

Texts in Theoretical Computer Science
An EATCS Series

Editors: W. Brauer G. Rozenberg A. Salomaa

On behalf of the European Association
for Theoretical Computer Science (EATCS)

Advisory Board: G. Ausiello M. Broy C.S. Calude
A. Condon D. Harel J. Hartmanis T. Henzinger
J. Hromkovic N. Jones T. Leighton M. Nivat
C. Papadimitriou D. Scott

D. Bj0rner
with contributions from Christian Krog Madsen

Software
Engineering 2
Specification of Systems and Languages

With 151 Figures and 27 Tables

Springer

Author Series Editors

Prof. Dr. Dines Bjorner
Computer Science and Engineering
Informatics and Mathematical Modelling
Technical University of Denmark
2800 Kgs. Lyngby, Denmark
bjorner@gmail.com
db@imm.dtu.dk

Prof. Dr. Wilfried Brauer
Institut fur Informatik der TUM
Boltzmannstr. 3
85748 Garching, Germany
brauer@informatik.tu-muenchen.de

Prof. Dr. Grzegorz Rozenberg
Leiden Institute of Advanced
Computer Science
University of Leiden
Niels Bohrweg 1
2333 CA Leiden, The Netherlands
rozenber@liacs.nl

Prof. Dr. Arto Salomaa
Turku Centre of
Computer Science
Lemminkaisenkatu 14 A
20520 Turku, Finland
asalomaa@utu.fi

Library of Congress Control Number: 2006920552

ACM Computing Classification (1998): D.l, D.2, D.3, F.3, F.4, G.2.0, K.6.3, H.l, J.l

ISBN-10 3-540-21150-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-21150-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright
Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Cover Design: KiinkelLopka, Heidelberg
Typesetting: Camera ready by the Author
Production: LE-T^X Jelonek, Schmidt & Vockler GbR, Leipzig

Printed on acid-free paper 45/3100/YL 5 4 3 2 10

Charlotte, Camilla and Caroline

Am I grateful? You bet! Am I a happy father? Also your doing!

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I —
I took the one less traveled by,
And that has made all the difference.

Robert Frost: The Road Not Taken (1915) [121]

Preface

The present volume is the second of three volumes on the engineering princi
ples and techniques of software engineering. We refer to the Preface of Vol. 1,
as well as to Chap. 1 of that same volume, for a proper preface and over
all introduction to all volumes in this series. We assume that the reader has
studied Vol. 1.

Overview

The present volume focuses on principles and techniques for specifying lan
guages and systems. It uses the abstraction and modelling principles, tech
niques and tools covered in Vol. 1, and it supplements those principles, tech
niques and tools with additional ones. In particular the present volume em
phasises the following four aspects:

• advanced specification facets:
• hierarchies and composition
• denotations and computations
• configurations: contexts and states
• time, space and space/time
• modularisation and
• automata and machines
linguistics:
• pragmatics
• semantics
• syntax and
• semiotics
concurrency and temporality:
• Petri nets
• message sequence charts and live sequence charts
• statecharts and

Chap. 2
Chap. 3
Chap. 4
Chap. 5

Chap. 10
Chap. 11

Chap. 6
Chap. 7
Chap. 8
Chap. 9

Chap. 12
Chap. 13
Chap. 14

VIII

• quantitative models of time Chap. 15
• interpreter and compiler definitions:

• applicative programming languages Chap. 16
• imperative programming languages Chap. 17
• modular programming languages and Chap. 18
• parallel programming languages Chap. 19

"UML"-ising Formal Techniques

Some notable features should be emphasised here. The concurrency aspect,
Chaps. 12-14, also illustrates diagrammatic specifications, as does Sect. 10.3
(UML class diagrams). Together this material illustrates that popular features
of the Unified Modeling Language (UML [59,237,382,440]) can simply and
elegantly be included, i.e., used, with RSL. Christian Krog Madsen is the main
author of Chaps. 12-14.

The RAISE Specification Language: RSL

As in Vol. 1, we use RSL extensively in the present volume. Hence we in
sert, in Chap. 1, an RSL Primer — and otherwise refer to the RAISE URL:
h t t p : / / w w w . i i s t . u n u . e d u / r a i s e / .

Acknowledgments

The preface of Vol. 1 contained an extensive acknowledgment section.
Combining RSL with Petri nets (Chap. 12), with message or live sequence

charts (Chap. 13), and with statecharts (Chap. 14) is due primarily to Chris
tian Krog Madsen [316,317]. Very many and dear thanks are therefore ex
tended to Christian. Combining RSL with UML-like class diagrams (Sect. 10.3)
is due primarily to Steffen Holmslykke [9,10]. Similar thanks are therefore gra
ciously extended to Steffen. Martin Penicka is likewise dearly acknowledged
for having provided Examples 12.8 (Sect. 12.3.4), 14.7 (Sect. 14.4.1) and 14.8
(Sect. 14.4.2).

Colleagues at the National University of Singapore, Andrei Stefan and
Yang ShaoFa, studied and proofread Chaps. 12-15. It was with Yang ShaoFa,
as the leading person, that I decided to work out the model of CTP (Commu
nicating Transaction Processes) of Sect. 13.6. Their comments and work are
much appreciated.

A main source of academic joy has been the 30 years I have been at the
Technical University of Denmark, 1976 till now.

Last, but not least, I acknowledge the tremendous support received from
the Springer editor, Ronan Nugent.

I X

Brief Guide to Volume 2

This volume has several chapters. The chapters are grouped into parts. Fig
ure 2 abstracts a precedence relation between chapters. It is one that approx
imates suggested sequences of studying this volume.

• Chapter 1 is considered a prerequisite for the study of any chapter.
• We group some parts into the dash-circled groups A — E.
• Group A consists of Chaps. 2-5 that can be studied in any order.
• Group B consists of Chaps. 6-9 that should be studied in order 6, 7, 8 and 9.
• Group C consists of Chaps. 10-11 that can be studied in any order.
• Group D consists of Chaps. 12-15 that can be studied in almost any order. Chap. 14

does contain an example which requires having studied Chap. 13 first.
• Group E consists of Chaps. 16-19 that should be studied in order 16, 17 and 18.

Chap. 19 can be studied in-between, before, or after. Preferably after.
• Groups A — E can be studied in any order. But it might be useful to have studied

Chap. 5 before Chap. 15, and Chap. 10 before Chap. 18, and to have studied Group B
before Group E.

• It is no harm to study Chap. 20.
• Appendix A contains an overview of our naming convention.

Within most chapters many sections can be skipped. Typically those with
larger examples or towards the end of the chapters.

In this way a teacher or a reader can compose a number of suitable courses
and studies. Some such are suggested in Fig. 1.

Advanced Languages Concurrent Systems
Abstraction & Modelling

Chaps. 1-5, 10, 11 Chaps. 1, 6-9, 16-18 Chaps. 1, 12-15, 19

Fig. 1. Alternative courses based solely on Vol. 2

|w-^>e> Y&i&t-

Dines Bj0rner
Technical University of Denmark, 2005-2006

X

Hierarchies
and
Composition

Denotations
and
Computations

Configurations:
Contexts &
States

Time,
Space and
Space/Time

Modularisation

cT

Automata and
Machines

iT

Message and
Live Sequence
Charts

Quantitative
Models of
Time

[T

SAL: Simple
Applicative
Language

SIL: Simple
Imperative
Language

[T

18

SMIL: Simple
Modular
Imperative
Language

[T

19

SPIL: Simple
Parallel
Imperative
Language

[T

sssssssss,

Fig. 2. Chapter precedence graph

Contents

PREFACE VII
Overview VII
"UML"-ising Formal Techniques VIII
The RAISE Specification Language: RSL VIII
Acknowledgments VIII
Brief Guide to Volume 2 IX

Part I OPENING

1 Introduction 3
1.1 Introduction 3

1.1.1 Why This Volume? 3
1.1.2 Why Master These Principles, Techniques and Tools? 4
1.1.3 What Does This Volume "Contain"? 4
1.1.4 How Does This Volume "Deliver"? 5

1.2 Formal Techniques "Lite" 6
1.3 An RSL Primer 8

1.3.1 Types 8
1.3.2 The RSL Predicate Calculus 11
1.3.3 Concrete RSL Types 12
1.3.4 A-Calculus+Functions 21
1.3.5 Other Applicative Expressions 24
1.3.6 Imperative Constructs 26
1.3.7 Process Constructs 27
1.3.8 Simple RSL Specifications 29

1.4 Bibliographical Notes 29

XII Contents

Part II SPECIFICATION FACETS

2 Hierarchies and Compositions 35
2.1 The Issues 35

2.1.1 Informal Illustrations 36
2.1.2 Formal Illustrations 36

2.2 Initial Methodological Consequences 37
2.2.1 Some Definitions 37
2.2.2 Principles and Techniques 38

2.3 The Main Example 40
2.3.1 A Hierarchical, Narrative Presentation 40
2.3.2 A Hierarchical, Formal Presentation 42
2.3.3 A Compositional, Narrative Presentation 45
2.3.4 A Compositional, Formal Presentation 47

2.4 Discussion 49
2.5 Bibliographical Notes: Stanislaw Leshniewski 49
2.6 Exercises 50

3 Denotations and Computations 55
3.1 Introduction 55

3.1.1 Computations and Denotations 56
3.1.2 Syntax and Semantics 56
3.1.3 Characterisations 56

3.2 Denotational Semantics 57
3.2.1 A Simple Example: Numerals 57
3.2.2 The Denotational Principle 58
3.2.3 Expression Denotations 58
3.2.4 GOTO Continuations 62
3.2.5 Discussion of Denotational Semantics 72

3.3 Computational Semantics 74
3.3.1 The Issues 74
3.3.2 Two Examples 74
3.3.3 Expression Computations 74
3.3.4 Computational Semantics of GOTO Programs 78
3.3.5 Computational Semantics of Coroutine Programs . . . 83
3.3.6 Discussion 85

3.4 Review: Denotations and Computations 86
3.5 Some Pioneers of Semantics 86

3.5.1 John McCarthy 86
3.5.2 Peter Landin 88

3.6 Exercises 90

Contents XI I I

4 Conf igurat ions: C o n t e x t s and S t a t e s 93
4.1 Introduction 94
4.2 The Issues 97
4.3 "Real-World" Contexts and States 98

4.3.1 A Physical System: Context and State 99
4.3.2 Configurations of Contexts and States 99
4.3.3 Nonphysical System: Context and State 100
4.3.4 Discussion, I 101
4.3.5 Discussion, II 102

4.4 First Summary: Contexts and States 102
4.4.1 General 102
4.4.2 Development Principles and Techniques 103

4.5 Programming Language Configurations 104
4.6 Concurrent Process Configurations 104

4.6.1 The Example 104
4.6.2 Summary 110

4.7 Second Summary: Contexts and States I l l
4.8 Information States and Behaviour States 112

4.8.1 Program Flowcharts as State Machine Da ta 112
4.8.2 Flowcharts = Machines 113
4.8.3 Flowchart Machines 113
4.8.4 Observations 114
4.8.5 Conclusion 114

4.9 Final Summary: Contexts and States 115
4.10 Exercises 116

Part III A C R U C I A L D O M A I N A N D C O M P U T I N G F A C E T

5 T i m e , Space and S p a c e / T i m e 121
5.1 Time 122

5.1.1 Time — The Basics 122
5.1.2 Time — General Issues 124
5.1.3 "A-Series" and "B-Series" Models of Time 125
5.1.4 A Continuum Theory of Time 125
5.1.5 Temporal Events 126
5.1.6 Temporal Behaviour 127
5.1.7 Representation of Time 127
5.1.8 Operations "on" Time 128

5.2 Space 129
5.2.1 Space — The Basics 129
5.2.2 Location-Varying Entities 129
5.2.3 Locations and Dynamicity 131
5.2.4 Space — General Issues 132

5.3 Space/Time 135

XIV Contents

5.3.1 A Guiding Example 135
5.3.2 Representation of Space/Time 135
5.3.3 Blizard's Theory of Time-Space 136

5.4 Discussion 137
5.5 Bibliographical Notes 137
5.6 Exercises 137

Part I V L I N G U I S T I C S

6 P r a g m a t i c s 145
6.1 Introduction 145
6.2 Everyday Pragmatics 146
6.3 "Formal" Pragmatics 146
6.4 Discussion 147

6.4.1 General 147
6.4.2 Principles and Techniques 148

6.5 Bibliographical Note 148
6.6 Exercises 149

7 S e m a n t i c s 151
7.1 Introduction 151
7.2 Concrete Semantics 152
7.3 "Abstract" Semantics 152
7.4 Preliminary Semantics Concepts 152

7.4.1 Syntactic and Semantic Types 153
7.4.2 Contexts 153
7.4.3 States 154
7.4.4 Configurations 154
7.4.5 Interpretation, Evaluation and Elaboration 154

7.5 Denotational Semantics 155
7.5.1 Simple Case 156
7.5.2 Composite Case 156

7.6 Macro-expansion Semantics 157
7.6.1 Rewriting 157
7.6.2 Macro-expansion 158
7.6.3 Inductive Rewritings 158
7.6.4 Fix Point Evaluation 161

7.7 Operational and Computat ional Semantics 161
7.7.1 Stack Semantics 162
7.7.2 Attr ibute Grammar Semantics 162

7.8 Proof Rule Semantics 166
7.9 Discussion 169

7.9.1 General 169
7.9.2 Principles, Techniques and Tools 169

Contents XV

7.10 Bibliographical Notes 170
7.11 Exercises 170

8 Syntax 173
8.1 The Issues 174

8.1.1 Form and Content: Syntax and Semantics 174
8.1.2 Structure and Contents of This Chapter 175

8.2 Sentential Versus Semantical Structures 175
8.2.1 General 175
8.2.2 Examples of Sentential Structures 176
8.2.3 Examples of Semantical Structures 178

8.3 The First Abstract Syntax, John McCarthy 181
8.3.1 Analytic Grammars: Observers and Selectors 182
8.3.2 Synthetic Grammars: Generators 182

8.4 BNF Grammars m Concrete Syntax 183
8.4.1 BNF Grammars 183
8.4.2 BNFf+RSL Parse Trees Relations 184

8.5 Structure Generators and Recognisers 186
8.5.1 Context-Free Grammars and Languages 186
8.5.2 Parse Trees 188
8.5.3 Regular Expressions and Languages 189
8.5.4 Language Recognisers 190

8.6 XML: Extensible Markup Language 190
8.6.1 An Example 191
8.6.2 Discussion 192
8.6.3 Historical Background 192
8.6.4 The Current XML "Craze" 193
8.6.5 XML Expressions 193
8.6.6 XML Schemas 195
8.6.7 References 197

8.7 Abstract Syntaxes 197
8.7.1 Abstract Syntax of a Storage Model 197
8.7.2 Abstract Syntaxes of Other Storage Models 200

8.8 Converting RSL Types to BNF 202
8.8.1 The Problem 202
8.8.2 A Possible Solution 202

8.9 Discussion of Informal and Formal Syntax 203
8.9.1 General 203
8.9.2 Principles, Techniques and Tools 204

8.10 Bibliographical Notes 204
8.11 Exercises 205

XVI Contents

9 Semiotics 213
9.1 Semiotics = Syntax ffi Semantics © Pragmatics 213
9.2 Semiotics 214
9.3 Language Components 215
9.4 Linguistics 216
9.5 Languages and Systems 217

9.5.1 Professional Languages 218
9.5.2 Metalanguages 219
9.5.3 Systems 219
9.5.4 System Diagram Languages 232
9.5.5 Discussion of System Concepts 232
9.5.6 Systems as Languages 233

9.6 Discussion 233
9.6.1 General 233
9.6.2 Principles, Techniques and Tools 234

9.7 Charles Sanders Peirce 234
9.8 Bibliographical Notes 234
9.9 Exercises 235

Part V FURTHER SPECIFICATION TECHNIQUES

10 Modularisation 243
10.1 Introduction 244

10.1.1 Some Examples 244
10.1.2 Preparatory Discussion 249
10.1.3 Structure of Chapter 252

10.2 RSL Classes, Objects and Schemes 253
10.2.1 Introducing the RSL "class" Concept 253
10.2.2 The RSL "class" Concept 257
10.2.3 The RSL "object" Concept 257
10.2.4 The RSL "scheme" Concept 257
10.2.5 RSL "scheme" Parameterisation 263
10.2.6 A "Large-Scale" Example 265
10.2.7 Definitions: Class, Scheme and Object 270

10.3 UML and RSL 271
10.3.1 Overview of UML Diagrams 271
10.3.2 Class Diagrams 272
10.3.3 Class Diagrams 273
10.3.4 Example: Railway Nets 276
10.3.5 Comparison of UML and RSL OO Constructs 278
10.3.6 References 279
10.3.7 Class Diagram Limitations 280

10.4 Discussion 280
10.4.1 Modularity Issues 280

Contents XVII

10.4.2 Principles, Techniques and Tools 281
10.5 Bibliographical Notes 282
10.6 Exercises 282

11 Automata and Machines 285
11.1 Discrete State Automata 286

11.1.1 Intuition 287
11.1.2 Motivation 288
11.1.3 Pragmatics 288

11.2 Discrete State Machines 290
11.3 Finite State Automata 291

11.3.1 Regular Expression Language Recognisers 292
11.3.2 Regular Expressions 293
11.3.3 Formal Languages and Automata 294
11.3.4 Automaton Completion 295
11.3.5 Nondeterministic Automata 295
11.3.6 Minimal State Finite Automata 296
11.3.7 Finite State Automata Formalisation, I 297
11.3.8 Finite State Automata Realisation, I 297
11.3.9 Finite State Automaton Formalisation, II 298
11.3.10 Finite State Automata Realisation, II 299
11.3.11 Finite State Automata — A Summary 299

11.4 Finite State Machines 300
11.4.1 Finite State Machine Controllers 300
11.4.2 Finite State Machine Parsers 303
11.4.3 Finite State Machine Formalisation 304
11.4.4 Finite State Machine Realisation 305
11.4.5 Finite State Machines — A Summary 306

11.5 Pushdown Stack Devices 307
11.5.1 Pushdown Stack Automata and Machines 307
11.5.2 Formalisation of Pushdown Stack Machines 309
11.5.3 Pushdown Stack Device Summary 310

11.6 Bibliographical Notes: Automata and Machines 311
11.7 Exercises 311

Part VI CONCURRENCY A N D TEMPORALITY

12 Petri Nets 315
Christian Krog Madsen is chief author of this chapter

12.1 The Issues 315
12.2 Condition Event Nets (CENs) 316

12.2.1 Description 316
12.2.2 Small CEN Examples 317
12.2.3 An RSL Model of Condition Event Nets 320

XVIII Contents

12.3 Place Transition Nets (PTNs) 323
12.3.1 Description 323
12.3.2 Small PTN Examples 324
12.3.3 An RSL Model of Place Transition Nets 324
12.3.4 Railway Domain Petri Net Examples 328

12.4 Coloured Petri Nets (CPNs) 333
12.4.1 Description 333
12.4.2 A CPN Example 336
12.4.3 An RSL Model of Coloured Petri Nets 336
12.4.4 Timed Coloured Petri Nets 341

12.5 CEN Example: Work Flow System 342
12.5.1 Project Planning 342
12.5.2 Project Activities 346
12.5.3 Project Generation 353

12.6 CPN and RSL Examples: Superscalar Processor 356
12.6.1 Description 356
12.6.2 Coloured Petri Net Model 357
12.6.3 RSL Model: Superscalar Processor 362

12.7 Discussion 371
12.8 Bibliographical Notes 372
12.9 Exercises 372

13 Message and Live Sequence Charts 375
Christian Krog Madsen is chief author of this chapter

13.1 Message Sequence Charts 376
13.1.1 The Issues 376
13.1.2 Basic MSCs (BMSCs) 376
13.1.3 High-Level MSCs (HMSCs) 383
13.1.4 An RSL Model of HMSC Syntax 385
13.1.5 MSCs Are HMSCs 385
13.1.6 Syntactic Well-formedness of MSCs 386
13.1.7 An Example: IEEE 802.11 Wireless Network 391
13.1.8 Semantics of Basic Message Sequence Charts 400
13.1.9 Semantics of High-Level Message Sequence Charts . . 401

13.2 Live Sequence Charts: Informal Presentation 402
13.2.1 Live Sequence Chart Syntax 402
13.2.2 A Live Sequence Chart Example, I 408

13.3 Process Algebra 409
13.3.1 The Process Algebra PAe 410
13.3.2 Semantics of PA, 416
13.3.3 The Process Algebra PAce 420
13.3.4 Semantics for PAce 423

13.4 Algebraic Semantics of Live Sequence Charts 427
13.4.1 Textual Syntax of Live Sequence Charts 427
13.4.2 Semantics of Live Sequence Charts 428

Contents XIX

13.4.3 The Live Sequence Chart Example, II 431
13.5 Relating Message Charts to RSL 431

13.5.1 Types of Integration 432
13.5.2 An RSL Subset 433
13.5.3 Relating Live Sequence Charts to RSL 436
13.5.4 Checking Satisfaction 442
13.5.5 Tool Support 443

13.6 Communicating Transaction Processes (CTP) 443
13.6.1 Intuition 443
13.6.2 Narration of CTPs 444
13.6.3 A Dining Philosophers Example 450
13.6.4 Formalisation of CTPs 453

13.7 Discussion 467
13.7.1 General 467
13.7.2 Principles, Techniques and Tools 468

13.8 Bibliographical Notes 469
13.9 Exercises 470

14 Sta techar ts 475
Christian Krog Madsen is chief author of this chapter

14.1 Introduction 475
14.2 A Narrative Description of Statecharts 476
14.3 An RSL Model of the Syntax of Statecharts 481
14.4 Examples 484

14.4.1 Railway Line Automatic Blocking 484
14.4.2 Railway Line Direction Agreement System 488
14.4.3 Wireless Rain Gauge 493

14.5 A Process Algebra for Statecharts 498
14.5.1 SPL: The Statechart Process Language 499
14.5.2 Semantics of SPL 500
14.5.3 Equivalence for SPL Terms 500

14.6 Semantics of Statecharts 503
14.6.1 An SPL Semantics for Statecharts 503
14.6.2 Statechart Example 504

14.7 Relating Statecharts to RSL 505
14.7.1 Syntactical Restrictions 506
14.7.2 Satisfaction Relation 506
14.7.3 Checking Satisfaction 507
14.7.4 Tool Support 508

14.8 Discussion 508
14.8.1 General 508
14.8.2 Principles, Techniques and Tools 508

14.9 Bibliographical Notes 509
14.10 Exercises 509

XX Contents

15 Quantitative Models of Time 517
15.1 The Issues 517

15.1.1 Soft Temporalities 517
15.1.2 Hard Temporalities 518
15.1.3 Soft and Hard Real-Time 518
15.1.4 Examples — "Ye Olde Way"! 518
15.1.5 Structure of This Chapter 520

15.2 Temporal Logic 520
15.2.1 The Issues 521
15.2.2 A Philosophical Linguistics Background 521
15.2.3 Interval Temporal Logic, ITL 522
15.2.4 The Classic Temporal Operators: O, • 527

15.3 The Duration Calculus 528
15.3.1 Examples, Part 1 528
15.3.2 Some Basic Notions 529
15.3.3 Examples, Part II 532
15.3.4 The Syntax 536
15.3.5 The Informal Semantics 538
15.3.6 Examples, Part III 539
15.3.7 Transitions and Events 550
15.3.8 Discussion: From Domains to Designs 554

15.4 TRSL: RSL with Timing 555
15.4.1 TRSL Design Criteria 555
15.4.2 The TRSL Language 558
15.4.3 Another Gas Burner Example 559
15.4.4 Discussion 562

15.5 RSL with Timing and Durations 563
15.5.1 Review of TRSL 563
15.5.2 TRSL and Duration Calculus 564

15.6 Discussion 567
15.6.1 General 567
15.6.2 Principles, Techniques and Tools 567

15.7 Bibliographical Notes 568
15.8 Exercises 568

Part VII INTERPRETER A N D COMPILER DEFINITIONS

16 SAL: Simple Applicative Language 573
16.1 A Caveat 574
16.2 The SAL Syntax 574

16.2.1 Informal Exposition of SAL Syntax 574
16.2.2 Formal Exposition of SAL Syntax 575
16.2.3 Comments 576

16.3 A Denotational Semantics 576

Contents X X I

16.3.1 An Informal Semantics 576
16.3.2 A Formal Semantics 577
16.3.3 Review of SAL Semantics, 1 579
16.3.4 Two Asides 580

16.4 A First-Order Applicative Semantics 582
16.4.1 Syntactic Types 582
16.4.2 Semantic Types 582
16.4.3 Abstraction Functions 583
16.4.4 Auxiliary Functions 584
16.4.5 Semantic Functions 585
16.4.6 Review 588
16.4.7 Review of SAL Semantics, 2 588

16.5 An Abstract, Imperative Stack Semantics 589
16.5.1 Design Decisions — Informal Motivation 589
16.5.2 Semantics Style Observations 590
16.5.3 Syntactic Types 590
16.5.4 Semantic Types 591
16.5.5 Abstraction Functions 591
16.5.6 Run-Time Functions 591
16.5.7 Semantic Functions 592
16.5.8 Review of SAL Semantics, 3 598

16.6 A Macro-expansion Semantics 598
16.6.1 Analysis of Stack Semantics 599
16.6.2 Syntactic Types 606
16.6.3 Compile-Time Types 606
16.6.4 Run-Time Semantic Types 606
16.6.5 Run-Time State 606
16.6.6 Run-Time Stack Operations 607
16.6.7 Run-Time Stack Search for Variable Values 607
16.6.8 Macro-expansion Functions 608
16.6.9 Review of SAL Semantics, 4 616

16.7 ASM: An Assembler Language 616
16.7.1 Semantic Types 616
16.7.2 The Computer State 617
16.7.3 The Address Concept 617
16.7.4 Machine Instructions 618
16.7.5 Machine Semantics 620
16.7.6 Review of ASM 625

16.8 A Compiling Algorithm 625
16.8.1 Syntactic Types 626
16.8.2 Compile-Time Types and State 626
16.8.3 Compile-Time Dynamic Function 626
16.8.4 Compile-Time Static Function 627
16.8.5 Run-Time Constant Values 627
16.8.6 Compilation Functions 628

XXII Contents

16.8.7 Review of Compiling Algorithm 635
16.9 An Attribute Grammar Semantics 636

16.9.1 Abstract Syntactic Types 637
16.9.2 SAL BNF Grammar, 1 637
16.9.3 Node Attributes 637
16.9.4 Constants 638
16.9.5 Some Typographical Distinctions 638
16.9.6 Compilation Functions 638
16.9.7 Review of Attribute Semantics, 1 641

16.10 Another Attribute Grammar Semantics 643
16.10.1 Abstract Syntactic Types 645
16.10.2 SAL BNF Grammar, 2 645
16.10.3 Global Variables 646
16.10.4 Constants 648
16.10.5 Node Attributes 648
16.10.6 Compilation Functions 648
16.10.7 Review of Attribute Semantics, 2 651

16.11 Discussion 651
16.11.1 General 651
16.11.2 Principles, Techniques and Tools 653

16.12 Review and Bibliographical Notes 655
16.13 Exercises 658

17 SIL: Simple Imperative Language 659
17.1 The Background 659
17.2 Syntactic Types 660

17.2.1 Concrete, Schematic Syntax 660
17.2.2 Abstract Syntax 660

17.3 Imperative Denotational Semantics 661
17.3.1 Semantic Types 661
17.3.2 Auxiliary Semantic Functions 662
17.3.3 Semantic Functions 662

17.4 Macro-expansion Semantics 663
17.4.1 Syntactic Types 664
17.4.2 Compile-Time Semantic Types 664
17.4.3 Run-Time Semantic Types 664
17.4.4 Run-Time State Declaration and Initialisation 665
17.4.5 Abstraction Functions 666
17.4.6 Macros 666

17.5 Discussion 668
17.5.1 General 668
17.5.2 Principles, Techniques and Tools 668

17.6 Bibliographical Notes 669
17.7 Exercises 669

Contents XXIII

SMIL: S i m p l e M o d u l a r , I m p e r a t i v e Language 671
18.1 Syntactic Types 671
18.2 A Denotational Semantics 672

18.2.1 Semantic Types 672
18.2.2 Auxiliary Functions 673
18.2.3 Semantic Functions 673

18.3 A Macro-expansion Semantics 675
18.3.1 Run-Time Semantic Types 675
18.3.2 Compile/Run-Time Semantic Types 676
18.3.3 Compile-Time Semantic Types 677
18.3.4 Semantic Functions 677

18.4 Discussion 679
18.4.1 General 679
18.4.2 Principles, Techniques and Tools 679

18.5 Bibliographical Notes 680
18.6 Exercises 680

SPIL: S i m p l e Paral le l , I m p e r a t i v e Language 681
19.1 The Problem 681
19.2 Syntax 682

19.2.1 Informal Syntax 682
19.2.2 Formal Syntax 684

19.3 Process Concepts and Semantic Types 684
19.3.1 Syntactic Notions 685
19.3.2 Machines and Interpreters 686
19.3.3 Semantic Notions and Types 686

19.4 Process-Oriented Semantic Types 688
19.4.1 Unique Process Identifiers ir : II 688
19.4.2 The Heap £ : ~ 689
19.4.3 I n p u t / O u t p u t Channel Bindings 690
19.4.4 Environments p : ENV 691
19.4.5 State Composition W,r,S,2J,n 691

19.5 Initial and Auxiliary Semantic Functions 693
19.5.1 Start Function 693
19.5.2 System Function 693
19.5.3 Bind and Allocate Functions 694
19.5.4 Free and Bound Functions 694
19.5.5 Distribute Function 694
19.5.6 Transition Loop 695

19.6 Semantic Functions 695
19.6.1 The Next-State Transition Function 695
19.6.2 The Assignment Statement 696
19.6.3 The case Statement 696
19.6.4 The while Loop 697
19.6.5 The repeat until Loop 697

XXIV Contents

19.6.6 Simple I n p u t / O u t p u t Processes 698
19.6.7 The Parallel Process Command, || 699
19.6.8 The stop Process Technicality 699
19.6.9 The Process call Command 700
19.6.10 Internal Nondeterministic Processes, \\ 700
19.6.11 External Nondeterministic Processes, [] 700
19.6.12 Nondeterministic I n p u t / O u t p u t Processes 701
19.6.13 The Embedded System Process Command 702
19.6.14 A finish Process Technicality 702

19.7 Discussion 702
19.7.1 General 702
19.7.2 Principles, Techniques and Tools 703

19.8 Bibliographical Notes 703
19.9 Exercises 704

Part V I I I C L O S I N G

20 Clos ing 709
20.1 A Summary 709
20.2 Conclusion: Volumes 1 and 2 710
20.3 Preview of Volume 3 710
20.4 "UML"-ising Formal Techniques 712

Part I X A P P E N D I X E S

A N a m i n g C o n v e n t i o n 717

B I n d e x e s 721
B.l Symbols Index 722

B . l . l Time/Space 722
B.1.2 Modular RSL 722
B.1.3 Petri Nets 722
B. l .4 Message Sequence Charts 723
B. l .5 Live Sequence Charts 723
B.1.6 Statecharts 723
B. l .7 Temporal Logics 723
B.1.8 Duration Calculus 723
B.1.9 Timed RSL: TRSL 723
B.l .10 Abbreviations 724

B.2 Concepts Index 725
B.3 Characteriations and Definitions Index 744
B.4 Authors Index 746

References 751

Part I

OPENING

1

Introduction

• The prerequisi te for studying this chapter is that you have read and
understood Vol. 1 of this series of textbooks on software engineering.

• The aims are to motivate why the present volume is written, to motivate
why you should read it by outlining what it contains and how it delivers
its material, to explain the notion of formal methods "lite", and to briefly
recall the main specification language of these volumes, RSL.

• The objective is to set you firmly on the way to study this volume.
• The t r ea tmen t is discursive, informal and systematic.

1.1 Introduction

Volume 2 continues where Vol. 1 left off. Having laid the foundations for
discrete mathematics, Vol. 1, Chaps. 2-9, abstraction and modelling, Vol. 1,
Chaps. 10-18, and specification programming, Vol. 1, Chaps. 19-21, which we
consider the minimum for the pursuit of professional software engineering, we
need now to expand, considerably, the scope of areas to which we can apply
our abstraction, modelling and specification skills.

This chapter has two main sections: First we outline the justification for
and contents of this volume as well as how the material in this volume is pre
sented. Then we give an ever-so-short primer on RSL: the syntactic constructs,
very briefly their "meaning" and their pragmatics, that is, which "main" uses
with respect to abstraction and modelling they serve to fulfill. The primer
can, of course, be skipped.

1.1.1 Why This Volume?

It is one thing to learn and be reasonably fluent in abstraction and modelling
as covered in Vol. 1 of this series. It is another thing to really master the prin
ciples, techniques and tools. With the present volume our goal is to educate

4 1 Introduction

you to the level of a professional software engineer in: (i) specifying compli
cated computing systems and languages, (ii) being aware of major semiotics
principles (pragmatics, semantics and syntax), (iii) being well acquainted to
means of handling concurrency, i.e., parallel systems, and real-time, and (iv)
formally conceiving reasonably sophisticated systems and languages.

1.1.2 W h y M a s t e r T h e s e Pr inc ip le s , Techniques and Tools?

Why master these principles, techniques and tools? Because it is necessary.
Because, to be a professional in one's chosen field of expertise, one must know
also the formal techniques — just as engineers of other disciplines also know
their mathematics . Just as fluid mechanics engineers handle, with ease, their
Navier-Stokes Equations [83,496], so software engineers must handle denota-
tional and computational semantics. Just as radio communications engineers
handle, with ease, Maxwell Equations [245,502], so software engineers must
handle Petri nets [238,400,419-421], message sequence charts [227-229], live
sequence charts [89,195,268], statecharts [174,175,185,193,197], the duration
calculus [557,559], temporal logics [105,320,321,372,403], etc. We will cover
this and much more in this volume.

