or what is responsible for opening the doors? Is it a 
manual elevator in which the users have to open and close the doors? Or is it an auto-
matic elevator in which the system is responsible for opening and closing the doors? 
Accordingly, in use cases and scenarios (instantiations of use cases), the responsibil-
ity for each action must be explicitly stated. 
  Furthermore, it is bad practice to use the passive voice in a use case, a scenario, 
or in any other UML diagram that specifi es actions. For example, event 2,  The 
Up fl oor button is turned on , should not be in the passive voice. A use case 
describes an inter  action   between the software product and the user; for clarity, an 
action should be described in the active voice. Furthermore, a use case should be 
written from the user’s perspective, that is, what the user does and how the software 
product responds. Finally, it should be written in the present tense, to give a sense 
of immediacy. 
  In summary, statements in a use case or scenario should take the form, “A user 
does this and the software product responds by doing that.” In view of the fact that 
the use cases will eventually be refi ned into the run-time behavior of the product, 
statements in that form are easy to test, easy to document, and easy to modify. The 
mistakes in the scenarios of  Figures 13.3  and  13.4  are corrected in a subsequent itera-
tion, in Section 13.7. 

1. User A presses the Up floor button at floor 3 to request an elevator. User A wishes
to go to floor 1.

2. The Up floor button is turned on.
3. An elevator arrives at floor 3. It contains User B, who has entered the elevator at

floor 1 and pressed the elevator button for floor 9.
4. The elevator doors open.
5. The timer starts.

User A enters the elevator.
6. User A presses the elevator button for floor 1.
7. The elevator button for floor 1 is turned on.
8. The elevator doors close after a timeout.

  9.  The Up floor button is turned off.
10. The elevator travels to floor 9.
11. The elevator button for floor 9 is turned off.
12. The elevator doors open to allow User B to exit from the elevator.
13. The timer starts.

User B exits from the elevator.
14. The elevator doors close after a timeout.
15. The elevator proceeds to floor 1 with User A.

 FIGURE 13.4      An exception scenario (the missing responsibilities and the use of the passive 
voice will be corrected in the next iteration). 
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  The scenarios of  Figures 13.3  and  13.4 , plus innumerable others, are specifi c 
instances of the use cases shown in  Figure 13.2 . The OOA team should study suf-
fi cient scenarios to gain a comprehensive insight into the behavior of the system 
being modeled. This information is used in the next step, entity class modeling, to 
determine the entity classes.   

13.513.5
  Case Study

Entity Class Modeling: 
The Elevator Problem Case Study 
  In this step, the entity classes and their attributes are extracted and represented in 
a UML class diagram (see Just in Case You Wanted to Know Box 13.2). Only the 
attributes of an entity class are determined at this time, not the methods; the latter are 
assigned to the classes during the object-oriented design (OOD) workfl ow. 
  A characteristic of the whole object-oriented paradigm is that the various steps 
rarely are easy to carry out. Fortunately, the benefi ts of using objects make the effort 
worthwhile. So it should not come as a surprise that the fi rst part of the analysis 
workfl ow, extracting entity classes and their attributes, usually is diffi cult to get right 
the fi rst time. 
  One method of determining the entity classes is to deduce them from the use cases. 
That is, the developers carefully study all the scenarios, both normal and exception, 
and identify the components that play a role in the use cases. From just the scenarios 
of  Figures 13.3  and  13.4 , candidate entity classes are elevator buttons, fl oor buttons, 
elevators, doors, and timers. As we will see, these candidate entity classes are close to 
the actual classes extracted during entity class modeling. In general, however, there 
are many scenarios and, consequently, a large number of potential classes. An inex-
perienced developer may be tempted to infer too many candidate entity classes from 
the scenarios. This has a deleterious effect on the entity class modeling, because it is 
easier to add a new entity class than to remove a candidate entity class that should not 
have been included. 
  Another approach to determining the entity classes, which is effective when the 
developers have domain expertise, is CRC cards (Section 13.5.2). However, if the 
developers have little or no experience in the application domain, then it is advisable 
to use noun extraction, described in Section 13.5.1.   

 As explained at the beginning of  Chapter 7 , the object-oriented paradigm did not suddenly 
appear out of nowhere. Instead, it evolved out of the classical paradigm, in response to 
perceived shortcomings in the classical paradigm. 
  Entity class modeling is an example of this evolution. It is an extension of the classical 
technique of entity-relationship modeling. As described in Section 12.6, entity-relationship 
modeling has been used for database modeling since 1976. 

 Just in Case You Wanted to Know Box 13.2  
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  13.5.1 Noun Extraction 
 For developers with no domain expertise, a good way to proceed is to use the fol-
lowing two-stage   noun-extraction method   to extract candidate entity classes and 
then to refi ne the solution: 

  Stage 1. Describe the Software Product in a Single Paragraph. 
 One possible way to do this for the elevator problem case study is as follows:

  Buttons in elevators and on the fl oors control the movement of  n  elevators in a build-
ing with  m  fl oors. Buttons illuminate when pressed to request the elevator to stop at a 
specifi c fl oor; the illumination is canceled when the request has been satisfi ed. When 
an elevator has no requests, it remains at its current fl oor with its doors closed.    

  Stage 2. Identify the Nouns. 
 Identify the nouns in the informal strategy (excluding those that lie outside the problem 
boundary); then use these nouns as candidate entity classes. The informal strategy is 
now reproduced, but this time with the identifi ed nouns printed in a sans serif typeface.

   Buttons  in  elevators  and on the  fl oors  control the  movement  of  n elevators  in a 
 building  with  m fl oors. Buttons  illuminate when pressed to request an  elevator  to stop 
at a specifi c  fl oor ; the  illumination  is canceled when the  request  has been satisfi ed. 
When an  elevator  has no  requests , it remains at its current  fl oor  with its  doors  closed.   

  There are eight different nouns:  button, elevator, fl oor, movement, build-
ing, illumination, request,  and  door . Three of these nouns— fl oor, building,  and 
 door —lie outside the problem boundary and therefore may be ignored. Three of the 
remaining nouns— movement, illumination , and  request —are   abstract nouns  ; 
that is, they identify things that have no physical existence. A useful rule of thumb is 
that abstract nouns rarely end up corresponding to classes. Instead, they frequently 
are attributes of classes. For example, illumination is an   attribute   of button. 
  This leaves two nouns and, therefore, two candidate entity classes:    Elevator 
Class    and    Button Class   . (The UML convention is to use boldface for class names 
and capitalize the initial letter of each word in a class name.) 
  The resulting   class diagram   is shown in  Figure 13.5 .    Button Class    has the 
Boolean attribute illuminated to model events 2, 7, 9, and 11 of the scenarios of 
 Figures 13.3  and  13.4 . The problem specifi es two types of buttons, so two subclasses 
of    Button Class    are defi ned:    Elevator Button Class    and    Floor Button 
Class    (the open triangle denotes inheritance in UML). Each instance of    Elevator 
Button Class    and    Floor Button Class     communicates with  the instance of 
   Elevator Class   . The latter class has the Boolean attribute  doors open  to model 
events 4, 8, 12, and 14 of the two scenarios. 
  Unfortunately, this is not a good beginning. In a real elevator, the buttons do not 
directly communicate with the elevators; some sort of elevator controller is needed, 
if only to decide which elevator to dispatch in response to a particular request. 
However, the problem statement makes no mention of a controller, so it was not 
selected as an entity class during the noun-extraction process. In other words, the 
technique of this section for fi nding candidate entity classes provides a starting point 
but certainly should not be relied on to do more than that. 
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  Adding the    Elevator Controller Class    to  Figure 13.5  yields  Figure 13.6 . 
This certainly makes more sense. Furthermore, there are now one-to-many relation-
ships in  Figure 13.6 , as opposed to the hard to model many-to-many relationship of 
 Figure 13.5 . It therefore seems reasonable to go on to stage 3 at this point, bearing 
in mind that it is possible to return to entity class modeling at any time, even as 

Elevator Button Class Floor Button Class

Button Class

illuminated : Boolean

n

communicates
with

communicates
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Elevator Class
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 FIGURE 13.5   
 The fi rst 
iteration of the 
class diagram 
for the elevator 
problem case 
study. 
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late as the implementation workfl ow. However, before proceeding with the dynamic 
modeling, a different technique for entity class modeling is considered. 

    13.5.2 CRC Cards 
 For a number of years,   class–responsibility–collaboration (CRC) cards   have 
been utilized during the object-oriented analysis workfl ow [Wirfs-Brock, Wilkerson, 
and Wiener, 1990]. For each class, the software development team fi lls in a card 
showing the name of the class, its functionality (responsibility), and a list of the other 
classes it invokes to achieve that functionality (collaboration). 
  This approach subsequently has been extended. First, a CRC card often explicitly 
contains the attributes and methods of the class, rather than just its “responsibility” 
expressed in some natural language. Second, the technology has changed. Instead of 
using cards, some organizations put the names of the classes on Post-it notes, which 
they move around on a white board; lines are drawn between the Post-it notes to denote 
collaboration. Nowadays the whole process can be automated; CASE tools like System 
Architect include components for creating and updating CRC “cards” on the screen. 
  The strength of CRC cards is that, when utilized by a team, the interaction among 
the members can highlight missing or incorrect fi elds in a class, whether attributes 
or methods. Also, the relationships between classes are clarifi ed when CRC cards are 
used. One especially powerful technique is to distribute the cards among the team 
members, who then act out the responsibilities of their classes. Consequently, some-
one might say, “I am the    Date Class   , and my responsibility is to create new date 
objects.” Another team member might then interject that he or she needs additional 
functionality from the    Date Class   , such as converting a date from the conven-
tional format to an integer, the number of days from January 1, 1900, so that fi nding 
the number of days between any two dates can be computed easily by subtracting 
the corresponding two integers (see Just in Case You Wanted to Know Box 13.3). 
Accordingly, acting out the responsibilities of CRC cards is an effective means of 
verifying that the class diagram is complete and correct. 

 How do we fi nd the number of days between February 21, 1999, and August 16, 2007? 
Such subtractions are needed in many fi nancial computations, such as calculating an inter-
est payment or determining the present value of a future cash fl ow. The usual way this is 
done is to convert each date into an integer, the number of days since a specifi ed starting 
date. The problem is that we cannot agree what starting date to use. 
  Astronomers use Julian days, the number of days since noon GMT on January 1, 4713, 
B.C.E. This system was invented in 1582 by Joseph Scaliger, who named it for his father, 
Julius Caesar Scaliger. (If you really, really have to know why January 1, 4713 B.C.E. was 
chosen, consult [USNO, 2000].) 
  A Lilian date is the number of days since October 15, 1582, the fi rst day of the Gregorian 
calendar, introduced by Pope Gregory XIII. Lilian dates are named for Luigi Lilio, a leading 
proponent of the Gregorian calendar reform. Lilio was responsible for deriving many of the 
algorithms of the Gregorian calendar, including the rule for leap years. 
  Turning to software, COBOL intrinsic functions use January 1, 1600, as the starting date 
for integer dates. Almost all spreadsheets, however, use January 1, 1900, following the lead 
of Lotus 1-2-3. 

 Just in Case You Wanted to Know Box 13.3 
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Dynamic Modeling: 
The Elevator Problem Case Study 
  The aim of dynamic modeling is to produce a   statechart  , a description of the target 
product similar to a fi nite state machine, for each class. First, consider    Elevator 
Controller Class   . For simplicity, only one elevator is considered. The relevant 
statechart for    Elevator Controller Class    is in  Figure 13.7 . 
  The notation is somewhat similar to that of the fi nite state machine (FSM) of 
Section 12.7, but there is a signifi cant difference. An FSM as presented in  Chapter 12  
is an example of a formal technique. The state transition diagrams themselves are not 
a complete representation of the product to be built. Instead, the model consists of a 
set of transition rules of the form given in equation (12.2):

      current state   and   event   and   predicate   ⇒   next state     

  Formality is achieved by presenting the model in the form of a set of mathematical 
rules.   
  In contrast, the representation of a UML statechart is somewhat less formal. The 
three aspects of a state machine (state, event, and predicate) are distributed over the 
UML diagram. For example, the state    Going Into Wait State    in  Figure 13.7  
is entered if the present state is    Elevator Event Loop    and the event  elevator 
stopped, no requests pending  is true. When the state    Going Into Wait State    
has been entered, operation  Close elevator doors after timeout  is to be carried 
out. Current versions of OOA are semiformal (graphical) techniques, and the intrin-
sic lack of formality of the statechart accordingly is no problem. However, when 
the object-oriented paradigm matures, it is likely that more formal versions will be 
developed and the corresponding dynamic models will be somewhat closer to fi nite 
state machines. 
  To see the equivalence of the statechart of  Figure 13.7  and the STDs of  Figures 
12.15  through  12.17 , consider various scenarios. For example, consider the fi rst 
part of the scenario of  Figure 13.3 . Event 1 is User A presses the  Up  fl oor button at 
fl oor 3. 
  First consider the STD of  Figure 12.16 . If the fl oor button is off, then the button 
is turned on. Now consider the statechart of  Figure 13.7 . The solid circle denotes the 
start state, which takes the system into state    Elevator Event Loop   . Following the 
leftmost vertical line, if the button was turned off when it is pushed, the system enters 

13.613.6
  Case Study

  A weakness of CRC cards is that this approach generally is not a good way of identify-
ing entity classes unless the team members have considerable experience in the relevant 
application domain. On the other hand, once the developers have determined many of the 
classes and have a good idea of their responsibilities and collaborations, CRC cards can be 
an excellent way of completing the process and making sure that everything is correct. This 
is described in Section 13.7. First, however, we need to perform the dynamic modeling. 
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state    Processing New Request    of  Figure 13.7 , and the button is turned on. The 
following state is    Elevator Event Loop   . 
  Next, the elevator nears fl oor 3. First consider the STD approach. In  Figure 12.17 , 
the elevator goes into state  S (U, 3) ; that is, it stops at fl oor 3, about to go up. 
(Because the simplifying assumption has been made of only one elevator, the argu-
ment  e  in  Figure 12.17  is suppressed here.) Now the doors close ( Figure 12.17 ), the 
 Up  fl oor button is turned off ( Figure 12.16 ), and the elevator starts to move toward 
fl oor 4. 
  Returning to the statechart of  Figure 13.7 , consider what happens when the 
elevator nears fl oor 3. Because the elevator is in motion, the next state entered is 
   Determining If Stop Requested   . The requests are checked and, because User A 

button
pushed,
button

turned off

no request
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 FIGURE 13.7      The fi rst iteration of the statechart for the Elevator Controller Class. 
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has requested the elevator to stop there, the next state is    Stopping At Floor   . The 
elevator stops at fl oor 3, the doors open, and the timer starts. The elevator button for 
fl oor 3 has not been pressed, so state    Elevator Event Loop    is next. 
  User A enters and presses the elevator button for fl oor 7. Therefore, the next state 
is again    Processing New Request   , followed again by    Elevator Event Loop   . 
The elevator has stopped and two requests are pending, so state    Closing Elevator 
Doors    is next and the doors close after a timeout. The fl oor button at fl oor 3 was 
pressed by User A, so    Turning Off Floor Button    is the following state, and the 
fl oor button is turned off. State    Processing Next Request    is next, and the eleva-
tor starts to move toward fl oor 4. The relevant aspects of the corresponding diagrams 
clearly are equivalent with respect to this scenario; you may wish to consider other 
possible scenarios as well. 
  From the preceding discussion, it should come as no surprise to learn that  Figure 
13.7  was constructed from the scenarios. More precisely, the specifi c events of the 
scenarios were generalized. For example, consider the fi rst event of the scenario of 
 Figure 13.3 ,  User A presses the Up fl oor button at fl oor 3 . This specifi c event 
is generalized to an arbitrary button (fl oor button or elevator button) being pushed. 
Then, there are two possibilities. Either the button already is turned on (in which case 
nothing happens) or the button is turned off (in which case action must be taken to 
process the user’s request). 
  To model this event, the    Elevator Event Loop    state is drawn in Figure 13.7. 
The case of an already turned on button is modeled by the do-nothing loop with 
event  button pushed, button turned on  in the top left-hand corner of  Figure 13.7 . 
The other case, a turned-off button, is modeled by the arrow labeled with the event 
 button pushed, button turned off  leading to state    Processing New Request   . 
From event 2 of the scenario it is clear that the operation Turn on button is needed 
in this state. Furthermore, the purpose of the user’s action of pressing an arbitrary 
button is to request an elevator (fl oor button) or request an elevator to move to a spe-
cifi c fl oor (elevator button), so operation  Update requests  also must be carried out 
in the state    Processing New Request   . 
  Now consider event 3 of the scenario,  An elevator arrives at fl oor 3 . This was 
generalized to the concept of an arbitrary elevator moving between fl oors. The motion 
of the elevator is modeled by the event  elevator moving in direction d, fl oor f is 
next  and the state    Determining If Stop Requested   . But there again are two 
possibilities, either a request to stop at fl oor f or no such request. In the former case, 
corresponding to event  no request to stop at fl oor f,  the elevator simply must be 
in the state of    Continuing Moving    one more fl oor in direction  d . In the latter 
case (corresponding to event  user has requested stop at fl oor f ), from the sce-
nario of  Figure 13.3  it is clear that it is necessary to  Stop elevator  (from event 3), 
and then  Open doors and start timer  (from events 4 and 5); state    Stopping At 
Floor    is needed to perform these actions. Also, similar to the    Processing New 
Request    state, it becomes apparent that it is necessary also to  Update requests  in 
state    Stopping At Floor   . In addition, generalizing event 9 of the scenario leads to 
the realization that the fl oor button has to be turned off if it is turned on. This is mod-
eled by state    Turning Off Floor Button   , together with the two events above the 
box representing that state. Similarly, generalizing event 11 of the scenario implies 
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that the elevator button has to be turned off if it is turned on. This is modeled by state 
   Turning Off Elevator Button   , together with the two events above the box rep-
resenting that state. 
  Generalizing event 8 of the scenario of  Figure 13.3  yields state    Closing Elevator 
Doors   ; generalizing event 10 yields state    Processing Next Request   . However, 
the need for the state    Going Into Wait State    and the event no requests pend-
ing, doors closed is deduced by generalizing an event of a different scenario, one in 
which the user exits from the elevator but no buttons remain turned on.    

  13.7 The Test Workfl ow: Object-Oriented Analysis 
  At this point, the functional, entity class, and dynamic models appear to be complete and 
the   test workfl ow   resumes. The next step is to review the analysis workfl ow to date. One 
component of this review, as suggested in Section 13.5.2, is to use CRC cards. 
  Accordingly, CRC cards are fi lled in for each of the entity classes,    Button Class, 
Elevator Button Class, Floor Button Class, Elevator Class   , and    Elevator 
Controller Class   . The CRC card for    Elevator Controller Class   , shown in 
 Figure 13.8 , is deduced from the class diagram of  Figure 13.5  and the statechart of 
 Figure 13.6 . In more detail, the  RESPONSIBILITY  of    Elevator Controller Class    
is obtained by listing all the operations in the statechart for    Elevator Controller 
Class    ( Figure 13.7 ). The  COLLABORATION  of the   Elevator Controller Class   
is determined by examining the class diagram of  Figure 13.6  and noting that classes 
   Elevator Button Class, Floor Button Class   , and    Elevator Class    interact with 
class    Elevator Controller Class   . 

1. Turn on elevator button
2. Turn off elevator button
3. Turn on floor button
4. Turn off floor button
5. Move elevator up one floor
6. Move elevator down one floor
7. Open elevator doors and start timer
8. Close elevator doors after timeout
9. Check requests

10. Update requests

CLASS
Elevator Controller Class

COLLABORATION
1. Elevator Button Class
2. Floor Button Class
3. Elevator Class

RESPONSIBILITY

 FIGURE 13.8   
 The fi rst 
iteration of the 
CRC card for 
the Elevator 
Controller 
Class. 
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  This CRC card highlights two major problems with the fi rst iteration of the object-
oriented analysis.

   1. Consider responsibility  1. Turn on elevator button.  This command is totally out 
of place in the object-oriented paradigm. From the viewpoint of responsibility-driven 
design (Section 1.9), objects (instances) of   Elevator Button Class   are respon-
sible for turning themselves on or off. Also, from the viewpoint of information hiding 
(Section 7.6), the   Elevator Controller Class   should not have the knowledge of 
the internals of   Elevator Button Class   needed to turn on a button. The correct 
responsibility is this: Send a message to   Elevator Button Class   to turn itself on. 
Similar changes are needed for responsibilities 2 through 6 in  Figure 13.8 . These six 
corrections are refl ected in  Figure 13.9 , the second iteration of the CRC card for the 
   Elevator Controller Class   .  

  2. A class has been overlooked. Returning to  Figure 13.8 , consider responsibility  7. Open 
elevator doors and start timer.  The key concept here is the notion of   state  . The attri-
butes of a class sometimes are termed   state variables  . The reason for this terminology is 
that, in most object-oriented implementations, the state of the product is determined by the 
values of the attributes of the various component objects. The statechart has many features 
in common with a fi nite state machine. Accordingly, it is not surprising that the concept 
of state plays an important role in the object-oriented paradigm. This concept can be used 
to help determine whether a component should be modeled as a class. If the component 
in question possesses a state that is changed during execution of the implementation, then 
it probably should be modeled as a class. Clearly, the doors of the elevator possess a state 
(open or closed), and    Elevator Doors Class    therefore should be a class.    

CLASS
Elevator Controller Class

1. Send message to Elevator Button Class to turn on button
2. Send message to Elevator Button Class to turn off button
3. Send message to Floor Button Class to turn on button
4. Send message to Floor Button Class to turn off button
5. Send message to Elevator Class to move up one floor
6. Send message to Elevator Class to move down one floor
7. Send message to Elevator Doors Class to open
8. Start timer
9. Send message to Elevator Doors Class to close after timeout

10. Check requests
11. Update requests

COLLABORATION
1. Elevator Button Class (subclass)
2. Floor Button Class (subclass)
3. Elevator Doors Class
4. Elevator Class

RESPONSIBILITY

 FIGURE 13.9   
 The second 
iteration of the 
CRC card for 
the Elevator 
Controller 
Class. 
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  There is another reason why    Elevator Doors Class    should be a class. The object-
oriented paradigm allows the state to be hidden within an object and hence protected from 
unauthorized change. If there is an    Elevator Doors Class    object, the only way that 
the doors of the elevator can be opened or shut is by sending a message to that    Elevator 
Doors Class    object. Serious accidents can be caused by opening or closing the doors of 
an elevator at the wrong time; see Just in Case You Wanted to Know Box 13.4. Therefore, 
for certain types of products, safety considerations should be added to the other strengths 
of objects listed in  Chapters 7  and  8 . 
  Adding    Elevator Doors Class    means that responsibilities 7 and 8 in  Figure 13.8  
need to be changed analogously to responsibilities 1 through 6. That is, messages should be 
sent to instances of the    Elevator Doors Class    to open and close themselves. But there 
is an additional complication. 
  Recall that responsibility 7 is Open elevator doors and start timer. This must be split 
into two separate responsibilities. A message must indeed be sent to    Elevator Doors 
Class    to open. However, the timer is part of the    Elevator Controller Class,    and start-
ing the timer therefore is the responsibility of the    Elevator Controller Class    itself. The 
second iteration of the CRC card for    Elevator Controller Class    ( Figure 13.9 ) shows 
that this separation of responsibilities has been achieved satisfactorily. 
  In addition to the two major problems highlighted by the CRC card of  Figure 13.8 , 
responsibilities  Check requests  and  Update requests  of    Elevator Controller Class    
require the attribute  requests  be added to    Elevator Controller Class   . At this stage, 
 requests  are defi ned simply to be of type  requestType ; a data structure for  requests  will 
be chosen during the design workfl ow. 
  The corrected class diagram is shown in  Figure 13.10 . Having modifi ed the class 
diagram, we must reexamine the use-case diagram and statecharts to see if they, too, 
need further refi nement. The use-case diagram clearly is still adequate. However, the 
operations in the statechart of Figure 13.7 must be modifi ed to refl ect the responsibili-
ties of  Figure 13.9  (the second iteration of the CRC card) and not  Figure 13.8  (the fi rst 
iteration). Also, the set of statecharts must be extended to include the additional class. 
The scenarios need to be updated to refl ect these changes;  Figure 13.11  shows the second 
iteration of the scenario of  Figure 13.3 . 
  There is a serious problem in  Figure 13.10 , the third iteration of the class diagram. The 
   Elevator Controller Class    is running the entire show—this is an example of a so-
called God class, a class that is exposed to too much information and has too much control. 
This type of architecture is a well-known antipattern, or pattern to be avoided (see Just 
in Case You Wanted to Know Box 8.4). To solve this problem, instead of having one cen-
tral elevator controller, we distribute the control. Each of the  n  elevators now has its own 

 Some years ago, I was on the 10th fl oor of a building, waiting impatiently for an elevator. 
The doors opened, I started to step forward—only no elevator was there. What saved my 
life was the total blackness I saw as I was about to step into the elevator shaft, and I instinc-
tively realized that something was wrong. 
  Perhaps, if that elevator control system had been developed using the object-oriented 
paradigm, the inappropriate opening of the doors on the 10th fl oor might have been 
avoided. 

 Just in Case You Wanted to Know Box 13.4 
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elevator subcontroller, and each of the m fl oors has its own fl oor subcontroller. The  m + n  
subcontrollers all communicate with a scheduler, which processes requests. The resulting 
fourth iteration of the class diagram is shown in  Figure 13.12 . This diagram refl ects a dis-
tributed, decentralized architecture, characteristic of the object-oriented paradigm. 
  Now, when a user presses a    Floor Button Class    object, the    Floor Button Class    
object sends a message to the corresponding    Floor Subcontroller Class    object inform-
ing it that the button has been pressed. The    Floor Subcontroller Class    object sends a 
message back to the    Floor Button Class    object to ask whether its light is on. If not, it 
sends a message to that    Floor Button Class    object to turn itself on, and it also informs 
the    Scheduler Class    object of the new request that has been made by a user. 
  Similarly, when a user presses an    Elevator Button Class    object, the    Elevator 
Button Class    object sends a message to the corresponding    Elevator Subcontroller 
Class    object informing it that the button has been pressed. The    Elevator Subcon-
troller Class    object sends a message back to the    Elevator Button Class    object to 
ask whether its light is on. If not, it sends a message to that    Elevator Button Class    
object to turn itself on, and it also informs the    Scheduler Class    object of the new 
request that has been made. 
  Now, there is a sensor just above and just below each fl oor in each elevator shaft, for a 
total of  2m – 2  sensors per shaft. When an    Elevator Class    object nears a fl oor (moving 
up or down), the corresponding    Sensor Class    object sends an appropriate message to the 
corresponding    Elevator Subcontroller Class    object. The    Elevator Subcontroller 
Class    object then sends a message to the    Scheduler Class    object informing it that the 

Elevator Button Class Floor Button Class

Button Class
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Elevator Controller
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 FIGURE 13.10   
 The third 
iteration of the 
class diagram 
for the elevator 
problem case 
study. 
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   Elevator Class    object is nearing that fl oor. The    Scheduler Class    object now checks 
whether there is a request to stop at that fl oor. If not, it sends a message to the    Elevator 
Subcontroller Class    object, which then sends a message to the appropriate    Elevator 
Class    object to move itself one further fl oor in the same direction. But if there is a request to 
stop, the    Scheduler Class    object informs the    Elevator Subcontroller Class    object 
accordingly, and then updates its request list appropriately. The    Elevator Subcontroller 
Class    object then sends a message to the relevant    Elevator Button Class    object to ask 
whether its light is off. If not, it sends a subsequent message to that    Elevator Button 
Class    object to turn itself off. 
  When an    Elevator Class    object stops at a fl oor, the corresponding    Elevator Sub-
controller Class    object sends a message to the appropriate    Elevator Doors Class    
object to open itself; it then starts its timer. After a time-out, it sends the appropriate mes-
sage to that    Elevator Doors Class    object to close itself. 

1. User A presses the Up floor button at floor 3 to request an elevator. User A wishes
to go to floor 7.

2. The floor button informs the elevator controller that the floor button has been 
pushed.

3. The elevator controller sends a message to the Up floor button to turn itself on.
4. The elevator controller sends a series of messages to the elevator to move itself

up to floor 3. The elevator contains User B, who has entered the elevator at floor
1 and pressed the elevator button for floor 9.

5. The elevator controller sends a message to the elevator doors to open themselves.
6. The elevator controller starts the timer.

User A enters the elevator.
7. User A presses elevator button for floor 7.
8. The elevator button informs the elevator controller that the elevator button has 

been pushed.
  9. The elevator controller sends a message to the elevator button for floor 7 to turn

itself on.
10. The elevator controller sends a message to the elevator doors to close themselves

after a timeout.
11   The  elevator controller sends a message to the Up floor button to turn itself off.
12. The elevator controller sends a series of messages to the elevator to move itself

up to floor 7.
13. The elevator controller sends a message to the elevator button for floor 7 to turn

itself off.
14. The elevator controller sends a message to the elevator doors to open themselves

to allow User A to exit from the elevator.
15. The elevator controller starts the timer.

User A exits from the elevator.
16. The elevator controller sends a message to the elevator doors to close themselves

after a timeout.
17. The elevator controller sends a series of messages to the elevator to move itself

up to floor 9 with User B.

 FIGURE 13.11      The second iteration of a normal scenario for the elevator problem case study.  

.
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422  Part B  The Workfl ows of the Software Life Cycle

  Finally, when an    Elevator Class    object leaves a fl oor (moving up or down), the appro-
priate    Sensor Class    object informs the corresponding    Elevator Subcontroller Class    
object that the elevator has left the fl oor. The    Elevator Subcontroller Class    object sends 
a message to the corresponding    Floor Subcontroller Class    object informing it that the 
elevator has left that fl oor, and the direction in which it is moving. The    Floor Subcon-
troller Class    object then sends a message to the corresponding    Floor Button Class    
object to determine if its light is on and, if so, sends a subsequent message to turn itself off. 
  The various UML diagrams now need to be updated to refl ect the fourth iteration of 
the class diagram of  Figure 13.12 . The fi rst iteration of the statechart for the    Elevator 
Subcontroller Class    is shown in  Figure 13.13 . The fi rst iteration of the CRC card for 

Floor
Subcontroller Class

Elevator
Subcontroller Class

Sensor Class

Elevator Class

m

m n

controls

controls

controlscommunicates
with

communicates
with

communicates
with

communicates
with

controls

1..2

1

1

1
1
1

1

2m � 2

11

1

Elevator Button ClassFloor Button Class

Button Class

illuminated : Boolean

Scheduler Class

requests: requestType

Elevator Doors Class
doors open : Boolean

 FIGURE 13.12      The fourth iteration of the class diagram for the elevator problem case study. 
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 FIGURE 13.13      The fi rst iteration of the statechart for the Elevator Subcontroller Class. 
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424  Part B  The Workfl ows of the Software Life Cycle

the    Elevator Subcontroller Class    is shown in  Figure 13.14 . Updating the other UML 
diagrams is left as an exercise (Problems 13.1–13.5). 
  Even after all these changes have been made and checked (including the modifi ed CRC 
cards), it still may be necessary during the object-oriented design workfl ow to return to the 
object-oriented analysis workfl ow and revise one or more of the analysis artifacts. How-
ever, at this stage it appears that the entity classes for the elevator problem case study have 
been correctly extracted.   

  13.8 Extracting the Boundary and Control Classes 
  Unlike entity classes, boundary classes are usually easy to extract. In general, each input 
screen, output screen, and printed report is modeled by its own boundary class. Recall 
that a class incorporates attributes (data) and operations. The boundary class modeling 
(say) a printed report incorporates all the various data items that can be included in the 
report and the various operations carried out to print the report. 
  Control classes are usually as easy to extract as boundary classes. In general, each non-
trivial computation is modeled by a control class. 

 FIGURE 13.14   
 The fi rst 
iteration of the 
CRC card for 
the Elevator 
Sub-
controller 
Class    .

CLASS
  Elevator Subcontroller Class  

RESPONSIBILITY
 1.  Send message to   Elevator Button Class   to check if it is turned on
 2.  Send message to   Elevator Button Class   to turn itself on
 3.  Send message to   Elevator Button Class   to turn itself off
 4.  Send message to   Elevator Doors Class   to open themselves
 5.  Start timer
 6.  Send message to   Elevator Doors Class   to close themselves after 

timeout
 7.  Send message to   Elevator Class   to move itself up one fl oor
 8.  Send message to   Elevator Class   to move itself down one fl oor
 9.  Send message to   Scheduler Class   that a request has been made
10.  Send message to   Scheduler Class   that a request has been satisfi ed
11.  Send message to   Scheduler Class   to check if the elevator is to stop 

at the next fl oor
12.  Send message to Floor Subcontroller Class that elevator has left 

fl oor

COLLABORATION
1.   Elevator Button Class   (subclass)
2.   Sensor Class  
3.   Elevator Doors Class  
4.   Elevator Class  
5.   Scheduler Class  
6.   Floor Subcontroller Class   
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Chapter 13  Object-Oriented Analysis  425

  We now illustrate entity, boundary, and control class extraction and obtain further insights 
into the Unifi ed Process by extracting the classes of the MSG Foundation case study. The 
starting point is the use-case diagram of  Figure 11.42 , reproduced here as  Figure 13.15 . 

 FIGURE 13.15   
 The seventh 
iteration of 
the use-case 
diagram of 
the MSG 
Foundation case 
study. 

MSG Foundation
Information System

Estimate Funds
Available for

Week

Manage an
Investment

Manage a
Mortgage

Produce a Report

MSG Staff
Member

Borrowers
Update

Estimated
Annual Operating

Expenses

The Initial Functional Model: 
The MSG Foundation Case Study 
  As described in Section 13.2, functional modeling consists of fi nding the scenarios 
of the use cases. Recall that a scenario is an instance of a use case. Consider the use 
case Manage a Mortgage ( Figures 11.32  and  11.33 ). One possible scenario is 
shown in  Figure 13.16 . There is a change in the annual real-estate tax to be paid on 
a home for which the MSG Foundation has provided a mortgage. Because the bor-
rowers pay this tax in equal weekly payments, any change in the real-estate tax must 
be entered in the relevant mortgage record, so that the total weekly installment (and 
perhaps the grant) can be adjusted accordingly. The normal portion of the extended 
scenario models an MSG staff member accessing the relevant mortgage record and 

13.913.9
  Case Study
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426  Part B  The Workfl ows of the Software Life Cycle

changing the annual real-estate tax. Sometimes, however, the staff member may not 
be able to locate the correct mortgage stored in the software product because he or 
she has entered the mortgage number incorrectly. This possibility is modeled by the 
exception portion of the scenario. 
  A second scenario corresponding to the Manage a Mortgage use case ( Figures 
11.32  and  11.33 ) is shown in  Figure 13.17 . Here the borrowers’ weekly income has 
changed. They would like this information to be refl ected in the MSG Foundation 
records so that their weekly installment can be correctly computed. The normal 
portion of this extended scenario shows this operation proceeding as expected. The 
abnormal portion of this scenario shows two possibilities. First, as in the previous 
scenario, the staff member may enter the mortgage number incorrectly. Second, the 
borrowers may not bring with them adequate documentation to support their claim 
regarding their income, in which case the requested change is not implemented. 
  A third scenario ( Figure 13.18 ) is an instance of use case Estimate Funds 
Available for Week ( Figure 11.42 ). This scenario is directly derived from the 
description of the use case ( Figure 11.43 ). 
  The scenarios of  Figures 13.19  and  13.20  are instances of use case Produce a 
Report. Again, these scenarios are directly derived from the corresponding description 
of the use case ( Figure 11.39 ). The remaining scenarios are equally straightforward 
and are therefore left as an exercise (Problems 13.12 and 13.13).   

 FIGURE 13.16      An extended scenario of managing a mortgage.

An MSG Foundation staff member wants to update the annual real-estate tax on 
a home for which the Foundation has provided a mortgage.

1. The staff member enters the new value of the annual real-estate tax.
2.  The information system updates the date on which the annual real-estate tax was 

last changed.

  Possible Alternative  

A. The staff member enters the mortgage number incorrectly. 

 FIGURE 13.17      Another extended scenario of managing a mortgage.

There is a change in the weekly income of a couple who have borrowed money 
from the MSG Foundation. They wish to have their weekly income updated 
in the Foundation records by an MSG staff member so that their mortgage 
payments will be correctly computed.

1. The staff member enters the new value of the weekly income.
2.  The information system updates the date on which the weekly income was last 

changed.

  Possible Alternatives  

A. The staff member enters the mortgage number incorrectly.
B. The borrowers do not bring documentation regarding their new income. 
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 FIGURE 13.18      A scenario of the Estimate Funds Available for Week use case.

An MSG Foundation staff member wishes to determine the funds available for 
mortgages this week.

1.  For each investment, the information system extracts the estimated annual return 
on that investment. It sums the separate returns and divides the result by 52 to 
yield the estimated investment income for the week.

2.  The information system then extracts the estimated annual MSG Foundation 
operating expenses and divides the result by 52.

3.  For each mortgage:
3.1  The information system computes the amount to be paid this week by adding 

the principal and interest payment to 1_
52nd of the sum of the annual real-estate 

tax and the annual homeowner’s insurance premium.
3.2  It then computes 28 percent of the couple’s current gross weekly income.
3.3  If the result of Step 3.1 is greater than the result of Step 3.2, then it determines 

the mortgage payment for the week as the result of Step 3.2, and the amount 
of the grant for this week as the difference between the result of Step 3.1 and 
the result of Step 3.2.

3.4  Otherwise, it takes the mortgage payment for this week as the result of 
Step 3.1, and there is no grant for the week.

4.  The information system sums the mortgage payments of Steps 3.3 and 3.4 to yield 
the estimated total mortgage payments for the week.

5.  It sums the grant payments of Step 3.3 to yield the estimated total grant payments 
for the week.

6.  The information system adds the results of Steps 1 and 4 and subtracts the results 
of Steps 2 and 5. This is the total amount available for mortgages for the current 
week.

7.  Finally, the software product prints the total amount available for new mortgages 
during the current week. 

 FIGURE 13.19      A scenario of the Produce a Report 
use case.

An MSG staff member wishes to print a list of all 
mortgages.

1.  The staff member requests a report listing all 
mortgages. 

 FIGURE 13.20      Another scenario of the Produce a 
Report use case.

An MSG staff member wishes to print a list of all 
investments.

1.  The staff member requests a report listing all 
investments. 
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428  Part B  The Workfl ows of the Software Life Cycle

Mortgage Class Investment Class

 FIGURE 13.21      The fi rst iteration of the 
class diagram of the MSG Foundation case 
study. 

The Initial Class Diagram: 
The MSG Foundation Case Study 
  The second step is class modeling. The aim of this step is to extract the entity classes, 
determine their interrelationships, and fi nd their attributes. The best way to start this 
step is usually to use the two-stage noun extraction method (Section 13.5.1). 
  In Stage 1 we describe the software product in a single paragraph. In the case of 
the MSG Foundation case study, a way to do this is

  Weekly reports are to be printed showing how much money is available for mortgages. 
In addition, lists of investments and mortgages must be printed on demand.   

  In Stage 2 we identify the nouns in this paragraph. For clarity, the nouns are 
printed in  sans serif type . 

  Weekly  reports  are to be printed showing how much  money  is available for  mortgages . 
In addition,  lists  of  investments  and  mortgages  must be printed on demand.    

  The nouns are  report, money, mortgage, list,  and  investment . Nouns  report  
and  list  are not long lived, so they are unlikely to be entity classes ( report  will surely 
turn out to be a boundary class), and  money  is an abstract noun. This leaves two 
candidate entity classes, namely,    Mortgage Class    and    Investment Class,    as 
shown in  Figure 13.21 , the fi rst iteration of the class diagram. 
  Now we consider interactions between these two entity classes. Looking 
at the descriptions of use cases Manage an Investment and Manage a 
Mortgage ( Figures 11.31  and  11.33 , respectively) it appears that the operations 
performed on the two entity classes are likely to be very similar, namely, insertions, 
deletions, and modifi cations. Also, the second iteration of the description of use 
case Produce a Report ( Figure 11.39 ) shows all the members of both entity 
classes have to be printed on demand. In other words,    Mortgage Class    and 
   Investment Class    should probably be subclasses of some superclass. We will 
call that superclass    Asset Class   , because mortgages and investments are both 
assets of the MSG Foundation. The resulting second iteration of the class diagram 
is shown in  Figure 13.22 . 

13.1013.10
  Case Study
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Chapter 13  Object-Oriented Analysis  429

  A useful side effect of constructing this superclass is that we can once again reduce 
the number of use cases. As shown in  Figure 13.15 , we currently have fi ve use cases, 
including Manage a Mortgage and Manage an Investment. However, if we 
consider a mortgage or an investment to be a special case of an asset, we can combine 
the two use cases into a single use case, Manage an Asset. The eighth iteration of 
the use-case diagram is shown in  Figure 13.23 . The new use case is shaded. Now the 
attributes are added, as shown in  Figure 13.24 . 
  The phrase “iteration and   in  crementation” also includes the possibility of the need 
for a   de  crementation in what has been developed to date. There are two reasons for 

 FIGURE 13.22   
 The second 
iteration of the 
class diagram 
of the MSG 
Foundation case 
study. 

Mortgage Class Investment Class

Asset Class

 FIGURE 13.23   
 The eighth 
iteration of 
the use-case 
diagram of 
the MSG 
Foundation 
case study.  
The new use 
case, Manage 
an Asset, is 
shaded. 

Manage an
Asset

MSG Foundation
Information System

Estimate Funds
Available for

Week

Produce a Report

MSG Staff
Member

Borrowers
Update

Estimated
Annual Operating

Expenses
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430  Part B  The Workfl ows of the Software Life Cycle

such a decrease. First, if a mistake is made, the best way to correct it may be to 
  backtrack   to an earlier version of the software product and fi nd a better way of 
performing the step that was incorrectly carried out. When backtracking, everything 
that was added in the course of the incorrect step now has to be removed. Second, 
as a consequence of reorganizing the models to date, one or more artifacts may have 
become superfl uous. Developing a software product is hard. It is therefore important 
to remove superfl uous use cases or other artifacts as soon as possible. 

Mortgage ClassInvestment Class

investmentName
estimatedAnnualReturn
dateEstimatedReturnUpdated

Asset Class

assetNumber

lastNameOfMortgagees
originalPurchasePrice
dateMortgageIssued
weeklyPrincipalAndlnterestPayment
combinedWeeklyIncome
mortgageBalance
dateCombinedWeeklyIncomeUpdated
annualRealEstateTax
dateAnnualRealEstateTaxUpdated
annualInsurancePremium
dateAnnualInsurancePremiumUpdated

 FIGURE 13.24      Attributes added to the second iteration of the class diagram of the MSG 
Foundation case study. 

The Initial Dynamic Model: 
The MSG Foundation Case Study 
  The third step in object-oriented analysis is dynamic modeling. In this step, a state-
chart is drawn that refl ects all the operations performed by or to that system, indi-
cating the events that cause the transition from state to state. The major source of 
information regarding the relevant operations is the scenarios. 
  The statechart of  Figure 13.25  refl ects the operations of the complete MSG 
Foundation case study. The solid circle on the top left represents the initial state, the 
starting point of the statechart. The arrow from the initial state leads us to the state 
labeled    MSG Foundation Event Loop   ; states other than the initial and fi nal states 

13.1113.11
  Case Study
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are represented by rectangles with rounded corners. In state    MSG Foundation 
Event Loop   , one of fi ve events can occur. In more detail, an MSG staff member can 
issue one of fi ve commands: estimate funds for the week, manage an asset, update esti-
mated annual operating expenses, produce a report, or quit. These possibilities are indi-
cated by the fi ve events  estimate funds for the week selected, manage an asset 
selected, update estimated annual operating expenses selected, produce a 
report selected,  and  quit selected . (An   event   causes a   transition   between states.) 
  When the system is in state    MSG Foundation Event Loop   , any one of the fi ve 
events may occur, depending on which option the MSG staff member selects from the 
menu, shown in  Figure 13.26 , that will be incorporated in the target software prod-
uct. [The C++ and Java implementations of the MSG Foundation case study given in 
Appendices H and I, respectively, use a textual interface rather than a graphical user 
interface (GUI). That is, instead of clicking on a box, as shown in  Figure 13.26 , the 
user types in a choice, as shown in  Figure 13.27 . For example, the user types  1  to 
 Estimate funds available for week, 2  to  Manage an asset , and so on. The reason 
the implementations in Appendices H and I use a textual interface, such as  Figure 
13.27 , is that a textual interface can be run on all computers; a GUI generally needs 
special software.] 
  Suppose that the MSG staff member clicks on the choice    Manage an asset    in the 
menu of  Figure 13.26 . The event  manage an asset selected  (second from the left 
below the    MSG Foundation Event Loop    box in  Figure 13.25 ) has now occurred, 
so the system moves from its current state,    MSG Foundation Event Loop   , to 
the state    Managing An Asset   . The operations that the MSG staff member can 
perform in this state, namely,  Add, delete, or modify a mortgage or investment , 
appear below the line in the box with rounded corners. 

Producing A
Report

Print a list of all
mortgages or
investments

estimate
funds for
the week
selected

manage an
asset selected

update estimated
annual operating

expenses selected

produce
a report
selected

quit
selected

Updating
Estimated Annual

Operating Expenses

Update the estimated
annual operating
expenses 

Estimating Funds
For The Week

Estimate and print
funds available for
the current week

Managing An
Asset

Add, delete, or
modify a mortgage
or investment

MSG Foundation Event Loop

 FIGURE 13.25      The initial statechart of the MSG Foundation case study. 
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432  Part B  The Workfl ows of the Software Life Cycle

  Once the operation has been performed, the system returns to the state    MSG 
Foundation Event Loop   , as shown by the arrows. The behavior of the rest of the 
statechart is equally straightforward. 
  In summary, the software product moves from state to state. In each state, the 
MSG staff member can perform the operations supported by that state, as listed 
below the line in the box with rounded corners that represents the state. This 
continues until the MSG staff member clicks on menu choice    Quit    when the soft-
ware product is in the state    MSG Foundation Event Loop   . At this time the 
software product enters the fi nal state (represented by the white circle containing 
the small black circle). When this state is entered, execution of the statechart ter-
minates; recall that the statechart is a model of the execution of the target software 
product.   

Estimate funds for the week

Click on your choice:

Update estimated annual operating expenses

Produce a report

Manage an asset

Quit

 FIGURE 13.26      Menu in the target MSG 
Foundation case study. 

 FIGURE 13.27      Textual version of the menu of 
Figure 13.26  .

MAIN MENU 
MARTHA STOCKTON GREENGAGE FOUNDATION

1. Estimate funds available for week
2. Manage an asset
3. Update estimated annual operating expenses
4. Produce a report
5. Quit

Type your choice and press <ENTER>: 

Revising the Entity Classes: 
The MSG Foundation Case Study 
  The initial functional model, the initial class diagram, and the initial dynamic model 
have now been completed. However, a check of all three models reveals that some-
thing has been overlooked. 
  Look at the initial statechart of  Figure 13.25  and consider state    Updating 
Estimated Annual Operating Expenses    with operation  Update the esti-
mated annual operating expenses . This operation has to be performed on data, 
namely, the current value of the estimated annual operating expenses. But where 
is the value of the estimated annual operating expenses to be found? Looking at 
 Figure 13.24 , it would have been a serious error to have it as an attribute of    Asset 
Class    or either of its subclasses. On the other hand, currently there is only one 
class    Asset Class   ) and its two subclasses. This means that the only way a value 

13.1213.12
  Case Study

sch76183_ch13_404-464.indd   432sch76183_ch13_404-464.indd   432 10/06/10   4:30 PM10/06/10   4:30 PM



Chapter 13  Object-Oriented Analysis  433

Mortgage ClassInvestment Class

investmentName
estimatedAnnualReturn
dateEstimatedReturnUpdated

MSG Application Class

estimatedAnnualOperatingExpenses
dateEstimatedAnnualOperatingExpensesUpdated
availableFundsForWeek
expectedAnnualReturnOnInvestments
dateExpectedAnnualReturnOnInvestmentsUpdated
expectedGrantsForWeek
expectedMortgagePaymentsForWeek

Asset Class

assetNumber

lastNameOfMortgagees
originalPurchasePrice
dateMortgageIssued
weeklyPrincipalAndlnterestPayment
combinedWeeklyIncome
mortgageBalance
dateCombinedWeeklyIncomeUpdated
annualRealEstateTax
dateAnnualRealEstateTaxUpdated
annualInsurancePremium
dateAnnualInsurancePremiumUpdated

 FIGURE 13.28      The third iteration of the class diagram of the MSG Foundation case study. 

can be stored on a long-term basis is as an attribute of an instance of that class or 
its subclasses. 
  The solution is obvious: Another entity class is needed in which the value of the 
estimated annual operating expenses can be stored. In fact, other values need to be 
stored as well; the result is shown in  Figure 13.28 . A new class,    MSG Application 
Class   , has been introduced in which the various attributes shown in the top box in 
the fi gure can be stored. In addition, the    MSG Application Class    will be assigned 
the task of starting the execution of the rest of the software product. 
  Now the class diagram of  Figure 13.28  is redrawn to refl ect the stereotypes. This 
is shown in  Figure 13.29 . All four classes are entity classes. The entity classes seem 
to be correct, at least for now. The next step is to determine the boundary classes and 
control classes.   
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Extracting the Boundary Classes: 
The MSG Foundation Case Study 
  Extracting entity classes is usually considerably harder than extracting boundary 
classes. After all, entity classes generally have interrelationships, whereas each input 
screen, output screen, and printed report is usually modeled by an (independent) 
boundary class, as pointed out in Section 13.8. 
  In view of the fact that the target MSG Foundation software product appears to be 
relatively straightforward (at least at this early stage of the Unifi ed Process), it is rea-
sonable to try to have just one screen that the MSG staff member can use for all four 
use cases: Estimate Funds Available for Week, Manage an Asset, 
Update Estimated Annual Operating Expenses, and Produce a 
Report. As more is learned about the MSG Foundation, it is certainly possible that 
this one screen may have to be refi ned into two or more screens. But the initial class 
extraction has just the one screen class,    User Interface Class   . 
  There are three reports that have to be printed, the estimated funds for the week 
report and the two asset reports, namely, the complete listing of all mortgages or 
of all investments. Each of these has to be modeled by a separate boundary class 
because the content of each report is different. The four corresponding initial bound-
ary classes are then    User Interface Class, Estimated Funds Report Class, 
Mortgages Report Class   , and    Investments Report Class   . These four 
classes are displayed in  Figure 13.30 .   

13.13
  Case Study

 FIGURE 13.30   
 The initial 
boundary classes 
of the MSG 
Foundation case 
study.

  User Interface Class 
Estimated Funds     Report Class 
Mortgages Report Class  
  Investments Report Class   

Investment
Class

Asset
Class

MSG
Application

Class

Mortgage
Class

 FIGURE 13.29    
Figure 13.28 
redrawn to show 
the stereotypes. 

13.13
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 FIGURE 13.31      The initial control 
class of the MSG Foundation case study.

  Estimate Funds for Week Class   

Extracting the Control Classes: 
The MSG Foundation Case Study 
  Control classes are generally as easy to extract as boundary classes because each 
nontrivial computation is almost always modeled by a control class, as stated in 
Section 13.8. For the MSG Foundation case study, there is just one computation, 
namely, estimating the funds available for the week. This yields the initial control 
class    Estimate Funds for Week Class    shown in  Figure 13.31 . 
  The next step is to check all three sets of classes: entity classes, boundary classes, 
and control classes. Careful examination of the classes yields no obvious discrepan-
cies. Having completed class extraction, we now return to the Unifi ed Process.   

13.1413.14
  Case Study

Use-Case Realization: 
The MSG Foundation Case Study 
  A use case is a description of an interaction between an actor and the software 
product. Use cases are fi rst utilized at the beginning of the software life cycle, that 
is, in the requirements workfl ow. During the analysis and design workfl ows, more 
details are added to each use case, including a description of the classes involved in 
carrying out the use case. This process of extending and refi ning use cases is called 
  use-case realization  . Finally, during the implementation workfl ow, the use cases 
are implemented in code. 
  This terminology is somewhat confusing, because the verb   realize   can be used in 
at least three different senses:

   • Understand (“Harvey slowly began to realize that he was in the wrong classroom”).  
  • Receive (“Ingrid will realize a profi t of $45,000 on the stock transaction”).  
  • Accomplish (“Janet hopes to realize her dream of starting a software development 

organization”).    

  In the phrase   realize a use case  , the word   realize   is used in this last sense; that is, 
it means to   accomplish   (or   achieve  ) the use case. 
  An   interaction diagram (sequence diagram   or   communication diagram  ) 
depicts the realization of a specifi c scenario of the use case. We fi rst consider the use 
case Estimate Funds Available for Week.   

13.1513.15
  Case Study
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  13.15.1 Estimate Funds Available for Week Use Case 
 The use-case diagram of  Figure 13.23  shows all the use cases. These include Estimate 
Funds Available for Week, which is shown separately in  Figure 13.32 . The 
description of that use case was given in  Figure 11.43 , which is reproduced here as 
 Figure 13.33  for convenience. From the description we deduce that, as refl ected in 
the class diagram of  Figure 13.34 , the classes that enter into this use case are    User 
Interface Class   , which models the user interface;    Estimate Funds for Week 
Class   , the control class that models the computation of the estimate of the funds that 
are available to fund mortgages during that week;    Mortgage Class   , which models 
the estimated grants and payments for the week;    Investment Class   , which mod-
els the estimated return on investments for the week;    MSG Application Class   , 
which models the estimated operating expenses for the week; and    Estimated Funds 
Report Class,    which models the printing of the report. 
   Figure 13.34  is a class diagram. That is, it shows the classes that participate in 
the realization of the use case and their relationships. A working software product, 
on the other hand, uses objects rather than classes. For example, a specifi c mortgage 
cannot be represented by    Mortgage Class    but rather by an object, a specifi c 
instance of    Mortgage Class   , denoted by   : Mortgage Class  . Also, the class 
diagram of  Figure 13.34  shows the participating classes in the use case and their 
relationships; it does not show the sequence of events as they occur. Something 
more is needed to model a specifi c scenario such as the scenario of  Figure 13.18 , 
reproduced here as  Figure 13.35 . 
  Now consider  Figure 13.36 . This fi gure is a communication diagram (“collabora-
tion diagram” in older versions of UML). It therefore shows the objects that interact 
as well as the messages that are sent, numbered in the order in which they are sent. 
A communication diagram depicts a realization of a specifi c scenario of a use case. 
In this case,  Figure 13.36  depicts the scenario of  Figure 13.35 . In more detail, in 
the scenario the staff member wants to compute the funds available for the week. 
This is represented by message  1: Request estimate of funds available for week  
from    MSG Staff Member    to    : User Interface Class   , an instance of    User 
Interface Class   . 
  Next, this request is passed on to    : Estimate Funds for Week Class   , an 
instance of the control class that actually performs the calculation. This is repre-
sented by message  2: Transfer request . 
  Four separate fi nancial estimates are now determined by   : Estimate Funds for 
Week Class  . In step 1 of the scenario ( Figure 13.35 ), the estimated annual return 

MSG Staff
Member

MSG Foundation
Information System

Estimate Funds
Available for

Week

 FIGURE 13.32   
 The Estimate 
Funds 
Available 
for Week use 
case. 
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on investments is summed for each investment and the result divided by 52. This 
extraction of the estimated weekly return is modeled in  Figure 13.36  by message  3: 
Request estimated return on investments for week  from   : Estimate Funds 
for Week Class   to   : Investment Class   followed by message  4: Return esti-
mated weekly return on investments  in the reverse direction, that is, back to the 
object that is controlling the computation. 
  In step 2 of the scenario ( Figure 13.35 ), the weekly operating expenses are esti-
mated by taking the estimated annual operating expenses and dividing by 52. This 
extraction of the weekly return is modeled in  Figure 13.36  by message  5: Request 
estimated operating expenses for week  from   : Estimate Funds for Week 
Class   to   : MSG Application Class   followed by message  6: Return estimated 
operating expenses for week  in the other direction. 
  In steps 3, 4, and 5 of the scenario ( Figure 13.35 ), two estimates are determined, 
namely the estimated grants for the week and the estimated payments for the week. 
This is modeled in  Figure 13.36  by message  7: Request estimated grants and 

 FIGURE 13.33      The description of the Estimate Funds Available for Week use case.

  Brief Description  

The Estimate Funds Available for Week use case enables an MSG Foundation 
staff member to estimate how much money the Foundation has available that week to 
fund mortgages.

  Step-by-Step Description  

1.  For each investment, extract the estimated annual return on that investment. 
Summing the separate returns and dividing the result by 52 yields the estimated 
investment income for the week.

2.  Determine the estimated MSG Foundation operating expenses for the week by 
extracting the estimated annual MSG Foundation operating expenses and dividing 
by 52.

3.  For each mortgage:
3.1  The amount to be paid this week is the total of the principal and interest 

payment and 1_
52nd of the sum of the annual real-estate tax and the annual 

homeowner’s insurance premium.
3.2  Compute 28 percent of the couple’s current gross weekly income.
3.3  If the result of Step 3.1 is greater than the result of Step 3.2, then the mortgage 

payment for this week is the result of Step 3.2, and the amount of the grant for 
this week is the difference between the result of Step 3.1 and the result of Step 3.2.

3.4  Otherwise, the mortgage payment for this week is the result of Step 3.1, and 
there is no grant this week.

4.  Summing the mortgage payments of Steps 3.3 and 3.4 yields the estimated total 
mortgage payments for the week.

5.  Summing the grant payments of Step 3.3 yields the estimated total grant payments 
for the week.

6.  Add the results of Steps 1 and 4 and subtract the results of Steps 2 and 5. This is the 
total amount available for mortgages for the current week.

7.  Print the total amount available for new mortgages during the current week. 
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Investment
Class

Estimated Funds
Report Class

User Interface
Class

Estimate Funds
for Week Class

Mortgage
Class

MSG Application
Class

MSG Staff
Member

 FIGURE 13.34   
 Class diagram 
showing the 
classes that 
realize the 
Estimate 
Funds 
Available 
for Week use 
case of the MSG 
Foundation case 
study. 

 FIGURE 13.35      A scenario of the Estimate Funds Available for Week use case.

An MSG Foundation staff member wishes to determine the funds available for mortgages this 
week.

1.  For each investment, the information system extracts the estimated annual return on that 
investment. It sums the separate returns and divides the result by 52 to yield the estimated 
investment income for the week.

2.  The information system then extracts the estimated annual MSG Foundation operating 
expenses and divides the result by 52.

3.  For each mortgage:
3.1  The information system computes the amount to be paid this week by adding the principal 

and interest payment to 1_
52nd of the sum of the annual real-estate tax and the annual 

homeowner’s insurance premium.
3.2  It then computes 28 percent of the couple’s current gross weekly income.
3.3  If the result of Step 3.1 is greater than the result of Step 3.2, then it determines the 

mortgage payment for the week as the result of Step 3.2, and the amount of the grant for 
this week as the difference between the result of Step 3.1 and the result of Step 3.2.

3.4  Otherwise, it takes the mortgage payment for this week as the result of Step 3.1, and there 
is no grant for the week.

4.  The information system sums the mortgage payments of Steps 3.3 and 3.4 to yield the 
estimated total mortgage payments for the week.

5.  It sums the grant payments of Step 3.3 to yield the estimated total grant payments for the week.
6.  The information system adds the results of Steps 1 and 4 and subtracts the results of Steps 2 

and 5. This is the total amount available for mortgages for the current week.
7.  Finally, the software product prints the total amount available for new mortgages during the 

current week. 
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payments for week  from   : Estimate Funds for Week Class   to   : Mortgage 
Class   and by message  8: Return estimated grants and payments for week  in the 
reverse direction. 
  Now the arithmetic computation of step 6 of the scenario is performed. This is mod-
eled in  Figure 13.36  by message  9: Compute estimated amount available for week . 
This is a self call, that is,   : Estimate Funds for Week Class   tells itself to perform 
the calculation. The result of the computation is stored in   : MSG Application Class   
by message  10: Transfer estimated amount available for week . 
  Next, the result is printed in step 7 of the scenario ( Figure 13.35 ). This is modeled 
in  Figure 13.36  by message  11: Print estimated amount available  from   : MSG 
Application Class   to   : Estimated Funds Report Class  . 
  Finally, an acknowledgment is sent to the MSG staff member that the task has 
been successfully completed. This is modeled in  Figure 13.36  by messages  12: Send 
successful completion message, 13: Send successful completion message, 
14: Transfer successful completion message,  and  15: Display successful com-
pletion message . 

2: Transfer
    request

1: Request    
    estimate of
    funds available
    for week

7: Request    
    estimated grants 
    and payments for
    week

15: Display suc-
      cessful completion
      message

4: Return estimated weekly
    return on investments

3: Request estimated
    return on investments
    for week

8: Return estimated
    grants and
    payments for
    week

9:  Compute estimated
     amount available
     for week

12: Send
      successful
      completion
      message

6: Return estimated operating
    expenses for week

10: Transfer estimated amount
      available for week

11: Print estimated
      amount available

5: Request estimated operating
    expenses for week

13: Send successful completion
      message

14: Transfer suc-
      cessful completion
      message

: Estimate
Funds for

Week Class

: Estimated
Funds

Report Class

: MSG
Application

Class

MSG Staff
Member

: Mortgage
Class

: User
Interface

Class 

: Investment
Class

 FIGURE 13.36      A communication diagram of the realization of the scenario of Figure 13.35 of the Estimate 
Funds Available for Week use case of the MSG Application case study. 
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  No client is going to approve the specifi cation document unless he or she under-
stands precisely what the proposed software product will do. For this reason, a written 
description of the communication diagram is essential. This is shown in  Figure 13.37 , 
the   fl ow of events  . Finally, the equivalent sequence diagram of the realization of 
the scenario is shown in  Figure 13.38 . When constructing a software product, either 
a communication diagram or a sequence diagram may prove to give better insight of 
a realization of a use case. In some situations, both are needed to get a full under-
standing of a specifi c realization of a given use case. That is why, in this chapter, 
every communication diagram is followed by the equivalent sequence diagram. The 
sequence diagram of  Figure 13.38  is fully equivalent to the communication diagram 
of  Figure 13.36 , so its fl ow of events is also shown in  Figure 13.37 . 
  The strength of a sequence diagram is that it shows the fl ow of messages unam-
biguously. The order of the messages is particularly clear, as are the sender and 
receiver of each individual message. So, when the transfer of information is the focus 
of attention (which is the case for much of the time when performing the analy-
sis workfl ow), a sequence diagram is superior to a communication diagram. On the 
other hand, the similarity between a sequence diagram (such as  Figure 13.38 ) and the 
communication diagram that realizes the relevant scenario (such as  Figure 13.36 ) is 
strong. Accordingly, on those occasions when the developers are concentrating on 
the classes, a communication diagram is generally more useful than the equivalent 
sequence diagram. 
  Summarizing,  Figures 13.32  through  13.38  do not depict a random collection of 
UML artifacts. On the contrary, these fi gures depict a use case and artifacts derived 
from that use case. In more detail:

    • Figure 13.32  depicts the use case Estimate Funds Available for Week. 
That is,  Figure 13.32  models all possible sets of interactions, between the actor 
   MSG Staff Member    (an entity that is external to the software product) and the 
MSG Foundation software product itself, that relate to the action of estimating 
funds available for the week.  

   • Figure 13.33  is the description of that use case; that is, it provides a written account 
of the details of the Estimate Funds Available for Week use case of 
 Figure 13.32 .  

   • Figure 13.34  is a class diagram showing the classes that realize the Estimate 
Funds Available for Week use case. The class diagram depicts the classes 
that are needed to model all possible scenarios of the use case, together with their 
interactions.  

 FIGURE 13.37      The fl ow of events of the communication diagram of Figure 13.36 of the realization of the scenario 
of Figure 13.35 of the Estimate Funds Available for Week use case of the MSG Application case study.

An MSG staff member requests an estimate of the funds available for mortgages for the week 
(1, 2). The information system estimates the return on investments for the week (3, 4), the 
operating expenses for the week (5, 6), and the grants and payments for the week (7, 8). Then it 
estimates (9), stores (10), and prints out (11–15) the funds available for the week. 
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    funds available
    for week

: Estimate
Funds for

Week Class

: MSG
Application

Class

: Estimated
Funds

Report Class

2: Transfer request
3: Request estimated
    return on invest-
    ments for week

4: Return estimated
    return on invest-
    ments for week

5: Request estimated operating
    expenses for week

6: Return estimated operating
    expenses for week

15: Display suc-
      cessful completion
      message

7: Request estimated grants and payments for week

8: Return estimated grants and payments for week

9: Compute estimated amount
    available for week

11: Print estimated amount
      available

12: Send successful com-
      pletion message

10: Transfer estimated amount
      available for week

13: Send successful completion
      message

14: Transfer suc-
      cessful completion
      message

MSG Staff
Member

 FIGURE 13.38      A sequence diagram of the realization of the scenario of Figure 13.35 of the Estimate Funds 
Available for Week use case of the MSG Application case study.  This sequence diagram is fully equivalent 
to the communication diagram of Figure 13.36, so its fl ow of events is also shown in Figure 13.37. 
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   • Figure 13.35  is a scenario, that is, one specific instance of the use case of 
 Figure 13.32 .  

   • Figure 13.36  is a communication diagram of the realization of the scenario of 
 Figure 13.35 ; that is, it depicts the objects and the messages sent between them in 
the realization of that one specifi c scenario.  

   • Figure 13.37  is the fl ow of events of the communication diagram of the realization of 
the scenario of  Figure 13.35 . That is, just as  Figure 13.33  is a written description of the 
Estimate Funds Available for Week use case of  Figure 13.32 ,  Figure 
13.37  is a written description of the realization of the scenario of  Figure 13.35 .  

   • Figure 13.38  is the sequence diagram that is fully equivalent to the communication 
diagram of  Figure 13.36 . That is, the sequence diagram depicts the objects and the 
messages sent between them in the realization of the scenario of  Figure 13.35 . Its 
fl ow of events is therefore also shown in  Figure 13.37 .    

  It has been stated many times in this book that the Unifi ed Process is use-case 
driven. These bulleted items explicitly state the precise relationship between each 
of the artifacts of  Figures 13.33  through  13.38  and the use case of  Figure 13.32  that 
underlies each of them.  

  13.15.2 Manage an Asset Use Case 
 The Manage an Asset use case is shown in  Figure 13.39  and its description 
in  Figure 13.40 . A class diagram showing the classes that realize the Manage an 
Asset use case is shown in  Figure 13.41 . Initially it was assumed that only one control 

MSG Staff
Member

Borrowers

MSG Foundation
Information System

Manage an Asset

 FIGURE 13.39   
 The Manage 
an Asset use 
case. 

 FIGURE 13.40   
 Description of 
the Manage 
an Asset use 
case.

  Brief Description  

The Manage an Asset use case enables an MSG 
Foundation staff member to add and delete assets 
and manage the portfolio of assets (investments and 
mortgages). Managing a mortgage includes updating 
the weekly income of a couple who have borrowed 
money from the Foundation.

  Step-by-Step Description  

1.  Add, modify, or delete an investment or mortgage, 
or update the borrower’s weekly income. 
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class was needed (see  Figure 13.31 ). However,  Figure 13.41  shows that a second 
control class,    Manage an Asset Class   , is required; additional control classes 
may have to be added in subsequent iterations. 
  The normal part of the extended scenario of  Figure 13.16  of the use case 
Manage a Mortgage (and hence of Manage an Asset) is reproduced 
as  Figure 13.42 . In this scenario, an MSG staff member updates the annual real-
estate tax on a mortgaged home and the software product updates the date on 
which the tax was last changed.  Figure 13.43  is the communication diagram of 
this scenario. Notice that object   : Investment Class   does not play an active 
role in this communication diagram because the scenario of  Figure 13.42  does not 

User Interface
Class

Manage an
Asset Class

Mortgage
Class

Investment
Class

In some scenarios,
the borrowers tell the
MSG staff member their
current weekly income.

MSG Staff
Member

Borrowers

 FIGURE 13.41   
 A class diagram 
showing the 
classes that 
realize the 
Manage an 
Asset use case 
of the MSG 
Foundation case 
study. 

 FIGURE 13.42   
 A scenario of 
the Manage 
an Asset use 
case.

An MSG Foundation staff member wants to update the annual 
real-estate tax on a home for which the Foundation has 
provided a mortgage.

1.  The staff member enters the new value of the annual real-
estate tax.

2.  The information system updates the date on which the annual 
real-estate tax was last changed. 
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involve an investment, only a mortgage. Also, the   Borrowers   do not play a role 
in this scenario either. The fl ow of events is left as an exercise (Problem 13.14). 
The sequence diagram equivalent to the communication diagram of  Figure 13.43  
is shown in  Figure 13.44 . 
  Now consider a different scenario of the use case Manage an Asset ( Figure 13.39 ), 
namely, the extended scenario of  Figure 13.17 , the normal part of which is repro-
duced here as  Figure 13.45 . In this scenario, at the request of the borrowers, the 
MSG staff member updates the weekly income of a couple who have an MSG mort-
gage. As explained in Section 11.7, the scenario is initiated by the    Borrowers   , and 
their data are entered into the software product by the    MSG Staff Member   , as 
stated in the note in the communication diagram of  Figure 13.46 . The fl ow of events 
is again left as an exercise (Problem 13.15). The equivalent sequence diagram is 
shown in  Figure 13.47 . 

: Manage an
Asset Class

1:  Update annual
     real-estate tax 2:  Transfer data

3:  Update tax
     and date

5:  Send successful
     completion
     message

4:  Send successful
     completion
     message

6:  Display successful
     completion
     message

MSG Staff
Member

Borrowers

: User
Interface

Class 

: Investment
Class

: Mortgage
Class

 FIGURE 13.43      A communication diagram of the realization of the scenario of Figure 13.42 of 
the Manage an Asset use case of the MSG Foundation case study. 

sch76183_ch13_404-464.indd   444sch76183_ch13_404-464.indd   444 10/06/10   4:30 PM10/06/10   4:30 PM



Chapter 13  Object-Oriented Analysis  445

  Comparing the interaction diagrams of  Figures 13.43  and  13.46  (or, equivalently, 
the sequence diagrams of  Figures 13.44  and  13.47 ), we see that, other than the actors 
involved, the only other difference between the two diagrams is that messages 1, 2, 
and 3 involve annual real-estate tax in the case of  Figure 13.43  (or  Figure 13.44 ) 
and weekly income in the case of  Figure 13.46  (or  Figure 13.47 ). This example 
highlights the difference between a use case, scenarios (instances of the use case), 
and communication or sequence diagrams of the realization of different scenarios 
of that use case. 
  Boundary class    User Interface Class    appears in all the realizations considered 
so far. In fact, the same screen will be used for all commands of the software product. 

1:  Update annual
    real-estate tax

2:  Transfer data

3:  Update tax and
     date

4:  Send successful
     completion
     message

5:  Send successful
     completion
     message

6:  Display
     successful com-
     pletion message

MSG Staff
Member

Borrowers : Manage an
Asset Class

: User Interface
Class 

: Investment
Class

: Mortgage
Class

 FIGURE 13.44      A sequence diagram of the realization of the scenario of Figure 13.42 of the Manage an 
Asset use case of the MSG Foundation case study. 

 FIGURE 13.45      A second scenario of the Manage an Asset use case.

There is a change in the weekly income of a couple who have borrowed money 
from the MSG Foundation. They wish to have their weekly income updated 
in the Foundation records by an MSG staff member so that their mortgage 
payments will be correctly computed.

1.  The staff member enters the new value of the weekly income.
2.  The information system updates the date on which the weekly income was last 

changed. 
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An MSG staff member clicks on the appropriate operation in the revised menu of 
 Figure 13.48 . (The corresponding textual interface, as implemented in Appendices H 
and I, is given in  Figure 13.49 .)  

  13.15.3  Update Estimated Annual Operating 
Expenses Use Case 

 The use case Update Estimated Annual Operating Expenses is shown 
in  Figure 11.17  with a description in  Figure 11.18 . A class diagram showing the 
classes that realize the Update Estimated Annual Operating Expenses 
use case appears in  Figure 13.50  and a communication diagram of a realization of a 
scenario of the use case in  Figure 13.51 . The equivalent sequence diagram is shown 
in  Figure 13.52 . Details of the scenario and the fl ow of events are left as an exercise 
(Problems 13.16 and 13.17).  

1:  Update
     weekly
     income 2:  Transfer data

3:  Update
     income
     and date

5:  Send successful
     completion
     message

4:  Send successful
     completion
     message

6:  Display successful
     completion
     message

The borrowers tell
the MSG staff member
their current weekly
income

MSG Staff
Member

Borrowers

: Manage an
Asset Class

: User
Interface

Class 

: Investment
Class

: Mortgage
Class

 FIGURE 13.46      A communication diagram of the realization of the scenario of Figure 13.45 of 
the Manage an Asset use case of the MSG Foundation case study. 
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 FIGURE 13.47      A sequence diagram of the realization of the scenario of Figure 13.45 of the Manage an 
Asset use case of the MSG Foundation case study. 

1:  Update weekly
     income

2:  Transfer data

3:  Update income
     and date

4:  Send successful
     completion
     message

5:  Send successful
     completion
     message

6:  Display
     successful com-
     pletion message

The borrowers tell
the MSG staff member
their current weekly
income

MSG Staff
Member

Borrowers : Manage an
Asset Class

: User Interface
Class 

: Investment
Class

: Mortgage
Class

 FIGURE 13.48   
 Revised 
menu of the 
target MSG 
Foundation case 
study. 

Estimate funds for the week

Manage an investment

Produce a mortgages report

Manage a mortgage

Produce an investments report

Click on your choice:

Update estimated annual operating expenses

Quit

 FIGURE 13.49   
 Textual version 
of the revised 
menu of Figure 
13.48.

MAIN MENU
MARTHA STOCKTON GREENGAGE FOUNDATION

1. Estimate funds available for week
2. Manage a mortgage
3. Manage an investment
4. Update estimated annual operating expenses
5. Produce a mortgages report
6. Produce an investments report
7. Quit

Type your choice and press <ENTER>: 
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User Interface
Class

MSG Application
Class

MSG Staff
Member

 FIGURE 13.50      A class diagram showing the classes that realize the 
Update Estimated Annual Operating Expenses use 
case of the MSG Foundation case study. 

: MSG Application
Class

: User
Interface Class

1: Update annual
    expenses

2: Update expenses
    and date

3: Send successful
    completion
    message

4: Display successful
    completion
    message

MSG Staff
Member

 FIGURE 13.51      A communication diagram of the realization of a scenario of the 
Update Estimated Annual Operating Expenses use case of the MSG 
Foundation case study. 

1:  Update annual
     expenses

2:  Update expenses
     and date

3:  Send
     successful
     completion
     message4:  Display

     successful
     completion
     message

MSG Staff
Member

: MSG Application
Class

: User Interface
Class

 FIGURE 13.52      A sequence diagram of the realization of 
a scenario of the Update Estimated Annual Operating 
Expenses use case of the MSG Foundation case study. 
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  13.15.4 Produce a Report Use Case 
 Use case Produce a Report is shown in  Figure 13.53 . The description of use 
case Produce a Report of  Figure 11.39  is reproduced here as  Figure 13.54 . A 
class diagram showing the classes that realize the Produce a Report use case 
is shown in  Figure 13.55 . 

 FIGURE 13.53   
 The Produce 
a Report use 
case. 

MSG Staff
Member

MSG Foundation
Information System

Produce a Report

 FIGURE 13.54      Description of the Produce a Report use case.

  Brief Description  

The Produce a Report use case enables an MSG Foundation staff member to print 
a listing of all investments or all mortgages.

  Step-by-Step Description  

1. The following reports must be generated:
1.1 Investments report—printed on demand:

The information system prints a list of all investments. For each investment, 
the following attributes are printed:

Item number
Item name
Estimated annual return
Date estimated annual return was last updated

1.2 Mortgages report—printed on demand:
The information system prints a list of all mortgages. For each mortgage, 
the following attributes are printed:

Account number
Name of mortgagees
Original price of home
Date mortgage was issued
Principal and interest payment
Current combined gross weekly income
Date current combined gross weekly income was last updated
Annual real-estate tax
Date annual real-estate tax was last updated
Annual homeowner’s insurance premium
Date annual homeowner’s insurance premium was last updated 
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450  Part B  The Workfl ows of the Software Life Cycle

  First consider the scenario of  Figure 13.19  for listing all mortgages, reproduced 
here as  Figure 13.56 . A communication diagram of the realization of this scenario 
is shown in  Figure 13.57 . This realization models the listing of all mortgages. 
Accordingly, object   : Investment Class  , an instance of the other subclass of 
   Asset Class   , plays no role in this realization, and neither does   : Investments 
Report Class  . The fl ow of events is left as an exercise (Problem 13.18). The equiv-
alent sequence diagram is shown in  Figure 13.58 . 
  Now consider the scenario of  Figure 13.20  for listing all investments, reproduced 
here as  Figure 13.59 . A communication diagram of the realization of this scenario is 
shown in  Figure 13.60 . As opposed to the previous realization,  Figure 13.60  models 

 FIGURE 13.55      A class diagram showing the classes that 
realize the Produce a Report use case of the MSG 
Foundation case study. 

Mortgage
Class

Mortgages
Report Class

Investments
Report Class

User
Interface Class

Investment
Class

MSG Staff
Member
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 FIGURE 13.56      A scenario of the Produce a Report 
use case.

An MSG staff member wishes to print a list of all 
mortgages.

1.  The staff member requests a report listing all 
mortgages. 

: Mortgages
Report Class

: Investments
Report Class

1: Request list
    of mortgages

2: Transfer
    request

5: Send successful
    completion
    message

4: Send successful
    completion
    message

3: Print list of
    mortgages

6: Display successful
    completion
    message

MSG Staff
Member

: User Interface
Class 

: Investment
Class

: Mortgage
Class

 FIGURE 13.57      A communication diagram of the realization of the scenario of 
Figure 13.56 of the Produce a Report use case of the MSG Foundation case 
study. 
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452  Part B  The Workfl ows of the Software Life Cycle

the listing of the investments; mortgages are ignored here. The equivalent sequence 
diagram is shown in  Figure 13.61 . 
  This concludes the realization of the four use cases of  Figure 13.23 , the eighth 
iteration of the use-case diagram of the MSG Foundation case study. 

 FIGURE 13.58      A sequence diagram of the realization of the scenario of Figure 13.56 of the Produce a 
Report use case of the MSG Foundation case study. 

1:  Request list
       of mortgages

2:  Transfer request

3:  Print list of
     mortgages

4:  Send successful
     completion
     message

5:  Send successful
     completion
     message6:  Display

     successful
     completion
     message

MSG Staff
Member

: User Interface
Class 

: Investment
Class

: Mortgage
Class

: Mortgages
Report Class

: Investments
Report Class

 FIGURE 13.59      Another scenario of the Produce a 
Report use case.

An MSG staff member wishes to print a list of all 
investments.

1.  The staff member requests a report listing all 
investments. 
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 FIGURE 13.60   
 A communication 
diagram of the 
realization of 
the scenario of 
Figure 13.59 of 
the Produce 
a Report use 
case of the MSG 
Foundation case 
study. 

1:  Request list
     of investments

2:  Transfer
     request

5:  Send successful
     completion
     message

4:  Send successful
     completion
     message

3:  Print list of
     investments

6:  Display successful
     completion
     message

MSG Staff
Member

: Mortgages
Report Class

: Investments
Report Class

: User Interface
Class 

: Investment
Class

: Mortgage
Class

1:  Request list
        of  investments

2:  Transfer request

3:  Print list of
       investments

4:  Send successful
     completion
     message

5:  Send successful
     completion
     message6:  Display

     successful
     completion
     message

MSG Staff
Member

: Investments
Report Class

: User Interface
Class 

: Mortgage
Class

: Mortgages
Report Class

: Investment
Class

 FIGURE 13.61      A sequence diagram of the realization of the scenario of Figure 13.59 of the Produce a 
Report use case of the MSG Foundation case study. 
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454  Part B  The Workfl ows of the Software Life Cycle

Incrementing the Class Diagram: 
The MSG Foundation Case Study 
  The entity classes were extracted in Sections 13.9 through 13.12, yielding  Figure 13.29 , 
which shows four entity classes. The boundary classes were extracted in Section 13.13 
and the control classes in Sections 13.14 and 13.15.2. In the course of realizing the vari-
ous use cases in Section 13.15, interrelationships between many of the classes became 
apparent; these interrelationships are refl ected in the class diagrams of  Figures 13.34 , 
 13.41 ,  13.50 , and  13.55 .  Figure 13.62  combines these class diagrams. 
  Now the class diagrams of  Figures 13.29  and  13.62  are combined to yield the 
fourth iteration of the class diagram of the MSG Foundation case study, shown in 

13.1613.16
  Case Study

User Interface
Class

Mortgages
Report Class

Estimate Funds
Report Class

Investments
Report Class

Mortgage
Class

Investment
Class

MSG Application
Class

Manage an
Asset Class

Estimate
Funds for

Week Class

MSG Staff Member

 FIGURE 13.62   
 Class diagram 
combining the 
class diagrams 
of 13.34, 13.41, 
13.50, and 
13.55. 
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 Figure 13.63 . More specifi cally, starting with  Figure 13.62 ,    Asset Class    of  Figure 13.29  
is added. Then the two inheritance (generalization) relationships in  Figure 13.29  are 
drawn in; they are shown with dashed lines to distinguish them. The result,  Figure 13.63 , 
the fourth iteration of the class diagram, is the class diagram at the end of the analysis 
workfl ow. 
  The last step of the analysis workfl ow of the MSG Foundation case study is to 
draw up the software project management plan (this is done during the elaboration 
phase; see Section 3.10.2). Appendix F contains a software project management plan 
for the development of the MSG Foundation product by a small (three-person) soft-
ware organization.   

 FIGURE 13.63   
 The fourth 
iteration of the 
class diagram 
of the MSG 
Foundation 
case study, 
obtained by 
combining the 
class diagrams 
of Figures 13.29 
and 13.62. 

Asset
Class

Relationships in Figure 13.62

Relationships in Figure 13.29

User Interface
Class

Mortgages
Report Class

Estimated Funds
Report Class

Investments
Report Class

Mortgage
Class

Investment
Class

MSG Application
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Manage an
Asset Class

Estimate
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Week Class
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  13.18 The Specifi cation Document in the Unifi ed Process 
  A primary goal of the analysis workfl ow is to produce the   specifi cation document  , but 
at the end of Section 13.17 it was claimed that the analysis workfl ow is now complete. The 
obvious question is, Where is the specifi cation document? 
  The short answer is, the Unifi ed Process is use-case driven. In more detail, the use 
cases and the artifacts derived from them contain all the information that, in the traditional 
paradigm, appears in the specifi cation document in text form, and more. 
  For example, consider the use case Estimate Funds Available for Week. 
When the requirements workfl ow is performed, the Estimate Funds Available 
for Week use case ( Figure 11.27 ) and its description ( Figure 11.40 ) are shown to the client, 
the trustees of the MSG Foundation. The developers must be meticulous in ensuring that the 
trustees fully understand these two artifacts and agree that these artifacts accurately model 
the software product the Foundation needs. Then, during the analysis workfl ow, the trustees 
are shown the use case Estimate Funds Available for Week ( Figure 13.32 ), its 
description ( Figure 13.33 ), the class diagram showing the classes that realize the use case 
( Figure 13.34 ), a scenario of the use case ( Figure 13.35 ), the interaction diagrams of the real-
ization of a scenario of the use case ( Figures 13.36  and  13.38 ), and the fl ow of events of these 
interaction diagrams ( Figure 13.37 ). 
  The set of artifacts just listed all appertain to only the use case Estimate Funds 
Available for Week. As shown in  Figure 13.23 , there are four use cases altogether. 
The same set of artifacts are produced for each of the scenarios of each of the use cases. 
The resulting collection of artifacts, some diagrammatic and some textual, convey to the 
client more information more accurately than the purely textual specifi cation document of 
the traditional paradigm possibly could. 
  The traditional specifi cation document usually plays a contractual role. That is, once 
it has been signed by both the developers and the client, it essentially constitutes a legal 
document. If the developers build a software product that satisfi es the specifi cation docu-
ment, the client is obligated to pay for the software product, and conversely, if the product 
does not conform to its specifi cation document, the developers are required to fi x it if 
they want to get paid. In the case of the Unifi ed Process, the collection of artifacts of all 

The Test Workfl ow: 
The MSG Foundation Case Study 
  The analysis workfl ow of the MSG Foundation case study is checked in two ways. 
First the entity classes are checked using CRC cards, as described in Section 13.7. 
Then all the artifacts of the analysis workfl ow are inspected (Section 6.2.3). 
  This concludes the analysis workfl ow of the MSG Foundation case study.      

13.1713.17
  Case Study
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the scenarios of all the use cases similarly constitutes a contract. Therefore, as claimed 
at the end of Section 13.17, the analysis workfl ow of the MSG Foundation case study is 
indeed complete. 
  As stated before, the Unifi ed Process is use-case driven. When using the Unifi ed Pro-
cess, instead of constructing a rapid prototype, the use cases, or more precisely, interaction 
diagrams refl ecting the classes that realize the scenarios of the use cases, are shown to the 
client. The client can understand how the target software product will behave just as well 
from the interaction diagrams and their written fl ow of events as from a rapid prototype. 
After all, a scenario is a particular execution sequence of the proposed software product, as 
is each execution of the rapid prototype. The difference is that the rapid prototype is gener-
ally discarded, whereas the use cases are successively refi ned, with more information added 
each time. 
  However, there is one area where a rapid prototype is superior to a scenario, the user 
interface. This does not mean that a rapid prototype should be built just so that specimen 
screens and reports can be examined by the client and users. But specimen screens and 
reports need to be constructed, as described in Section 11.13, preferably with the aid of 
CASE tools such as screen generators and report generators (Section 5.5). 
  In Section 13.19, methods for determining actors and use cases are provided.   

  13.19 More on Actors and Use Cases 
  As stated in Section 11.4.3, a use case depicts an interaction between the software product 
itself and the actors (the users of that software product). Now that a number of examples 
of actors and use cases have been presented, it is appropriate to describe how to fi nd actors 
and use cases. 
  To fi nd the actors, we have to consider every   role   in which an individual can interact 
with the software product. For example, consider a couple who wish to obtain a mortgage 
from the MSG Foundation. When they apply for the mortgage, they are    Applicants   , 
whereas after their application has been approved and money to buy their home loaned 
to them, they become    Borrowers   . In other words, actors are not so much individuals 
as roles played by those individuals. In our example, the actors are not the couple, but 
rather fi rst the couple playing the role of    Applicants    and then the couple playing the 
role of    Borrowers   . This means that merely listing all the individuals who will use the 
software product is not a satisfactory way of fi nding the actors. Instead, we need to fi nd 
all the roles played by each user (or group of users). From the list of roles we can extract 
the actors. 
  In the terminology of the Unifi ed Process, the term   worker   is used to denote a par-
ticular role played by an individual. This is a somewhat unfortunate term, because the 
word   worker   usually refers to an employee. In the terminology of the Unifi ed Process, 
in the case of a couple with a mortgage,    Applicants    and    Borrowers    are two dif-
ferent workers. In this book, in the interests of clarity the word   role   is used in place of 
  worker  . 
  Within a business context, the task of fi nding the roles is generally straightforward. The 
use-case business model usually displays all the roles played by the individuals who inter-
act with the business, thereby highlighting the business actors. We then fi nd the subset of 

sch76183_ch13_404-464.indd   457sch76183_ch13_404-464.indd   457 10/06/10   4:30 PM10/06/10   4:30 PM
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the use-case business model that corresponds to the use-case model of the requirements. In 
more detail,

   1. Construct the use-case business model by fi nding all the roles played by the individuals 
who interact with the business.  

  2. Find the subset of the use-case diagram of the business model that models the software 
product we wish to develop. That is, consider only those parts of the business model that 
correspond to the proposed software product.    

  Once the actors have been determined, fi nding the use cases is generally straightfor-
ward. For each role, there are one or more use cases. So, the starting point in fi nding the 
use cases of the requirements is fi nding the actors, as described in this section. 
  How to Perform Box 13.1 summarizes object-oriented analysis.   

  13.20  CASE Tools for the Object-Oriented 
Analysis Workfl ow 

  Bearing in mind the role played by diagrams in object-oriented analysis, it is not surprising 
that a number of CASE tools have been developed to support object-oriented analysis. In 
its basic form, such a tool is essentially a drawing tool that makes it easy to perform each 
of the modeling steps. More important, it is far simpler to modify a diagram constructed 
with a drawing tool than to attempt to change a hand-drawn fi gure. Accordingly, a CASE 
tool of this type supports the graphical aspects of object-oriented analysis. In addition, 
some tools of this type not only draw all the relevant diagrams but CRC cards as well. A 
strength of these tools is that a change to the underlying model is refl ected automatically in 
all the affected diagrams; after all, the various diagrams are merely different views of the 
underlying model. 
  On the other hand, some CASE tools support not just object-oriented analysis but a con-
siderable portion of the rest of the object-oriented life cycle as well. Nowadays virtually all 
of these tools support UML [Rumbaugh, Jacobson, and Booch, 1999]. Examples of such 

 How to Perform Object-Oriented Analysis Box 13.1 

     • Iterate   

   Perform functional modeling.  

   Perform entity class modeling.  

   Perform dynamic modeling.     

    • Until   the entity classes have been satisfactorily extracted.  

  • Extract the boundary classes and control classes.  

  • Refi ne the use cases.  

  • Perform use-case realization.   
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tools include IBM Rational Rose and Together. ArgoUML is a typical open-source CASE 
tool of this type.   

  13.21 Metrics for the Object-Oriented Analysis Workfl ow 
  As with the other core workfl ows, during object-oriented analysis it is essential to measure 
the fi ve fundamental metrics: size, cost, duration, effort, and quality. One measure of the 
size of the object-oriented analysis is the number of pages of UML diagrams; this metric 
can be used to compare different projects. 
  With regard to quality, as with classical analysis, it is essential to keep accurate fault 
statistics. Also, the rate at which faults are detected can give a measure of the effi ciency of 
the inspection process.   

  13.22 Challenges of the Object-Oriented Analysis Workfl ow 
  Object-oriented analysis is a specifi c approach to analysis, so the challenges of classical 
analysis described in Section 12.16 apply equally to object-oriented analysis. In particu-
lar, the second challenge listed in that section is that it is easy to cross the boundary line 
between specifi cations (what) and design (how). This danger is especially acute in the case 
of object-oriented analysis. 
  Recall that, as described in Section 1.9, the transition from object-oriented analysis to 
object-oriented design is far smoother than the transition in the classical paradigm from the 
analysis phase to the design phase. In the classical paradigm, an initial task of the design 
phase is to decompose the product into modules. In contrast, the classes, the “modules” 
of the object-oriented design workfl ow, are extracted during the object-oriented analysis 
workfl ow, ready for refi nement during the object-oriented design workfl ow. The presence 
of classes from early in the OOA workfl ow means that the temptation to carry the OOA too 
far can be extremely strong. 
  For example, consider the issue of allocation of methods to classes. One task of the clas-
sical analysis phase is to determine the data and operations of the target product. However, 
allocation of the various operations to specifi c modules should be delayed until the classi-
cal design phase, because as pointed out in Section 12.16, we fi rst have to determine how 
the product as a whole is broken down into modules. 
  In the object-oriented paradigm, however, this latter task is part of the analysis workfl ow. 
That is, during the object-oriented analysis workfl ow, we determine the modules (classes) 
and their interactions; the result is depicted in the class diagram. Therefore, there is no 
apparent reason why we should wait until the object-oriented design workfl ow before allo-
cating methods to classes. 
  Nevertheless, it is important to remember that object-oriented analysis is an iterative process. 
In the course of refi ning the various models, frequently large portions of the class diagram have 
to be reorganized. Reallocating the methods then results in unnecessary additional rework. 
  At each step of the OOA process it is a good idea to minimize the information that 
would have to be reorganized during iteration. Therefore, allocation of methods to classes 
should wait until the design workfl ow, no matter how tempting it may be to go just a little 
further during the object-oriented analysis workfl ow.    
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  Object-oriented analysis is introduced (Section 13.1). Extracting entity classes is described in Sec-
tion 13.2. The technique is then applied to the elevator problem case study (Section 13.3); functional 
modeling, entity class modeling, and dynamic modeling are performed in Sections 13.4, 13.5, and 
13.6, respectively. Next, object-oriented analysis aspects of the test workfl ow are covered in Section 
13.7. Extraction of boundary and control classes is the subject of Section 13.8. The class extrac-
tion of the MSG Foundation case study is described in Section 13.9 (the initial functional model), 
Section 13.10 (the initial class diagram), Section 13.11 (the initial dynamic model), Section 13.12 
(revision of the entity classes), Section 13.13 (extraction of the boundary classes), and Section 13.14 
(extraction of the control classes). Application of the Unifi ed Process to the MSG Foundation case 
study resumes in Section 13.15 (realization of the use cases), Section 13.16 (class diagram incre-
mentation), and Section 13.17 (test workfl ow). The specifi cation document for the Unifi ed Process 
is discussed in Section 13.18. Additional information regarding actors and use cases appears in Sec-
tion 13.19. CASE tools and metrics for object-oriented analysis are described in Sections 13.20 and 
13.21, respectively. The chapter concludes with a discussion of the challenges of the object-oriented 
analysis workfl ow (Section 13.22). 
  An overview of the MSG Foundation case study for Chapter 13 appears in  Figure 13.64 , and for 
the elevator problem in  Figure 13.65 . 

 FIGURE 13.64      Overview of the MSG Foundation case study for  Chapter 13 . 

          Initial functional model     Section 13.9   

    Seventh iteration of the use-case diagram       Figure 13.15    

   Initial class diagram     Section 13.10   

    First iteration of the class diagram       Figure 13.21    

    Second iteration of the class diagram       Figure 13.22    

    Eighth iteration of the use-case diagram       Figure 13.23    

    Second iteration of the class diagram, with attributes added       Figure 13.24    

   Initial dynamic model     Section 13.11   

    Initial statechart       Figure 13.25    

   Revising the entity classes     Section 13.12   

    Third iteration of the class diagram       Figure 13.28    

   Extracting the boundary classes     Section 13.13   

   Extracting the control classes     Section 13.14   

   Use-case realization     Section 13.15   

    Estimate Funds Available for Week  use case     Section 13.15.1   

    Manage an Asset  use case     Section 13.15.2   

    Update Estimated Annual Operating Expenses  use case     Section 13.15.3   

    Produce a Report  use case     Section 13.15.4   

   Incrementing the class diagram     Section 13.16   

    Fourth iteration of the class diagram       Figure 13.63       

   Chapter 
Review 
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 FIGURE 13.65      Overview of the elevator problem case study for  Chapter 13 . 

          Object-oriented analysis     Section 13.3   

   Functional modeling     Section 13.4   

   Entity class modeling     Section 13.5   

    First iteration of the class diagram       Figure 13.5    

    Second iteration of the class diagram       Figure 13.6    

   Dynamic modeling     Section 13.6   

    First iteration of the statechart for the elevator controller       Figure 13.7    

   Test workfl ow     Section 13.7   

    Third iteration of the class diagram       Figure 13.10    

    Fourth iteration of the class diagram       Figure 13.12    

    First iteration of the statechart for the elevator subcontroller       Figure 13.13       

  Fusion [Coleman et al., 1994] is a second-generation OOA technique, a combination (or fusion) of a 
number of fi rst-generation techniques, including OMT [Rumbaugh et al., 1991] and Objectory [Jacob-
son, Christerson, Jonsson, and Overgaard, 1992]. The Unifi ed Software Development Process unifi es 
the work of Jacobson, Booch, and Rumbaugh [1999]. Catalysis is another important object-oriented 
methodology [D’Souza and Wills, 1999]. 
  ROOM is an object-oriented methodology for real-time software [Selic, Gullekson, and Ward, 
1995]. Further information on real-time object-oriented technologies can be found in [Awad, Kuu-
sela, and Ziegler, 1996]. 
  Full details regarding UML can be found in [Booch, Rumbaugh, and Jacobson, 1999] and [Rum-
baugh, Jacobson, and Booch, 1999]. The October 1999 issue of   Communications of the ACM   contains 
a broad variety of papers on the use of UML. UML is now under the control of the Object Manage-
ment Group; the latest version of UML will be found at the OMG Website,  www.omg.org . 
  The noun-extraction technique used in this chapter to extract candidate classes is formalized 
in [Juristo, Moreno, and López, 2000]. CRC cards were fi rst put forward in [Beck and Cunning-
ham, 1989]. [Wirfs-Brock, Wilkerson, and Wiener, 1990] is a good source of information on 
CRC cards. 
  A number of comparisons of object-oriented analysis techniques have been published, including 
[de Champeaux and Faure, 1992], [Monarchi and Puhr, 1992], and [Embley, Jackson, and Woodfi eld, 
1995]. A comparison of both object-oriented and classical analysis techniques appears in [Fichman 
and Kemerer, 1992]. 
  Management of iteration in object-oriented projects is described in [Williams, 1996]. Statecharts 
are described in [Harel and Gery, 1997]. The reuse of specifi cations in the object-oriented paradigm 
is described in [Bellinzona, Fugini, and Pernici, 1995]. 
  A variety of papers on formal techniques for object-oriented software appear in the July 2000 
issue of   IEEE Transactions on Software Engineering  .  

   For 
Further 
Reading 
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    13.1  Modify the scenario of  Figure 13.11  to refl ect the fourth iteration of the class diagram of the 
elevator problem case study ( Figure 13.12 ).  

  13.2  Develop a statechart for the    Button Class    shown in  Figure 13.12 .  

  13.3  Develop a statechart for the    Elevator Class    shown in  Figure 13.12 .  

  13.4  Develop a statechart for the    Elevator Doors Class    shown in  Figure 13.12 .  

  13.5  Construct a CRC card for the    Floor Subcontroller Class    shown in  Figure 13.12 .  

  13.6  Why must the fi nite state machine formalism of Section 12.7 be changed when used for object-
oriented analysis?  

  13.7  What is the latest point in the analysis workfl ow in which classes can be introduced without 
adversely affecting the project?  

  13.8  What is the earliest point in the Unifi ed Process in which classes can meaningfully be intro-
duced?  

  13.9 Is it possible to represent the dynamic model using a formalism other than the statechart 
described in this chapter? Explain your answer.  

  13.10 Why are the attributes of the classes but not the methods determined during object-oriented 
analysis?  

  13.11 A noun-extraction process is described in Section 13.5.1. Why do we not also extract the 
verbs? And what about the other six parts of speech (adjectives, adverbs, conjunctions, inter-
jections, prepositions, and pronouns)?  

  13.12 Give an extended scenario of the use case  Manage an Investment  of  Figures 11.30  and 
 11.31 .  

  13.13 Give an extended scenario of the use case Update Estimated Annual Operating 
Expenses of  Figures 11.17  and  11.18 .  

  13.14 Give the fl ow of events of the interaction diagrams of  Figures 13.43  and  13.44 .  

  13.15 Give the fl ow of events of the interaction diagrams of  Figures 13.46  and  13.47 .  

  13.16 Check that your answer to Problem 13.13 is a possible scenario for the interaction diagrams of 
 Figures 13.51  and  13.52 . If not, modify your scenario.  

  Key Terms    abstract noun   411 
   actor   407 
   analysis workfl ow   405 
   attribute   411 
   backtrack   430 
   boundary class   405 
   class diagram   411 
   class–responsibility–

collaboration (CRC) 
cards   413 

   communication 
diagram   435 

   control class   406 
   dynamic modeling   406 
   entity class   405 

   entity class modeling   406 
   event   431 
   exception scenario   408 
   fl ow of events   440 
   functional modeling   406 
   interaction diagram   435 
   legacy system   405 
   millennium bug   405 
   normal scenario   408 
   noun-extraction method   411 
   object-oriented analysis 

(OOA)   404 
   realize (in the Unifi ed Theory 

context)   435 
   responsibility-driven design   408 

   role   457 
   scenario   406 
   sequence diagram   435 
   specifi cation 

document   456 
   state   418 
   state variable   418 
   statechart   414 
   stereotype   406 
   test workfl ow   417 
   transition   431 
   use case   407 
   use-case realization   435 
   worker   457 
   Y2K problem   405  

  1 Problem 12.16 (Term Project) and Problems 12.20 and 12.21 (Case Study) can be done at the end of either 
 Chapter 12  or  Chapter 13 . 

  Problems 1  
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  13.17 Give the fl ow of events of the interaction diagrams of  Figures 13.51  and  13.52 .  

  13.18 Give the fl ow of events of the interaction diagrams of  Figures 13.57  and  13.58 .  

  13.19 (Analysis and Design Project) Perform the analysis workfl ow of the library software product 
of Problem 8.7.  

  13.20 (Analysis and Design Project) Perform the analysis workfl ow of the product for determining 
whether a bank statement is correct of Problem 8.8.  

  13.21 (Analysis and Design Project) Perform the analysis workfl ow of the automated teller machine 
of Problem 8.9. There is no need to consider the details of the constituent hardware compo-
nents such as the card reader, printer, and cash dispenser. Instead, simply assume that, when 
the ATM sends commands to those components, they are correctly executed.  

  13.22 (Term Project) Perform the analysis workfl ow of the Chocoholics Anonymous product 
described in Appendix A.  

  13.23 (Case Study) Add    Report Class    to the analysis workfl ow of the MSG Foundation case study 
(Sections 13.9 through 13.16). Is this an improvement or an unnecessary complication?  

  13.24 (Case Study) Determine what happens when object-oriented analysis starts with dynamic 
modeling. Start with the statechart of  Figure 13.25  and complete the object-oriented analysis 
process for the MSG Foundation case study.  

  13.25 (Case Study) Compare and contrast the structured systems analysis of the MSG Foundation 
case study of Section 12.4 with the object-oriented analysis workfl ow of Sections 13.9 through 
13.11.  

  13.26 (Readings in Software Engineering) Your instructor will distribute copies of [Juristo, Moreno, 
and López, 2000]. What is your opinion of their approach to object-oriented analysis?     

  [Awad, Kuusela, and Ziegler, 1996] M. AWAD, J. KUUSELA, AND J. ZIEGLER,   Object-Oriented Technol-
ogy for Real-Time Systems: A Practical Approach Using OMT and Fusion,   Prentice Hall, Upper 
Saddle River, NJ, 1996. 

 [Beck and Cunningham, 1989] K. BECK AND W. CUNNINGHAM, “A Laboratory for Teaching Object-
Oriented Thinking,” Proceedings of OOPSLA ’89,   ACM SIGPLAN Notices     24   (October 1989), 
pp. 1–6. 

 [Bellinzona, Fugini, and Pernici, 1995] R. BELLINZONA, M. G. FUGINI, AND B. PERNICI, “Reusing 
Specifi cations in OO Applications,”   IEEE Software     12   (March 1995), pp. 656–75. 

 [Booch, Rumbaugh, and Jacobson, 1999] G. BOOCH, J. RUMBAUGH, AND I. JACOBSON,   The UML Users 
Guide  , Addison-Wesley, Reading, MA, 1999. 

 [Coleman et al., 1994] D. COLEMAN, P. ARNOLD, S. BODOFF, C. DOLLIN, H. GILCHRIST, F. HAYES, 
AND P. JEREMAES,   Object-Oriented Development: The Fusion Method  , Prentice Hall, Englewood 
Cliffs, NJ, 1994. 

 [D’Souza and Wills, 1999] D. D’SOUZA AND H. WILLS,   Objects, Components, and Frameworks with 
UML: The Catalysis Approach  , Addison-Wesley, Reading, MA, 1999. 

 [de Champeaux and Faure, 1992] D. DE CHAMPEAUX AND P. FAURE, “A Comparative Study of Object-
Oriented Analysis Methods,”   Journal of Object-Oriented Programming     5   (March–April 1992), 
pp. 21–33. 

 [Embley, Jackson, and Woodfi eld, 1995] D. W. EMBLEY, R. B. JACKSON, AND S. N. WOODFIELD, “OO 
Systems Analysis: Is It or Isn’t It?”   IEEE Software     12   (July 1995), pp. 18–33. 

 [Fichman and Kemerer, 1992] R. G. FICHMAN AND C. F. KEMERER, “Object-Oriented and Con-
ventional Analysis and Design Methodologies: Comparison and Critique,”   IEEE Computer     25   
(October 1992), pp. 22–39. 
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 Chapter 14
Design 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Perform the design workfl ow.  

  • Perform object-oriented design.  

  • Perform data fl ow analysis and transaction analysis.      