The above explanation of the "why" is an explanation tha t is merely a
claim. It relies on "Proof by authori ty"! Well, here is the longer, more ra
tional argument: Before we can design software, we must understand its re
quirements. Before we can construct requirements, we must understand the
application domain, the area of, say human, activity for which software is
desired. To express domain understanding, requirements and software designs
we must use language. To claim any understanding of these three areas the
language used must be precise, and must be used such as to avoid ambigu
ities, and must allow for formal reasoning, i.e., proofs. This entails formal
languages. To cope with the span from domains, via requirements, to designs
the languages must provide for abstraction, and refinement: from abstract to
concrete expressibility. The principles, techniques and tools of these volumes
provide a state-of-the-art (and perhaps beyond) set of such methods.

The complexities of the computing systems tha t will be developed in the
future are such tha t we cannot expect to succeed in developing such comput
ing systems without using formal techniques and tools, such as covered and
propagated in these volumes.

1.1.3 W h a t D o e s Th i s V o l u m e "Contain"?

Volume 1 covered basic abstraction and modelling principles, techniques and
tools. The major tool was tha t of the RAISE Specification Language (RSL).
The major new, additional tools of this volume will be those of the Petr i
nets: condition event nets, the place transition nets, and the coloured Petri
nets [238,400,419-421]; the sequence charts (SCs): the message SCs (MSCs)
[227-229] and the live SCs (LSCs) [89,195,268]; the s tatecharts [174,175,

1.1 Introduction 5

185,193,197]; the interval temporal logic (ITL) and the duration calculus
(DC) [557,559].

The major principles and techniques of abstraction and modelling cov
ered earlier were: property- (sorts, observers, generators, axioms) and/versus
model-oriented abstraction in general, and the model-oriented techniques of
set, Cartesian, list, map and function, including type abstractions; and func
tional, imperative and concurrent (parallel) specification programming tech
niques in particular.

The new, additional principles and techniques of abstraction and modelling
in this volume fall along five axes:

1. An advanced abstraction and modelling axis, covering hierarchical and
compositional modelling and models, denotational and computational se
mantics, configurations: contexts and state, and time and space concepts.
This axis further extends the techniques of Vol. 1. The time concepts will
be further treated along axis (4).

2. A semiotics axis, covering pragmatics, semantics and syntax. This axis
treats, along more systematic lines, what was shown more or less indirectly
in Vol. 1 and previous chapters of Vol. 2 (notably Chap. 3). Axis (5) will
complete our treatment of linguistics.

3. A structuring axis, briefly covering RSL's scheme, class and object con
cepts, as well as UML's class diagram concepts. This "short" axis, for the
first time in these volumes, brings other notational tools into our evolv
ing toolbox. This "extension" or enlargement of the variety of notational
tools brings these volumes close to covering fundamental ideas of UML.
The next axis, (4), completes this expansion.

4. A concurrency axis, covering qualitative aspects of timing: the Petri nets
[238,400,419-421], the sequence charts, SCs, message SCs (MSCs [227-
229]) and live SCs (LSCs [89,195,268]), the statecharts [174,175,185,193,
197], and quantitative aspects of timing in terms of the interval temporal
logic (ITL) [105,320,321,372,403], and the duration calculus (DC) [557,
559]. These specification concepts, available in some form in UML, will
complete these volumes' treatment of, as we call it, "UML-ising" Formal
Techniques.

5. A language development axis, covering crucial steps of the development of
concrete interpreters and compilers for functional (i.e., applicative), im
perative (i.e., "classical"), modular, and parallel programming languages.
This axis completes our treatment of programming language linguistics
matters. The chapters in axis (5) will cover important technical concepts
of run-time structures for interpreted and compiled programs, compiling
algorithms, and attribute grammars.

1.1.4 How Does This Volume "Deliver"?

The previous section outlined, in a sense, a didactics of one main aspect of
software engineering.

6 1 Introduction

So this didactic view of software engineering as a field of activity whose
individual "tasks" can be "relegated" to one, or some simple combination, of
the topics within one or, say, two axes, as listed above offers one way in which
this volume "delivers". That is, the reader will be presented with these topics,
more or less in isolation, one-by-one, but the practicing software engineer
(and the reader as chapter exercise solver) is expected to merge principles
and techniques of previous topics and tools when solving problems.

Another way in which this volume delivers is in the manner in which
each individual (axis) topic is presented. Each topic is presented by means of
many examples. Their "story" is narrated and the problem is given a formal
specification. Where needed, as for the qualitative and quantitative aspects of
concurrency,1 a description is given of (i) their notational apparatus, (ii) the
pragmatics behind them, (hi) their syntax and (iv) their informal semantics.
Method principles and techniques are then enunciated. A heavy emphasis is
placed on examples. References are made to more theoretical treatments of,
in particular, the concurrency topics.

A third way in which this volume delivers is by presenting a "near-full"
spectrum of principles, techniques and tools, as witnessed, for example, by the
combination of using the RSL tool with those of UML's class diagrams, the Petri
Nets, the (Message and Live) Sequence Charts, the Statecharts, the Interval
Temporal Logic and the Duration Calculus.

This can also be seen in the span of abstraction topics: hierarchy and com
position, denotation and computation, configurations (including contexts and
states), temporality (in various guises) and spatiality, and both qualitative and
quantitative aspects of concurrency. Volume 3 covers further abstraction prin
ciples and techniques. Finally this is also witnessed by the span of application
topics: real-time, embedded and safety critical systems, infrastructure com
ponents (railways, production, banking, etc.), and programming languages:
functional, imperative, modular, and parallel. Volume 3 covers further appli
cation topics.

1.2 Formal Techniques "Lite"

Although we shall broach the subject on several occasions throughout this
volume, when we cover formal techniques we shall exclusively cover formal
specification, not formal proofs of properties of specifications.

That may surprise the reader. After all, a major justification of formal
techniques, i.e., formal specifications, is that they allow formal verification.
So why do we not cover formal verification? First, we use, and propagate

The qualitative aspects of concurrency are expressible when using the Petri
Nets, the Message and Live Sequence Charts and the Statecharts. The quantitative
aspects of concurrency are expressible when using the Interval Temporal Logic and
the Duration Calculus.

1.2 Formal Techniques "Lite" 7

the use of, formal techniques in the "lite"2 manner. That is, we take formal
specification rather seriously. And hence we focus on principles and techniques
for constructing effective specifications, i.e., pleasing, elegant, expressive and
revealing specifications. We find (and have over more than 30 years found)
that systems developed in this manner come very, very close to being perfect!

Second, we find that principles and techniques for theorem proving or proof
assistance or model checking, even today (2005) are very much "bound" to
the specific notational system (i.e., specification language), and to its proof
system of rules and tools. And we also find that there is much less a common
consensus on whether proofs should be done in one way or in another way.

For a good introduction to a number of leading approaches to software
verification we refer to the following papers:

1. J. U. Skakkebaak, A. P. Ravn, H. Rischel, and Zhou Chaochen. Speci
fication of embedded, real-time systems. Proceedings of 1992 Euromicro
Workshop on Real-Time Systems, pages 116-121. IEEE Computer Society
Press, 1992.

2. Zhou Chaochen, M. R. Hansen, A. P. Ravn, and H. Rischel. Duration
specifications for shared processors. Proceedings Symp. on Formal Tech
niques in Real-Time and Fault-Tolerant Systems, Nijmegen 6-10 Jan.
1992, LNCS, 1992.

3. A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and verifying
requirements of real-time systems. IEEE Trans. Software Engineering,
19:41-55, 1992.

4. C. W. George. A theory of distributing train rescheduling. In FME'96:
Industrial Benefits and Advances in Formal Methods, proceedings, LNCS
1051,

5. C. W. George. Proving safety of authentication protocols: a minimal ap
proach, in International Conference on Software: Theory and Practice
(ICS 2000), 2000.

6. A. Haxthausen and X. Yong. Linking DC together with TRSL. Proceed
ings of 2nd International Conference on Integrated Formal Methods (IFM
2000), Schloss Dagstuhl, Germany, November 2000, number 1945 in Lec
ture Notes in Computer Science, pages 25-44. Springer-Verlag, 2000.

7. A. Haxthausen and J. Peleska, Formal development and verification of a
distributed railway control system, IEEE Transaction on Software Engi
neering, 26(8), 687-701, 2000.

8. M. P. Lindegaard, P. Viuf and A. Haxthausen, Modelling railway inter
locking systems, Eds.: E. Schnieder and U. Becker, Proceedings of the
9th IFAC Symposium on Control in Transportation Systems 2000, June
13-15, 2000, Braunschweig, Germany, 211-217, 2000.

9. A. E. Haxthausen and J. Peleska, A domain specific language for railway
control systems, Sixth Biennial World Conference on Integrated Design

2 "Lite" is an "Americanism", and, as many such, is a nice one that indicates
that we take certain things seriously, but not necessarily all that "seriously".

8 1 Introduction

and Process Technology, (IDPT 2002), Pasadena, California, Society for
Design and Process Science, P. O. Box 1299, Grand View, Texas 76050-
1299, USA, June 23-28, 2002.

10. A. Haxthausen and T. Gjaldbaek, Modelling and verification of interlock
ing systems for railway lines, 10th IFAC Symposium on Control in Trans
portation Systems, Tokyo, Japan, August 4-6, 2003.

One runs a danger by adhering too much to the above "liteness" principle
(perhaps it is one of lazy convenience?). That danger is as follows: Formulat
ing which property is to be verified, of a specification, or, respectively, which
correctness criterion is to be verified "between" a pair of specifications, and
carrying through the proofs often helps us focus on slightly different abstrac
tions than if we did not consider lemmas, propositions and theorems to be
verified, or verification itself. And sometimes these proof-oriented abstrac
tions turn out to be very beautiful, very much "to the point" and also "just",
specification-wise!

So what do we do? Well, we cannot cover everything, therefore we must
choose. These volumes have made the above choice. So, instead, we either refer
the reader to other seminal textbooks on correctness proving [20,97,151,205,
206,363,429], even though these other textbooks pursue altogether different
specification approaches, or to two books that pursue lines of correctness
development very much along the lines, otherwise, of this book: Cliff Jones'
book [247], which uses VDM, and the RAISE Method book [131].

1.3 A n RSL P r i m e r

This is an ultrashort introduction to the RAISE Specification Language, RSL.

1.3.1 Types

We refer the reader to Vol. 1, Chaps. 5 and 18.
The reader is kindly asked to study first the decomposition of this section

into its subparts and sub-subparts.

Type Expressions

RSL has a number of built-in types. There are the Booleans, integers, natural
numbers, reals, characters, and texts. From these one can form type expres
sions: finite sets, infinite sets, Cartesian products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then:

. Basic Types .

type
[1] Bool

1.3 An RSL Primer 9

[2] Int
[3] Nat
[4] Real
[5] Char
[6] Text

Type Expressions

[7] A-set
[8] A-infset
[9] A x B x ... x C
[10] A*
[11] A"
[12] A ^ B
[13] A ->• B
[14] A 4 B
[15] (A)
[16] A | B | ... | C
[17] mk_id(sel_a:A,...,sel_b:B)
[18] sel_a:A ... sel_b:B

The following are generic type expressions:

1. The Boolean type of truth values false and true.
2. The integer type on integers ..., -2 , - 1 , 0, 1, 2,
3. The natural number type of positive integer values 0, 1, 2, ...
4. The real number type of real values, i.e., values whose numerals can be

written as an integer, followed by a period ("."), followed by a natural
number (the fraction).

5. The character type of character values "a", "b", ...
6. The text type of character string values aa , aaa , ..., abc , ...
7. The set type of finite set values.
8. The set type of infinite set values.
9. The Cartesian type of Cartesian values.

10. The list type of finite list values.
11. The list type of infinite list values.
12. The map type of finite map values.
13. The function type of total function values.
14. The function type of partial function values.
15. In (A) A is constrained to be:

• either a Cartesian B x C x ... x D, in which case it is identical to type
expression kind 9,

10 1 Introduction

• or not to be the name of a built-in type (cf., 1-6) or of a type, in
which case the parentheses serve as simple delimiters, e.g., (A ^ B),
or (A*)-set, or (A-set)list, or (A|B) ^ (C|D|(E ^ F)), etc.

16. The postulated disjoint union of types A, B, . . . , and C.
17. The record type of mk_id-named record values mk_id(av bv), where av,

. . . , bv, are values of respective types. The distinct identifiers sel_a, etc.,
designate selector functions.

18. The record type of unnamed record values (av bv), where av, . . . , bv,
are values of respective types. The distinct identifiers sel_a, etc., designate
selector functions.

Type Definitions

Concrete Types

Types can be concrete in which case the structure of the type is specified by
type expressions:

. Type Definition .

type
A = Type_expr

Some schematic type definitions are:

. Variety of Type Definitions

[1] Type_name = Type_expr /* without | s or subtypes */
[2] Type_name = Type_expr_l | Type_expr_2 | ... | Type_expr_n
[3] Type_name = =

mk_id_l(s_al:Type_name_al,...,s_ai:Type_name_ai) |
... | _
mk_id_n(s_zl:Type_name_zl,...,s_zk:Type_name_zk)

[4] Type_name :: sel_a:Type_name_a ... sel_z:Type_name_z
[5] Type_name = {| v:Type_name' • V(v) |}

where a form of [2-3] is provided by combining the types:

. Record Types

Type_name = A | B | ... | Z
A = = mk_id_l(s_al:A_l,.. . ,s_ai:A_i)
B = = mk_id_2(s_bl:B_l, . . . ,s_bj:BJ)

Z = = mk_id_n(s_zl:Z_l,...,s_zk:Z_k)

1.3 An RSL Primer 11

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by
means of predicates. The set of values b which have type B and which satisfy
the predicate V, constitute the subtype A:

Subtypes

type
A = {| b:B • V(b) |}

Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

. Sorts

type
A, B, ..., C

1.3.2 The RSL Predicate Calculus

We refer the reader to Vol. 1, Chap. 9.

Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values. Then:

Propositional Expressions

false, true
a, b, ..., c
~a, aAb, aVb, a=>b, a=b, a^b

are propositional expressions having Boolean values. ~, A, V, =>, = and ^ are
Boolean connectives (i.e., operators). They are read: not, and, or, if then (or
implies), equal and not equal.

12 1 Introduction

Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values, let x, y, ..., z (or term expressions) designate non-Boolean values and
let i, j k designate number values, then:

. Simple Predicate Expressions .

false, true
a, b, ..., c
~a, aAb, aVb, a=>b, a=b, a^b
x=y, x^y,
i<j, i<j, i>j, i>j, •••

are simple predicate expressions.

Quantified Expressions

Let X, Y C be type names or type expressions, and let V(x), Q(y) and
1Z(z) designate predicate expressions in which x,y and z are free. Then:

. Quantified Expressions .

V x:X • V{x)
3 y:Y . Q(y)
3 ! z:Z • TZ(z)

are quantified expressions — also being predicate expressions. They are "read"
as: For all x (values in type X) the predicate V{x) holds; there exists (at least)
one y (value in type Y) such that the predicate Q(y) holds; and there exists
a unique z (value in type Z) such that the predicate 1Z(z) holds.

1.3.3 Concrete RSL Types

We refer the reader to Vol. 1, Chaps. 13-16.

Set Enumerations

We refer the reader to Vol. 1, Chap. 13, Sect. 13.2.
Let the below a's denote values of type A, then the below designate simple

set enumerations:

. Set Enumerations .

{{}, {a}, {ai,a2,...,am}, ...} € A-set
{{}, {a}, {ai,a2,...,am}, ..., {ai,a2,...}} £ A-infset

1.3 An RSL Primer 13

The expression, last line below, to the right of the =, expresses set comprehen
sion. The expression "builds" the set of values satisfying the given predicate.
It is highly abstract in the sense that it does not do so by following a concrete
algorithm.

. Set Comprehension

type
A, B
P = A ->• Bool
Q = A ^ B

value
comprehend: A-infset x P x Q - > B-infset
comprehend(s,V,Q) = { Q(a) | a:A • a £ s A V(a) }

Cartesian Enumerations

We refer the reader to Vol. 1, Chap. 14, Sect. 14.2.
Let e range over values of Cartesian types involving A, B, ..., C (allow

ing indexing for solving ambiguity), then the below expressions are simple
Cartesian enumerations:

. Cartesian Enumerations .

type
A, B, ..., C
A x B x ... x C

value
... (el,e2,...,en) ...

List Enumerations

We refer the reader to Vol. 1, Chap. 15, Sect. 15.2.
Let a range over values of type A (allowing indexing for solving ambiguity),

then the below expressions are simple list enumerations:

. List Enumerations .

{(), (a), ..., (al,a2,..,am), ...} e A*
{(), (a), ..., (al,a2,...,am), ..., (al,a2,...,am,...), ...} e A"

(ei .. ej)

14 1 Introduction

The last line above assumes e, and ej to be integer-valued expressions. It then
expresses the set of integers from the value of ê to and including the value of
ej. If the latter is smaller than the former, then the list is empty.

The last line below expresses list comprehension.

. List Comprehension .

type
A, B, P = A ->• Bool, Q = A 4 B

value
comprehend: A" x P x Q 4 B u

comprehend (1st, V,Q) =
(Q(lst(i)) | i in (L.len 1st) • 7>(lst(i)))

M a p Enumerations

We refer the reader to Vol. 1, Chap. 16, Sect. 16.2.
Let a and b range over values of type A and B, respectively (allowing

indexing for solving ambiguity), then the below expressions are simple map
enumerations:

. Map Enumerations .

type
A, B
M = A ^ B

value
a,al,a2,...,a3:A, b,bl,b2,...,b3:B

[], [ai-^b], ..., [ali-^bl,a2i-^b2,...,a3i-)-b3] V e M

The last line below expresses map comprehension:

. Map Comprehension _

type
A, B, C, D
M = A ^ B
F = A 4 C
G = B 4 D
P = A ->• Bool

value
comprehend: M x F x G x P -> (C ^ D)

1.3 An RSL Primer 15

comprehend(m,.F,t/,'P) =
[J7(a) H> (?(m(a)) | a:A • a € dom m A V{&)

Set Operations

We refer the reader to Vol. 1, Chap. 13, Sect. 13.2.

value
e
£
u
u
n
n

A x A-infset ->• Bool
A x A-infset ->• Bool
A-infset x A-infset —> A-infset
(A-infset)-infset —> A-infset
A-infset x A-infset —> A-infset
(A-infset)-infset —> A-infset

\: A-infset x A-infset —> A-infset
C
C

=
^

A-infset x A-infset —>• Bool
A-infset x A-infset —>• Bool
A-infset x A-infset —>• Bool
A-infset x A-infset —>• Bool

card: A-infset —> Nat

examples
a £ {a,b,c}
a £ {}, a £ {b,c}
{a,b,c} U {a,b,d,e}
U{{a},{a,b},{a,d}}
{a,b,c} fl {c,d,e} =
n{{a},{a,b},{a,d}}
{a,b,c} \ {c,d} = {<
{a,b} C {a,b,c}
{a,b,c} C {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} ^ {a,b}
card {} = 0, card

= {a,b,
= {a,b
{c}
= {a}
i,b}

{a,b,c}

^pt Fyamplpq

c,d,e}
d}

= 3

16 1 Introduction

€: The membership operator expresses that an element is a member of a
set.
^: The nonmembership operator expresses that an element is not a member
of a set.
U: The infix union operator. When applied to two sets, the operator gives
the set whose members are in either or both of the two operand sets,
fl: The infix intersection operator. When applied to two sets, the operator
gives the set whose members are in both of the two operand sets.
\ : The set complement (or set subtraction) operator. When applied to
two sets, the operator gives the set whose members are those of the left
operand set which are not in the right operand set.
C: The proper subset operator expresses that all members of the left
operand set are also in the right operand set.
C: The proper subset operator expresses that all members of the left
operand set are also in the right operand set, and that the two sets are
not identical.
= : The equal operator expresses that the two operand sets are identical.
7̂ : The nonequal operator expresses that the two operand sets are not
identical.

• card: The cardinality operator gives the number of elements in a finite
set.

The operations can be defined as follows (= is the definition symbol):

v a l u e
s' U s"
s' n s"
s' \ s"
s' C s"
s' C s"
s' = s"
s' # s"
c a r d s

i f s

= { a | a:A • a e s' V a £
= { a a:A • a € s' A a £
= { a a:A • a £ s' A a g-

= V a:A • a e s' => a e s"
= s' C s" A 3 a:A • a £ s'
= V a:A • a e s' = a e s"
= s' n s" # {}
=
= {} t h e n 0 e lse

le t a:A • a £ s in 1 + c a r d (s
p r e

c a r d s
s / * is a finite set * /

s"}
s"}
3"}

A a ^
= sCs '

\{a})

= c h a o s / * tests for infinity of s

s'
A s'Cs

e n d e n d

*/

1.3 An RSL Primer 17

Cartesian Operations

We refer the reader to Vol. 1, Chap. 14, Sect. 14.2.

type
A, B, C
gO: GO = A x B x C
gl: Gl = (A x B x C)
g2: G2 = (A x B) x C
g3: G3 = A x (B x C)

value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):Gl
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (al,bl,cl) = gO,

(al',bl',cl') = gl in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

List Operations

We refer the reader to Vol. 1, Chap. 15, Sect. 15.2.

List Operations

value
hd: A" 4 A
tl: A" 4 A"
len: A" 4 Nat
inds: A" ->• Nat-infset
elems: A" —> A-infset
.(.): A" x Nat 4 A
~: A* x Aw 4 A"
=: A" x Au -> Bool
^: A" x Au -> Bool

List Examples

examples
hd(al,a2,...,am)=al
tl(al,a2,...,am) = (a2,...,am)
len(al,a2,...,am)=m
inds(al,a2,...,am)={l,2,...,m}
elems(al,a2,...,am) = {al,a2,...,am}
(al,a2,...,am)(i)=ai

18 1 Introduction

(a,b,c)~(a,b,d) = (a,b,c,a,b,d)
(a,b,c) = (a,b,c)
(a,b,c) 7̂ (a,b,d)

• hd: Head gives the first element in a nonempty list.
• tl: Tail gives the remaining list of a nonempty list when Head is removed.
• len: Length gives the number of elements in a finite list.
• inds: Indices gives the set of indices from 1 to the length of a nonempty

list. For empty lists, this set is the empty set as well.
• elems: Elements gives the possibly infinite set of all distinct elements in

a list.
• £(i): Indexing with a natural number, i larger than 0, into a list £ having a

number of elements larger than or equal to i, gives the ith element of the
list.

• ~: Concatenates two operand lists into one. The elements of the left
operand list are followed by the elements of the right. The order with
respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.
• T :̂ The nonequal operator expresses that the two operand lists are not

identical.

The operations can also be defined as follows:

. List Operation Definitions .

value
is_fmite_list: A" ->• Bool

len q =
case is_finite_rist(q) of

true —> if q = () then 0 else 1 + len tl q end,
false —> chaos end

inds q =
case is_finite_list(q) of

true —> { i | i:Nat • 1 < i < len q },
false ->• { i | i:Nat • î O } end

elems q = { q(i) | i:Nat • i € inds q }

q(i) =
if i= l

then

then let a:A,q :Q • q=(a)^q in a end

1.3 An RSL Primer 19

else chaos end
else q(i— 1) end

fq ~ iq =
(if 1 < i < len fq then fq(i) else iq(i — len fq) end
| i:Nat • if len iq^chaos then i < len fq+len end)

pre is_fmite_list(fq)

• / • //
iq = iq =

inds iq = inds iq A V i:Nat • i £ inds iq => iq (i) = iq (i)

iq ^ iq = ~(iq = iq)

Map Operations

We refer the reader to Vol. 1, Chap. 16, Sect. 16.2.
. Map Operations

value
m(a): M - > A 4 B , m(a) = b

dom: M —>• A-infset [domain of map]
dom [ali->-bl,a2i->-b2,...,ani->-bn] = {al,a2,...,an}

rng: M —>• B-infset [range of map]
rng [alH>bl,a2H>b2,...,anH>bn] = {bl,b2,...,bn}

f: M x M —>• M [override extension]
[a ^ b , a ' ^ b ' , a " ^ b "] f [a ' ^b" , a "^b '] = [a ^ b , a ' ^ b " , a " ^ b ']

U: M x M -> M [merge U]
[a ^ b , a ' ^ b ' , a " ^ b "] U [a/'V+b"'] = [a^b , a ' ^b ' , a "^b" , a ' " ^b ' "]

\: M x A-infset —>• M [restriction by]
[a ^ b , a ' ^ b ' , a " ^ b "] \ { a } = [aV+b',a"h+b"]

/: M x A-infset —>• M [restriction to]
[a^b ,a '^b ' , a"^b"] /{a ' , a"} = [aV+b',a"h+b"]

= , ^ : M x M ->• Bool

20 1 Introduction

: (A jfr B) x (B T,f C) ->• (A ^ C) [composition]
[a^b,aV^b'] ° [bh-H:,bW,b'W] = [a ^ c , a W]

• m(a): Application gives the element that a maps to in the map m.
• dom: Domain/Definition Set gives the set of values which maps to in a

map.
• rng: Range/Image Set gives the set of values which are mapped to in a

map.
• f: Override/Extend. When applied to two operand maps, it gives the map

which is like an override of the left operand map by all or some "pairings"
of the right operand map.

• U: Merge. When applied to two operand maps, it gives a merge of these
maps.

• \ : Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements that are not in the
right operand set.

• / : Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements of the right operand
set.

• =: The equal operator expresses that the two operand maps are identical.
• 7̂ : The nonequal operator expresses that the two operand maps are not

identical.
• °: Composition. When applied to two operand maps, it gives the map from

definition set elements of the left operand map, mi, to the range elements
of the right operand map, 7712, such that if a is in the definition set of mi
and maps into b, and if b is in the definition set of 7712 and maps into c,
then a, in the composition, maps into c.

The map operations can also be defined as follows:

. Map Operation Redefinitions .

value
rng m = { m(a) | a:A • a £ dom m }

ml f m2 =
[an>b I a:A,b:B •

a £ dom ml \ dom m2 A b=ml(a) V a € dom m2 A b=m2(a)]

ml U m2 = [ai-)-b | a:A,b:B •
a £ dom ml A b=ml(a) V a £ dom m2 A b=m2(a)]

m \ s = [ai->-m(a) | a:A • a £ dom m \ s]
m / s = [ai->-m(a) | a:A • a £ dom m n s]

1.3 An RSL Primer 21

ml = m2 =
dom ml = dom m2 A V a:A • a £ dom ml =>• ml(a) = m2(a)

ml 7̂ m2 = ~(ml = m2)

[ai->-c | a:A,c:C • a € dom m A c = n(m(a))]
pre rng m C dom n

1.3.4 A-Calculus+Functions

We refer the reader to Vol. 1, Chaps. 6, 7 and 11.

The A-Calculus Syntax

We refer the reader to Vol. 1, Chap. 7, Sect. 7.2.

. A-Calculus Syntax .

type /* A BNF Syntax: */
(L) ::= (V) | (F) | (A) | ((A))
(V) ::= /* variables, i.e. identifiers */
(F) ::= A(V> • (L)
(A) ::= ((L>(L>)

value /* Examples */
(L): e, f, a, ...
(V): x, ...
(F): A x . e, ...
(A): fa, (fa),f(a), (f)(a), ...

Sections 8.4-8.5 cover the notion of BNF grammars in detail.

Free and Bound Variables

We refer the reader to Vol. 1, Chap. 7, Sect. 7.3.

Free and Bound Variables
Let x,y be variable names and e, f be A-expressions.

• (V): Variable x is free in x.
• (F): x is free in Xy «e if x ^ y and x is free in e.
• (A): x is free in /(e) if it is free in either / or e (i.e., also in both).

22 1 Introduction

Substitution

We refer the reader to Vol. 1, Chap. 7, Sect. 7.4. In RSL, the following rules
for substitution apply:

. Substitution

• subst([N/x]x) = N;
• subst([N/x]a) = a,

for all variables a^ x;
• subst([N/x](P Q)) = (subst([N/x]P) subst([N/x]Q));
• subst([N/x](Ax«P)) = A y P ;
• subst([N/x](A yP)) = Xy subst([N/x]P),

if x^y and y is not free in N or x is not free in P;
• subst([N/x](AyP)) = Az«subst([N/z]subst([z/y]P)),

if y^x and y is free in N and x is free in P
(where z is not free in (N P)).

a-Renaming and /3-Reduction

We refer the reader to Vol. 1, Chap. 7, Sect. 7.4.

. a and /3 Conversions

• a-renaming: Ax«M
If x, y are distinct variables then replacing x by y in Ax«M results in
Aysubst([y/x]M). We can rename the formal parameter of a A-function
expression provided that no free variables of its body M thereby become
bound.

• /3-reduction: (Ax«M)(N)
All free occurrences of x in M are replaced by the expression N provided
that no free variables of N thereby become bound in the result. (Ax«M)(N)
= subst([N/x]M)

Function Signatures

We refer the reader to Vol. 1, Chaps. 6 and 11. For sorts we may want to
postulate some functions:

. Sorts and Function Signatures .

type
A, B, C

value
obs_B: A -> B,

1.3 An RSL Primer 23

obs_C: A ->• C,
gen_A: BxC ->• A

Function Definitions

We refer the reader to Vol. 1, Chap. 11, Sects. 2-6. Functions can be defined
explicitly:

Explicit Function Definitions

value
f : A x B x C - * D
f(a,b,c) = Value_Expr

g: B-infset x (D ^ C-set) -4- A*
g(bs,dm) = Value_Expr
pre "P(bs,dm)

comment: a, b, c, bs and dm are parameters of appropriate types

or implicitly:

. Implicit Function Definitions

value
f : A x B x C ^ D
f(a,b,c) as d
post Pi(a,b,c,d)

g: B-infset x (D ^ C-set) -4- A*
g(bs,dm) as al
pre P2(bs,dm)
post P3(bs,dm,al)

comment: a, b, c, bs and dm are parameters of appropriate types

The symbol 4 indicates that the function is partial and thus not defined for
all arguments. Partial functions should be assisted by preconditions stating
the criteria for arguments to be meaningful to the function.

24 1 Introduction

1.3.5 Other Applicative Expressions

Let Expressions

We refer the reader to Vol. 1, Chap. 19, Sect. 19.2.
Simple (i.e., nonrecursive) let expressions:

. Let Expressions .

let a = £d in £&(a) end

is an "expanded" form of:

(Aa.£t(a))(£d)

Recursive let expressions are written as:

. Recursive let Expressions .

let f = Aa:A • E(f) in B(f,a) end

is "the same" as:

let f = YF in B(f,a) end

where:

F = Ag«Aa«(E(g)) and YF = F(YF)

Predicative let expressions:

Predicative let Expressions .

let a:A • V{a) in B(a) end

express the selection of a value a of type A which satisfies a predicate V(a)
for evaluation in the body B(a).

Patterns and wild cards can be used:

. Patterns .

let {a} U s = set in ... end
let {a,_} U s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

1.3 An RSL Primer 25

let
let

let
let

(a)'
(a,_

"£ =
_,b>

[an>b]
[an>b,_

= list
~l =

U m

Ju

in .
list

. end
in ... end

= map in ...
m = map in

end
... end

Condi t iona l s

We refer the reader to Vol. 1, Chap. 19, Sect. 19.5.
Various kinds of conditional expressions are offered by RSL:

Conditionals

if b_expr t h e n c_expr e l se a_expr e n d

if b_expr t h e n c_expr e n d = / * same as: */
if b_expr t h e n c_expr e lse skip e n d

if b _ e x p r _ l t h e n c _ e x p r _ l
elsif b _ e x p r _ 2 t h e n c_expr_2
elsif b _ e x p r _ 3 t h e n c_expr_3

elsif b _ e x p r _ n t h e n c_expr_n e n d

case expr of
cho ice_pa t t e rn_ l —>• e x p r _ l ,
choice_pat tern_2 —>• expr_2,

cho ice_pa t t e rn_n_or_wi ld_card —>• expr_n
e n d

O p e r a t o r / O p e r a n d E x p r e s s i o n s

We refer the reader to Vol. 1, Chap. 19.

Operator/Operand Expressions

(Expr) ::=
(Prefix_Op) (Expr)

| (Expr) (Infix_Op) (Expr)
J (Expr) (Suffix_Op)

26 1 Introduction

(Preflx_Op) ::=
— | ~ | U | PI | card | l en | inds | e l e m s | hd | t l | d o m | rng

(Infix_Op) ::=
= | # | = | + | - | * l t | / | < | < | > | > | A | V | = >
| G | ^ | u | n | \ | c | c | D | D n t | °

(Suffix_Op) ::= !

1.3.6 I m p e r a t i v e C o n s t r u c t s

We refer the reader to Vol. 1, Chap. 20.
Often, following the RAISE method, software development starts with

highly abstract-applicative constructs which, through stages of refinements,
are turned into concrete and imperative constructs. Imperative constructs are
thus inevitable in RSL.

Variables and A s s i g n m e n t

We refer the reader to Vol. 1, Chap. 20, Sects. 20.2.1-20.2.2.

. Variables and Assignment .

0. variable v:Type := expression
1. v := expr

S t a t e m e n t S e q u e n c e s and skip

We refer the reader to Vol. 1, Chap. 20, Sects. 20.2.5 and 20.2.4.
Sequencing is expressed using the ';' operator, skip is the empty statement

having no value or side-effect.

. Statement Sequences and skip

2. skip
3. s tm_ l ; s tm_2 ; . . . ; s tm_n

1.3 An RSL Primer 27

I m p e r a t i v e Condi t iona l s

We refer the reader to Vol. 1, Chap. 20, Sects. 20.2.6 and 20.2.8.

. Imperative Conditionals

4. if expr t h e n s t m _ c e lse s t m _ a e n d
5. case e of: p_l—>S_l(p_l),. . . ,p_n—>-S_n(p_n) e n d

I terat ive Condi t iona l s

We refer the reader to Vol. 1, Chap. 20, Sect. 20.2.7.