  Over the past 40 or so years, hundreds of design techniques have been put forward. Some 
are variations on existing techniques; others are radically different from anything previ-
ously proposed. A few design techniques have been used by tens of thousands of software 
engineers; many have been used by only their authors. Some design strategies, particu-
larly those developed by academics, have a fi rm theoretical basis. Others, including many 
drawn up by academics, are more pragmatic in nature; they were put forward because their 
authors found that they worked well in practice. Most design techniques are manual, but 
automation increasingly is becoming an important aspect of design, if only to assist in the 
management of documentation. 
  Notwithstanding this plethora of design techniques, a certain underlying pattern emerges. 
A major theme of this book is that two essential aspects of a product are its operations and 
the data on which the operations act. Therefore, the two basic ways of designing a product 
are operation-oriented design and data-oriented design. In   operation-oriented design  , 
the emphasis is on the operations. An example is data fl ow analysis (Section 14.3), where the 
objective is to design modules with high cohesion (Section 7.2). In   data-oriented design  , 
the data are considered fi rst. For example, in Jackson’s technique (Section 14.5), the structure 
of the data is determined fi rst, and then the procedures are designed to conform to the struc-
ture of the data. 
  A weakness of operation-oriented design techniques is that they concentrate on the 
operations; the data are of only secondary importance. Data-oriented design techniques 
similarly emphasize the data, to the detriment of the operations. The solution is to use 
object-oriented techniques, which give equal weight to operations and data. In this chapter, 
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operation- and data-oriented design are described fi rst, and then object-oriented design. 
Just as an object incorporates both operations and data, so object-oriented design combines 
features of operation-oriented and data-oriented design. Therefore, a basic understanding 
of operation- and data-oriented design is needed to get a full understanding of object-
oriented design. 
  Before specifi c design techniques are examined, some general remarks must be made 
regarding design. 

  14.1 Design and Abstraction  
 The classical design phase consists of three activities: architectural design, detailed design, 
and design testing. The input to the design process is the specifi cation document, a descrip-
tion of   what   the product is to do. The output is the design document, a description of   how   
the product is to achieve this. 
  During   architectural design   (also known as   general design  ,   logical design  , or 
  high-level design  ), a modular decomposition of the product is developed. That is, the speci-
fi cations are carefully analyzed, and a module structure that has the desired functionality is pro-
duced. The output from this activity is a list of the modules and a description of how they are to 
be interconnected. From the viewpoint of abstraction, during architectural design, the existence 
of certain modules is assumed; the design then is developed in terms of those modules. 
  When the object-oriented paradigm is used, however, as explained in Section 1.9, the 
architectural design activity is performed during the object-oriented analysis workfl ow 
( Chapter 12 ). This is because the fi rst step in the analysis workfl ow is to determine the 
classes. Because a class is a type of module, the modular decomposition has been per-
formed during the analysis workfl ow. 
  The next activity in the classical design phase and a major activity of the object-oriented 
design workfl ow is   detailed design  , also known as   modular design  ,   physical design  , 
or   low-level design  , during which each module (or class) is designed in detail. For 
example, specifi c algorithms are selected and data structures are chosen. Again, from the 
viewpoint of abstraction, during this activity the fact that the modules (or classes) are to be 
interconnected to form a complete product is ignored. 
  It was stated previously that the classical design phase has three activities and that the third 
activity is testing. The word   activity   was used, rather than   stage   or   step  , to emphasize that test-
ing is an integral part of design, just as it is an integral part of the entire software development 
and maintenance process. Testing is not something performed only after the architectural 
design and detailed design have been completed. Similarly, in the case of object-oriented 
design, the test workfl ow is performed concurrently with the design workfl ow. 
  A variety of design techniques are now described, fi rst operation-oriented techniques, 
then data-oriented techniques, and fi nally object-oriented techniques.   

  14.2 Operation-Oriented Design  
 Sections 7.2 and 7.3 made a theoretical case for decomposing a product into modules with 
high cohesion and low coupling. We now describe two practical classical techniques for 
achieving this design objective, data fl ow analysis (Section 14.3) and transaction analysis 
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(Section 14.4). In theory, data fl ow analysis can be applied whenever the specifi cations can 
be represented by a data fl ow diagram, and because (at least in theory) every product can 
be represented by a DFD, data fl ow analysis is universally applicable. In practice, however, 
in a number of situations, there are more appropriate design techniques, specifi cally for 
designing products where the fl ow of data is secondary to other considerations. Examples 
where other design techniques are indicated include rule-based systems (expert systems), 
databases, and transaction-processing products. (Transaction analysis, described in Section 
14.4, is a good way of decomposing transaction-processing products into modules.)   

  14.3 Data Flow Analysis
     Data fl ow analysis (DFA)   is a classical design technique for achieving modules with high 
cohesion. It can be used in conjunction with most analysis techniques. Here, DFA is presented 
in conjunction with structured systems analysis (Section 12.3). The input to the technique is a 
data fl ow diagram. A key point is that, once the DFD has been completed, the software designer 
has precise and complete information regarding the input to and output from the product. 
  Consider the fl ow of data in the product represented by the DFD of  Figure 14.1 . The 
product somehow transforms input into output. At some point in the DFD, the input ceases 
to be input and becomes some sort of internal data. Then, at some further point, these 
internal data take on the quality of output. This is shown in more detail in  Figure 14.2 . The 
point at which the input loses the quality of being input and simply becomes internal data 
operated on by the product is termed the   point of highest abstraction of input  . The 
  point of highest abstraction of output   is similarly the fi rst point in the fl ow of data 
at which the output can be identifi ed as such, rather than as some sort of internal data. 
  Using the points of highest abstraction of input and output, the product is decomposed into 
three modules:  input_module, transform_module , and  output_module . Now each mod-
ule is taken in turn, its points of highest abstraction found, and the module decomposed again. 
This procedure is continued stepwise until each module performs a single operation; that is, the 

 FIGURE 14.1     A data fl ow diagram showing fl ow of data and operations of product. 

 FIGURE 14.2     Points of highest abstraction of input and output. 

a
OutputInput

b c d e f g h

a
OutputInput

b c d e f g h

Point of
highest abstraction

of input

Point of
highest abstraction

of output

input_module transform_module output_module

sch76183_ch14_465-497.indd   467sch76183_ch14_465-497.indd   467 07/06/10   11:41 AM07/06/10   11:41 AM



468  Part B  The  Workfl ows of the Software Life Cycle

design consists of modules with high cohesion. Consequently, stepwise refi nement, the founda-
tion of so many other software engineering techniques, also underlies data fl ow analysis. 
  In fairness, it should be pointed out that minor modifi cations might have to be made to 
the decomposition to achieve the lowest possible coupling. Data fl ow analysis is a way of 
achieving high cohesion. The aim of composite/structured design is high cohesion but also 
low coupling. To achieve the latter, sometimes it is necessary to make minor modifi cations to 
the design. For example, because DFA does not take coupling into account, control coupling 
may arise inadvertently in a design constructed using DFA. In such a case, all that is needed is 
to modify the two modules involved so that data, and not control, are passed between them. 

  Mini Case Study Word Counting

 Consider the problem of designing a product that takes as input a fi le name and returns 
the number of words in that fi le, similarly to the UNIX  wc  utility. 
   Figure 14.3  depicts the data fl ow diagram. There are fi ve modules. Module 
 read_fi le_name  reads the name of the fi le, which then is validated by  validate_fi le_
name . The validated name is passed to  count_number_of_words , which does pre-
cisely that. The word count is passed on to  format_word_count , and the formatted 
word count fi nally is passed to  display_word_count  for output. 
  Examining the data fl ow, the initial input is  fi le_name . When this becomes  vali-
dated_fi le_name , it still is a fi le name and therefore has not lost its quality of being 
input data. But consider module  count_number_of_words . Its input is  validated_
fi le_name , and its output is  word_count . The output from this module is totally 
different in quality from the input to the product as a whole. It is clear that the point 
of highest abstraction of input is as indicated on  Figure 14.3 . Similarly, even though 
the output from  count_number_of_words  undergoes some sort of formatting, it is 
essentially   output   from the time it emerges from module  count_number_of_words . 
The point of highest abstraction of output therefore is as shown in  Figure 14.3 . 
  The result of decomposing the product using these two points of highest abstrac-
tion is shown in the structure chart of  Figure 14.4 . This fi gure also reveals that the data 

C  Mini  ase Study 

14.3.114.3.1

 FIGURE 14.3     The fi rst refi nement of the data fl ow diagram. 
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fl ow diagram of  Figure 14.3  is somewhat too simplistic. The DFD does not show the 
logical fl ow corresponding to what happens if the fi le specifi ed by the user does not 
exist. Module  read_and_validate_fi le_name  must return a  status_fl ag  to  perform_
word_count . If the name is invalid, then it is ignored by  perform_word_count  and 
an error message of some sort is printed. But, if the name is valid, it is passed on to 
 count_number_of_words . In general, wherever there is a conditional data fl ow, a 
corresponding control fl ow is needed. 
  As explained in Section 7.2.5, a module has communicational cohesion if it per-
forms a series of operations related by the sequence of steps to be followed by the 
product and if all the operations are performed on the same data. In  Figure 14.4 , two 
modules have communicational cohesion:  read_and_validate_fi le_name  and 
 format_and_display_word_count . These must be decomposed further. The fi nal result 
is shown in  Figure 14.5 . All eight modules have functional cohesion, with either data 
coupling (Section 7.3.5) or no coupling between them. 

 FIGURE 14.4     
The fi rst 
refi nement of the 
structure chart. 

 FIGURE 14.5      The second refi nement of the structure chart. 
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470  Part B  The  Workfl ows of the Software Life Cycle

  Now that the architectural design has been completed, the next step is the detailed 
design. Here, data structures are chosen and algorithms selected. The detailed design 
of each module then is handed to a programmer for implementation. Just as with 
virtually every other phase of software production, time constraints usually require 
that the implementation be done by a team, rather than having a single programmer 
responsible for coding all the modules. For this reason, the detailed design of each 
module must be presented so it can be understood without reference to any other 
module. The detailed design of four of the eight modules appears in  Figure 14.6 ; the 
other four modules are presented in a different format. 

  FIGURE 14.6     
The detailed 
design of four 
modules of the 
example.  

Module name read_file_name
Module type Function
Return type string
Input arguments None
Output arguments None
Error messages None
Files accessed None
Files changed None
Modules called None
Narrative The product is invoked by the user by means of the

command string
word_count ��file_name��

Using an operating system call, this module accesses the
contents of the command string input by the user, 
extracts ��file_name��, and returns it as the value of the 
module.

Module name validate_file_name
Module type Function
Return type Boolean
Input arguments file_name : string
Output arguments None
Error messages None
Files accessed None
Files changed None
Modules called None
Narrative This module makes an operating system call to

determine whether file file_name exists. The module
returns true if the file exists and false otherwise.

sch76183_ch14_465-497.indd   470sch76183_ch14_465-497.indd   470 07/06/10   11:41 AM07/06/10   11:41 AM



Chapter 14  Design  471

  The design of  Figure 14.6  is independent of the programming language. How-
ever, if management decides on an implementation language before the detailed 
design is started, the use of a   program description language   (PDL) for 
representing the detailed design is an attractive alternative (  pseudocode   is an 
earlier name for PDL). PDL essentially consists of comments connected by the 
control statements of the chosen implementation language.  Figure 14.7  shows a 

Module name count_number_of_words
Module type Function
Return type integer
Input arguments validated_file_name : string
Output arguments None
Error messages None
Files accessed None
Files changed None
Modules called None
Narrative This module determines whether validated_file_name

is a text file, that is, divided into lines of characters. If so,
the module returns the number of words in the text file;
otherwise, the module returns �1.

Module name produce_output
Module type Function
Return type void
Input arguments word_count : integer
Output arguments None
Error messages None
Files accessed None
Files changed None
Modules called format_word_count

arguments: word_count : integer 
formatted_word_count : string

display_word_count
arguments: formatted_word_count : string

Narrative This module takes the integer word_count passed to it 
by the calling module and calls format_word_count to
have that integer formatted according to the
specifications. Then it calls display_word_count to have
the line printed.

FIGURE 14.6
(continued)
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detailed design for the remaining four modules of the product written in a PDL 
with the flavor of C++ or Java. A PDL has the advantage that it generally is clear 
and concise, and the implementation step usually consists merely of translating 
the comments into the relevant programming language. The weakness is that 
sometimes there is a tendency for the designers to go into too much detail and 
produce a complete code implementation of a module rather than a PDL detailed 
design. 
  After it has been fully documented and successfully tested, the detailed 
design is handed over to the implementation team for coding. The product then 
proceeds through the remaining phases of the classical software life cycle.   

   void   perform_word_count ( )
{
 String      validated_fi le_name;
   Int           word_count;

   if   (get_input (validated_fi le_name)   is     null  )
     print   “error 1: fi le does not exist”;
   else  
 {
   set word_count   equal to   count_number_of_words (validated_fi le_name);
     if   (word_count   is equal to   –1)  
        print   “error 2: fi le is not a text fi le”;
     else  
    produce_output (word_count);
 }
}

String get_input ( )
{
   String          fi le_name;

   fi le_name = read_fi le_name ( );
     if   (validate_fi le_name (fi le_name)   is     true  )
   {
      return   fi le_name;
   }
     else  
      return     null  ;
}

  void   display_word_count (String formatted_word_count)
{
     print   formatted_word_count,   left justifi ed  ;
}

String format_word_count (  int   word_count);
{
     return   “File contains” word_count “words”;

} 

 FIGURE 14.7    
PDL 
(pseudocode) 
representation 
of the detailed 
design of four 
methods of the 
example. 
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  14.3.2 Data Flow Analysis Extensions  
The reader may well feel that this mini case study is somewhat artifi cial, in that the data 
fl ow diagram ( Figure 14.3 ) has only one input stream and one output stream. To see what 
happens in more complex situations, consider  Figure 14.8 . Now there are four input streams 
and fi ve output streams, a situation that corresponds more closely to reality. 
  When there are multiple input and output streams, the way to proceed is to fi nd the point 
of highest abstraction of input for each input stream and the point of highest abstraction of 
output for each output stream. Use these points to decompose the given data fl ow diagram 
into modules with fewer input–output streams than the original. Continue this way until 
each resulting module has high cohesion. Finally, determine the coupling between each 
pair of modules and make any necessary adjustments. 
  Data fl ow analysis is summarized in How to Perform Box 14.1.    

  14.4 Transaction Analysis   
A   transaction   is an operation from the viewpoint of the user of the product, such as “pro-
cess a request” or “print a list of today’s orders.” Data fl ow analysis is inappropriate for the 
transaction-processing type of product, in which a number of related operations, similar in 
outline but differing in detail, must be performed. A typical example is the software controlling 

 How to Perform Data Flow Analysis  

    •  Iterate  

    Find the point of highest abstraction of input of each input stream.  

   Find the point of highest abstraction of output of each output stream.  

   Decompose the data fl ow diagram using these points of highest 
abstraction.     

    • Until   the resulting modules have high cohesion.  

  • If a resulting coupling is too high, adjust the design.   

Box 14.1 

 FIGURE 14.8     
The data fl ow 
diagram with 
multiple input 
and output 
streams. 
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an automated teller machine. The customer inserts a card with a magnetic strip into a slot, 
keys in a password, and then performs operations such as deposit to a checking, savings, or 
credit card account; withdraw from an account; or determine the balance in an account. This 
type of product is depicted in  Figure 14.9 . A good way to design such a product is to break it 
into two pieces, the analyzer and the dispatcher. The analyzer determines the transaction type 
and passes this information to the dispatcher, which performs the transaction. 
  As explained in Section 7.2.2, a module has logical cohesion when it performs a series 
of related operations, one of which is selected by the calling module. The design shown 
in  Figure 14.10  is undesirable, because it has two modules with logical cohesion (Section 
7.2.2),  edit_any_transaction  and  update_any_fi le . On the other hand, it seems a waste 
of effort to have fi ve very similar edit modules and fi ve very similar update modules. The 

 How to Perform Transaction Analysis 

• Design the architecture in terms of two components:   

  The analyzer.  

    The dispatcher.     

   •  For   each set of related operations 

    Design one basic module and instantiate it as many times as necessary.      

Box 14.2    

 FIGURE 14.9     A typical transaction-processing system. 
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solution is software reuse (Section 8.1): A basic edit module should be designed, coded, 
documented, tested, and then instantiated fi ve times. Each version is slightly different, 
but the differences are small enough to make this approach worthwhile. Similarly, a basic 
update module can be instantiated fi ve times and slightly modifi ed to cater to the fi ve dif-
ferent update types. The resulting design has high cohesion and low coupling. 
    Transaction analysis   is summarized in How to Perform Box 14.2.   

  14.5 Data-Oriented Design  
 The basic principle behind data-oriented design is to design the product according to the 
structure of the data on which it is to operate. That is, fi rst the structure of the data is 
determined. Then each procedure is given the same structure as the data on which it oper-
ates. There are a number of data-oriented techniques of this type; the most well known are 
those of Michael Jackson [1975], Warnier [1976], and Orr [1981]. The three techniques 
share many similarities. 

 FIGURE 14.10     
A poor design 
of transaction-
processing 
system. 
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  Data-oriented design was never as popular as operation-oriented design and, with the 
rise of the object-oriented paradigm, it has largely fallen out of fashion. For reasons of 
space, data-oriented design is not discussed further in this book; the interested reader 
should consult the references cited in the previous paragraph.   

  14.6 Object-Oriented Design  
 As previously stated, the Unifi ed Process assumes previous knowledge of   object-
oriented design   (OOD). Accordingly, we now describe OOD and then discuss the de-
sign workfl ow of the Unifi ed Process in Section 14.9. 
  The aim of OOD is to design the product in terms of objects, that is, instantiations of the 
classes and subclasses extracted during object-oriented analysis. Classical languages, such 
as C, and older (pre-2000) versions of COBOL and Fortran do not support objects as such. 
This might seem to imply that OOD is accessible only to users of object-oriented languages 
like Smalltalk [Goldberg and Robson, 1989], C++ [Stroustrup, 2003], Ada 95 [ISO/IEC 
8652, 1995], and Java [Flanagan, 2005]. 
  That is not the case. Although OOD as such is not supported by classical languages, a 
large subset of OOD can be used. As explained in Section 7.7, a class is an abstract data 
type with inheritance and an object is an instance of a class. When using an implementa-
tion language that does not support inheritance, the solution is to utilize those aspects of 
OOD that can be achieved in the programming language used in the project, that is, to 
use   abstract data type design  . Abstract data types can be implemented in virtually 
any language that supports    type    statements. Even in a classical language that does not 
support type statements as such, and hence cannot support abstract data types, it still may 
be possible to implement data encapsulation. Figure 7.28 depicts a hierarchy of design 
concepts starting with modules and ending with objects. In those cases where full OOD 
is not possible, the developers should endeavor to ensure that their design uses the high-
est possible concept in the hierarchy of Figure 7.28 that their implementation language 
supports. 
  The two key steps of OOD are to complete the class diagram and perform the detailed 
design. With regard to the fi rst step, completing the   class diagram  , the formats of the 
attributes need to be determined, and the methods need to be assigned to the relevant 
classes. The formats of the attributes can generally be deduced directly from the analysis 
artifacts. For example, in the United States the specifi cations may state that a date such 
as December 3, 1947, shall be represented as  12/03/1947  ( mm/dd/yyyy  format) or in 
Europe as  03/12/1947  ( dd/mm/yyyy  format). But, irrespective of which date conven-
tion is used, a total of 10 characters is needed. 
  The information for determining the formats is obtained during the analysis work-
fl ow, so the formats could certainly be added to the class diagram at that time. However, 
the object-oriented paradigm is iterative. Each iteration results in a change to what has 
already been completed. For practical reasons, then, information should be added to 
UML models as late as possible. Consider, for example, Figures 13.21 and 13.22, which 
show the fi rst two iterations of the class diagram of the MSG Foundation case study. 
Neither of those two iterations shows the attributes of the classes. If the attributes had 
been determined earlier, they would probably have had to be modifi ed, as well as possibly 
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moved from class to class, until the analysis team was satisfi ed with the class diagram. 
Instead, all that had to be modifi ed was the classes themselves. In general, it makes little 
sense to add an item to a class diagram (or any other UML diagram) before it is abso-
lutely essential to do so, because adding the item will make the next iteration unneces-
sarily burdensome. In particular, it makes little sense to specify formats before they are 
strictly needed. 
  The other major component of the fi rst step of OOD is to assign methods (implementa-
tions of operations) to classes. Determination of all the operations of the product is per-
formed by examining the interaction diagrams of every scenario. This is straightforward. 
The hard part is to determine how to decide which methods should be associated with 
each class. 
  A method can be assigned either to a class or to a client that sends a message to an object 
of that class. (A client of an object is a program unit that sends a message to that object.) 
One principle that can be employed to assist in deciding how to assign an operation is 
information hiding (Section 7.6). That is, the state variables of a class should be declared 
   private    (accessible only within an object of that class) or    protected    (accessible only 
within an object of that class or a subclass of that class). Accordingly, operations performed 
on state variables must be local to that class. 
  A second principle is that, if a particular operation is invoked by a number of different 
clients of an object, it makes sense to have a single copy of that operation implemented as 
a method of the object, rather than have a copy in each client of that object. 
  A third principle that can be employed to assist in deciding where to locate a method 
is to use responsibility-driven design. As explained in Section 1.9,   responsibility-driven 
design   is a key aspect of the object-oriented paradigm. If a client sends a message to an 
object, then that object is responsible for every aspect of carrying out the request of the client. 
The client does not know how the request will be carried out and is not permitted to know. 
Once the request has been carried out, control returns to the client. At that point, all the client 
knows is that the request has been carried out; it still has no idea how this was achieved. 
  To see how these principles are utilized, we now illustrate OOD by means of two 
examples. As before, the elevator problem case study is presented, with just one eleva-
tor for simplicity. Then, we return to the MSG Foundation case study. By using the same 
examples, you can compare different approaches without having to worry about the rami-
fi cations of the problem itself. 

14.714.7
Case Study

  Object-Oriented Design: The Elevator 
Problem Case Study           

Step 1. Complete the Class Diagram  
A design workflow detailed class diagram ( Figure 14.11 ) is obtained by add-
ing the operations (methods) to the class diagram of Figure 13.12. In the 
case of a Java implementation, two additional classes are needed.    Elevator 
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Application Class    corresponds to the C++  main  function, and    Elevator 
Utilities Class    contains the Java routines that correspond to the C++ func-
tions declared external to the C++ classes. (For clarity, methods of the form 
 Send message to   C Class   . . .  have been omitted from  Figure 14.11 ; but see 
Problems 14.7–14.12.) 
  Consider the fi rst iteration of the CRC card for the elevator subcontroller 
(Figure 13.14). The responsibilities fall into two groups. One responsibility— 5. Start 

 FIGURE 14.11     The detailed class diagram for the elevator problem case study.  For clarity, only those 
methods that cause an object to change its state are shown. 
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timer —is assigned to the elevator controller on the basis of responsibility-driven 
design; that task is carried out by the elevator controller itself. 
  On the other hand, the remaining eleven responsibilities (events 1 through 4 and 6 
through 12) have the form “Send a message to another class to tell it to do something.” 
This again implies that responsibility-driven design should be used in assigning the 
relevant method to classes. In addition, because of safety concerns, the principle of 
information hiding is equally applicable in all eleven cases. 
  For these two reasons, methods  closeDoors  and  openDoors  are assigned to 
   Elevator Doors Class   . That is, a client of    Elevator Doors Class    (in this 
case, an object of    Elevator Subcontroller Class   ) sends a message to an 
object of    Elevator Doors Class    to close or open the doors of the elevator, and 
that request is then carried out by the relevant method. Every aspect of those two 
methods is encapsulated within    Elevator Doors Class   . In addition, information 
hiding results in a truly independent    Elevator Doors Class   , instances of which 
can undergo detailed design and implementation independently and be reused later 
in other products. 
  The same two design principles are applied to methods  moveDownOneFloor  
and  moveUpOneFloor , and they are assigned to    Elevator Class   . There is no need 
for an explicit instruction to cause an elevator to stop. If neither of its two methods is 
invoked, an elevator cannot move; there is no way to change the state of an elevator 
other than by invoking one of its two methods. 
  Finally, methods  turnOffButton  and  turnOnButton  are assigned to both    Ele-
vator Button Class    and    Floor Button Class   . The reasoning here is the same 
as for the methods assigned to    Elevator Doors Class    and    Elevator Class   . 
First, the principle of responsibility-driven design requires that the buttons have 
full control over whether they are on or off. Second, the principle of information 
hiding requires the internal state of a button to be hidden. The methods that turn an 
elevator button on or off therefore must be local to    Elevator Button Class   , and 
similarly for    Floor Button Class   . To make use of polymorphism and dynamic 
binding, methods  turnOffButton  and  turnOnButton  are declared    abstract    
(   virtual   ) in the base class    Button Class    for the reasons stated in Section 7.8. 
At run time, the correct version of method  turnOffButton  or  turnOnButton  will 
then be invoked.  

  Step 2. Perform the Detailed Design  
A detailed design now is developed for all the classes. Any suitable technique may 
be used, such as the stepwise refi nement described in  Chapter 5 . The detailed design 
of method  elevatorSubcontrollerEventLoop  is shown in  Figure 14.12 . Here PDL 
(pseudocode) was used, but a tabular representation (such as that of  Figure 14.6 ) can 
be equally effective. 
   Figure 14.12  is constructed from the statechart of Figure 13.13. For example, the 
events  elevator button pushed  and  elevator button turned off  is implemented 
by the two nested    if    statements at the beginning of  Figure 14.12 . The two operations 
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 FIGURE 14.12     
The detailed 
design of
method 
elevator-
 Subcontroller-
EventLoop . 

   void   elevatorSubcontrollerEventLoop (  void  )
{
   while   (TRUE)
 {
    if   (  an    elevatorButton    has been pressed  )
      if   ( elevatorButton    is off  )
    {
         elevatorButton ::turnOnButton;
         scheduler ::newRequestMade;
    }
    else if   ( elevator    is moving   up)
  {
      wait for sensor message that elevator is arriving at fl oor;  
     scheduler ::checkRequests;
      if   (  there is no request to stop at fl oor   f)
       elevator ::moveUpOneFloor;
      else  
    {
        stop    elevator    by not sending a message to move  ;
        if   ( elevatorButton    is on  )
        elevatorButton ::turnOffButton;
       elevatorDoors ::openDoors;
      startTimer;
  }
 }
   else if   ( elevator    is moving   down)
    [  similar to   up   case  ]
   else if   ( elevator    is stopped and     request is pending  )
 {
      wait for timeout  ;
     elevatorDoors ::closeDoors;
      determine direction of next request  ;
     elevator ::moveUp/DownOneFloor;
      wait for sensor message that elevator has left fl oor;  
     fl oorSubcontroller ::elevatorHasLeftFloor;
  }
    else if   ( elevator    is at rest     and     not   (  request is pending  ))
  {
      wait for timeout  ;
     elevatorDoors ::closeDoors;
  }
    else  
      there are no requests,    elevator    is stopped with    elevatorDoors    closed, so do nothing  ;
 }
} 

of the state    Processing New Request    then follow. The    else-if    condition cor-
responds to the next event leading from state    Elevator Subcontroller Event 
Loop   ,  elevator moving in direction d, fl oor f is next . The remainder of the 
detailed design is equally straightforward. 
  Now we consider the object-oriented design of the MSG Foundation case study.       
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14.814.8
Case Study

  Object-Oriented Design: The MSG 
Foundation Case Study  
 As described in Section 14.6, object-oriented design consists of two steps. 

         Step 1. Complete the Class Diagram 
 The overall class diagram for the MSG Foundation case study is shown in  Figure 14.13 . 
The user-defi ned    Date       Class    is drawn dashed to denote that it is needed for only 
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 FIGURE 14.13     
The overall 
class diagram 
for the MSG 
Foundation case 
study. 
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482  Part B  The  Workfl ows of the Software Life Cycle

a C++ implementation; Java has built-in classes for handling dates, including    java.
text.Dateformat    and    java.util.Calendar   . 
  Next, the formats for the attributes of the classes are deduced from discussions 
with the client and users; examination of forms (Section 11.4.2) is also extremely 
useful in this regard. A portion of the result is shown in  Figure 14.14 . 
  The methods of the product are found in the various interaction diagrams. The 
task of the designer is to decide to which class each method should be assigned. For 
example, the convention in an object-oriented software product is that associated 
with each  attribute  of a class are   mutator   method  setAttribute , used to assign a 
specifi c value to that  attribute , and   accessor   method  getAttribute , which returns 
the current value of that  attribute . 
  For example, consider method  setAssetNumber , used to assign a number to an 
asset (investment or mortgage). In the classical paradigm, we would need separate 
functions  set_investment_number  and  set_mortgage_number.  However, the 
object-oriented paradigm supports inheritance. Therefore, method  setAssetNumber  
should be assigned to    Asset Class   . Then, as refl ected in  Figure 14.15 , the method 

 FIGURE 14.14     Part of the overall class diagram for the MSG Foundation case study with the attribute formats added. 
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dateEstimatedAnnualOperatingExpensesUpdated : 10 chars
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 FIGURE 14.15     Part of the class diagram for the MSG Foundation case study with methods 
setAssetNumber and getAssetNumber assigned to Asset Class. 

Investment Class Mortgage Class

setAssetNumber ( )
getAssetNumber ( )

Asset Class MSG Application Class

can be applied not only to instances of    Asset Class    but also, as a consequence of 
inheritance, to instances of every subclass of    Asset Class   , that is, to instances of 
   Investment Class    and    Mortgage Class   . Similarly, method  getAssetNumber  
should also be allocated to the superclass    Asset Class   . 
  Assigning the other methods to the appropriate classes is equally straightforward. 
The resulting design is shown in Appendix G.  

  Step 2. Perform the Detailed Design 
 Next, the detailed design is built by taking each method and determining what it 
does.  Figure 14.16  shows the detailed design (in a PDL for Java) of a method  com-
puteEstimatedFunds  of class    EstimateFundsForWeek    of the MSG Founda-
tion case study. This method invokes method  totalWeeklyNetPayments  of class 
   Mortgage    shown in  Figure 14.17 .       
  The steps of object-oriented design are summarized in How to Perform Box 14.3. 

    14.9 The Design Workfl ow  
 The overall aim of the   design workfl ow   is to refi ne the artifacts of the analysis workfl ow 
until the material is in a form that can be implemented by the programmers. The input to 
the design workfl ow is therefore the analysis workfl ow artifacts ( Chapter 13 ). During the 
design workfl ow, these artifacts are iterated and incremented until they are in a format that 
can be utilized by the programmers. 

 How to Perform Object-Oriented Design

    • Complete the class diagram.  

  • Perform the detailed design.   

 Box 14.3
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 FIGURE 14.16    
The detailed 
design of 
method 
compute-
Estimated-
Funds of class 
Estimate-
FundsFor-
Week of 
the MSG 
Foundation case 
study. 

   public static void   computeEstimatedFunds( )

  This method computes the estimated funds available for the week.  

{

   fl oat   expectedWeeklyInvestmentReturn;  (  expected weekly investment return  )

   fl oat   expectedTotalWeeklyNetPayments = (  fl oat  ) 0.0; 

       ( expected total mortgage payments 
      less total weekly grants  )

   fl oat   estimatedFunds = (  fl oat  ) 0.0;    (  total estimated funds for week  )

  Create an instance of an investment record.  

 Investment inv =   new   Investment ( );

  Create an instance of a mortgage record.  

 Mortgage mort =   new   Mortgage ( );

  Invoke method   totalWeeklyReturnOnInvestment.

 expectedWeeklyInvestmentReturn = inv.totalWeeklyReturnOnInvestment ( );

  Invoke method   expectedTotalWeeklyNetPayments   (  see Figure 14.17  )

 expectedTotalWeeklyNetPayments = mort.totalWeeklyNetPayments ( );

  Now compute the estimated funds for the week.  

 estimatedFunds = (expectedWeeklyInvestmentReturn

    − (MSGApplication.getAnnualOperatingExpenses ( ) / (  fl oat  ) 52.0)

    + expectedTotalWeeklyNetPayments);

  Store this value in the appropriate location.  

 MSGApplication.setEstimatedFundsForWeek (estimatedFunds);

} // computeEstimatedFunds 

  One aspect of this iteration and incrementation is the identifi cation of methods and their 
allocation to the appropriate classes. Another aspect is performing the detailed design. 
These two steps constitute the object-oriented design component of the design workfl ow. 
  In addition to performing the object-oriented design, many decisions have to be made as 
part of the design workfl ow. One such decision is the selection of the programming language 
in which the software product will be implemented. This process is described in detail in 
 Chapter 15 . Another decision is how much of existing software products to reuse in the new 
software product to be developed. Reuse is described in  Chapter 8 . Portability is another 
important design decision; this topic, too, is described in  Chapter 8 . Also, large software 
products are often implemented on a network of computers; yet another design decision is the 
allocation of each software component to the hardware component on which it is to run. 
  The major motivation behind the development of the Unifi ed Process was to present a 
methodology that could be used to develop large-scale software products, typically, 500,000 
lines of code or more. On the other hand, the implementations of the MSG Foundation case 
study in Appendices H and I are less than 5000 lines of C++ and Java, respectively. In other 
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 FIGURE 14.17     
The detailed 
design of 
method 
totalWeekly-
NetPayments 
of class 
  Mortgage   
of the MSG 
Foundation case 
study. 

   public fl oat   totalWeeklyNetPayments ( )
  This method computes the net total weekly payments made by the mortgagees, that is, the expected total weekly 
mortgage amount less the expected total weekly grants.  

{

 File mortgageFile =   new   File (“mortgage.dat”);   (  fi le of mortgage records  )

   fl oat   expectedTotalWeeklyMortgages = (  fl oat  ) 0.0;  (  expected total weekly mortgage payments  )

   fl oat   expectedTotalWeeklyGrants = (  fl oat  ) 0.0;   (  expected total weekly grants  )

   fl oat   interestPayment;     (  interest payment  )

   fl oat   escrowPayment;     (  escrow payment  )

   fl oat   capitalRepayment;     (  capital repayment  )

   fl oat   weeklyPayment;     (  mortgage payment for week  )

   fl oat   maximumPermittedMortgagePayment;   (  maximum amount the couple may pay  )

  Open the fi le of mortgages, name it   inFile  , and read each element in turn.  

{

 read (inFile);

  Compute the interest payment, escrow payment, and capital repayment for this mortgage.  

 interestPayment = mortgageBalance * INTEREST_RATE / WEEKS_IN_YEAR ;

 escrowPayment = (annualPropertyTax + annualInsurancePremium) / WEEKS_IN_YEAR;

 capitalRepayment = weeklyPrincipalAndInterestPayment − interestPayment;

 mortgageBalance −= capitalRepayment;

  First assume that the couple can pay the mortgage in full, without a grant.  

 weeklyPayment = weeklyPrincipalAndInterestPayment + escrowPayment;

  Add the weekly Principal and Interest payment to the running total of mortgage payments  

 expectedTotalWeeklyMortgages += weeklyPrincipalAndInterestPayment;

  Now determine how much the couple can actually pay.  

 maximumPermittedMortgagePayment = currentWeeklyIncome *

   MAXIMUM_PERC_OF_INCOME;

  If a grant is needed, add the grant amount to the running total of grants  

   if   (weeklyPayment > maximumPermittedMortgagePayment)

 expectedTotalWeeklyGrants += weeklyPayment − maximumPermittedMortgagePayment;

 }

  Close the fi le of mortgages. Return the total expected net payments for the week.  

   return   (expectedTotalWeeklyMortgages − expectedTotalWeeklyGrants);

} // totalWeeklyNetPayments
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words, the Unifi ed Process is intended primarily for software products at least 100 times 
larger than the MSG Foundation case study presented in this book. Accordingly, many 
aspects of the Unifi ed Process are inapplicable to this case study. For instance, an important 
part of the analysis workfl ow is to partition the software product into analysis packages. 
Each   package   consists of a set of related classes, usually of relevance to a small subset 
of the actors, that can be implemented as a single unit. For example, accounts payable, 
accounts receivable, and general ledger are typical analysis packages. The concept under-
lying analysis packages is that it is much easier to develop smaller software products than 
larger software products. Accordingly, a large software product is easier to develop if it can 
be decomposed into relatively independent packages. Decomposing a software product 
into packages is an example of divide-and-conquer (Section 5.3). 
  This idea of decomposing a large workfl ow into relatively independent smaller work-
fl ows is carried forward to the design workfl ow. Here, the objective is to break up the 
upcoming implementation workfl ow into manageable pieces, termed   subsystems  . Again, 
it does not make sense to break up the MSG Foundation case study into subsystems; the 
case study is just too small. 
  There are two reasons why larger workfl ows are broken into subsystems:

   1. As previously explained, it is easier to implement a number of smaller subsystems than 
one large system. That is, breaking up a software product into subsystems is another 
example of divide-and-conquer (Section 5.3).  

  2. If the subsystems to be implemented are indeed relatively independent, then they can 
be implemented by programming teams working in parallel. This results in the software 
product as a whole being delivered sooner.    

  Recall from Section 8.5.4 that the   architecture   of a software product includes the vari-
ous components and how they fi t together. The allocation of components to subsystems is a 
major part of the architectural task. Deciding on the architecture of a software product is by 
no means easy and, in all but the smallest software products, is performed by a specialist, 
the software   architect  . 
  In addition to being a technical expert, an architect needs to know how to make 
  trade-offs  . A software product has to satisfy the functional requirements, that is, the 
use cases. It also needs to satisfy the nonfunctional requirements, including portability 
( Chapter 8 ), reliability (Section 6.4.2), robustness (Section 6.4.3), maintainability, and 
security. But it needs to do all these things within budget and time constraints. It is 
almost never possible to develop a software product that satisfi es all its requirements, 
both functional and nonfunctional, and fi nish the project within the cost and time con-
straints; compromises almost always have to be made. The client has to relax some of 
the requirements, increase the budget, or move the delivery deadline, or do more than 
one of these. The architect must assist the client’s decision making by clearly mapping 
out the trade-offs. 
  In some cases the trade-offs are obvious. For example, the architect may point out that a 
set of security requirements that conform to a new high-security standard are going to take 
a further 3 months and $350,000 to incorporate in the software product. If the product is an 
international banking network, the issue is moot—there is no way that the client could pos-
sibly agree to compromise on security in any way. However, in other instances, the client 
needs to make critical determinations regarding trade-offs and has to rely on the technical 
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expertise of the architect to assist in coming to the right business decision. For example, the 
architect might point out that deferring a particular requirement until the software product 
has been delivered and is being maintained may save $150,000 now but will cost $300,000 
to incorporate later (see Figure 1.6). The decision whether or not to defer a requirement 
can be made only by the client, but he or she needs the technical expertise of the architect 
to assist in coming to the correct decision. 
  The architecture of a software product is a vital factor in the delivered product’s success 
or a failure. And the critical decisions regarding the architecture have to be made while 
performing the design workfl ow. If the requirements workfl ow is badly performed, it is 
still possible to have a successful project, provided additional time and money are spent 
on the analysis workfl ow. Similarly, if the analysis workfl ow is inadequate, it is possible to 
recover by making an extra effort as part of the design workfl ow. But if the architecture is 
suboptimal, there is no way to recover; the architecture must immediately be redesigned. 
It is therefore essential that the development team include an architect with the necessary 
technical expertise and people skills.   

  14.10 The Test Workfl ow: Design  
 The goal of testing the design is to verify that the specifi cations have been accurately and 
completely incorporated into the design as well as to ensure the correctness of the design 
itself. For example, the design must have no logic faults, and all interfaces must be cor-
rectly defi ned. It is important that any faults in the design be detected before coding com-
mences; otherwise, the cost of fi xing the faults will be considerably higher, as refl ected in 
Figure 1.6. Design faults can be detected by means of design inspections as well as design 
walkthroughs. Design inspections are discussed in the remainder of this section, but the 
remarks apply equally to design walkthroughs. 
  When the product is transaction oriented (Section 14.4), the design inspection should 
refl ect this [Beizer, 1990]. Inspections that include all possible transaction types should be 
scheduled. The reviewer should relate each transaction in the design to the specifi cations, 
showing how the transaction arises from the specifi cation document. For example, if the 
application is an automated teller machine, a transaction corresponds to each operation the 
customer can perform, such as deposit to or withdraw from a credit card account. In other 
instances, the correspondence between specifi cations and transactions is not necessarily 
one-to-one. In a traffi c-light control system, for example, if an automobile driving over 
a sensor pad results in the system deciding to change a particular light from red to green 
in 15 seconds, then further impulses from that sensor pad may be ignored. Conversely, to 
speed traffi c fl ow, a single impulse may cause a whole series of lights to be changed from 
red to green. 
  Restricting reviews to   transaction-driven inspections   does not detect cases where 
the designers have overlooked instances of transactions required by the specifi cations. To 
take an extreme example, the specifi cations for the traffi c-light controller may stipulate 
that between 11:00 P.M. and 6:00 A.M. all lights are to fl ash yellow in one direction and red 
in the other direction. If the designers overlooked this stipulation, then clock-generated 
transactions at 11:00 P.M. and 6:00 A.M. would not be included in the design; and if these 
transactions were overlooked, they could not be tested in a design inspection based on 
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transactions. Therefore, it is not adequate to schedule design inspections that are just trans-
action driven; specifi cation-driven inspections also are essential to ensure that no statement 
in the specifi cation document has been either overlooked or misinterpreted. 

14.1114.11
Case Study

  The Test Workfl ow: The MSG Foundation 
Case Study   
Now that the design is apparently complete, all aspects of the design of the MSG 
Foundation case study must be checked by means of a design inspection (Section 
6.2.3). In particular, each design artifact must be examined. Even if no faults are 
found, it is possible that the design will change again, perhaps radically, when the 
MSG Foundation case study is implemented.     

  14.12 Formal Techniques for Detailed Design   
One technique for detailed design has already been presented. In Section 5.1, a description 
of stepwise refi nement was given. It then was applied to detailed design using fl owcharts. 
In addition to stepwise refi nement, formal techniques can be used to advantage in detailed 
design.  Chapter 6  suggests that implementing a complete product and then proving it cor-
rect could be counterproductive. However, developing the proof and the detailed design in 
parallel and carefully testing the code as well is quite a different matter. Formal techniques 
applied to detailed design can greatly assist in three ways: 

   1. The state of the art in proving correctness is such that, although it generally cannot be 
applied to a product as a whole, it can be applied to module-sized pieces of a product.  

  2. Developing a proof together with the detailed design should lead to a design with fewer 
faults than if correctness proofs were not used.  

  3. If the same programmer is responsible for both the detailed design and the implementa-
tion, then that programmer will feel confi dent that the detailed design is correct. This 
positive attitude toward the design should lead to fewer faults in the code.     

  14.13 Real-Time Design Techniques  
 As explained in Section 6.4.4,   real-time software   is characterized by hard time con-
straints, that is, time constraints of such a nature that, if a constraint is not met, informa-
tion is lost. In particular, each input must be processed before the next input arrives. An 
example of such a system is a computer-controlled nuclear reactor. Inputs such as the 
temperature of the core and the level of the water in the reactor chamber are continually 
being sent to the computer that reads the value of each input and performs the necessary 
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processing before the next input arrives. Another example is a computer-controlled inten-
sive care unit. There are two types of patient data: routine information such as heart rate, 
temperature, and blood pressure of each patient, and emergency information, when the 
system deduces that the condition of a patient has become critical. When such emergencies 
occur, the software must process both the routine inputs and the emergency-related inputs 
from one or more patients. 
  A characteristic of many real-time systems is that they are implemented on distributed 
hardware. For example, software controlling a fi ghter aircraft may be implemented on fi ve 
computers: one to handle navigation, another the weapons system, a third for electronic coun-
termeasures, a fourth to control the fl ight hardware such as wing fl aps and engines, and the 
fi fth to propose tactics in combat. Because hardware is not totally reliable, there may be addi-
tional backup computers that automatically replace a malfunctioning unit. Not only does the 
design of such a system have major communications implications, but timing issues, over and 
above those of the type just described, arise as a consequence of the distributed nature of the 
system. For example, under combat conditions, the tactical computer might suggest that the 
pilot should climb, whereas the weapons computer recommends that the pilot go into a dive 
so that a particular weapon may be launched under optimal conditions. However, the human 
pilot decides to move the stick to the right, thereby sending a signal to the fl ight hardware 
computer to make the necessary adjustments so that the plane banks in the indicated direc-
tion. All this information must be managed carefully in such a way that the actual motion of 
the plane takes precedence in every way over suggested maneuvers. Furthermore, the actual 
motion must be relayed to the tactical and weapons computers so that new suggestions can be 
formulated in the light of actual, rather than suggested, conditions. 
  A further diffi culty with real-time systems is the problem of synchronization. Suppose that 
a real-time system is to be implemented on distributed hardware. Situations such as deadlock 
(or deadly embrace) can arise when two operations each have exclusive use of a data item 
and each requests exclusive use of the other’s data item in addition. Of course, deadlock does 
not occur only in real-time systems, implemented on distributed hardware. But it is particu-
larly troublesome in real-time systems where there is no control over the order or timing of 
the inputs, and the situation can be complicated by the distributed nature of the hardware. In 
addition to deadlock, other synchronization problems are possible, including race conditions; 
for details, the reader may refer to [Silberschatz, Galvin, and Gagne, 2002] or other operating 
systems textbooks. 
  From these examples it is clear that the major diffi culty with regard to the design of real-
time systems is ensuring that the timing constraints are met by the design. That is, the design 
technique should provide a mechanism for checking that, when implemented, the design is 
able to read and process incoming data at the required rate. Furthermore, it should be pos-
sible to show that synchronization issues in the design also have been addressed correctly. 
  Since the beginning of the computer age, advances in hardware technology have out-
stripped, in almost every respect, advances in software technology. Therefore, although the 
hardware exists to handle every aspect of the real-time systems described previously, soft-
ware design technology has lagged behind considerably. In some areas of real-time software 
engineering, major progress has been made. For instance, many of the analysis techniques of 
 Chapters 12  and  13  can be used to specify real-time systems. Unfortunately, software design 
has not yet reached the same level of sophistication. Great strides indeed are being made, but 
the state of the art is not yet comparable to what has been achieved with regard to analysis 
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techniques. Because almost any design technique for real-time systems is preferable to no 
technique at all, a number of real-time design techniques are used in practice. But, there 
still is a long way to go before it will be possible to design real-time systems such as those 
described previously and be certain that, before the system has been implemented, every 
real-time constraint will be met and synchronization problems cannot arise. 
  Older real-time design techniques are extensions of non-real-time techniques to the 
real-time domain. For example, structured development for real-time systems (SDRTS) 
[Ward and Mellor, 1985] essentially is an extension of structured systems analysis (Section 
12.3), data fl ow analysis (Section 14.3), and transaction analysis (Section 14.4) to real-time 
software. The development technique includes a component for real-time design. Newer 
techniques are described in [Liu, 2000] and [Gomaa, 2000]. 
  As stated previously, it is unfortunate that the state of the art of real-time design is not as 
advanced as one would wish. Nevertheless, efforts are under way to improve the situation.   

  14.14 CASE Tools for Design  
 As stated in Section 14.10, a critical aspect of design is testing that the design artifacts 
accurately incorporate all aspects of the analysis. What is therefore needed is a CASE tool 
that can be used both for the analysis artifacts and the design artifacts, a so-called front-end 
or upperCASE tool (as opposed to a back-end or lowerCASE tool, which assists with the 
implementation artifacts). 
  A number of upperCASE tools are on the market. Some of the more popular ones 
include Analyst/Designer, Software through Pictures, and System Architect. UpperCASE 
tools generally are built around a data dictionary. The CASE tool can check that every fi eld 
of every record in the dictionary is mentioned somewhere in the design or that every item 
in the design is refl ected in the data fl ow diagram. In addition, many upperCASE tools 
incorporate a consistency checker that uses the data dictionary to determine that every item 
in the design has been declared in the specifi cations and conversely that every item in the 
specifi cations appears in the design. 
  Furthermore, many upperCASE tools incorporate screen and report generators. That is, 
the client can specify what items are to appear in a report or on an input screen and where 
and how each item is to appear. Because full details regarding every item are in the data 
dictionary, the CASE tool can easily generate the code for printing the report or displaying 
the input screen according to the client’s wishes. Some upperCASE products also incorpo-
rate management tools for estimating and planning. 
  With regard to object-oriented design, Together, IBM Rational Rose, and Software through 
Pictures provide support for this workfl ow within the context of the complete object-oriented 
life cycle. Open-source CASE tools of this type include ArgoUML.   

  14.15 Metrics for Design  
 A variety of metrics can be used to describe aspects of the design. For example, the number 
of code artifacts (modules or classes) is a crude measure of the size of the target product. 
Cohesion and coupling are measures of the quality of the design, as are fault statistics. 
As with all other types of inspection, it is vital to keep a record of the number and type 
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of design faults detected during a design inspection. This information is used during code 
inspections of the product and in design inspections of subsequent products. 
  The   cyclomatic complexity     M   of a detailed design is the number of binary decisions 
(predicates) plus 1 [McCabe, 1976] or, equivalently, the number of branches in the code arti-
fact. It has been suggested that cyclomatic complexity is a metric of design quality; the lower 
the value of   M  , the better. A strength of this metric is that it is easy to compute. However, it 
has an inherent problem. Cyclomatic complexity is purely a measure of the control complex-
ity; the data complexity is ignored. That is,   M   does not measure the complexity of a code 
artifact that is data driven, such as by the values in a table. For example, suppose a designer 
is unaware of the C++ library function  toascii  and designs a code artifact from scratch that 
reads a character input by the user and returns the corresponding ASCII code (an integer 
between 0 and 127). One way of designing this is by means of a 128-way branch implemented 
by means of a    switch    statement. A second way is to have an array containing the 128 char-
acters in ASCII code order and utilize a loop to compare the character input by the user with 
each element of the array of characters; the loop is exited when a match is obtained. The 
current value of the loop variable then is the corresponding ASCII code. The two designs are 
equivalent in functionality but have cyclomatic complexities of 128 and 1, respectively. 
  When the classical paradigm is used, a related class of metrics for the design phase is 
based on representing the architectural design as a directed graph with the modules repre-
sented by nodes and the fl ows between modules (procedure and function calls) represented 
by arcs. The   fan-in   of a module can be defi ned as the number of fl ows into the module plus 
the number of global data structures accessed by the module. The   fan-out   similarly is the 
number of fl ows out of the module plus the number of global data structures updated by 
the module. A measure of complexity of the module then is given by   length   × (  fan-in   × 
  fan-out  ) 2  [Henry and Kafura, 1981], where   length   is a measure of the size of the module 
(Section 9.2.1). Because the defi nitions of   fan-in   and   fan-out   incorporate global data, this 
metric has a data-dependent component. Nevertheless, experiments have shown that this 
metric is no better a measure of complexity than simpler metrics, such as cyclomatic com-
plexity [Kitchenham, Pickard, and Linkman, 1990; Shepperd, 1990]. 
  The issue of design metrics is complicated even more when the object-oriented paradigm 
is used. For example, the cyclomatic complexity of a class usually is low, because many 
classes typically include a large number of small, straightforward methods. Furthermore, as 
previously pointed out, cyclomatic complexity ignores data complexity. Because data and 
operations are equal partners within the object-oriented paradigm, cyclomatic complexity 
overlooks a major component that could contribute to the complexity of an object. There-
fore, metrics for classes that incorporate cyclomatic complexity generally are of little use. 
  A number of object-oriented design metrics have been put forward, for example, in 
[Chidamber and Kemerer, 1994]. These and other metrics have been questioned on both 
theoretical and experimental grounds [Binkley and Schach, 1996; 1997; 1998].   

  14.16 Challenges of the Design Workfl ow   
As pointed out in Sections 12.16 and 13.22, it is important not to do too much in the 
analysis workfl ow; that is, the analysis team must not prematurely start parts of the design 
workfl ow. In the design workfl ow, the design team can go wrong in two ways: by doing too 
much and by doing too little. 
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  Consider the PDL (pseudocode) detailed design of  Figure 14.7 . The temptation is strong 
for a designer who enjoys programming to write the detailed design in C++ or Java, rather 
than PDL. That is, instead of sketching the detailed design in pseudocode, the designer may 
all but code the class. This takes longer to write than just outlining the class and longer to 
fi x if a fault is detected in the design (see Figure 1.6). Like the analysis team, the members 
of the design team must fi rmly resist the urge to do more than what is required of them. 
  At the same time, the design team must be careful not to do too little. Consider the tabu-
lar detailed design of  Figure 14.6 . If the design team is in a hurry, it may decide to shrink 
the detailed design to just the narrative box. The team may even decide that the program-
mers should do the detailed design by themselves. Either of these decisions would be a 
mistake. A primary reason for the detailed design is to ensure that all interfaces are correct. 
The narrative box by itself is inadequate for this purpose; no detailed design at all clearly 
is even less helpful. Therefore, one challenge of the design workfl ow is for the designers to 
do just the correct amount of work. 
  In addition, there is a much more signifi cant challenge. In “No Silver Bullet” (see Just in 
Case You Wanted to Know Box 3.4), Brooks [1986] decries the lack of what he terms   great 
designers  , that is, designers who are signifi cantly more outstanding than the other members 
of the design team. In Brooks’s opinion, the success of a software project depends critically 
on whether the design team is led by a great designer. Good design can be taught; great 
design is produced only by great designers, and they are “very rare.” 
  The challenge, then, is to grow great designers. They should be identifi ed as early as 
possible (the best designers are not necessarily the most experienced), assigned a mentor, 
provided a formal education as well as apprenticeships to great designers, and allowed to 
interact with other designers. A specifi c career path should be available for these design-
ers, and the rewards they receive should be commensurate with the contribution that only a 
great designer can make to a software development project.    