. Iterative Conditionals

6. whi l e expr do stm e n d
7. do stmt unt i l expr e n d

I terat ive S e q u e n c i n g

We refer the reader to Vol. 1, Chap. 20, Sect. 20.2.9.

. Iterative Sequencing

8. for b in l is t_expr • P(b) do S(b) e n d

1.3.7 P r o c e s s C o n s t r u c t s

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.

P r o c e s s C h a n n e l s

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.1.
Let A and B stand for two types of (channel) messages and i:Kldx for

channel array indexes, then:

. Process Channels .

channel c:A
channel { k[i]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of commu
nicating values of the designated types (A and B).

28 1 Introduction

Process Composition

We refer the reader to Vol. 1, Chap. 21, Sects. 21.4.4-21.4.7.
Let P and Q stand for names of process functions, i.e., of functions which

express willingness to engage in input and/or output events, thereby commu
nicating over declared channels.

Let P() and Q(i) stand for process expressions, then:

P() II Q(i)
P() D Q(i)
po n Q(i)
P() W QO

Prnrpqq Cnmpnqitinn

Parallel composition
Nondeterministic external choice (either/or)
Nondeterministic internal choice (either/or)
Interlock parallel composition

express the parallel (||) of two processes, or the nondeterministic choice be
tween two processes: either external ([]) or internal (|~|). The interlock (jj-)
composition expresses that the two processes are forced to communicate only
with one another, until one of them terminates.

Input/Output Events

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.2.
Let c, k[i] and e designate channels of type A and B, then:

Input/Output Events

c ?, k[i] ? Input
c ! e, k[i] ! e Output

expresses the willingness of a process to engage in an event that "reads" an
input, and respectively "writes" an output.

Process Definitions

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.3.
The below signatures are just examples. They emphasise that process func

tions must somehow express, in their signature, via which channels they wish
to engage in input and output events.

Process Definitions

value
P: Unit —> in c out k[i] Unit
Q: i:KIdx —>• out c in k[i] Unit

1.4 Bibliographical Notes 29

P() = ... c ? ... k[i] !e ...
Q(i) = ... k[i] ? ... c ! e . . .

The process function definitions (i.e., their bodies) express possible events.

1.3.8 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes,
and objects, as is often done in RSL. An RSL specification is simply a sequence
of one or more types, values (including functions), variables, channels and
axioms:

. Simple RSL Specifications .

type

variable

channel

value

axiom

1.4 Bibliographical Notes

The main references to RSL — other than Vol. 1 of this series — are [130,131].

Part II

SPECIFICATION FACETS

The prerequisites for studying this part are that you possess some fa
miliarity with abstraction and modelling, property- and model-oriented
specifications (a la RSL), and applicative, imperative and parallel specifi
cation programming.
The aims are to introduce along an axis of model structuring and contents
the concepts of hierarchies and compositions (of development as well as
of presentation of description documents), to introduce denotational and
computational semantics and to introduce the concepts of configurations
in terms of the concepts of contexts and states.
The objective is to make the serious reader versatile in an important
complement of abstraction and modelling principles and techniques.
The treatment is systematic to formal — with Chaps. 2-4 readable in
any order.

32

Introduction

In earlier chapters of this volume and of Vol. 1 of this series we covered
a number of abstraction and specification programming concepts: property-
and model-oriented abstractions, that is, algebraic abstractions, respectively
set-theoretic abstractions (sets, Cartesians, lists, maps and functions). In later
chapters we shall cover specification programming, that is, applicative, imper
ative and concurrent (i.e., parallel) specifications. In this part we shall first,
however, apply the property- and model-oriented abstraction and the specifi
cation programming principles and techniques to tackle additional abstraction
and modelling principles and techniques.

Categories of Abstraction and Modelling

Our decomposition, so far, into property- and model-oriented specification
programming, and modularisation abstraction principles and techniques, rep
resents a deliberate choice. We shall in subsequent chapters introduce further
abstraction principles and techniques. We can say that the sum total of these
methodological concerns represents a categorisation, which we shall later jus
tify. Suffice it, for now, to motivate it: One motivational impetus is that of
separation of concerns. We believe that the various categories represent more
or less orthogonal concerns. Another motivational impetus is that of pedagog
ics. We are "carving", as it were, the seemingly complex "web" of principles
and techniques into manageable pieces. A final impetus is that of didactics.
It is, of course, related to the issue of 'separation of concerns'. The various
categories represent different theories.

Structure of Part II

There seem to be several axes of description and presentation. Let us briefly
review three of these axes. One axis is of separable, but orthogonal means of
developing and/or expressing abstractions, that is, hierarchically versus com-
positionally, denotationally versus operationally, conhgurationally, in terms
of contexts and states, and temporally and spatially. We will cover the above
in this part. Another axis is of structuring the development and presenta
tion into modules such as, for example, offered in RSL: possibly parameterised
schemes, consisting of possibly nested classes, and instantiating schemes and
classes into objects. We shall cover modularisation in Chap. 9.

Discussion

In Vol. 1 of this series we paraphrased and treated in some detail the main
abstraction and modelling approaches to both property- and model-oriented

33

specifications. Chap. 12 of Vol. 1, in particular, surveyed these abstraction
and modelling approaches. In these volumes we strive to bring to the readers
what we consider the main principles, techniques and tools for methodological
software development. In the present part we shall further identify numerous
principles and techniques. Most of these, as were some of the previous, are
presented for the first time in textbook form. Please take time to study them
carefully. Please think about them as you proceed into your daily software
development. Many have found them useful before you. These techniques all
attest to the intellectual vibrancy of our field: so rich in strongly interrelated
concepts, so full of opportunities for intellectual challenges and enrichment.
Indeed, it is fun to develop software.

2

Hierarchies and Compositions

• The prerequisi te for studying this chapter is that you have studied and
understood, to a reasonable extent and depth, Vol. 1 of this series of text
books on software engineering.

• The aims are to introduce the development principles of hierarchical and
compositional specification developments, as well as the hierarchical and
compositional presentation of such specifications.

• The objective is to make you able to choose an appropriate develop
ment as well as an appropriate presentation strategy: hierarchical and/or
compositional.

• The t r ea tmen t is from systematic to semi-formal.

Hierarchy: Any system of persons or things in a graded order.
A series of successive terms of descending rank.

Composition: Relative disposition of parts.

The Random House American Everyday Dictionary. 1949-1961 [485]

2.1 The Issues

The main issues of this chapter are those of non-atomic parts: the relation of
parts to wholes, whether viewed first as a whole, hierarchically, or first viewed
from basic parts, compositionally.

The above was itself a hierarchical (i.e., a met a-) view. Now to a composi
tional meta-view of the problem being addressed: The derived issues are those
of [dejcompositionality, that is, the operations of composing and decompos
ing wholes from, respectively into, parts; and of expressing relations between
parts and wholes.

36 2 Hierarchies and Compositions

2.1.1 Informal Illustrations

Scientists, engineers, managers and many others like to present complex ideas
diagrammatically. A category of such graphic presentations is in the form of
trees, which have roots and subtrees.

Example 2.1 Hierarchical Presentation: Trees:

1. A tree has a labelled root and a possibly empty set of uniquely labeled
sub-trees.

2. Subtrees are trees.
3. Roots are further unexplained quantities.
4. Root and subtree labels are further undefined.

In programming languages we speak of values.

Example 2.2 Compositional Presentation: Values:

1. There are record field identifiers and there are natural number vector
indices starting from index 1.

2. There are simple, scalar values: Booleans, integers, and characters.
3. Scalar and compound values can be composed into compound values:

(a) Flexible vector values, which consist of an indefinite collection of con
secutively indexed values of the same type

(b) Record values, which consist of a finite collection of field identified
values

4. Scalar and compound values are values.

2.1.2 Formal Illustrations

Example 2.3 Compositional Model of Trees: We refer to Example 2.1:

type
[0] N, L
[1] Tree = N x (L ^ Tree)

Here line [0] corresponds to items 3-4 of Example 2.1, and line [1] corresponds
to items 1-2. Thus they are in reverse order to one another: compositional -H-
hierarchical! •

Example 2.4 Hierarchical Model of Values: We refer to Example 2.2. The
correspondence between lines of Example 2.2 and of the formulas below is:
Line [1] corresponds to item 4 above; line [2] corresponds to item 3 above; line

2.2 Initial Methodological Consequences 37

[3] corresponds to item 3(b) above; line [4] corresponds to item 3(a) above;
line [5] corresponds to item 2 above; and line [6] corresponds to item 1 above.

type
[1
[2
[3
[4
[5
[6

VAL = = com(c:CmpVAL) | sca(s:ScaVAL)
CmpVAL = = rec(nRecVAL) | vec(v:VecVAL)
RecVAL = Fid -^ VAL
VecVAL = VAL*
ScaVAL = = bv(b:Bool) | iv(i:Int) | cv(c:Char)
Fid

Line [6] contains only a specification relevant to records. Line [6] does not
contain a specification part corresponding to the mention of natural number
indices in Example 2.3. That "mentioning" is implied in the use of the RSL
list type in formula line [4]. •

Thus the two definitions are, line-wise, basically in reverse order of one an
other. That is, compositional O (where -O- means versus) hierarchical!

2.2 Initial Methodological Consequences

2.2.1 Some Definitions

The definition of trees (Example 2.1) started with recursively composing trees
from roots and the defined concept. It then went on to define the "lesser", i.e.,
the component subsidiary notions. The recursive descent from the root of a
tree towards its leaves, or — vice versa — the recursive ascent from leaves to
wards the root, are powerful concepts, both in processing (presenting, reading,
understanding or mechanically interpreting) and in constructing (developing)
treelike structures. Among such structures we may have the kinds of systems
that we wish to describe and the descriptions themselves.

We say that a tree represents a hierarchy. We may describe the hierarchy
by explaining the roots, the branches of a(ny) subtree and the leaves. We
may thus liken or "equate" a system (a domain, a set of requirements or a
software design) by a tree. We may choose to develop the tree structure from
the root towards the leaves (also, colloquially, "in the vernacular", known as
"top-down"), or we may choose to develop the tree structure from the leaves
towards the root (colloquially known as "bottom-up"1). By "developing the
tree" we here mean: constructing a description of the system.

1 Obviously those who coined the terms "top-down" and "bottom-up" first, had
a two-dimensional, "vertical", picture in mind; and second, drew or imagined trees
with roots "uppermost" and branches "lowermost"!

38 2 Hierarchies and Compositions

Hierarchical A b s t r a c t i o n

Character i sa t ion . By a hierarchical abstraction we mean a description (or
a development) which initially emphasises the overall structure of the phe
nomenon or concept ("thing", system, language) being described (or devel
oped) as decomposable into parts and which then proceeds to emphasise the
further decomposition of parts into subsidiary such, etc., descending towards
a final emphasis on the atomic parts of the phenomenon or concept. •

"Top-down"

We colloquially refer to a development or a presentation which primarily em
phasises hierarchical abstraction as a "top-down affair".

C o m p o s i t i o n a l A b s t r a c t i o n

Character i sa t ion . By a compositional abstraction we mean a description
(or a development) which initially emphasises (i.e., presents or develops) the
atomic parts of the phenomenon or concept being described (or developed) and
which then proceeds to emphasise the composition of concepts from atomic
par ts , etc., ascending towards a final emphasis on the whole phenomenon or
concept as composed from parts . •

"Bottom-up"

We call a development or a presentation which primarily emphasises compo
sitional abstraction a "bottom-up affair".

2.2.2 Pr inc ip le s and Techniques

Pr inc ip le s . A presentation of a description of a phenomenon or concept may
be either hierarchical or compositional. •

Pr inc ip le s . A development of a description of a phenomenon or concept may
be either hierarchical or compositional. •

Pr inc ip le s . Development and Presentation: Development of a description
of a phenomenon or concept may be performed in one way, and it may be
presented in the "reverse" way. •

Pr inc ip le s . Hierarchical development can take place only if the developers
already have a good grasp of the development universe of discourse: Over
all concepts to be decomposed must already be basically understood before
decomposition can take place. •

2.2 Initial Methodological Consequences 39

Principles. Compositional development takes place if the developers do not
already grasp the development universe of discourse: From "smaller", i.e., less
composite, but well-understood parts, one composes "larger", now "more"
composite, and, by now, well-understood parts. •

Techniques. Hierarchy Development: Having chosen, or by necessity been
forced to conduct, hierarchical development the developer selects the phenom
ena and concepts to be decomposed, decomposes them into suitable composi
tions, determines the constituent phenomena or concepts, and hence models,
and records these: developing types of entities, signatures (and possibly also
definitions) of functions (including predicates and behaviours), and determin
ing whether process (i.e., behavioural) models are relevant, including channels
and events. Then the developer decides whether to present the development
hierarchically or compositionally. •

Techniques. Composition Development: Having chosen, or by necessity been
forced to conduct compositional development, the developer selects the basic
phenomena and concepts of concern and composes them into possible suitable
compositions, determines their new "the whole is more than the parts" phe
nomena or concepts and hence models, and records these: developing types
of entities, signatures (and possibly also definitions) of functions (including
predicates and behaviours), and determining whether process models are rel
evant, including channels and events. Then the developer decides whether to
present the development hierarchically or compositionally. •

Some observations or disclaimers are in order:

• We are not claiming that one can "ideally" abstract (develop and/or
present descriptions of) phenomena and concepts (i.e., specifications)
purely hierarchically or purely compositionally.

• But we are claiming that it may be a good idea that the developer con
sciously consider the issue of to what "degree" shall a hierarchical, respec
tively a compositional, development or presentation approach be contem
plated.

• A specification may be basically compositionally developed, but hierarchi
cally presented.

Why are we claiming that hierarchical and compositional abstraction indeed
represent abstraction? The answer is that in either we abstract certain con
cerns. In hierarchical abstraction we postpone consideration of certain details
("smaller" parts) till a subsequent decomposition of the "larger" parts. And
in compositional abstraction we abstract from how we later are to compose
the "lesser" parts.

40 2 Hierarchies and Compositions

2.3 The Main Example

In the next four examples (Examples 2.5-2.9) we show what may be considered
both an example development as well as an example presentation. The subject
of our concern, i.e., our domain, is railway nets. In keeping with our principle of
describing domains (prescribing requirements and specifying software designs)
both informally and formally, and in preferably doing so in that order, the
next four examples constitute two pairs: An informal and a formal description
of the "syntax", i.e., the "statics", of rail nets, respectively an informal and a
formal description of some of the "semantics", i.e., of some of the "dynamics",
of rail nets.

2.3.1 A Hierarchical, Narrative Presentation

Before we embark on the example let us bring in an abstract picture of a
railway net. See Fig. 2.1.

Station

f

V

Crosse

Stat on

Line

^ i1

i i 4
ver

H

Platform

Track

X 1
X 1

Switchable Crossover
H 1

\ \, 1 A 1 ^

Linear Unit

Switch

^ V | ^

~

Siding

v i

Fig. 2.1. A "model" railway net

Example 2.5 Rail Nets I — A Hierarchical Presentation, Narrative: Fig
ure 2.1 suggests a railway net with lines and stations. Lines contain linear
rail units while stations additionally may contain crossover and switch (i.e.,
point) units.

We shall attempt to give a precise narrative description of such nets.
We introduce the phenomenological concepts of railway nets, lines, stations,
tracks, (rail) units, and connectors. (See end of example for explanation of
the term phenomenological concept.)

1. A railway net consists of one or more lines and two or more stations.

2.3 The Main Example 41

2. A railway net consists of rail units.
3. A line is a linear sequence of one or more linear rail units.
4. The rail units of a line must be rail units of the railway net of the line.
5. A station is a set of one or more rail units.
6. The rail units of a station must be rail units of the railway net of the

station.
7. No two distinct lines and/or stations of a railway net share rail units.
8. A station consists of one or more tracks.
9. A track is a linear sequence of one or more linear rail units.

10. No two distinct tracks share rail units.
11. The rail units of a track must be rail units of the station (of that track).
12. A rail unit is either a linear rail unit, or is a switch rail unit, or is a simple

crossover rail unit, or is a switchable crossover rail unit, etc.
13. A rail unit has one or more connectors.
14. A linear rail unit has two distinct connectors. A switch (a point) rail

unit has three distinct connectors. Crossover rail units have four distinct
connectors (whether simple or switchable), etc.

15. For every connector of a net there are at least one and at most two rail
units which have that connector in common.

16. Every line of a railway net is connected to exactly two distinct stations of
that railway net.

17. A linear sequence of (linear) rail units is an acyclic sequence of linear units
such that neighbouring units share connectors.

By a phenomenological concept we mean a concept that directly abstracts
a phenomenon. A phenomenon is something that one can point to, i.e., is a
value. The immediate abstraction (i.e., the phenomenological concept) is the
type of all the intended values being described. •

Figure 2.2 suggests the four different kinds of rail units as mentioned above.

Fig. 2.2. Example rail units: details

42 2 Hierarchies and Compositions

Figure 2.3 shows simple line drawing abstractions of the four different kinds
of rail units used in Fig. 2.1 and individually detailed in Fig. 2.2.

Linear Unit

^

Junct ion,
Switch,
Turnout

X
Simple
Crossover

X
Crossover
Switch

L e g e n d : rail: connector: • units can be switched:

Fig. 2 .3. Example rail units: icons

Notice how, in the above narrative description, we have used such technical
terms as consists of, is a, share, acyclic, sequence and neighbouring. These
terms are not defined, they are assumed understood. Tha t is, there is another
task at hand: to properly define an ontology (of "systems", "parts" , "composi
tion", "decomposition", "consists of", "is a", "share", "acyclic", "sequence",
and "neighbouring"). In any case, the formalisation of the above "embod
ies" , in the semantics of the formula texts, a formalisation, albeit maybe a
convoluted one, of these latter terms, as well as, of course, the railway net
terms.

Statement 15, i.e., axiom 15, really is a very strong one. It amounts to
presenting the whole syntax for any topology, i.e., any "layout" of any railway
net in one single phrase!

2.3.2 A Hierarchical , Formal P r e s e n t a t i o n

E x a m p l e 2.6 Rail Nets II — A Hierarchical Presentation, Formalisation:

type
N,

value
1.
1.
2.
3.
5.
8.
12.
12.
12.
12.
13.
17.

L, S, Tr, IT, C

obs_Ls: N —j- L-set
obs_Ss: N -> S-set
obs_Us: N -» U-set
obs_Us: L -» U-set
obs_Us: S -> U-set
obs_Trs: S -» Tr-set
is_Linear: U —> Bool
is_Switch: U -» Bool
is_Simple_Crossover: U —> Bool
is_Switchable_Crossover: U -> Bool
obs_Cs: U -» C-set
lhi_seq: U-set —> Bool

2.3 The Main Example 43

lin_seq(us) =
V u:U • u G us => is_Linear(u) A
3 q:U* • len q = card us A elems q = us A

V i:Nat • {i,i+l} C inds q => 3 c:C •
obs_Cs(q(i)) n obs_Cs(q(i+l)) = {c} A

len q > 1 => obs_Cs(q(i)) fl obs_Cs(q(Ien q)) = {}

Some formal axioms are now given, but not all!

axiom

1. V n:N • card obs_Ls(n) > 1 A card obs_Ss(n) > 2

3. V n:N, 1:L • 1 € obs_Ls(n) => lin_seq(l)

4. V n:N, 1:L • 1 G obs_Ls(n) => obs_Us(l) C obs_Us(n)

5. V n:N, s:S • s G obs_Ss(n) => card obs_Us(s) > 1

6. V n:N, s:S • s G obs_Ls(n) => obs_Us(s) C obs_Us(n)

7. V n:N,l,l':L.{l,l'}Cobs_Ls(n)AMl'=»obs_Us(l)n obs_Us(l') = {}

7. V n:N,l:L,s:S«l G obs_Ls(n)As G obs_Ss(n)^obs_Us(l)fl obs_Us(s) = {}

7. V n:N,s,s':S»{s,s'}Cobs_Ss(n)As/s'=>obs_Us(s)n obs_Us(s')={}

8. V s:S • card obs_Trs(s) > 1

9. V n:N, s:S, t:T • s 6 obs_Ss(n) A t 6 obs_Trs(s) => lin_seq(t)

10. V n:N, s:S, t,t';T •
s G obs_Ss(n) A {t,t'} C obs_Trs(s) A t / t '

=> obs_Us(t) n obs_Us(t') = {}

15. V n:N • V c:C •
c G U { obs_Cs(u) | u:U • u G obs_Us(n) }

=> 1 < card{ u | u:U • u G obs_Us(n) A c G obs_Cs(u) } < 2

16. V n:N,l:L • 1 G obs_Ls(n) =>
3 s,s':S • {s,s'} C obs_Ss(n) A s^s' =>

let sus = obs_Us(s), sus' = obs_Us(s'), lus = obs_Us(l) in
3 u,u',u",u'":U • u G sus A u' G sus' A {u",u'"} C lus =>

let scs = obs_Cs(u), scs' = obs_Cs(u'),
lcs = obs_Cs(u"), lcs' = obs_Cs(u'") in

3 ! c,c':C • c / c' A scs fl lcs = {c} A scs' fl lcs' = {c'}

44 2 Hierarchies and Compositions

end end

The reader is encouraged to follow, axiom by axiom of this example the same
numbered statements of Example 2.5. •

Notice how the relatively simple informal wording of statement 16 almost
"explodes" into a not very simple axiom (16). That axiom has to express a lot:
"connected to", "exactly two" and "distinct". It is, however, the "connected
to" part of the phrase that causes the problem. Remember our note, above,
about a need for a "system" ontology and its formalisation. Since we did not
formalise the term "connected to" we have to do it implicitly, through the
RSL formula of axiom 16. Had we introduced a formal predicate connect, then
axiom 16 might look like the axiom shown in Example 2.7.

Example 2.7 Rail Nets II, Revisited:

value
connect: N x L x S x S - * - Bool
connect(n,l,s,s') =

let sus = obs_Us(s), sus' = obs_Us(s'), lus = obs_Us(l) in
3 u:U • u € sus, u':U • u' £ sus', u",u'":U • |u",u'"} C lus •
let scs = obs_Cs(u), scs' = obs_Gs(u'),

lcs = obs_Cs(u"), lcs' = obs_Cs(u'") in
3 ! c,c':C • c 7̂ c' A scs n lcs = {c} A scs' n lcs' = {c'}
end end
pre 1 € obs_Ls(n) A {s,s'} C obs_Ss(n) A s^s'

axiom
16. V n:N,l:L • 1 £ obs_Ls(n) =>

3 s,s':S * {s,s'} C obs_Ss(n) A s^s' =^ connect(n,l,s,s')

But we might wish a much stronger connect predicate, one that "connects" not
only lines with distinct stations in a net, but, say reinforced concrete beams
with floors in a building, etc. This is really what an ontology should do:
abstract from the details of what connects what with what in which context.

Notice that the above statements say nothing about whether a railway net
is connected, that is, whether a railway net "falls" into two or more "disjoint",
i.e., "smaller" railway nets. Such a situation, as is hinted at in the previous
sentence, would be the case for the railway net of, say a railway company,
where the railway net is "spread out" over several islands not connected by
railway bridges. There is a lot more the above does not "reveal" — and some
of that will now be revealed!

Trains "run" on railway nets, along lines and through stations. To properly
guide train traffic we need to introduce a number of concepts. That is, the new

2.3 The Main Example 45

"things" are more like concepts than phenomena. Rail units, lines, stations
and tracks could be phenomenologically sensed by the human sensory appa
ratus. As could connectors. Even though we may abstract them into physical
"things" of no volume, i.e., like points in space. These new concepts, to be
revealed below, must be defined. Hence, if they are to be of relevance to, that
is, related to, railways, the most basic of these concepts must be definable in
terms of the basic phenomena described above.

2.3.3 A Compositional, Narrative Presentation

To appreciate the concepts being introduced in the next example, let us con
sider Figs. 2.4-2.5. Those figures suggest that rail units can be in either of a
number of states.

C C C C C C

Open: C to C Open: C to C Bidirectionally Open

Fig. 2.4. States of linear rail units

CI

CI

CI

a

CI

a

ci
a

ci
a

ci
a

ci
a

ci
a

Fig. 2.5. States of simple switch rail units

The arrows are intended to show the direction in which a train may move
through the units.

Example 2.8 Rail Nets III — A Compositional Presentation, Narrative: We
introdi;ce defined concepts such as paths throi;gh rail units, states of rail units,
rail unit state spaces, routes through a railway network, open and closed
routes, trains on the railway net, and train movement on the railway net.

18. A path, p : P, is a pair of distinct connectors, (c, c'),

46 2 Hierarchies and Compositions

19. and of some unit.2

20. A state, a : S, of a unit is the set of all open paths of that unit (at the
time observed).3

21. A unit may, over its operational life, attain any of a (possibly small)
number of different states w : Q.

22. A route is a sequence of pairs of units and paths such that the path of a
unit/path pair is a possible path of some state of the unit, and such that
"neighbouring" connectors are identical.

23. An open route is a route such that all its paths are open.
24. A train is modelled as a route.
25. Train movement is modelled as a discrete function (i.e., a map) from time

to routes such that for any two adjacent times the two corresponding
routes differ by at most one of the following:
(a) a unit path pair has been deleted (removed) from one end of the route;
(b) a unit path pair has been deleted (removed) from the other end of the

route;
(c) a unit path pair has been added (joined) from one end of the route;
(d) a unit path pair has been added (joined) from the other end of the

route;
(e) a unit path pair has been added (joined) from one end of the route,

and another unit path pair has been deleted (removed) from the other
end of the route;

(f) a unit path pair has been added (joined) from the other of the route,
and another unit path pair has been deleted (removed) from the one
end of the route;

(g) or there has been no change with respect to the roi;te (yet the train
may have moved);

26. and such that the new route is a well-formed route.

We shall arbitrarily think of one end as the "left end", and the other end
as the "right end" — where "left", in a model where elements of a list are
indexed from 1 to its length, means the index 1 position, and 'right' means
the last index position of the list.

•

The two parts, Examples 2.5-2.7 and Examples 2.8-2.9, further illustrate the
application of a principle:

Principles. From Phenomena to Concepts: Since we wish to construct the
ories of domains and requirements, since domains initially and usually are
manifested through physical phenomena, and since requirements — or just
the theories in general — are conceptualisations of such phenomena, there is

2 A path, (c,c), of a unit designates that a train may move across the unit in
the direction from c to c . We say that the unit is open in the direction of the path.

3The state may be empty: The unit is closed.

2.3 The Main Example 47

a principle to be applied, namely that of "converting" (classes of manifest)
phenomena into (similar) concepts. •

Techniques. From Phenomena to Concepts: The "conversion" alluded to in
the above principle can be effected as follows: First "lift" any one phenomenon
to a class of like phenomena. When, as here, the phenomena are entities, we
can model such classes as suitably constrained abstract types, i.e., sorts. Now
define, usually in the form of concrete types, and usually from the most atomic
kinds of types. •

2.3.4 A Compositional, Formal Presentation

Figure 2.6 suggests the full variety of train movements with respect to the
"leaving" and/or "capturing" of rail units.

«»-

(D-

(2>-

(3) -

(4) -
u6 u7 u8

"[4]

"[3]

"[?1

-[1]

[0]

Fig. 2.6. A discretised "picture" of possible train movements wrt. rail unit

Example 2.9 Rail Nets IV — A Compositional Presentation, Formalisation:
The formalisation of the above narrative now follows:

type
18. P = {| (c,c'):(CxC) • c ^ e ' |}
20. S = P-set
21. f} = £ -set
22. R ={ | r:(UxP)* . wf_R(r) |}
24. Trn = R
25. Mov = {| m:(T ^ T r n) • wf_Mov(m) |}
value
20. obs_i:: U -> S
21. obs f}\ U -> Q

48 2 Hierarchies and Compositions

axiom
V u:U • let oj = obs_J?(u), a = obs_iJ(u) in a G u> A

19. let es = obs_Cs(u) in V (c,c'):P • (c,c7) £ U w ^ {c,c'} C obs_Cs(u)
end end

22. wf_R: (UxP)* -» Bool
wf_R(r) =

len r > 0 A V i:Nat • i G inds r let (u,(c,c')) = r(i) in
(c,c') G 1J obs_J?(u) A i+1 G inds r =>

let (_,(c",_)) = i"(i+l) in c' = c" end end

23. open_R: R -J- Bool
open_R(r) = V (u,p):UxP • (u,p) G elems r A p G obs_I7(u)

25. wf_Mov: Mov ->• Bool
wf_Mov(m) = card dorn m > 2 A

V t,t':T • t,t' G dom m A t < t A adjacent(t,t') =>
let (r,r') = (m(t),m(t')), (u,p):UxP • p G (J obs_J?(u) in

25(a. (l_d(r,r',(u,p)) V 25(b. r_d(r,r',(u,p)) V
25(c. l_a(r,r',(u,p)) V 25(d. r_a(r,r',(u,p)) V
25(e. l_d_r_a(r,r',(u,p)) V 25(f. r_d_l_a(r,r',(u,p)) V
25(g. r=r') A wf_R(r')

end

The last line's route well-formedness ensures that the type of Move is main
tained.

value
adjacent: T x T - > Bool
adjacent(t,t') = ~ 3 t":T • t" G dora m A t < t" < t '

l_d,r_d,l_a,r_a,l_d_r_a,r_d_l_a: R x R x P - > Bool

l_d(r,r ,(u,p)) = r = tl r pre len r > l
r_d(r,r',(u,p)) = r' = fst(r) pre len r > l
l_a(r,r',(u,p)) = r' = <(u,p))~r
r_a(r,r',(u,p)) = r' = r"((u,p))
l_d_r_a(r,r',(u,p)) = r' = tl r~((u,p))
r_d_l_a(r,r',(u,p)) = r' = {(u,p))~fst(r)

fst: R -4 R'
fst(r) = { r(i) | i in (l..len r—1))

If r as argument to fst is of length 1 then the result is not a well-formed route,
but is in (UxP)*. .

2.5 Bibliographical Notes: Stanislaw Leshniewski 49

Notice that we have not specified, in either Example 2.8 or in Example 2.9,
that moves must involve only open routes.

2.4 Discussion

Models may be developed hierarchically, i.e., from "larger" phenomena or con
cepts by decomposing these into constituent, "smaller, contained" phenomena
or concepts. Furthermore models may be presented or communicated hierar
chically. Models may be developed compositionally, i.e., from "smaller" phe
nomena or concepts by composing these into composed, "larger" phenomena
or concepts. Similarly models may be presented or communicated composi
tionally. Any combination of the two may be used: compositional development,
hierarchical documentation, etc.

Principles. Choosing Compositional Development and/or Presentation: Usu
ally compositional development (respectively presentation) is chosen when the
phenomenon or concept being modelled is unfamiliar to the developer (re
spectively to the reader). And usually hierarchical development (respectively
presentation) is chosen when the phenomenon or concept being modelled is
familiar to the developer (respectively to the reader). •

2.5 Bibliographical Notes: Stanislaw Leshniewski

The main issues of this chapter were those of non-atomic parts: the relation of
parts to wholes, whether viewed first as a whole, hierarchically; or first viewed
from basic parts, compositionally.

The Polish mathematical logician Stanislaw Leshniewski studied, amongst
other things, the subject of mereology. Mereology is the theory of part-hood
relations: of the relations of part to whole and the relations of part to part
within a whole. As a formal theory of part-hood relations, however, mereol
ogy made its way into modern philosophy mainly through the work of Franz
Brentano and of his pupils, especially through Husserl's third Logical Inves
tigation (1901). The latter may rightly be considered the first attempt at a
rigorous formulation of the theory, though in a format that makes it difficult to
disentangle the analysis of mereological concepts from those of other ontolog-
ically relevant notions (such as the relation of ontological dependence). It was
not until Leshniewski's Foundations of a General Theory of Manifolds (1916,
in Polish) that the pure theory of part-relations as we know it today was given
an exact formulation. And because Leshniewski's work was largely inaccessi
ble to non-speakers of Polish, it was only with the publication of Leonard and

50 2 Hierarchies and Compositions

Goodman's The Calculus of Individuals (1940) [294] that this theory became
a chapter of central interest for modern ontologists and meta-physicists.4

We refer to [313,348,481,482,495] for some coverage of the works of Sta-
nislaw Leshniewski.

2.6 Exercises

Exercise 2.1 Document Development, Narration and Formalisation. This
exercise is about written, possibly electronic, documents. Presently it em
phasises their syntactic structure.

Select one document type among the following: mathematics, or physics,
or biochemistry, or some other natural sciences textbook. Now (develop and)
present narrative descriptions and accompanying formalisations of the syntac
tical structure of your selected type of book. Remember that textbook chap
ters, sections, figures and formulas are usually consecutively numbered, and
can be referenced anywhere. Present your developments separately in both of
two ways: hierarchically and compositionally, first one, then the other. Which
presentation do you prefer?

Exercise 2.2 Part Assemblies. This exercise is about how certain kinds of
(for example, civil engineering, mechanical engineering and woodcrafting) ar
tifacts are put together: A house from floors/ceilings, walls, roofs, windows,
doors, etc., and these again from beams, plates, planks, frames, glass, etc. A
steel bridge or tower is assembled from steel beams, screw/nut assemblies, etc.
A chair is assembled from legs, seat, back and arm rests, etc.

Some analysis of the above should show that one can identify spatially dis
tinct and non-overlapping atomic parts, and that all other parts are assembled
from these without changing the parts being put together. Glue and nails (or
screws), as in the case of building or woodcraft constructions are thus claimed
not to "change" the parts they "connect" (the nail or screw holes [the latter
as for mechanical assemblies] can be claimed to have been properties of the
parts being assembled).

Now, describe, in general (i.e., generic) terms, the syntax of assemblies.
Take into account that in-going parts have spatial extents and result in parts,
likewise with spatial extents, and thus that parts cannot be assembled if some
how their in-going spatial extents and the orientation of their being put to
gether conflict (in trying to force "spatial overlaps"). You have to figure out
what we may mean by this yourself.

As in Exercise 2.1, (develop and) present your model in both of two ways,
separately: hierarchically and compositionally. Which presentation do you pre
fer?

4The above paragraph is based on J.J. O'Connor and E.F. Robertson's In
ternet essay on Stanislaw Leshniewski: http://www-gap.dcs.st-and.ac.uk/~history/-
Mathematicians/Leshniewski.html

2.6 Exercises 51

Exercise 2.3 City Road Nets—Streets and Intersections. Narrative: A city
road net consists of street segments and intersections. A segment provides a
connection between one or two intersections. That is, there may be cul-de-sacs
("inside" the city) or (not further described) roads leading out of the city.
Intersections may connect three or more street segments (those with arity: 3
or more). Sequences of one or more (intersection-connected — but acyclic)
street segments have unique names. That is, street segments have exactly one
name with several having the same name. Street segments are either one-way
or two-way traffic streets. It is always possible to get from any street segment
to any other street segment. Such a possible sequence of street segments is
called a route. (Thus a route is a more general concept than a street, which
is a route all of whose segments have the same name.)

Questions: Define the abstract types of road nets, street segments and
intersections. Give the signature of functions that observe street segments
and intersections, and their properties, from respectively nets, street segments
and intersections. Also define the concrete types of routes. Define functions
which generate all routes between any pair of streets such that all segments
allow traffic in the direction of the route: from first segment to last. Express
necessary and sufficient axioms that properly constrain road nets.

References: This exercise continues in Exercise 4.1 in Chap. 4 and in Ex
ercise 5.3 in Chap. 5.

Exercise 2.4 Air Traffic Route Nets: Air Lanes and Airports. Narrative: An
air traffic route net consists of airports and air lanes. Each air lane connects
exactly two airports. There may be several air lanes between any two airports.
Air lanes are either one-way or two-way. The air traffic route net is such that
it is possible to find a sequence of air lanes, i.e., a route, between any two
airports in the net and such that each adjacent pair of air lanes allows traffic
in the direction from the "from airport" of the first air lane to the "to airport"
of the second air lane.

Air lanes have length. Airports accommodate one or more aircraft. An
airport is characterised by the maximum number (i.e., capacity) of aircraft
that may be parked on the airport tarmac.

Questions: Define the abstract type of air traffic route nets, airports, and
air lanes. Define observer functions that observe airports and air lanes from
the net, airport capacity and air lane length. Axiomatise suitable air traffic
route nets.

References: This exercise continues in Exercise 4.1 in Chap. 4 and in Ex
ercise 5.4 in Chap. 5.

Exercise 2.5 Shipping Nets: Lanes and Harbours. Narrative: A shipping
transport net consists of shipping lanes and harbours. A shipping lane con
nects exactly two harbours. Shipping lanes have length and are all to be
considered two-way sailable. (We ignore such phenomena as canals.) Two or
more shipping lanes may, over long stretches, share geographical positions

52 2 Hierarchies and Compositions

(but nevertheless be distinguishable). A harbour consists of uniquely identi
fied mooring buoys and quay berths (the former at sea, the latter at public
cargo working areas and container terminals). In addition, a harbour may pro
vide holding areas where ships that cannot be berthed or moored because of
a full harbour may wait. It is always possible from any holding area, mooring
buoy or berth of any harbour to come to any holding area, mooring buoy or
berth of any (other or the same) harbour. A sea voyage is characterised by
a sequence of alternating shipping lane sailings and harbour visits, starting
and ending with harbour visits. Each harbour visit is characterisable by zero
or more holdings, moorings or berths with at least one of these. Ships are
implicitly introduced: A holding area may hold up to a maximum capacity
of ships; a buoy or a quay berth may hold at most one ship. A shipping lane
may, for all practical purposes, hold any number of ships.

Questions: Define the abstract types of shipping transport nets, shipping
lanes and harbours. Define observer functions that observe shipping lanes,
respectively harbours of a net, and any other needed observations. Define
suitable axioms or invariant functions over net and/or harbours expressing
appropriate constraints.

References: This exercise continues in Exercise 4.1 in Chap. 4 and in Ex
ercise 5.5 in Chap. 5.

Exercise 2.6 Robots. This exercise takes Exercise 2.2 for granted. That is,
we shall not, in the present exercise, be bothered by the 'part assembly' issues
of that former exercise. Our problem is, in a sense, orthogonal and additional
to the part assembly problem. It is about the structure of robots: How their
base, their links, their grippers and the joints that connect links into arms —
how all that — ends up being a robot.

Consult a suitable book on robotics, any of [337,374,392,445,447,550].
Try understand the notions of robot base, joints links, and grippers. A robot
base is that part of the robot from which one or more links ("first") emanate.
Either the base is stationary, or it is mounted on a movable platform with
respect to which it is fixed. A link is a rigid body, a single whole. A joint
is the connection between two or more links. A gripper (a robot hand) is a
"last" link, from which no further links emanate, i.e., to which, by a joint, no
further link is connected.

An arm is a chain of links, from the base to a gripper. A joint permits the
orientation and position of the two links it connects to change. A joint may
either be a rotating (revolute) joint or a linear (prismatic) joint. A rotating
joint defines an axis around which the two connected links may revolve. A
linear joint allows one link to slide with respect to the other link. A link,
being rigid, maintains a fixed relationship (length and twist) between its two
joints. A link has a length, which is the perpendicular distance between the
two axes supported by the link, i.e., of its two joints. A link twist is the
angle between the projections of the two axes on a plane perpendicular to
the abstract link: the length line. Two adjacent links define a joint with a

2.6 Exercises 53

common axis. The link offset is the distance along this common axis from one
link to the other. Offsets can be measured as the distance between the two
perpendiculars of the two links, one with respect to the predecessor link, the
other with respect to the successor link. A prismatic joint allows link offsets
to change. A joint angle describes the rotation, at any moment, about the
common axis of a first link with respect to a second link. A revolute joint
allows the joint angle to change. A joint variable is either a joint angle or a
link offset. The link parameters are therefore the fixed link length and twist,
and the one variable: Either the joint angle or the link offset.

Links are usually ordered. A 'straight' robot, with just one arm, has the
links totally ordered, from base to gripper. A 'closed' robot, i.e., a robot where
three or more links form a cycle (when links are considered undirected), has
its links ordered by imposing a direction on the links, "away" from the base,
"towards" gripper(s). In a closed robot links can only be partially ordered.
Given any link we can speak of the next (a unique next) link, which may
be a gripper. Normally a link has one or more, but, of course, a small, finite
number of predecessors. Links emanating from the base have no predecessor
link. A robot geometry can now be completely described by giving, for each
link, the link parameters, and how these links are ordered with respect to one
another.

Now describe, informally and formally, the way in which robots are put
together, i.e., the geometry of the robot.

As for previous exercises, possibly (develop and) present your model in
both of two ways, and separately: hierarchically and compositionally. Which
presentation do you prefer?

3

Denotations and Computations

• The prerequis i te for studying this chapter is tha t you have studied and
understood, to a reasonable extent and depth, Vol. 1 of this series of text
books on software engineering.

• The a ims are to introduce the model concepts of denotational and com
putational semantics, to informally relate how one might "transform" a
denotational semantics model into a computational semantics model, and
to (thus) introduce some classical concepts of computing science.

• The ob jec t ive is to enable you to choose an appropriate model type (of
the two presented in this chapter): either denotational or computational.

• The t r e a t m e n t ranges from systematic and semi-formal to formal.

One of the real highlights of software engineering is denotational semantics. For the
software engineer to think "denotationally", i.e., of "things" expressed in words as
denoting mathematical functions, can often in actual practice prove very beneficial.

3.1 Introduction

Conventionally, many programmers perceive of their programs as executing:1

The program first does this, then it does that! In this chapter we shall take a
more "refined" view of programs than tha t espoused in the previous sentence.
And we shall claim, and later chapters shall illustrate the point, tha t not just
computer programs but also actual world phenomena and concepts can be
viewed, as we shall here present it, denotationally.

More properly, programs as prescriptions for computations. Programs do not
do anything. They are mere syntactic markers on a screen or on paper, as in a book.
If we speak of programs as doing this or that, then we are anthropomorphising
programs, that is, we are giving them human qualities.

56 3 Denotations and Computations

3.1 .1 C o m p u t a t i o n s and D e n o t a t i o n s

Saying: "The program first does this, then it does that!" — besides being an
unfortunate anthropomorphisation — reflects an operational view: The com
putat ional abstraction. Since the 1960s, tha t is, from almost the very start
of software engineering, the denotational view has gained currency. Typically
an imperative program, viz., a J ava program [8,15,146,301,465,513] or an
E i f f e l program [344,345], denotes a mathematical function from initial pro
gram states and program inputs to final program states and program outputs .
We shall now cover "bare-bone" essentials of denotational and computational
semantics.

3.1 .2 S y n t a x and S e m a n t i c s

Syntax is what we write down and say. Semantics is what we mean by what
is written or said. Pragmatics is why we wrote or said it. Formal syntactic
structures may be given formal semantic meaning. Such meaning definitions
may either be denotational, or computational, or other! Thus semantics may
be formally definable, whereas we seem not to be able to capture pragmatics
formally. In this chapter we shall contrast two extreme semantics styles. Chap
ters 16-19 will provide a smoother, stepwise-related spectrum of intermediate
semantics, including specifying compiling algorithms.

3 .1 .3 Character i sa t ions

Character i sa t ion . By a denotational semantics, M, of a language or a sys
tem we shall understand a semantics which to each atomic syntactic construct,
sa, (of the language or system) associates a simple mathematical function,
M{sa) = <f>Sa, and which to each composite syntactic construct sc : (ci, C2,
. . . , c„) associates a mathematical function, M(ca, oi, • • •, c„) = ip, which
result from the semantics, M(ci), of the syntactic components by simple func
tion composition T: M{c\, c2 , . . . , c„) =T{M{c\), M(c2), ..., M{cn)). •

We shall in this chapter explain the denotational concept while giving exam
ples and providing abstraction and modelling techniques.

Character i sa t ion . By a computational semantics of a language or a system
we shall understand a semantics which to each atomic syntactic construct
(of the language or system) associates a state transition, and which to each
composite syntactic construct associates a sequence of state transitions. •

We shall likewise in this chapter explain the computational concept while
giving examples and providing abstraction and modelling techniques.

3.2 Denotational Semantics 57

3.2 Denotational Semantics

One of the major schools of semantics specifications is that of denotational
semantics. In this section we shall introduce the essentials of the engineering
construction of a denotational semantics. Denotational semantics is classi
cally used in defining the semantics of applicative as well as imperative and
procedure-oriented programming languages. But denotational semantics can
be used for other application areas: the "languages" of banking transactions,
database management system command languages, rules and regulations in
railway systems, etc. In defining the semantics of, for example, a program of
a programming language the denotational principle states:

Principles. Denotational Semantics: Associate with every identifier (user-
chosen or built-in literal or operator name) of the given (syntactic) text, a
denotation, usually a function; then express the semantics of composite pro
gram constructs as a function of the semantics of its constituents. •

3.2.1 A Simple Example: Numerals

We start with a very simple example.

Example 3.1 Denotational Semantics of Numerals: Numerals are names of
numbers. Thus numerals represent syntactic values. And numbers represent,
i.e., are, semantic values. Syntactically numerals are composite structures:
either as a single digit, or as a numeral paired with a ("trailing") digit.

type
Num = NilNum x Digit
NilNum - - nil | mk_Num(n:Num)
Digit = = zero|one|two[...|nine

value
M: Num ->• Nat,
D: Digit -> Nat,
C: Nat x Nat ->• Nat

M(n) = case n of (nil,d) -» D(d), (mk_Num(n'),d) -> C(M(n'),D(d)) end
D(d) = case d of zero —• 0, one —>• 1, two —> 2, ... , nine -> 9 end
C(i,j) = 10*i + j

Annotations. If a numeral num consists of just the digit d then its meaning,
actually, its value, is the meaning (the value) D of that digit. If, instead, the
numeral in addition has a proper numeral part, i.e., denotes a larger number,
then the meaning (the value) of that proper numeral part must be multiplied
by ten and added to the meaning (value) of the digit part.

58 3 Denotations and Computations

Observat ion . The meaning of a simple numeral is the simple meaning of
tha t simple case. The meaning of a composite numeral is a function (above it
was the C function) of the meanings (values) of the parts of the composition.
This observation is now formalized.

3.2 .2 T h e D e n o t a t i o n a l Pr inc ip le

There are two steps to the construction of a denotational semantics. No mat ter
whether it is for some source language (whether a programming language, a
database model, an operating system (command language), or other), or for
some other notions (as we shall later see) — there are just two steps!

P r i m i t i v e P h r a s e s : First the meanings, M{e), of the primitive, i.e., ele
mentary, constructs e of the source language are established; and these
meanings are usually given as functions.

C o m p o u n d P h r a s e s : Then the meanings of composite source language con
structs are expressed as functions, J7, of the meaning of the immediate
constituent constructs, such tha t also the resulting meanings are func
tions.

The former step is "truly" denotational: in it we establish the denotation of
primitive symbols such as, for example, operators (add , or , :=, . . .) , and of
identifiers.

The second step is more of an algebraic principle. It expresses a homo-
morphism (J7). Let "ci,C2, . . . , c„" designate a composite construct. The se
mantic (generic) function which ascribes meaning to any construct then reads:

M(cuc2, • • • ,c„) = r(M(Cl),M(c2), • • • , M { c n))

In both cases denotational semantics usually ascribe functions as meanings. In
so doing denotational semantics differ from, for example, algebraic semantics
— which ascribe algebras, but which otherwise adhere to the homomorphic
principle. We shall take a very liberal view and accept any semantics definition
which satisfies the two parts of the denotational principle as enunciated above
— without necessarily ascribing functions to all primitives (i.e., identifiers) —
as a denotational definition.

In the next two sections we bring in two large examples. One illustrates
the denotational principle on simple expression evaluation. The other illus
t rates the principle on interpretation of imperative programs with labels and
GOTOs.

3 .2 .3 E x p r e s s i o n D e n o t a t i o n s

First, we present a simple expression semantics example. The point of this
next example is to exemplify tha t syntactic constructs denotationally stand
for functions. The first point of denotations, being tha t their construction

3.2 Denotational Semantics 59

implied the use of the homomorphism principle, has already been exemplified
above.

Example 3.2 Denotational Semantics of Simple Expressions:
Our example source language consists, syntactically, of expressions. Ex

pressions are either constants, identifiers or pre- or infix operator/operand
expressions. Constants are (for simplicity) integers. Identifiers are just that.
Prefix expressions have two parts: a monadic operator and an expression.
Infix expressions have three parts: a dyadic operator and two expressions.
Monadic (dyadic) operators are "plus", "minus", "factorial", etc. (and "add",
"subtract", "multiply", etc.):

type
Token
Ex = = mk_intg(i:Int)

| mk_iden(id:Token)
I mk_prefix(o:Mo,e:Ex)
| mk_infix(le:Ex,o:Do,re:Ex)

Mo = = minus | fact
Do = = add | sub | mpy | ...

(The above equations display, or exhibit, almost negligible representational
abstraction; little room is given in this example for doing abstraction!)

We observe how expressions have been recursively defined — just as would
be expected in a standard, concrete BNF grammar definition.2

Only constants have been representationally abstracted: instead of speci
fying numerals, we (directly) specify the integer numbers denoted.

Identifiers occurring in expressions are bound to integer values, in some
thing we shall call an environment:

type
p:ENV = Token ^ Int

The primitives of the language are constants, identifiers and operators. Con
stants denote themselves. Identifiers denote integers, with their denotation
being recorded in the environment. Operators denote certain arithmetic func
tions:

value
O: Mo ->• Int -> Int
O: Do -> Int x Int -»• Int

2By a BNF grammar we mean a Backus-Naur Form context-free syntax. The
Glossary (Appendix B) of Vol. 1 defines these and related terms. We also refer to
Sects. 8.4-8.5 of this volume.

60 3 Denotations and Computations

0(o) =
case o of:

minus —>• A x:Int • —x,
fact -» A x:Int • x!,
add -> A x,y:Int • x+y,
sub —> A x,y:Int • x—y,
mpy —>• A x,y:Int • x*y,

end

In order that the semantic function can find the meaning (i.e., value) of an
identifier it must refer to an environment which is therefore an argument to
the semantic function.

Without much ado, we present the semantic function which, since expres
sions were recursively defined, itself is recursively defined.

value
V: Ex -» ENV 4 Int
V(e)p =

case e of
mk_intg(i) -> i,
mk_iden(t) -» p(t),
mk_prefix(o,e') -> 0(o)(V(eV)»
mk_infix(le,o,re) -> 0(o)(V(le)/9,V(re)/?)

end

The functions M and T alluded to in the introduction can now be stated: M
is Val-Expr when the syntactic construct is an expression, and is O when it
is an operator. T is functional composition for the case of prefix expressions:

F(0(m),V(e)p) = 0(m)(V{e)p)

T is the composite of the "pairing" function with functional composition when
the composite is an infix expression:

F(V{l)p,0(d),V{r)p)=0(d)(V(l)p , V(r)p)

function composition pairing

That is, we view the prefixing of an expression with a monadic operator, re
spectively the infixing of two expressions with a dyadic operator as (syntactic)
operators — not explicitly written. And we then assign the meaning:

Xf.Xx..f{x)

3.2 Denotational Semantics 61

to the (invisible) prefixing operator, and:

\x.\f.\y.f(x,y)
as the meaning of the (invisible) infixing operator.

Instead of "juggling" around with the O function and with what to us are
rather convolute formulas of V, we syntactically sugar Vr while factoring 0
into the new V.

value
V(e)p =

case e of
mk_intg(i) —> i,
mk_iden(t) —> p(t),
mk_prefix(o,e')

-» let v = V(e')p in
case o of: minus —• —v, fact —> v! end end

mk_infix(le,o,re)
->• let rv — V(re)p, lv = V(le)p in

case o of:
add —• lv+rv, sub —> lv—rv, mpy —> lv*rc, ...

end end
end

We are finally ready to summarize the type of the denotation of expressions,
whether constants, identifiers or operator/operand expressions. That general
type can be read directly from the type of the semantic function. The type
of the meaning of an expression, [e]:[E], i.e., its semantic type, is that of a
function from environments to integers:

[Ex]:ENV 4 Int

The function is partial in that expression identifiers not in the domain of the
environment lead to undefinedness. For a constant, mk_intg(i), expression the
function is the constant function which "maps" any environment, p, into i.
For an identifier, mk_iden(t), expression, e, the function maps any environ
ment, p, into the integer, p(e), which that identifier is associated with in those
environments. If the identifier is not in the environment, chaos is yielded. For
the remaining expressions we refer the reader to the formulas from which we
also read the meaning functions of the two previous sentences.

An Extension

For the sake of making the computational semantics example a bit more in
teresting than it would otherwise be with the present source language of ex
pressions, we extend this language. The extension amounts to the introduction
of conditional expressions:

62 3 Denotations and Computations

type
Ex = = ... | mk_cond(b:Ex,c:Ex,a:Ex)

value
V(mk_cond(b,c,a))/> =

let bv = V(b)p in
if bv then V(c)p else V(a)p end end

Thus T of a conditional expressions' semantics is that of "delaying" the eval
uation of either the consequence or the alternative expression till the value of
the test expression has been obtained. More precisely:

M(b,c,a) = F{M{b),M(c),M{a))
= Xp.(if M(b)p = 0 then M(c)p else M(a)p end)

whereby T is expressible as:

\p.\mi,.Xmc.\m,a. if mt,(p) = 0 then mc(p) else m,a(p)end

where nif>, mc and ma are now the "meanings" of the "correspondingly" named
syntactic objects 6, c and a. Observe how the delay is afforded by the "encap
sulation" of final evaluations of c and a. •

Do not take offense that the meaning of the source language's "if . . . then
. . . e l s e . . . end" expression is explained in terms of RSL's similarly look
ing if ... then ... else ... end clause. The latter has already been given
an axiomatic semantics. Thus it can be applied since it is not applied self-
referentially, that is, to itself.

The emphasis of the above definitions — which the reader is kindly asked
to review — is on ascribing mathematical functions as meanings of syntactic
quantities. From now on we shall often have occasion to think in that way:
That syntactic things denote functions. Rather than thinking of the syntactic
quantities operationally, by what they may prescribe in the way of computa
tions, we "lift" up to the denotational principle.

3.2.4 GOTO Continuations

In Example 3.2, the denotation of expressions with free variables were func
tions from environments to values — where the environments bound the free
variables to values. In Example 3.3, we not only introduce an imperative lan
guage with assignable variables, but also labels and GOTO statements.

The presence of assignable variables mean that we conveniently need a
storage (STG). Storages bind locations to values. Since the language to be
illustrated also features nested blocks with possible reintroduction of variable
names we conveniently need environments (ENV) which bind variable names
to locations. Because of labels and GOTOs we conveniently model labels in

3.2 Denotational Semantics 63

terms of continuations (CON) — and these are seen as functions from storage
transformations to storage transformations.

In all we find tha t syntactic constructs of this kind of programming lan
guage denote functions from environments to functions from continuations to
functions from storages to storage, tha t is continuations, indeed, higher-order
denotations:

t y p e
ENV = Id ^ (LOC | CON)
STG = LOC ^ VAL
CON = STG 4 STG

value

[syntactic construct] : ENV ^ CON -3- CON

There are several ways of developing denotational models. And there are syn
tactic quantities which, at first glance seem to defy being definable denota-
tionally. An example is GOTOs and labels.

The continuation semantics definition style was first proposed by either
F. Lockwood Morris in [366] (privately circulated notes) or by Christopher
Strachey [490].

We shall illustrate the continuation style3 of semantics definitions on im
perative programs with labels and GOTOs.

E x a m p l e 3.3 A Continuation Model of Labels and GOTOs:
We assume tha t the reader is familiar with the classical concept of im

perative programming languages permitt ing statements to be labelled and to
have statements tha t effect transfer of control from the GOTO program point
to the GOTO target label's program point:

lal: stmt_l ;
la2: stmt_2 ;
la3: stmt_3 ;
la4: IF tst_exp THEN GOTO la2 ;
la5: stmt_5 ;

Tha t is, assume tha t interpretation of the above program text s tar ts at pro
gram point l a l and proceeds by interpreting statements s t m t _ l ; s t m t _ 2 ;
s t m t _ 3 ; . Having reached program point l a 4 the interpreter decides tha t
the value of the Boolean test expression t s t _ e x p is t r u e . If so the next
s tatement t o be interpreted is tha t of s t m t _ 2 ; whereupon the interpreter
continues, sequentially, from there on!

3The notation used in expressing the continuations semantics is a tiny subset
of RSL, one for which it makes sense to write the formulas. The full RSL would not
do: Its semantics does not allow the kind of reflexive types, or recursively defined
interpretation functions, that a continuation-style semantics often implies.

64 3 Denotations and Computations

The Problem

The problem with the semantic functions we presented earlier (in Vol. 1,
Chap. 20, Sect. 20.6), and which we basically repeat below, is that those
semantic functions (repeated below) only know how to interpret a linear se
quence of statements. From the beginning to the end — no exceptions. Once,
and that's it:

type
Stmt, ...
ENV, £

value
I_s: Stmt 4 ENV 4 £ 4 £
I_sl: Stmt* 4 ENV 4 £ 4 £

l_sl(stl)0)(cr) =
if stl = {) t h e n a else I_sl(tl stl)(p)(I_s(hd stl)(p)(a)) end

We could operationalise the interpreter by giving it a cue, in the form of the
index of the statement to be interpreted next, in the statement list:

type
Stmt = = mkCGo(e:Exp,la:Nat)
Stmt_list = = mkStl(stl:Stmt*)
Lbl, Exp, ...
ENV, £
VAL = Bool | ...

value
I_s: Stmt 4 ENV 4 £ 4 £
I_sl: Stmt* 4 Na t 4 ENV 4 £ 4 £
V_e: Exp 4 ENV 4 £ 4 VAL

I_sl(sl)(i)(p)(<x) =
if i>len stl

t h e n a
else

case sl(i) of
mkCGo(exp,idx) —>

ifV_e(exp)(p)(<7)
then I_sl(sl)(idx)0)(o-)
else I_sl{sl){i+l)(/?)(<r) end,

_ - • I_sl(sl)(i+l)(p)(I_s(sl(i))G9)(<7))
end end

3.2 Denotational Semantics 65

But — although it works for simple, straightforward statement lists — it does
not look elegant, and it "violates" the denotational principles by being rather
operational. And then the above formula must be modified if we were to allow
statements to be blocks consisting of (thus embedded) statement lists — and
then what if we allowed GOTOs to target a statement in some surrounding
block's statement list?

So we try an altogether different approach. That other approach, the 'con
tinuation' approach, does satisfy the denotational principle. It ascribes deno
tations to labels (i.e., program points) — they had no denotation above! And
it works for arbitrary kinds of GOTOs.

The idea of the continuation approach can be illuminated by considering
the ordinary, non-GOTO, semantic function for statement lists:

I_d(8tl)(p)(a) =
if stl = {) t h e n a else
I_sl(tl stl)(p)(I_s(hd stl)(p)(o-)) end

In the above, the order of interpretation is, of course, right, but it "looks
round-about or backwards". If a statement is a GOTO statement, whether con
ditional, as shown, or unconditional (not shown), then we end up in a situation
where the last line above gets to look like:

I_sl(tl stl)(p)(I_s(mkCGo(esp,idx))(p)(er))

And then what? In l_sl(tl stl)(/>)(...), what is (...) going to be such that no
interpretation takes place of "the rest of the statement list" t l stl, but that,
instead, computation is resumed "as from the program point designated by
Ibl!

By "twisting things a bit" we could list, left-to-right, the syntactic com
ponents in the order of their "normal" occurrence — such as we informally
see it when typed on paper:

type
0 = E ^ E

value
I_s: Stmt -4 ENV -3- 0 4 17 4 S

I_sl: Stmt* ^ ENV ^ 0 ^ E ^ E
I_sl(stl)(,9)(60(<r) =

if stl = {) t h e n 0(a) else
I_s(hd stl)(p)(I_sl(tl stl)(p)(9)){<T) end

Then perhaps it was easier to "avoid" l_sl(tl st\)(p)(6) by simply ignoring
that part if hd stl was a successful GOTO! But then two identical questions
are: What is this 6 : 0 that allows us to do so, and does it work? This is what
we shall show next.

66 3 Denotations and Computations

S y n t a c t i c T y p e s

First, we narrate a description of the language of programs, statements, blocks,
assignments, conditional GOTOs, labels, etc. We will do so, in a strict style,
such that the text below corresponds, phrase-by-phrase, to the formalisation
further on.

A program is a block statement. A block statement consists of a set of
variables declaration part, and a list of labelled statements part. A labelled
statement consists of a label part and a statement part. Statements are either
assignment, block, while loop or conditional GOTO statements. An assignment
statement consists of a variable part and an expression part. A while loop
statement has an expression part and an unlabelled statement list part.

(If the programmer wishes to have labelled statements in the simple state
ment list part of a while loop, then the programmer should reduce the list to
a singleton list whose only statement is a block, which then otherwise obeys
the rules for GOTOs and labels.)

A conditional GOTO statement consists of (what is known as) a test-
expression part and (what is known as a target) label part. Variables, ex
pressions and labels are further undefined quantities. No two labels of a list
of labelled statements of any block statement are identical. That is, a list, (,,
of labelled statements may contain (what will be known as embedded) block
statements and these may contain labels that are identical to a label of some
statement of what will be known as the surrounding block list, £. Similarly
for variables: They may also be redeclared in embedded blocks.

type
Pgm = = mkPgm(b:Blk)
Blk' = = mkBlk(svs:Var-set,ssl:LaS*)
LaS = = mkLaS(l:Lbl,s:Stm)
Stm = Blk | Asg | StL | While | CGo
Asg = = mkAsg(v:Var,e:Exp)
StL = = mkStL(sl:Stm*)
Whi = = mkWhi(b:Exp,sl:StL)
CGo = = mkCGo(e:Exp,l:Lbl)
Var, Exp, Lbl
Blk = {| blk:Blk' • wf_Blk(blk) |}

value
wf_Blk: Blk' - • Bool
wf_Blk(_/) =

V i,j:Nat • {Ljj-CindsM i^j =^
let mkLaS(li,_)=£(i), mkLas(lj,_)=^(j) in li^lj end

assert : card{l(ls(i))|i:inds i}=lenf.

Etcetera.

3.2 Denotational Semantics 67

S e m a n t i c T y p e s

Distinct variables denote distinct locations. Variable declarations give rise to
the allocation of fresh locations, to the binding of the variables (i.e., variable
names) to these locations in an environment p:ENV, and to the association of
locations to values in a storage a : £:

type
LOC, VAL
ENV = Var ^ LOC
£ = LOC ^ VAL

Distinct labels denote distinct state-to-state transformation functions, also
known as continuations. A continuation, 8 : 0, is that state-to-state transfor
mation that would be effected by an execution as prescribed from that label
(when in any one state) and to the program exit, i.e., to and including the
last statement of a program — where we hope that if that statement is a
conditional GOTO statement that it itself will eventually lead to a no-GOTO to
the target label being effected. Variables of a block denote locations, so labels
of a block denote continuations, and these bindings are both kept in the block
environment:

type
LOC, VAL
ENV = (Var -^ LOC) \J (Lbl -^ 9)
£ = LOC -tf VAL
9 = £ ^ £

The U is not "standard" RSL. It denotes a type operation that takes two map
types A Y/f B and C j# D and yields the type of all maps from A elements into
B elements, and from C elements into D elements. It so to speak "merges" the
values of two kinds of maps into one map, for all maps.

The Main Semantic Functions

Programs

We assume that evaluation of expressions is without "side effect", that is, does
not change the state {a). Semantic function types are almost as usual, except
that we have now "inserted" a continuation argument:

value
V: Exp 4 ENV 4 E 4 VAL
I: Pgm 4 £
I: Stm 4 ENV 4 9 4 £ 4 £

68 3 Denotations and Computations

I(mkPgm(blk)) =
I(Uk)([])(X0:O'Xa:E'a)([})

To interpret a program, l(mkPgm(blk))(/9)(cr), is to interpret the block that it is
in a continuation, which, to keep the above explanation of what continuations
are, stands for the state-to-state transformation denoted by "the rest of the
program" after the block (that it is). Since there is no more program text
for the interpreter to obey, that state-to-state transformation function is the
identity function on states: X9:0'Xa:E*(T. The interpretation of a program
is assumed to take place in the context of an empty environment, [], and
hence in the context of an empty state, []. One could as well have chosen to
initially assume some "link and load" nonempty environment and storage that
would bind free identifiers of the program text to locations or continuations
that represented, say, database values, respectively operating system program
points.

Blocks

Below is a proper definition of the interpretation of a block. It is usual
continuation-style specification. But it may be somewhat convoluted to un
derstand it by just reading it now. Therefore, skip to the annotation following,
and then refer back to the formula below. Further into the below annotation
is then a schematic of what really goes in in the Spff clause below, the most
"novel" kind of specification:

value
I(mkBlk(vs,lsl))(p)((9)0) =

[1] let ls:LOC-set •
[2] card ls=card vs A Is D d o m cr—{} in
[3] let Sp:ENV • dom 6p=vs A rng dp=h,
[4] l e t p ' = p\ 5p\8p0,
[5] Sp9 = [l(lsl(i)) ^
[6] let $' = if i=len lsl
[7] then 8 else p'(s(lsl(i+l))) end
[8] in I(s(lsl(i)))(/?')(6)') end
[9] | i in (l..len sis)] in
[10] let 5a:S • d o m 5a = Is in
[ll](p'(s(lsl(l))))(<7Ufc)

end end end end

Let us now explain what is going on here. Our explanation will be given as
if the I function describes an interpreter rather than, as we originally saw it,
assigning semantics (i.e., higher-order functional meanings) to syntactic texts.

To interpret a block, l(mkBlk(vs,isl))(/>)(6>)(<x), shall be first understood as
follows: (i) p is the environment of the "surroundings" of the block, one that

3.2 Denotational Semantics 69

establishes the bindings of variables and labels in effect when, i.e., before,
entering the block interpretation, (ii) 9 is the continuation: the state-to-state
transformation to be effected after having interpreted the block (see the note
following), (iii) a is the state of the program execution at entry to block
interpretation. Thus two arguments, the configuration (p,a), designate one
on entry to the block, whereas the continuation designates one of "the rest of
the program", if any, after the block.

Note. It is this roundabout after that it takes a little time to get used to.
But we remind the reader: A label denotes the state-to-state transformation
to be effected as from the program point of the label and to the very end of
the program in which it is embedded.

Block interpretation "proceeds", i.e., the definition of its "body" is obeyed
as follows: Upon entry, as part of what we would call, during block prologue,
we must establish allocation of fresh, distinct locations, one for each declared
variable, i.e., we must establish an increment environment, 6p, for those vari
able bindings. We must also establish denotations for all the labels of that
block's statement labels.

To properly, and perhaps intuitively more easily understand, let us show
schematically what is going on in the 5p8 clause ([5-9]):

Sp0 =
[Mi H- 0i,

lbl2 ^ 02,

lbl„_i H> 8n-i,
1W„ ^ 0n]

where
lbb = l(lsl(i)) A
fli=I(8(l8l(i)))(/))((?(+i)fori<nA
8n = I(s(lsl(n)))(/?)(0)

where 1 < i < len lsl

That is, the label of the rth statement denotes the continuation which is ob
tained from finding the meaning of the rest of the program, as a continuation,
that is, without "applying" the "current" state. This is achieved by interpret
ing the ith. statement in the same environment as that in which all the block
statements are interpreted, and the continuation denoted by the next label.
For the last label, that "next" continuation is, of course, that which is in effect
"after" block interpretation.

Once the block prologue has also set up a proper storage extension, 6a,
in which we do not care what values the local allocations are boi;nd to, we,
in a sense, "obey" the first statement of the block statement list by finding
the continuation of its label, and by applying this continuation to the current
state. And that's it. All of it!