   Chapter 
Review  
 The design workfl ow is introduced in Section 14.1. There are three basic approaches to design: operation-

oriented design (Section 14.2), data-oriented design (Section 14.5), and object-oriented design (Sec-
tion 14.6). Two instances of operation-oriented design are described, data fl ow analysis (Section 14.3) 
and transaction analysis (Section 14.4). Object-oriented design is applied to the elevator problem case 
study in Section 14.7 and to the MSG Foundation case study in Section 14.8. The design workfl ow is 
presented in Section 14.9. The design aspects of the test workfl ow are described in Section 14.10 and 
applied to the MSG Foundation case study in Section 14.11. Formal techniques for detailed design are 
discussed in Section 14.12. Real-time system design is described in Section 14.13. CASE tools and 
metrics for the design workfl ow are presented in Sections 14.14 and 14.15, respectively. The chapter 
concludes with a discussion of the challenges of the design workfl ow (Section 14.16). 
  An overview of the MSG Foundation case study for  Chapter 14  appears in  Figure 14.18 , and for 
the elevator problem in  Figure 14.19 . 

  FIGURE 14.18    
Overview of the 
MSG Foundation 
case study for 
Chapter 14. 

          Object-oriented design     Section 14.8   
    Overall class diagram       Figure 14.13    
    Part of overall class diagram       Figure 14.14    
    with attribute formats added          
    Detailed design      Appendix G       
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  FIGURE 14.19     Overview of the elevator problem case study 
for Chapter 14.  

         Object-oriented design     Section 14.7   
    Detailed class diagram       Figure 14.11         

  For 
Further 
Reading 

  Data fl ow analysis and transaction analysis are described in books such as [Gane and Sarsen, 1979] 
and [Yourdon and Constantine, 1979]. 
  The March–April 2005 issue of   IEEE Software   contains a number of papers on design. Designing 
for recovery, that is, designing software to detect, react, and recover from exceptional conditions, is 
described in [Wirfs-Brock, 2006]. 
  Briand, Bunse, and Daly [2001] discuss the maintainability of object-oriented designs. A com-
parison of both object-oriented and classical design techniques appears in [Fichman and Kemerer, 
1992]. The redesign of an air traffi c control system is described in [Jackson and Chapin, 2000]. 
Design techniques for high-performance, reliable systems are given in [Stolper, 1999]. A probabilis-
tic approach to estimating the change proneness of an object-oriented design appears in [Tsantalis, 
Chatzigeorgiou, and Stephanides, 2005]. A discussion as to whether object-oriented design is intui-
tive appears in [Hadar and Leron, 2008]. 
  Formal design techniques are described in [Hoare, 1987]. The vital role played by the architect is 
described in [McBride, 2007]. Analogously to pair programming, pair design and its effectiveness are 
described in [Lui, Chan, and Nosek, 2008]. 
  With regard to reviews during the design process, the original paper on design inspections is 
[Fagan, 1976]; detailed information can be obtained from that paper. Later advances in review tech-
niques are described in [Fagan, 1986]. Architecture reviews are discussed in [Maranzano et al., 
2005]. 
  With regard to real-time design, specifi c techniques are to be found in [Liu, 2000] and [Gomaa, 
2000]. A comparison of four real-time design techniques is found in [Kelly and Sherif, 1992]. A 
documentation-driven approach to the design of complex real-time systems is described in [Luqi, 
Zhang, Berzins, and Qiao, 2004]. The design of concurrent systems is described in [Magee and 
Kramer, 1999]. 
  Metrics for design are described in [Henry and Kafura, 1981] and [Zage and Zage, 1993]. Metrics 
for object-oriented design are discussed in [Chidamber and Kemerer, 1994] and in [Binkley and 
Schach, 1996]. A model for object-oriented quality is presented in [Bansiya and Davis, 2002]. 
  The proceedings of the International Workshops on Software Specifi cation and Design are a com-
prehensive source for information on design techniques.  

  Key Terms    abstract data type design   476 
   accessor   482 
   architect   486 
   architectural design   466 
   class diagram   476 
   cyclomatic complexity   491 
   data fl ow analysis (DFA)   467 
   data-oriented design   465 

   design workfl ow   483 
   detailed design   466 
   fan-in   491 
   fan-out   491 
   general design   466 
   high-level design   466 
   length   491 
   logical design   466 

   low-level design   466 
   modular design   466 
   mutator   482 
   object-oriented design (OOD)   

476 
   operation-oriented design   465 
   package   486 
   physical design   466 

sch76183_ch14_465-497.indd   493sch76183_ch14_465-497.indd   493 07/06/10   11:41 AM07/06/10   11:41 AM



   point of highest abstraction of 
input   467 

   point of highest abstraction of 
output   467 

   program description language 
(PDL)   471 

   pseudocode   471 
   real-time software   488 
   responsibility-driven design   

477 
   subsystem   486 
   trade-off   486 

   transaction   473 
   transaction analysis   475 
   transaction-driven inspections   

487  

  Problems      14.1  Starting with your DFD for Problem 12.9, use data fl ow analysis to design a product for 
determining whether a bank statement is correct.  

   14.2  Use transaction analysis to design the software to control an ATM (Problem 8.9). At this stage 
omit error-handling capabilities.  

   14.3  Now take your design for Problem 14.2 and add modules to perform error handling. Carefully 
examine the resulting design and determine the cohesion and coupling of the modules. Be on 
the lookout for situations such as that depicted in  Figure 14.10 .  

   14.4  Two different techniques for depicting a detailed design are presented in Section 14.3.1 
( Figures 14.6  and  14.7 ). Compare and contrast the two techniques.  

   14.5  Starting with your data fl ow diagram for the automated library circulation system (Problem 
12.11), design the circulation system using data fl ow analysis.  

   14.6  Repeat Problem 14.5 using transaction analysis. Which of the two techniques did you fi nd to 
be more appropriate?  

   14.7  Complete the detailed class diagram for the elevator problem case study ( Figure 14.11 ) by 
listing the methods of the form  Send message to   C Class    . . .  that need to be included 
in the    Elevator Subcontroller Class     .

   14.8  Complete the detailed class diagram for the elevator problem case study ( Figure 14.11 ) by 
listing the methods of the form  Send message to   C Class    . . . that need to be included in 
the    Floor Subcontroller Class     .

   14.9  Complete the detailed class diagram for the elevator problem case study ( Figure 14.11 ) by 
listing the methods of the form  Send message to   C Class    . . . that need to be included in 
the    Sensor Class  .   

   14.10 Complete the detailed class diagram for the elevator problem case study ( Figure 14.11 ) by 
listing the methods of the form  Send message to   C Class    . . . that need to be included in 
the    Floor Button Class  .   

   14.11  Complete the detailed class diagram for the elevator problem case study ( Figure 14.11 ) by 
listing the methods of the form  Send message to   C Class    . . . that need to be included in 
the    Elevator Button Class  .   

   14.12  Complete the detailed class diagram for the elevator problem case study ( Figure 14.11 ) by 
listing the methods of the form  Send message to   C Class    . . . that need to be included in 
the    Scheduler Class  .   

   14.13  (Analysis and Design Project) Starting with your object-oriented analysis for the automated 
library circulation system (Problem 13.19), design the library system using object-oriented 
design.  

   14.14  (Analysis and Design Project) Starting with your object-oriented analysis for the product for 
determining whether a bank statement is correct (Problem 13.20), design the software using 
object-oriented design.  

   14.15  (Analysis and Design Project) Starting with your object-oriented analysis for the ATM soft-
ware (Problem 13.21), design the ATM software using object-oriented design.  
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   14.16  (Term Project) Starting with your specifi cations of Problem 12.20 or 13.22, design the 
Chocoholics Anonymous product (Appendix A). Use the design technique specifi ed by your 
instructor.  

   14.17  (Case Study) Redesign the MSG Foundation product using data fl ow analysis.  

   14.18  (Case Study) Redesign the MSG Foundation product using transaction analysis.  

   14.19  (Case Study) The detailed design of  Figures 14.16  and  14.17  is represented in PDL form. 
Represent the design using a tabular format. Which representation is superior? Give reasons 
for your answer.  

   14.20  (Readings in Software Engineering) Your instructor will distribute copies of [Hadar and 
Leron, 2008]. To what extent do you think that object-oriented design is intuitive?     
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 Chapter 15
Implementation 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Perform the implementation workfl ow.  

  • Perform black-box, glass-box, and non-execution-based unit testing.  

  • Perform integration testing, product testing, and acceptance testing.  

  • Appreciate the need for good programming practices and programming 
standards.      

  Implementation is the process of translating the detailed design into code. When this is 
done by a single individual, the process is relatively well understood. But, most real-life 
products today are too large to be implemented by one programmer within the given time 
constraints. Instead, the product is implemented by a team, working at the same time on 
different components of the product; this is termed  programming-in-the-many . Issues 
associated with programming-in-the-many are examined in this chapter. 

  15.1 Choice of Programming Language 
  In most cases, the issue of which programming language to choose for the implementation 
simply does not arise. Suppose the client wants a product to be implemented in, say, Small-
talk. Perhaps, in the opinion of the development team, Smalltalk is entirely unsuitable for the 
product. Such an opinion is irrelevant to the client. Management of the development organi-
zation has only two choices: Implement the product in Smalltalk or turn down the job. 
  Similarly, if the product has to be implemented on a specifi c computer and the only language 
available on that computer is assembler, then again there is no choice. If no other language is 
available, either because no compiler has yet been developed for any high-level language on 
that computer or management is not prepared to pay for a new C++ compiler for the stipulated 
computer, then again clearly the issue of choice of programming language is not relevant. 

498
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  A more interesting situation is this: A contract specifi es that the product is to be imple-
mented in “the most-suitable” programming language. What language should be chosen? 
To answer this question, consider the following scenario. QQQ Corporation has been writ-
ing COBOL products for over 30 years. The entire 200-member software staff of QQQ, 
from the most junior programmer to the vice-president for software, has COBOL expertise. 
Why on earth should the most suitable programming language be anything but COBOL? 
The introduction of a new language, Java, for example, would mean having to hire new pro-
grammers, or, at the very least, existing staff would have to be intensively retrained. Hav-
ing invested all that money and effort in Java training, management might well decide that 
future products also should be implemented in Java. Nevertheless, all the existing COBOL 
products would have to be maintained. There then would be two classes of programmers, 
COBOL maintenance programmers and Java programmers writing the new applications. 
Quite undeservedly, maintenance almost always is considered inferior to developing new 
applications, so there would be distinct unhappiness among the ranks of the COBOL 
programmers. This unhappiness would be compounded by the fact that Java programmers 
usually are paid more than COBOL programmers because Java programmers are in short 
supply. Although QQQ has excellent development tools for COBOL, a Java compiler would 
have to be purchased, as well as appropriate Java CASE tools. Additional hardware may have 
to be purchased or leased to run this new software. Perhaps most serious of all, QQQ has 
accumulated hundreds of person-years of COBOL expertise, the kind of expertise that can 
be gained only through hands-on experience, such as what to do when a certain cryptic 
error message appears on the screen or how to handle the quirks of the compiler. In brief, it 
would seem that “the most suitable” programming language could be only COBOL—any 
other choice would be fi nancial suicide, either from the viewpoint of the cost involved or as 
a consequence of plummeting staff morale leading to poor-quality code. 
  And yet, the most suitable programming language for QQQ Corporation’s latest project 
may indeed be some language other than COBOL. Notwithstanding its position as the 
world’s most widely used programming language (see Just in Case You Wanted to Know 
Box 15.1), COBOL is suited for only one class of software products, data-processing ap-
plications. If QQQ Corporation has software needs outside this class, then COBOL rapidly 
loses its attractiveness. For example, if QQQ wishes to construct a knowledge-based prod-
uct using artifi cial intelligence (AI) techniques, then an AI language such as Lisp could 
be used; COBOL is totally unsuitable for AI applications. If large-scale communications 
software is to be built, perhaps because QQQ requires satellite links to hundreds of branch 
offi ces all over the world, then a language such as Java would prove far more suitable than 
COBOL. If QQQ is to go into the business of writing systems software, such as operating 
systems, compilers, and linkers, then COBOL very defi nitely is unsuitable. And, if QQQ 
Corporation decides to go into defense contracting, management will soon discover that 
COBOL simply cannot be used for real-time embedded software. 
  The issue of which programming language to use often can be decided by using cost–
benefi t analysis (Section 5.2). That is, management must compute the dollar cost of an 
implementation in COBOL as well as the dollar benefi ts, present and future, of using 
COBOL. This computation must be repeated for every language under consideration. The 
language with the largest expected gain (that is, the difference between estimated benefi ts 
and estimated costs) is then the appropriate implementation language. Another way of de-
ciding which programming language to select is to use risk analysis. For each language 
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under consideration, a list is made of the potential risks and ways of resolving them. The 
language for which the overall risk is the smallest then is selected. 
  Currently, software organizations are under pressure to develop new software in an 
object-oriented language—any object-oriented language. The question that arises is this: 
Which is the appropriate object-oriented language? Twenty years ago, there really was only 
one choice, Smalltalk. Today, however, the most widely used object-oriented programming 
language is C++ [Borland, 2002], with Java in second place. There are a number of reasons 
for the popularity of C++. One is the widespread availability of C++ compilers. In fact, 
some C++ compilers simply translate the source code from C++ into C, and then invoke the 
C compiler. Therefore, any computer with a C compiler essentially can handle C++. 
  But the real explanation for the popularity of C++ is its apparent similarity to C. This 
is unfortunate, in that a number of managers view C++ as a superset of C and, therefore, 
conclude that any programmer who knows C can quickly pick up the additional pieces. 
Indeed, from just a syntactical viewpoint, C++ essentially is a superset of C. After all, 
virtually any C program can be compiled using a C++ compiler. Conceptually, however, 
C++ is totally different from C. C is a product of the classical paradigm, whereas C++ 

 Just in Case You Wanted to Know  Box 15.1 

 Far more code has been implemented in COBOL than in all other programming languages 
put together. COBOL is the most widely used language primarily because COBOL is a prod-
uct of the U.S. Department of Defense (DoD). Developed under the direction of the late 
Rear-Admiral Grace Murray Hopper, COBOL was approved by the DoD in 1960. Thereafter, 
the DoD would not buy hardware for running data-processing applications unless that 
hardware had a COBOL compiler [Sammet, 1978]. The DoD was, and still is, the world’s 
largest purchaser of computer hardware; and in the 1960s, a considerable proportion of 
DoD software was implemented for data processing. As a result, COBOL compilers were 
developed as a matter of urgency for virtually every computer. This widespread availability 
of COBOL, at a time when the only alternative language usually was assembler, resulted in 
COBOL becoming the world’s most popular programming language. 
  Languages such as C, C��, Java, and the 4GLs undoubtedly are growing in popularity 
for new applications. Nevertheless, postdelivery maintenance still is the major software 
activity, and this maintenance is being performed on existing COBOL software. In short, 
the DoD put its stamp onto the world’s software via its fi rst major programming language, 
COBOL. 
  Another reason for the popularity of COBOL is that COBOL frequently is the best lan-
guage for implementing a data-processing product. In particular, COBOL generally is the 
language of choice when money is involved. Financial books have to balance, so rounding 
errors cannot be allowed to creep in. Therefore, all computations have to be performed 
using integer arithmetic. COBOL supports integer arithmetic on very large numbers (that 
is, billions of dollars). In addition, COBOL can handle very small numbers, such as fractions 
of a cent. Banking regulations require interest computations to be calculated to at least 
four decimal places of a cent, and COBOL can do this arithmetic with ease as well. Finally, 
COBOL probably has the best formatting, sorting, and report generation facilities of any 
third-generation language (or high-level language, see Section 15.2). All these reasons have 
made COBOL an excellent choice for implementing a data-processing product. 
  As mentioned in Section 8.11.4, the current COBOL language standard is for an object-
oriented language. This standard surely will further boost the popularity of COBOL. 
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is for the object-oriented paradigm. Using C++ makes sense only if object-oriented 
techniques have been used and if the product is organized around objects and classes, 
not functions. 
  Therefore, before an organization adopts C++, it is essential that the relevant software 
professionals be trained in the object-oriented paradigm. It is particularly important that 
the information of  Chapter 7  be taught. Unless it is clear to all involved, and particularly to 
management, that the object-oriented paradigm is a different way of developing software 
and what the precise differences are, the classical paradigm will just continue to be used 
but with the code implemented in C++ rather than C. When organizations are disappointed 
with the results of switching from C to C++, a major contributory factor is a lack of educa-
tion in the object-oriented paradigm. 
  Suppose that an organization decides to adopt Java. In that case it is not possible to 
move gradually from the classical paradigm to the object-oriented paradigm. Java is a pure 
object-oriented programming language; it does not support the functions and procedures 
of the classical paradigm. Unlike a hybrid object-oriented language such as C++, Java 
programmers have to use the object-oriented paradigm (and only the object-oriented para-
digm) from the very beginning. Because of the necessity of an abrupt transition from the 
one paradigm to the other, education and training are even more important when adopting 
Java (or another pure object-oriented language, such as Smalltalk) than if the organization 
were to switch to a hybrid object-oriented language like C++ or OO-COBOL.   

  15.2 Fourth-Generation Languages 
  The fi rst computers had neither interpreters nor compilers. They were programmed in bi-
nary, either hardwired with plug boards or by setting switches. Such a binary machine code 
was a  fi rst-generation language . The  second-generation languages  were assem-
blers, developed in the late 1940s and early 1950s. Instead of having to program in binary, 
instructions could be expressed in symbolic notation such as      

mov   $17, next 

  In general, each assembler instruction is translated into one machine code instruction. 
So, although assembler was easier to write than machine code and easier for postdelivery 
maintenance programmers to comprehend, the assembler source code was the same length 
as the machine code. 
  The idea behind a  third-generation language  (or high-level language), such as C, 
C++, Pascal, or Java, is that one statement of a high-level language is compiled to as many 
as 5 or 10 machine code instructions (this is another example of abstraction; see Section 
7.4.1). High-level language code is hence considerably shorter than the equivalent assem-
bler code. It is also simpler to understand and, therefore, easier to maintain than assembler 
code. The fact that the high-level language code may not be quite as effi cient as the equiva-
lent assembler code generally is a small price to pay for ease in postdelivery maintenance. 
  This concept was taken further in the late 1970s. A major objective in the design of a 
 fourth-generation language (4GL)  is that each 4GL statement should be equivalent to 
30, or even 50, machine code instructions. Products implemented in a 4GL such as Focus 
or Natural are shorter and hence quicker to develop and easier to maintain. 
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  It is diffi cult to program in machine code. It is somewhat easier to program in assem-
bler, and easier still to use a high-level language. A second major design objective of a 
4GL is ease in programming. In particular, many 4GLs are  nonprocedural  (see Just in 
Case You Wanted to Know Box 15.2 for an insight into this term). For example, consider 
the command

        for   every  surveyor
   if  rating  is  excellent
    add  6500  to  salary 

 It is up to the compiler of the 4GL to translate this nonprocedural instruction into a sequence 
of machine code instructions that can be executed procedurally. 
  Success stories abound from organizations that have switched to a 4GL. A few that 
previously used COBOL reported a 10-fold increase in productivity through use of a 4GL. 
Many organizations found that their productivity indeed increased through use of a 4GL 
but not spectacularly so. Other organizations tried a 4GL and were bitterly disappointed 
with the results. 
  One reason for this inconsistency is that it is unlikely that one 4GL will be appropriate 
for all products. On the contrary, it is important to select the correct 4GL for the specifi c 
product. For example, Playtex used IBM’s Application Development Facility (ADF) and 
reported an 80 to 1 productivity increase over COBOL. Notwithstanding this impressive 
result, Playtex subsequently returned to COBOL for products deemed by management to 
be less well suited to ADF [Martin, 1985]. 
  A second reason for these inconsistent results is that many 4GLs are supported by power-
ful CASE workbenches and environments (Section 5.7). CASE workbenches and environ-
ments can be both a strength and a weakness. As explained in Section 5.12, it is inadvisable 
to introduce large-scale CASE within an organization with a low maturity level. The reason is 
that the purpose of a CASE workbench or environment is to support the software process. An 
organization at level 1 has no software process in place. If at this point CASE is introduced as 
part of the transition to a 4GL, this imposes a process onto an organization not ready for any 
sort of process. The usual consequences at best are unsatisfactory and can be disastrous. In 
fact, a number of reported 4GL failures can be ascribed to the effects of the associated CASE 
environment rather than to the 4GL itself. 
  The attitudes of 43 organizations to 4GLs are reported in [Guimaraes, 1985]. This re-
search found that use of a 4GL reduced user frustration because the data-processing de-
partment could respond more quickly when a user needed information extracted from the 

 Just in Case You Wanted to Know  Box 15.2 
 Some years ago I hailed a cab outside Grand Central Station in New York City and said to 
the driver, “Please take me to Lincoln Center.” This was a   nonprocedural   request, because I 
expressed the desired result but left it to the driver to decide how to achieve that result. It 
turned out that the driver was an immigrant from Central Europe who had been in America 
less than 2 months and knew virtually nothing about the geography of New York City or the 
English language. As a result, I quickly replaced my nonprocedural request with a  procedural  
request of the form, “Straight, straight. Take a right at the next light. I said right. Right, 
here, yes, right! Now straight. Slow down, please. I said slow down. For heaven’s sake, slow 
down!” and so on, until we fi nally reached Lincoln Center. 
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organization’s database. However, there also were a number of problems. Some 4GLs 
proved to be slow and ineffi cient, with long response times. One product consumed 60 
percent of the CPU cycles on an IBM 4331 mainframe, while supporting, at most, 12 con-
current users. Overall, the 28 organizations that had been using a 4GL for over 3 years felt 
that the benefi ts outweighed the costs. 
  No one 4GL dominates the software market. Instead, there are hundreds of 4GLs; some of 
them, including DB2, Oracle, and PowerBuilder, have sizable user groups. This widespread 
proliferation of 4GLs is further evidence that care has to be taken in selecting the correct 
4GL. Of course, few organizations can afford to support more than one 4GL. Once a 4GL 
has been chosen and used, the organization must either use that 4GL for subsequent products 
or fall back on the language used before the 4GL was introduced. 
  Notwithstanding the potential productivity gain, there could be danger in using a 4GL 
the wrong way. Many organizations currently have a large backlog of products to be devel-
oped and a long list of postdelivery maintenance tasks to be performed. A design objective 
of many 4GLs is  end-user programming , that is, programming by the person who will 
use the product. For example, before the advent of 4GLs, the investment manager of an 
insurance company would ask the data-processing manager for a product that would dis-
play certain information regarding the bond portfolio. The investment manager then would 
wait a year or so for the data-processing group to fi nd the time to develop the product. A 
4GL was desired that would be so simple to use that the investment manager, previously 
untrained in programming, could implement the desired product unaided. End-user pro-
gramming was intended to help reduce the development backlog, leaving the professionals 
to maintain existing products. 
  In practice, end-user programming can be dangerous. First, consider the situation when 
all product development is performed by computer professionals. Computer professionals 
are trained to mistrust computer output. After all, probably less than 1 percent of all out-
put during product development is correct. On the other hand, the user is told to trust all 
computer output, because no product should be delivered to the user until it is fault free. 
Now consider the situation when end-user programming is encouraged. When a user who is 
inexperienced in programming implements code with a user-friendly, nonprocedural 4GL, 
the natural tendency is for that user to believe the output. After all, for years the user has 
been instructed to trust computer output. As a result, many business decisions have been 
based on data generated by hopelessly incorrect end-user code. In some cases, the user-
friendliness of certain 4GLs has led to fi nancial catastrophes. 
  Another potential danger lies in the tendency, in some organizations, to allow users to 
implement 4GL products that update the organization’s database. A programming mistake 
made by a user eventually may result in the corruption of the entire database. The lesson 
is clear: Programming by inexperienced or inadequately trained users can be exceedingly 
dangerous, if not fatal, to the fi nancial health of a corporation. 
  The ultimate choice of a 4GL is made by management. In making such a decision, 
management should be guided by the many success stories resulting from the use of a 
4GL. At the same time, management should carefully analyze the failures caused by using 
an inappropriate 4GL, by premature introduction of a CASE environment, and by poor 
management of the development process. For example, a common cause of failure is 
neglecting to train the development team thoroughly in all aspects of the 4GL, includ-
ing relational database theory [Date, 2003] where appropriate. Management should study 
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both the successes and failures in the specifi c application area and learn from past mis-
takes. Choosing the correct 4GL can mean the difference between a major success and 
dismal failure. 
  Having decided on the implementation language, the next issue is how software engi-
neering principles can lead to better-quality code.   

  15.3 Good Programming Practice 
  Many recommendations on good coding style are language specifi c. For example, sugges-
tions regarding use of COBOL 88-level entries or parentheses in Lisp are of little interest 
to programmers implementing a product in Java. In contrast, recommendations regarding 
language-independent  good programming practice  are now given. 

  15.3.1 Use of Consistent and Meaningful Variable Names 
 As stated in  Chapter 1 , on average at least two-thirds of a software budget is devoted to 
postdelivery maintenance. This implies that the programmer developing a code artifact is 
merely the fi rst of many who will work on that code artifact. It is counterproductive for 
a programmer to give names to variables that are meaningful to only that programmer; 
within the context of software engineering, the term  meaningful variable names  means 
“meaningful from the viewpoint of future maintenance programmers.” This point is ampli-
fi ed in Just in Case You Wanted to Know Box 15.3. 
  In addition to the use of meaningful variable names, it is equally essential that consistent 
variable names be chosen. For example, the following four variables are declared in 
a code artifact:  averageFreq ,  frequencyMaximum ,  minFr , and  frqncyTotl . A mainte-
nance programmer who is trying to understand the code has to know if  freq ,  frequency , 
 fr , and  frqncy  all refer to the same thing. If yes, then the identical word should be used, 

 Just in Case You Wanted to Know  Box 15.3 
 In the late 1970s, a small software organization in Johannesburg, South Africa, consisted of 
two programming teams. Team A was made up of émigrés from Mozambique. They were of 
Portuguese extraction, and their native language was Portuguese. Their code was well writ-
ten. Variable names were meaningful but unfortunately only to a speaker of Portuguese. Team 
B comprised Israeli immigrants whose native language was Hebrew. Their code was equally 
well written, and the names they chose for their variables were equally meaningful—but only 
to a speaker of Hebrew. 
  One day, team A resigned en masse, together with its team leader. Team B was totally 
unable to maintain any of the excellent code that team A had written, because they spoke 
no Portuguese. The variable names, meaningful as they were to Portuguese speakers, were 
incomprehensible to the Israelis, whose linguistic abilities were restricted to Hebrew and 
English. The owner of the software organization was unable to hire enough Portuguese-
speaking programmers to replace team A, and the company soon went into bankruptcy, 
under the weight of numerous lawsuits from disgruntled customers whose code was now 
essentially unmaintainable. 
  The situation could have been avoided easily. The head of the company should have in-
sisted from the start that all variable names be in English, the language understood by every 
South African computer professional. Variable names then would have been meaningful to 
any maintenance programmer. 
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preferably  frequency , although  freq  or  frqncy  is marginally acceptable;  fr  is not. But if 
one or more variable names refer to a different quantity, then a totally different name, such 
as  rate , should be used. Conversely, do not use two different names to denote the identical 
concept; for example, both  average  and  mean  should not be used in the same program. 
  A second aspect of consistency is the ordering of the components of variable names. 
For example, if one variable is named  frequencyMaximum , then the name  minimum-
Frequency  would be confusing; it should be  frequencyMinimum.  To make the code clear 
and unambiguous for future maintenance programmers, the four variables listed previously 
should be named  frequencyAverage ,  frequencyMaximum ,  frequencyMinimum , 
and  frequencyTotal,  respectively. Alternatively, the  frequency  component can appear 
at the end of all four variable names, yielding the variable names  averageFrequency , 
 maximumFrequency,   minimumFrequency , and  totalFrequency.  It clearly does not 
matter which of the two sets is chosen; what is important is that all the names be from 
one set or the other. 
  A number of different naming conventions have been put forward that are intended to 
make it easier to understand the code. The idea is that the name of a variable should in-
corporate type information. For example,  ptrChTmp  might denote a temporary variable 
( Tmp ) of type pointer ( ptr ) to an character ( Ch ). The best known of such schemes are the 
Hungarian Naming Conventions [Klunder, 1988]. (If you want to know why they are called 
Hungarian, see Just in Case You Wanted to Know Box 15.4.) One drawback of many such 
schemes is that the effectiveness of code inspections (Section 15.14) can be reduced when 
participants are unable to pronounce the names of variables. It is extremely frustrating to 
have to spell out variable names, letter by letter.  

  15.3.2 The Issue of Self-Documenting Code 
 When asked why their code contains no comments whatsoever, programmers often 
proudly reply, “I write  self-documenting code .” The implication is that their variable 
names are chosen so carefully and their code crafted so exquisitely that there is no need 
for comments. Self-documenting code does exist, but it is exceedingly rare. Instead, the 
usual scenario is that the programmer appreciates every nuance of the code at the time the 
code artifact is implemented. It is conceivable that the programmer uses the same style 
for every code artifact and that in 5 years’ time, the code still is crystal clear in every 
respect to the original programmer. Unfortunately, this is irrelevant. The important point 
is whether the code artifact can be understood easily and unambiguously by all the other 
programmers who have to read it, starting with the software quality assurance group and 
including a number of different postdelivery maintenance programmers. The problem 
becomes more acute in the light of the unfortunate practice of assigning postdelivery 

 Just in Case You Wanted to Know  Box 15.4 
 There are two explanations for the term  Hungarian Naming Conventions . First, these 
conventions were invented by Charles Simonyi, who was born in Hungary. Second, it gen-
erally is agreed that, to the uninitiated, programs with variable names conforming to the 
conventions are about as easy to read as Hungarian. Nevertheless, organizations (such as 
Microsoft) that use them claim that they enhance code readability for those with experi-
ence in the Hungarian Naming Conventions. 
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maintenance tasks to inexperienced programmers and not supervising them closely. The 
undocumented code of the artifact may be only partially comprehensible to an experi-
enced programmer. How much worse, then, is the situation when the maintenance pro-
grammer is inexperienced. 
  To see the sorts of problems that can arise, consider the variable  xCoordinateOfPosition- 
OfRobotArm . Such a variable name undoubtedly is self-documenting in every sense of the 
word, but few programmers are prepared to use a 31-character variable name, especially if 
that name is used frequently. Instead, a shorter name is used,  xCoord , for example. The rea-
soning behind this is that if the entire code artifact deals with the movement of the arm of 
a robot,  xCoord  can refer only to the   x   coordinate of the position of the arm of the robot. 
Although that argument holds water within the context of the development process, it is 
not necessarily true for postdelivery maintenance. The maintenance programmer may not 
have suffi cient knowledge of the product as a whole to realize that, within this code arti-
fact,  xCoord  refers to the arm of the robot or may not have the necessary documentation 
to understand the workings of the code artifact. The way to avoid this sort of problem is 
to insist that every variable name be explained at the beginning of the code artifact, in the 
 prologue comments . If this rule is followed, the maintenance programmer quickly 
will understand that variable  xCoord  is used for the   x   coordinate of the position of the 
robot arm. 
  Prologue comments are mandatory in every code artifact. The minimum information 
that must be provided at the top of every code artifact is listed in  Figure 15.1 . 
  Even if a code artifact is clearly written, it is unreasonable to expect someone to have 
to read every line to understand what the code artifact does and how it does it. Prologue 
comments make it easy for others to understand the key points. Only a member of the SQA 
group or a maintenance programmer modifying a specifi c code artifact should be expected 
to have to read every line of that code artifact. 

The name of the code artifact
A brief description of what the code artifact does
The programmer’s name
The date the code artifact was coded
The date the code artifact was approved
The name of the person who approved the code artifact
The arguments of the code artifact
A list of the name of each variable of the code artifact, preferably in alphabetical

order, and a brief description of its use
The names of any files accessed by this code artifact
The names of any files changed by this code artifact
Input–output, if any
Error-handling capabilities
The name of the file containing test data (to be used later for regression testing)
A list of each modification made to the code artifact, the date the modification was

made, and who approved the modification
Any known faults

 FIGURE 15.1
    Minimal 
prologue 
comments for a 
code artifact. 
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  In addition to prologue comments, inline comments should be inserted into the code 
to assist maintenance programmers in understanding that code. It has been suggested that 
inline comments should be used only when the code is implemented in a nonobvious way 
or uses some subtle aspect of the language. On the contrary, confusing code should be 
reimplemented in a clearer way. Inline comments are a means of helping maintenance pro-
grammers and should not be used to promote or excuse poor programming practice.  

  15.3.3 Use of Parameters 
 There are very few genuine constants, that is, variables whose values   never   change. For 
instance, satellite photographs have caused changes to be made in submarine navigation 
systems incorporating the latitude and longitude of Pearl Harbor, Hawaii, to refl ect more 
accurate geographic data regarding the exact location of Pearl Harbor. To take another 
example, sales tax is not a genuine constant; legislators tend to change the sales tax rate 
from time to time. Suppose that the sales tax rate currently is 6.0 percent. If the value  6.0  
has been hard coded in a number of code artifacts of a product, then changing the product 
is a major exercise, with the likely outcome of one or two instances of the “constant”  6.0  
being overlooked and, perhaps, changing an unrelated  6.0  by mistake. A better solution is 
a C++ declaration such as

       const fl oat  salesTaxRate = 6.0; 

 or, in Java,

       public static fi nal fl oat  salesTaxRate = ( fl oat ) 6.0; 

 Then, wherever the value of the sales tax rate is needed, the constant  salesTaxRate  should 
be used and not the number  6.0 . If the sales tax rate changes, then only the line containing 
the value of  salesTaxRate  need be altered using an editor. Better still, the value of the sales 
tax rate should be read in from a parameter fi le at the beginning of the run. All such appar-
ent constants should be treated as parameters. If a value should change for any reason, this 
change can be implemented quickly and effectively.  

  15.3.4 Code Layout for Increased Readability 
 It is relatively simple to make a code artifact easy to read. For example, no more than one 
statement should appear on a line, even though many programming languages permit more 
than one. Indentation is perhaps the most important technique for increasing readability. Just 
imagine how diffi cult it would be to read the code examples in  Chapter 7  if indentation had 
not been used to assist in understanding the code. In C++ or Java, indentation can be used to 
connect corresponding  { . . . }  pairs. Indentation also shows which statements belong in a given 
block. In fact, correct indentation is too important to be left to humans. Instead, as described in 
Section 5.8, CASE tools should be used to ensure that indentation is done correctly. 
  Another useful aid is blank lines. Methods should be separated by blank lines; in addi-
tion, it often is helpful to break up large blocks of code with blank lines. The extra “white 
space” makes the code easier to read and, hence, comprehend.  

  15.3.5 Nested if Statements 
 Consider the following example. A map consists of two squares, as shown in  Figure 15.2 . 
It is required to write code to determine whether a point on the Earth’s surface lies in 
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 mapSquare1,   mapSquare2 , or not on the map at all. The solution of  Figure 15.3  is 
so badly formatted that it is incomprehensible. A properly formatted version appears in 
 Figure 15.4 . Notwithstanding this, the combination of   if - if   and   if - else - if   constructs is 
so complex that it is diffi cult to check whether the code fragment is correct. This is fi xed 
in  Figure 15.5 . When faced with complex code containing the   if - if   construct, one way to 
simplify it is to use the fact that the   if - if   combination

 FIGURE 15.3  
    Badly formatted 
nested  if  
statements. 

  if  (latitude > 30 && longitude > 120) { if  (latitude <= 60 && longitude <= 150) 
mapSquareNo = 1;  else if  (latitude <= 90 && longitude <= 150) mapSquareNo = 2
 else    print   “Not on the map”;}  else    print   “Not on the map”; 

 FIGURE 15.4   
   Well-formatted 
but badly 
constructed 
nested  if  
statements. 

  if  (latitude > 30 && longitude > 120)
{
  if  (latitude <= 60 && longitude <= 150)
  mapSquareNo = 1;
  else
  if  (latitude <= 90 && longitude <= 150)
   mapSquareNo = 2;
   else 
     print   �Not on the map�;
}
 else
    print   �Not on the map�; 

 FIGURE 15.5  
    Acceptably 
nested  if  
statements. 

  if  (longitude > 120 && longitude <= 150 && latitude > 30 && latitude <= 60)
 mapSquareNo = 1;
 else 
  if  (longitude > 120 && longitude <= 150 && latitude > 60 && latitude <= 90)
  mapSquareNo = 2;
  else 
    print   �Not on the map�; 

 FIGURE 15.2    
Coordinates for 
a map. 
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        if  <  condition   1>
    if  <  condition   2> 

 is equivalent to the single condition

       if  <  condition   1>  and  <  condition   2> 

 provided that <  condition   2> is defi ned even if <  condition   1> does not hold. For example, 
<  condition   1> might check that a pointer is not null and, if so, then <  condition   2> can use 
that pointer. (This problem does not arise in Java or C++. The  &&  operator is defi ned such 
that if <  condition   1> is false, then <  condition   2> is not evaluated—see Problems 15.9 
and 15.10.) 
  Another problem with the   if  -  if   construct is that nesting   if   statements too deeply leads to 
code that can be diffi cult to read. As a rule of thumb,   if   statements nested to a depth greater 
than three is poor programming practice and should be avoided.    

  15.4 Coding Standards 
   Coding standards  can be both a blessing and a curse. Section 7.2.1 pointed out that 
modules with coincidental cohesion (that is, modules that perform multiple, completely 
unrelated operations) generally arise as a consequence of rules such as, “Every module 
will consist of between 35 and 50 executable statements.” Instead of stating a rule in 
such a dogmatic fashion, a better formulation is, “Programmers should consult their 
managers before constructing a module with fewer than 35 or more than 50 executable 
statements.” The point is that no coding standard can be applicable under all possible 
circumstances. 
  Coding standards imposed from above tend to be ignored. As mentioned previously, a 
useful rule of thumb is that   if   statements should not be nested to a depth greater than three. 
If programmers are shown examples of unreadable code resulting from nesting   if   state-
ments too deeply, then it is likely that they will conform to such a regulation. But they are 
unlikely to adhere to a list of coding rules imposed on them with no discussion or explana-
tion. Furthermore, such standards are likely to lead to friction between programmers and 
their managers. 
  In addition, unless a coding standard can be checked by machine, it is going to 
either waste a lot of the SQA group’s time or simply be ignored by the programmers 
and SQA group alike. On the other hand, consider the following rules (see Problems 
15.11–15.13): 

   • Nesting of   if   statements should not exceed a depth of three, except with prior approval 
from the team leader.  

  • Modules should consist of between 35 and 50 statements, except with prior approval 
from the team leader.  

  • The use of   goto   statements should be avoided. However, with prior approval from the 
team leader, a forward   goto   may be used for error handling.   

 Such rules may be checked by machine, provided some mechanism is set up for capturing 
the data relating to permission to deviate from the standard. 
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  The aim of coding standards is to make maintenance easier. However, if the effect of a 
standard is to make the life of software developers diffi cult, then such a standard should be 
modifi ed, even in the middle of a project. Overly restrictive coding standards are counter-
productive, in that the quality of software production inevitably must suffer if programmers 
have to develop software within such a framework. On the other hand, standards such as 
those just listed regarding nesting of   if   statements, module size, and   goto   statements, 
coupled with a mechanism for deviating from those standards, can lead to improved soft-
ware quality, which, after all, is a major goal of software engineering.   

  15.5 Code Reuse 
  Reuse was presented in detail in  Chapter 8 . In fact, the material on reuse could have ap-
peared virtually anywhere in this book, because artifacts from all workfl ows of the software 
process are reused, including portions of specifi cations, contracts, plans, designs, and code 
artifacts. That is why the material on reuse was put into the fi rst part of the book, rather than 
tying it to one or another specifi c workfl ow. In particular, it was important that the material 
on reuse not be presented in this chapter to underline the fact that, even though reuse of 
code is by far the most common form of reuse, more than just code can be reused.   

  15.6 Integration 
  Consider the product depicted in  Figure 15.6 . One approach to  integration  of the product 
is to code and test each code artifact separately, link together all 13 code artifacts, and test 
the product as a whole. There are two diffi culties with this approach. First, consider artifact 
 a . It cannot be tested on its own, because it calls artifacts  b ,  c , and  d . Therefore, to unit test 
artifact  a , artifacts  b ,  c , and  d  must be coded as  stubs . In its simplest form, a stub is an empty 
artifact. A more effective stub prints a message such as artifact  displayRadarPattern called.  
Best of all, a stub should return values corresponding to preplanned test cases. 

a

b c d

e

h

f

i

g

j k

l m

 FIGURE 15.6   
 A typical 
interconnection 
diagram. 

sch76183_ch15_498-550.indd   510sch76183_ch15_498-550.indd   510 07/06/10   11:43 AM07/06/10   11:43 AM



Chapter 15  Implementation  511

  Now consider artifact  h . To test it on its own requires a  driver , a code artifact that calls 
it one or more times, if possible checking the values returned by the artifact under test. 
Similarly, testing artifact  d  requires a driver and two stubs. Therefore, one problem that 
arises with separate implementation and integration is that effort has to be put into con-
structing stubs and drivers, all of which are thrown away after unit testing is completed. 
  The second, and much more important, diffi culty that arises when implementation is 
completed before integration starts is lack of fault isolation. If the product as a whole is 
tested against a specifi c test case and the product fails, then the fault could lie in any of the 
13 code artifacts or 13 interfaces. In a large product with, say, 103 code artifacts and 108 
interfaces, the fault might lie in no fewer than 211 places. 
  The solution to both diffi culties is to combine unit and integration testing. 

  15.6.1 Top-down Integration 
 In  top-down integration , if code artifact  mAbove  sends a message to artifact  mBelow , 
then  mAbove  is implemented and integrated before  mBelow . Suppose that the product 
shown in  Figure 15.6  is implemented and integrated top down. One possible top-down 
ordering is  a ,  b ,  c ,  d ,  e ,  f ,  g ,  h ,  i ,  j ,  k ,  l , and  m . First, artifact  a  is coded and tested with  b , 
 c , and  d  implemented as stubs. Next stub  b  is expanded into artifact  b , linked to artifact  a,  
and tested with artifact  e  implemented as a stub. Implementation and integration proceed 
in this way until all the artifacts have been integrated into the product. Another possible 
top-down ordering is  a ,  b ,  e ,  h ,  c ,  d ,  f ,  i ,  g ,  j ,  k ,  l ,   and  m . With this ordering, portions of the 
integration can proceed in parallel in the following way. After  a  has been coded and tested, 
one programmer can use artifact  a  to implement and integrate  b ,  e , and  h , while another 
programmer can use  a  to work in parallel on  c ,  d ,  f , and  i . Once  d  and  f  are completed, a 
third programmer can start work on  g ,  j ,  k ,  l , and  m . 
  Suppose that artifact  a  by itself executes correctly on a specifi c test case. However, 
when the same test data are submitted after  b  has been coded and integrated into the prod-
uct, now consisting of artifacts  a  and  b  linked together, the test fails. The fault can be in 
one of two places, in artifact  b  or the interface between artifacts  a  and  b . In general, when-
ever a code artifact  mNew  is added to what has been tested so far and a previously suc-
cessful test case fails, the fault almost certainly lies either in  mNew  or in the interface(s) 
between  mNew  and the rest of the product. Accordingly, top-down integration supports 
fault isolation. 
  Another strength of top-down integration is that major design fl aws show up early. The 
artifacts of a product can be divided into two groups, logic artifacts and operational artifacts. 
The  logic artifacts  essentially incorporate the decision-making fl ow of control aspects of 
the product. The logic artifacts generally are those situated close to the root in the intercon-
nection diagram. For example, in  Figure 15.6 , it is reasonable to expect artifacts  a ,  b ,  c ,  d,  
and perhaps  g  and  j  to be logic artifacts. The  operational artifacts , on the other hand, per-
form the actual operations of the product. For example, an operational artifact may be named 
 getLineFromTerminal  or  measureTemperatureOfReactorCore . The operational artifacts 
generally are found in the lower levels, close to the leaves, of the interconnection diagram. In 
 Figure 15.6 , artifacts  e ,  f ,  h ,  i ,  k ,  l,  and  m  are operational artifacts. 
  It is always important to code and test the logic artifacts before coding and testing the 
operational artifacts. This ensures that any major design faults show up early. Suppose the 
whole product is completed before a major fault is detected. Large parts of the product 
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have to be reimplemented, especially the logic artifacts that embody the fl ow of control. Many 
of the operational artifacts probably are reusable in the rebuilt product; for example, an 
artifact like  getLineFromTerminal  or  measureTemperatureOfReactorCore  is needed 
no matter how the product is restructured. However, the way the operational artifacts are 
connected to the other artifacts in the product may have to be changed, resulting in unnec-
essary work. Therefore, the earlier a design fault is detected, the quicker and less costly it is 
to correct the product and get back on the development schedule. The order in which arti-
facts are implemented and integrated using the top-down strategy essentially ensures that 
logic artifacts indeed are implemented and integrated before operational artifacts, because 
logic artifacts almost always are the ancestors of operational artifacts in the interconnection 
diagram. This is a major strength of top-down integration. 
  Nevertheless, top-down integration has a weakness: Potentially reusable code artifacts 
may not be adequately tested, as will be explained. Reuse of an artifact that is thought, 
incorrectly, to have been thoroughly tested is likely to be less cost-effective than writing 
that artifact from scratch, because the assumption that an artifact is correct can lead to 
wrong conclusions when the product fails. Instead of suspecting the insuffi ciently tested, 
reused artifact, the tester may think that the fault lies elsewhere, resulting in a waste of 
effort. 
  Logic artifacts are likely to be somewhat problem specifi c and hence unusable in 
another context. However, operational artifacts, particularly if they have informational 
cohesion (Section 7.2.7), probably are reusable in future products and, therefore, require 
thorough testing. Unfortunately, the operational artifacts generally are the lower-level 
code artifacts in the interconnection diagram and hence are not tested as frequently as 
the upper-level artifacts. For example, if there are 184 artifacts, the root artifact is tested 
184 times, whereas the last artifact to be integrated into the product is tested only once. 
Top-down integration makes reuse a risky undertaking as a consequence of inadequate 
testing of operational artifacts. 
  The situation is exacerbated if the product is well designed; in fact, the better the 
design, the less thoroughly the artifacts are likely to be tested. To see this, consider an 
artifact  computeSquareRoot . This artifact takes two arguments, a fl oating-point number  x  
whose square root is to be determined and an  errorFlag  that is set to  true  if  x  is negative. 
Suppose further that  computeSquareRoot  is invoked by artifact  a3  and that  a3  contains 
the statement

        if  (x > = 0)

   y = computeSquareRoot (x, errorFlag); 

 In other words,  computeSquareRoot  is never invoked unless the value of  x  is non-
negative; therefore, the artifact can never be tested with negative values of  x  to see if it 
behaves correctly. The type of design where the calling artifact includes a safety check of 
this kind is referred to as  defensive programming . As a result of defensive program-
ming, subordinate operational artifacts are unlikely to be thoroughly tested if integrated 
top down. An alternative to defensive programming is the use of responsibility-driven 
design (Section 1.9). Here, the necessary safety checks are built into the invoked artifact, 
rather than the invoker. Another approach is the use of assertions in the invoked artifact 
(Section 6.5.3).  
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  15.6.2 Bottom-up Integration 
 In  bottom-up integration , if artifact  mAbove  sends a message to artifact  mBelow , 
then  mBelow  is implemented and integrated before  mAbove . In  Figure 15.6 , one possible 
bottom-up ordering is  l ,  m ,  h ,  i ,  j ,  k ,  e ,  f ,  g ,  b ,  c ,  d , and  a.  To have the product coded by a 
team, a better bottom-up ordering is as follows:  h ,  e , and  b  are given to one programmer 
and  i ,  f , and  c  to another. The third programmer starts with  l ,  m ,  j ,  k , and  g , and then imple-
ments  d  and integrates his or her work with the work of the second programmer. Finally, 
when  b ,  c , and  d  have been successfully integrated,  a  can be implemented and integrated. 
  The operational artifacts thereby are tested thoroughly when a bottom-up strategy is 
used. In addition, the testing is done with the aid of drivers, rather than by fault-shielding, 
defensively programmed artifacts. Although bottom-up integration solves the major dif-
fi culty of top-down integration and shares with top-down integration the advantage of 
fault isolation, it unfortunately has a diffi culty of its own. Specifi cally, major design faults 
are detected late in the implementation workfl ow. The logic artifacts are integrated last; 
hence, if there is a major design fault, it will be picked up at the end of the implementation 
workfl ow with the resulting huge cost of redesigning and recoding large portions of the 
product. 
  Therefore, both top-down and bottom-up integration have their strengths and weak-
nesses. The solution for product development is to combine the two strategies in such a way 
as to use their strengths and minimize their weaknesses. This leads to the idea of sandwich 
integration.  

  15.6.3 Sandwich Integration 
 Consider the interconnection diagram shown in  Figure 15.7 . Six of the code artifacts— a , 
 b ,  c ,  d ,  g,  and  j —are logic artifacts and therefore should be integrated top down. Seven are 

 FIGURE 15.7   
 The product 
of Figure 15.6 
developed 
using sandwich 
integration. 
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operational artifacts— e ,  f ,  h ,  i ,  k ,  l , and  m —and should be integrated bottom up. Because 
neither top-down nor bottom-up integration is suitable for all the artifacts, the solution 
is to partition them. The six logic artifacts are integrated top down and any major design 
faults can be caught early. The seven operational artifacts are integrated bottom up. They 
therefore receive a thorough testing, unshielded by defensively programmed artifacts that 
invoke them, and therefore they can be reused with confi dence in other products. When all 
artifacts have been appropriately integrated, the interfaces between the two groups of arti-
facts are tested, one by one. There is fault isolation at all times during this process, called 
 sandwich integration  (see Just in Case You Wanted to Know Box 15.5). 
   Figure 15.8  summarizes the strengths and weaknesses of sandwich integration, as well 
as the other integration techniques previously discussed in this chapter. 
  Sandwich integration is summarized in How to Perform Box 15.1.  

  15.6.4 Integration of Object-Oriented Products 
 Objects can be integrated either bottom up or top down. If top-down integration is chosen, 
stubs are used for each method in the same way as with classical modules. 
  If bottom-up integration is used, the objects that do not send messages to other objects 
are implemented and integrated fi rst. Then, the objects that send messages to those objects 

 Just in Case You Wanted to Know  Box 15.5 
 The term   sandwich integration   [Myers, 1979] comes from viewing the logic artifacts and the 
operational artifacts as the top and the bottom of a sandwich, and the interfaces that con-
nect them as the sandwich fi lling. This can be seen (sort of) in  Figure 15.7 . 

            Approach     Strengths     Weaknesses    

    Implementation then     —     No fault isolation   
     integration          Major design faults show up   
     (Section 15.6)            late   

             Potentially reusable code 
    artifacts are not 
    adequately tested   

   Top-down integration     Fault isolation     Potentially reusable code   
      (Section 15.6.1)     Major design faults show up       artifacts are not   
          early       adequately tested   

   Bottom-up integration     Fault isolation     Major design faults show up   
     (Section 15.6.2)     Potentially reusable code       late   
          artifacts are adequately 
   tested        

   Sandwich integration     Fault isolation     —   
     (Section 15.6.3)     Major design faults show up 
   early        

        Potentially reusable code 
   artifacts are adequately 
   tested           

 FIGURE 15.8
    A summary of 
the integration 
approaches 
presented in 
this chapter and 
the section in 
which each is 
described. 
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are implemented and integrated, and so on, until all the objects in the product have been 
implemented and integrated. (This process must be modifi ed if there is recursion.) 
  Because both top-down and bottom-up integration are supported, sandwich integration 
also can be used. If the product is implemented in a hybrid object-oriented language like 
C++, the classes generally are operational artifacts and therefore integrated bottom up. 
  Many of the artifacts that are not classes are logic artifacts. These are implemented and 
integrated in a top-down manner. The other artifacts are operational, so they are imple-
mented and integrated bottom up. Finally, all the nonobject artifacts are integrated with 
the objects. 
  Even when the product is implemented using a pure object-oriented language like Java, 
class methods (sometimes referred to as  static methods ) such as  main  and utility meth-
ods usually are similar in structure to logic modules of the classical paradigm. Therefore, 
class methods are also implemented top down and then integrated with the other objects. 
In other words, when implementing and integrating an object-oriented product, variants of 
sandwich integration are used.  