70 3 Denotations and Computations

A P r o f o u n d P r o b l e m

But there is a problem: The above cannot be defined in RSL at all! RSL does
not allow the kind of recursive construction of higher-order functionals as is
implied by the construction of Sp9. The semantics of RSL would not yield the
desired fix points.

So what do we do? We fake it! For the example, as just given, we say tha t
it is not defined in RSL, but in exactly the sublanguage of RSL tha t you see
actually used. Almost; one also has to "linearise" the allocation of storage so as
to leave out any nondeterminism. As it is now we specify any nondeterministic
choice of locations and bindings. We will not go into details here but refer to
s tandard textbooks on semantics [93,158,432,448,499,533].

Further R e m a r k s o n E x a m p l e 3.3

There are some comments to a t tach to the block definition given above. If
you "lift" the above block interpretation function by abstracting away from
storage states a : S, then we can simplify the above semantic function for
blocks and focus on the essence:

value
I(mkBlk(vs,M))(p)((9) =

let p' = p\
{ l(M(i)) H-

le t 0' = if i = l e n lsl t h e n 9 e l se p ' (s(ls l(i+l))) e n d i n
l (s(ls l (i)))0 ') (# ') e n d | i i n {l . . len sis)] in

p'(s(lsl(l)))
e n d

We shall leave it with the above for the reader to ponder. We urge the reader
to seek further understanding on the topic of semantic continuations from
the s tandard textbooks which, in addition to examples like those basically
presented here, also carefully explain the mathematics needed to properly
denote and define such continuations [93,158,432,448,499,533].

T h e R e m a i n i n g S e m a n t i c Funct ions

Assignments

To interpret an assignment statement is to apply the continuation (as from
"after" tha t s tatement) to an upda te state. The s ta te upda te is tha t of re
defining the binding of the location of the assignment variable to the value of
the expression of the assignment s tatement found in the current environment
and current state.

3.2 Denotational Semantics 71

value
I(mkAsgn(v,e)) (/>)(#) (<r) = 9{a f [p(v) H- V(e)(p)(a)])

Statement Lists

To interpret a statement list is now to interpret the first statement of the list
in the context of the continuation for "the rest" of the program from "after"
the first statement. We find that continuation by interpreting the remaining
part of the statement list in the context of the continuation for the rest of
the program "after" the statement list. If the statement list is empty the
argument continuation is applied to the current state. That is, the state-to-
state transformation for the "rest" of the program "after" the statement list
is applied to the current state to thus yield the final state.

I(mkStL(stl))(/9)((9)((j) =
if stl={) then 6(a) else I(hd stl)(/>)(I(mkStL(tl stl))(p)(0))(a) end

Conditional GOTOs

To interpret a conditional GOTO is to evaluate its Boolean-valued expression. If
it is true then the continuation for the label is yielded — which is that of the
"rest" of the program from that label "onwards". If it is false the continuation
"as from after" the GOTO statement is yielded. In any case, either of these
continuations is applied to the current state, yielding the final state.

I(mkCGo(e,l))(/£>)(0)(o-) = (if V(e)(p)(<r) then p(l) else 0 end){a)

While Loops

To interpret a while loop is to yield a continuation and apply it to the current
state. The continuation to be yielded is either that of the "rest" of the pro
gram ("after" the while loop statement) if the Boolean expression evaluates
to false; or it is that which is yielded after interpreting the composition of the
while loop statement list with the entire while loop statement if the Boolean
expression evaluates to t rue . This corresponds to the equivalence first listed
below:

axiom
V e:Exp,stl:Stm* •

I(mkWhi(e,stl)) =
if V(e) t h e n I(mkStL(str{mkWhi(e,stl)») else I({» end

value
I(mkWM(e,stl))(/>)(0)(ff) =

(ifV(e)(/9)((T)
thenI(mkWhi(e,stl))(/3)(I(stl)(p)((9))
else 8 end)(<r)

72 3 Denotations and Computations

The axiom determines the formulation of the semantic function. •

D i s c u s s i o n

It is time to conclude. Above we have mostly explained the semantics function
definitions using an operational approach. But it should not be forgotten
tha t the function's main purpose is to ascribe higher-order denotations, i.e.,
functions as meanings to syntactic quantities.

3.2 .5 D i s c u s s i o n of D e n o t a t i o n a l S e m a n t i c s

We have presented two styles of denotational semantics definitions: the "di
rect" and the continuation styles. The former, in the realm of programming
languages, suffices to achieve adherence to the denotational principle for pro
grams with "linear" flow of computation, while the latter is a good way of
achieving adherence for programs with "nonlinear" flow on control. We as
sume tha t the reader understands the terms "flow of computation", "flow of
control", "linear" and "nonlinear".

But basically, the two flows refer to the same thing: "Execution" order.
Linearity refers to whether the flow follows the syntactic phrase structure of
the program text, or not (nonlinearity). In the above examples we have often
read the semantic function definitions as those of interpreters. And we have
stated, in their conclusions, tha t these semantic function definitions ascribe
denotational meanings to syntactic constructs. They do so as follows: by suit
ably reading the definitions, moving the semantic arguments away from the
argument list position "across" the = definition (actually equivalence) sym
bol, thereby "lifting" the semantic function definition body to become bodies
which define functions over these semantic arguments to other semantic val
ues.

But there is a third way of reading these semantic function definitions. We
will t reat tha t third way in more, and necessary, detail in Sections 7.6 and
16.6. But for now let is just "lift the veil". When a semantic formula defines:

M(syn) = t e x t _ 2 ... M(f(syn)) ... t ex t_2

then we can indeed claim tha t a (third) meaning of the definition of M is
like tha t of a compiler: If one is given the syntactic text: syn, in some source
language, then M defines it compiled into the syntactic RSL text text_2 ...
M(f(syn)) ... text_2. The embedded "call" of M(d(syn)) leads to further "trans
lation", i.e., compilation, into additional RSL texts. We shall later return to
this, as we shall call it, macro-expansion view.

Denotational semantics will become a cornerstone in our abstraction of many
facets, of languages and of systems.

3.2 Denotational Semantics 73

Princ ip le s . Denotational Semantics: The principle of denotational seman
tics is basically as follows: In trying to find suitable abstractions for syn
tactic constructs consider ascribing mathematical functions as the meaning
of these syntactic constructs, and consider expressing, tha t is, constructing,
the denotations homomorphically: Tha t is, the denotation of simple syntactic
constructs, i.e., atomic par ts , are assigned simple functions; and composite
constructs have their semantics be a homomorphic function of the denotation
of the parts . •

Techniques . Direct and Continuation Semantics: The denotational seman
tics of systems or languages with "relative" static and "relative" dynamic
semantic concepts are classically modelled in terms of environments, storages
and possibly continuations. By relative statics we mean names tha t are bound
to constant values over large program fragments, or within specific subsystems,
i.e., statically. By relative dynamics we mean names whose binding changes
within considered subsystems, or are prescribed to so change within smaller
program fragments, i.e., dynamically. In summary, remaining modelling tech
niques are implied by respective semantic function signatures:

t y p e
[Syntactic Value Types]

Id, Lbl, Stmt, Expr
[Semantic Value Types]

VAL, LOC
ENV = (Id jjt (VAL|LOC)) |J (Lbl ^ CON)
STG = LOC jjt VAL

CON = STG 4 STG
value
[1] eval_pure_Expr : Expr 4 ENV 4 VAL

[2] eval_ord_Expr : Expr 4 ENV 4 STG 4 VAL

[3] e lab_impure_Expr : Expr 4 ENV 4 STG 4 STG 4 VAL

[4] in t_Stmt : Stmt 4 ENV 4 STG 4 STG

[5] in t_Stmt : Stmt 4 ENV 4 CON 4 CON

The semantic functions tha t ascribe denotation to "pure" expressions, i.e., ex
pressions with no assignable variable identifiers, usually are called [evaluation
functions. They ascribe the denotational type shown in line [1] above.

The semantic functions tha t ascribe denotation to "ordinary" expressions,
i.e., expressions with assignable variable identifiers but whose evaluation can
not cause any storage change, are also called [evaluation functions. They
ascribe the denotational type shown in line [2] above.

The semantic functions tha t ascribe denotation to "impure" expressions,
i.e., expressions with not only assignable variable identifiers but also with
such embedded constructs whose elaboration may cause storage changes, are

74 3 Denotations and Computations

usually called elaboration functions. They ascribe the denotational type shown
in line [3] above.

The semantics functions tha t ascribe denotation to statements are usually
called interpretation functions. They ascribe the denotational types shown in
lines [4-5] above. •

3.3 Computational Semantics

3.3 .1 T h e Issues

Denotational semantics definitions are abstract , but are relatively easy to
grasp. Denotational meanings are functions. Hence denotational semantics
definitions cannot usually be the direct basis for executions, as conventional
computers and programming languages cannot handle such higher-order val
ues, but must be refined into more concrete prescriptions. Computat ional
semantics definitions "unravel" recursive function definitions into iterative
(loop) prescriptions, and recursive (syntactic) da ta structures into linear (list-
oriented) da ta structures. In doing so recursion is "converted" into stacks and
iteration. Computat ional meanings are sequential compositions of simple state
changes. Computational semantics definitions are concrete, but relatively dif
ficult to grasp.

3.3 .2 T w o E x a m p l e s

We follow up on the two denotational semantics examples of Sect. 3.2 (Exam
ples 3.2 and 3.3). In Example 3.4 — first put forward by Peter Landin [284]
around 1964 — we exemplify a mechanical interpreter for the expression lan
guage of Example 3.2. The example belongs to the folklore of computing
science.

3 .3 .3 E x p r e s s i o n C o m p u t a t i o n s

The example now given is a forerunner of what became known as the SECD
interpreter: the Storage, Environment, Control and Dump machine. In the com
putat ional semantics for expressions we shall not illustrate the dump par t .
Tha t part will be prominent in the computational semantics for the impera
tive language with labels and GOTOs exemplified in Example 3.5.

E x a m p l e 3 .4 Mechanical Evaluation of Expressions:
The basic idea of this example is tha t of realising the recursion of V by

means of stacks, tha t is, of recursion removal. Many realisations of the recur
sion of V are possible. We will, rather arbitrarily, select one.

3.3 Computational Semantics 75

Before proceeding into a description of which stacks to create and how
they are used we note that our stacks are not to be used for sorting out
precedence of operators. Since we work only on abstract syntactic objects, all
such precedence has already been resolved and is "hidden" in the (invisibly)
parenthesized subexpressions.

Thus we remove recursion in the function definition of V by introducing
one or more stacks. At the same time, we change our definitional style from ap
plicative to imperative. This is not an intrinsic consequence of choosing stacks,
but a pragmatic one. In doing so we can, at the same time, simply change the
recursive function definitions into iterative. The imperative/iterative nature
of the resulting definition further gives it an air of being "mechanical".

A Computational State

One stack is the value stack. It is motivated by the "stacking" of temporaries.
Here we make explicit the implicit stacking of intermediate or temporary
results, as expressed in the denotational semantics definition through its re
cursive invocation of semantic elaboration functions.

Another stack is a control, or operator/operand expression stack. It is
motivated by recursion over syntactical expression objects. Here we make
explicit the recursion in terms of stacks. The two kinds of recursion intertwine.

Thus we make two decisions: first to state the model imperatively, in terms
of some globally declared variables. Then to express the computational seman
tics in terms of two stack variables and a constant environment.

type
ite
MDEi = Mo|Do|Ex|ite
SE = MDEi*

variable
opestk:SE := {)
valstk:Int* := {)

value
env:ENV

Note that env will be referred to below, as a global constant.
Why we made these two, and not other, among quite a few other possible,

decisions will not be explained much further! In our computational semantics,
as imperatively stated, we must necessarily choose an elaboration order for
operand expressions of infix expressions. This order was left "unspecified" by
V.

76 3 Denotations and Computations

Motivating the Control Stack

The idea of the operator/operand stack is now that the topmost element is
either an expression to be evaluated, or an operator to be applied to either
the operator/operand or to the value stack.

If the top of the operator/operand stack is an expression then it is either
elementary or composite. If it is elementary, i.e., a constant or an identifier
then the associated value is pushed onto the value stack, while the expression
is being popped off the operator/operand stack. If it is composite, i.e., a
prefix, infix or conditional expression, then those expressions are decomposed,
with the decomposition replacing it on the operator/operand stack. Hence the
control stack will consist of a sequence of operators and their operands, in what
turns out to be some variant of a postfix or reverse Polish notation:

1: A prefix expression is replaced by two elements on this stack: the monadic
operator and the (sub)expression (on top).

2: An infix expression is replaced by three elements: the dyadic operator and
the two (sub)expressions (in some order, on top).

3: A conditional expression is replaced by four elements, in order from top
towards bottom: the test expression, a metaoperator i t e (for if then
else), and the consequence and alternative expressions — the latter two
in arbitrary, but fixed, order. The idea of the i t e operator will be ex
plained in item 6 below.

4: If the top of the operator/operand stack is a monadic operator, then the
denoted operation is applied to the top of the value stack. (Thus if the op
erator is minus the top of the value stack is replaced by its complemented
(negative) value.) It follows from the operator/operand stack manipula
tions that the value stack top is the value of the expression to which the
monadic operator was once prefixed.

5: If the top of the operator/operand stack is a dyadic operator, then the
denoted operation is applied, in an appropriate way, to the two topmost
values of the value stack — with the result replacing these values.

6: Finally, if the operator/operand stack top element is i t e then it means
that the value of the test expression of the conditional expression, whose
manipulation gave rise to this i t e operator, is on the top of the value
stack. If it, the latter, is 0 then we compute only the consequence expres
sion, otherwise we compute only the alternative expression. These are the
next two elements on the operator/operand stack. The appropriate one is
thrown away together with the value stack top.

The Elaboration Functions

Computation proceeds based, as always, on the top element of the opera
tor/operand stack. And computation proceeds as long as there are elements
on the operator/operand stack. When it becomes empty the computed value

3.3 Computational Semantics 77

is the top value of the value stack. The function informally described in this
paragraph is called Compute. It is defined formally below.

Let us call the function which transforms the system state dependent on
the top of the operator/operand stack for Transform, then:

value
Compute: Ex —> read,wri te opestk,valstk Int
Compute (e) =

opestak :— (e);
while opestak ^ {} do Transform() end;
hd valstk

To facilitate the statement of Transform, we define four auxiliary stack func
tions:

PopO: Unit -t read,wri te opestk MDEi
PopO() = let oe = hd opestak in opestk := t l opestk; oe end

PopV: Unit —> read,wri te valstk Int
PopV() = let v = hd valstk in valstk := t l valstk; v end

PushO: SE -4- read,wri te opestk Uni t
PushO(oel) = opestk := oel ~ opestk

PushV: Int ^> read,wri te valstk Unit
PushV(v) = valstk := (v) ~ valstk

Now to the main function.

value
Transform: Uni t —> Uni t
Transform () =

let oe = PopOQ in
case oe of:

mk_intg(i) —> PushV(i),
mk_iden(t) -> PushV(env(t)),
mk_prefix(o,e) —> PushO((e,o)),
mk_infix(le,o,re) -> PushO((re,le,o)),
mk_cond(be,ce,ae) —> PushO((be,ite,ce,ae)),
minus -> PushV(-PopV()),
. . . - > • . . . ,

add -»• PushV((PopV()+PopV())),
. . . -) • . . . ,

ite ->• let bv = PopV(), ce = PopO(), ae = PopO();
PushO({if bv=0 then ce else ae end)) end,

end end

78 3 Denotations and Computations

Recall that env was a globally defined constant.

Discussion

The recursive definitions of the semantics functions of Examples 3.1 and 3.2
have been replaced by a combination of two stacks, push and pop opera
tions on both of these stacks and iteration. The control stack resembles the
compile-time translation of structured, for example, infix, expressions to re
verse Polish notation. The value stack resembles the run-time interpretation
of code for intermediary values of subexpressions. Thus we may say that the
computational semantics gives hints as how to develop an interpreter, or even
a compiler, from a denotational semantics definition. We shall take this topic
up in Chap. 16.

3.3.4 Computational Semantics of GOTO Programs

In Example 3.5, first put forward by John Reynolds [427,428], we exemplify
a mechanical interpreter for the jump language of Example 3.3. This example
also belongs to the folklore of computing science.

Example 3.5 Mechanical Evaluation of a Statement Language:

The Syntax

We start by presenting a syntax for an almost conventional imperative and
block structured language. The "twist" in this language is that we allow ex
pressions to be labels, that variables may store label denotations, and that
GOTOs can refer to label variables.

type
Var, Lbl
Block = = mkBlocktdefns.-CVar-^Type^el.-Cmd*)
Type = = label | ...
Cmd = = mkCmd(p:PPt,s:Stmt)
PPt = = Lbl | nil
Stmt = Asgn | GOTO | Block | ...
Asgn —— mk Asgn (v: Var ,e:Expr)
GOTO = VGOTO| LGOTO
VGOTO == mkVGOTO(v:Var)
LGOTO ==mkLGOTO(l:Lbl)

Expr = = mkLbl(Lbl) | mkVar(Var) [...

3.3 Computational Semantics 79

Some Semantic Observations

Observation 1

The "newcomer" is label variables, and hence label values. The question there
fore is: What is the denotation, in a computational semantics model, of a
label? We now argue our answer to this question. To see, in a language like
that of this examplem that labels cannot just denote themselves we perform
the following experiment. We let a program "schematically" look like:

1. begin
2. del lv type label ;
3. 1 : statement-A ;
4. lv := 1 ; ... ; GOTO lv ; ...
5. begin
6. 1 : statement-B ; ...
7. lv := 1 ; ...
8. GOTO lv ; ...
9. end ; ...
10. end

The GOTO in (4) is (clearly) intended to transfer flow of control to that
statement whose label, "1", was most recently assigned to "lv", and likewise
for the GOTO in (7). Assume, in (4), that "lv's" content at the point of
GOTO is the "1" of (3), then transfer is to (3). Assume, in (8), that "lv's"
content is the "1" of (3), then transfer is to (3). Assume, instead, in (8) that
(7) was most recently executed, then transfer should be to (6). The question
is therefore this: How to distinguish between the "1" of the outer and inner
blocks (now that it is allowed to have redefinition of "l's")?

Observation 2

There is, however, another problem: Assignment of local labels of two disjoint
blocks to a common, global variable may raise problems:

1. begin
2. del lv type label ;
3. begin
4. 1_1: stmt ; ... ; lv := 1_1 ; ...
5. end ;
6.
7. begin
8. 1_2: stmt ; ... ; lv := 1_2 ; ... ; GOTO lv ; ...
9. end ; ...
10. end

80 3 Denotations and Computations

If at the point of executing the GOTO in (6) "lv's" value is not that (possibly
conditionally) assigned "earlier" in (6), but that resulting from and bound in
line (4), then an attempt is seemingly being made to jump into block (3-5)
— something which was otherwise deemed illegal statically.

Semantic Types

As before, we formulate the semantics around an SECD structure: storage,
environment, control and dump. The state of the computational model thus
consists of four components: (i) a storage, as usual; (ii) an environment, which
is as usual, only we keep it in a global variable; (iii) a control, which contains
the statements of the block currently being executed; and (iv) a dump.

The dump records the state of computation at the point of entry to a
block exclusive of that block. That is, the dump contains a triple: (ii) the
environment of the block embracing the block being entered (i.e., env or p of
earlier models), (iii) the list of commands, i.e., control, following the block
being entered (i.e., a concretisation of 1 sl(sl)(i)(p)(cr) (cf. Example 3.3) for
some i where sl(i-l) is the block being entered); and (iv) the dump at the point
of entering a block.

Leaving a block means restoring the ("top") dump element to the respecti
ve global environment, control and dump variables.

A label value is a dump.
"Going to" a labelled statement means taking the label value and letting

its component replace the current environment, control and dump values.

type
STG = LOG T,f VAL
ENV = (Var ^ LOG) (J (Lbl ^ DMP)
DMP = ENV x CTL x Dmp
Dmp = = DMP | null
CTL = Cmd*

variable
Stg:STG := [],
Env:ENV := [],
CthCTL := {),
Dmp:DMP .— null;

Interpreter Functions

We assume a program, p, to be a block (or a command list). We define a func
tion, Iterate, which "executes" a statement at a time, and otherwise iterates
until control is empty (()), and dump is likewise (null):

3.3 Computational Semantics 81

value
Iterate: Block —»• wri te Ctl read Dmp Uni t
Iterate(b) = Ctl:=b; while (Ctl/<)ADmp^null) do Transform() end

Transform: Uni t —> wri te Stg,Env,Ctl,Dmp Unit
Transform () =

i fCt l^O
then

let mkCmd(,s) = hd Ctl in Ctl := t l Ctl ;
Compute_Stmt(s) end

else
let (env,ctl,dmp) = Dmp in
(Env:=env || Ctl:=ctl || Dmp := dmp) end

end

Compute_Block (i.e., Compute_Stmt for Blocks) prepares a new environment,
dumps the old environment, control and dump on the dump, and initialises
the control to the block command list.

value
Compute_Stmt: Stmt —i wri te Stg,Ctl,Env,Dmp Uni t
Compute_Stmt(mkBlock(vars,cl)) =

let dp = [vH-»AUoc()|v:Var*v G dom vars]
f [l(->-makeDump((5/o,(l,cl))|l:Lbl«mkCmd(l,)G e lemscl] in

Dmp := (Env,Ctl,Dmp) ;
(Env := dp [| Ctl := cl)
end

Alloc allocates storage space for declared variables.

Alloc: Uni t ->• wri te Stg LOG
Alloc() =

let loc:LOC • Iocs' dom Stg in
Stg := Stg U [loo-»undefined] ;
loc end

makeDump prepares a dump for each label of a block command list.

makeDump: ENV x (PPt x Cmd*) read Dmp DMP
makeDump(/?,(lbl,cmdl)) =

let cl = (cmdl(i)|i in (j,len cmdl)'j € inds cmdlAlbl=p(cmdl(i)))
in (p,cl,Dmp) end

Compute_Assign looks up the assignment left-hand variable, evaluates the
right-hand expression, and updates storage.

82 3 Denotations and Computations

value
Compute_Stmt(mkAssign(var,lbl_or_expr)) =
let loc = look_up(var)(Env,Dmp),

val = Compute_Expr(lbl_or_expr) in
Stg := Stg f [loc t-> val]
end

look_up first searches the local environment, then, if needed, successively
dumps "surrounding" environments.

value
look_up: (Lbl|Var) -» Env x Dmp -> read Dmp Unit (DMP|LOC)
look_up(lv)(p,<5) =

if lv € dom Env
then env(lv)
else

let (env,,dmp) = Dmp in
look_up(lv)(env,dmp) end

end

Compute_Expr evaluates an expression. That expression may either be a vari
able, a label or something else.

value
Compute_Expr: Expr —y read Env,Dmp Unit VAL
Compute_Expr(e) =

case e of
mkLbl(l) -> look_up(l)(Env,Dmp),
mkVar(v) —>•

let loc = look_up(v)(Env,Dmp) in
Stg(loc) end

end

Compute_GOTO computes the label valued expression of its argument, throws
the current dump away (entirely, yes!), and distributes the components of the
retrieved dump over the control, environment and dump variables.

value
Compute_Stmt(mkGOTO(var_or_lbl)) =

let le =
case var_or_lbl of

mkVGOTO(var) -> mkVar(var),
mkLGOTO(lbl) -s> mkLbl(lbl)

end in
let (env,ctl,dmp) = Compute_Expr(le) in
(Env := env |[Ctl := ctl || Dmp := dmp)

3.3 Computational Semantics 83

e n d e n d

We remind the reader tha t the above constitutes one of the major models of
computing science. •

3 .3 .5 C o m p u t a t i o n a l S e m a n t i c s of C o r o u t i n e P r o g r a m s

Example 3.5 forms the background for this small section — mostly taken
up by a "pseudo-example". Tha t pseudo-example illustrates an important
programming technique, tha t of coroutines. The pseudo-example challenges
the reader to formalise the syntax and semantics of the illustrated coroutine
language. Tha t syntax and semantics, obviously, is expected to follow very
much the solution given in Example 3.5.

E x a m p l e 3.6 Coroutines: By a coroutine we mean a program block tha t can
be called, i.e., whose interpretation can be "commenced" as from a first decla
ration. We also mean one whose interpretation can be "temporarily" suspended,
and whose interpretation can be resumed as from any designated (internal)
program point. Finally, we mean one whose interpretation can be "ended" by
normal interpretation of an ordinary last s ta tement of tha t coroutine block.

Let us consider the " C o r o u t i n e " Program Text I below4.
"Coroutine" P r o g r a m Text I

begin s t a r t
va r i ab l e s : l v a , l v b , v l , v 2 , . . . , v n ; +
11: s t l ; +

+
+
+
+
+
+
I

I
I
+
+
+
+
+
+ -

12: st2 ;
13: begin
variables
131: st31
132: lva
133: GOTO
134: st34
135: GOTO
end

14: st4 ;
15: begin
variables
151: stll
152: lvb
153: GOTO
154: st14
end

16: st6
end

;
= 134
14 ;
;
lvb

;
= 154
lva ;

-> +
+
I
I
I
I
I
I
I
+
+
+

out

4Disregard for the moment the +s, the I s, the - s and the >s of the right-hand
side of text.

84 3 Denotations and Computations

According to the computational semantics of the language of this example, the
following execution sequence — mentioning only the labels of statements actu
ally computed, omitting the assumed block prologue allocation of variables —
is possible: 11 , 12, 13, 131, 132, 133, 14, 15, 151, 152, 153, 134,
135, 154, 16! We attempt to illustrate this sequence by the trace shown
by the +'s, the I's and the ->'s of the right-hand side of the "Coroutine"
Program Text. The +'s designate statements (etc.) being interpreted. The
I's designate "transfer of control" to a next statement (etc.) being then in
terpreted. The ->'s likewise, i.e., as for the | 's. Naturally, the dynamics of
execution is "diagrammed" by the program trace "winding its way down and
up and down again".

That is, the blocks labeled 13 and 15 can be considered coroutines.
Of course, instead of the possibly haphazard, i.e., error prone, assignment

of labels to variables, one can design a language whose syntactic forms more
appropriately indicate call, suspend, resume and terminate.

A proposal is given in the Coroutine Program Text I I next:

Corout ine P r o g r a m Text II

begin

variables: vl>v2,...,vn

COROUTINE ca:

begin

variables: ... ;

lal
la3
la4
la5

st31 ;

CALL cb ;

st34 ;

RESUME cb

end ca ;

COROUTINE cb:

begin

variables: ... ;

lbl
lb3
lb4
lb5

stll ;

RESUME ca ;

stl4 ;

TERMINATE

end cb ;

11
12
13
16

end

stl ;

st2 ;

CALL ca ;

st6

start

+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+
+
+ ->

-> +

+
+
+
+

1
1
1
+
+

+
+
+ ->

-> +

+

1
1
1
1
1
1
+
+
+

1
1
1
+

out

We leave it to the reader to decipher the latest Coroutine Text (II), to com
pare the two Coroutine Texts (I II), and to design a proper imperative,
"toy" coroutine programming language.

3.3 Computational Semantics 85

3.3 .6 D i s c u s s i o n

It is t ime to conclude. Above we presented a computational semantics for
a slight variation of the GOTO language otherwise denotationally defined in
Example 3.3. The variation has been tha t of allowing assignable variables to
be assigned "the value of a label", and to let GOTO statements identify the
target label as the value contained in such label variables.

Two kinds of comments are in order: one on the modelling of labels, and
one of "the power" of the current variant of GOTO languages.

O n t h e M e c h a n i s a t i o n of C o n t i n u a t i o n s

Labels denote continuations. So it was in the denotation semantics modelling
of GOTOs. Labels denoted dumps: records of environments, controls (i.e., pro
gram fragments) and dumps. So it was in the computation semantics mod
elling of GOTOs. In other words: dumps offer one form of implementation of
continuations.

The latter gives us the hint tha t labels, in such GOTO languages as here
illustrated (with label variables etc.), be implemented in terms of references
to environments, program points and references to dumps.

In Chaps. 16-18, we shall base developments towards compilers for func
tional, imperative and modular languages upon this insight.

O n t h e "Power" of GOTOs v ia Label Variables

GOTOs are usually considered harmful. It was the late (and illustrious) com
puter scientist Edsger Wybe Dijkstra [101] who pointed out undesirable possi
bilities when using GOTOs in programming. But used judiciously, and perhaps
only after steps of refinement where earlier stages did not use GOTOs, such may
be useful. As also pointed out, eloquently, by Donald E. Knuth [274].

But, as shown in Example 3.5 and hinted at in Example 3.6. GOTOs can
be made very useful. In any case, our hardware computers "feature" them,
extensively!

O n C o m p u t a t i o n a l S e m a n t i c s

We observe tha t the above example definitions do not satisfy the denotational
principle. This is because we have decomposed ("compiled") composite ex
pressions (resp. statements) into, in this case, postfix-like sequences of imme
diate expression and operator components (etc.). Instead we should get a
rather operational "feeling" for how one might mechanically pursue an eval
uation of expressions (resp. interpretation of statements) — resulting, after
some iterations rather than recursions, in their value (resp. side-effect).

86 3 Denotations and Computations

3.4 Review: Denotations and Computat ions

In denotational semantics meaning is abstracted as functions. In computa
tional semantics meaning is concretised as computations. Denotational se
mantics functions express homomorphisms. Computational semantics func
tions express sequences of state changes. Recursions, say in denotational def
initions, are, in computational definitions expressed in terms of stacks and it
erations. Denotational semantics over recursively defined syntactic structures
are expressed in terms of recursively descending functions which functionally
compose meanings from embedded parts.

Computational semantics typically encodes (i.e., translates) recursive struc
tures into linear data structures as a result of either pre- or post-order traver
s a l of the original, recursively defined (treelike) structures. The recursive to
linear, i.e., syntax-to-syntax, translation is expressed in terms of stacks as is
the linear syntax to semantics computation.

Principles. The principle of denotations versus computations is one of ab
straction: If you seek an abstract, yet model-oriented abstraction "try" to
formulate a denotational semantics. If you seek to explain, albeit abstractly,
how a computation over some program text can occur, then "go for" a com
putational semantics. •

3.5 Some Pioneers of Semantics

There are many pioneers of semantics. Besides mathematicians, there are a
number who, in the era of computing, i.e., from the mid-1950s onwards, have
contributed significantly to providing a theoretical and a practical basis for
expressing the semantics of programming languages. Two will be mentioned
in this section: John McCarthy and Peter Landin. Others, really, should be
mentioned in other end-of-chapter biographies. Some of these are: people from
the IBM Vienna Laboratory group of the 1960s and early 1970s (Hans Bekic,
Peter Lucas and Kurt Walk [30,31,33-37,248,305-312,565]), and from the
Oxford University Computing Laboratory, also of the 1960s and early to mid-
1970s: Dana Scott and Christopher Strachey [157,355,452^63,489-491].

3.5.1 John McCarthy

John McCarthy's work in relation to semantics is of decisive importance. He
has also contributed significantly to the area of artificial intelligence (AI).
Here we shall just concentrate on a few years of McCarthy's work in relation
to programming language semantics. In particular to references [329-331,333,
334] which we show, and briefly comment on, below as items 1-5.

3.5 Some Pioneers of Semantics 87

1. John McCarthy. Recursive Functions of Symbolic Expressions and Their
Computation by Machines, Part I. Communications of the ACM, 3(4):184—
195, 1960.

This was the original paper on LISP. Part II, which never appeared, was to
have had some LISP programs for algebraic computation.

2. John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin. LISP 1. 5 Programmer's Manual. The MIT Press,
Cambridge, Mass., 1962.

The LISP 1.5 list-oriented programming language is defined in terms of a set
of recursive equations. The style of the definition, the LISP 1.5 interpreter,
can be read as being operational (i.e., computational).

3. John McCarthy. Towards a Mathematical Science of Computation. In
CM. Popplewell, editor, IF IP World Congress Proceedings, pages 21-28,
1962.

4. John McCarthy. A Basis for a Mathematical Theory of Computation. In
Computer Programming and Formal Systems. North-Holland Publ. Co.,
Amsterdam, 1963.

These two papers figure among the great classics of computer science. The
latter extends the results of the former paper. The first paper was presented in
1961 at the Western Joint Computer Conference and in 1962 at a symposium
sponsored by IBM in Blaricum, Netherlands. Among other things, it includes
a systematic theory of conditional expressions, a treatment of their recursive
use and the method of recursion induction for proving properties of recursively
denned functions.

The latter paper introduced the term abstract syntax — and maybe the
first occurrence of the idea — as it also, briefly, covered the notion of seman
tics.

5. John McCarthy and James Painter. Correctness of a Compiler for Arith
metic Expressions, in J.T. Schwartz. Mathematical Aspects of Computer
Science, Proc. of Symp. in Appl. Math. American Mathematical Society,
Rhode Island, USA, 1967, pages 33-41, 1966 [451].

This paper seems to have contained the first proof of correctness of a compiler.
Abstract syntax and Lisp-style recursive definitions kept the paper short.

We quote from the introduction:

This paper contains a proof of the correctness of a simple compiling
algorithm for compiling arithmetic expressions into machine language.
The definition of correctness, the formalism used to express the de
scription of source language, object language and compiler, and the
methods of proof are all intended to serve as prototypes for the more
complicated task of proving the correctness of usable compilers. The

88 3 Denotations and Computations

expressions dealt with in this paper are formed from constants and
variables. The only operation allowed is a binary + although no change
in method would be required to include any other binary operations.
The computer language into which these expressions are compiled is
a single address computer with an accumulator, called ac, and four
instructions: li (load immediate), load, sto (store) and add. Note that
there are no jump instructions. Needless to say, this is a severe restric
tion on the generality of our results which we shall overcome in future
work. The compiler produces code that computes the value of the
expression being compiled and leaves this value in the accumulator.
Again because we are using abstract syntax there is no commitment
to a precise form for the object code.

3.5.2 Peter Landin

Most papers in computer science describe
how their author learned what someone else already knew.

Peter Landin

Peter Landin's scholarly career started at the end of the 1950s. He was much
influenced by McCarthy and started to study LISP when the most common
language was FORTRAN. LISP was very different from the other contem
porary languages because it was based on a functional calculus rather than
being procedural in nature.

References [284-291] are listed below.

• [284] Peter J. Landin. The Mechanical Evaluation of Expressions. Com
puter Journal, 6(4):308-320, 1964.

We quote, from the abstract of Olivier Danvy's [90]:

Landin's SECD machine was the first abstract machine for the A-
calculus viewed as a programming language. Both theoretically as a
model of computation and practically as an idealized implementation,
it has set the tone for the subsequent development of abstract ma
chines for functional programming languages.

Olivier Danvy's abstract continues:

However, and even though variants of the SECD machine have been
presented, derived, and invented, the precise rationale for its archi
tecture and modus operandi has remained elusive. In this article, we
deconstruct the SECD machine into a A-interpreter, i.e., an evaluation
function, and we reconstruct A-interpreters into a variety of SECD-
like machines. The deconstruction and reconstructions are transfor
mational: they are based on equational reasoning and on a combina
tion of simple program transformations — mainly closure conversion,

3.5 Some Pioneers of Semantics 89

transformation into continuation-passing style, and defunctionaliza-
tion. The evaluation function underlying the SECD machine provides
a precise rationale for its architecture: it is an environment-based eval-
apply evaluator with a callee-save strategy for the environment, a
data stack of intermediate results, and a control delimiter. Each of
the components of the SECD machine (stack, environment, control,
and dump) is therefore rationalized and so are its transitions. The de-
construction and reconstruction method also applies to other abstract
machines and other evaluation functions. It makes it possible to sys
tematically extract the denotational content of an abstract machine
in the form of a compositional evaluation function, and the (small-
step) operational content of an evaluation function in the form of an
abstract machine.

• [285] Peter J. Landin. A Correspondence Between Algol 60 and Church's
Lambda-notation (in 2 parts). Communications of the ACM, 8(2-3):89-
101 and 158-165, Feb.-March 1965.

These two papers were very influential in demonstrating the importance (i) of
the A-calculus in practice, (ii) as a tool to understand programming language
semantics, and (hi) of the functional programming paradigm.

The next two papers:

• [288] Peter J. Landin. Getting Rid of Labels. Technical Report, Univac
Systems Programming Research Group, N.Y., 1965.

• [286] Peter J. Landin. A Generalization of Jumps and Labels. Technical
Report, Univac Systems Programming Research Group, N.Y., 1965.

although — at the time not widely spread — did indeed have some rather
substantial influence. They clearly show Landin's canny ability to deal with
complicated "phenomena" in elegant ways. Landin handles control by way of
a special form of closure, giving a statically scoped form of control, namely in
terms of the J operator.

Later authors have analysed these papers: [430,433,500,501]. In [292]
Landin reviews his work of the 1960s and draws lines into the years after.

Further reports and papers were:

• [287] Peter J. Landin. An Analysis of Assignment in Programming Lan
guages. Technical Report, Univac Systems Programming Research Group,
N.Y., 1965.

• [289] Peter J. Landin. A Formal Description of Algol 60. In T.B. Steel.
Formal Language Description Languages, IFIP TC-2 Work. Conf., Baden.
North-Holland Publ. Co., Amsterdam, 1966, pages 266-294, 1966 [484].

• [290] Peter J. Landin. A Lambda Calculus Approach. In L. Fox, editor,
Advances in Programming and Non-numeric Computations, pages 97-141.
Pergamon Press, 1966.

90 3 Denotations and Computations

The final paper in our listing:

• [291] Peter J. Landin. The Next 700 Programming Languages. Commu
nications of the ACM, 9(3):157-166, 1966.

introduced the concept of ISWIM: I See What I Mean.
We quote from FOLDOC [118]:

ISWIM is purely functional, a sugaring of lambda-calculus, and the
ancestor of most modern applicative languages. An ISWIM program
is a single expression qualified by 'where' clauses (auxiliary defini
tions including equations among variables), conditional expressions
and function definitions. ISWIM was the first language to use lazy
evaluation and introduced the offside rule for indentation.

3.6 Exercises

Exercise 3.1 Denotational Semantics: Case Expression Extension. We refer
to Example 3.2. Extend that expression language with case expressions, say
like:

case expr of
expr_lv —> expr_lc,
expr_2v —> expr_2c,

expr_nv —>• expr_nc
end

where evaluation of expr is compared for equality, in turn, with expressions
expr_iv, from i=l to i=n. For the first i=j for which there is equality, the value
of the whole case expression is the value of expression expr_jc. If no equality
is yielded, then chaos is yielded!

This exercise continues in Exercise 3.2.

Exercise 3.2 Computational Semantics: Case Expression Extension. We re
fer to Example 3.4 and to Exercise 3.1. You are to reformulate the semantics of
the case expression as a computational semantics — as per the ideas expressed
in Example 3.4.

Exercise 3.3 Denotational Semantics: A Simple Bank. Narrative: A much
simplified bank is configured into a context p : R, which records client c : C
account numbers k : K, and a state o : S, which records balances on accounts.
That is, clients are named c : C, and so are accounts k : K. Two or more clients
may share accounts. Clients may "hold" more than one account. All accounts
have clients.

The bank accepts the following transactions: create account, close account,
deposit into an account, withdraw from an account, transfer monies between

3.6 Exercises 91

accounts and deliver a statement (of a client's transactions since either the
last time a statement transaction from that client was honoured, or since the
opening of the identified account). These transactions amount to syntactic
commands. They appropriately name client and account names as well as
money amounts, as needed.

The bank state also records the bank's own profit (interest income) and
fee (income) accounts. The bank charges the customer a fixed fee, say d : $,
for certain transactions (open, close, statement and transfer), a fixed daily
interest, say i : / , on negative accounts, and offers a fixed, lower yield, y : Y, on
positive accounts. Thus the transactions also need to record the day on which
a transaction is issued. We assume all such day identifications to be natural
numbers, as from day 0, the opening of the bank, till any other day after that.
In other words, whenever a deposit, withdrawal, transfer or closing transaction
takes place, the bank computes the interest or yield to be withdrawn from,
respectively added to, the appropriate account(s): the clients' as well as the
bank's.

Questions: First formalise the abstract types (i.e., sorts) of client names
and account identifiers. Then formalise the concrete types of banks (contexts
and states). Then define, still in RSL, the semantic functions which assign
denotational meaning to transactions and to transaction sequences (the latter
likely to relate to different clients).

References: This exercise continues into Exercise 3.4 immediately below.

Exercise 3.4 Denotational Semantics: A Simple Banking Script Language.
Reference: This exercise continues from Exercise 3.3.

Narrative and problem: Now, from your definition of the semantics of trans
actions, devise a simple script language, that is, a simple exercise and condi
tional (if-then-else) statement and expression language in which the bank can
itself define the semantics of transactions in the form of scripts. A script is just
a sequence of simple exercise and conditional (if-then-else) statements. De
fine the syntactic and semantics types of this language as well as denotational
functions that ascribe meanings to scripts.

Hint: Scripts are like small programs. Variables of these programs are the
finite set of two bank variables, context and accounts, the finite set of two
bank constants, interest% and yield%, a finite set of (how many?) client name,
account number, statement accumulation, and period computation (from date
of last interest or yield computation, to current date) variables, etc.

Exercise 3.5 Denotational (Continuation) Semantics: Language with Stor-
able Label Values. References: References are made to Examples 3.3 and 3.5.
The imperative GOTO language, for which a denotational continuation seman
tics is sought, had its syntax defined in Example 3.5 (which is basically also
the syntax of the language of Example 3.3).

The Problem: The problem to be solved is now, instead of the computa
tional (cum operational) semantics of Example 3.5 to define a denotational

92 3 Denotations and Computations

(cum mathematical) semantics using continuations like those shown in Exam
ple 3.3. Hint: Let continuations be storable values!

Exercise 3.6 Denotational (Continuation) Semantics: A Proper Coroutine
Programming Language. Reference: Reference is made to Example 3.6.

The Problem: You are to come up with a denotational continuation seman
tics for a proper, imperative coroutine language. In this exercise you also are
to first make precise a narrative description of the syntax and semantics of
this language. The below text only gives a rough sketch of the language. That
is, you are to "fill in the details"!

Narrative: The imperative coroutine language, to be given a formal defini
tion is like a block structured imperative language as given in several examples
so far in these volumes. Programs, besides (syntactically) being blocks that al
low the introduction of variables, also allow the definition of routines, routine
r = "block" and c a l l r statements, where r is the name of a defined rou
tine. Routines are parameterless, but named procedures, which, syntactically
speaking are otherwise like blocks, but where routine blocks allow two new
kinds of statements: c a l l r, a routine (named r) , and resume r, where it is
assumed that some routine r is currently suspended. Speaking operationally,
when a routine is invoked (i.e., called) from within a routine then that rou
tine's activation is said to be suspended, and at that point. Resumption then
reactivates the most recently suspended routine (named r) as from that point
onwards. Routines are "exhausted", i.e., terminate, when there are no more
statements to execute, i.e., when they "reach the end of their body of state
ments" . At that time an implicit "resumption" takes place: Transfer of execu
tion control occurs to the routine or the program — whichever invoked (i.e.,
called) the present routine activation.

Comments: We leave it to you to guess the rest — and hence to first
narrate a precise, informal description, before formally defining the syntactic
and semantic types and the semantic functions.

4

Configurations:
Contexts and States

• The prerequisite for studying this chapter is that you have studied and
understood, to a reasonable extent and depth, Vol. 1 of this series of text
books on software engineering.

• The aims are to introduce the model (and configuration modelling) con
cepts of contexts and states, and to exemplify and discuss these configu
ration concepts from a variety of viewpoints.

• The objective is to enable you to choose an appropriate balance between
a "decomposition" of configurations into contexts and states.

• The treatment is systematic and semi-formal — with an important state
concept (automata and machine) being covered in Chap. 11.

. On Notions of State .
By the state of affairs we generally mean how the universe of discourse
(which we are observing) is composed, and, for each of the atomic compo
nents, what their values are, at any time.

• Thus we can take a look at that universe of discourse at a very detailed
level: Considering all the values as they change, continuously over time.
This is the classical control-theoretic view point [16,104,120]. There are
now infinitely many states, and they typically form various continuities.

• Or we can "summarise" certain value ranges as being significant. That
is, we can impose one or another equivalence relation and thus "divide"
the typically infinite space of values (for each observable) component
into a finite number of "adjacent" ranges (intervals). Each interval now
denotes a state (of a given component, i.e., a sub-state of the system
of components). And permissible combinations of components and their
respective ranges designate a state. Again, if there are a finite number of
components and, for each, a finite number of relevant value ranges (to be
observed), then we have, essentially, a finite state system — albeit that
there may be many, many states.

94 4 Configurations: Contexts and States

Or the universe of discourse presents itself as a discrete system, tha t is,
as a composition of components, each of which "takes on" a value from
a finite, discrete set of values.
So the notion of state is the same, only we may treat it differently from
one universe of discourse to another universe of discourse!
In this chapter we shall take the last view: Tha t the system to be con
sidered, i.e., the universe of discourse, is already — or has already been
abstracted into — a system of discrete states.

Tha t is, in the present chapter we shall take a state to designate some
thing stable.
In all cases, states represent summaries of past behaviour.

4.1 Introduct ion

We shall, in this section, t reat notions of contexts and states1 , as we have
come to be familiar with them in computing. As a whole, i.e., viewed as a
pair, we shall refer to these as configurations. We do so by first t reat ing these
notions as we claim they occur in "the real world"!

But first, we present some examples from computing. In computing, envi
ronments are associations of names (identifiers) with their values (including
denotations). And in computing, states are aggregates of named values of
assignable and control variables when a model is imperatively expressed, or
of a (usually named) structure of applicatively 'passed' and ' returned' values
(of immutable2 variables) when a model is functionally expressed.

E x a m p l e 4 .1 Applicative and Imperative States:

value variable
fact: Nat -> Nat r :Nat := 1;
fact(n) = value

if n=0 fact: Nat —> read r write r Nat
then 1 fact(n) =
else n*fact(n—1) end for i in (l..n) do r := r*i end; r

In the applicative definition, above left, the state of the described computa
tion is represented part ly by the decreasing formal parameter (i.e., argument)
value, n, part ly by the accumulating expression value n*fact(n—1). In the

1Usually what we here call 'context' is, in connection with programming language
semantics, called 'environment'. Similarly what we here call 'state' is, in connection
with programming language semantics, called 'storage'.

immutable: Not capable of or susceptible to change.

4.1 Introduction 95

imperative definition, above right, the s tate of the described computation is
represented by the value of assignable variable r and the value of the control
variable counter i. •

Contexts summarise which name/value associations are in effect. States sum
marise past computations. Actions effect state changes and take place in a con
text. States and actions "go together". Contexts are bindings of user-defined
identifiers and their denotations. Contexts and bindings "go together". States
reflect the dynamics of program execution. Contexts reflect the statics of pro
gram planning. User-defined identifiers (i.e., names) have a scope and a span.
The scope determine where an identifier can be used. The span of a user-
defined identifier determine a largest computational interval3 encompassing
those of the scope of tha t identifier.

Contexts and states thus are relevant for programming. In this chapter we
shall see tha t contexts and states are relevant for understanding domains and
for expressing requirements as well.

E x a m p l e 4.2 Context and Bindings: For the applicative case (cf. Exam
ple 4.1 left par t) each recursive invocation of fact binds n to a new value
in the environment. For the imperative case (cf. Example 4.1 right par t) the
context, i.e., the environment associates program variable or control identifiers
to their storage locations, respectively values (viz.: r,i).

For both cases: The scope is tha t of the block, i.e., the function defini
tion, excluding contained blocks (and function invocations)4 . The span is the
(allocation) computat ion interval of the variable. •

With computing, the concepts of environments and their bindings, and of
states (storages) and actions (statements, i.e., operations on states), have
become central notions.

In the world of computing a state is a summary of a computation and
is represented by the value of a number of variables. In tha t same world an
action is something tha t changes the value of some variables, i.e., the state.

3Usually the literature uses the term 'lifetime' where we use the term 'compu
tational interval'. The distinction may be subtle: The fact that computation takes
time usually has no influence on the values, the results, being computed. That is, it
does not, or should not have any bearing on the computation and hence its result.
Therefore, to speak about lifetime when the notion of time is not material may be
a bit misleading. At this stage we prefer to be more precise and say 'computation
interval' with the meaning: A span of computations, stretching from a first action
to a last action.

The block and the function definition (function name, formal parameter list and
body) concepts are basically the same and are motivated by the pragmatic desire
to group names and their meaning into "localities", into contexts — thus enabling
us, the developers and readers of these texts, to focus our attention on small pieces
of specification and program texts.

96 4 Configurations: Contexts and States

A context is something tha t prescribes which names (identifiers) are relevant,
and with which values (denotations), at a certain step of a computation.

In the world of applications — say one in which we need not necessarily
speak of computing — a state (viz.: "a state of affairs") is also represented by
the values of a number of components of tha t "actual" world. An action is still
tha t "something" which changes the values of these components. A context,
finally, is tha t which focuses on which — of many — components are worth
our attention.

There are two dualities "buried" here [(i-ii)]. There is the obvious one tha t
relates the two worlds just sketched. Tha t is, (i) the duality of what goes on
"inside the computer" vis-a-vis what goes on "out there, in an 'actual ' world";
(ii) and the duality of states and computations: of states as summaries of past
computations. Tha t is, we can capture "whole" or "part" computations in
states, as values — and vice versa. Tha t is the duality. In this section we shall
explore both dualities.

We have a few words to say about the latter duality:

• The number zero can be thought of as a function. Whenever applied, it
returns the value zero:

z = Ax.O

We could claim tha t this function is data: the value 0.
• Any natural number, n, can now be thought of as an appropriate compo

sition of successor functions:

s = Xx.x + 1, s's's' • • •' s
v '

n — 1

We could claim tha t this function stands for a computation: one tha t
computes n.

Other illustrations will be made in due time.
The example shows tha t the decision of what is "put into a state" versus

"what is put into a computation" (over such a state) is a pragmatic one. Tha t
is, there are no absolutes here.

Computat ions occur in "time"5-space: Actions take "time" to execute,
and actors require resources tha t occupy physical space. Computat ional states
can therefore be associated with a dynamic, i.e., temporal notion of change
of the values of the computing resources. These latter are the actors tha t
are implied by the program texts which prescribe computations. In contrast,
computational contexts (environments) are usually associated with a static,

5When we put double quotes around terms we are trying to communicate some
thing "half" meant, "half" intimated. Above, we really do not mean 'time', but
rather computation sequence or interval: one after the previous! It is not that any
one of them "takes time to execute"; they may well do. But the exact time of whether
one execution time is longer than another is immaterial.

4.2 The Issues 97

i.e., a syntactic notion of program prescriptional texts. Colloquially speaking,
we can say that states change "more frequently" than contexts, the former in
response to single statements, the latter in response to blocks of statements.
That is, the syntactic notion of a block (of program text) is, and has been,
introduced — from the very early days of computing, the late 1950s — in
order to "bundle" into contexts the naming and use of such resources as
identifiers denoting values or variable locations. Thus the notion of a context is
a practical or pragmatic notion. The notion of state is more often forced upon
us by necessities, by the semantics of an "actual world" and of computing.

The delineations attempted above are indeed attempts: The characterisa
tions are approximate. Since the computational concepts are man-made, and
since computing, as of 2005, is "hardly" 50 years old, the concepts — as we
discuss them in this introductory part of this chapter — cannot be made fully
concise.

Later in this chapter we shall impose our own, stricter characterisations,
but the reader should be prepared to accept other, albeit not that different,
characterisations of the state and context notions. Also, the reader may have
observed that we seem to "waver" between using the term 'context' and the
term 'environment'. The latter, as we shall use it in these volumes, has been
in use since around 1960, and then rather specifically in connection with the
explanation of programming language semantics. We have additionally intro
duced the term 'context' in these volumes in order not to fall into a simple
trap of reducing every "actual world" phenomenon to that of a programming
(or, more widely, to that of a specification) language concept.

4.2 The Issues

We summarise, in a terser, enumerative form, the concepts mentioned in the
introductory part of this section. The following concepts are important for
our understanding, i.e., represent an essence of the combined notions of states
and actions (hence actors), contexts and bindings (hence binders):

• We shall use the term state in two senses. One is syntactic; the other is
semantic.
• By a state we syntactically mean the structuring of a number of com

ponents (i.e., variables) into "the state" — that which we choose to
consider (versus that which is left out or not considered).

• By a state we semantically mean the value of these components (i.e.,
variables).

The decision as to which components to put into the state is usually the
result of a longer analysis. Volume 3, Chap. 10 will (additionally) consider
a number of these analysis principles.

• Computation: a sequence of state changes afforded by an execution as pre
scribed by a sequence of statements.

98 4 Configurations: Contexts and States

• Sequential process: A term which we use alternatively to designate a com
putation, i.e., a sequence of actions (in the real world).

• Event: an atomic phenomenon. An event is something which either spon
taneously or deliberately "happens": an overflow upon addition inside a
computer, the reaching of the end of a road; the breakdown of a motor,
the synchronisation and communication between two (or more) processes
(a [broadcast] rendezvous), etc. Events usually cause consequential (some
times remedial) actions to happen, or to be required to happen.

• Action: a term which we use alternatively to designate an atomic step of
computation, often the effect of (viz. "triggered" by) an event.

• Actor: that which carries out an action, the computer (in the world of com
puting) or some agent (in the "actual world"). Actors of some "imagined,
i.e., perceived real world" are resources like machines, people, "Mother
Nature", etc. Again, in Vol. 3, Chap. 10, we shall systematically cover
some so-called dynamic domain characteristics of an actual world and the
actions and actors of this dynamics.

• Statement: a statement is a piece of text which prescribes an action to be
carried out by some actor.

• Context: statements usually contain identifiers which refer to entities
("things", phenomena, concepts, components) — from a class of such.
A context identifies which of several alternative, but specific phenomena
is being referred to.

• Binding: a binding associates identifiers (names) with their designated phe
nomena. A binding establishes (i.e., 'is') an identification.

• Allocation: actors represent resources, a vehicle (train, airplane), a com
puter, a storage location. In order for an action to take place an actor
must be allocated to it. Allocations thus serve as placeholders of actors.

• Freeing: when an actor is no longer required it may be freed, made available
to carry out other actions.

• Binder: a binder is a piece of text which prescribes a binding to be "in
force" over some span of activity.

4.3 "Real-World" Contexts and States

We continue to put double quotes around the term "actual (or real) world".
The reason is, of course, that we will never "really know" what that world is:
We perceive it; several people can agree on a number of observations made
about it; but they must also agree that their perception is an abstraction. That
is, their perception has focused on certain properties while "suppressing" other
properties. From now on we shall be less discursive about our subject, and
more definitive. We shall impose certain views, while hoping that these views
are generally applicable and broadly acceptable.

4.3 "Real-World" Contexts and States 99

4.3.1 A Physical System: Context and State

We will illustrate some issues of physical system context and state modelling
using just one example (Example 4.3). Later we shall illustrate similar mod
elling issues for a man-made system.

Example 4.3 A Liquid Container System (I): Context and State (1): This
example will be continued, as Example 4.5.6 It is important for the reader
to distinguish between what the examples are about and what the examples
attempt to illustrate wrt. methodological principles and techniques. The lat
ter are currently, in these volumes, the important aspect. The former are,
although not entirely accidental, only "carriers": The specific formulas (in
cluding axioms and calculations) are just "school" examples.

The liquid container system (Fig. 4.1) consists of a container (a tank), an
intake pipe with a valve, an outtake pipe also with a valve, an overflow pipe
(without a valve), and some liquid fluid. The cross-sectional area of the tank
is fixed and is area A. The intake and overflow pipes are both placed with
their lower level at height hi over the container bottom. The outtake valve is
placed with its lower level at height lo over the tank bottom. The valves can
either be in a fully open or in a fully closed position.7 When open, an intake
valve will supply the container with s (s: supply) units of volume measure of
liquid per unit of time. When open, an outtake valve will withdraw w (w:
withdraw) units of volume measure of liquid per unit of time from the tank.
The overflow pipe withdraw capacity, o (o: overflow), "matches" or exceeds
(o>s) the intake pipe supply capacity. A capacity meter senses the current
height of liquid fluid in the container.

In modelling this system we choose the following context and state: context:
the tank measures area A, maximum height H, the in- and outflow capacities
s, o, and w, and the in- and outtake pipe positions hi and lo. State: the current
height h ("implements" the capacity measure meter), and the two controllable
valves, each with their open, closed status. Comments: We need not model all
the other facets of the liquid fluid container system — the liquid content, the
amount of change of liquid content as valves open and close, etc. — as their
values are governed by laws of nature. •

4.3.2 Configurations of Contexts and States

The borderline between when to consider something as part of a context,
and when to consider it part of a state is "soft", i.e., is one of pragmatics. We
shall introduce the term 'configuration' to stand for the model component that
combines the context and the state components (of a physical or a man-made
phenomenon, or, inter alia, of a man-made intellectual concept).

6The liquid container system example will be further continued in Example 11.1.
7For the purposes of this example it is not necessary to consider intermediate

opening and closing valve positions.

100 4 Configurations: Contexts and States

.
4 _W- 4*

in s A
r M " r

in valve

,..-•'"
height sensor

capacity
, meter --'

"\"- \
V_

i »

h

h H

A
area: A

o •*

V7 " " N
A w • * -

LA , out

out valve

Container

overflow pipe

Fluid

content f

Valves

- ' Intake/Outta

type
Config

Fig. 4 . 1 . A liquid container system: the physics

Context x S

Usually configurations will be the only semantic arguments to the function
definitions that otherwise specify model behaviour.

4.3.3 Nonphysical System: Context and State

The next example illustrates notions of context and states of man-made sys
tems. The idea is to show that the same pragmatic abstraction delineations
(context and state) apply.

Example 4.4 A Bank System Context and State:

The Context

We focus in this example on the demand/deposit aspects of an ordinary bank.
The bank has clients k:K. Clients have one or more numbered accounts c:C.
Accounts, a:A, may be shared between two or more clients. Each account
is established and "governed" by an initial contract, t.L ('L' for legal).The
account contract specifies a number of parameters: the yield, by rate (i.e.,
percentage), y:Y, due the client on positive deposits; the interest, by rate
(i.e., percentage), i:l, due the bank on negative deposits less than a normal
credit limit, n:l\l; the period (frequency), f:F, between (of) interest and yield
calculations; the number of days, d:D, between bank statements sent to the
client; and personal client information, p:P (name, address, phone number,
etc.).

4.3 "Real-World" Contexts and States 101

The State

Above we focused on the "syntactic" notion of a client/account contract and
what it prescribed. We now focus on the "semantic" notion of the client ac
count. The client account a:A contains the following information: the balance,
b:B (of monies in the account, whether debit or credit, i.e., whether positive or
negative), a list of time-stamped transactions "against" the account: estab
lishment, deposits, withdrawals, transfers, interest/yield calculation, whether
the account is frozen (due to its exceeding the credit limit), or (again) freed
(due to restoration of balance within credit limits), issue of statement, and
closing of account. Each transaction records the transaction type, and if de
posit, withdrawal or transfer and the amount involved, as well as possibly
some other information.

A Model

We consider contract information a contextual part of the bank configuration,
while the account part is considered a state part of the bank configuration.
We may then model the bank as follows:

type
K, C, Y, I, N, D, P, B, T
[Bank: Configuration]
Bank = T x S
[r-. Context]
r = (K ^ C-set) x (C ^ L)
L = = mkL(y:Y,i:I,n:N,f:F,d:D,p:P)
[S: State]
£ = C ^ A
A = {free|frozen} x B x (T x Trans)*
Trans = Est|Dep|Wth|Xfr|Int|Yie|Frz|Fre|Stm|Sha|Clo
Dep = = deposit(m:Nat)
Wth —— withdraw(m:Nat)
Xfr = = toxfer(to:C,m:Nat) | fmxfer(fm:C,m:Nat)
Sha =— share(new:C,old:C)

Bank is here the configuration.8 r is the context. S is the state. •

4.3.4 Discussion, I

The banking system so far outlined is primarily a dynamic, programmable
system: Most transactions, when obeyed, change the (account) state a:S. A

8But, the bank configuration could, in more realistic situations, include many
other components not related directly to the client/account "business".

102 4 Configurations: Contexts and States

few (to wit: establish, share) change the context j-.r. Establishment occurs
exactly once in the lifetime of an account. Initially contracts, from which the
j-.r configuration component is built, are thought of as specifying only one
client. Hence the share transaction, which "joins" new clients to an account,
could as well be thought of as an action: one changing the state, rather than
the context. We have arbitrarily chosen to model it as a context changing
"action"! All this to show that the borderline between context and state is
"soft": It is a matter of choice.

4.3.5 Discussion, II

Notice that, although time enters into the banking model, we did not model
time flow explicitly. Here, in the man-made system model, it is considered
"outside" the model. We claim that the concepts of context and state enter,
in complementary ways, into both physical systems and man-made systems.
Before proceeding with more detailed analysis of the configuration (cum con
text ffi state) ideas, let us recall that these concepts are pragmatic.

4.4 First Summary: Contexts and States

4.4.1 General

The (system and language semantics) configuration concepts of contexts and
states intertwine. Decisions on what to include in the context and what to
include in the state (i) influence one another, (ii) depend on our ability to
state laws that relate values of context and state components and (hi) is
otherwise an art!

Characterisation. By the context of a system, or of the evaluation of a pro
gram, or of a specification in some programming, respectively some specifica
tion language, we usually understand an aggregation, a structuring, of those
components whose values remain fixed. That is, we understand those compo
nents whose values can be considered constant over some "sizable" ("macro")
time interval, or over the sequence of many events or actions (operations), or
over the evaluation of a sizable textual, so-called block part of a program or
of a specification. •

So a context is modelled by an abstract or concrete type and has a value. It is
usually syntactically determined: "one half" of the context, the identifiers (the
names) being associated, is fully determined statically by some prescription
text. The decision as to what to relegate to the context influences what to
"put in" the state, and vice versa.

4.4 First Summary: Contexts and States 103

Character i sa t ion . By the state of a system or of the evaluation of a pro
gram or of a specification in some programming, respectively some specifica
tion language, we usually understand an aggregation, a structuring, of those
components whose values change (i) over time, or (ii) over the sequence of one
or more events, or (iii) as the result of actions (operations), or (iv) over the
evaluation of any textual part of a program or a specification — no mat ter
how close in time, and how many such events and actions there are. •

So a state is modelled by an abstract or concrete type and has values. It is
usually semantically determined; it depends on the "course", the behaviour
of computation. The full force of abstraction plays an important role in the
design of the context and the state of a system model.

Character i sa t ion . By a configuration we mean a pair of contexts and states
appropriate for a consistent and complete elaboration of a system or a syn
tactic text. •

M o d e l Versus Speci f icat ion S t a t e s

Let us remind ourselves tha t we construct specifications to model some phe
nomenon — including the modelling of a notion of state of tha t phenomenon
while at the same time using a specific specification language such tha t an
evaluation of a specification in tha t language gives rise to a state. The former
is the model state; the latter is the specification state. The two are (thus)
not the same. But, in a good specification, they relate. We shall keep this in
mind in the following and point out which are the model states, which are the
specification states, and their relationships.

4.4.2 D e v e l o p m e n t Pr inc ip le s and Techniques

Pr inc ip le s . Context and State: In any programming or specification lan
guage, and in any system, determine early in the domain analysis phase
whether separable concepts can be "equated" with context and state notions.
If so, follow the modelling techniques outlined below. •

T e c h n i q u e s . Context Design: In analysing a system, or in analysing a (spec
ification or programming) language, determine which names or which identi
fiers are being used, i.e., stand for statically knowable entities. Tha t is, de
termine which names remain "constant" during the lifetime of the system,
respectively during the elaboration of well-delineated parts of the specifica
tion or program text. Earmark those name designations to be part of the
context. •

T e c h n i q u e s . Sta te Design: In analysing a system, or in analysing a (speci
fication or programming) language, determine which names or identifiers are

104 4 Configurations: Contexts and States

being used, i.e., stand for dynamically changing entities. That is, determine
which names "vary" in value or even number (quality, respectively quantity)
throughout the lifetime of the system, respectively during the elaboration
(i.e., computation interval) of even well-delineated parts of the specification
or program text. Earmark those name designations to be part of the state. •

4.5 Programming Language Configurations

In Vol. 1, Chap. 20, we gave examples of three formal definitions of a block
structured, but otherwise simple imperative programming language. In those
definitions environments, binding variable identifiers to locations, served the
role of contexts, and storages, binding locations to values, served the role of
states. We modelled the semantics of this one language in three ways: We first
modelled both contexts and states applicatively, then we modelled contexts
applicatively and states imperatively and finally we modelled both contexts
and states imperatively. All three examples illustrated the concept of contexts
and states. All we shall do presently, in this section on configurations is to
remind the reader that we have already covered the subject somewhat exten
sively. The reader is thus encouraged to go back to study Vol. 1, Chap. 20.

4.6 Concurrent Process Configurations

By a concurrent process model we mean a model which expresses multiple con
current behaviours. This is in contrast to a sequential model, which expresses
a single behaviour. Recall that models of sequentiality can be expressed in the
applicative or in the imperative style, or in combinations thereof. The same
goes for concurrent models.

4.6.1 The Example

It may be a bit far-fetched to claim, as we now do, that we can model the
concepts of context and state by means of processes. So, let us turn it around
and say instead: How would the concepts of context and state be expressed in
a process-oriented model? We will illustrate this style of modelling through
Example 4.5 which is a continuation of Example 4.3.

Example 4.5 A Liquid Container System, II: Context and State: We con
tinue Example 4.3. The present example will find another formulation in Ex
ample 11.9.

The present example consists of three parts: a domain analysis, a require
ments and a software design. Some preliminary comments on these parts are:

4.6 Concurrent Process Configurations 105

The domain analysis is somewhat extensive; the requirements is somewhat
"loose", being short; and the design is formalised.

The purpose of this extended example is to show the interplay between
the context and the state concepts. We shall, in this second step of the devel
opment of the liquid tank system, take the view that the system is a dynamic
reactive system (cf. Volume 3, Chap. 10).

Domain Analysis: Text

Figure 4.5[A]-[D], mentioned in this section, have been put at the end of this
section for technical reasons.

When studying a domain we usually domain-analyse its behaviour before
narrating (and formalising) possible requirements. We shall therefore in this
section devote quite some space to a systems analysis.

To get an idea about how the liquid container system might behave when
subjected to arbitrary open and closed positions of valves, please consider
Fig. 4.5[A].

In Figs. 4.5[A]-[B] we assume that the contextually determined s and w
relate as s = 2*w. Setting the valve openings as shown then, illustratively,
results in the state behaviour as shown. Between times to and t% and times tg
and £10 the overflow valve is in use. Between times t5 and t$ the outflow valve
is unnecessarily open: The tank has already been emptied. As from time tu
and onward (that is, beyond time tri) the container content remains constant.

To get an idea about how the liquid container system might behave when
subjected to controlled open and closed positions of valves, please consider
Fig. 4.5[B].

Figure 4.5[B] reflects an experiment set up so that valves will not be un
necessarily open. That is, there will not be overflows: no open inflow valve
with full tank, and no empty tank with open outflow valve. To get an idea
about how the liquid tank system state might behave for different relations
between the contextually determined inflow (s) and outflow (w) capacities,
please consider Fig. 4.5[C].

We briefly comment on Fig. 4.5[C]. If we open both valves for s=w in an
initial state with an empty tank, then the tank will remain empty (this case
is not shown). Cases 4 and 5 show the effect of "similar controls" for different
relations between s and w.

To get an idea about how to control the settings of the intake and outtake
valves in order to "fit" the actual filling (or emptying) of the liquid container
system to a given, desired curve, let us consider Fig. 4.5[D].