  15.6.5 Management of Integration 
 A problem for management is discovering, at integration time, that the code artifacts 
simply do not fi t together. For example, suppose that programmer 1 coded object  o1,  
and programmer 2 coded object  o2 . In the version of the design documentation used by 
programmer 1, object  o1  sends a message to object  o2  passing four arguments, but the 
version of the design documentation used by programmer 2 states clearly that only three 
arguments are passed to  o2 . A problem like this can arise when a change is made to only 
one copy of the design document, without informing all the members of the develop-
ment group. Both programmers know that they are in the right; neither is prepared to 
compromise, because the programmer who gives in must recode large portions of the 
product. 
  To solve these and similar problems of incompatibility, the entire integration process 
should be run by the SQA group. Furthermore, as with testing during other workfl ows, 
the SQA group has the most to lose if the integration testing is performed improperly. The 
SQA group therefore is the most likely to ensure that the testing is performed thoroughly. 
Hence, the manager of the SQA group should have responsibility for all aspects of inte-
gration testing. He or she must decide which artifacts are implemented and integrated 
top down and which bottom up and assign integration-testing tasks to the appropriate 

 How to Perform Sandwich Integration 

    • In parallel,
     Implement and integrate the logic artifacts top down.  

   Implement and integrate the operational artifacts bottom up.     

  • Test the interfaces between the logic artifacts and the operational artifacts.   

Box 15.1
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516  Part B   The Workfl ows of the Software Life Cycle

individuals. The SQA group, which will have drawn up the integration test plan in the 
software project management plan, is responsible for implementing that plan. 
  At the end of the integration process, all the code artifacts will have been tested and 
combined into a single product.    

  15.7 The Implementation Workfl ow 
  The overall aim of the  implementation workfl ow  is to implement the target software 
product in the selected implementation language. More precisely, as explained in Section 
14.9, a large software product is partitioned into smaller subsystems, which are then imple-
mented in parallel by coding teams. The subsystems, in turn, consist of  components  or 
 code artifacts . 
  As soon as a code artifact has been coded, the programmer tests it; this is termed  unit 
testing . Once the programmer is satisfi ed that the code artifact is correct, it is passed on 
to the quality assurance group for further testing. This testing by the quality assurance 
group is part of the test workfl ow, described in Sections 15.20 through 15.22. 

  The Implementation Workfl ow: 
The MSG Foundation Case Study 
  Complete implementations of the MSG Foundation product in both C++ and Java 
can be downloaded from  www.mhhe.com/schach . The programmers included a 
variety of comments to aid the postdelivery maintenance programmers. 
  Testing during the implementation workfl ow is examined next.     

  15.9 The Test Workfl ow: Implementation 
  A number of different types of testing have to be performed during the implementation 
workfl ow, including unit testing, integration testing, product testing, and acceptance test-
ing. These types of testing are discussed in the following sections. 
  As pointed out in Section 6.6, code artifacts (modules, classes) undergo two types of 
testing: informal unit testing performed by the programmer while developing the code 
artifact and methodical unit testing carried out by the SQA group after the programmer 
is satisfi ed that the artifact appears to function correctly. This methodical testing is de-
scribed in Sections 15.10 through 15.14. In turn, there are two basic types of methodical 
testing,  non-execution-based testing , in which the artifact is reviewed by a team, and 
 execution-based testing  in which the artifact is run against test cases. Techniques for 
selecting test cases now are described.   

Case Study
15.815.8
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  15.10 Test Case Selection 
  The worst way to test a code artifact is to use haphazard test data. The tester sits in front of 
the keyboard, and whenever the artifact requests input, the tester responds with arbitrary 
data. As will be shown, there is never time to test more than the tiniest fraction of all pos-
sible test cases, which easily can number many more than 10 100 . The few test cases that 
can be run, perhaps, on the order of 1000, are too valuable to waste on haphazard data. 
Worse, there is a tendency when the machine solicits input to respond more than once with 
the same data, wasting even more test cases. It is clear that test cases must be constructed 
systematically. 

  15.10.1 Testing to Specifi cations versus Testing to Code 
 Test data for unit testing can be constructed systematically in two basic ways. The fi rst is 
to  test to specifi cations . This technique also is called  black-box ,  behavioral ,  data-
driven ,  functional , and  input/output-driven testing . In this approach, the code itself 
is ignored; the only information used in drawing up test cases is the specifi cation document. 
The other extreme is to  test to code  and to ignore the specifi cation document when se-
lecting test cases. Other names for this technique are  glass-box ,  white-box ,  structural , 
 logic-driven , and  path-oriented testing  (for an explanation of why there are so many 
different terms, see Just in Case You Wanted to Know Box 15.6). 
  We now consider the feasibility of each of these two techniques, starting with testing to 
specifi cations.  

  15.10.2 Feasibility of Testing to Specifi cations 
 Consider the following example. Suppose that the specifi cations for a certain data-
processing product state that fi ve types of commission and seven types of discount must 
be incorporated. Testing every possible combination of just commission and discount 
requires 35 test cases. It is no use saying that commission and discount are computed in 
two entirely separate code artifacts and hence may be tested independently—in black-
box testing, the product is treated as a black box, and its internal structure therefore is 
completely irrelevant. 
  This example contains only two factors, commission and discount, taking on fi ve and 
seven different values, respectively. Any realistic product has hundreds, if not thousands, 

 Just in Case You Wanted to Know  Box 15.6 
 It is reasonable to ask why so many different names are given for the same testing concept. 
As so often happens in software engineering, the same concept was discovered, indepen-
dently, by a number of different researchers, each of whom invented his or her own term. 
By the time the software engineering community realized that these were different names 
for the identical concept it was too late—the diverse names had crept into the software 
engineering vocabulary. 
  In this book, I use the terms   black-box testing   and   glass-box testing  . These terms are par-
ticularly descriptive. When we test to specifi cations, we treat the code as a totally opaque 
black box. Conversely, when we test to code, we need to be able to see inside the box: 
hence the term   glass-box testing  . I avoid the term   white-box testing   because it is somewhat 
confusing. After all, a box painted white is just as opaque as one painted black. 
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of different factors. Even if there are only 20 factors, each taking on only four different 
values, a total of 4 20  or 1.1 � 10 12  different test cases must be examined. 
  To see the implications of over a trillion test cases, consider how long it would take to test 
them all. If a team of programmers could be found that could generate, run, and examine 
test cases at an average rate of one every 30 seconds, then it would take more than a million 
years to test the product exhaustively. 
  Therefore, exhaustive testing to specifi cations is impossible in practice because of the 
combinatorial explosion. There simply are too many test cases to consider. Testing to code 
now is examined.  

  15.10.3 Feasibility of Testing to Code 
 The most common form of testing to code requires that each path through the code artifact 
be executed at least once. 

   • To see the infeasibility of this, consider the code fragment of  Figure 15.9 . The cor-
responding fl owchart is shown in  Figure 15.10 . Even though the fl owchart appears to 
be almost trivial, it has over 10 12  different paths. There are fi ve possible paths through 
the central group of six shaded boxes, and the total number of possible paths through 
the fl owchart therefore is      

5 1  � 5 2  � 5 3  � . . . � 5 18  � 
5 � (518�1)

(5�1)  � 4.77 � 10 12  

   If there can be this many paths through a simple fl owchart containing a single loop, it is 
not diffi cult to imagine the total number of different paths in a code artifact of reason-
able size and complexity, let alone a large artifact with many loops. In short, the huge 
number of possible paths renders exhaustive testing to code as infeasible as exhaustive 
testing to specifi cations.  

   read   (kmax)  // kmax   is an integer between   1   and   18
 for  (k = 0; k < kmax; k++)  do
 {
      read   (myChar)  // myChar   is the character   A, B,   or   C
     switch  (myChar)
    {
        case  ’A’: 
          blockA;
           if  (cond1) blockC;
           break ;
        case  ’B’:
          blockB;
           if  (cond2) blockC;
           break ;
        case  ’C’:
          blockC;
           break ;
    }
    blockD;
} 

 FIGURE 15.9   
 A code 
fragment. 
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  • Furthermore, testing to code requires the tester to exercise every path. It is possible to 
exercise every path without detecting every fault in the product; that is, testing to code 
is not reliable. To see this, consider the code fragment shown in  Figure 15.11  [Myers, 
1976]. The fragment was written to test the equality of three integers,  x ,  y , and  z,  using 
the totally fallacious assumption that if the average of three numbers is equal to the fi rst 
number, then the three numbers are equal. Two test cases are shown in  Figure 15.11 . In 
the fi rst test case the value of the average of the three numbers is  6/3  or  2 , which is not 
equal to  1 . The product therefore correctly informs the tester that  x ,  y , and  z  are unequal. 
The integers  x ,  y , and  z  all equal  2  in the second test case, so the product computes their 
average as  2 , which is equal to the value of  x , and the product correctly concludes that 
the three numbers are equal. Accordingly, both paths through the product have been 
exercised without the fault being detected. Of course, the fault would come to light if 
test data such as  x = 2 ,  y = 1 ,  z = 3  are used.  

  •  A third diffi culty with path testing is that a path can be tested only if it is present. 
Consider the code fragment shown in  Figure 15.12(a) . Clearly, two paths are to be 

 FIGURE 15.10   
 A fl owchart 
with over 10 12  
possible paths. 

loop � 18 times

blockA

blockC

blockD

blockBmyChar

cond1 cond2

'A'

'C'

'B'

true

false false

true
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tested, corresponding to the cases  d = 0  and  d ≠ 0 . Next, consider the single statement 
of  Figure 15.12(b) . Now there is only one path, and this path can be tested without the 
fault being detected. In fact, a programmer who omits checking whether  d = 0  in his 
or her code is likely to be unaware of the potential danger, and the case  d = 0  will not 
be included in the programmer’s test data. This problem is an additional argument for 
having an independent software quality assurance group whose job includes detecting 
faults of this type.   

  These examples show conclusively that the criterion “exercise all paths in the product” 
is not  reliable , as products exist for which some data exercising a given path detect a fault 
and different data exercising the same path do not. However, path-oriented testing is  valid , 
because it does not inherently preclude selecting test data that might reveal the fault. 
  Because of the combinatorial explosion, neither exhaustive testing to specifi cations nor 
exhaustive testing to code is feasible. A compromise is needed, using techniques that high-
light as many faults as possible, while accepting that there is no way to guarantee that all 
faults have been detected. A reasonable way to proceed is to use black-box test cases fi rst 
(testing to specifi cations) and then develop additional test cases using glass-box techniques 
(testing to code).    

  15.11 Black-Box Unit-Testing Techniques 
  Exhaustive black-box testing generally requires billions and billions of test cases. The art 
of testing is to devise a small, manageable set of test cases to maximize the chances of 
detecting a fault while minimizing the chances of wasting a test case by having the same 

 FIGURE 15.11   
 An incorrect 
code fragment 
for determining 
if three integers 
are equal, 
together with 
two test cases. 

  if  ((x � y � z)/3 == x)
    print    “x, y, z are equal in value”;
 else 
    print   “x, y, z are unequal”;

Test case 1:    x = 1, y = 2, z = 3
Test case 2:    x = y = z = 2 

 FIGURE 15.12   
 Two code 
fragments for 
computing a 
quotient. 

  if  (d == 0)
  zeroDivisionRoutine ();
 else  
  x = n/d;
          (a)

x = n/d;
           (b) 
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fault detected by more than one test case. Every test case must be chosen to detect a previ-
ously undetected fault. One such black-box technique is equivalence testing combined with 
boundary value analysis. 

  15.11.1 Equivalence Testing and Boundary Value Analysis 
 Suppose the specifi cations for a database product state that the product must be able to 
handle any number of records from 1 through 16,383 (2 14  – 1). If the product can handle 
34 records and 14,870 records, then the chances are good that it will work fi ne for, say, 
8252 records. In fact, the chances of detecting a fault, if present, are likely to be equally 
good if any test case from 1 through 16,383 records is selected. Conversely, if the product 
works correctly for any one test case in the range from 1 through 16,383, then it prob-
ably will work for any other test case in the range. The range from 1 through 16,383 
constitutes an  equivalence class , that is, a set of test cases such that any one member 
of the class is as good a test case as any other. To be more precise, the specifi ed range 
of numbers of records that the product must be able to handle defi nes three equivalence 
classes: 

   Equivalence class 1. Less than 1 record.  
  Equivalence class 2. From 1 through 16,383 records.  
  Equivalence class 3. More than 16,383 records.   

  Testing the database product using the technique of equivalence classes then requires 
that one test case from each equivalence class be selected. The test case from equivalence 
class 2 should be handled correctly, whereas error messages should be printed for the test 
cases from class 1 and class 3. 
  A successful test case detects a previously undetected fault. To maximize the chances of 
fi nding such a fault, a high-payoff technique is  boundary value analysis . 
  Experience has shown that, when a test case on or just to one side of the boundary of an 
equivalence class is selected, the probability of detecting a fault increases. Therefore, when 
testing the database product, seven test cases should be selected:

   Test case 1.   0 records: Member of equivalence class 1 and adjacent to boundary 
value.  

  Test case 2.  1 record: Boundary value.  
  Test case 3.  2 records: Adjacent to boundary value.  
  Test case 4.  723 records: Member of equivalence class 2.  
  Test case 5.  16,382 records: Adjacent to boundary value.  
  Test case 6.  16,383 records: Boundary value.  
  Test case 7.   16,384 records: Member of equivalence class 3 and adjacent to 

boundary value.    

  This example applies to the input specifi cations. An equally powerful technique is to 
examine the output specifi cations. For example, in 2008, the minimum Social Security 
deduction or, more precisely, the minimum Old-Age, Survivors, and Disability Insurance 
(OASDI) deduction from any one paycheck permitted by the U.S. tax code was $0 and the 
maximum was $6324, the latter corresponding to gross earnings of $102,000. Therefore, 
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when testing a payroll product, the test cases for the Social Security deduction from pay-
checks should include input data that are expected to result in deductions of exactly $0 and 
$6324. In addition, test data should be set up that might result in deductions of less than $0 
or more than $6324. 
  In general, for each range (  R   1 ,   R   2 ) listed in either the input or the output specifi ca-
tions, fi ve test cases should be selected, corresponding to values less than   R   1 , equal to   R   1 , 
greater than   R   1  but less than   R   2 , equal to   R   2 , and greater than   R   2 . Where it is specifi ed that 
an item has to be a member of a certain set (for example, the input must be a letter), two 
equivalence classes must be tested, a member of the specifi ed set and a nonmember of the 
set. Where the specifi cations lay down a precise value (for example, the response must be 
followed by a # sign), then again there are two equivalence classes, the specifi ed value and 
anything else. 
  The use of equivalence classes, together with boundary value analysis, to test both 
the input specifi cations and the output specifi cations is a valuable technique for gen-
erating a relatively small set of test data with the potential of uncovering a number of 
faults that might well remain hidden if less powerful techniques for test data selection 
were used. 
  The process of equivalence testing is summarized in How to Perform Box 15.2.  

  15.11.2 Functional Testing 
 An alternative form of black-box testing is to base the test data on the functionality of a 
code artifact. In functional testing [Howden, 1987], each item of functionality or func-
tion implemented in the code artifact is identifi ed. Typical functions in a classical mod-
ule for a computerized warehouse product might be  get_next_database_record  or
 determine_whether_quantity_on_hand_is_below_the_reorder_point . In a weapons 
control system, a module might include the function  compute_trajectory . In a module of 
an operating system, one function might be  determine_whether_fi le_is_empty.  
  After determining all the functions of a code artifact, test data are devised to test each 
function separately. Now, the functional testing is taken a step further. If the code artifact 
consists of a hierarchy of lower-level functions, connected by the control structures of 

 How to Perform Equivalence Testing 

     • For  both the input and output specifi cations

           For  each range (  L  ,   U  )  

        Select fi ve test cases: less than   L  , equal to   L  , greater than   L   but less than   U  , equal to   U  , and greater 
than   U  .  

          For  each set   S    

       Select two test cases: a member of   S   and a nonmember of   S  .  

           For  each precise value   P    

       Select two cases:   P   and anything else.      

Box 15.2 
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structured programming, then functional testing proceeds recursively. For example, if a 
higher-level function is of the form

      <  higher-level function  > ::=  if  <  conditional expression  >
 <  lower-level function   1>;
  else 
 <  lower-level function   2>; 

 then, because <  conditional expression  >, <  lower-level function   1>, and <  lower-level 
function   2> have been subjected to functional testing, <  higher-level function  > can be 
tested using branch coverage, a glass-box technique described in Section 15.13.1. Note 
that this form of structural testing is a hybrid technique—the lower-level functions are 
tested using a black-box technique, but the higher-level functions are tested using a 
glass-box technique. 
  In practice, however, higher-level functions are not constructed in such a structured 
fashion from lower-level functions. Instead, the lower-level functions usually are inter-
twined in some way. To determine faults in this situation,  functional analysis  is required, 
a somewhat complex procedure; for details, see [Howden, 1987]. A further complicat-
ing factor is that functionality frequently does not coincide with code artifact boundaries. 
Therefore, the distinction between unit testing and integration testing becomes blurred; 
one code artifact cannot be tested without, at the same time, testing the other code artifacts 
whose functionality it uses. This problem also arises in the object-oriented paradigm when 
a method of one object sends a message to (invokes) a method of a different object. 
  The random interrelationships between code artifacts from the viewpoint of functional 
testing may have unacceptable consequences for management. For example, milestones 
and deadlines can become somewhat ill defi ned, making it diffi cult to determine the status 
of the product with respect to the software project management plan. 

  Black-Box Test Cases: 
The MSG Foundation Case Study 
   Figures 15.13  and  15.14  contain black-box test cases for the MSG Foundation case 
study. First consider test cases derived from equivalence classes and boundary value 
analysis. The fi rst test case in  Figure 15.13  tests whether the product detects an error 
if the  itemName  of an investment does not begin with an alphabetic character. The 
next set of fi ve test cases checks that an  itemName  consists of between 1 and 25 
characters. Similar test cases check other statements in the specifi cations, as refl ected 
in  Figure 15.13 . 
  Turning now to functional testing, 10 functions are listed in the specifi cation doc-
ument, as shown in  Figure 15.14 . An additional 11 test cases correspond to misuses 
of these functions. 
  It is important to be aware that these test cases could have been developed as soon 
as the analysis workfl ow was complete; the only reason that they appear here is that 

Case Study
15.1215.12
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 FIGURE 15.13   
 Black-box 
test cases 
for the MSG 
Foundation 
case study 
derived from 
equivalence 
classes and 
boundary value 
analysis. 

           Investment data :   
   Equivalence classes for itemName.   

   1. First character not alphabetic     Error   

   2. < 1 character     Error   

   3. 1 character     Acceptable   

   4. Between 1 and 25 characters     Acceptable   

   5. 25 characters     Acceptable   

   6. > 25 characters     Error (name too long)   

   Equivalence classes for itemNumber.   
   1. Character instead of digit     Error (not a number)   

   2. < 12 digits     Acceptable   

   3. 12 digits     Acceptable   

   4. > 12 digits     Error (too many digits)   

   Equivalence classes for estimatedAnnualReturn and expectedAnnualOperatingExpenses.   

   1. < $0.00     Error   

   2. $0.00     Acceptable   

   3. $0.01     Acceptable   

   4. Between $0.01 and $999,999,999.97     Acceptable   

   5. $999,999,999.98     Acceptable   

   6. $999,999,999.99     Acceptable   

   7. $1,000,000,000.00     Error   

   8. > $1,000,000,000.00     Error   

   9. Character instead of digit     Error (not a number)   

    Mortgage information:    
   Equivalence classes for accountNumber are same as for itemNumber above.   

   Equivalence classes for last name of mortgagees   

   1. First character not alphabetic     Error   

   2. < 1 character     Error   

   3. 1 character     Acceptable   

   4. Between 1 and 21 characters     Acceptable   

   5. 21 characters     Acceptable   

   6. > 21 characters     Acceptable (truncated to 21 characters)   

   Equivalence classes for original price of home, current family income, and mortgage balance.   

   1. < $0.00     Error   

   2. $0.00     Acceptable   

   3. $0.01     Acceptable   

   4. Between $0.01 and $999,999.98     Acceptable   

   5. $999,999.98     Acceptable   

   6. $999,999.99     Acceptable   

   7. $1,000,000.00     Error   

   8. > $1,000,000.00     Error   

   9. Character instead of digit     Error (not a number)   
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test case selection is a topic of this chapter, rather than an earlier chapter. A major 
component of every test plan should be a stipulation that black-box test cases be 
drawn up as soon as the analysis artifacts have been approved, for use by the SQA 
group during the implementation workfl ow.      

  15.13 Glass-Box Unit-Testing Techniques 
  In glass-box techniques, test cases are selected on the basis of examination of the code 
rather than the specifi cations. There are a number of different forms of glass-box testing, 
including statement, branch, and path coverage. 

FIGURE 15.13
(continued)

   Equivalence classes for annual property tax and annual homeowner’s premium.   

   1. < $0.00     Error   

   2. $0.00     Acceptable   

   3. $0.01     Acceptable   

   4. Between $0.01 and $99,999.98     Acceptable   

   5. $99,999.98     Acceptable   

   6. $99,999.99     Acceptable   

   7. $100,000.00     Error   

   8. > $100,000.00     Error   

   9. Character instead of digit     Error (not a number)      

 FIGURE 15.14   
 Functional 
analysis test 
cases for 
the MSG 
Foundation case 
study. 

 The functions outlined in the specifi cations document are used to create test cases:

 1. Add a mortgage.

 2. Add an investment.

 3. Modify a mortgage.

 4. Modify an investment.

 5. Delete a mortgage.

 6. Delete an investment.

 7. Update operating expenses.

 8. Compute funds to purchase houses.

 9. Print list of mortgages.

10. Print list of investments.

In addition to these direct tests, it is necessary to perform the following additional tests:

11. Attempt to add a mortgage that is already on fi le.

12. Attempt to add an investment that is already on fi le.

13. Attempt to delete a mortgage that is not on fi le.

14. Attempt to delete an investment that is not on fi le.

15. Attempt to modify a mortgage that is not on fi le.

16. Attempt to modify an investment that is not on fi le.

17. Attempt to delete twice a mortgage that is already on fi le.

18. Attempt to delete twice an investment that is already on fi le.

19. Attempt to update each fi eld of a mortgage twice and check that the second version is stored.

20. Attempt to update each fi eld of an investment twice and check that the second version is stored.

21. Attempt to update operating expenses twice and check that second version is stored. 
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  15.13.1  Structural Testing: Statement, Branch, 
and Path Coverage 

 The simplest form of glass-box unit testing is  statement coverage,  that is, running a series 
of test cases during which every statement is executed at least once. To keep track of which 
statements are still to be executed, a CASE tool keeps a record of how many times each state-
ment has been executed over the series of tests; PureCoverage is an example of such a tool. 
  A weakness of this approach is that there is no guarantee that all outcomes of branches 
are properly tested. To see this, consider the code fragment of  Figure 15.15 . The programmer 
made a mistake; the compound conditional  s > 1 && t == 0  should read  s > 1  || t == 0 . 
The test data shown in the fi gure allow the statement  x = 9  to be executed without the fault 
being highlighted. 
  An improvement over statement coverage is  branch coverage , that is, running a series 
of tests to ensure that all branches are tested at least once. Again, a tool usually is needed to 
help the tester keep track of which branches have or have not been tested; Generic Cover-
age Tool (   gct   ) is an example of a branch coverage tool for C programs. Techniques such as 
statement or branch coverage are termed  structural tests . 
  The most powerful form of structural testing is  path coverage , that is, testing all paths. 
As shown previously, in a product with loops, the number of paths can be very large indeed. 
As a result, researchers have been investigating ways of reducing the number of paths to be 
examined while uncovering more faults than would be possible using branch coverage. One 
criterion for selecting paths is to restrict test cases to  linear code sequences  [Woodward, 
Hedley, and Hennell, 1980]. To do this, fi rst identify the set of points    L    from which control 
fl ow may jump. The set    L    includes entry and exit points and branch statements such as an 
  if   or   goto   statement. The linear code sequences are those paths that begin at an element 
of    L    and end at an element of    L   . The technique has been successful in that it has uncovered 
many faults without having to test every path. 
  Another way of reducing the number of paths to test is  all-defi nition-use-path 
coverage  [Rapps and Weyuker, 1985]. In this technique, each occurrence of a variable 
 pqr , say, in the source code is labeled either as a   defi nition   of the variable, such as  pqr = 1  
or  read (pqr),  or a   use   of the variable, such as  y = pqr + 3  or   if  (pqr < 9) errorB () . 
All paths between the defi nition of a variable and the use of that defi nition are identifi ed, 
nowadays by means of an automatic tool. Finally, a test case is set up for each such path. 
All-defi nition-use-path coverage is an excellent test technique in that large numbers of 
faults frequently are detected by relatively few test cases. However, all-defi nition-use-path 
coverage has the weakness that the upper bound on the number of paths is 2  d  , where   d   is 
the number of decision statements (branches) in the product. Examples can be constructed 
exhibiting the upper bound. However, it has been shown that, for real products as opposed 
to artifi cial examples, this upper bound is not reached, and the actual number of paths is 
proportional to   d   [Weyuker, 1988]. In other words, the number of test cases needed for 

 FIGURE 15.15   
 Code fragment 
with test data. 

  if  (s > 1 && t == 0)
 x = 9;

Test case:   s = 2, t = 0. 
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all-defi nition-use-path coverage generally is much smaller than the theoretical upper bound. 
Therefore, all-defi nition-use-path coverage is a practical test case selection technique. 
  When using structural testing, the tester simply might not come up with a test case that ex-
ercises a specifi c statement, branch, or path. What may have happened is that an infeasible path 
(“dead code”) is in the code artifact, that is, a path that cannot possibly be executed for any input 
data.  Figure 15.16  shows two examples of infeasible paths. In  Figure 15.16(a)  the programmer 
omitted a minus sign. If  k  is less than  2 , then  k  cannot possibly be greater than  3 , so the state-
ment  x = x  *  k  cannot be reached. Similarly, in  Figure 15.16(b) ,  j  is never less than  0 , so the 
statement  total = total + value[j]  can never be reached; the programmer had intended the test 
to be  j <   10 , but made a typing mistake. A tester using statement coverage would soon realize 
that neither statement could be reached and the faults would be found.  

  15.13.2 Complexity Metrics 
 The quality assurance viewpoint provides another approach to glass-box unit testing. Sup-
pose a manager is told that code artifact  m1  is more complex than code artifact  m2.  
Irrespective of the precise way in which the term   complex   is defi ned, the manager intuitively 
believes that  m1  is likely to have more faults than  m2 . Following this idea, computer scien-
tists have developed a number of metrics of software  complexity  as an aid in determining 
which code artifacts are most likely to have faults. If the complexity of a code artifact is 
found to be unreasonably high, a manager may direct that the artifact be redesigned and 
reimplemented on the grounds that it probably is less costly and faster to start from scratch 
than to attempt to debug a fault-prone code artifact. 
  A simple metric for predicting numbers of faults is lines of code. The underlying as-
sumption is that there is a constant probability,   p  , that a line of code contains a fault. If a 
tester believes that, on average, a line of code has a 2 percent chance of containing a fault, 
and the artifact under test is 100 lines long, then this implies that the artifact is expected to 
contain two faults; and an artifact that is twice as long is likely to have four faults. Basili 
and Hutchens [1983] as well as Takahashi and Kamayachi [1985] showed that the number 
of faults indeed is related to the size of the product as a whole. 
  Attempts have been made to fi nd more sophisticated predictors of faults based on 
measures of product complexity. A typical contender is McCabe’s [1976] measure of 
 cyclomatic complexity , the number of binary decisions (predicates) plus 1. As described 
in Section 14.15, the cyclomatic complexity essentially is the number of branches in the 

 FIGURE 15.16   
 Two examples 
of infeasible 
paths. 

  if  (k < 2)
{
  if  (k > 3)                     [  should be   k > −3]
                ↑
        x = x * k;
}
 (a)

 for  (j = 0; j < 0; j++)  [  should be   j < 10]
       ↑
   total = total + value[j];
 (b) 
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code artifact. Accordingly, cyclomatic complexity can be used as a metric for the number 
of test cases needed for branch coverage of a code artifact. This is the basis for so-called 
 structured testing  [Watson and McCabe, 1996]. 
  McCabe’s metric can be computed almost as easily as lines of code. In some cases, it has 
been shown to be a good metric for predicting faults; the higher the value of   M  , the greater 
is the chance that a code artifact contains a fault. For example, Walsh [1979] analyzed 276 
modules in the Aegis system, a shipboard combat system. Measuring the cyclomatic com-
plexity,   M,   he found that 23 percent of the modules with   M   greater than or equal to 10 had 53 
percent of the faults detected. In addition, the modules with   M   greater than or equal to 10 had 
21 percent more faults per line of code than the modules with smaller   M   values. However, the 
validity of McCabe’s metric has been questioned seriously on both theoretical grounds and 
on the basis of the many different experiments cited in [Shepperd and Ince, 1994]. 
  Musa, Iannino, and Okumoto [1987] analyzed the data available on fault densities. They 
concluded that most complexity metrics, including McCabe’s, show a high correlation with 
the number of lines of code or, more precisely, the number of deliverable, executable source 
instructions. In other words, when researchers measure what they believe to be the com-
plexity of a code artifact or a product, the result they obtain may be largely a refl ection of 
the number of lines of code, a measure that correlates strongly with the number of faults. 
In addition, complexity metrics provide little improvement over lines of code for predicting 
fault rates. Other problems with complexity are discussed in [Shepperd and Ince, 1994].    

  15.14 Code Walkthroughs and Inspections 
  Section 6.2 made a strong case for the use of walkthroughs and inspections in general. The 
same arguments hold for code walkthroughs and inspections. In brief, the fault-detecting 
power of these two non-execution-based techniques leads to rapid, thorough, and early 
fault detection. The additional time required for code walkthroughs or inspections is more 
than repaid by increased productivity due to the presence of fewer faults when integration 
is performed. Furthermore, code inspections have led to a reduction of up to 95 percent in 
corrective maintenance costs [Crossman, 1982]. 
  Another reason why code inspections should be performed is that the alternative, 
execution-based testing (test cases), can be extremely expensive in two ways. First, it is 
time consuming. Second, inspections lead to detection and correction of faults earlier in the 
life cycle than with execution-based testing. As refl ected in Figure 1.6, the earlier a fault 
is detected and corrected, the less it costs. An extreme case of the high cost of running test 
cases is that 80 percent of the budget for the software of the NASA Apollo program was 
consumed by testing [Dunn, 1984]. 
  Further arguments in favor of walkthroughs and inspections are given in Section 15.15.   

  15.15 Comparison of Unit-Testing Techniques 
  A number of studies have compared strategies for unit testing. Myers [1978a] compared 
black-box testing, a combination of black-box and glass-box testing, and three-person code 
walkthroughs. The experiment was performed using 59 highly experienced programmers test-
ing the same product. All three techniques were equally effective in fi nding faults, but code 
walkthroughs proved to be less cost effective than the other two techniques. Hwang [1981] 
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compared black-box testing, glass-box testing, and code reading by one person. All three 
techniques were found to be equally effective, with each technique having its own strengths 
and weaknesses. 
  A major experiment was conducted by Basili and Selby [1987]. The techniques com-
pared were the same as in Hwang’s experiment: black-box testing, glass-box testing, and 
one-person code reading. The subjects were 32 professional programmers and 42 advanced 
students. Each tested three products, using each testing technique once. Fractional facto-
rial design [Basili and Weiss, 1984] was used to compensate for the different ways the 
products were tested by different participants; no participant tested the same product in 
more than one way. Different results were obtained from the two groups of participants. 
The professional programmers detected more faults with code reading than with the other 
two techniques, and the fault detection rate was faster. Two groups of advanced students 
participated. In one group, no signifi cant difference was found among the three techniques; 
in the other, code reading and black-box testing were equally good and both outperformed 
glass-box testing. However, the rate at which students detected faults was the same for all 
techniques. Overall, code reading led to the detection of more interface faults than the other 
two techniques, whereas black-box testing was most successful at fi nding control faults. 
  In Basili and Selby’s experiment, code inspection was at least as successful at detecting 
faults as glass-box and black-box testing. Most subsequent experiments have shown that 
black-box testing and glass-box testing are more effi cient or more effective than inspections 
[Runeson et al., 2006]. However, some studies have shown that test cases and inspections 
tend to fi nd different kinds of faults. In other words, the two techniques are complementary, 
and both need to be utilized on every software product. 
  A development technique that makes use of this conclusion is the Cleanroom software 
development technique.   

  15.16 Cleanroom 
  The  Cleanroom  technique [Linger, 1994] is a combination of a number of different soft-
ware development techniques, including an incremental life-cycle model, formal tech-
niques for analysis and design, and non-execution-based unit-testing techniques, such as 
code reading [Mills, Dyer, and Linger, 1987] and code walkthroughs and inspections (Sec-
tion 15.14). A critical aspect of Cleanroom is that a code artifact is not compiled until it 
has passed inspection. That is, a code artifact should be compiled only after non-execution-
based testing has been successfully completed. 
  The technique has had a number of great successes. For example, a prototype auto-
mated documentation system was developed for the U.S. Naval Underwater Systems 
Center using Cleanroom [Trammel, Binder, and Snyder, 1992]. Altogether 18 faults were 
detected while the design underwent “functional verifi cation,” a review process in which 
correctness-proving techniques are employed (Section 6.5). Informal proofs such as the 
one presented in Section 6.5.1 were used as much as possible; full mathematical proofs 
were developed only when participants were unsure of the correctness of the portion of the 
design being inspected. Another 19 faults were detected during walkthroughs of the 1820 
lines of FoxBASE code; when the code was then compiled, there were no compilation 
errors. Furthermore, there were no failures at execution time. This is an additional indica-
tion of the power of non-execution-based testing techniques. 
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  This certainly is an impressive result. But, as has been pointed out, results that apply 
to small-scale software products cannot necessarily be scaled up to large-scale software. 
In the case of Cleanroom, however, results for larger products also are impressive. The 
relevant metric is the  testing fault rate , that is, the total number of faults detected per 
KLOC (thousand lines of code), a relatively common metric in the software industry. Yet, 
there is a critical difference in the way this metric is computed when Cleanroom is used as 
opposed to traditional development techniques. 
  As pointed out in Section 6.6, when traditional development techniques are used, a 
code artifact is tested informally by its programmer while it is being developed and there-
after it is tested methodically by the SQA group. Faults detected by the programmer while 
developing the code are not recorded. However, from the time the artifact leaves the private 
workspace of the programmer and is handed over to the SQA group for execution-based 
and non-execution-based testing, a tally is kept of the number of faults detected. In con-
trast, when Cleanroom is used, “testing faults” are counted from the time of compilation. 
Fault counting then continues through execution-based testing. In other words, when tradi-
tional development techniques are used, faults detected informally by the programmer do 
not count toward the testing fault rate. When Cleanroom is used, faults detected during the 
inspections and other non-execution-based testing procedures that precede compilation are 
recorded, but they do not count toward the testing fault rate. 
  A report on 17 Cleanroom products appears in [Linger, 1994]. For example, Cleanroom 
was used to develop the 350,000-line Ericsson Telecom OS32 operating system. The prod-
uct was developed in 18 months by a team of 70. The testing fault rate was only 1.0 fault 
per KLOC. Another product was the prototype automated documentation system described 
previously; the testing fault rate was 0.0 faults per KLOC for the 1820-line program. The 
17 products together total nearly 1 million lines of code. The weighted average testing fault 
rate was 2.3 faults per KLOC, which Linger describes as a remarkable quality achievement. 
That praise certainly is no exaggeration.   

  15.17 Potential Problems When Testing Objects 
  One of the many reasons put forward for using the object-oriented paradigm is that it 
reduces the need for testing. Reuse via inheritance is a major strength of the paradigm; 
once a class has been tested, the argument goes, there is no need to retest it. Furthermore, 
new methods defi ned within a subclass of such a tested class have to be tested, but inherited 
methods need no further testing. 
  In fact, both claims are only partially true. In addition, the testing of objects poses cer-
tain problems that are specifi c to object orientation. These issues are discussed here. 
  To begin, it is necessary to clarify an issue regarding the testing of classes and of objects. 
As explained in Section 7.7, a class is an abstract data type that supports inheritance, and an 
object is an instance of a class. That is, a class has no concrete realization, whereas an object 
is a physical piece of code executing within a specifi c environment. Therefore, it is impos-
sible to perform execution-based testing on a class; only non-execution-based testing, such 
as an inspection, can be done. 
  Information hiding and the fact that many methods consist of relatively few lines of 
code can have a signifi cant impact on testing. First, consider a product developed using the 
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classical paradigm. Nowadays, such a product generally consists of modules of roughly 50 
executable instructions. The interface between a module and the rest of the product is the 
argument list. Arguments are of two kinds, input arguments supplied to the module when 
it is invoked and output arguments returned by the module when it returns control to the 
calling module. Testing a module consists of supplying values to the input arguments and 
invoking the module and then comparing the values of the output arguments to the pre-
dicted results of the test. 
  In contrast, a “typical” object contains perhaps 30 methods, many of which are rel-
atively small, frequently just two or three executable statements [Wilde, Matthews, and 
Huitt, 1993]. These methods do not return a value to the caller but rather change the state 
of the object. That is, these methods modify attributes (state variables) of the object. The 
diffi culty here is that, to test that the change of state has been performed correctly, it is nec-
essary to send additional messages to the object. For example, consider the bank account 
object described in Section 1.9. The effect of method  deposit  is to increase the value of 
state variable  accountBalance . However, as a consequence of information hiding, the only 
way to test whether a particular  deposit  method has been executed correctly is to invoke 
method  determineBalance  both before and after invoking method  deposit  and see how 
the bank balance changes. 
  The situation is worse if the object does not include methods that can be invoked to de-
termine the values of all the state variables. One alternative is to include additional methods 
for this purpose, and then use conditional compilation to ensure that they are unavailable 
except for testing purposes (in C++, this can be implemented using  #ifdef ). The test plan 
(Section 9.6) should stipulate that the value of every state variable be accessible during 
testing. To satisfy this requirement, additional methods that return the values of the state 
variables may have to be added to the relevant classes during the design workfl ow. As a 
result, it is possible to test the effect of invoking a specifi c method of an object by querying 
the value of the applicable state variable. 
  Surprisingly enough, an inherited method still may have to be tested. That is, even 
if a method has been adequately tested, it may require thorough testing when inherited, 
unchanged, by a subclass. To see this latter point, consider the class hierarchy shown in 
 Figure 15.17 . Two methods are defi ned in the base class   RootedTreeClass  , namely, 
 displayNodeContents  and  printRoutine , where method  displayNodeContents  uses 
method  printRoutine . 
  Next consider subclass   BinaryTreeClass .  This subclass inherits method  printRoutine  
from its base class   RootedTreeClass  . In addition, a new method,  displayNodeContents,  
is defi ned that overrides the method defi ned in   RootedTreeClass .  This new method still 
uses  printRoutine.  In Java notation,  BinaryTreeClass.displayNodeContents  uses 
 RootedTreeClass.printRoutine . 
  Now consider the subclass   BalancedBinaryTreeClass .  This subclass inherits 
method  displayNodeContents  from its superclass   BinaryTreeClass .  However, a new 
method  printRoutine  is defi ned that overrides the one defi ned in   RootedTreeClass .  
When  displayNodeContents  uses  printRoutine  within the context of   Balanced-
BinaryTreeClass ,  the scope rules of C++ and Java specify that the local version of 
 printRoutine  is to be used. In Java notation, when method  BinaryTreeClass.display-
NodeContents  is invoked within the lexical scope of   BalancedBinaryTreeClass ,  it 
uses method  BalancedBinaryTreeClass.printRoutine . 
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  Therefore, the actual code (method  printRoutine ) executed when  displayNodeContents  
is invoked within instantiations of   BinaryTreeClass   is different from what is executed when 
 displayNodeContents  is invoked within instantiations of   BalancedBinaryTreeClass .  
This holds notwithstanding that the method  displayNodeContents  itself is inherited, un-
changed, by   BalancedBinaryTreeClass   from   BinaryTreeClass .  Therefore, even if 
method  displayNodeContents  has been thoroughly tested within a   BinaryTreeClass   
object, it has to be retested from scratch when reused within a   BalancedBinaryTreeClass   
environment. To make matters even more complex, there are theoretical reasons why it needs 
to be retested with different test cases [Perry and Kaiser, 1990]. 
  It must be pointed out immediately that these complications are no reason to abandon 
the object-oriented paradigm. First, they arise only through the interaction of methods ( dis-
playNodeContents  and  printRoutine  in the example). Second, it is possible to determine 
when this retesting is needed [Harrold, McGregor, and Fitzpatrick, 1992]. 
  Suppose an instantiation of a class has been thoroughly tested. Any new or redefi ned 
methods of a subclass then need to be tested, together with methods fl agged for retesting 

 FIGURE 15.17   
 A Java 
implementation 
of a tree 
hierarchy. 

  class RootedTreeClass 
{
  …
   void  displayNodeContents (Node a);
   void  printRoutine (Node b);
//
//   method   displayNodeContents   uses method   printRoutine
//
  …
}

 class BinaryTreeClass extends RootedTreeClass 
{
  …
   void  displayNodeContents (Node a);
//
//   method   displayNodeContents   defi ned in this class uses  
//   method   printRoutine   inherited from    ClassRootedTree 
//
  …
}

 class BalancedBinaryTreeClass extends BinaryTreeClass 
{
  …
   void  printRoutine (Node b);
//
//   method   displayNodeContents (  inherited from   BinaryTreeClass)   uses this  
//   local version of   printRoutine   within class    BalancedBinaryTreeClass 
//
  …
} 
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because of their interaction with other methods. In short, then, the claim that use of the 
object-oriented paradigm reduces the need for testing largely is true. 
  Some management implications of unit testing now are considered.   

  15.18 Management Aspects of Unit Testing 
  An important decision that must be made during the development of every code artifact 
is how much time, and therefore money, to spend on testing that artifact. As with so many 
other economic issues in software engineering, cost–benefi t analysis (Section 5.2) can play 
a useful role. For example, the decision as to whether the cost of correctness proving ex-
ceeds the benefi t of the assurance that a specifi c product satisfi es its specifi cations can be 
decided on the basis of cost–benefi t analysis. Cost–benefi t analysis also can be used to 
compare the cost of running additional test cases against the cost of failure of the delivered 
product caused by inadequate testing. 
  There is another approach for determining whether testing of a specifi c code artifact should 
continue or whether it is likely that virtually all the faults have been removed. The techniques 
of reliability analysis can be used to provide statistical estimates of how many faults remain. 
A variety of different techniques have been proposed for determining statistical estimates of 
the number of remaining faults. The basic idea underlying these techniques is the following: 
Suppose a code artifact is tested for 1 week. On Monday, 23 faults are found and seven more 
are found on Tuesday. On Wednesday, fi ve more faults are found, two on Thursday, and none 
on Friday. Because the rate of fault detection decreases steadily from 23 faults per day to 
none, it seems likely that most faults have been found, and testing of that code artifact could 
be halted. Determining the probability that there are no more faults in the code requires a 
level of mathematical statistics beyond that required for readers of this book. Details therefore 
are not given here; the reader interested in reliability analysis should consult Grady [1992].   

  15.19  When to Reimplement Rather 
than Debug a Code Artifact 

  When a member of the SQA group detects a failure (erroneous output), as stated previously, 
the code artifact must be returned to the original programmer for  debugging , that is, detec-
tion of the fault and correction of the code. On some occasions, it is preferable for the code 
artifact to be thrown away and redesigned and recoded from scratch, either by the original 
programmer or by another, possibly more senior, member of the development team. 
  To see why this may be necessary, consider  Figure 15.18 . The graph shows the coun-
terintuitive concept that the probability of the existence of more faults in a code artifact is 
proportional to the number of faults already found in that code artifact [Myers, 1979]. To 
see why this should be so, consider two code artifacts,  a1  and  a2 . Suppose that both code 
artifacts are approximately the same length and both have been tested for the same number 
of hours. Suppose further that only 2 faults were detected in  a1 , but 48 faults were detected 
in  a2 . It is likely that more faults remain to be rooted out of  a2  than out of  a1 . Furthermore, 
additional testing and debugging of  a2  is likely to be a lengthy process, and the suspicion 
that  a2  is still not perfect will remain. In both the short run and the long run, it is preferable 
to discard  a2 , redesign it, and then recode it. 
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  The distribution of faults in modules certainly is not uniform. Myers [1979] cites the 
example of faults found by users in OS/370. It was found that 47 percent of the faults were 
associated with only 4 percent of the modules. Current research shows that the nonuniform 
distribution of faults in modules has continued. For example, Andersson and Runeson [2007] 
examined three telecommunications products that were developed using the iterative-and-
incremental model. For the fi rst project, they found that 20 percent of the modules contained 
63 percent of the faults; for the second and third projects, 20 percent of the modules contained 
70 percent of the faults. 
  An earlier study by Endres [1975] regarding internal tests of DOS/VS (Release 28) at 
IBM Laboratories, Böblingen, Germany, showed similar nonuniformity. Of the total of 512 
faults detected in 202 modules, only 1 fault was detected in each of 112 of the modules. On 
the other hand, some modules were found to have 14, 15, 19, and 28 faults, respectively. 
Endres points out that the latter three modules were three of the largest modules in the 
product, each comprising over 3000 lines of DOS macro assembler language. However, the 
module with 14 faults was a relatively small module previously known to be very unstable. 
This type of module is a prime candidate for being discarded and recoded. 
  The way for management to cope with this sort of situation is to predetermine the 
maximum number of faults permitted during development of a given code artifact; when 
that maximum is reached, the code artifact must be thrown away and then redesigned 
and recoded, preferably by an experienced software professional. This maximum varies 
from application domain to application domain and from code artifact to code artifact. 
After all, the maximum permitted number of faults detected in a code artifact that reads 
a record from a database and checks the validity of the part number should be far smaller 
than the number of faults in a complex code artifact from a tank weapons control system 
that must coordinate data from a variety of sensors and direct the aim of the main gun 
toward the intended target. One way to decide on the maximum fault fi gure for a specifi c 
code artifact is to examine fault data on similar code artifacts that have required corrective 
maintenance. But, whatever estimation technique is used, management must ensure that 
the code artifact is scrapped if that fi gure is exceeded (but see Just in Case You Wanted to 
Know Box 15.7).   

 FIGURE 15.18   
 Graph showing 
that the 
probability that 
faults are still 
to be found is 
proportional to 
the number of 
faults already 
detected. 
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  15.20 Integration Testing 
  Each new code artifact must be tested when it is added to what has already been integrated; 
this is termed  integration testing . The key point here is fi rst to test the new code artifact as 
described in Sections 15.10 through 15.14 (unit testing) and then to check that the rest of the 
partial product continues to behave as it did before the new code artifact was integrated into it. 
  When the product has a graphical user interface, special issues can arise with regard 
to integration testing. In general, testing a product usually can be simplifi ed by storing 
the input data for a test case in a fi le. The product then is executed, and the relevant data 
submitted to it. With the aid of a CASE tool, the whole process can be automated; that is, a 
set of test cases is set up, together with the expected outcome of each case. The CASE tool 
runs each test case, compares the actual results with the expected results, and reports to the 
user on each case. The test cases then are stored for use in regression testing whenever the 
product is modifi ed. SilkTest is an example of a tool of this kind. 
  However, when a product incorporates a graphical user interface, this approach does not 
work. Specifi cally, test data for pulling down a menu or clicking on a mouse button cannot be 
stored in a fi le in the same way as conventional test data. At the same time, it is time consum-
ing and boring to test a GUI manually. The solution to this problem is to use a special CASE 
tool that keeps a record of mouse clicks, key presses, and so on. The GUI is tested once manu-
ally so that the CASE tool can set up the test fi le. Thereafter, this fi le is used in subsequent 
tests. A number of CASE tools support testing GUIs, including QARun and XRunner. 
  When the integration process is complete, the product as a whole is tested; this is termed 
 product testing . When the developers are confi dent about the correctness of every aspect 
of the product, it is handed over to the client for  acceptance testing . These two forms of 
testing are now described in more detail.   

  15.21 Product Testing 
  The fact that the last code artifact has been integrated successfully into the product does not 
mean that the task of the developers is complete. The SQA group still must perform a number 
of testing tasks to ascertain that the product will be successful. There are two main types of 
software, commercial off-the-shelf (COTS) software (Section 1.11) and custom software. The 
aim of COTS product testing is to ensure that the product as a whole is free of faults. When 
the product testing is complete, the product undergoes alpha and beta testing, as described in 
Section 3.7. That is, preliminary versions are shipped to selected prospective buyers of the 
product to get feedback, particularly regarding residual faults overlooked by the SQA team. 
  Custom software, on the other hand, undergoes somewhat different product testing. The 
SQA group performs a number of testing tasks to be certain that the product will not fail its 
acceptance test, the fi nal hurdle that the custom software development team must overcome. 

 Just in Case You Wanted to Know  Box 15.7 
 The discussion regarding the maximum permitted number of faults detected during devel-
opment of a code artifact means precisely that: the maximum number permitted   during de-
velopment  . The maximum permitted number of faults detected after the product has been 
delivered to the client should be   zero   for all code artifacts of all products. That is, it should 
be the aim of every software engineer to deliver fault-free code to the client. 
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The failure of a product to pass its acceptance test almost always is a poor refl ection on the 
management capabilities of the development organization. The client may conclude that the 
developers are incompetent, which all but guarantees that the client will do everything to 
avoid employing those developers again. Worse, the client may believe that the developers 
are dishonest and deliberately handed over substandard software to fi nish the contract and 
be paid as quickly as possible. If the client genuinely believes this and tells other potential 
clients, then the developers face a major public relations problem. It is up to the SQA group 
to make sure the product passes the acceptance test with fl ying colors. 
  To ensure a successful acceptance test, the SQA group must test the product using tests 
that the SQA group believes closely approximate the forthcoming acceptance tests: 

 •    Black-box test cases for the product as a whole must be run. Up to now, test cases have 
been set up on an artifact-by-artifact or class-by-class basis, ensuring that each code 
artifact or class individually satisfi es its specifi cations.  

•   The robustness of the product as a whole must be tested. Again, the robustness of individ-
ual code artifacts and classes was tested during integration; now productwide robustness 
is the issue for which test cases must be set up and run. In addition, the product must be 
subjected to  stress testing , that is, making sure that it behaves correctly when operat-
ing under a peak load, such as all terminals trying to log on at the same time or customers 
operating all the automated teller machines simultaneously. The product also must be sub-
jected to  volume testing , for example, making sure that it can handle large input fi les.  

•   The SQA group must check that the product satisfi es all its constraints. For example, if 
the specifi cations state that the response time for 95 percent of queries when the product 
is working under full load must be under 3 seconds, then it is the responsibility of the 
SQA group to verify that this indeed is the case. There is no question that the client will 
check constraints during acceptance testing; and if the product fails to meet a major con-
straint, then the development organization will lose a considerable amount of credibility. 
Similarly, storage constraints and security constraints must be checked.  

•   The SQA group must review all documentation to be handed over to the client together 
with the code. The SQA group must check that the documentation conforms to the stan-
dards laid down in the SPMP. In addition, the documentation must be checked against 
the product. For instance, the SQA group has to determine that the user manual indeed 
refl ects the correct way of using the product and that the product functions as specifi ed 
in the user manual.   

  Once the SQA group assures management that the product can handle anything the 
acceptance testers can throw at it, the product (that is, the code plus all the documentation) 
is handed to the client organization for acceptance testing.   