In Fig. 4.5[D] we assume that there is a smallest time interval between
(OPEN/CLOSED) valve settings. Let this interval be designated A Then we
see that, for some desired curves, shown with dashed, slanted lines, there are
two (or more) ways of achieving the curve. The particular cases shown illus
trate, in experiments 1 and 3, that a curve can be approximated by repeated

106 4 Configurations: Contexts and States

OPEN/CLOSED settings, while in experiments 2 a curve can, probably in sta
tistically "rare" cases, be achieved by a more "constant", though time-limited,
simultaneous setting of the two valves.

A Word of Warning

The reader should, by now, be aware that we are stepping onto "dangerous"
ground if we believe we can just simply argue our way into the software en
gineer deciding on the control algorithm for the valve opening and closing to
achieve arbitrary curves. This is not computer or computing science "stuff";
this is a control theory and control engineering subject. So we shall leave
it with that — and bring in the example only to show: (i) the need, in most
software development cases, for joint collaboration with other engineering pro
fessionals, and (ii) how that collaboration is faced with both control theoretic
problems and software development problems. Determining proper A's, for
example, is a deep problem of control theory in the realm of sampling theory.

Domain Analysis: Figures

Comments on the Semantics of Fig. 4.5[A]

The upper part of Fig. 4.5[A] shows the simple ON/OFF values of the indicated
two valves and as a function of time. A shaded area means ON; no shading
means OFF. The lower part of Fig. 4.5 shows the liquid height of the container
as a function of time. When the intake valve is ON, the outtake valve is OFF,
and the height is less than the maximal height, then the contents are rising,
and so on.

Comments on the Semantics of Fig. 4.5[B]

Note in Fig. 4.5[B] that when both valves are open and the height is less than
maximal, then either the height is rising slower than when the outtake valve
is closed, for s<w, or is falling, for w>s.

Comments on the Semantics of Fig. 4.5[C]

The "semantics" of Fig. 4.5[C] is the same as for Figs. 4.5[A] and 4.5[B],

Comments on the Semantics of Fig. 4.5[D]

The upper part of Fig. 4.5[D] has same semantics as for the related previous
figures. The lower half only indicates some properties that are dealt with in
the text.

4.6 Concurrent Process Configurations 107

to t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

[A] Time trace of monitored system behaviour, s=2*w

t1 t2 t3 t4 t5 t6 t7

[B] Time trace of controlled system behaviour, s=2*w

n-take Q^^ -, j Q^^ 2 j Case 3 j Case 4 : Case 5

S > W
(s=2'w)

s>w
(s=2'w)

s<w
(w=2's)

[C] Time trace of controlled system behaviours

" ™ e Experiment 1 ^

OFF! pnnnnnnnnq"'

"Approximation" Controlled Container

[D] Time trace of curve-fitting controlled system behaviours

Fig. 4.2. The liquid container system traces

108 4 Configurations: Contexts and States

Requirements

We are now ready to specify possible requirements to a liquid tank control
system: given a desired filling curve, and an initial setting of valves and an
initial height of liquid in the container, to control valve settings so as to achieve
a reasonable fit of actual filling state (i.e., height) to desired curve. The above
formulation is "loose" in the sense that questions could be raised as to the pre
cise meaning of a number of its terms and phrases. We will leave this (albeit
serious, objectionable) aspect of the requirements to be resolved by techniques
that are systematically covered in Vol. 3, Chaps. 17-24 (Requirements Engi
neering). Instead, we assume that the form of the desired curve is presented
to the (required) control system such that it can compare the dynamic state
behaviour to the static prescription (i.e., the desired curve), and from this
comparison draw its conclusions as to which valve settings to change or leave
unchanged at the end of each time interval.

A Software Design

We see the overall liquid tank system monitoring and control software
process as consisting of foi;r component processes: the system process, two
valve processes and the height-metering process (Fig. 4.3).9

These processes are connected by input/output channels, as shown in Fig
ure 4.3. The valve processes contain both sensors and actuators. Only the
height metering process is autonomous: It contains just a sensor.

We suggest a formalisation:

type
Supply, Withdraw, Height
Curve_Script
Valve = = open | closed

channel
rh:Height, riv,rov,wiv,wov:Valve

variable
cr:S

9Figure 4.3 shows as four rounded corner boxes four processes. Tracing the box
outline in the direction of their arrows designates a process behaviour. Thus the pro
cesses are here all seen as cyclic. Imagine a token passing around the box outline. At
any point it designates a process point. The four fat dots designate process starting
points. The arrows that connect two processes designate channels, and the directions
indicated by the arrows designate which process outputs and which process inputs
(arrowhead) a message. When two processes have reached the program points where
one channel intersects respective box outlines, then a rendezvous between the two
processes can take place: They are synchronised and can communicate a value. The
A designates a A time unit delay. Bracketed numerals ([0], [1], [2], [3] and [4]) are
program point labels and refer to program points in the formal text.

4.6 Concurrent Process Configurations 109

control

height

h M

[3] *

[4] =

"[2]

Ml A

- [3] , ,
vi , jo]

[0]

Monitoring & Control X [0]

start

o_valve

system

Fig. 4 .3 . A liquid container system: a process model

value
s:Supply, w:Withdraw, H:Height

system: ValvexValvexCurve_Scriptx Time -+ Unit
system(ioc,ooc,cs,it) = i_valve(ioc) ||o_valve(ooc)||control(cs,it) || height ()

i_valve: Valve —> read iv out iv Unit
i_valve(ioc) = [0] variable vi:Valve := ioc;

while true do [3] rivlvi; [4] vi := wiv? end
o_valve: Valve -> read iv out iv Unit
o_valve(ooc) = [0] variable vi:Valve := ooc;

while true do [3] rovlvo; [4] vo := wov? end

control: Curve_Script x Time —>• read a write a Unit
control(cs,it) = [0] variable tv.Time := it;

while true do
wait zi;
let (i,o) = calc((s,w,H),cs,(tv,[l]rh?,[2]riv?,[2]rov?)) in
[3] (wiv!i||wov!o) end; tv := tv + A

end

calc: (Supply x Withdraw x Height)
x Curve_Script

x (Time x Height x Valve x Valve)
—̂ read a write a Valve x Valve

We comment on the software design model: We use an imperative version of
the RSL process concept as introduced in Vol. 1, Chap. 21. Time is rather
crudely modelled as a variable of the system process. The valve settings are
modelled as variables of respective valve processes. Valve sensors are modelled

110 4 Configurations: Contexts and States

as the reading (riv?,rov? [1,2]) of valve settings. Valve actuators are modelled as
the writing (wiv!,wov! [3]) of valve settings. The height sensor is modelled as a
further unexplained reading (rh? [1]) from the autonomous height process. The
regular sensing and actuation at A time intervals is modelled by a wait A time
period extension to RSL [132,204] (Sect. 15.4). We assume that computation
time around the system loop is modelled reasonably accurately by the A time
period.

We do not further specify the calc algorithm by means of which new valve
settings are computed other than specifying that it is calculated on the basis of
the following values: the three contextual values (i-ii) supply and withdraw
capacities (s,w), and (iii) the maximum height (H). (iv) The desired curve
script (cs): The three contextual values (i-iii) are intended to be stable, i.e.,
to remain unchanged over a long time, or over many different uses of the same
or different curve scripts. The curve script is intended to be relatively stable,
i.e., to remain unchanged over some time, or over many different uses (of that
same script). Thus a curve script is a relative context quantity, as are the
four state values: (v) current time (tv), (vi) current height (rh?) and (vii viii)
the current valve settings (riv?,rov?). calc accumulates, in a global variable,
a : JC, the past history of the ci;rve fitting so as to find an optimal tactic for
setting the switches.

The software design model just presented is idealistic. It assumes per
fectly functioning channel communications, sensors and actuators. Although
the calc state (a) could remember the previous valve settings we have included
their sensing anyway — in preparation, it is here suggested, for a sensor/ac
tuator (etc.) system that may fail. •

4.6.2 Summary

We have seen a first example of the process modelling of a system. We shall
often have occasion to illustrate such system process models. We have mod
elled what appears to be physically separably identifiable and more or less
independently operating components as processes: One process per compo
nent. The phenomena shared between two or more such components have
been modelled by channels. We have defined some of these processes, but
only given signature to others (here just the height process). The physical
world of dynamic system sensors and actuators — and their sensing and ac
tuation — have, in the design specification presented here, been abstracted
as state variables that are read, respectively written. Because of the process
decomposition, these readings and writings occur as the result of channel
events: pairs of output/inputs (!/?).

One can combine process modelling with either the applicative or the
imperative style model. Here we have used the applicative context and the
imperative state style.

4.7 Second Summary: Contexts and States 111

Characterisation. By a process context we understand a concept of context
which has been modelled either as a global constant (thus trivially accessi
ble from a process function definition), or as a process function definition
argument that is passed unchanged to possibly recursive invocations of the
designated process. •

Characterisation. By a process state we understand a concept of state
which has been modelled either as a global variable (thus trivially accessible
and update-able from a process function definition), or as a process function
definition argument that is usually (i) passed to possibly recursive invocations
of the designated process with changed values, or (ii) is a local, imperative
process definition variable. •

Techniques. Process Context: Two possibilities offer themselves: If use of
(access to) process context values can be restricted to a single, or a few func
tion invocations — within a single, or a few process function definitions — and
hence their respective function definition (s), then the model context can be
[exceptionally, and as shown in Example 4.5] modelled as global values. Oth
erwise the process context values should be modelled as arguments passed to
relevant functions: initially as formal parameters of an initial system invoca
tions, and otherwise unchanged to subsequent functions. •

Principles often have the fate of never being strict. The above is an example.

Techniques. Process State: Three possibilities offer themselves: If use of (i.e.,
access to/reading of, or update of/writing to) process state values can be
restricted to a single process function (definition), then the model context
can either be modelled by (a) global or by (b) local variables. Otherwise, (c)
the process state values should be modelled as arguments passed to relevant
functions: initially as formal parameters of an initial system invocations, and
otherwise, possibly [and usually] changed, to subsequent functions. •

4.7 Second Summary: Contexts and States

We have, as mentioned earlier in this chapter and in three examples of Vol. 1,
Chap. 20, shown three styles of modelling contexts and states.10 Usually, in
particular when abstracting domains, we start a sequence of developments
with applicative style models, then we proceed to change state models from
the applicative to the imperative style. Sometimes, when introducing process-
oriented models, a stage and stepwise development is advised, one which goes

10We remind the reader: In modelling block-structured, procedural programming
languages, we can model contexts applicatively or imperatively, and we can model
storages (i.e., states) applicatively or imperatively. It seemed to not be a good idea
to model contexts imperatively, but states applicatively!

112 4 Configurations: Contexts and States

from an applicative (nonprocess) to an applicative process model, and only
from there to a process model with imperative states. It does not seem to
be a reasonable style to model contexts imperatively and states applicatively.
The process style seems a most relevant first step of requirements or software
design abstraction when the system being modelled is dynamic reactive, as
shown in Example 4.5.

4.8 Information States and Behaviour States

So far we have presented two views of states: states as information summaries,
and states as behaviour summaries.

S t a t e s as In format ion or D a t a S u m m a r i e s : In the real world we
have at any time gathered some information and we have discarded some
of tha t information. Tha t is, we have an information state. In analogy: In a
computation we have a state of the variables, tha t is, a da ta state.

S t a t e s as B e h a v i o u r or P r o c e s s S u m m a r i e s : In the real world the
usually complex phenomena are at any t ime at some point in their concurrent
and stepwise behaviour. Tha t point represents a state in analogy to the state
of the computation process: The program point at which execution control
presently resides.

In this section we wish to show tha t the two views are not tha t different,
just two sides of the same coin.

4.8.1 P r o g r a m Flowcharts as S t a t e M a c h i n e D a t a

Every program flowchart can instead be represented as a finite state machine
(Fig. 4.4). Diamond-shaped boxes with Greek letter labels designate predi-

Fig. 4.4. "Equivalent" flowchart and finite state machine

cate decisions. A left exit from the diamond-shaped box can be, but is not,

4.8 Information States and Behaviour States 113

annotated with tha t label; whereas a right exit can be, but is likewise also
not, labeled with its negation. Rectangular boxes with Roman letter labels
designate actions. We can associate a state (labelled sl-s5) with the first in
arrow to a sequence of one or more decision boxes. Initial and final states are
then associated with the initial and final start ing actions. Finite state machine
transitions are now the pairs of sequences of decision box (left or right exit)
annotations and action labels.

4.8.2 F lowcharts = M a c h i n e s

The predicates a,/3,...,ui evaluate either to t rue (1) or false (0). Gener
ally all have to be evaluated in each state, but some values are ignored (.)
[i.e., are "don't care" values]. In Fig. 4.4 this is shown by the seven symbol-
long ('0', or '. ', or '1') character sequences next to each action label. These
(a, /3, 7, (5, e, </>, £) "Boolean" vectors (including dotted "don't care" designa
tions) are listed as if there were ten different symbols. But tha t is only con
ceptually so. The vector (1) is, for example, contained in any of the vectors

(.0...0.), (....1..), (0.), (..10..0) and (1.). The idea of predicate vector
(a, /3,7,5, e, </>, £) values is best expressed, we believe, by using this seemingly
ambiguous shorthand.

Should an action box contain just a simple, i.e., a direct, recursive "invo
cation of flowchart", then a stack is added to the finite state machine repre
sentation, the current state pushed onto tha t stack (etc.), and a new "image"
of the finite state machine started in the initial state. Reaching a final state
of such a recursive flowchart then results in popping any stacked states and
resuming as from such a state in a thus recovered finite state control.

The "moral" is: Every program flowchart can be represented as a possibly
stack-oriented state machine.

4.8 .3 Flowchart M a c h i n e s

Thus the consequence is: Any program can be converted (transformed) into
a normalised program of program schematic form. Tha t of our conceptual
example becomes:

variable s := sO;
let fsm = ... in
a: actions_a;
whi le s ^ s5 do

let input = Eval(a,/3,7,(5,e,</>,£) in
let (s',act) = fsm(s,input) i n
case act of

b —>• act ions_b,
c —>• act ions_c,
d —>• act ions_d,

114 4 Configurations: Contexts and States

e —>• act ions_e,
f —> actions_f

e n d ;
s : = s '

e n d e n d e n d e n d

Here a, b, c, . . . , f stand for encoded action labels, and actions_a, actions_b,
actions_c, . . . , actions_f for corresponding actions. The Eval function ex
presses tha t the decision box predicates are evaluated and lead to one of
the input vectors of (a, /3,7,5, e, </>, £) "Boolean" values. They are not "quite"
Boolean in tha t we additionally allow "don't care" (dot [.]) values. The state
machine of Fig. 4.4 (right) can be presented in tabular form:

A F i n i t e S t a t e M a c h i n e
4. states

inputs —>•

si
s2
s3
s4

..11...

(sl.a)

1

(s2,b)

01

(s3,c)

00

(s4,d)

.0...0.

(s4,d)

. . . .1 . .

(s5,e)

0.

(s5,f)

1.

(s5,f)

..10..0

(s5,e)

The input column dots (.) denote {0|1} (either 0 or 1). Thus we really are
dealing with a 27 character input alphabet shown in compressed form. Blank
entries of the table are never encountered, and are thus left unspecified.

4.8 .4 Observat ions

The conceptual program, i.e., the program schema above is also a flowchart,
and corresponds to a one-state flowchart machine (Fig. 4.5).
This machine "mirrors" the way hardware (i.e., computers) has micropro
grammed the control flow and instruction interpretation of compiled pro
grams. Thus the conversion of an arbitrary flowchart program to normalised
program schema form is really tha t of translat ing the arbitrary flowchart pro
gram to a microprogram for a software machine.

4.8.5 Con c lu s ion

Computat ions based on flowcharts, i.e., on ordinary program text, as delivered
by a programmer, operate with two state notions: a state of the ordinary
program variables (the data) , and the state of execution (the locus of control
— the program pointer). Computat ions based on flowchart machines operate
with two state notions: the da ta state, as before, and the computation state
— which is now made into a control da ta state encompassing the finite state
machine da ta (fsm) and the state control variable s. It is thus we see tha t
the two state notions meet in the limit: The information (data) state and the

4.9 Final Summary: Contexts and States 115

Fig. 4.5. A normalised [micro-] program flowchart machine

behaviour (computation, control) state are one and the same! We can "trade"
one for the other.

Flowchart machines provide a normalised representation wherein every ar
bitrary program (via its flowchart) can be converted into a flowchart machine
program. Thus a flowchart machine program is a specialised program that is
"molded" over one "template".

The transformation of ordinary programs to machines is "folklore" [172].
The specific transformation, as indicated here, from regular flowcharts to ma
chines is treated in [42]. The transformation from recursive flowcharts is in
dicated in both [42] and [43]. Chapter 11 treats the important engineering
subject of state machines in some detail.

4.9 Final Summary: Contexts and States

The specification concepts of configurations, contexts and states are devel
opment concepts. As such they are meta-concepts. They are brought into
consideration when abstractly modelling phenomena and actual concepts of
the universe of discourse under investigation. Contexts model more or less
static, i.e., syntactic — structural — attributes or properties. States model
more or less dynamic, i.e., temporal — varying — attributes.

It is important, however, to observe that we are normally confronted with
a "smooth" spectrum from more or less static to more or less dynamic at
tributes: For ordinary (non-GOTO) imperative programming languages with
nested block structures, we have a relatively simple notion of contexts (i.e.,
ENVironments) and states (i.e., SToraGes):

value

116 4 Configurations: Contexts and States

M: Syntax ^ ENV ^ STG ^ STG

For imperative programming languages with nested block structures and
GOTOs we have a slightly more composite notion of contexts (i.e., ENViron-
ments), CONtinuations, and states (i.e., SToraGes):

value
M: Syntax ^ ENV -3 CON H> STG ^ STG

For systems11 we can have an even finer graduation:

value
M: Command ^ W ^ r ^ O ^ S ^ S

Here we may think of W defining a type of values of some constant syntacti
cal structuring attributes, T defining a type of values of some, for example,
seasonally regulated tabular attributes, 0 defining a type of values of some
continuation-like attributes, and S as defining some type of values of dynamic
state attributes.

Principles. Configurations — Contexts and States: In analysing any phe
nomenon, any concept, examine to which extent static and dynamic attributes
determine overall behaviour. Then partition these phenomena and concepts
into an appropriate spectrum from contextual to state attributes. •

Techniques. Configurations — Contexts and States: If the principle of con
figurations, contexts and states applies, then model the appropriate types in
the spectrum and reflect these in the type of all relevant functions. •

4.10 Exercises

Exercise 4.1 Traffic Nets: Configurations, Contexts and States. References:
We refer to earlier exercises:

• Exercise 2.3: Road Net: Streets and Intersections
• Exercise 2.4: Air Traffic Route Net
• Exercise 2.5: Shipping Nets: Lanes and Harbours

as well as to exercises in the next chapter:

• Exercise 5.3: Road Traffic
• Exercise 5.4: Air Traffic
• Exercise 5.5: Sea and Harbour Traffic

11We shall, in Sect. 9.5, more systematically discuss the notion of languages and
systems.

4.10 Exercises 117

Comment: To answer the present exercise you have to first have read the
problem formulations of Exercises 2.3-2.5.

The Problem: For each of those exercises (i.e., 2.3-2.5) please identify con
figurations, contexts and states. If need be, try to restructure your type for-
malisations so as to, as clearly as possible, separate contexts from states.

Exercise 4.2 Supermarkets (I). You are asked to narrate and formalise a
concept, such as you see it, of a supermarket, with shelves, price-tagged mer
chandise on shelves, a backup store from where near-empty or empty shelves
can be replenished, consumers being in the supermarket, selecting merchan
dise from shelves and checking these out at a check counter. Assume each shelf
to be typed with the merchandise it displays or is supposed to display.

What of the above, i.e., which entities of your model, constitute a (daily)
context, and which constitutes the current state?

This exercise is continued in Exercise 5.1.

Exercise 4.3 Manufacturing (I). The Problem: The production "floor" of a
metal-working and machine assembly factory (a manufacturing plant) consists
of a fixed number of machines, mi,777-2, • • •, wM (lathes, drills, saws, cutters,
etc.), a fixed number of trucks, t\, £2, • • •, tT (that collect machine parts from
a supply store, or from machine out-queues, and bring them to the in-queues
of other machines or to a product store), and the two stores. Any machine
consists of one in-queue, one out-queue and the machine tool (possibly robotic)
itself.

A daily production plan, PP, describes a number of separate production
scenarios: one for each product to be produced that day. For simplicity we
assume sequential productions: One or more parts are brought from the supply
store by an available truck to a specific machine, m*, and processed by its tool.
Then the result, which is to be considered one partial or completed, product,
Pi, is brought to a next machine, mfc<, or to the product store. In the latter
case that ends the production scenario. To that next machine, mw, may also
be brought other supply parts and/or partial products, Pit,Pi2., • •. ,Pim, to be
processed together with pi, etcetera.

The Question: Now formalise the above: the shop floor (machines and
trucks), the stores and the production plan. Your model of a machine should
include what is in its in- and out-queues, and whether a set of one or more
parts is being processed, i.e., is "in" the tool. Similarly, your model of a truck
should model where it is: in a store, at a machine, between the supply store
and a machine, between two machines, or between a machine and the prod
uct store, and which parts it carries. Finally, your model of a production
plan should, besides the production scenarios, also model which of the im
plied productions have yet to start, which have been completed, and, for the
productions "in between", where they have come to in the production process.

What of the above, i.e., which entities of your model, constitutes a (daily)
context, and which constitutes the current state?

This exercise is continued in Exercise 5.2.

Part III

A CRUCIAL DOMAIN AND
COMPUTING FACET

In this short part, which comprises one chapter,

• we investigate a simple view of the concepts of t ime , space and t i m e / s
pace;

• we bring in some axiomatisations of these concepts; and
• we present some principles and techniques according to and using which

we model phenomena of the t ime or space or space / t ime attribute.
• The simple view emphasises quantitative aspects of time.

In Part VI we will bring in separate, additional chapters on not only qualitative
aspects of time:

• P e t r i Nets, Chap. 12,
• Message and Live Sequence Charts, Chap. 13,
• S ta t echa r t s , Chap. 14,

but also in Chap. 15 on quantitative aspects of time:

• Interval Temporal Logic (ITL),

• Duration Calculus (DC) and
• Timed RSL (TRSL).

5

Time, Space and Space/Time

• The prerequisites for studying this chapter are that you are thoroughly
familiar with the abstraction and modelling principles and techniques cov
ered so far, but that you have realised that issues of timing and space, and
their combination, require special attention.

• The aims are to cover abstraction and modelling principles and techniques
for some temporal or spatial phenomena, and for some combinations of
these, while seeking some deeper understanding of time in particular.

• The objective is to make you reasonably competent in modelling time
and space.

• The treatment is discursive, systematic, and formal, while at times ad
ditionally bordering on epistemological concerns.

Time and space are fundamental concepts. They enter into many aspects of domain
and requirements models and into software design. Time has, since antiquity, been an
almost philosophical problem. Space seemed, from the days of Euclid on, somehow
easier to grasp — until Nikolai Lobachevsky introduced the notion of non-Euclidean
geometries. Understanding space/time, as from Einstein, became rather more of an
"exotic" undertaking.

In this chapter we shall take a look at these notions: Time, space, and
space/time. Our coverage — here and in Chaps. 12-15 — restricts itself to the
ways in which these notions, based on our experience, enter into our modelling
processes and into our models.

In the present chapter we shall also introduce the notions of discrete and
continuous (dense) time, and (dense) space. We will also examine events as
changes in or occurrences of time, space or space/time, or — by analogy —
events as changes in or occurrences of non-physical "measures". Finally we
will look at behaviour as discrete or continuous traces (sequences) of physical
(time, space, space/time) or nonphysical events.

Later chapters will then cover additional specification principles and tech
niques for special cases of temporal and concurrent phenomena.

122 5 Time, Space and Space/Time

5.1 Time

(i) a moving image of eternity;
(ii) the number of the movement

in respect of the before and the after;
(hi) the life of the soul in movement as it passes

from one stage of act or experience to another;
(iv) a present of things past: memory,

a present of things present: sight,
and a present of things future: expectations.

(i) Plato, (ii) Aristotle, (Hi) Plotinus, (iv) Augustine; [17].

5.1.1 T i m e — T h e Bas i c s

Three of the above quotes refer to temporal notions, hence are circular, and
hence are useless to our discussion of time. But they put our mind in the
right direction — and poetically so. Still, we need to more precisely "encircle"
concepts of time. "Time is the dimension of change, a fact which distinguishes
it from the three dimensions of space" [216]. In Vol. 3, Chap. 10 we summarise
time as a dynamic, active, autonomous domain. For the present chapter we
wish to consider t ime from various other viewpoints.

Character i sa t ion . For our mundane purposes we shall take a simplistic view
of time as a totally (i.e., linearly) ordered dense point set. •

T i m e - V a r y i n g Ent i t i e s = D y n a m i c Ent i t i e s

Entities are of types and have values. The entities now considered do not have
time as values. By a time-varying entity we mean an entity whose value may
change with time.

E x a m p l e 5.1 Informal Examples of Time-Varying Entities: The weather
changes all the time, by itself, autonomously. A railway train t imetable
changes only when railway planners explicitly update it. (Such timetables
are inert.) The s ta te of a computer changes for every computer clock cycle,
programmable*. •

We shall take a closer look at some specific cases of time-varying entities.

E x a m p l e 5.2 Rail Unit States: We remind the reader of our — by now —
long sequence of examples tha t model one or another facet of railway systems.
We saw earlier tha t a unit could be in either one of possibly several states:
a 6 u). Sta te changes occur over t ime. Thus we can "lift" our view of units
from being units to being functions from time to (those previous kinds of)
units:

5.1 Time 123

type
T, U, C
UF = T -> U
E = (C x C)-set
Q = E-set

value
obs_Cs: U -> C-set
obs_I7: U -> Z1

obs_/2: U -> /2
reset_I7: U H> U

The above formalisation is one way of expressing things. Here is another way,
which is a narrative: There is a set of time values of type T. There is a set of
unit values of type U. There is a set of unit connector values of type C. A unit
state (a : 17) is a set of paths, i.e., a set of pairs of connectors "through" a
unit. Over a lifetime a unit can be in any one of possibly several states u>: fi.
From a unit we can observe its connectors, its state and its possible state
space. The reset_Z' function "closes" a rail unit. That is, leaves it in a state
with no paths open, but of the same state space:

value
V: (A 4 B) - > D-infset, K: (A 4 B) 4 B-infset

axiom
V u:U • obs_I7(reset_£'(u)) = {} A obs_/2(u) = obs_/?(reset_£(u)) A ...
V uf:UF,u,u':U • {u,u'}C72.uf => reset_Z'(u)=reset_X'(u')

assert: obs_i?(u)=obs_i?(u')
V uf:UF,u,u':U • {u,u'} C ^ufAobs_I7(u)^obs_i;(u')

=> 3 t,t':T • {t,t'} C Puf => uf(t)=u A uf(t')=u' A t ^ t '

The axioms express that the rail units of a unit function are indeed the "same"
units. For any unit, its reset state is the empty set of paths. A reset unit has
the same state space as that unit in any of its allowable states. Hence the
closed, i.e., the empty state is always a member of the state space. For every
timed unit, all its range units are the same, i.e., have the same state space,
and if two of them are in different states then they are range units sampled
at different times. V and 1Z are not proper RSL functions: They yield the
definition set, respectively the range, of any function. •

While time changes may change certain entity attributes others may remain
the same. Example 5.3 illustrates this and indicates possible relations between
time and space.

Example 5.3 Dynamic Rail Nets: From a rail net we can observe all its
units. With any rail unit we can observe its spatial location: Assume, as a
possibly refutable assertion, that no two units "occupy" overlapping "planes"

124 5 Time, Space and Space/Time

of X, Y coordinates, unless their Z coordinates differ by a suitable amount . 1

For "neighbouring" units their "planes" of A', Y coordinates share a common
"line". Between any two observations of a net, over t ime, the units with the
same A", Y, Z coordinates have the same state space.

t y p e
X, Y, Z
DN = T -> N

value
obs_XYZs: U -> (X x Y x Z) - s e t
obs_XYs: U -> (X x Y) - s e t
obs_Zs: U -> Z-set
suitable: Z x Z - > B o o l

a x i o m
V dn:DN,t :T • t G P d n •

V u,u':U • {u,u '}Cobs_Us(dn(t))
=> u = u ' V obs_XYs(u) n obs_XYs(u') = {} V

obs_XYs(u) n obs_XYs(u ') / {} =>
V z,z':Z • z e obs_Zs(u) A z' G obs_Zs(u ') =^ suitable(z,z') A

V t ' :T • t # ' =>
V u,u':U • u G obs_Us(dn(t)) A u ' G obs_Us(dn(t '))

=> obs_XYs(u) = obs_XYs(u ') => ohs_0(u) = obs_/2(u ')

This example also illustrates crucial issues of t ime/space . •

T i m e and D y n a m i c i t y

In Vol. 3, Chap. 10 we focus on what we shall call static and dynamic at
tributes of entities. Example 5.3 illustrated one such kind of entity possessing,
depending on the viewpoint (i.e., depending on the span of the scope), static
and dynamic at t r ibutes . Time, as viewed in this section, is what gives rise to
dynamicity: Dynamics is a temporal notion.

5.1.2 T i m e — Genera l I ssues

In the next sections we shall focus on various models of time, and we shall
conclude with a simple view of the operations we shall assume when claiming
tha t an abstract type models time. These sections are far from complete.
They are necessary, but, as a general t reatment of notions of t ime, they are

That is, the height difference for two rail routes, one crossing the other by means
of a bridge or tunnel.

5.1 Time 125

not sufficient. We refer the interested reader to special monographs: [112,338,
405-411,434,508].

When you study and apply theories of, for example, real-time, safety-
critical, embedded systems, then you will need a deeper seriousness about
time than tha t presented here! A more serious t reatment of t ime is presented
in Chap. 15.

5.1.3 "A-Series" and "B-Series" M o d e l s of T i m e

Colloquially, in ordinary, everyday parlance, we think of time as a dense series
of time points. We often illustrate time by a usually horizontal line with an
arrow pointing towards the right. Sometimes tha t line arrowhead is labeled
with either a t or the word time, or some such name. J .M.E. McTaggart
(1908, [112,338,434]) discussed theories of time around two notions:

• " A - s e r i e s " : has terms like "past", "present" and "future".
• " B - s e r i e s " : has terms like "precede", "simultaneous" and "follow".

McTaggart argued tha t the B-series presupposes the A-series: If t precedes t'
then there must be a "thing" t" at which t is past and t' is present. He argued
tha t the A-series is incoherent: Wha t was once 'future', becomes 'present' and
then 'past ' ; and thus events 'will be events', 'are events' and 'were events',
tha t is, will have all three properties.

5.1.4 A C o n t i n u u m T h e o r y of T i m e

The following is taken from Johan van Benthem [508]: Let P be a point
structure (for example, a set). Think of time as a continuum; the following
axioms characterise ordering (< , = , >) relations between (i.e., aspects of)
time points. The axioms listed below are not thought of as an axiom system,
tha t is, as a set of independent axioms all claimed to hold for the time concept,
which we are encircling. Instead van Benthem offers the individual axioms as
possible "blocks" from which we can then "build" our own time system —
one tha t suits the application at hand, while also fitting our intuition.

Time is transitive: If p<p' and p'<p" then p<p". Time may not loop, tha t
is, is not reflexive: p •$£ p. Linear t ime can be defined: Either one time comes
before, or is equal to, or comes after another time. Time can be left-linear,
i.e., linear "to the left" of a given time. One could designate a time axis as
beginning at some time, tha t is, having no predecessor times. And one can
designate a t ime axis as ending at some time, tha t is, having no successor
times. General, past and future successors (predecessors, respectively succes
sors in daily talk) can be defined. Time can be dense: Given any two times
one can always find a t ime between them. Discrete t ime can be defined.

a x i o m
[TRANS: Transitivity] V p,p' ,p":P • p < p ' < p " =>- p < p "

126 5 Time, Space and Space/Time

[IRREF: Irreflexitivity] V p:P • p {. p

[LIN: Linearity] V p,p' :P • (p = p ' V p < p ' V p>p ')

[L—LIN: Left Linearity]

V p,p' ,p":P • (p '<p A p"<p) =>• (p ' < p " V p ' = p " V p"<p ')

[BEG: Beginning] 3 p:P • ~ 3 p ' :P • p ' < p

[END: Ending] 3 p:P • ~ 3 p ' :P • p < p '

[SUCC: Successor]
[PAST: Predecessors] V p:P,3 p ' :P • p ' < p
[F U T U R E : Successor] V p:P,3 p ' :P • p < p '

[DENS: Dense] V p,p' :P (p<p ' => 3 p":P • p < p " < p ')

[DENS: Converse Dense] = [TRANS: Transitivity]
V p,p' :P (3 p":P • p < p " < p ' =>• p<p ')

[DISC: Discrete]
V p,p' :P • (p<p ' => 3 p":P • (p < p " A ~ 3 p '":P • (p<p" '<p"))) A
V p,p' :P • (p<p ' => 3 p":P • (p " < p ' A ~ 3 p '":P • (p"<p ' "<p ')))

A strict partial order, SPO, is a point structure satisfying TRANS and IRREF .
TRANS, I R R E F and SUCC imply infinite models. TRANS and SUCC may
have finite, "looping t ime" models.

5.1.5 T e m p o r a l E v e n t s

We shall t ry elaborate a rather broad concept of events. Unfortunately, it is
too broad to be useful. From tha t , too general, concept we can then, as it suits
us, "narrow things down" to a more useful concept. First, in this section we
introduce t ime events. In Sect. 5.2.4 we introduce a similarly broad concept
of spatial events. Usually the concept of event is closely tied to the concept
of t ime, but this will not be the only case here. The fact tha t t ime changes
is considered a 'time change event'. The fact tha t t ime, while continuously
changing, i.e., "progressing", reaches an a priori (perhaps, to some observers,
arbitrarily) given time is considered a ' t ime passing event'. The fact tha t t ime,
while continuously changing, i.e., "progressing", reaches an a priori (again,
perhaps, to some observers, arbitrary) distance from a given time is considered
a ' t ime elapse event'. One can thus consider any change in t ime an event, as
well as define any number of ' t ime £' events.