  15.22 Acceptance Testing 
  The purpose of acceptance testing is for the client to determine whether the product in-
deed satisfi es its specifi cations as claimed by the developer. Acceptance testing is done by 
either the client organization, the SQA group in the presence of client representatives, or 
an independent SQA group hired by the client for this purpose. Acceptance testing natu-
rally includes correctness testing, but in addition, it is necessary to test performance and 
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robustness. The four major components of acceptance testing—testing correctness, robust-
ness, performance, and documentation—are exactly what is done by the developer during 
product testing; this is not surprising, because product testing is a comprehensive rehearsal 
for the acceptance test. 
  A key aspect of acceptance testing is that it must be performed on actual data rather 
than on test data. No matter how well test cases are set up, by their very nature, they are 
artifi cial. More important, test data should be a true refl ection of the corresponding actual 
data, but in practice, this is not always the case. For example, the member of the specifi ca-
tion team responsible for characterizing the actual data may perform this task incorrectly. 
Alternatively, even if the data are specifi ed correctly, the SQA group member who uses 
that data specifi cation may misunderstand or misinterpret it. The resulting test cases are 
not a true refl ection of the actual data, leading to an inadequately tested product. For these 
reasons, acceptance testing must be performed on actual data. Furthermore, because the 
development team endeavors to ensure that the product testing duplicates every aspect of 
the acceptance testing, as much of the product testing as possible should also be performed 
on actual data. 
  When a new product is to replace an existing one, the specifi cation document almost 
always includes a clause to the effect that the new product must be installed to run in par-
allel with the existing product. The reason is that there is a very real possibility that the 
new product may be faulty in some way. The existing product works correctly but is inad-
equate in some respects. If the existing product is replaced by a new product that works 
incorrectly, then the client is in trouble. Therefore, both products must run in parallel until 
the client is satisfi ed that the new product can take over the functions of the existing prod-
uct. Successful parallel running concludes acceptance testing, and the existing product 
can be retired. 
  When the product has passed its acceptance test, the task of the developers is complete. 
Any changes now made to that product constitute postdelivery maintenance. 

  The Test Workfl ow: The MSG Foundation 
Case Study 
  The C++ and Java implementations of the MSG Foundation product (available for 
download at  www.mhhe.com/Schach ) were tested against the black-box test cases 
of  Figure 15.13  and  15.14 , as well as the glass-box test cases of Problems 15.35 
through 15.39.     

  15.24 CASE Tools for Implementation 
  CASE tools to support implementation of code artifacts were described in some detail in 
 Chapter 5 . For integration, version-control tools, build tools, and confi guration manage-
ment tools are needed ( Chapter 5 ). The reason is that code artifacts under test change 

Case Study
15.2315.23
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continually as a consequence of faults being detected and corrected, and these CASE tools 
are essential to ensure that the appropriate version of each artifact is compiled and linked. 
Commercially available confi guration-control workbenches include PVCS and SourceSafe. 
Popular open-source confi guration-control tools include CVS and Subversion. 
  In each chapter so far, CASE tools and workbenches specifi c to that workfl ow have been 
described. Now that all workfl ows of the development process have been described, it is 
appropriate to consider CASE tools for the process as a whole. 

  15.24.1 CASE Tools for the Complete Software Process 
 There is a natural progression within CASE. As described in Section 5.7, the simplest CASE 
device is a single  tool , such as an online interface checker or a build tool. Next, tools can be 
combined, leading to a  workbench  that supports one or two activities within the software 
process, such as confi guration control or coding. However, such a workbench might not pro-
vide management information even for the limited portion of the software process to which 
it is applicable, let alone for the project as a whole. Finally, an  environment  provides 
computer-aided support for most, if not all of, the process. 
  Ideally, every software development organization should utilize an environment. But 
the cost of an environment can be large—not just the package itself but the hardware on 
which to run it. For a smaller organization, a workbench, or perhaps just a set of tools, may 
suffi ce. But, if at all possible, an  integrated environment  should be utilized to support 
the development and maintenance effort.  

  15.24.2 Integrated Development Environments 
 The most common meaning of the word   integrated   within the CASE context is in terms 
of  user interface integration . That is, all the tools in the environment share a common 
user interface. The idea behind this is that, if all the tools have the same visual appearance, 
the user of one tool should have little diffi culty in learning and using another tool in the en-
vironment. This has been successfully achieved on the Macintosh, where most applications 
have a similar “look and feel.” Although this is the usual meaning, there are other types of 
integration as well. 
  The term  tool integration  means that all the tools communicate via the same data 
format. For example, in the UNIX Programmer’s Workbench, the UNIX pipe formalism 
assumes that all data are in the form of an ASCII stream. It therefore is easy to combine 
two tools by directing the output stream from one tool to the input stream of the other tool. 
Eclipse is an open-source environment for tool integration. 
   Process integration  refers to an environment that supports one specifi c software 
process. A subset of this class of environment is the  technique-based environment  
(but see Just in Case You Wanted to Know Box 15.8). An environment of this type sup-
ports only a specifi c technique for developing software, rather than a complete process. 
Environments exist for a variety of the techniques discussed in this book, such as Gane 
and Sarsen’s structured systems analysis (Section 12.3), Jackson system development 
(Section 14.5), and Petri nets (Section 12.8). The majority of these environments pro-
vide graphical support for analysis and design and incorporate a data dictionary. Some 
consistency checking usually is provided. Support for managing the development pro-
cess frequently is incorporated into the environment. Many environments of this type are 
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commercially available, including Analyst/Designer and Rhapsody. Analyst/Designer is 
specifi c to Yourdon’s methodology [Yourdon, 1989], and Rhapsody supports Statecharts 
[Harel et al., 1990]. With regard to object-oriented methodologies, IBM Rational Rose 
supports the Unifi ed Process [Jacobson, Booch, and Rumbaugh, 1999]. In addition, some 
older environments have been extended to support the object-oriented paradigm; Software 
through Pictures is an example of this type. Almost all object-oriented environments now 
support UML. 
  The emphasis in most technique-based environments is on the support and formaliza-
tion of the manual operations for software development laid down by the technique. That 
is, these environments force users to utilize the technique step by step in the way intended 
by its author, while assisting the user by providing graphical tools, a data dictionary, and 
consistency checking. This computerized framework is a strength of technique-based envi-
ronments in that users are forced to use a specifi c technique and use it correctly. But it can 
be a weakness as well. Unless the software process of the organization incorporates this 
specifi c technique, use of a technique-based environment can be counterproductive.  

  15.24.3 Environments for Business Applications 
 An important class of environments is used for building business-oriented products. The 
emphasis is on ease of use, achieved in a number of ways. In particular, the environment 
incorporates a number of standard screens, and these can be modifi ed endlessly via a user-
friendly GUI generator. One popular feature of such environments is a code generator. The 
lowest level of abstraction of a product then is the detailed design. The detailed design is 
the input to a code generator that automatically generates code in a language such as C, 
C++, or Java. This automatically generated code is compiled; no “programming” of any 
kind is performed on it. 
  Languages for specifying the detailed design could well be the programming languages 
of the future. The level of abstraction of programming languages rose from the physical 
machine level of fi rst- and second-generation languages to the abstract machine level of 
third- and fourth-generation languages. Today, the level of abstraction of environments of 
this type is the detailed design level, a portable level. Section 15.2 stated that one objec-
tive in using a fourth-generation language is shorter code, and hence quicker development 
and easier postdelivery maintenance. The use of code generators takes these goals even 
further, in that the programmer has to provide fewer details to a code generator than to an 

 In the literature, technique-based environments usually are called  method-based 
environment s. The rise of the object-oriented paradigm gave the word   method   a second 
meaning (in the software engineering context). The original meaning was a technique or an 
approach; this is how the word is used in the phrase   method-based environment  . The object-
oriented meaning is an operation within an object or class. Unfortunately, it sometimes is 
not totally clear from the context which meaning is intended. 
  Accordingly, I have used the word   method   exclusively within the context of the 
object-oriented paradigm. Otherwise, I have employed the term   technique   or   approach  . For 
example, that is why the term   formal method   never appears in  Chapter 12 . Instead, I use 
the term   formal technique  . Similarly, in this chapter, I have used the term   technique-based 
environments  . 

 Just in Case You Wanted to Know  Box 15.8 
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interpreter or compiler for a 4GL. Therefore, it is expected that use of business-oriented 
environments that support code generators will increase productivity. 
  A number of environments of this type are currently available, including Oracle Developer 
Suite. Bearing in mind the size of the market for business-oriented CASE environments, it is 
likely that many more environments of this type will be developed in future years.  

  15.24.4 Public Tool Infrastructures 
 The European Strategic Programme for Research in Information Technology (ESPRIT) 
developed an infrastructure for supporting CASE tools. Despite its name, the  portable 
common tool environment (PCTE)  [Long and Morris, 1993] is   not   an environment. 
Instead, it is an infrastructure that provides the services needed by CASE tools, in much the 
same way that UNIX provides the operating system services needed by user products. (The 
word   common   in PCTE is in the sense of “public” or “not copyrighted.”) 
  PCTE has gained widespread acceptance. For example, PCTE and the C and Ada in-
terfaces to PCTE were adopted as ISO/IEC Standard 13719 in 1995. Implementations of 
PCTE include those of Emeraude and IBM. 
  The hope is that, in the future, many more CASE tools will conform to the PCTE stan-
dard and that PCTE itself will be implemented on a wider variety of computers. A tool 
that conforms to PCTE would run on any computer that supports PCTE. Accordingly, this 
should result in the widespread availability of a broad range of CASE tools. This, in turn, 
should lead to better software processes and better-quality software.  

  15.24.5 Potential Problems with Environments 
 No one environment is ideal for all products and all organizations, any more than one 
programming language can be considered “the best.” Every environment has its strengths 
and its weaknesses, and choosing an inappropriate environment can be worse than using no 
environment at all. For example, as explained in Section 15.24.2, a technique-based envi-
ronment essentially automates a manual process. If an organization chooses to use an envi-
ronment that enforces a technique inappropriate for it as a whole or for a current software 
product under development, then use of that CASE environment is counterproductive. 
  A worse situation occurs when an organization chooses to ignore the advice of 
Section 5.12, that the use of a CASE environment should be fi rmly avoided until the 
organization has attained CMM level 3. Of course, every organization should use CASE 
tools, and there generally is little harm in using a workbench. However, an environment 
imposes an automated software process on an organization that uses it. If a good process 
is being used, that is, the organization is at level 3 or higher, then use of the environment 
assists in all aspects of software production by automating that process. But, if the organi-
zation is at the crisis-driven level 1 or even at level 2, then no process as such is in place. 
Automation of this nonexistent process, that is, the introduction of a CASE environment 
(as opposed to a CASE tool or CASE workbench), can lead only to chaos.    

  15.25 CASE Tools for the Test Workfl ow 
  Numerous CASE tools are available to support the different types of testing that are performed 
during the implementation workfl ow. First consider unit testing. The XUnit testing frame-
works, including JUnit for Java and CppUnit for C++, are a set of open-source automated 
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tools for unit testing; that is, they are utilized to test each class in turn. A set of test cases 
is prepared, and the tool checks that each of the messages sent to the class results in the 
expected answer being returned. Commercial tools of this type are produced by many ven-
dors, including Parasoft. 
  We now turn to integration testing. Examples of commercial tools that support auto-
mated integration testing (as well as unit testing) include SilkTest and IBM Rational Func-
tional Tester. It is common for tools of this kind to pool the unit-testing test cases and utilize 
the resulting set of test cases for integration testing and regression testing. 
  During the test workfl ow, it is essential for management to know the status of all defects. 
In particular, it is vital to know which defects have been detected but have not yet been cor-
rected. The best-known defect-tracking tool is Bugzilla, an open-source product. 
  Returning to Figure 1.6 yet again, it is vital to detect coding faults as soon as possible. 
One way to achieve this is to use a CASE tool to analyze the code, looking for common 
syntactic and semantic faults, or constructs that could lead to problems later. Examples of 
such tools include    lint    (for C—see Section 8.11.4), IBM Rational Purify, Sun’s Jackpot 
Source Code Metrics, and three Microsoft tools: PREfi x, PREfast, and SLAM. 
  The Hyades project (otherwise known as the Eclipse test and performance tools proj-
ect) is an open-source integrated test, trace, and monitoring environment that currently 
can be used with Java and C++. It has facilities for a variety of different testing tools. As 
more and more tool vendors adapt their tools to work under Eclipse, users will be able 
to select from a wider choice of testing tools, all of which will work in conjunction with 
one another.   

  15.26 Metrics for the Implementation Workfl ow 
  A number of different complexity metrics for the implementation workfl ow are discussed 
in Section 15.13.2, including lines of code and McCabe’s cyclomatic complexity. 
  From a testing viewpoint, the relevant metrics include the total number of test cases and 
the number of test cases that resulted in a failure. The usual fault statistics must be main-
tained for code inspections. The total number of faults is important, because if the number 
of faults detected in a code artifact exceeds a predetermined maximum, then that code 
artifact must be redesigned and recoded, as discussed in Section 15.19. In addition, detailed 
statistics need to be kept regarding the types of faults detected. Typical fault types include 
misunderstanding the design, lack of initialization, and inconsistent use of variables. The 
fault data can be incorporated into the checklists to be used during code inspections of 
future products. 
  A number of metrics specifi c to the object-oriented paradigm have been put forward, 
for example, the height of the inheritance tree [Chidamber and Kemerer, 1994]. Many of 
these metrics have been questioned on both theoretical and experimental grounds [Binkley 
and Schach, 1996; 1997]. Furthermore, Alshayeb and Li [2003] have shown that, whereas 
object-oriented metrics can relatively accurately predict the number of lines of code added, 
changed, and deleted in agile processes, they are of little use in predicting the same mea-
sures in a framework–based process (see Section 8.5.2). It remains to be shown that there is 
a need for specifi cally object-oriented metrics, as opposed to classical metrics that can be 
applied equally to object-oriented software.   
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  15.27 Challenges of the Implementation Workfl ow 
  Paradoxically, a major challenge of the implementation workfl ow has to be met in the 
workfl ows that precede it. As explained in  Chapter 8 , code reuse is an effective way of 
reducing software development cost and delivery time. However, it is hard to achieve code 
reuse if it is attempted as late as the implementation workfl ow. 
  For example, suppose the decision is made to implement a product in language  L . Now, 
after half the code artifacts have been implemented and tested, management decides to 
utilize package  P  for the graphical user interfaces of the software product. No matter how 
powerful the routines of  P  may be, if they are implemented in a language that is hard to 
interface with  L,  then they cannot be reused in the software product. 
  Even if language interoperability is not an issue, there is little point in trying to reuse 
an existing code artifact unless the item to be reused fi ts the design exactly. More work 
may be needed to modify the existing code artifact than to create a new code artifact from 
scratch. 
  Code reuse therefore has to be built into a software product from the very beginning. 
Reuse has to be a user requirement as well as a constraint of the specifi cation document. 
The software project management plan (Section 9.4) must incorporate reuse. Also, the 
design document must state which code artifacts are to be implemented and which are to 
be reused. 
  So, as stated at the beginning of this section, even though code reuse is an important 
challenge of implementation, code reuse has to be incorporated into the requirements, anal-
ysis, and design workfl ows. 
  From a purely technical viewpoint, the implementation workfl ow is relatively straight-
forward. If the requirements, analysis, and design workfl ows were carried out satisfactorily, 
the task of implementation should pose few problems to competent programmers. However, 
management of integration is of critical importance; the challenges of the implementation 
workfl ow are to be found in this area. 
  Typical make-or-break issues include use of the appropriate CASE tools (Section 
15.24), test planning once the specifi cations have been signed off on by the client (Sec-
tion 9.6), ensuring that changes to the design are communicated to all relevant personnel 
(Section 15.6.5), and deciding when to stop testing and deliver the product to the client 
(Section 6.1.2).    

   Chapter 
Review 

 This chapter presents various issues relating to the implementation of a product by a team. These include 
choice of programming language (Section 15.1). The issue of fourth-generation languages is discussed 
in some detail in Section 15.2. Good programming practice is described in Section 15.3, and the need 
for practical coding standards is presented in Section 15.4. Then, comments are made regarding code 
reuse (Section 15.5). Implementation and integration activities must be carried out in parallel (Section 
15.6). Top-down, bottom-up, and sandwich integration are described and compared (Sections 15.6.1 
through 15.6.3). Integration of object-oriented products is discussed in Section 15.6.4, and management 
of integration in Section 15.6.5. The implementation workfl ow is presented in Section 15.7 and applied 
to the MSG Foundation case study in Section 15.8. Next, implementation aspects of the test workfl ow 
are presented (Section 15.9). Test cases must be selected systematically (Section 15.10). Various black-
box, glass-box, and non-execution-based unit-testing techniques are described (Sections 15.11, 15.13, 
and 15.14, respectively) and then compared (Section 15.15). Black-box testing of the MSG Foundation 
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case study is presented in Section 15.12. The Cleanroom technique is described in Section 15.16. Test-
ing objects is discussed in Section 15.17, followed by a discussion of the managerial implications of 
unit testing (Section 15.18). Another problem is when to reimplement rather than debug a code artifact 
(Section 15.19). Integration testing is described in Section 15.20, product testing in Section 15.21, and 
acceptance testing in Section 15.22. The test workfl ow for the MSG Foundation case study is outlined 
in Section 15.23. CASE tools for the implementation workfl ow are described in Section 15.24. In more 
detail, CASE tools for the complete process are discussed in Section 15.24.1 and integrated develop-
ment environments in Section 15.24.2. Environments for business applications are presented in Section 
15.24.3. Section 15.24.4 is devoted to public tool infrastructures. Next, potential problems with environ-
ments are discussed (Section 15.24.5). Now CASE tools for the test workfl ow are described (Section 
15.25). Metrics for the implementation workfl ow are discussed in Section 15.26. The chapter concludes 
with an analysis of the challenges of the implementation workfl ow (Section 15.27). 
  An overview of the MSG Foundation case study for  Chapter 15  appears in  Figure 15.19 .  

 FIGURE 15.19   
 Overview 
of the MSG 
Foundation 
case study for 
 Chapter 15 . 

  For 
Further
Reading 

 The attitudes of 43 organizations to 4GLs are reported in [Guimaraes, 1985]. Klepper and Bock 
[1995] describes how McDonnell Douglas obtained higher productivity with 4GLs than with 3GLs. 
Some of the dangers of end-user programming are presented in [Harrison, 2004]. A wide variety of 
papers on end-user programming appear in the November 2004 issue of the   Communications of the 
ACM  . Localization techniques to assist end users in debugging spreadsheets are described in [Ruthruff, 
Burnett, and Rothermel, 2006]. 
  Excellent books on good programming practice include [Kernighan and Plauger, 1974] and [Mc-
Connell, 1993]. 
  Probably the most important early work on execution-based testing is [Myers, 1979]. A compre-
hensive source of information on testing in general is [Beizer, 1990]. Functional testing is described in 
[Howden, 1987]. Black-box testing is described in detail in [Beizer, 1995]. The design of black-box 
test cases is presented in [Yamaura, 1998]. The relationship between the various coverage measures 
of structural testing and software quality is discussed in [Horgan, London, and Lyu, 1994]. A formal 
approach to glass-box testing is described in [Stocks and Carrington, 1996]. Elbaum, Malishevsky, 
and Rothermel [2002] discuss setting test case priorities. Generation of synthetic workloads for stress 
testing is presented in [Krishnamurthy, Rolia, and Majumdar, 2006]. A comprehensive list of unit-
testing strategies appears in [Juristo, Moreno, Vegas, and Solari, 2006]. Geographically and tempo-
rally distributed code reviews are presented in [Meyer, 2008]. 
  Cleanroom is described in [Linger, 1994]. The use of Cleanroom during postdelivery mainte-
nance is presented in [Sherer, Kouchakdjian, and Arnold, 1996]. A criticism of Cleanroom is given in 
[Beizer, 1997]. 
  A good introduction to software reliability is [Musa and Everett, 1990]. In addition, the proceed-
ings of the annual International Symposium on Software Reliability Engineering contain a wide 
variety of articles on software reliability. 
  The proceedings of the International Symposia on Software Testing and Analysis cover a particu-
larly broad range of testing issues. 
  A survey of different approaches to the testing of objects can be found in [Turner, 1994]. Two impor-
tant papers on the subject are [Perry and Kaiser, 1990] and [Harrold, McGregor, and Fitzpatrick, 1992]. 

          Implementation workfl ow     Section 15.8, Appendix H, Appendix I   

   Black-box test cases     Section 15.12   

   Test workfl ow     Section 15.23      
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[Beizer, 1995], mentioned previously, also covers black-box testing of object-oriented software. With 
regard to the object-oriented paradigm, Jorgensen and Erickson [1994] describe the integration testing 
of object-oriented software. 
  With regard to metrics for implementation, McCabe’s cyclomatic complexity was fi rst presented 
in [McCabe, 1976]. Extensions of the metric to design appear in [McCabe and Butler, 1989]. Articles 
questioning the validity of cyclomatic complexity include [Shepperd and Ince, 1994]. The validity 
of object-oriented metrics is discussed in [Alshayeb and Li, 2003]. The relative inability of object-
oriented metrics to detect high-impact faults is described in [Zhou and Leung, 2006]. 
  Selection of test data for integration testing appears in [Harrold and Soffa, 1991]. The generation 
of test cases for testing GUIs is described in [Memon, Pollack, and Soffa, 2001]. 
  Every 2 or 3 years, ACM SIGSOFT and SIGPLAN sponsor a Symposium on Practical Software 
Development Environments. The proceedings provide information on a broad spectrum of toolkits and 
environments. Also useful are the proceedings of the annual International Workshops on Computer-
Aided Software Engineering. 
  With regard to PCTE, [Long and Morris, 1993] contains a number of information sources on 
that topic.  
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     15.1  Your instructor has asked you to implement the Chocoholics Anonymous product (Appendix A). 
Which language would you choose for implementing the product, and why? Of the various 
languages available to you, list their benefi ts and their costs. Do not attempt to attach dollar 
values to your answers.  

   15.2  Repeat Problem 15.1 for the elevator problem (Section 12.7.1).  

   15.3 Repeat Problem 15.1 for the automated library circulation system (Problem 8.7).  

   15.4  Repeat Problem 15.1 for the product that determines whether a bank statement is correct 
(Problem 8.8).  

   15.5  Repeat Problem 15.1 for the automated teller machine (Problem 8.9).  

   15.6  Add prologue comments to a code artifact that you have recently implemented.  

   15.7  How do coding standards for a one-person software production company differ from those in 
organizations with 300 software professionals?  

   15.8  How do coding standards for a software company that develops and maintains software for 
intensive-care units differ from those in an organization that develops and maintains account-
ing products?  

   15.9  Consider the statement      

 <  condition   1>  &&  <  condition   2> 

     As stated at the end of Section 15.3, in Java and C++ the semantics of the  &&  operator are 
such that if <  condition   1> is false, then <  condition   2> is not evaluated. What is the technical 
term for this?  

  15.10 Consider the statement      

 <  condition   1>  and  <  condition   2> 

    In what programming languages is <  condition   2> evaluated even if <  condition   1> is false?  

  15.11 Why does deep nesting of   if  -statements frequently lead to code that can be diffi cult to read?  

  15.12  Why has it been suggested that modules ideally should consist of between 35 and 50 state-
ments?  

  15.13  Why should backward   goto   statements be avoided, whereas a forward   goto   may be used for 
error handling?  

  15.14  Set up black-box test cases for Naur’s text-processing problem (Section 6.5.2). For each test 
case, state what is being tested and the expected outcome of that test case.  

  15.15  Using your solution to Problem 6.14 (or code distributed by your instructor), set up statement 
coverage test cases. For each test case, state what is being tested and the expected outcome of 
that test case.  

  15.16 Repeat Problem 15.15 for branch coverage.  

  15.17 Repeat Problem 15.15 for all-defi nition-use-path coverage.  

  15.18 Repeat Problem 15.15 for path coverage.  

  15.19 Repeat Problem 15.15 for linear code sequences.  

  15.20  Draw a fl owchart of your solution to Problem 6.14 (or code distributed by your instructor). 
Determine its cyclomatic complexity. If you are unable to determine the number of branches, 
consider the fl owchart as a directed graph. Determine the number of edges   e  , nodes   n  , and 
connected components   c.   (Each method constitutes a connected component.) The cyclomatic 
complexity   M   is then given by the formula [McCabe, 1976]      

  M   =   e   −   n   + 2  c    

  Problems 
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  15.21  You are the owner and sole employee of One-Person Software Company. You bought the pro-
gramming workbench described in Section 5.8. List its fi ve capabilities in order of importance 
to you, giving reasons.  

  15.22  You are now the vice-president for software technology of Very Big Software Company; there 
are 17,500 employees in your organization. How do you rank the capabilities of the program-
ming workbench described in Section 5.8? Explain any differences between your answer to 
this problem and that of Problem 15.21.  

  15.23  As SQA manager for a software development organization, you are responsible for determin-
ing the maximum number of faults that may be found in a given code artifact during testing. 
If this maximum is exceeded, then the code artifact must be redesigned and recoded. What 
criteria would you use to determine the maximum for a given code artifact?  

  15.24 Explain the difference between logic artifacts and operational artifacts.  

  15.25  Defensive programming is good software engineering practice. At the same time, it can pre-
vent operational artifacts from being tested thoroughly enough for reuse purposes. How can 
this apparent contradiction be resolved?  

  15.26  What are the similarities between product testing and acceptance testing? What are the major 
differences?  

  15.27 What is the role of the SQA group during implementation?  

  15.28  You are the owner and sole employee of One-Person Software Company. You decide that to be 
competitive you must buy CASE tools. You therefore apply for a bank loan for $15,000. Your 
bank manager asks you for a statement no more than one page in length (preferably shorter) 
explaining in lay terms why you need CASE tools. Write the statement.  

  15.29  The newly appointed vice-president for software development of Ye Olde Fashioned Software 
Corporation has hired you to help her change the way the company develops software. There 
are 650 employees, all writing COBOL 85 code without the assistance of any CASE tools 
(COBOL 85 conforms to the 1985 COBOL standard; it is not object-oriented). Write a memo 
to the vice-president stating what sort of CASE equipment the company should purchase. 
Justify your choice.  

  15.30  You and a friend decide to start Personal Computer Software Programs ’R Us, developing 
software for personal computers on personal computers. Then a distant cousin dies, leaving 
you $1 million on condition that you spend the money on a business-oriented environment and 
the hardware needed to run it and that you keep the environment for at least 5 years. What do 
you do, and why?  

  15.31  You are a computer science professor at an excellent small liberal arts college. Programming 
assignments for computer science courses are done on a network of 35 personal computers. 
Your dean asks you whether to use the limited software budget to buy CASE tools, bearing in 
mind that, unless some sort of site license can be obtained, 35 copies of every CASE tool have 
to be purchased. What do you advise?  

  15.32  You have just been elected mayor of a major city. You discover that no CASE tools are being 
used to develop software for the city. What do you do?  

  15.33  (Term Project) Draw up black-box test cases for the product you specifi ed in Problem 12.20 
or 13.22. For each test case, state what is being tested and the expected outcome of that test 
case.  

  15.34  (Term Project) Implement and integrate the Chocoholics Anonymous product (Appendix 
A). Use the programming language specifi ed by your instructor. Your instructor will tell you 
whether to build a Web-based user interface, a graphical user interface, or a text-based user 
interface. Remember to utilize the black-box test cases you developed in Problem 15.33 for 
testing your code.  
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  15.35  (Case Study) Download a copy of the implementation of the MSG Foundation product de-
scribed in Section 15.8. Draw up statement coverage test cases for the product. For each test 
case, state what is being tested and the expected outcome of that test case.  

  15.36 (Case Study) Repeat Problem 15.35 for branch coverage.  

  15.37 (Case Study) Repeat Problem 15.35 for all-defi nition-use-path coverage.  

  15.38 (Case Study) Repeat Problem 15.35 for path coverage.  

  15.39 (Case Study) Repeat Problem 15.35 for linear code sequences.  

  15.40  (Case Study) Starting with the detailed design of Problem 14.16, code the MSG Foundation 
case study in an object-oriented language other than C++ or Java.  

  15.41  (Case Study) Recode the MSG Foundation case study (Section 15.8) in pure C, with no C++ 
features. Although C does not support inheritance, object-based concepts such as encapsu-
lation and information hiding can be achieved relatively easily. How would you implement 
polymorphism and dynamic binding?  

  15.42  (Case Study) To what extent is the documentation of the code of the implementation of Section 
15.8 inadequate? Make any necessary additions.  

  15.43  (Readings in Software Engineering) Your instructor will distribute copies of [Meyer, 2008]. 
What are your views on geographically and temporally distributed code reviews?     
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 Chapter

  A major theme of this book is the vital importance of postdelivery maintenance. Therefore, 
it is somewhat surprising that this is a relatively short chapter. The reason is that maintain-
ability has to be built into a product from the very beginning and must not be compro-
mised at any time during the development process. Accordingly, in a very real sense, all the 
previous chapters have been devoted to the subject of postdelivery maintenance. What is 
described in this chapter is how to ensure that maintainability is not compromised during 
postdelivery maintenance itself. 

  16.1 Development and Maintenance 
  Once the product has passed its acceptance test, it is handed over to the client. The product 
is installed and used for the purpose for which it was constructed. Any useful product, 
however, is almost certain to undergo    postdelivery maintenance   , either to fi x faults 
(corrective maintenance) or extend the functionality of the product (enhancement). 

16
Postdelivery 
Maintenance 
   Learning Objectives 

 After studying this chapter, you should be able to

   • Perform postdelivery maintenance.  

  • Appreciate the importance of postdelivery maintenance.  

  • Describe the challenges of postdelivery maintenance.  

  • Describe the maintenance implications of the object-oriented paradigm.  

  • Describe the skills needed for maintenance.      
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  Because a product consists of more than just the source code, any changes to the docu-
mentation, manuals, or any other component of the product after it has been delivered to the 
client are examples of postdelivery maintenance. Some computer scientists prefer to use the 
term    evolution    rather than maintenance to indicate that a product evolves over time. In fact, 
some view the entire software life cycle, from beginning to end, as an evolutionary process. 
  This is how maintenance is viewed by the Unifi ed Process. In fact, the word  mainte-
nance  hardly occurs anywhere in Jacobson, Booch, and Rumbaugh [1999]. Instead, main-
tenance is implicitly treated merely as another increment of the software product. However, 
there is a basic difference between development and maintenance, a difference that will be 
illustrated by means of the following example. 
  Suppose that a woman has her portrait painted when she is 18. The oil painting depicts 
just her head and shoulders. Twenty years later she marries and now wants the portrait to 
be modifi ed so that it depicts both her new husband and herself. There are four diffi culties 
that would arise if the portrait were to be changed in this way. 

  • The canvas is not large enough for her husband’s head to be added.  
  • The original portrait was hung where sunlight fell on it much of the day, so the colors 

have faded somewhat. In addition, the brand of oil paint that was used for the original 
painting is no longer manufactured. For both these reasons, it will be hard to achieve 
consistency of color.  

  • The original artist has retired, so it will be hard to achieve consistency of style.  
  • The woman’s face has aged 20 years since the original portrait was painted, so considerable 

work will have to be done to ensure that the modifi ed painting is an accurate likeness.    

  For all these reasons, it would be laughable even to think about modifying the original 
portrait. Instead, a new artist will paint a new portrait of the couple from scratch (but see 
Just in Case You Wanted to Know Box 16.1). 
  Now consider the maintenance of a software product that originally cost $2 million to 
develop. There are four diffi culties that have to be solved:

   • Unfortunately, the disk on which the database is stored is all but full—the current disk 
is not large enough for more data to be added.  

  • The company that manufactured the original disk is no longer in business, so a larger disk 
will have to be bought from a different manufacturer. However, there are hardware incom-
patibilities between the new disk and the existing software product (Section 8.11.1), and it 
will cost about $100,000 to make all the changes needed to use the new disk.  

  • The original developers left the company some years ago, so the changes to the software 
product will have to be made by a team of maintainers who have never seen the software 
product before.  
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 The National Gallery in London contains a masterpiece that was ruined when an additional 
head was added to a portrait. In 1515, the artist Lorenzo Lotto (ca. 1480–after 1556) 
painted a picture of Giovanni Agostino della Torre, a physician who lived in Bergamo, then 
in the State of Venice, Italy. Download the picture [Lotto, 1515] and examine it. It certainly 
appears as if the artist added della Torre’s son, Niccolò, after the original portrait had been 
completed, thereby irreparably marring the painting. 

 Just in Case You Wanted to Know  Box 16.1 
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  • The original software product was developed using the classical paradigm. Nowadays, 
the object-oriented paradigm (and specifi cally the Unifi ed Process) is commonly used.    

  There is a clear correspondence between each portrait bullet point and the correspond-
ing software product bullet point. The inescapable conclusion regarding the oil painting is 
to paint a new portrait from scratch. Does that mean that, instead of performing a $100,000 
maintenance task, we should develop a totally new software product at a cost of $2 million? 
  The answer is that analogies should never be taken too far. Just as it is obvious that a new 
portrait should be painted, it is equally obvious that the existing software product should 
undergo maintenance at 5 percent of the cost of a new software product. 
  Nevertheless, there is an important lesson to be learned from this otherwise poor anal-
ogy. Whether we are dealing with portraits or software products, it is easier to create a new 
version than to modify an existing version. In the case of the portrait, not only was it all but 
impossible to modify the existing portrait, but the cost of doing so would surely have been 
more than the cost of painting a new portrait from scratch. In the case of the software prod-
uct, not only were the changes feasible, but the cost of doing them would be a fraction of 
the cost of developing a new software product from scratch. In other words, even though it 
is harder to make changes to existing artifacts than to construct new artifacts from scratch, 
economic considerations make maintenance far preferable to redevelopment.   

  16.2 Why Postdelivery Maintenance Is Necessary 
  There are three main reasons for making changes to a product:

   1. A fault needs correcting, whether an analysis fault, design fault, coding fault, documenta-
tion fault, or any other type of fault. This is termed    corrective maintenance   .  

  2. In    perfective maintenance   , a change is made to the code to improve the effective-
ness of the product. For instance, the client may wish additional functionality or request 
that the product be modifi ed so that it runs faster. Improving the maintainability of a 
product is another example of perfective maintenance.  

  3. In    adaptive maintenance   , a change is made to the product to react to a change in 
the environment in which the product operates. For example, a product almost certainly 
has to be modifi ed if it is ported to a new compiler, operating system, or hardware. 
With each change to the tax code, a product that prepares tax returns has to be modi-
fi ed accordingly. When the U.S. Postal Service introduced nine-digit ZIP codes in 1981, 
products that had allowed for only fi ve-digit ZIP codes had to be changed. Adaptive 
maintenance is not requested by a client; instead, it is externally imposed on the client.      

  16.3  What Is Required of Postdelivery 
Maintenance Programmers? 

  During the software life cycle, more time is spent on postdelivery maintenance than on any 
other activity. In fact, on average, at least 67 percent of the total cost of a product can be 
attributed to postdelivery maintenance, as shown in  Figure 1.3 . But many organizations, 
even today, assign the task of postdelivery maintenance to beginners and less competent 
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programmers, leaving the “glamorous” job of product development to better or more expe-
rienced programmers. 
  In fact, postdelivery maintenance is the most diffi cult of all aspects of software produc-
tion. A major reason is that postdelivery maintenance incorporates aspects of all the other 
workfl ows of the software process. Consider what happens when a defect report is handed 
to a maintenance programmer (recall from Section 1.11 that a    defect    is a generic term for 
a fault, failure, or error). A defect report is fi led if, in the opinion of the user, the product is 
not working as specifi ed in the user manual. A number of causes are possible. First, nothing 
at all could be wrong; perhaps the user has misunderstood the user manual or is using the 
product incorrectly. Alternatively, if there is a fault in the product, it simply might be that 
the user manual has been badly worded and nothing is wrong with the code itself. Usually, 
however, there is a fault in the code. But, before making any changes, the maintenance 
programmer has to determine exactly where the fault lies, using the defect report fi led by 
the user, the source code, and often nothing else. Therefore, the maintenance programmer 
needs to have far above average debugging skills, because the fault could lie anywhere 
within the product. And the original cause of the defect might lie in the by now nonexistent 
analysis or design artifacts. 
  Suppose that the maintenance programmer has located a fault and must fi x it without 
inadvertently introducing another fault elsewhere in the product, that is, a    regression fault   . 
If regression faults are to be minimized, detailed documentation for the product as a whole and 
each individual code artifact must be available. However, software professionals are notorious 
for their dislike of paperwork of all kinds, especially documentation; and it is quite com-
mon for the documentation to be incomplete, erroneous, or totally missing. In these cases, the 
maintenance programmer has to deduce from the source code itself, the only valid form of 
documentation available, all the information needed to avoid introducing a regression fault. 
  Having determined the probable fault and tried to correct it, the maintenance programmer 
now must test that the modifi cation works correctly and no regression faults have been intro-
duced. To check the modifi cation itself, the maintenance programmer must construct special 
test cases; checking for regression faults is done using the set of test data stored precisely for 
performing    regression testing    (Section 3.8). Then the test cases constructed for checking 
the modifi cation must be added to the set of stored test cases to be used for future regres-
sion testing of the modifi ed product. In addition, if changes to the analysis or design had to 
be made to correct the fault, then these changes also must be checked. Expertise in testing 
therefore is an additional prerequisite for postdelivery maintenance. Finally, it is essential 
that the maintenance programmer document every change. The preceding discussion relates 
to corrective maintenance. For that task, the maintenance programmer primarily must be a 
superb diagnostician to determine if there is a fault and, if so, an expert technician to fi x it. 
  The other major maintenance tasks are adaptive and perfective maintenance. To perform 
these, the maintenance programmer must perform the requirements, analysis, design, and 
implementation workfl ows, taking the existing product as the starting point. For some types of 
changes, additional code artifacts have to be designed and implemented. In other cases, changes 
to the design and implementation of existing code artifacts are needed. Therefore, whereas 
specifi cations frequently are produced by analysis experts, designs by design experts, and code 
by programming experts, a maintenance programmer has to be an expert in all three areas. Per-
fective and adaptive maintenance are adversely affected by a lack of adequate documentation, 
just like corrective maintenance. Furthermore, the ability to design suitable test cases and write 

sch76183_ch16_551-570.indd   554sch76183_ch16_551-570.indd   554 07/06/10   11:43 AM07/06/10   11:43 AM



Chapter 16  Postdelivery Maintenance  555

good documentation is needed for perfective and adaptive maintenance, just as in corrective 
maintenance. Therefore, none of the forms of maintenance is a task for a less experienced pro-
grammer unless a top-rank computer professional supervises the process. 
  From the preceding discussion, it is clear that maintenance programmers have to possess 
almost every technical skill that a software professional could have. But what does he or 
she get in return?

   • Postdelivery maintenance is a thankless task in every way. Maintainers deal with dis-
satisfi ed users; if the user were happy with the product, it would not need maintenance.  

  • The user’s problems have frequently been caused by the individuals who developed the 
product, not the maintainer.  

  • The code itself may be badly written, adding to the frustrations of the maintainer.  
  • Postdelivery maintenance is looked down on by many software developers, who con-

sider development to be a glamorous job and maintenance to be drudge work fi t only for 
junior programmers or incompetents.    

  Postdelivery maintenance can be likened to after-sales service. The product has been de-
livered to the client. But the client is dissatisfi ed, because the product does not work correctly, 
it does not do everything that the client currently wants, or the circumstances for which the 
product was built have changed in some way. Unless the software organization provides good 
maintenance service, the client will take all future product development business elsewhere. 
When the client and software group are part of the same organization, and hence inextricably 
tied from the viewpoint of future work, a dissatisfi ed client may use every means, fair or 
foul, to discredit the software group. This, in turn, leads to an erosion of confi dence, from 
both outside and inside the software group, and resignations and dismissals. It is important 
for every software organization to keep its clients happy by providing excellent postdelivery 
maintenance service. So, for product after product, postdelivery maintenance is the most 
challenging aspect of software production—and frequently the most thankless. 
  How can this situation be changed? Managers must restrict postdelivery maintenance 
tasks to programmers with all the skills needed to perform maintenance. They must make 
it known that only top computer professionals merit maintenance assignments in their orga-
nization and pay them accordingly. If management believes that postdelivery maintenance 
is a challenge and good maintenance is critical for the success of the organization, attitudes 
toward postdelivery maintenance will slowly improve (but see Just in Case You Wanted to 
Know Box 16.2). 
  Some of the problems that maintenance programmers face are now highlighted in a mini 
case study. 

C Mini  ase Study 

16.416.4   Postdelivery Maintenance Mini Case Study 

  In countries with centralized economies, the government controls the distribution 
and marketing of agricultural products. In one such country, temperate fruits, such as 
peaches, apples, and pears, were the responsibility of the Temperate Fruit Committee 
(TFC). One day, the chairman of the TFC asked a government computer consultant 
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to computerize the operations of the TFC. The chairman informed the consultant 
that there are exactly seven temperate fruits: apples, apricots, cherries, nectarines, 
peaches, pears, and plums. The database was to be designed for those seven fruits, no 
more and no less. After all, that was the way that the world was, and the consultant 
was not to waste time and money allowing for any sort of expandability. 
  The product was duly delivered to the TFC. About a year later, the chairman sum-
moned the maintenance programmer responsible for the product. “What do you know 
about kiwi fruit?” asked the chairman. “Nothing,” replied the mystifi ed programmer. 
“Well,” said the chairman, “it seems that kiwi fruit is a temperate fruit that has just 
started to be grown in our country, and the TFC is responsible for it. Please change 
the product accordingly.” 
  The maintenance programmer discovered that the consultant fortunately had not 
carried out the chairman’s original instructions to the letter. The good practice of 
allowing for some sort of future expansion was too ingrained, and the consultant 
had provided a number of unused fi elds in the relevant database records. By slightly 
rearranging certain items, the maintenance programmer was able to incorporate kiwi 
fruit, the eighth temperate fruit, into the product. 
  Another year went by, and the product functioned well. Then the maintenance 
programmer again was called to the chairman’s offi ce. The chairman was in a good 
mood. He jovially informed the programmer that the government had reorganized 
the distribution and marketing of agricultural products. His committee was now 
responsible for all fruit produced in that country, not just temperate fruit, and so the 
product now had to be modifi ed to incorporate the 26 additional kinds of fruit on the 
list he handed to the maintenance programmer. The programmer protested, pointing 
out that this change would take almost as long as rewriting the product from scratch. 
“Nonsense,” replied the chairman. “You had no trouble adding kiwi fruit. Just do the 
same thing another 26 times!” 
  A number of important lessons are to be learned from this:

   • The problem with the product, no provision for expansion, was caused by the devel-
oper, not the maintainer. The developer made the mistake of obeying the chairman’s 
instruction regarding future expandability of the product, but the maintenance pro-
grammer suffered the consequences. In fact, unless she reads this book, the consultant 
who developed the original product may never realize that her product was anything 
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 In  Practical Software Maintenance , Tom Pigoski [1996] describes how he set up a U.S. Navy 
postdelivery maintenance organization in Pensacola, Florida. His idea was that, if prospec-
tive employees were told in advance that they were to work as maintainers, they would 
have a positive attitude toward postdelivery maintenance. In addition, he tried to keep 
morale high by ensuring that all employees received plenty of training and had the oppor-
tunity to travel all over the world in the course of their work. The beautiful nearby beaches 
certainly helped, as did the brand-new building they occupied. 
  Nevertheless, within 6 months of starting work at the postdelivery maintenance organiza-
tion, every employee asked when he or she could do some development work. It seems that 
it is extremely hard to change the attitudes of individuals toward postdelivery maintenance. 

 Just in Case You Wanted to Know  Box 16.2 
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but a success. One of the more annoying aspects of postdelivery maintenance is that 
the maintainer is responsible for fi xing other people’s mistakes. The person who caused 
the problem either has other duties or has left the organization, but the maintenance 
programmer is left holding the baby.  

  • The client frequently does not understand that postdelivery maintenance can be 
diffi cult or, in some instances, all but impossible. The problem is exacerbated when 
the maintenance programmer has successfully carried out previous perfective and 
adaptive maintenance tasks but suddenly protests that a new assignment cannot 
be done, even though superfi cially it seems no different from what has been done 
before with little diffi culty.  

  • All software development must be carried out with an eye on future postdelivery 
maintenance. If the consultant had designed the product for an arbitrary number of 
different kinds of fruit, there would have been no diffi culty in incorporating fi rst 
the kiwi fruit and then the 26 other kinds of fruit.    

  As stated many times, postdelivery maintenance is a vital aspect of software pro-
duction, and the one that consumes the most resources. During product development, 
it is essential that the development team never forget the maintenance programmer, 
who will be responsible for the product once it has been installed.     

  16.5 Management of Postdelivery Maintenance 
  Issues regarding management of postdelivery maintenance are now considered. 

  16.5.1 Defect Reports 
 The fi rst thing needed when maintaining a product is a mechanism for changing the prod-
uct. With regard to corrective maintenance, that is, removing residual faults, if the product 
appears to be functioning incorrectly, then a    defect report    should be fi led by the user. 
This must include enough information to enable the maintenance programmer to re-create 
the problem, which usually is some sort of software failure. In addition, the maintenance 
programmer must indicate the severity of the defect; typical severity categories include 
critical, major, normal, minor, and trivial. 
  Ideally, every defect reported by a user should be fi xed immediately. In practice, pro-
gramming organizations usually are understaffed, with a backlog of work, both development 
and maintenance. If the defect is critical, such as if a payroll product crashes the day before 
payday or overpays or underpays employees, immediate corrective action must be taken. 
Otherwise, each defect report must at least receive an immediate preliminary investigation. 
  The maintenance programmer should fi rst consult the defect report fi le. This contains 
all reported defects that have not yet been fi xed, together with suggestions for working 
around them, that is, ways for the user to bypass the portion of the product that apparently is 
responsible for the failure, until such time as the defect can be fi xed. If the defect has been 
reported previously, any information in the defect report fi le should be given to the user. 
But, if what the user reports appears to be a new defect, then the maintenance programmer 
should study the problem and attempt to fi nd the cause and a way to fi x it. In addition, an 
attempt should be made to fi nd a way to work around the problem, because it may take 6 or 
9 months before someone can be assigned to make the necessary changes to the software. 
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In the light of the serious shortage of programmers and in particular programmers good 
enough to perform maintenance, suggesting a way to live with the defect until it can be 
solved often is the only way to deal with defect reports that are not true emergencies. 
  The maintenance programmer’s conclusions should be added to the defect report fi le, 
together with any supporting documentation, such as listings, designs, and manuals used 
to arrive at those conclusions. The manager in charge of postdelivery maintenance should 
consult the fi le regularly, setting priorities for the various fi xes. The fi le also should contain 
the client’s requests for perfective and adaptive maintenance. The next modifi cation made 
to the product then will be the one with the highest priority. 
  When copies of a product have been distributed to a variety of sites, copies of defect 
reports must be circulated to all users of the product, together with an estimate of when 
each defect can be fi xed. Then, if the same failure occurs at another site, the user can con-
sult the relevant defect report to determine if it is possible to work around the defect and 
when it will be fi xed. It would be preferable to fi x every defect immediately and distribute 
a new version of the product to all sites, of course. Given the current worldwide shortage 
of good programmers and the realities of postdelivery software maintenance, distributing 
defect reports probably is the best that can be done. 
  There is another reason why defects usually are not fi xed immediately. It almost always is 
cheaper to make a number of changes, test them all, change the documentation, and install 
the new version than it is to perform each change separately, test it, document it, install the 
new version, and then repeat the entire cycle for the next change. This is particularly true if 
every new version has to be installed on a signifi cant number of computers (such as a large 
number of clients in a client–server network) or when the software is running at different 
sites. As a result, organizations prefer to accumulate noncritical maintenance tasks, and 
then implement the changes as a group.  

  16.5.2 Authorizing Changes to the Product 
 Once a decision has been made to perform corrective maintenance, a maintenance pro-
grammer is assigned the task of determining the fault that caused the failure and repair-
ing it. After the code has been changed, the repair must be tested, as must the product 
as a whole (regression testing). Then, the documentation must be updated to refl ect the 
changes. In particular, a detailed description of what was changed, why it was changed, by 
whom, and when must be added to the prologue comments of any changed code artifact 
( Figure 15.1 ). If necessary, analysis or design artifacts also are changed. A similar set of 
steps is followed when performing perfective or adaptive maintenance; the only real differ-
ence is that perfective and adaptive maintenance are initiated by a change in requirements 
rather than by a defect report. 
  At this point all that would seem to be needed would be to distribute the new version to 
the users. But, what if the maintenance programmer has not tested the repair adequately? 
Before the product is distributed, it must be subjected to software quality assurance per-
formed by an independent group; that is, the members of the maintenance SQA group must 
not report to the same manager as the maintenance programmer. It is important that the 
SQA group remain managerially independent (Section 6.1.2). 
  Reasons were given previously as to why postdelivery maintenance is diffi cult. For those 
same reasons, maintenance also is fault prone. Testing during postdelivery maintenance is dif-
fi cult and time consuming, and the SQA group should not underestimate the implications of 
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software maintenance with regard to testing. Once the new version has been approved by the 
SQA group, it can be distributed. 
  Another area in which management must ensure that procedures are followed carefully is 
when the technique of baselines and private copies (Section 5.10.2) is used. Suppose a program-
mer wishes to change   Tax Provision Class  . The programmer makes copies of   Tax Provi-
sion Class   and all the other code artifacts needed to perform the required maintenance task; 
often this includes all the other classes in the product. The programmer makes the necessary 
changes to   Tax Provision Class   and tests them. Now, the previous version of   Tax Provi-
sion Class   is frozen, and the modifi ed version of   Tax Provision Class   incorporating the 
changes is installed in the baseline. But, when the modifi ed product is delivered to the user, it 
immediately crashes. What went wrong is that the maintenance programmer tested the modifi ed 
version of   Tax Provision Class   using his or her private workspace copies, that is, the copies 
of the other code artifacts that were in the baseline at the time that maintenance of   Tax Provi-
sion Class   was started. In the meantime, certain other code artifacts were updated by other 
maintenance programmers working on the same product. The lesson is clear: Before installing 
a code artifact, it must be tested using the current baseline versions of all the other code artifacts 
and not the programmer’s private versions. This is a further reason for stipulating an indepen-
dent SQA group—members of the SQA group simply have no access to programmers’ private 
workspaces. A third reason is that it has been estimated that the initial correction of a fault is 
itself incorrect some 70 percent of the time [Parnas, 1999].  
  16.5.3 Ensuring Maintainability 
 Postdelivery maintenance is not a one-time effort. A well-written product goes through 
a series of versions over its lifetime. As a result, it is necessary to plan for postdelivery 
maintenance during the entire software process. During the design workfl ow, for example, 
information-hiding techniques (Section 7.6) should be employed; during implementation, 
variable names should be selected that will be meaningful to future maintenance program-
mers (Section 15.3). Documentation should be complete, correct, and refl ect the current 
version of every component code artifact of the product. 
  During postdelivery maintenance, it is important not to compromise the maintainability 
that has been built into the product from the very beginning. In other words, just as soft-
ware development personnel always should be conscious of the inevitable postdelivery 
maintenance, so software maintenance personnel always should be conscious of the equally 
inevitable further future postdelivery maintenance. The principles established for maintain-
ability during development apply equally to postdelivery maintenance.  
  16.5.4 Problem of Repeated Maintenance 
 One of the more frustrating diffi culties of software development is the    moving-target 
problem    (Section 2.4). As fast as the developer constructs the product, the client can change 
the requirements. Not only is this frustrating to the development team, frequent changes can 
result in a poorly constructed product. In addition, such changes add to the cost of the product. 
  The problem is exacerbated during postdelivery maintenance. The more a completed 
product is changed, the more it deviates from its original design, and the more diffi cult further 
changes become. Under repeated maintenance, the documentation is likely to become even 
less reliable than usual, and the regression testing fi les may not be up to date. If still more 
maintenance is done, the product as a whole may fi rst have to be completely reimplemented. 
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  The problem of the moving target clearly is a management problem. In theory, if man-
agement is suffi ciently fi rm with the client and explains the problem at the beginning of 
the project, then the requirements can be frozen from the time the specifi cations are signed 
off on until the product is delivered. Again, after each request for perfective maintenance, 
the requirements can be frozen for, say, 3 months or 1 year. In practice, it does not work 
that way. For example, if the client happens to be the president of the corporation and the 
development organization is the software division of that corporation, then the president 
can order changes every Monday and Thursday and they will be implemented. The old 
proverb, “He who pays the piper calls the tune,” unfortunately is all too relevant in this 
situation. Perhaps, the best that the vice-president for software can do is to try to explain to 
the president the effect on the product of repeated maintenance, and then simply have the 
complete product reimplemented whenever further maintenance would be hazardous to the 
integrity of the product. 
  Trying to discourage additional maintenance by ensuring that the requested changes are 
implemented slowly may mean that the relevant personnel are replaced by others prepared 
to do the job faster. In short, if the person who requests repeated changes has suffi cient 
clout, there is no solution to the problem of the moving target.    

  16.6 Maintenance of Object-Oriented Software 
  One reason put forward for using the object-oriented paradigm is that it promotes main-
tainability. After all, an object is an independent unit of a program. More specifi cally, a 
well-designed object exhibits conceptual independence, otherwise known as    encapsula-
tion    (Section 7.4). Every aspect of the product that relates to the portion of the real world 
modeled by that object is localized to the object itself. In addition, objects exhibit physical 
independence; information hiding is employed to ensure that implementation details are 
not visible outside that object (Section 7.6). The only form of communication permitted is 
sending a message to the object to invoke a specifi c method. 
  As a consequence, the argument goes, it is easy to maintain an object for two reasons. 
First, conceptual independence means it is easy to determine which part of a product must 
be changed to achieve a specifi c maintenance goal, be it enhancement or corrective main-
tenance. Second, information hiding ensures that a change made to an object has no impact 
outside that object, and hence the number of regression faults is reduced greatly. 
  In practice, however, the situation is not quite this idyllic. In fact, three obstacles are 
specifi c to the maintenance of object-oriented software. One of the problems can be solved 
through use of appropriate CASE tools, but the others are less tractable:

   1. Consider the C�� class hierarchy shown in  Figure 16.1 . Method displayNode is defi ned 
in   UndirectedTreeClass  , inherited by   DirectedTreeClass  , and then redefi ned 
in   RootedTreeClass  . This redefi ned version is inherited by   BinaryTreeClass   and 
  BalancedBinaryTreeClass   and utilized in   BalancedBinaryTreeClass  . There-
fore, a maintenance programmer has to study the complete inheritance hierarchy to 
understand   BalancedBinaryTreeClass  . Worse, the hierarchy may not be displayed 
in the linear fashion of  Figure 16.1  but generally is spread over the entire product. So, 
to understand what displayNode does in   BalancedBinaryTreeClass  , the mainte-
nance programmer may have to peruse a major proportion of the product. This is a far 
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cry from the “independent” object described at the beginning of this section. The solu-
tion to this problem is straightforward: use the appropriate CASE tool. Just as a C++ 
compiler can resolve precisely the version of displayNode within instances of the class 
  BalancedBinaryTreeClass  , so a programming workbench can provide a “fl attened” 
version of a class, that is, a defi nition of the class with all features inherited directly or 
indirectly appearing explicitly, with any renaming or redefi nition incorporated. The fl at-
tened form of   BalancedBinaryTreeClass   of  Figure 16.1  includes the defi nition of 
displayNode from   RootedTreeClass  .  

  2. Another obstacle to the maintenance of a product implemented using an object-
oriented language is less easy to solve. It arises as a consequence of polymorphism 
and dynamic binding, concepts explained in Section 7.8. An example was given in 
that section, a base class named   File Class  , together with three subclasses:   Disk 
File Class  ,   Tape File Class  , and   Diskette File Class  . This is shown in  Figure 
7.33(b) , reproduced here for convenience as  Figure 16.2 . In base class   File Class  , a 
dummy (  abstract   or   virtual  ) method open is declared. Then, a specifi c implemen-
tation of the method appears in each of the three subclasses; each method is given the 
identical name, open, as shown in  Figure 16.2 . Suppose that myFile is declared to be 
an object, an instance of   File Class  , and the code to be maintained contains the mes-
sage myFile.open ( ). As a consequence of polymorphism and dynamic binding, at 
run time, myFile could be a member of any of the three derived classes of   File Class  , that 

 FIGURE 16.1 
   C++ implemen-
tation of a class 
hierarchy.

 class UndirectedTreeClass 
{

   …
    void  displayNode (Node a);
   …
}//  class UndirectedTreeClass 

 class DirectedTreeClass : public UndirectedTreeClass 
{

   …
}//  class DirectedTreeClass 

 class RootedTreeClass : public DirectedTreeClass 
{

   …
    void  displayNode (Node a);
   …
}//  class RootedTreeClass 

 class BinaryTreeClass : public RootedTreeClass 
{

   …
}//  class BinaryTreeClass 

 class BalancedBinaryTreeClass : public BinaryTreeClass 
{
   Node            hhh; 
   displayNode (hhh); 
}//  class BalancedBinaryTreeClass  
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562  Part B  The Workfl ows of the Software Life Cycle

is, a disk fi le, a tape fi le, or a diskette fi le. Once the run-time system has determined 
in which derived class it is, the appropriate version of open is invoked. This can have 
adverse consequences for maintenance. If a maintenance programmer encounters the 
call myFile.open ( ) in the code, then, to understand that part of the product, he or 
she has to consider what would happen if myFile were an instance of each of the three 
subclasses. A CASE tool cannot help here because, in general, there is no way to re-
solve dynamic binding issues using static methods. The only way to determine which 
of a number of dynamic bindings actually occurs in a particular set of circumstances 
is to trace through the code, either by running it on a computer or tracing through it 
manually. Polymorphism and dynamic binding indeed are extremely powerful aspects 
of object-oriented technology that promote the development of an object-oriented 
product. However, they can have a deleterious impact on maintenance, by forcing the 
maintenance programmer to investigate a wide variety of possible bindings that might 
occur at run time and hence determine which of a number of different methods could 
be invoked at that point in the code.  

  3. The fi nal problem arises as a consequence of    inheritance   . Suppose a particular base 
class does most, but not all, of what is required for the design of a new product. A 
derived class now is defi ned, that is, a class identical to the base class in many ways, but 
new features may be added and existing features renamed, reimplemented, suppressed, 
or changed in other ways. Furthermore, these changes may be made without having an 
effect on the base class or any other derived classes. However, suppose now that the base 
class itself is changed. If this happens, all derived classes are changed in the same way. 
In other words, the strength of inheritance is that new leaves can be added to the inheri-
tance tree (or graph, if the implementation language supports multiple inheritance, as 
C�� does) without altering any other class in the tree. But, if an interior node of the 
tree is changed in any way, then this change is propagated to all its descendants (the 
   fragile base class problem   ).    

  Consequently, inheritance is another feature of object-oriented technology that can have 
a major positive infl uence on development but a negative impact on maintenance.   

 FIGURE 16.2 
   Defi nition of 
base class  File 
Class  with 
derived classes 
 Disk File 
Class, Tape 
File Class,  and 
 Diskette File 
Class . 

Implementation of
method open

for a diskette file

Diskette File Class

Implementation of
method open
for a tape file

Tape File Class

abstract method
open

File Class

Implementation of
method open
for a disk file

Disk File Class
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  16.7  Postdelivery Maintenance Skills versus 
Development Skills 

  Earlier in this chapter, much was said about the skills needed for postdelivery maintenance.

   • For corrective maintenance, the ability to determine the cause of a failure of a large 
product was deemed essential. But this skill is not needed exclusively for postdelivery 
maintenance. It is used throughout integration and product testing.  

  • Another vital skill is the ability to function effectively without adequate documentation. 
Again, the documentation rarely is complete while integration and product testing are 
under way.  

  • Also stressed was that skills with regard to analysis, design, implementation, and testing 
are essential for adaptive and perfective maintenance. These activities also are carried 
out during the development process, and each requires specialized skills if it is to be 
performed correctly.    

  In other words, the skills a postdelivery maintenance programmer needs are in no way 
different from those needed by software professionals specializing in other aspects of soft-
ware production. The key point is that a maintenance programmer must not be merely 
skilled in a broad variety of areas but  highly  skilled in  all  those areas. Although the aver-
age software developer can specialize in one area of software development, such as design 
or testing, the software maintainer must be a specialist in virtually every area of software 
production. After all, postdelivery maintenance is the same as development, only more so.   

  16.8 Reverse Engineering 
  As has been pointed out, sometimes the only documentation available for postdelivery 
maintenance is the source code itself. (This happens all too frequently when maintain-
ing    legacy systems   , that is, software in current use but developed some 15 or 20 years 
ago, if not earlier.) Under these circumstances, maintaining the code can be extremely 
diffi cult. One way of handling this problem is to start with the source code and attempt to 
re-create the design documents or even the specifi cations. This process is called    reverse 
engineering   . 
  CASE tools can assist with this process. One of the simplest is a pretty printer (Section 5.8), 
which may help display the code more clearly. Other tools construct diagrams, such as fl ow-
charts or UML diagrams, directly from the source code; these visual aids can help in the process 
of design recovery. 
  Once the maintenance team has reconstructed the design, there are two possibilities. 
One alternative is to attempt to reconstruct the specifi cations, modify the reconstructed 
specifi cations to refl ect the necessary changes, and reimplement the product the usual 
way. (Within the context of reverse engineering, the usual development process that pro-
ceeds from analysis through design to implementation is called    forward engineering   . 
The process of reverse engineering followed by forward engineering sometimes is called 
   reengineering   .) In practice, reconstruction of the specifi cations is an extremely hard 
task. More frequently the reconstructed design is modifi ed and the modifi ed design then is 
forward engineered. 
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  A related activity often performed during maintenance is restructuring. Reverse engi-
neering takes the product from a lower level of abstraction to a higher level of abstraction, 
for example, from code to design. Forward engineering takes the product from a higher 
level of abstraction to a lower level.    Restructuring   , however, takes place at the same level. 
It is the process of improving the product without changing its functionality. Pretty print-
ing is one form of restructuring, and so is converting code from unstructured to structured 
form. In general, restructuring is performed to make the source code (or design or even 
the database) easier to maintain. When an agile process (Section 2.9.5) is used, the design 
modifi cation known as    refactoring    is another example of restructuring. 
  A worse situation occurs if the source code is lost and the executable version of the prod-
uct is all that is available. At fi rst sight, it might seem that the only possible way to re-create 
the source code is to use a disassembler to create assembler code and then to build a tool 
(that might be termed a  reverse compiler ) to try to re-create the original high-level lan-
guage code. A number of virtually insurmountable problems accompany this approach:

   • The names of the variables will have been lost as a consequence of the original 
compilation.  

  • Many compilers optimize the code in some way, making it extremely diffi cult to attempt 
to re-create the source code.  

  • A construct such as a loop in the assembler could correspond to a number of different 
possible constructs in the source code.    

  In practice, therefore, the existing product is treated as a black box and reverse engi-
neering is used to deduce the specifi cations from the behavior of the current product. The 
reconstructed specifi cations are modifi ed as required, and a new version of the product is 
forward engineered from those specifi cations.   

  16.9 Testing during Postdelivery Maintenance 
  While the product is being developed, many members of the development team have a 
broad overview of the product as a whole, but as a result of the rapid personnel turnover 
in the computer industry, it is unlikely that members of the postdelivery maintenance team 
have been involved in the original development. Therefore, the maintainer tends to see the 
product as a set of loosely related components and generally is not aware that a change to 
one code artifact may seriously affect one or more other artifacts and hence the product 
as a whole. Even if the maintainer wished to understand every aspect of the product, the 
pressures to fi x or to extend the product generally are such that no time is allowed for the 
detailed study needed to achieve this. Furthermore, in many cases, little or no documenta-
tion is available to assist in gaining that understanding. One way of trying to minimize this 
diffi culty is to use regression testing, that is, testing the changed product against previous 
test cases to ensure that it still works correctly. 
  For this reason, it is vital to store all test cases, together with their expected outcomes, 
in machine-readable form. As a result of changes made to the product, certain stored test 
cases may have to be modifi ed. For example, if the percentages of salary to be withheld 
change as a consequence of tax legislation, then the correct output from a payroll product 
for each test case involving withholding changes, too. Similarly, if satellite observations 
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lead to corrections in the latitude and longitude of an island, then the correct output from a 
product that calculates the position of an aircraft using the coordinates of the island must 
correspondingly change. Depending on the maintenance performed, some valid test cases 
become invalid. But the computations that need to be made to correct the stored test cases 
are essentially the same as would have to be made to set up new test data for checking that 
the maintenance has been correctly performed. No additional work therefore is involved in 
maintaining the fi le of test cases and their expected outcomes. 
  It can be argued that regression testing is a waste of time because regression testing 
requires the complete product to be retested against a host of test cases, most of which 
apparently have nothing to do with the code artifacts modifi ed in the course of product 
maintenance. The word  apparently  in the previous sentence is critical. The dangers of 
unwitting side effects of maintenance (that is, the introduction of regression faults) are too 
great for that argument to hold water; regression testing is an essential aspect of mainte-
nance in all situations.   

  16.10 CASE Tools for Postdelivery Maintenance 
  It is unreasonable to expect maintenance programmers to keep track manually of the vari-
ous revision numbers and assign the next revision number each time a code artifact is 
updated. Unless the operating system incorporates version control, a version-control tool 
such as the UNIX tools  sccs  (source code control system) [Rochkind, 1975] and  rcs  (revision 
control system) [Tichy, 1985] is needed. It is equally unreasonable to expect manual control 
of the freezing technique described in  Chapter 5  or any other manual way of ensuring that 
revisions are updated appropriately. A confi guration-control tool is needed. Popular open-
source confi guration-control tools include CVS (concurrent versions system) [Loukides 
and Oram, 1997] and Subversion. Typical examples of commercial tools are CCC (change 
and confi guration control) and IBM Rational ClearCase. Even if the software organization 
does not wish to purchase a complete confi guration-control tool, at the very least a build 
tool must be used in conjunction with a version-control tool. Another category of CASE 
tool virtually essential during postdelivery maintenance is a defect-tracking tool that keeps 
a record of reported defects not yet fi xed. 
  Section 16.8 described some categories of CASE tools that can assist in reverse engi-
neering and reengineering. Examples of such tools that assist by creating visual displays of 
the structure of the product include IBM Rational Rose and Together. Doxygen is an open-
source tool of this kind. 
  Defect tracking is an important aspect of postdelivery maintenance. It is vital to be able 
to determine the current status of every reported defect. IBM Rational ClearQuest is a com-
mercial    defect-tracking tool   , and Bugzilla is a popular open-source tool. Such tools can be 
used to record the severity of a defect (Section 16.5.1) and its status (essentially, whether or 
not the defect has been fi xed). In addition, some defect-tracking tools can link a defect report 
to the confi guration management tool so that, when a new version is built, the maintenance 
programmer can select specifi c defect report fi xes to be included in the build. 
  Postdelivery maintenance is diffi cult and frustrating. The very least that management 
can do is to provide the maintenance team the tools needed for effi cient and effective prod-
uct maintenance.   
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  16.11 Metrics for Postdelivery Maintenance 
  The activities of postdelivery maintenance essentially are analysis, design, implementa-
tion, testing, and documentation. Therefore, the metrics that measure these activities are 
equally applicable to maintenance. For example, the complexity metrics of Section 15.13.2 
are relevant to postdelivery maintenance, in that a code artifact with high complexity is a 
likely candidate for inducing a regression fault. Particular care must be taken in modifying 
such a code artifact. 
  In addition, metrics specifi c to postdelivery maintenance include measures relating to 
software defect reports, such as the total number of defects reported and classifi cation of 
those defects by severity and type. In addition, information regarding the current status of 
the defect reports is needed. For example, there is a considerable difference between hav-
ing 13 critical defects reported and fi xed during 2006 and having only 2 critical defects 
reported during that year but neither of them fi xed. 

Case Study
16.1216.12   Postdelivery Maintenance: 

The MSG Foundation Case Study 
  A number of faults have been seeded in the source code of the MSG Foundation case 
study. In addition, perfective maintenance must be performed. These maintenance 
tasks are left as exercises (Problems 16.16 through 16.21).     

  16.13 Challenges of Postdelivery Maintenance 
  This chapter describes numerous challenges of postdelivery maintenance. The toughest 
one to change is that maintenance is generally harder than development, yet maintenance 
programmers are often looked down on by developers and all too frequently are paid less 
than developers.        

   Chapter 
Review 

 The chapter begins with a comparison of development and maintenance (Section 16.1). Postdeliv-
ery maintenance is an important and challenging software activity (Sections 16.2 and 16.3). This is 
illustrated by means of the mini case study of Section 16.4. Issues relating to the management of post-
delivery maintenance are described (Section 16.5), including the problem of repeated maintenance 
(Section 16.5.4). Postdelivery maintenance of object-oriented software is discussed in Section 16.6. 
The skills that a maintenance programmer needs are the same as those of a developer; the difference 
is that a developer can specialize in one aspect of the software process, whereas the maintainer must 
be an expert in all aspects of software production (Section 16.7). A description of reverse engineering 
is given in Section 16.8. Next follows a description of testing during postdelivery maintenance (Sec-
tion 16.9) and CASE tools for postdelivery maintenance (Section 16.10). Metrics for postdelivery 
maintenance are described in Section 16.11. Postdelivery maintenance of the MSG Foundation case 
study, discussed in Section 16.12, is left as an exercise. The chapter concludes with a discussion of 
the challenges of postdelivery maintenance (Section 16.13).  
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  Problems     16.1  Why do you think that the mistake is frequently made of considering postdelivery software 
maintenance to be inferior to software development?  

   16.2  Consider a product that determines whether a computer is virus free. Describe why such a 
product is likely to have multiple variations of many of its code artifacts. What are the implica-
tions for postdelivery maintenance? How can the resulting problems be solved?  

   16.3 Repeat Problem 16.2 for the automated library circulation system of Problem 8.7.  

  For 
Further 
Reading 

 A classic source of information on postdelivery maintenance is [Lientz, Swanson, and Tompkins, 
1978], although some of the results are now being questioned (see Just in Case You Wanted to 
Know Box 1.3). Regression test case selection is discussed in [Harrold, Rosenblum, Rothermel, and 
Weyuker, 2001] and setting priorities of regression test cases in [Rothermel, Untch, Chu, and Har-
rold, 2001]. A method for estimating staffi ng needs during postdelivery maintenance is described in 
[Antoniol, Cimitile, Di Lucca, and Di Penta, 2004]. 
  The September 2005 issue of  Journal of Systems and Software  contains a number of papers on re-
verse engineering. Fioravanti and Nesi [2001] present metrics for estimating adaptive maintenance effort. 
Problems of comprehension of legacy systems are discussed in [Rajlich, Wilde, Buckellew, and Page, 
2001]. The importance of traceability within the context of reengineering is the subject of [Ebner and 
Kaindl, 2002]. The use of metrics within the context of maintainability is discussed in [Bandi, Vaishnavi, 
and Turk, 2003]. Problems that can arise in the maintenance of open-source software are presented in 
[Samoladas, Stamelos, Angelis, and Oikonomou, 2005]. Extracting the architecture of a software product 
from run-time observations is described in [Schmerl et al., 2006]. How developers gain an understand-
ing of unfamiliar code is presented in [Ko, Myers, Coblenz, and Aung, 2006] and [Sillito, Murphy, and De 
Volder, 2008]. During maintenance, the size of the test suite can grow signifi cantly. Culling of test cases, 
however, can reduce the fault detection effectiveness. This issue is addressed in [Jeffrey and Gupta, 2007]. 
  Briand, Bunse, and Daly [2001] discuss the maintainability of object-oriented designs. Experiments 
to assess the impact of design pattern documentation on postdelivery maintenance are described in 
[Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002]. The maintainability of object-oriented soft-
ware is discussed in [Lim, Jeong, and Schach, 2005] and [Freeman and Schach, 2005]. The impact 
of UML diagrams on maintenance is described in [Arisholm, Briand, Hove, and Labiche, 2006]; the 
costs and benefi ts in [Dzidek, Arisholm, and Briand, 2008]. A tool that supports incremental software 
maintenance while ensuring consistency between the artifacts is described in [Reiss, 2006]. Automated 
refactoring to reduce the cost of maintaining object-oriented software is proposed in [O’Keeffe and Ó 
Cinnéide, 2008]. Lack of effectiveness of software metrics in identifying fault-prone classes in postde-
livery maintenance (as opposed to during development) is discussed in [Shatnawi and Li, 2008]. 
  Papers on software maintenance appear in the September 2006 issue of  IEEE Transactions on 
Software Engineering ; [Briand, Labiche, and Leduc, 2006] is of particular interest. The proceedings 
of the annual Conference on Software Maintenance and Reengineering, as well as the International 
Conference on Software Maintenance and Evolution, are broadly based sources of information on all 
aspects of maintenance.  
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   16.4  Repeat Problem 16.2 for the product of Problem 8.8 that checks whether a bank statement is correct.  

   16.5 Repeat Problem 16.2 for the automated teller machine of Problem 8.9.  

   16.6  You are the manager in charge of postdelivery maintenance in a large software organization. 
What qualities do you look for when hiring new employees?  

   16.7  What are the implications of postdelivery maintenance for a one-person software production 
organization?  

   16.8  You have been asked to build a computerized defect report fi le. What sort of data would you 
store in the fi le? What sorts of queries could be answered by your tool? What sorts of queries 
could not be answered by your tool?  

   16.9  You receive a memo from the vice-president for software maintenance of Ye Olde Fashioned 
Software Corporation (Problem 15.29), pointing out that, for the foreseeable future, Olde 
Fashioned will have to maintain tens of millions of lines of COBOL 85 code and asking your 
advice with regard to CASE tools for such postdelivery maintenance. What do you reply?  

  16.10  Now you are told that the tens of millions of lines of COBOL 85 code (Problem 16.9) have 
to be reimplemented in an object-oriented language, either in COBOL 2002 or in C++/Java. 
Which of the two would you choose: COBOL 2002 or C++/Java? Justify your answer.  

  16.11  If Ye Olde Fashioned Software Corporation decides to reimplement their code in COBOL 
2002 (see Problem 16.10), what strategy would you follow?  

  16.12  If Ye Olde Fashioned Software Corporation decides to reimplement their code in C++/Java 
(see Problem 16.10), what strategy would you follow?  

  16.13  What role does reuse play in your answers to Problems 16.11 and 16.12?  

  16.14  What role does portability play in your answers to Problems 16.11 and 16.12?  

  16.15  (Term Project) Suppose that the product for Chocoholics Anonymous in Appendix A has been 
implemented exactly as described. Now the product has to be modifi ed to include endocri-
nologists as providers. In what ways will the existing product have to be changed? Would it be 
better to discard everything and start again from scratch? Compare your answer to the answer 
you gave to Problem 1.19.  

  16.16  (Case Study) Improve the aesthetic appearance of the reports in the implementation of Section 
15.8 by adjusting the horizontal alignment of the various components.  

  16.17  (Case Study) Suppose that the requirements of the MSG Foundation are changed so that a 
couple will never have to pay more than 26 percent of their gross income each week to the 
MSG Foundation (rather than the 28 percent as currently stipulated). In how many places does 
the implementation of Section 15.8 have to be changed?  

  16.18  (Case Study) The MSG Foundation has decided that it will now operate on a monthly basis, 
rather than a weekly basis. Modify the implementation of Section 15.8 accordingly.  

  16.19  (Case Study) Replace the menu-driven input routines in the implementation of Section 15.8 
with a graphical user interface (GUI).  

  16.20  (Case Study) Modify the implementation of Section 15.8 so that it runs under Linux.  

  16.21  (Case Study) Modify the implementation of Section 15.8 to make it Web-based.  

  16.22  (Readings in Software Engineering) Your instructor will distribute copies of [Freeman and 
Schach, 2005]. Do you feel that the paper resolves the question of whether object orientation 
promotes maintainability? Justify your answer.    
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 Chapter 17
More on UML  
  Learning Objectives  

After studying this chapter, you should be able to  

 • Model software using UML use cases, class diagrams, notes, use-case diagrams, 
interaction diagrams, statecharts, activity diagrams, packages, component 
diagrams, and deployment diagrams.  

 •  Appreciate that UML is a language,   not   a methodology.      

  During the course of this book, various elements of UML [Booch, Rumbaugh, and Jacob-
son, 1999] have been introduced. Specifi cally, the notation for class diagrams, inheritance, 
aggregation, and association was described in  Chapter 7 . In  Chapter 11 , use cases, use-case 
diagrams, and notes were introduced; in  Chapter 13 , statecharts, interaction diagrams, and 
sequence diagrams were added. 
  This subset of UML is adequate for understanding this book and for doing all the 
exercises, as well as the term project of Appendix A. However, real-world software prod-
ucts are, unfortunately, much larger and considerably more complex than the MSG Foun-
dation case study or the term project of Appendix A. Accordingly, in this chapter more 
material on UML is presented, as preparation for entering the real world. 
  Before reading this chapter, it is necessary to be aware that UML, like all state-of-the-art 
computer languages, is constantly changing. When this book was written, the latest version 
of UML was Version 2.0. By this time, however, some aspects of UML may have changed. 
As explained in Just in Case You Wanted to Know Box 3.2, UML is now under the control 
of the Object Management Group. Before proceeding, it would probably be a good idea to 
check for updates to UML at the OMG website,  www.omg.org . 

  17.1 UML Is   Not   a Methodology  
 Before looking at UML in more detail, it is essential to clarify what UML is and, more 
importantly, what UML is not. UML is an acronym for Unifi ed Modeling Language. That 
is, UML is a   language  . Consider a language like English. English can be used to write 

sch76183_ch17_571-589.indd   571sch76183_ch17_571-589.indd   571 07/06/10   11:44 AM07/06/10   11:44 AM

www.omg.org
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novels, encyclopedias, poems, prayers, news reports, and even textbooks on software engi-
neering. That is, a language is simply a tool for expressing ideas. A specifi c language does 
not constrain the types of ideas that can be described by that language or the way that they 
can be described. 
  As a language, UML can be used to describe software developed using the traditional 
paradigm or any of the many versions of the object-oriented paradigm, including the Uni-
fi ed Process. In other words, UML is a notation, not a methodology. It is a notation that can 
be used in conjunction with any methodology. 
  In fact, UML is not merely   a   notation; it is   the   notation. It is hard to imagine a mod-
ern book on software engineering that does not use UML to describe software. UML has 
become a world standard, so much so that someone unfamiliar with UML would have dif-
fi culty functioning today as a software professional. 
  The title of this chapter is “More on UML.“ Bearing in mind the central role played by 
UML, it would seem essential for all of UML to be presented here. However, the manual 
for Version 2.0 of UML is over 1200 pages long, so complete coverage would probably not 
be a good idea. But is it possible to be a competent software professional without knowing 
every single aspect of UML? 
  The key point is that UML is a language. The English language has over 100,000 words, 
but almost all speakers of English seem to manage perfectly well with just a subset of 
the complete English vocabulary. In the same way, in this chapter all the types of UML 
diagrams are described, together with many (but by no means all) of the various options 
for each of those diagrams. The small subset of UML presented in  Chapters 7 ,  11 , and  13  
is adequate for the purposes of this book. In the same way, the larger subset of UML pre-
sented in this chapter is adequate for the development and maintenance of most software 
products.   

  17.2 Class Diagrams  
 The simplest possible   class diagram   is shown in  Figure 17.1 . It depicts the    Bank 
Account Class   . More details of    Bank Account Class    are shown in the class diagram 
of  Figure 17.2 . A key aspect of UML is that both  Figures 17.1  and  17.2  are valid class 
diagrams. In other words, in UML as many or as few details may be added as are judged 
appropriate for the current iteration and incrementation. 

 FIGURE 17.1     The simplest 
possible class diagram. 

Bank Account Class

 FIGURE 17.2     The class 
diagram of Figure 17.1 
with an attribute and two 
operations added. 

accountBalance

deposit ( )
withdraw ( )

Bank Account Class
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  This freedom of notation extends to objects. The notation   bank account   may be 
informally used for one specifi c object of this class. The full UML notation is 

    bank account : Bank Account Class   

  That is,   bank account   is an object, an instance of a class    Bank Account Class   . 
In more detail, the underlining denotes an object, the colon denotes “an instance of,” and 
the boldface and initial uppercase letters in    Bank Account Class    denote this is a class. 
However, UML allows us to use a shorter notation   bank account   when there is no 
ambiguity. 
  Now suppose we wish to model the concept of an arbitrary bank account. That is, we do 
not wish to refer to one specifi c object of    Bank Account Class  .  The UML notation for 
this is

   :  Bank Account Class   

  As just pointed out, the colon means “an instance of,” so   :   Bank Account Class   
means “an instance of class    Bank Account Class   ,” which is precisely what we wanted 
to model. This notation is widely used in  Chapter 13 . Conversely, in Figure 13.51, a com-
munication diagram for the realization of a scenario of the use case  Update Estimated 
Annual Operating Expenses  of the MSG Foundation software product, the actor 
is labeled    MSG Staff Member    and not   : MSG Staff Member   (the labeling of other 
items in that diagram) precisely because    MSG Staff Member    denotes that MSG Staff 
Member is an actor, whereas   : MSG Staff Member   would denote “an instance of the 
[nonexistent]    MSG Staff Member Class   .” 
  Section 7.6 introduced the concept of information hiding. In UML, the prefi x  +  indi-
cates that an attribute or operation is    public   , and similarly the prefi x  –  denotes that the 
attribute or operation is    private.    This notation is used in  Figure 17.3 . The attribute of 
   Bank Account Class    is declared to be    private    (so that we can achieve information 
hiding), whereas both the operations are    public    so that they can be invoked from any-
where in the software product. A third standard type of visibility,    protected   , uses the 
prefi x  #.  If an attribute is    public  ,  it is visible everywhere; if it is    private  ,  it is visible only 
in the class in which it is defi ned, and if it is    protected  ,  it is visible both within the class 
in which it is defi ned and within subclasses of that class. 
  Up to now in this chapter, class diagrams containing only one class have been presented. 
Section 17.2.1 considers class diagrams with more than one class. 

  17.2.1 Aggregation  
Consider  Figure 17.4 , which models the statement: “A car consists of a chassis, an engine, 
wheels, and seats.” Recall that the open diamonds denote aggregation.   Aggregation   is the 
UML term for the   part–whole relationship  ; the parts of a car are the chassis, engine, 

 FIGURE 17.3     
The class 
diagram of 
 Figure 17.2  
with visibility 
prefi xes added. 

� accountBalance

� deposit ( )
� withdraw ( )

Bank Account
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wheels, and seats. The diamond is placed at the “whole” (car) end, not the “part” (chassis, 
engine, wheels, or seats) end of the line connecting a part to the whole. 

   17.2.2 Multiplicity  
Now suppose that we want to use UML to model the statement: “A car consists of one 
chassis, one engine, four or fi ve wheels, an optional sunroof, zero or more fuzzy dice hang-
ing from the rearview mirror, and two or more seats.” This is shown in  Figure 17.5 . The 
numbers next to the ends of the lines denote   multiplicity  , the number of times that the one 
class is associated with the other class. 
  First consider the line connecting    Chassis Class    to    Car Class   . The  1  at the “part” end 
of the line denotes that one chassis is involved in this relationship, and the  1  at the “whole” 
end denotes that one car is involved; that is, each car has one chassis. Similar observations 
hold for the line connecting    Engine Class    to    Car Class   . 

 FIGURE 17.4     An aggregation example. 

 FIGURE 17.5     Aggregation example with multiplicities. 

Engine ClassChassis Class Seats ClassWheels Class

Car Class

1

1 1 4..5 0..1 2..**

1 1 1 1 1

Car Class

Wheels ClassEngine ClassChassis Class Sunroof Class Fuzzy Dice Class Seats Class
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  Now consider the line connecting    Wheels Class    to    Car Class   . The  4..5  at the “part” 
end together with the  1  at the “whole” end denotes that each car has from four to fi ve 
wheels (the fi fth wheel is the spare). Because instances of classes come in whole numbers 
only, this means that the UML diagram models the statement that a car has four or fi ve 
wheels, as required. 
  In general, the two dots  ..  denote a range. Consequently,  0..1  means zero or one, which 
is the UML way of denoting “optional.” That is why there is the  0..1  next to the line con-
necting    Sun Roof Class    to    Car Class  .  
  Now look at the line connecting    Fuzzy Dice Class    to    Car Class   . At the “part” end, 
the label is  *.  An asterisk by itself denotes “zero or more.” Accordingly, the  *  in  Figure 17.5  
means that a car has zero or more fuzzy dice hanging from the rearview mirror. (If you 
want to know more about that asterisk, see Just in Case You Wanted to Know Box 17.1.) 
  Now look at the line connecting    Seats Class    to    Car Class   . At the “part” end, the 
label is  2..*.  An asterisk by itself denotes “zero or more”; an asterisk in a range denotes “or 
more.” Consequently, the  2..*  in  Figure 17.5  means that a car has two or more seats. 
  Therefore, in UML if the exact multiplicity is known, that number is used. An example is the 
 1  that appears in eight places in  Figure 17.5 . If the range is known, the range notation is used, 
as with the  0..1  or  4..5  in  Figure 17.5 . And if the number is unspecifi ed, the asterisk is used. If 
the upper limit in a range is unspecifi ed, the range notation is combined with the asterisk nota-
tion, as with the  2..*  in  Figure 17.5 . In passing, the multiplicity notation of UML is based on the 
entity–relationship diagrams of traditional database theory (see Section 12.6).  

  17.2.3 Composition  
Another example of aggregation is shown in  Figure 17.6 , which models the relationship 
between a chessboard and its squares; every chessboard consists of 64 squares. In fact, this 
relationship goes further; it is an example of   composition  , a stronger form of aggrega-
tion. As previously stated, association models the part–whole relationship. When there is 
composition, then, in addition, every part may belong to only one whole, and if the whole 
is deleted, so are the parts. In the example, if there are a number of different chessboards, 
each square belongs to only one board, and if a chessboard is thrown away, all 64 squares 

 Just in Case You Wanted to Know  Box 17.1  
Stephen Kleene laid the foundations of recursive function theory, a branch of mathematical 
logic that has had a major infl uence on computer science. The Kleene star (the asterisk that 
denotes “zero or more” in diagrams like  Figure 17.5 ) is named after him. 
  The Kleene star is well known among mathematicians and computer scientists. What is 
considerably less well known is that Kleene pronounced his last name as if it were written 
“Clay knee” (with the accent on the fi rst syllable), and   not   “Clean knee.” 

 FIGURE 17.6     
Another 
aggregation 
example (but see 
 Figure 17.7 ). 

1 64

Chessboard Class Square Class
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on that board go as well. Composition, an extension of aggregation, is depicted with a solid 
diamond, as in  Figure 17.7 . 

   17.2.4 Generalization  
Inheritance is a required feature of object orientation. It is a special case of   generaliza-
tion  . The UML notation for generalization is an open triangle. Sometimes we choose to 
label that open triangle with a   discriminator  . Consider  Figure 17.8 , which models two 
types of investments, bonds and stocks. The notation    investmentType    next to the open 
triangle means that every instance of    Investment Class    or its two subclasses has an 
attribute  investmentType , and this attribute can be used to distinguish between instances 
of bonds and instances of stocks. 

   17.2.5 Association  
In Section 7.7, an example of   association   involving two classes was presented in which 
the direction of the association had to be clarifi ed by means of a navigation arrow in the 
form of a solid triangle. Figure 7.32 is reproduced here as  Figure 17.9 . 

 FIGURE 17.7    
Composition 
example. 

 FIGURE 17.8   
 Generalization 
(inheritance) 
example with 
an explicit 
discriminator. 

 FIGURE 17.9    
An association. 

1 64

Chessboard Class Square Class

Bond Class Stock Class

investmentType

Investment Class

consults

Radiologist Class Lawyer Class
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  In some cases, the association between the two classes may itself need to be modeled 
as a class. For example, suppose the radiologist in  Figure 17.9  consults the lawyer on a 
number of different occasions, on each occasion for a different length of time. To enable the 
lawyer to bill the radiologist correctly, a class diagram such as that depicted in  Figure 17.10  
is needed. Now  consults  has become a class,    Consults Class   , called an   association 
class   (because it is both an association and a class). 

     17.3 Notes  
 When we want to include a comment in a UML diagram, we put it in a   note   (a rectangle 
with the top right-hand corner bent over). A dashed line is then drawn from the note to the 
item to which the note refers. Figure 13.41 shows a note.   

  17.4 Use-Case Diagrams  

 As described in Section 11.4.3, a   use case   is a model of the interaction between external 
users of a software product (  actors  ) and the software product itself. More precisely, an 
actor is a user playing a specifi c role. A   use-case diagram   is a set of use cases. 
  In Section 11.4.3, generalization within the context of actors was described, as depicted 
in Figure 11.2.  Figure 17.11  is another example; it shows that a    Manager    is a special case 
of an    Employee   . As with classes, the open triangle points toward the more general case. 

    17.5 Stereotypes  
 The three primary tax forms for U.S. personal income tax are Forms 1040, 1040A, and 
1040EZ.  Figure 17.12  shows that use cases  Prepare Form 1040, Prepare Form 

 FIGURE 17.10     An association class.  FIGURE 17.11    
 Generalization 
of an actor. 

consults

dateOfConsultation
lengthOfConsultation

Radiologist Class Lawyer Class

Consults Class
Employee

Manager
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1040A,  and  Prepare Form 1040EZ  all incorporate the use case  Print Tax Form , 
as indicated by the  include  relationship, represented by a stereotype. 
  A   stereotype   in UML is a way of extending UML. That is, if we need to defi ne a con-
struct that is not in UML, we can do it. Three stereotypes were presented in  Chapter 12 : 
boundary, control, and entity classes. In general, the names of stereotypes appear between 
  guillemets   [Wikipedia, 2010], for example,  «this is my own construct» . Accordingly, 
instead of using the special symbol for a boundary class, the standard rectangular symbol 
for a class could have been used with the notation  «boundary class»  inside the rectangle 
and similarly for control and entity classes. 
  The  include    relationship   shown in  Figure 17.12  is treated in UML as a stereotype; 
hence the notation  «include»  in that fi gure to denote common functionality, in this instance 
the use case  Print Tax Form  (Figure 11.41). Another relationship is the  extend  
  relationship  , where one use case is a variation of the standard use case. For example, we 
may wish to have a separate use case to model the situation of a diner ordering a burger but 
turning down the fries. The notation  «extend»  is similarly used for this purpose, as shown 
in  Figure 17.13 . However, for this relationship, the open-headed arrow goes in the other 
direction. 

 FIGURE 17.12    
The use cases 
 Prepare 
Form 1040 , 
 Prepare 
Form 1040A , 
and  Prepare 
Form 
1040EZ  
incorporate 
the use case 
 Print Tax 
Form . 

 FIGURE 17.13     Use case  Order a Burger  showing the variation when the customer turns 
down the fries. 

Tax Preparation
Software Product

Print Tax Form
«include»

Tax Preparer

«include»

«in
clu

de»

Prepare Form
1040

Prepare Form
1040A

Prepare Form
1040EZ

Frederick’s Fast Food

Order a Burger
«extend» Turn Down

the Fries

Server Customer
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    17.6 Interaction Diagrams  
   Interaction diagrams   show the way that the objects in the software product interact with 
one another. In  Chapter 13 , both types of interaction diagram supported by UML were 
presented: sequence diagrams and communication diagrams. 
  First, consider   sequence diagrams  . Suppose that someone interactively orders 
an item over the Internet, but when the overall total, including sales tax and delivery 
charges, is displayed, the buyer decides that the price is too high and cancels the order. 
 Figure 17.14  depicts the dynamic creation and subsequent dynamic destruction of the 
order. 

   1. Consider the lifelines in  Figure 17.14 . When an object is active, this is denoted by a thin 
rectangle (  activation box  ) in place of the dashed line. For example, the   : Price Class   

 FIGURE 17.14     
A sequence 
diagram 
showing 
dynamic 
creation and 
destruction of an 
object, return, 
and explicit 
activation. 

: User
Interface

Class

: Order
Class

: Price
Class

: Assemble
Order 
Control

Class
1: Give order
    details

2: Transfer details

3: Create order

7: Provide price
8: Display price

4: Return new
    order

5: Determine price of order

6: Return price

9: [price too high] Destroy order

Buyer
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object is active from message  5: Determine price of order  until message  6: Return 
price , and similarly for the other objects.  

  2. The   : Order Class   object is created only when the   : Assemble Order Control 
Class   sends message  3: Create order  to the   : Order Class   object. This is denoted by 
the lifeline starting at only the point of dynamic creation.  

  3.   Figure 17.14  also shows the destruction of the   : Order Class   object after the   : Order 
Class   object receives the message  9: [price too high] Destroy order . The destruction 
is denoted by the heavy    X   .  

  4. This destruction takes place after a return has taken place, denoted by the dashed hori-
zontal line below event 9, terminated by an open arrow. In the rest of the sequence 
diagram, each message is eventually followed by a message sent back to the object that 
sent the original message. In fact, this reciprocity is optional; it is perfectly valid to send 
a message without eventually receiving any sort of reply. Even if there is a reply, it is 
not necessary that a specifi c new message be sent back. Instead, a dashed line ending 
in an open arrow is drawn (a   return  ) to indicate a return from the original message, as 
opposed to a new message.  

  5. There is a guard on message  9: [price too high] Destroy order . That is, message 9 is 
sent only if the buyer decides not to purchase the item because the price is too high. A 
  guard   (condition) is something that is true or false; only if it is true is the message sent. 
In Section 17.7, guards are described within the context of statecharts, but here they are 
used in a sequence diagram.   

  (In  Figure 17.14 , the message  9: [price too high] Destroy order  should be sent from 
the    Buyer    to the   : User Interface Class   object, and the latter should then send a mes-
sage to the   : Assemble Order Control Class   object. Next, the   : Assemble Order 
Control Class   object should send a message to the   : Order Class   object, instructing 
it to destroy the order. To highlight dynamic destruction of an object, these details have 
been suppressed in  Figure 17.14 .) 
  Many other options are supported by UML interaction diagrams. For example, suppose 
we model an elevator going up. We do not know in advance which elevator button will be 
pressed, so we have no idea how many fl oors up the elevator will go. We model this itera-
tion by labeling the relevant message  *move up one fl oor,  as shown in  Figure 17.15 . The 
asterisk is, once again, the Kleene star (see Just in Case You Wanted to Know Box 17.1). So 
this message means, “move up zero or more fl oors.” 
  An object can send a message to itself. This is termed a   self-call  . For example, suppose 
that the elevator has arrived at a fl oor. The elevator controller sends a message to the eleva-
tor doors to open. Once the return has been received, the elevator controller sends a mes-
sage to itself to start its timer; this self-call is also shown in  Figure 17.15 . At the end of the 
time period, the elevator controller sends a message to the doors to close. When the second 
return has been received (that is, when the doors have been safely closed), the elevator is 
instructed to move again. 
  Turning now to   communication diagrams   (  collaboration diagrams   in earlier 
versions of UML), it was stated in Section 13.15.1 that communication diagrams are equiv-
alent to sequence diagrams. So, all the features of sequence diagrams presented in this 
section are equally applicable to communication diagrams, such as Figure 13.36.   
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  17.7 Statecharts  
 Consider the   statechart   of  Figure 17.16 . This is similar to the statechart of Figure 13.25, 
but modeled using guards instead of events. It shows the start state (the solid circle) with an 
unlabeled   transition   leading to state    MSG Foundation Event Loop   . Five transitions 
lead from that state, each with a guard, that is, a condition that is true or false. When one of 
the guards becomes true, the corresponding transition takes place. 
  An   event   also causes transitions between states. A common event is the receipt of a 
message. Consider  Figure 17.17 , which depicts a part of a statechart for an elevator. The 
elevator is in state    Elevator Moving   . It stays in motion, performing operation  Move up 
one fl oor , while guard  [no message received yet]  remains true, until it receives the mes-
sage  Elevator has arrived at fl oor.  The receipt of this message (event) causes the guard to 
be false and also enables a transition to state    Stopped At Floor   . In this state, the activity 
 Open the elevator doors  is performed. 
  So far, transition labels have been in the form of  [guard]  or  event . In fact, the most 
general form of a transition label is    

 event [guard] / action

     That is, if  event  has taken place and  [guard]  is true, then the transition occurs and, 
while it is occurring,  action  is performed. An example of such a transition label is shown 

 FIGURE 17.15     
A sequence 
diagram 
showing 
iteration and 
self-call. 

open doors

close doors

start timer

: Elevator
Controller : Elevator

: Elevator
Doors

*move up one floor

*move up one floor
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 FIGURE 17.16     A statechart for the MSG Foundation case study. 

in  Figure 17.18 , which is equivalent to  Figure 17.17 . The transition label is  Elevator has 
arrived at fl oor [a message has been received] / Open the elevator doors . The   guard   
 [a message has been received]  is true when the   event    Elevator has arrived at fl oor  has 
occurred and a message to this effect has been sent. The   action   to be taken, indicated by 
the instruction following the slash  / , is  Open the elevator doors.  
  Comparing  Figures 17.17  and  17.18 , we see that there are two places where an action 
can be performed in a statechart. First, as refl ected in state    Stopped At Floor    in 
 Figure 17.17 , an action can be performed when a state is entered. Such an action is called 
an   activity   in UML. Second, as shown in  Figure 17.18 , an action can take place as part 
of a transition. (Technically, there is a slight difference between an activity and an action. 

 FIGURE 17.17     
A portion of a 
statechart for 
an elevator. 
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An action is assumed to take place essentially instantaneously, but an activity may take 
place less quickly, perhaps over several seconds.) 
  UML supports a wide variety of different types of actions and events in statecharts. For 
instance, an event can be specifi ed in terms of words like  when  or  after . Therefore, an event 
might stipulate  when (cost > 1000)  or  after (2.5 seconds) . 
  A statechart with a large number of states tends to have a large number of transitions. The 
many arrows representing these transitions soon make the statechart look like a large bowl 
of spaghetti. One technique for dealing with this is to use a   superstate  . Consider the state-
chart of  Figure 17.19(a) . The four states    A  ,   B  ,   C   , and    D    all have transitions to    Next State   . 
 Figure 17.19(b)  shows how these four states can be combined into one superstate,    ABCD 
Combined   , which needs only one transition, as opposed to the four in  Figure 17.19(a) . 
This reduces the number of arrows from four to only one. At the same time, states    A  ,   B  ,   C   , 
and    D    still exist in their own right, so any existing actions associated with those states are not 
affected nor are any existing transitions into those states. Another example of a superstate is 
shown in  Figure 17.20 , where the four lower states of  Figure 17.16  are unifi ed into one super-
state,    MSG Foundation Combined   , leading to a cleaner and clearer diagram. 

    17.8 Activity Diagrams  
   Activity diagrams   show how various events are coordinated. They are therefore used 
when activities are carried out in parallel. 
  Suppose a couple seated at a restaurant orders their meal. One orders a chicken dish; 
the other orders fi sh. The waiter writes down their order and hands the order to the chef 
so that she knows what dishes to prepare. It does not matter which dish is completed fi rst 
because the meal is served only when both dishes have been prepared. This is shown in 

 FIGURE 17.18     A statechart equivalent 
to  Figure 17.17 . 

 FIGURE 17.19     Statechart (a) without 
and (b) with superstate. 
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 Figure 17.21 . The upper heavy horizontal line is called a   fork,   and the lower one is called 
a   join  . In general, a   fork   has one incoming transition and many outgoing transitions, each 
of which starts an activity to be executed in parallel with the other activities. Conversely, a 
  join   has many incoming transitions, each of which lead from an activity executed in paral-
lel with the other activities, and one outgoing transition that is started when all the parallel 
activities have been completed. 

 FIGURE 17.20      Figure 17.16  with four states combined into a superstate,   MSG Foundation Combined  . 

 FIGURE 17.21 
    An activity 
diagram for a 
restaurant order 
for two diners. 
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  Activity diagrams are useful for modeling businesses where a number of activities 
are carried out in parallel. For example, consider a company that assembles computers 
as specifi ed by the customer. As shown in the activity diagram of  Figure 17.22 , when an 
order is received, it is passed on to the    Assembly Department   . It is also passed to the 
   Accounts Receivable Department   . The order is complete when the computer has 
been assembled and delivered, and the customer’s payment has been processed. Each of the 
three departments involved, the    Assembly Department   , the    Order Department   , 
and the    Accounts Receivable Department   , is in its own   swimlane  . In general, the 
combination of forks, joins, and swimlanes shows clearly which branches of an organiza-
tion are involved in each specifi c activity, which tasks are carried on in parallel, and which 
tasks have to be completed in parallel before the next task can be started. 

    17.9 Packages 
  As explained in Section 14.9, the way to handle a large software product is to decompose it 
into relatively independent   packages  . The UML notation for a package is a rectangle with 
a name tag, as shown in  Figure 17.23 . This fi gure shows that  My Package  is a package, 
but the rectangle is empty. This is a valid UML diagram—the diagram simply models the 
fact that  My Package  is a package.  Figure 17.24  is more interesting—it shows the contents 

 FIGURE 17.22    
 An activity 
diagram for 
a computer 
assembly 
company. 
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of  My Package , including a class, an entity class, and another package. We can continue 
to supply more details until the package is at the appropriate level of detail for the current 
iteration and incrementation. 

    17.10 Component Diagrams  
 A   component diagram   shows dependencies among software components, including 
source code, compiled code, and executable load images. For example, the component 
diagram of  Figure 17.25  shows  source code  (represented by a note) and the  executable 
load image  created from the  source code . 

    17.11 Deployment Diagrams  
 A   deployment diagram   shows on which hardware component each software compo-
nent is installed (or deployed). It also shows the communication links among the hardware 
components. A simple deployment diagram is shown in  Figure 17.26 . 

 FIGURE 17.23     The 
UML notation for a 
package. 

 FIGURE 17.24     The 
package of  Figure 17.23  
with more details shown. 

 FIGURE 17.25     Component diagram. 
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 FIGURE 17.26     A deployment diagram. 
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    17.12 Review of UML Diagrams  
 A wide variety of different UML diagrams have been presented in this chapter. In the inter-
ests of clarity, here is a list of some of the diagram types that might be confused: 

   • A   use case   models the interaction between actors (external users of a software product) 
and the software product itself.  

  • A   use-case diagram   is a single diagram that incorporates a number of use cases.  
  • A   class diagram   is a model of the classes showing the static relationships among them, 

including association and generalization.  
  • A   statechart   shows states (specifi c values of attributes of objects), events that cause 

transitions between states (subject to guards), and actions and activities performed by 
objects. A statechart is therefore a dynamic model—it refl ects the behavior of objects, 
that is, the way they react to specifi c events.  

  • An   interaction diagram   (  sequence diagram   or   communication diagram  ) shows the way 
that objects interact with one another as messages are passed between them. This is 
another dynamic model; that is, it also shows how objects behave.  

  • An   activity diagram   shows how events that occur at the same time are coordinated. This 
is yet another dynamic model.     

  17.13 UML and Iteration  
 Consider a statechart. The transitions can be labeled with a guard, an event, an action, or all 
three. Now consider a sequence diagram. The lifelines may or may not include activation boxes, 
there may or may not be returns, and there may or may not be guards on the messages. 
  A wide range of options are available for every UML diagram. That is, a valid UML dia-
gram consists of a small required part plus any number of options. UML diagrams have so 
many options for two reasons. First, not every feature of UML is applicable to every software 
product, so there has to be freedom with regard to choice of options. Second, we cannot per-
form the iteration and incrementation of the Unifi ed Process unless we are permitted to add 
features stepwise to diagrams, rather than create the complete fi nal diagram at the beginning. 
That is, UML allows us to start with a basic diagram. We can then add optional features as we 
wish, bearing in mind that, at all times, the resulting UML diagram is still valid. This is one 
of the many reasons why UML is so well suited to the Unifi ed Process.    

   Chapter 
Review  
 It is explained in Section 17.1 that UML is a language, not a methodology. Class diagrams are described 

in Section 17.2. Specifi c aspects of class diagrams are discussed, including aggregation (Section 17.2.1), 
multiplicity (Section 17.2.2), composition (Section 17.2.3), generalization (Section 17.2.4), and asso-
ciation (Section 17.2.5). Next, a variety of UML diagrams are presented, including notes (Section 17.3), 
use-case diagrams (Section 17.4), stereotypes (Section 17.5), interaction diagrams (both sequence dia-
grams and communication diagrams; Section 17.6), statecharts (Section 17.7), activity diagrams (Sec-
tion 17.8), packages (Section 17.9), component diagrams (Section 17.10), and deployment diagrams 
(Section 17.11). The chapter concludes with a review of UML diagrams (Section 17.12) and a discus-
sion of why UML is so suitable for the Unifi ed Process (Section 17.13).  
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588  Part B  The  Workfl ows of the Software Life Cycle

  For 
Further 
Reading  

 There is no substitute for reading the current version of the UML manual, to be found at the OMG 
website,  www.omg.org . Two good introductory texts on UML are [Fowler and Scott, 2000] and 
[Stevens and Pooley, 2000].  
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  Problems      17.1 Is UML a methodology? Carefully explain your answer.  

   17.2 Use UML to model airports. (Hint: Do not show any more details than are strictly needed to 
answer the question.)  

   17.3 Use UML to model chocolate cakes. A chocolate cake is made with eggs, fl our, sugar, baking 
powder, milk, and cocoa. A chocolate cake is mixed, baked, frosted, and then eaten. To prevent 
unauthorized individuals from baking a chocolate cake, the ingredients are private, as are all 
but the last operation.  

   17.4  Add a note to your diagram of Problem 17.3 pointing out that the cake you modeled is a 
chocolate cake.  

   17.5  Use UML to model the following: Turn on the oven. Mix the ingredients for a chocolate cake. 
Mix the ingredients for an apple pie. Place the (raw) cake and pie in the oven. Remove the 
chocolate cake when it is done. Remove the apple pie when it is done. Turn off the oven.  

   17.6  How does your UML model of Problem 17.5 cope with the fact that we do not know, from the 
information given, which of the two items is removed from the oven fi rst?  

   17.7  Modify your model of Problem 17.6 to refl ect that the chocolate cake is prepared by the 
chocolate cake baker, the apple pie by the apple pie baker, and that the oven is switched on 
and off by the chief baker.  

   17.8  Model chocolate cakes and apple pies using one package.  

   17.9  Use UML to model dining rooms. Every dining room has to have a table, four or more chairs, 
and a sideboard. Optionally, it may also have a fi replace.  

   17.10  Model the dining rooms of Problem 17.9 using a combination of aggregation and 
composition.  

   17.11  Modify your UML model of Problem 17.9 to refl ect that a dining room is a specifi c type of 
room.  
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  17.12  Use UML to model John Cage’s somewhat controversial 1952 piano composition enti-
tled   4�33��  . The piece consists of three silent movements, of length 30 seconds, 2 minutes 
23 seconds, and 1 minute 40 seconds, respectively. (The title of the piece comes from its total 
length.) The pianist walks onto the stage holding a stopwatch and the score (in conventional 
music notation but with blank measures). The pianist sits down on the piano stool, puts the 
score and the stopwatch on the piano, opens the score, starts the stopwatch, and then signals 
the start of the fi rst movement by lowering the lid of the piano. At the end of the fi rst move-
ment (that is, after 30 seconds of silence during which the pianist carefully follows the blank 
score, turning the page when necessary), the lid of the piano is raised to signal the end of the 
fi rst movement. These actions are repeated for the second movement (2 minutes 23 seconds) 
and the third movement (1 minute 40 seconds). The pianist then closes the score, picks up the 
score and the stopwatch, gets up, and leaves the stage.    

     References   [Booch, Rumbaugh, and Jacobson, 1999] G. BOOCH, J. RUMBAUGH, AND I. JACOBSON,   The UML Users 
Guide  , Addison-Wesley, Reading, MA, 1999. 

 [Fowler and Scott, 2000] M. FOWLER WITH K. SCOTT, UML Distilled, 2nd ed., Addison-Wesley, Upper 
Saddle River, NJ, 2000. 

 [Stevens and Pooley, 2000] P. STEVENS WITH R. POOLEY,   Using UML: Software Engineering with 
Objects and Components  , updated edition, Addison-Wesley, Upper Saddle River, NJ, 2000.                               

[Wikipedia, 2010] WIKIPEDIA, “Guillemets,” en.wikipedia.org/wiki/Guillements, February 13, 2010.  
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 Chapter 18
Emerging 
Technologies 
   Learning Objectives 

 After studying this chapter, you should appreciate the importance of a variety of 
emerging technologies, including

   • Aspect-oriented technology  

  • Model-driven technology  

  • Component-based technology  

  • Service-oriented technology  

  • Social computing  

  • Web engineering  

  • Cloud technology  

  • Web 3.0  

  • Computer security  

  • Model checking      

  In what direction is software engineering moving? What are the technologies of the future? 
How will we develop and maintain software in the year 2020? Or the year 2050? 
  As explained in Just in Case You Wanted to Know Box 18.1, predicting the future is no easy 
task. In this chapter, we give an overview of a number of promising emerging technologies that 
may (or may not) be harbingers of the future direction of software engineering. The aim of this 
chapter is to give the fl avor of 10 emerging technologies, with the technical details suppressed. 
  The topics in this chapter are generally taught in graduate-level courses in software 
engineering. They are included in this textbook for the fi rst course in software engineering 
because it is important to have a basic understanding of these emerging technologies. 

590
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  Throughout this book we have carefully analyzed the strengths and weaknesses of the 
techniques we have presented. However, it is too soon to determine the strengths and weak-
nesses of the technologies presented in this chapter. 

  18.1 Aspect-Oriented Technology 
  A   concern   of a software product is a specifi c set of behaviors of that product. For example, 
in a banking product, one concern is the set of interest computations: Banks pay interest to 
depositors and charge interest to borrowers. A second concern is the writing of informa-
tion to the audit trail. A   core concern   of a software product is a primary set of behaviors 
of that product. In the banking example, interest computation is clearly primary, whereas 
writing to the audit trail, though absolutely essential from the viewpoints of auditing and 
security, is not a core banking concern. 
  As described in Section 5.4,   separation of concerns   [Dijkstra, 1982] is a principle 
underlying a technique for achieving modularization by designing software with each concern 
isolated in its own module or group of modules, thereby maximizing cohesion and minimiz-
ing coupling ( Chapter 7 ). However, it is sometimes impossible to achieve such a separation 
of concerns. In the banking example, interest computations can probably be isolated to one or 
more modules, but virtually every operation of the banking product has to write information 
to the audit trail.   Cross-cutting concerns   are concerns that cut across module boundaries, 
such as the audit trail concern in the banking product. Cross-cutting can have a deleterious 
effect on maintenance, because the presence of cross-cutting can lead to regression faults; if a 
concern has to be implemented in a variety of otherwise unrelated modules, a change to that 
concern has to be made consistently to all instances of the concern in all relevant modules. 
  When a part of a software product cross-cuts its core concerns, the principle of separation 
of concerns is violated. In the banking example, the code for writing to the audit trail will 
cross-cut many modules. This is illustrated in  Figure 18.1(a) , which shows three modules, each 
with one or more pieces of cross-cutting code for writing to the audit trail. A change to the 
audit trail mechanism requires all six pieces of audit trail code to be consistently changed. 
  The aim of   aspect-oriented programming (AOP)   is to isolate such cross-cutting 
aspects by letting the developer sequester cross-cutting concerns in special modules called 
  aspects  . Aspects contain   advice  , code that is to be linked to specifi c places in the software. 
An example of advice is an audit trail routine in the bank software. A   pointcut   is a place in the 
code where the cross-cutting concern is to be applied, that is, where the advice is to be executed. 
An aspect therefore consists of two pieces: the advice and its associated set of pointcuts. 

 Lawrence Peter “Yogi” Berra (born in 1925) achieved fame not only as a top baseball player 
and manager, but also for his witty comments, known as Yogiisms. A characteristic of a 
Yogiism is that, on fi rst hearing, it appears to be meaningless, but after some thought, it 
makes perfect sense. For example, his home in New Jersey was equally accessible via two 
different roads that branched off at a fork. So, when giving directions to his home, he would 
say: “When you come to a fork in the road, take it.” 
  Regarding the subject of this chapter, Berra declared: “It’s tough making predictions, 
especially about the future.” 

 Just in Case You Wanted to Know Box 18.1 
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592  Part B  The Workfl ows of the Software Life Cycle

  Separation of concerns can now be achieved by placing each cross-cutting concern into 
its own aspect, thereby isolating the relevant code (the advice) and reducing the risk of a 
regression fault. The pointcuts inserted into the product merely show where the specifi c 
advice is to be executed.  Figure 18.1(b)  shows how the six pieces of audit trail code of  Fig-
ure 18.1(a)  are replaced by an aspect (containing advice), and six pointcuts. Now, a change 
to the audit trail mechanism is localized to the aspect. 
  To employ aspect-oriented programming, an   aspect-oriented programming lan-
guage   is needed. A compiler for an aspect-oriented programming language is called 
a   weaver  . A major task of a weaver is to insert the relevant advice at each pointcut 
before compiling the code; this operation is termed   composition  . That is, development 
and maintenance are performed on the uncompiled source code, including its aspects 
and pointcuts; separation of concerns is thereby achieved. Before the code can be com-
piled and executed, the weaver composes the code by inserting the cross-cutting code 
into the correct places. Returning to  Figure 18.1 , once composition has been applied to 
 Figure 18.1(b) , it becomes  Figure 18.1(a) . However, the composed code is rarely, if ever, 
inspected by the programmer. That is, programmers work on software that resembles 
 Figure 18.1(b) , not  Figure 18.1(a) . 

Audit trail code

Audit trail code

Audit trail code
Audit trail code

Audit trail code

Audit trail code

(a)

(b)

Aspect

Advice
X

Pointcut

X

X

X

Pointcut

X

X

 FIGURE 18.1      Banking product with cross-cutting concern. (a) Conventional design (b) Aspect-oriented design. 
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  The most popular aspect-oriented programming language is AspectJ, an aspect-oriented 
extension for Java [Kiczales et al., 2001; Laddad, 2003]. Aspect-oriented implementations 
have been developed for a wide variety of programming languages, including C++ and C#, 
and even for COBOL [Cobble, 2004]. 
  Aspect-oriented programming is one part of   aspect-oriented software develop-
ment (AOSD  ), also called   early aspects  . A primary aim of AOSD is the early identifi ca-
tion of both functional and nonfunctional cross-cutting concerns such as writing to audit 
trails, security, error checking, and real-time constraints. Once the cross-cutting concerns 
have been identifi ed, they are specifi ed (aspect-oriented analysis), modularized (aspect-
oriented design), and coded (aspect-oriented implementation). 
  Aspect-oriented programming has been used in a number of commercial applications, 
including IBM Websphere (Section 8.5.2), and in open-source software such as JBoss, a 
Java application server.   

  18.2 Model-Driven Technology 
  In Section 8.6.5, the problem of porting a widget generator from one architecture to another 
was solved by using the   abstract factory   design pattern. That is, the widget generator was 
designed as an abstract class, and then implemented in terms of concrete classes, one for 
each target architecture. This solution is at the design level. 
  The   model-driven architecture (MDA)   [MDA, 2008] solves the problem of moving 
a software product to a new platform at the analysis level rather than at the design level. 

   1. As shown in  Figure 18.2 , the functionality of the desired software product is specifi ed 
by means of a platform-independent model (PIM). This is done using UML, or an ap-
propriate domain-specifi c language, that is, a special-purpose language for the specifi c 
problem domain.  

  2. A platform-specifi c model (PSM) is chosen, for example, CORBA, .NET, or J2EE, and 
the PIM is mapped into the selected PSM. The PSM is expressed in UML.  

  3. The PSM is translated into code, using an automatic code generator, and run on a 
computer.  

  4. If multiple platforms are required, steps 2 and 3 are repeated for each PSM.   

  In other words, as can be seen in  Figure 18.2 , MDA totally decouples the functionality 
of a software product from the implementation of that software product, and thereby pro-
vides a powerful mechanism for achieving portability (Section 8.13). 

Platform-
Specific
Model
(PSM)

Code

Implementation

Platform-
Independent

Model
(PIM)

Functionality

Map Generate

 FIGURE 18.2   
 Model-driven 
architecture. 
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  Patterns play an important role in MDA-based software products. The PIM has to incor-
porate suffi cient detail to enable the mapping into the PSM to take place. This detail could 
be supplied manually each time, but it is clearly preferable to supply these details via 
patterns (“archetype patterns” [Arlow and Neustadt, 2004]). Furthermore, as explained 
in Section 8.8, once a design pattern has been implemented, that implementation can be 
reused when the pattern is reused. Similarly, in the case of MDA-based software, the map-
ping of an archetype pattern within the PIM into the PSM may already have been done. 
  The key to MDA is that this approach raises the level of abstraction from the platform-
dependent code level to the platform-independent model level. A current research topic in 
MDA is how to construct the necessary CASE tools to automate the approach. If the CASE 
tools can indeed be built, then this will allow software engineers to develop software at 
the model level. The modeling language of the PIM (a domain-specifi c language or UML) 
will then be the lowest level of abstraction for software development and maintenance. The 
PSM and the code will be automatically generated, and will be as “invisible” to the soft-
ware engineer of the future as machine code usually is today.   

  18.3 Component-Based Technology 
  The goal of   component-based technology   is to construct a standard collection of 
reusable components. Then, instead of reinventing the wheel each time, in the future all 
software will be constructed by choosing a standard architecture and standard reusable 
frameworks and inserting standard reusable code artifacts into the hot spots of the frame-
works (see  Chapter 8 ). That is, software products will be built by   composing   reusable 
components. This will be done using an automated tool. That is, production automation is 
a key aspect of component-based software engineering. 
  For this technology to work, the components have to be independent, that is, fully encap-
sulated (Section 7.4). In fact, the components have to be at a higher level of abstraction 
than objects, because they cannot share state. Like objects, however, they communicate by 
exchanging messages. 
  In  Chapter 8 , the many advantages that accrue through the reuse of code artifacts, design 
patterns, and software architectures are described. Hence, achieving component-based 
software engineering would lead to order-of-magnitude increases in software productivity 
and quality, and decreases in time to market and maintenance effort. 
  Unfortunately, the state of the art with regard to reuse is currently far from this ambitious 
target. In addition, component-based software construction has many challenges, including 
the defi nition, standardization, and retrieval of components. However, researchers in many 
centers are actively engaged in trying to achieve the goal of component-based software 
engineering.   

  18.4 Service-Oriented Technology 
  One way to create a document on a computer is for the user to install a copy of Microsoft 
Word on the user’s computer, and then use Microsoft Word to create the document on that 
computer. Another alternative is for the user to open a Web browser (Section 5.8) and cre-
ate the document using Google Docs. In this case, the word-processing software stays on 
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the Google computer. (The document also resides on the Google computer, but a copy can 
be downloaded to the user’s computer, for additional security.) 
  Docs is a   service   provided by Google for the user. The American Heritage Dictio-
nary defi nes a   service   as “An act or a variety of work done for others . . .” [Service, 2000]. 
In other words, with service-oriented technology, capabilities are provided by   service 
providers   over a network (frequently the Internet) to meet specifi c needs of   service 
consumers  .   

  18.5  Comparison of Service-Oriented and Component-
Based Technology 

  Service-oriented technology has many features in common with component-based 
technology: 

   • First, both are instances of distributed computing; services and components are both 
distributed over a network.  

  • Second, both are primarily reuse technologies. In the case of service-oriented technol-
ogy, the service consumers reuse the services of the service providers. And the basis 
for component-based technology is the standard collection of reusable components, 
together with standard architectures and standard reusable frameworks.  

  • Third, encapsulation is essential for both technologies, to ensure that the components 
and the services are indeed independent (and hence reusable).  

  • Fourth, both components and services are accessed through their interfaces; careful 
adherence to interface specifi cations is of major importance.  

  • Fifth, both components and services must have the highest possible cohesion and the 
lowest possible coupling, to ensure reusability via separation of concerns.  

  • Sixth, both technologies have low entry costs. With service-oriented technology, service 
consumers pay for the   use   of services, on a pay-per-use basis or monthly subscription; 
they do not need to purchase the service itself. (Some services, such as Google Docs, 
are free.) With component-based technology, users compose their own software from 
standard components; they do not have to pay to have custom software built.  

  • Seventh, there is no need to install software, confi gure it, and then continually update 
it with each new release. Instead, the latest version of software is automatically 
downloaded each time. These ideas are extended in Just in Case You Wanted to Know 
Box 18.2.   

   • Eighth, both technologies are generally geographic location independent. Components 
and services are usually accessible over the Web and can be accessed ubiquitously using 
any appropriate device.   

  A major difference between the two technologies is granularity. Component-based 
technology constructs a software product by combining components into an executable 
program, whereas service-oriented technology utilizes existing executable programs. In 
other words, the basic building blocks of component-based technology are components, 
whereas the basic building blocks of service-oriented technology are complete executable 
programs. 
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  A second difference is that, although both component-based technology and service-
oriented technology are emerging technologies, early versions of service-oriented tech-
nology are already being used today by a wide variety of service consumers, whereas 
component-based technology still requires breakthrough research before it can be used 
in practice.   

  18.6 Social Computing 
  The term   social computing   is used in two different contexts. First, it is used in the con-
text of the ways in which computers support social behavior. This includes chat rooms, 
instant messaging, e-mail, blogs, and shared work spaces like wikis. Popular sites that 
allow users to interact and share data include personal profi le sites like MySpace and Face-
book, networking sites like LinkedIn, media sites like Flickr (for sharing photographs) and 
YouTube (for sharing videos), and many others. In this usage, the term   social computing   
does not refer to the underlying technologies as such, but rather to the social interactions 
and structure brought about and supported by those technologies. 
  In other words, this usage of the term focuses on the “social” rather than the “comput-
ing.” For example, consider Wikipedia from this perspective. The underlying wiki tech-
nology itself is not of interest. Instead, social computing here focuses on the community 
that has grown around the online encyclopedia and the interactions between the members 
of that community. Disputes between contributors, fraudulent user credentials, deliberate 
misstatements of facts in postings are all relevant here, as is the overall high standard of 
the articles. 
  Second, the term   social computing   is used in the context of group computations. Exam-
ples include online auctions, multiplayer online games, and collaborative fi ltering (analysis 
of large data sets to extract information like “Individuals who bought Book A also bought 
Book B,” to make purchase suggestions to online shoppers). Here the emphasis is on the 
“computing” rather than the “social.” This usage, unlike the fi rst, therefore relates to an 
emerging technology.   

  18.7 Web Engineering 
  As stated at the beginning of  Chapter 1 , software engineering is a discipline whose aim 
is the production of fault-free software delivered on time, within budget, and satisfying 
the user’s needs. Analogously, Web engineering is a discipline whose aim is the produc-
tion of fault-free Web software delivered on time, within budget, and satisfying the 
user’s needs. 
  Web software is a subset of software in general. Accordingly, Web engineering is techni-
cally a subset of software engineering. However, proponents of Web engineering point out 

 In 1999, Salesforce.com, Inc., was the fi rst company to provide major business applications 
as a service. The company’s slogan is “No software!” This catchphrase implies that service-
oriented computing obviates the problems that organizations face when they install their 
own software. 

 Just in Case You Wanted to Know Box 18.2 
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that Web software has characteristics of its own, and the Web engineering should therefore 
be considered a separate discipline. Characteristics of Web software include: 

   • Unstable requirements. The moving target problem (Section 2.4) tends to be more acute 
in the case of Web software, because there are three moving targets: the members of the 
community of users, the experience level of the users, and Web technology. Accordingly, 
the requirements of Web software tend to change rapidly.  

  • Wide range of user skills. The skill set of a Web user can range from total beginner to 
expert. This can have major implications for the design of the human–computer interface.  

  • No opportunity to train users. When a new software product is installed in an organi-
zation, management can require every employee who is to use the product to undergo 
appropriate training. This is not possible with Web applications. At best, a help menu 
can be provided.  

  • Varied content. The website of an online retailer can contain text, graphics, audio, and 
video. Furthermore, these elements may be integrated with the all-important sales func-
tionality of the website. This can drastically affect response times.  

  • Exceedingly short maintenance turnaround times. The time between releases of new 
versions of commercial software is typically six months or a year. In contrast, Web soft-
ware can be updated as often as daily. Furthermore, updating can often be performed in 
the background, that is, seamlessly to the user.  

  • The human–user interface is of prime importance. As pointed out in Section 11.14, a 
poorly designed human–computer interface for a software product can lead to increased 
learning times and higher error rates. In the case of Web software, a poorly designed 
human–computer interface can lead to the site in question being ignored by users, with 
severe fi nancial consequences for the owner of the website.  

  • Diverse run-time environments. It should be possible to successfully access a given 
Web page using any of the many popular Web browsers. These browsers run on differ-
ent hardware (including the PC and the Macintosh) under different operating systems 
(Linux, Mac OS X, Windows, and so on). Web software must be compatible with all 
these combinations of browsers, hardware, and operating systems.  

  • Privacy and security requirements are usually stringent. When a hacker breaks into an 
online database containing unencrypted credit card data, millions of credit card holders 
can be exposed to identity theft.  

  • Accessibility through multiple devices. The Web can be accessed via computer, cell phone, 
PDA, and so on. Web software must take this multiplicity of devices into account.   

  In fact, some researchers feel that Web technology is so different from computer tech-
nology that they have put forward a new discipline, Web science, analogous to computer 
science [Berners-Lee et al., 2006a; Berners-Lee et al., 2006b].   

  18.8 Cloud Technology 
  The Internet is sometimes referred to as   The Cloud  . The term comes from extending the 
term   iCloud   (information cloud) [Heinemann, Kangasharju, Lyardet, and Mühlhäuser, 
2003], the communication range of a mobile device, to the Internet [Vander Wal, 2004]. 
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  Cloud technology is a synonym for Internet-based technology. Specifi c to cloud com-
puting is the idea that the users are not expected to have any knowledge of the underlying 
infrastructure; the metaphor is that users are operating “in a cloud.”   

  18.9 Web 3.0 
  The World Wide Web (or Web for short) is a collection of hypertext documents. In contrast, 
Web 2.0 is a term that refers to the technology that individuals now use when they make use 
of the Web. Accordingly, it would be incorrect to describe Web 2.0 as “emerging technol-
ogy,” the subject of this chapter. 
  On the other hand, Web 3.0 (or the Semantic Web) is indeed an emerging technology. 
The term refers to ways that the Web will be used in the future. Many excellent suggestions 
have been put forward. Following the advice in Just in Case You Wanted to Know Box 18.1, 
we will just have to wait and see which of those suggestions, if any, will in fact eventuate.   

  18.10 Computer Security 
  Computer security is a fi eld in its own right; it is not a branch of software engineering. 
Nevertheless, there are aspects of computer security that are also of concern to software 
engineers. In fact, all the new technologies in this chapter have security aspects. 
  One important area of overlap between software engineering and computer security is 
human factors (Section 11.14), because users are generally more interested in the features 
of a software product than in security issues. As a result of the statement made by McGraw 
and Felten [1999], “Given a choice between dancing pigs and security, users will pick danc-
ing pigs every time,” the lack of attention to security issues among all-too-many users has 
become known as the   dancing pigs problem  . 
  Ironically, a scientifi c study of phishing (a criminal attempt to obtain confi dential informa-
tion by falsely pretending to be a legitimate website) found that people really do prefer dancing 
animals to security [Dhamija, Tygar, and Hearst, 2006]. Participants were shown a fraudulent 
Web page for Bank of the West, whose logo is a bear. At the top of the page there was a video 
of a bear swimming. The researchers found that the “cute” design was one of the factors that 
convinced them that the page was real. In fact, the animated bear video was so appealing that 
many participants reloaded the fraudulent page just to see the animation again. 
  The design of human interfaces has to take into account that many users simply do not 
care about security. Accordingly, security has to be built into a software product, rather 
than offered as an option. This is a hard problem. After all, at the time of writing there are 
no comprehensive solutions to the problems of spam e-mail or phishing. Nevertheless, it is 
essential that, in the near future, software engineers and security specialists undertake joint 
research to tackle the many serious problems common to both fi elds.   

  18.11 Model Checking 
  The 2007 ACM Turing Award (sometimes called the “Nobel Prize for Computer Science”) 
was awarded to Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis for developing 
model checking. Model checking is a testing technology for hardware that is starting to be 
applied to software. 
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  As discussed in Section 6.5.3, correctness proving is still somewhat problematic. 
What is needed is an alternative to a human having to construct a proof. Certain soft-
ware products, such as operating systems, are designed to run forever. Temporal logic 
(Section 6.5.3) is a good way to model these software products. So, we specify a soft-
ware product using temporal logic, and then realize that software product as a fi nite 
state machine (Section 12.7). As discussed in Section 12.7, the properties of a fi nite 
state machine can be determined. Accordingly, the idea behind model checking is fi rst 
to check whether a given fi nite state machine is a model of a temporal logic specifi ca-
tion, and then to determine the properties of that fi nite state machine. In this way, we can 
mathematically show that a software product is correct without explicitly constructing a 
proof of correctness.   

  18.12 Present and Future 
  This chapter contains an outline of 10 emerging technologies. At the time of writing, all 
are promising, all have the potential to become mainstream technologies. But, as Yogi 
Berra has stated (in Just in Case You Wanted to Know Box 18.1), “It’s tough making pre-
dictions, especially about the future.” So, only in the future will we know what the future 
will bring.    

  An outline is given of aspect-oriented technology, model-driven technology, component-based 
technology, and service-oriented technology in Sections 18.1 through 18.4, respectively. In Sec-
tion 18.5, a comparison is made between service-oriented and component-based technology. Social 
computing is described in Section 18.6, and Web engineering in Section 18.7. The subject of Sec-
tion 18.8 is cloud technology. Web 3.0 is described in Section 18.9. Computer security is outlined 
in Section 18.10, and model checking in Section 18.11. The future of these technologies is dis-
cussed in Section 18.12.  

   Chapter 
Review 

  The material in this chapter is changing at an ever-increasing rate. Any references cited here will be out 
of date by the time this book has appeared in print. Wikipedia, on the other hand, is constantly being 
updated, and should be utilized as a pointer to current articles on the topics of this chapter.  

  For 
Further 
Reading 
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A 
Term Project: 
Chocoholics 
Anonymous 

  Chocoholics Anonymous (ChocAn) is an organization dedicated to helping people addicted 
to chocolate in all its glorious forms. Members pay a monthly fee to ChocAn. For this fee 
they are entitled to unlimited consultations and treatments with health care professionals, 
namely, dietitians, internists, and exercise experts. Every member is given a plastic card 
embossed with the member’s name and a nine-digit member number and incorporating 
a magnetic strip on which that information is encoded. Each health care professional 
(  provider  ) who provides services to ChocAn members has a specially designed ChocAn 
computer terminal, similar to a credit card device in a shop. When a provider’s terminal is 
switched on, the provider is asked to enter his or her provider number. 
  To receive health care services from ChocAn, the member hands his or her card to the 
provider, who slides the card through the card reader on the terminal. The terminal then 
dials the ChocAn Data Center, and the ChocAn Data Center computer verifi es the member 
number. If the number is valid, the word Validated appears on the one-line display. If the 
number is not valid, the reason is displayed, such as Invalid number or Member sus-
pended; the latter message indicates that fees are owed (that is, the member has not paid 
membership fees for at least a month) and member status has been set to suspended. 
  To bill ChocAn after a health care service has been provided to the member, the provider 
again passes the card through the card reader or keys in the member number. When the word 
Validated appears, the provider keys in the date the service was provided in the format 
MM–DD–YYYY. The date of service is needed because hardware or other diffi culties may 
have prevented the provider from billing ChocAn immediately after providing the service. 
Next, the provider uses the Provider Directory to look up the appropriate six-digit service 
code corresponding to the service provided. For example, 598470 is the code for a session 
with a dietitian, whereas 883948 is the code for an aerobics exercise session. The provider 
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then keys in the service code. To check that the service code has been correctly looked up 
and keyed in, the software product then displays the name of the service corresponding to 
the code (up to 20 characters) and asks the provider to verify that this is indeed the ser-
vice that was provided. If the provider has entered a nonexistent code, an error message is 
printed. The provider also can enter comments about the service provided. 
  The software product now writes a record to disk that includes the following fi elds:

   Current date and time (MM–DD–YYYY HH:MM:SS).  
  Date service was provided (MM–DD–YYYY).  
  Provider number (9 digits).  
  Member number (9 digits).  
  Service code (6 digits).  
  Comments (100 characters) (optional).    

  The software product next looks up the fee to be paid for that service and displays it on 
the provider’s terminal. For verifi cation purposes, the provider has a form on which to enter 
the current date and time, the date the service was provided, member name and number, 
service code, and fee to be paid. At the end of the week, the provider totals the fees to verify 
the amount to be paid to that provider by ChocAn for that week. 
  At any time, a provider can request the software product for a Provider Directory, an 
alphabetically ordered list of service names and corresponding service codes and fees. The 
Provider Directory is sent to the provider as an e-mail attachment. 
  At midnight on Friday, the main accounting procedure is run at the ChocAn Data Center. 
It reads the week’s fi le of services provided and prints a number of reports. Each report also 
can be run individually at the request of a ChocAn manager at any time during the week. 
  Each member who has consulted a ChocAn provider during that week receives a list of 
services provided to that member, sorted in order of service date. The report, which is also 
sent as an e-mail attachment, includes:

   Member name (25 characters).  
  Member number (9 digits).  
  Member street address (25 characters).  
  Member city (14 characters).  
  Member state (2 letters).  
  Member ZIP code (5 digits).  
  For each service provided, the following details are required:  
   Date of service (MM–DD–YYYY).  
   Provider name (25 characters).  
   Service name (20 characters).    

  Each provider who has billed ChocAn during that week receives a report, sent as an 
e-mail attachment, containing the list of services he or she provided to ChocAn members. 
To simplify the task of verifi cation, the report contains the same information as that entered 
on the provider’s form, in the order that the data were received by the computer. At the end 
of the report is a summary including the number of consultations with members and the 
total fee for that week. That is, the fi elds of the report include:
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   Provider name (25 characters).  
  Provider number (9 digits).  
  Provider street address (25 characters).  
  Provider city (14 characters).  
  Provider state (2 letters).  
  Provider ZIP code (5 digits).  
  For each service provided, the following details are required:  
   Date of service (MM–DD–YYYY).  
   Date and time data were received by the computer (MM–DD–YYYY HH:MM:SS).  
   Member name (25 characters).  

   Member number (9 digits).  
   Service code (6 digits).  

   Fee to be paid (up to $999.99).  
  Total number of consultations with members (3 digits).  

  Total fee for week (up to $99,999.99).    

  A record consisting of electronic funds transfer (EFT) data is then written to a disk; 
banking computers will later ensure that each provider’s bank account is credited with the 
appropriate amount. 
  A summary report is given to the manager for accounts payable. The report lists every 
provider to be paid that week, the number of consultations each had, and his or her total 
fee for that week. Finally, the total number of providers who provided services, the total 
number of consultations, and the overall fee total are printed. 
  During the day, the software at the ChocAn Data Center is run in interactive mode to 
allow operators to add new members to ChocAn, to delete members who have resigned, and 
to update member records. Similarly, provider records are added, deleted, and updated. 
  The processing of payments of ChocAn membership fees has been contracted out to 
Acme Accounting Services, a third-party organization. Acme is responsible for fi nancial 
procedures such as recording payments of membership fees, suspending members whose 
fees are overdue, and reinstating suspended members who have now paid what is owing. 
The Acme computer updates the relevant ChocAn Data Center computer membership 
records each evening at 9 P.M. 
  Your organization has been awarded the contract to write only the ChocAn data process-
ing software; another organization will be responsible for the communications software, 
for designing the ChocAn provider’s terminal, for the software needed by Acme Account-
ing Services, and for implementing the EFT component. The contract states that, at the 
acceptance test, the data from a provider’s terminal must be simulated by keyboard input 
and data to be transmitted to a provider’s terminal display must appear on the screen. A 
manager’s terminal must be simulated by the same keyboard and screen. Each member 
report must be written to its own fi le; the name of the fi le should begin with the member 
name, followed by the date of the report. The provider reports should be handled the same 
way. The Provider Directory must also be created as a fi le. None of the fi les should actually 
be sent as e-mail attachments. As for the EFT data, all that is required is that a fi le be set up 
containing the provider name, provider number, and the amount to be transferred.  
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B
Software 
Engineering 
Resources 

  There are two good ways to get more information on software engineering topics: by read-
ing journals and conference proceedings, and via the Internet and World Wide Web. 
  Journals dedicated exclusively to software engineering are available, such as   IEEE 
Transactions on Software Engineering  , as well as journals of a more general nature, 
such as   Communications of the ACM  , in which signifi cant articles on software engineer-
ing are published. For reasons of space, only a selection of journals of both classes fol-
lows. The journals have been chosen on a subjective basis, those I currently fi nd to be 
the most useful. 

     ACM Computing Reviews    
    ACM Computing Surveys    
    ACM SIGSOFT Software Engineering Notes    
    ACM Transactions on Computer Systems    
    ACM Transactions on Programming Languages and Systems    
    ACM Transactions on Software Engineering and Methodology    
    Communications of the ACM    
    Computer Journal    
    Empirical Software Engineering    
    IBM Systems Journal    
    IEEE Computer    
    IEEE Software    
    IEEE Transactions on Software Engineering    
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    Journal of Systems and Software    
    Software Engineering Journal    
    Software—Practice and Experience    
    Software Quality Journal     

  In addition, proceedings of many conferences contain important articles on software engi-
neering topics. Again, a subjective selection follows. Most of the conferences are referred to 
by their acronym or name of sponsoring organization; these appear in parentheses. 

     ACM SIGPLAN Annual Conference (SIGPLAN)    
    ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE)    
    Conference on Human Factors in Computing Systems (CHI)    
    Conference on Object-Oriented Programming Systems, Languages, and Applications 
(OOPSLA)    
    International Computer Software and Applications Conference (COMPSAC)    
    International Conference on Software Engineering (ICSE)    
    International Conference on Software Maintenance (ICSM)    
    International Conference on Software Reuse (ICSR)    
    International Conference on the Software Process (ICSP)    
    International Software Architecture Workshop (ISAW)    
    International Symposium on Software Testing and Analysis (ISSTA)    
    International Workshop on Software Confi guration Management (SCM)    
    International Workshop on Software Specifi cation and Design (IWSSD)     

  The Internet is another valuable source of information on software engineering. With 
regard to Usenet news groups, the following two have been consistently useful to me:

   comp.object  
  comp.software-eng    

  Other newsgroups that sometimes have items that I fi nd relevant include the following:

   comp.lang.c++.moderated  
  comp.lang.java.programmer  
  comp.risks  
  comp.software.confi g-mgmt     
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Requirements 
Workfl ow: The MSG 
Foundation Case 
Study 

  The requirements workfl ow for the MSG Foundation case study appears in Chapter 10.  

 Appendix 

632

sch76183_appC_632.indd   632sch76183_appC_632.indd   632 07/06/10   11:54 AM07/06/10   11:54 AM



633

D
Structured Systems 
Analysis: The MSG 
Foundation Case 
Study 

      Step 1. Draw the Data Flow Diagram   See Figure 12.9.  
    Step 2. Decide What Sections to Computerize and How   Computerize the 
complete pilot project online. However, if the weekly computation regarding availability of 
funds to purchase homes turns out to be time consuming, it may be better to perform it the 
night before it is required.  
    Step 3. Put in the Details of the Data Flows   

   investment_details 
    investment_number (12 characters)  
   investment_name (25 characters)  
   expected_return (9 + 2 digits)  
   date_expected_return_updated (8 characters)    

  mortgage_details 
    mortgage_number (12 characters)  
   mortgage_name (21 characters)  
   price (6 + 2 digits)  
   date_mortgage_issued (8 characters)  
   weekly_income (6 + 2 digits)  
   date_weekly_income_was_updated (8 characters)  
   annual_property_tax (5 + 2 digits)  

 Appendix 
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   annual_insurance_premium (5 + 2 digits)  
   mortgage_balance (6 + 2 digits)  

  available_funds_for_week (9 + 2 digits)  

  annual_operating_expenses (9 + 2 digits)  

  update_request (1 character)      

    Step 4. Defi ne the Logic of the Processes   

   compute_availability_of_funds_and_generate_funds_report  
     Determine the expected income for the week by adding the expected_return of 

each investment in INVESTMENT_DATA.  
     Determine the expected mortgage payments for the week by adding the expected 

mortgage payment of each mortgage in MORTGAGE_DATA.  
     Determine the expected grants for the week by adding the expected grant for each 

mortgage in MORTGAGE_DATA.  
     Compute available_funds_for_week � 
    expected income for the week 
    � annual_operating_expenses / 52 
    � expected mortgage payments for the week 
    � expected grants for the week  
    Display/print available_funds_for_week  

  generate_listing_of_investments  
    For each investment in INVESTMENT_DATA  
     Print investment_details  

  generate_listing_of_mortgages  
    For each mortgage in MORTGAGE_DATA  
     Print mortgage_details  

  perform_selected_update  
     Use the value of update_request to determine whether MORTGAGE_DATA, 

 INVESTMENT_DATA, or EXPENSES_DATA are to be updated.  
    Perform the update.    

    Step 5. Defi ne the Data Stores   

   EXPENSES_DATA  
  annual_operating_expenses [defi ned in Step 3]  

  INVESTMENT_DATA  
  investment_details [defi ned in Step 3]  

  MORTGAGE_DATA  
  mortgage_details [defi ned in Step 3]   

 All fi les are sequential, and hence there is no DIAD.  
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    Step 6. Defi ne the Physical Resources   

   EXPENSES DATA 
     Sequential fi le  
    Stored on disk    

  INVESTMENT DATA 
     Sequential fi le  
    Stored on disk    

  MORTGAGE DATA 
     Sequential fi le  
    Stored on disk      

    Step 7. Determine the Input/Output Specifi cations   Input screens are 
designed for the following processes:

   update_investment, update_mortgage, update_annual_operating_expenses, 
compute_availability_of_funds_and_generate_funds_report  

   The following reports are displayed:  

  list_of_investments, list_of_mortgages, available_funds_for_week    

  The screens and reports of the rapid prototype will be used as a basis for the preceding. 
The exact format of all screens and reports is subject to approval by the MSG Foundation.  

    Step 8. Perform Sizing   Approximately 4 megabytes of storage are needed for the 
software. Each investment object requires approximately 50 bytes of storage. Each mort-
gage object requires approximately 90 bytes of storage. The storage requirements can be 
computed on the basis of the number of investments and mortgages owned by the MSG 
Foundation.  

    Step 9. Determine the Hardware Requirements  

  Desktop computer with hard disk, running Linux. 
     Zip drive for backups.  
    Laser printer for printing reports.      
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  The analysis workfl ow is presented in Chapter 12.   

E
Analysis Workfl ow: 
The MSG Foundation 
Case Study 
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  AppendixF
Software Project 
Management Plan: 
The MSG Foundation 
Case Study 

  The plan presented here is for development of the MSG product by a small software organiza-
tion consisting of three individuals: Almaviva, the owner of the company, and two software 
engineers, Bartolo and Cherubini. 

     1 Overview.    

    1.1 Project Summary.    

    1.1.1 Purpose, Scope, and Objectives.   The objective of this project is to develop a software 
product that will assist the Martha Stockton Greengage (MSG) Foundation in making deci-
sions regarding home mortgages for married couples. The product will allow the client to add, 
modify, and delete information regarding the Foundation’s investments, operating expenses, and 
individual mortgage information. The product will perform the required calculations in these 
areas and produce reports listing investments, mortgages, and weekly operating expenses.  

    1.1.2 Assumptions and Constraints.   Constraints include the following: 

   The deadline must be met.  
  The budget constraint must be met.  
  The product must be reliable.  
  The architecture must be open so that additional functionality may be added later.  
  The product must be user-friendly.  
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      1.1.3 Project Deliverables.   The complete product, including user manual, will be deliv-
ered 10 weeks after the project commences.  

    1.1.4 Schedule and Budget Summary.   The duration, personnel requirements, and bud-
get of each workfl ow are as follows: 

   Requirements workfl ow (1 week, two team members, $3740)  
  Analysis workfl ow (2 weeks, two team members, $7480)  
  Design workfl ow (2 weeks, two team members, $7480)  
  Implementation workfl ow (3 weeks, three team members, $16,830)  
  Testing workfl ow (2 weeks, three team members, $11,220)  

   The total development time is 10 weeks, and the total internal cost is $46,750.  

    1.2 Evolution of the Project Management Plan.   All changes in the project management 
plan must be agreed to by Almaviva before they are implemented. All changes should be 
documented to keep the project management plan correct and up to date.  

    2 Reference Materials.   All artifacts will conform to the company’s programming, docu-
mentation, and testing standards.  

    3 Defi nitions and Acronyms.     MSG—Martha Stockton Greengage; the MSG Foundation 
is our client.  

    4 Project Organization.    

    4.1 External Interfaces.   All the work on this project will be performed by Almaviva, 
Bartolo, and Cherubini. Almaviva will meet weekly with the client to report progress and 
discuss possible changes and modifi cations.  

    4.2 Internal Structure.   The development team consists of Almaviva (owner), Bartolo, 
and Cherubini.  

    4.3 Roles and Responsibilities  . Bartolo and Cherubini will perform the design workfl ow. 
Almaviva will implement the class defi nitions and report artifacts, Bartolo will construct 
the artifacts to handle investments and operating expenses, and Cherubini will develop the 
artifacts that handle mortgages. Each member is responsible for the quality of the artifacts 
he or she produces. Almaviva will oversee integration and the overall quality of the soft-
ware product and will liaise with the client.  

    5 Managerial Process Plans.    

    5.1 Start-up Plan.    

    5.1.1 Estimation Plan.   As previously stated, the total development time is estimated to 
be 10 weeks and the total internal cost to be $46,750. These fi gures were obtained by expert 
judgment by analogy, that is, by comparison with similar projects.  

    5.1.2 Staffi ng Plan.   Almaviva is needed for the entire 10 weeks, for the fi rst 5 weeks 
in only a managerial capacity and the second 5 weeks as both manager and programmer. 
Bartolo and Cherubini are needed for the entire 10 weeks, for the fi rst 5 weeks as systems 
analysts and designers, and for the second 5 weeks as programmers and testers.  
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    5.1.3 Resource Acquisition Plan.   All necessary hardware, software, and CASE tools for 
the project are already available. The product will be delivered to the MSG Foundation 
installed on a desktop computer that will be leased from our usual supplier.  

    5.1.4 Project Staff Training Plan.   No additional staff training is needed for this project.  

    5.2 Work Plan.    

    5.2.1–2 Work Activities and Schedule Allocation.   

   Week 1.   (Completed) Met with client, and determined requirements artifacts. 
Inspected requirements artifacts.  

  Weeks 2, 3.   (Completed) Produced analysis artifacts, and inspected analysis 
artifacts. Showed artifacts to client, who approved them. Produced 
software project management plan, and inspected software project 
management plan.  

  Weeks 4, 5.  Produce design artifacts, inspect design artifacts.  
  Weeks 6–10.   Implementation and inspection of each class, unit testing and documen-

tation, integration of each class, integration testing, product testing, and 
documentation inspection.  

      5.2.3 Resource Allocation.   The three team members will work separately on their 
assigned artifacts. Almaviva’s assigned role will be to monitor the daily progress of the 
other two, oversee implementation, be responsible for overall quality, and interact with the 
client. Team members will meet at the end of each day and discuss problems and progress. 
Formal meetings with the client will be held at the end of each week to report progress and 
determine if any changes need to be made. Almaviva will ensure that schedule and budget 
requirements are met. Risk management will also be Almaviva’s responsibility. 
  Minimizing faults and maximizing user-friendliness will be Almaviva’s top priorities. Alma-
viva has overall responsibility for all documentation and has to ensure that it is up to date.  

    5.2.4 Budget Allocation.   The budget for each workfl ow is as follows:

            Requirements workfl ow     $  3,740   
   Analysis workfl ow     7,480   
   Design workfl ow     7,480   
   Implementation workfl ow     16,830   
   Testing workfl ow     11,220   

   Total     $46,750   

         5.3 Control Plan.   Any major changes that affect the milestones or the budget have to 
be approved by Almaviva and documented. No outside quality assurance personnel are 
involved. The benefi ts of having someone other than the individual who carried out the 
development task do the testing will be accomplished by each person testing another per-
son’s work products. 
  Almaviva will be responsible for ensuring that the project is completed on time and 
within budget. This will be accomplished through daily meetings with the team members. 
At each meeting, Bartolo and Cherubini will present the day’s progress and problems. 
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Almaviva will determine whether they are progressing as expected and whether they are 
following the specifi cation document and the project management plan. Any major prob-
lems faced by the team members will immediately be reported to Almaviva.  

    5.4 Risk Management Plan.   The risk factors and the tracking mechanisms are as follows: 

  There is no existing product with which the new product can be compared. Accordingly, 
it will not be possible to run the product in parallel with an existing one. Therefore, the 
product should be subjected to extensive testing. 
  The client is assumed to be inexperienced with computers. Therefore, special attention 
should be paid to the analysis workfl ow and communication with the client. The product 
has to be made as user-friendly as possible. 
  Because of the ever-present possibility of a major design fault, extensive testing will be 
performed during the design workfl ow. Also, each of the team members will initially test 
his or her own code and then test the code of another member. Almaviva will be responsible 
for integration testing and in charge of product testing. 
  The information must meet the specifi ed storage requirements and response times. This 
should not be a major problem because of the small size of the product, but it will be moni-
tored by Almaviva throughout development. 
  There is a slim chance of hardware failure, in which case another machine will be leased. 
If there is a fault in the compiler, it will be replaced. These are covered in the warranties 
received from the hardware and compiler suppliers.  

    5.5 Project Close-out Plan.   Not applicable here.  

    6 Technical Process Plans.    

    6.1 Process Model.   The Unifi ed Process will be used.  

    6.2 Methods, Tools, and Techniques.   The workfl ows will be performed in accordance 
with the Unifi ed Process. The product will be implemented in Java.  

    6.3 Infrastructure Plan.   The product will be developed using ArgoUML running under 
Linux on a personal computer.  

    6.4 Product Acceptance Plan.   Acceptance of the product by our client will be achieved 
by following the steps of the Unifi ed Process.  

    7 Supporting Process Plan    

    7.1 Confi guration Management Plan.   CVS will be used throughout for all artifacts.  

    7.2 Testing Plan.    The testing workfl ow of the Unifi ed Process will be performed.  

    7.3 Documentation Plan.   Documentation will be produced as specifi ed in the Unifi ed 
Process.  

    7.4–5 Quality Assurance Plan and Reviews and Audits Plan.   Bartolo and Cherubini will 
test each other’s code, and Almaviva will conduct integration testing. Extensive product 
testing will then be performed by all three.  

    7.6 Problem Resolution Plan.   As stated in 5.3, any major problems faced by the team 
members will immediately be reported to Almaviva.  
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    7.7 Subcontractor Management Plan.   Not applicable here.  

    7.8 Process Improvement Plan.   All activities will be conducted in accord with the com-
pany plan to advance from CMM level 2 to level 3 within 2 years.  

    8. Additional Plans  . Additional components:  

    Security.   A password will be needed to use the product.  
    Training.   Training will be performed by Almaviva at time of delivery. Because the 
product is straightforward to use, 1 day should be suffi cient for training. Almaviva will 
answer questions at no cost for the fi rst year of use.  
    Maintenance.   Corrective maintenance will be performed by the team at no cost for a 
period of 12 months. A separate contract will be drawn up regarding enhancement.     
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642

  This appendix contains the fi nal version of the class diagram for the MSG Foundation case 
study (Figure G.1). The overall class diagram is followed by UML diagrams for the 10 compo-
nent classes, in alphabetical order. These UML diagrams show the attributes and the methods. 
As explained in Section 17.2, the UML visibility prefi xes are – for   private  , + for   public  , 
and # for   protected  . The attributes and methods are shown in a PDL for Java. Accordingly, 
there is no   Date Class   (see Section 14.8). 
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FIGURE G.1 
The fi nal 
class diagram 
for the MSG 
Foundation 
case study.

Asset
Class

User Interface
Class

Mortgages
Report Class

Estimated Funds
Report Class

Investments
Report Class

Mortgage
Class

Investment
Class

MSG Application
Class

Manage an
Asset Class

Estimate
Funds for

Week Class

MSG Staff Member

       « entity class»
  Asset Class    

   # assetNumber : string    

    + getAssetNumber ( ) : string   
   + setAssetNumber (a : string) : void   
   +  abstract  read (fi leName : RandomAccessFile) : void   
   +  abstract  obtainNewData ( ) : void   
   +  abstract  performDeletion ( ) : void   
   +  abstract  write (fi leName : RandomAccessFile) : void   
   +  abstract  save ( ) : void   
   +  abstract  print ( ) : void   
   +  abstract  fi nd (s : string) : Boolean   
   + delete ( ) : void   
   + add ( ) : void      
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      «boundary class» 
Estimate Funds Report Class     

          + <<static>> printReport ( ) : void      

        «control class»
 Estimate Funds for Week Class     

          

+ <<static>> compute ( ) : void      

        «entity class» 
Investment Class     

    − investmentName : string   
   − expectedAnnualReturn : fl oat   
   − expectedAnnualReturnUpdated : string   

   + getInvestmentName ( ) : string   
   + setInvestmentName (n : string) : void   
   + getExpectedAnnualReturn ( ) : fl oat   
   + setExpectedAnnualReturn (r : fl oat) : void   
   + getExpectedAnnualReturnUpdated ( ) : string   
   + setExpectedAnnualReturnUpdated (d : string) : void   
   + totalWeeklyReturnOnInvestment ( ) : fl oat   
   + fi nd (fi ndInvestmentID : string) : Boolean   
   + read (fi leName : RandomAccessFile) : void   
   + write (fi leName : RandomAccessFile) : void   
   + save ( ) : void   
   + print ( ) : void   
   + printAll ( ) : void   
   + obtainNewData ( ) : void   
   + performDeletion ( ) : void   
   + readInvestmentData ( ) : void   
   + updateInvestmentName ( ) : void   
   + updateExpectedReturn ( ) : void      

        «boundary class»  
Investments Report Class     

       

   + <<static>> printReport ( ) : void      
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        «entity class» 
 Mortgage Class     

    − mortgageeName : string   
   − price : fl oat   
   − dateMortgageIssued : string   
   − currentWeeklyIncome : fl oat   
   − weeklyIncomeUpdated : string   
   − annualPropertyTax : fl oat   
   − annualInsurancePremium : fl oat   
   − mortgageBalance : fl oat   
   + <<static fi nal>> INTEREST_RATE : fl oat   
   + <<static fi nal>> MAX_PER_OF_INCOME : fl oat   
   + <<static fi nal>> NUMBER_OF_MORTGAGE_PAYMENTS : int   
   + <<static fi nal>> WEEKS_IN_YEAR : fl oat   
   + getMortgageeName ( ) : string   
   + setMortgageeName (n : string) : void   
   + getPrice ( ) : fl oat   
   + setPrice (p : fl oat) : void   
   + getDateMortgageIssued ( ) : string   
   + setDateMortgageIssued (w : string) : void   
   + getCurrentWeeklyIncome ( ) : fl oat   
   + setCurrentWeeklyIncome (i : fl oat) : void   
   + getWeeklyIncomeUpdated ( ) : string   
   + setWeeklyIncomeUpdated (w : string) : void   
   + getAnnualPropertyTax ( ) : fl oat   
   + setAnnualPropertyTax (t : fl oat) : void   
   + getAnnualInsurancePremium ( ) : fl oat   
   + setAnnualInsurancePremium (p : fl oat) : void   
   + getMortgageBalance ( ) : fl oat   
   + setMortgageBalance (m : fl oat) : void   
   + totalWeeklyNetPayments ( ) : fl oat   
   + fi nd (fi ndMortgageID : string) : Boolean   
   + read (fi leName : RandomAccessFile) : void   
   + write (fi leName : RandomAccessFile) : void   
   + obtainNewData ( ) : void   
   + performDeletion ( ) : void   
   + print ( ) : void   
   + <<static>> printAll ( ) : void   

        «control class»
 Manage an Asset Class     

       

   + <<static>> manageInvestment ( ) : void   
   + <<static>> manageMortgage ( ) : void      
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        «boundary class» 
 Mortgages Report Class     

       

   +  <<static>> printReport ( ) : void      

   + save ( ) : void   
   + readMortgageData ( ) : void   
   + updateBalance ( ) : void   
   + updateDate ( ) : void   
   + updateInsurancePremium ( ) : void   
   + updateMortgageeName ( ) : void   
   + updatePrice ( ) : void   
   + updatePropertyTax ( ) : void   
   + updateWeeklyIncome ( ) : void      

        «entity class» 
 MSG Application Class     

    − <<static>> estimatedAnnualOperatingExpenses : fl oat   
   − <<static>> estimatedFundsForWeek : fl oat   

   − <<static>> getAnnualOperatingExpenses ( ) : fl oat   
   − <<static>> setAnnualOperatingExpenses (e : fl oat) : void   
   + <<static>> getEstimatedFundsForWeek ( ) : fl oat   
   + <<static>> setEstimatedFundsForWeek (e : fl oat) : void   
   + <<static>> initializeApplication ( ) : void   
   + <<static>> updateAnnualOperatingExpenses ( ) : void   
   + <<static>> main ( )      

  «boundary class» 
       User Interface Class     

    + <<static>> clearScreen ( ) : void   
   + <<static>> pressEnter ( ) : void   
   + <<static>> displayMainMenu ( ) : void   
   + <<static>> displayInvestmentMenu ( ) : void   
   + <<static>> displayMortgageMenu ( ) : void   
   + <<static>> displayReportMenu ( ) : void   
   + <<static>> getChar ( ) : char   
   + <<static>> getString ( ) : string   
   + <<static>> getInt ( ) : int        
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 The complete C++ source code for the MSG Foundation product is available on the World 
Wide Web at www.mhhe.com/schach. 
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 The complete Java source code for the MSG Foundation product is available on the World 
Wide Web at www.mhhe.com/schach.   
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Test Workfl ow: The 
MSG Foundation 
Case Study 

649

  The test workfl ow of the MSG Foundation case study is presented in four sections:

   Section 11.11 (requirements)  
  Section 13.17 (analysis)  
  Section 14.11 (design)  
  Section 15.23 (implementation)  
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