5.1 Time 127

5.1.6 T e m p o r a l B e h a v i o u r

Usually behaviour is understood to be a temporal notion: Something changes,
progresses over time. Therefore, to single out a concept ' temporal behaviour'
may be considered somewhat of an "overkill", i.e., we are juxtaposing two
names for the same idea: ' temporal ' and 'behaviour' . We shall do it anyway in
our a t tempt to bring some unconventional thinking to bear on the classical,
but rather abstract concepts of time, of space and of space/t ime. So, the
behaviour of t ime is tha t it "flows"; tha t one can consider either continuous
time or discrete time, as we shall see further on.

5.1.7 R e p r e s e n t a t i o n of T i m e

We colloquially say: The time is now five pas t eight pm. — omitting the date.
We shall generally think of a model of absolute t ime tha t includes "all there
is to say":

t y p e
T, Date, Year, Month, Day, Hour, Minute, Second, ...

value
obs_Date : T ->• Date
obs_Year: T —>• Year
obs_Month: T -> Month
obs_Day: T ->• Day
obs_Hour: T —>• Hour
obs_Minute: T ->• Minute
obs_Second: T —• Second

So we assume a t ime notion, T, such tha t from any such time we can ob
serve the date, the year, the month, the day (in the month) , the hour, the
minute, the second, etc., of tha t time! But we do not, as of yet, prescribe a
representation of such a time notion.

But we shall also operate with a relative time, or t ime interval, ti:TI,
concept: one for which we, at present, do not specify a representation, but
one for which we say tha t there are some operations tha t involve times and
time intervals. Subtracting one t ime from another yields a time interval. One
can add a time interval to a time to get a time. One can divide two time
intervals and get an integer fraction, i.e., a rounded natural number. For any
two times there exists a t ime interval designating their difference. And for any
time and any time interval there exists a t ime which is their sum. Observe tha t
the arithmetic operators are overloaded: Here they do not apply to numbers
or reals, but to times and time intervals.

t y p e
TI

value

128 5 Time, Space and Space/Time

elapsed_time: T x T -> TI
- : T x T ->• TI
+ : TxTI ->• T
/: TIxTI 4 Nat

axiom
V t,t':T • t '>t => 3 tc5:TI • t6 = t ' - t
V t:T,tc5:TI • 3 t':T • t '>t => t+t6 = t '

Now a T/ year does not mean an absolute, specific year, but the number of
years that have passed between two absolute (T) times.

Example 5.4 Timetable: Typically an airline or a train (seasonal) timetable
lists "times" modulo a week and grouped by days of the week, as from one
absolute time to some other absolute time, the interval designating the season:

type
aT, P, Nm, mT
E)ay_of_week = = monday | tuesday | Wednesday

| thursday | friday | Saturday | Sunday
TT = aT

x (Nm ^ (Day_of_week-set x (P -^ (mT x mT))))
x aT

where the first and the last aT's are absolute times, but the second and third
times, mT, are the modulo times:

obs_Hour: mT —> Hour
obs_Minute: mT —• Minute

In words: TT lists, left-to-right: the date (aT) of the beginning of the season;
for every name, nm:IMm, of a transport vehicle (train or flight or . . .) , the
nonempty set of the days of the week it operates, and, for every name of
a stop, p:P (station or airport), the arrival and departure hour and minute
times; and, finally, the date, aT, of the ending of the season. •

The notion of timetable illustrated above can be said to represent a discrete
time notion, but, as we shall see later, denotes a continuous time behaviour.

5.1.8 Operat ions "on" T ime

So we can compare times:

type
T

value
<, <, =, A >, >= T x T => Bool

5.2 Space 129

And we can add or subtract t ime intervals, time periods from absolute times,
and subtract one absolute time from another in order to find the elapsed time,
a t ime period:

t y p e
TI

value
+ , - : T x T I -) T
- : T x T -> TI

5.2 Space

Space: an eternal, infinite, isomorphic continuum
(like air, only thinner)

Sir Isaac Newton

5.2.1 Space — T h e Bas i c s

Character i sa t ion . Physically manifest entities occupy point set spaces. Dif
ferent entities occupy disjoint point set spaces. We model, initially, point set
spaces as locations. No location is an empty point set space, but empty point
set spaces do exist! If two locations are different then they do not "overlap".
If two locations are the same, i.e., are equal, then their intersection is "that
same location". •

t y p e
L

value
{ } = , { } ^ : L -> B o o l
= ,^: L x L ->• B o o l
U,n: L x L -> L

a x i o m

i±v = {}=(ne A t=v = ene'=i

Note the prefix is (not) equal to empty point set space.

5.2.2 Locat ion-Vary ing Ent i t i e s

Physically manifest entities, E, may move in time, T. At no time can two ("dif
ferent") such entities converge "infmitesimally close" to the same location, L.

130 5 Time, Space and Space/Time

type
E, T, L
S' = T -> (E j * L)
S = {| s:S' • CONTlNUOUS(s) |}

value
CONTINUOUS: S -> Bool

axiom
Vs:S • Vt,t ':T •

{t,t'}cX>s =>- V e,e':E • {e,e'}Cdom s(t) A e^e' => (s(t))(e)^(s(t))(e')

CONTINUOUS is not a definable RSL function. It is a metamathematical
'functional' designating whether its argument is a continuous function or not.
For the particular system of time-located entities, continuity implies that at
any two infinitesimally close time points an entity located at both times has
moved at most infinitesimally, i.e., the two locations are infinitesimally close.
At any two time points an entity located at both times is located at all time
points between these two time points.

Example 5.5 Documents, Originals and Copies: Let us consider some con
cepts of documents. The concept of document itself is taken for granted. Each
document can be uniquely identified. Some documents are originals. We do
not say anything more than just: 'Some documents are originals'. Each orig
inal is made from some information at some time and at some location. No
two documents, when disregarding their unique identification, are equal.2A
document can be a ('direct') copy of some other document. From the unique
identifier of a copy one can observe the unique identifier of the document from
which the copy was made. From a copy one can observe the document from
which it was copied. The "observed document" is itself not a document. From
the unique identifier of a document one can observe the time and location of
when and where the document was made or copied. No two documents can
be made, or copied, at the same time and location.

type
I, T, L, D, U, A

value
obs_U: (D|zl) -> U
obs_T: (D[zA|U) -+ T
obs_L: (D\A\U) -+ L
is_Orig: (D\A) -> Bool
is_Copy: (D\A)-> Bool

2This seemingly cryptic statements says: If I speak of two documents, then I
mean two different documents. And then I mean that they are different, not by
nature of having different unique names, but by being locatable in different physical
locations. They may be stapled together, but they cannot physically "intersect" (i.e.,
"overlap").

5.2 Space 131

make_D: I x T x L ^ D
copy_D: D x T x L 4 D
obs_zi: D 4 i , equiv: D x A —> Bool

axiom
V i:I,t:Ti':L,d:D •

is_Orig(make_D(i,t/)) A
~is_Copy(make_D(i,t,f)) A
~is_Orig(obs_il(copy_D(d,t/))) A
is_Copy(obs_zA(copy_D(d,t,(.))) A
~is_Orig(copy_D(d,t,£)) A
is_Copy(copy_D(d,t,£)) A
is_Orig(obs_zi(make_D(i,t/))) A
~is_Copy(obs_zA(make_D(i,t/)))

V u,u':U • u=u' = obs_T(u)=obs_T(u') A obs_L(u)=obs_L(u')
Vd,d':D • d=d' = obs_U(d)=obs_U(d') A obs_J(d)=obs_J(d ') ,
V S,S':A '5=S' = obs_U(<S)=obs_U(<$'),
V i:I,t:T,£L,d:D •

obs_T(make_D(i,t,£))=tAobs_L(make_D(i,t,£))=£A
obs_T(copy_D(d,t,£))=tAobs_L(eopy_D(d,t,l>)MA
obs_T(obs_U(make_D(i,t,^))=tAobs_L(obs_U(make_D(i,t/)))=M
obs_T(obs_U(copy_D(d,t,£)))=tAobs_L(obs_U(copy_D(d,t/)))=M
obs_T(obs_zi(make_D(i,t,i ,)))=tAobs_L(obs_zi(make_D(i,t,£)))=M
obs_T(obs_z\(copy_D(d,t/)))=tAobs_L(obs_zi(copy_D(d,t/)))=^

V d:B,S:A •
~is_Orig(d) A is_Copy(d) A
~is_Orig(J) A is_Copy(d") A
is_Orig(d) = is_Orig(obs_zA(d)) A
is_Copy(d) = is_Copy(obs_zi(d)) A
equiv(d,obs_-d(d)) A
V d':D • d^d' => ~equiv(d,obs_^(d'))

value
copy_D(d,t,l) as d' pre: obs_T(d) < t

We leave it to the reader to ponder over the above example! •

5.2.3 Locations and Dynamicity

Locations, as point sets, are here considered fixed, static quantities. That
is, locations as a concept, are here considered independent of ("orthogonal"
with respect to) time. Thus we work, if not otherwise mentioned, in a rather
simpleminded Newtonian world, not in an Einsteinian world! Thus time and
space are here, in this book, considered unrelated.

132 5 Time, Space and Space/Time

5.2.4 Space — General Issues

Point, Curve, Surface and Volume

We take, for granted, the concepts of: (i) point; (ii) curve (line); (iii) surface;
(iv) volume; (v) points on (or off) a line, on (or away from) a surface, or inside
(or outside) a volume; (vi) curves on a surface, including curves "crossing"
("intersecting") a surface, curves "touching tangentially" a surface, etc.; (vii)
surface(s) of a volume; and (viii) 'cuts' through a volume defining "new"
volumes and surfaces; etc. We shall anyway take a semiformal look at this
space (spatial) notion. Consider Fig. 5.1.

Fig. 5.1. Spatial concepts of axis, point, curve, surface, volume and coincidence

X, Y, X are an abstract concept of axes forming a notion of a rectilinear,
orthogonal coordinate system. (These notions are here left further unexplained
— i.e., we assume them known!)

Points are basic, further unexplained "atomic" notions, with which we
shall, as a model, associate x,y,x coordinates in the X,Y,X coordinate sys
tem. A curve is a dense infinite set of points such that, with every "point
on the curve", there is a notion of "left neighbours" and "right neighbours"
("taking limits"). A continuous curve has "neighbouring" points that "coin
cide in the limit"! A surface defines a special, dense, infinite set of (surface)
points such that there is a notion of an infinite set of "neighbourhood" (sur
face) points. A volume (a definite spatial body, an entity) defines a special,
dense, infinite set of points (within the body [entity]) such that there is a
notion of an infinite set of "neighbourhood" (volume) points. The density of
point sets can be defined.

5.2 Space 133

Spat ia l "Events"

We can associate different notions of spatial events: If two points — otherwise
considered different — coincide, i.e., have the same x,y,z coordinates, then
tha t is called a "point/point coincidental event". If a point, p, and a curve,
c, coincide, tha t is: there is a point p' on the curve and tha t "point coincides
with" p, then tha t is called a "point/curve coincidental event". If a curve
progresses, "continues" beyond a point, then tha t is called a 'curve continua
tion event'. If a curve changes direction, i.e., the tangent at a point and the
curve after tha t point "deviate", then tha t is called a 'curve change event'.
A "crossing" curve is a curve such tha t what might otherwise be considered
two different points on the curve 'point /point coincides'. If a curve, c, and
a surface, s, coincide at a point p (which lies both on the curve and on the
surface), tha t is, there is a point p' on the curve tha t 'point coincides with'
s, then tha t is called a "curve/space coincidental event". (A curve may have
many curve/space "coincidental" events.) And so on for intersecting surfaces
and volumes. Many more or less "artificial" event categories can easily be
imagined.

We have brought in the above list of more or less "contrived" event classi
fications to alert the reader to the fact, or at least the possibility, tha t events
can be associated with physical "changes". Before we allowed the following
three kinds of time events: continuation of time, i.e., "next t ime"; or the reach
ing of a time point; or the the fact tha t a certain interval has elapsed. Now
we seem to add other events, called "spatial events": continuation of curves
(the "next points on a curve"), continuation of surfaces (the "immediately
neighbouring points on a surface"), continuation of volumes (the "immedi
ately neighbouring points of a volume"), "sharing" of points, etc. We must
always be prepared to entertain tha t some notion is being designated an event
(or a category of events).

Spat ia l "Behaviours"

If we consider the world from the position of a point, then a curve designates
a behaviour: a trace — a sequence — of points, and an infinite one "to boot"!
If we consider the world from the position of a curve, then a surface may
designate a behaviour: a trace — a sequence — of curves, also infinite. If we
consider the world from the position of a surface, then a finite (i.e., a closed)
volume may designate a behaviour: a finite trace — a sequence — of one or
more surfaces.

Again we have introduced a seeming "arbitrariness" — a "lofty generality"
— in our implicit definition of behaviour. This is done deliberately, in order to
introduce you later to some "narrower" definitions of a concept of 'behaviour' .

134 5 Time, Space and Space/Time

R e p r e s e n t a t i o n of Spat ia l B o d i e s

We leave it to classical mathematics and engineering to deal with appropriate
representations of spatial bodies (i.e., entities). Thus we assume two sorts of
spaces: spherical and Cartesian, one sort of spatial bodies, and some observer
functions:

t y p e
Space, Body
X,Y,Z,R = R e a l
Cartes = X x Y x Y
Spherical = R x Lo x La
Lo '=Rat , Lo = {| lo:Lo' • 0<lo<360 |}
La '=Ra t , La = {j la:La' • 0< l a<90 |}

value
obs_extent : Body —>• Space —>• Cartes
obs_location: Body —> Space —> Spherical

where extent could be the smallest Cartesian volume tha t contains the body,
and where the location is its spherical position is some planetary system such
as Ear th (Fig. 5.2).

Combination of
Spherical location
and Cartesian extent

Fig. 5.2. An example spherical/Cartesian spatial system

O p e r a t i o n s o n Space

Given a spatial body one can identify its location, extent and volume; and one
can identify its surface area, convexities, concavities, etc. Given a spatial body
one can subdivide it into a finite set of two or more of bodies (i.e., entities —
of which it is composed by "glueing"). Given two (or more) bodies one can
find their possible intersection (i.e., overlap), surfaces they may share, and so
on.

5.3 Space/Time 135

5.3 Space/Time

In this section we formalise some aspects of the above notion of space (in
particular of entities [i.e., bodies]) together with a notion of time.

We now combine space and time. First we show an example.

5.3.1 A Guiding Example

Example 5.6 Traffic: Let P designate a ("continuum") set of positions (say
of vehicles), T designate a ("continuum") set of times, and i\lm designate a
("discrete") set of names (of the vehicles). Then, by continuous traffic, we
understand a continuous function from time to functions (i.e., maps) from
names to positions. By "sampled" traffic, we understand a discretised function
(i.e., a map) from time to functions (i.e., maps) from names to positions.

type
P, T, Nm
c.TF = T 4 (Nm -^ P)
dTF = T ^ (Nm rf P)

value
wf_TF: (cTF|dTF) -> Bool

P designates positions of named transport vehicles (flights or trains) Nm. cTF
stands for continuous traffic, dTF stands for discrete traffic. (dtf:dTF relates
to ctfxTF iff at least for every time t in the definition set of dtf t is also
in the definition set of ctf and "maps" onto identical maps from names of
vehicles to (same) positions.) We say that dtf:dTF represents a "sampling", a
'discretisation' of ctfxTF. •

5.3.2 Representation of Space/Time

The example illustrated a space/time phenomenon. Very typically we model
such phenomena in either or both of the two ways shown above. In general,

type
A
cTP = T 4 A
dTP = T rt A

where A is any notion to which you may attach a concept of space. We usually
choose partiality (4) since we "only" assume the function ctf (in cTF) to be
total in a nontrivial (i.e., in other than a single point) interval:

ctTP = iT -> A
iT = {| t:T • begint < t < endt |}

where the subtype comprehension predicate is informal jargon for: . . . and
time lies in some closed interval from a definite begin to a definite end time.

136 5 Time, Space and Space/Time

5.3.3 Blizard's Theory of Time-Space

We shall present an axiom system (Wayne D. Blizard, 1980, [57]) which relates
abstracted entities to spatial points and time. Let A,B,... stand for entities,
p,q,... for spatial points; and t, r for times. 0 designates a first, a begin time.
Let t' stand for the discrete time successor of time t. Let N(p, q) express that
p and q are spatial neighbours. Let = be an overloaded equality operator
applicable, pairwise to entities, spatial locations and times, respectively. Al

p

expresses that entity A is at location p at time t. We omit (obvious) typings of
A, B, P, Q, and T. The suffix prime, ', designates the time successor function.
Thus t' designates the next time after t.

(II)
(III)
(IV)

(Vi)
(V ii)
(V Hi)

(VI i)
(VI ii)
(VI Hi)
(VI iv)

(VII)
(VIII) A%

(A], A A\) Dp = q
(A], A B*) D A = B
(A\} AAtp)Dt = t'

Vp,q
Vp,q

Vp3g, r
Vt
Vt
Vt

Vt,T

N(p, q)^P^q
N(p,q) = N(q,p)
N(p, q) A N(p, r) A q ^ r
t^t'
t ' ^ 0
t ^ 0 D 3T : t = T'

T' =t' Dr = t
4 A A{ D N(p, q)

A B < A i V (p , g) D ~ (4 ' AB*')

Irreflexivity
Symmetry

No isolated pts.

(II-IV,VII, VIII): The axioms are universally 'closed', that is, we have
omitted the usual \/A, B,p, q, ts.
(I): For every entity, A, and every time, t, there is a location, p, at which
A is located at time t.
(II): An entity cannot be in two locations at the same time.
(Ill): Two distinct entities cannot be at the same location at the same
time.
(IV): Entities always move: An entity cannot be at the same location at
different times. This is more like a conjecture, and could be questioned.
(V): These three axioms define N.
(V i): Same as Mp :~ N(p,p). "Being a neighbour of", is the same as "being
distinct from".
(V ii): If p is a neighbour of q, then q is a neighbour of p.
(V hi): Every location has at least two distinct neighbours.
(VI): The next four axioms determine the time successor function '.
(VI i): A time is always distinct from its successor: Time cannot rest. There
are no time fix points.
(VI ii): Any time successor is distinct from the begin time. Time 0 has no
predecessor.
(VI hi): Every nonbegin time has an immediate predecessor.

5.6 Exercises 137

• (VI iv): The time successor function ' is a one-to-one (i.e., a bijection)
function.

• (VII): The continuous path axiom: If entity A is at location p at time t,
and it is at location q in the immediate next time t', then p and q are
neighbours.

• (VIII): No "switching": If entities A and B occupy neighbouring locations
at time t the it is not possible for A and B to have switched locations at
the next time t'.

Discussion of the Blizard Model of Space/Time

Except for axiom (IV) the system applies to systems of entities that "some
times" rest, i.e., do not move. These entities are spatial and occupy at least a
point in space. If some entities "occupy more" space volume than others, then
we may suitably "repair" the notion of the point space P (etc.), however, this
is not shown here.

5.4 Discussion

We have, in this chapter, discussed some notions of time and space, and of
their combination. In later chapters (Chaps. 12-15) we shall cover additional
notions of time: qualitative as well as quantitative. And in Vol. 3, Chap. 10
we shall further cover time notions.

5.5 Bibliographical Notes

McTaggart's work is covered by [112,338,434], and Blizard's theory is found
in [57]. The book by van Benthem is seminal: [508].

The considerations of time in this chapter find their final exposition in
these volumes in Chap. 15. That chapter is focused solely on temporal logics,
that is, logics that are capable of dealing with time events and durations.
The, perhaps, most important contributor cum originator of temporal logics
appears to be Arthur N. Prior. His work is covered by [218,406-411].

5.6 Exercises

Exercise 5.1 Supermarkets (II). Reference is made to Exercise 4.2. Please
read that exercise carefully. We assume here that you have also provided a
solution to the questions asked.

Consider "the day of a supermarket" to be a suitably discretised function
from supermarkets to supermarkets. Assume that the cash registers start their

138 5 Time, Space and Space/Time

day empty (no cash is changed). And assume that no deliveries are made
during open hours, i.e., the day, to the backup store.

Now write a well-formedness function over the "the day of a supermarket".

Exercise 5.2 Manufacturing (II). Reference is made to Exercise 4.3. Please
read that exercise carefully. We assume here that you have also provided a
solution to the questions asked.

Now describe production, formally, as a discrete function from time (units)
to states of stores, trucks and machines.

We assume that during daytime no deliveries are made to the supply store
nor are any products sent away from the product store.

Formalise a well-formedness function which expresses the well-formedness
of a production, i.e., the timewise progression from configurations to configu
rations.

Exercise 5.3 Road Traffic. The present exercise follows those of Exercise 2.3
and Exercise 4.1. You are well advised to first study those exercises and to
attempt their solution.

Now consider road traffic as consisting of only one kind of vehicle, say four
wheel automobiles (i.e., cars). A car is either parked, or it is standing still in
traffic, or it is moving about in traffic. For a car to be in traffic means that
it is not parked. We shall henceforth not consider parked cars! For a car to
be in traffic (furthermore) means that it can move. A car will move if it can.
For a car to move means that it is changing position along a street or in an
intersection. A car can move if its next position is not occupied by another car.
The next position of a car is a location, along a street or in an intersection,
infinitesimally close to its present position.

Now assume an indefinite number of cars in traffic. Also consider that the
road net has a number of entry and exit points at which cars may enter, or
may leave the road net. These entry and exit points are like the roads "leading
into or out of the city" as mentioned in Exercise 2.3. If a parked car ceases
to be parked and starts moving, then it enters traffic. If a moving car ceases
to be in traffic by parking, then it leaves traffic. At any moment only a finite
number of cars may enter traffic, and at any moment only a finite number of
cars may leave traffic.

1. Provide a definition of what a car position (i.e., car location on a street
(segment) or in an intersection) is.

2. Provide a type definition of the concept of car, i.e., road traffic. Assume
a time interval, from time igtart to time i e n (j , over which road traffic is
defined.

3. Impose suitable constraints on road traffic.
4. Define a function which applies to any road traffic and which yields the

first time, after tstart> a^ which a car accident occurs, i.e., when two cars
collide, i.e., when their locations "overlap".

5.6 Exercises 139

5. Define a function which applies to any road traffic and a time (point) and
which yields the possibly empty map from cars — which are driving in
the wrong direction of a one way street — and their positions along those
street segments.

Exercise 5.4 Air Traffic. The present exercise follows those of Exercise 2.4
and Exercise 4.1. You are well advised to first study those exercises and to
their solution.

Now consider air traffic as consisting of moving aircraft. That is, aircrafts
on the ground are not moving! An aircraft can only start from an airport.
It then enters air traffic by entering an air lane connected to that airport.
Normally an aircraft then moves continuously along a route (i.e., within a
sequence of air lanes), and normally an aircraft leaves air traffic when, or by,
landing in an airport, i.e., by leaving an air lane connected to that airport.
Abnormally an aircraft, or two, may leave air traffic by exploding in the air,
for example, by collision.

1. Provide a definition of what an aircraft position, in the air, is.
2. Provide a type definition of the concept of air traffic. Assume a time

interval, from time t start to time t e n c[, over which air traffic is defined.
3. Impose suitable constraints on air traffic.
4. Define a function which applies to any air traffic and which yields the first

time, after tstart> at which an aircraft collision occurs, i.e., when their
locations "overlap".

5. Define another function which applies to any air traffic and which yields
the first time, after tstart> a* which a single aircraft explosion occurs, i.e.,
when the aircraft "suddenly" disappears from air traffic.

Exercise 5.5 Ocean Traffic. The present exercise follows those of Exercise 2.5
and Exercise 4.1. You are well advised to first study those exercises and to
attempt their solution.

Now consider ocean traffic as consisting of moving ships. Ships sail from
harbours to harbours. (Let us disregard ship movements within a harbour,
from buoys to quays and/or container terminals, etc.) Please read the above
exercise formulations, i.e., Exercises 5.3-5.4. From those make up your own
informal description of the problem, and then formalise answers to those de
scriptions.

Exercise 5.6 Documents: Masters, Copies, Versions. We refer to Exercise 2.1.
Narrative, I: First we consider an extension. Documents, whether masters

(i.e., originals) or copies, may be edited. Again it is observable whether a
document is an edited version, v, as are also, in that case, the time and location
of edit. Further, what has been changed by the editing can be observed. Let d
be a document (i.e., in D), then we can postulate two functions, the edit and
the undo functions: One takes d into v and one takes v back into d.

1. Now reformulate the formulas of Example 2.1.

140 5 Time, Space and Space/Time

Narrative, II: Then we consider a concretisation of documents. The documents,
and hence master, copy and version (edited) documents are, in this exercise, to
be considered structured. Assume, or suggest, some structure. Hint: It could,
for example be (i) the structure of a book: chapters, sections, subsections,
paragraphs with lines or formulas with lines. Or (ii) instead of using chapter,
section and subsection terms one could use a fixed, finite number of names
such as admininistrative, anamneses3, tests, analyses, diagnostics, treatments,
observations, and reconsiderations, with each of these having paragraphs with
lines, or diagrams, or photos, or X-Rays, or ECGs, or MRSs, or CTRs, or
other — as, in case (ii), would be typical of PMRs (patient medical records).

2. Now suggest a further reformulation, i.e., a refinement, of your previous
formulas — including "narrowing" down, i.e., making a bit more concrete,
the edit and the undo functions.
Hint: it could, e.g., be observable where in a document an edit has taken
place.

Exercise 5.7 Document System. We refer to Exercises 2.1 and 5.6.
Now assume a collection of documents and their behaviour over time.

1. Formalize a function type, cTLDs, from time to sets of spatially located
documents.

Then assume the Blizard axiom system (Sect. 5.3.3), except its axiom (IV):

2. Reformulate the Wayne Blizard axioms in proper RSL.
3. Further define functions which apply to cTLDs (as well as other appropri

ate arguments) and which
(a) inserts a master document (into some ctldsxTLDs),
(b) copies a document,
(c) edits a document,
(d) moves a document from one location to a "close-by" location, and
(e) removes (e.g., "shreds") a document.

4. Argue, informally, that your function definitions maintain the invariant
as defined by the (axiom (IV) exempted) Blizard axiom system.

5. Give an interpretation to the Blizard axiom (I).
6. Then formulate a discretised model of cTLDs, i.e., dTLDs.
7. Relate dTLDs to cTLDs. That is, express criteria for when a discretisation

is a reasonable one.

Hints: (a) Assume a predicate close which applies to pairs of times or pairs of
locations (in space) and yields truth when the pair of time points, respectively
the pair of locations, are sufficiently close to one another, (b) Assume also
a mathematical, i.e., a non-RSL, function V (and, if need be, another such
function TV) which applies to arbitrary functions and yields their definition

information that must be remembered

5.6 Exercises 141

sets (respectively their image, i.e., range, sets). Finally, recall the notion of A-
functions (Vol. 1, Chap. 7). Let / be a function from time, T, to something, say
Aj^B. If from some time point, tp, onwards we wish to express the function
/ ' which is like / except tha t as from tp the function / ' maps an a, not into
what was mapped in / but into b, then we express tha t as follows:

t y p e
T, A, B
F = T -»• (A ^ B)

value
change: F x T x A x B - > - F
change(f,t_p,a,b) = A t :T • if t < t _ p t h e n f(t) e lse f(t) f [ai-^b] e n d

Exerc i se 5.8 Topological Space. We wish to model such spatial concepts as
next to (close to, adjacent), overlapping (intersecting), within, separate from,
etc. Thus you are to model a concept of space:

• Assumptions:
• There is a basic, further unexplained notion of spatial point.
• A spatial location is a possibly finite, non-empty set of points.
• Any spatial line, surface, or volume is a (most likely) infinite set of

points.
• There is a notion of distance.
• Therefore for any two points one can observe their possibly zero dis

tance.
• There is a notion of circle, and a notion of sphere, hence notions of

radius, diameter, segment of a circle and the angle it "spans".
• Questions:

1. Define a notion of a straight line.
2. Define a notion of a 'polyline', tha t is, a sequence of connected, but not

"intersecting" straight lines (segments) such tha t these line segments
are all in a plane.

3. Define a notion of a polygon, tha t is, a polyline whose straight line
(segments) do not intersect, and where the "first point" of a "first"
line segment coincides with the "last point" of a "last" line segment.

4. Assume tha t given a polygon one can observe the area tha t it spans.
5. Now define a notion of spherical polygon: a figure analogous to a plane

polygon tha t is formed on a sphere by arcs of great circles.

Part IV

LINGUISTICS

In this part we further develop, in four distinct chapters:

• the non-formalisable concepts of pragmatics: of use, of what we intend, of
what social effect we wish to occur;

• the formalisable concepts of varieties of semantics: of what we mean ac
cording to varieties of viewpoints;

• the formalisable concepts of abstract and concrete syntax: of what we say
and write; and

• the concept of semiotics: as "consisting" of the concepts of syntax, seman
tics and pragmatics.

But, contrary to popular tradition, we treat these three subjects in the order:

• first pragmatics: Chap. 6,
• then semantics: Chap. 7,
• then syntax: Chap. 8, and
• finally — summing up — semiotics: Chap. 9.

The four chapters can, however, be read in the reverse order — whereas the
problems posed in the chapters should be tackled in the reverse order from
Chap. 9 to Chap. 6.

144

On Exercises of Pa r t IV

Most exercises of this part ask for solutions that contain both a property-
oriented solution and a model-oriented solution — and along the lines of this
part. Amongst the exercises of this part, and hence proposed below, there
is a set which "slowly", i.e., stepwise, "unfolds", that is, designs a specific
(first) programming language. We refer to Exercise 6.3 for the pragmatics,
i.e., the motivation for, and justification and use of this language. Subsequent
exercises then pose questions whose solutions eventually lead up to a design
of this language. We thus pose these questions in the recommended order of:

• pragmatics: Exercises 6.3-6.5;
• semantic types and auxiliary semantic functions: Exercises 7.3-7.7;
• syntactic types and auxiliary syntactic functions, including well-formedness

predicates: Exercises 8.7-8.8; and
• semantic (meaning) functions: Exercise 9.2.

Exercises 9.3-9.5 then asks for the "stepwise" development of the first lan
guage design (itemised above) via intermediate steps of increasingly more
"versatile" languages to the language that we claim we are after!

6

Pragmatics

• The prerequisite for studying this chapter is that you are somewhat
familiar with issues of syntax and semantics.

• The aim is to introduce the informal concept of pragmatics.
• The objective is to help make sure that you do not confuse the non-

formalisable issues of pragmatics with the possibly formalisable issues of
semantics, and to help make sure that you clearly remember to state mod
elling design decisions whether these were motivated by syntactic, semantic
or pragmatic concerns.

• The treatment is discursive and informal.

6.1 Introduction

Characterisation. (I) Pragmatics is the study and practice of the factors
that govern our choice of language in social interaction and the effects of our
choice on others [84].

By pragmatics we thus understand issues of why we use a special construct,
of why we constrain such a construct and of why we endow it with certain
properties, and so on. •

Our "dogma" is this: We can formalise syntax and we can formalise semantics,
but we cannot formalise pragmatics.

Our "dogma" is also this: Pragmatics is what we really are "aiming at",
the real reason behind the use of a certain syntactical uttering, that is, the real
reason for the use of a specific semantic metaphor. Pragmatics is what "links"
(formal) uses of language to actions, to what is happening in a real world.
Pragmatics thus has as its subject issues of choice of syntax and semantics.
Thus it is metalinguistic wrt. these — and hence cannot possibly be expressed
at the same level as these, and hence not — i.e., not without introducing rather
complete confusion — in the same specification language.

146 6 Pragmatics

Characterisation. (II) Pragmatics is the study of language in context, and
the context-dependence of various aspects of linguistics interpretation. •

First, one and the same sentence can express different meanings or proposi
tions from context to context, either because of ambiguity or due to indexical-
ity,1 or both. Examples of ambiguities are: visiting doctors can be tedious, or
the mouse tore up the street. An indexical sentence can change in truth-value
from context to context owing to the presence of an element whose reference,
i.e., whose value changes. An example is: it's time for that meeting now.

We leave the metalinguistics of pragmatics here, but invite the reader to
think about the epistemological issues involved.

6.2 Everyday Pragmatics

Everyday pragmatics may dictate more or less convolute, more or less trans
parent or opaque uses of syntax and semantics. Lack of precision leads to
misunderstandings. Scope for different interpretations invariably implies that
there will indeed be many — sometimes opposing, irreconcilable — interpre
tations.

When moving from everyday situations to software development we must
tighten our grip, our mastery of the pragmatics to avoid opaqueness and
misunderstandings.

6.3 "Formal" Pragmatics

By "formal" pragmatics we mean the kind of pragmatics considerations that
we must consider when developing software, that is, when describing domains,
prescribing requirements or specifying software designs.

Example 6.1 Some Application Software Package Pragmatics: Various clas
sical examples of the pragmatics underlying different software packages are:

Budget Planning and Accounting Software: This software is ac
quired by customers in order to help them budget within means, keep track
of committed and actual expenses, and thus be able to assess the financial
situation during a budget period.

Order Processing and Tracing Software: This software is acquired by
customers in order to improve the response to and tracing of the production
and delivery status of orders, and thus to improve their company's competitive
status.

Merriam-Webster defines indexicality: varying in reference with the individ
ual speaker (the indexical words I, here, now), associated with or identifying an
individual speaker [483].

6.4 Discussion 147

Software for Automobile Painting Robots: This software is acquired
by customers with the triple aim of faster overall painting of series of cars, pos
sibly in different colours, to decrease worker accidents, and to secure uniform
and high quality paint jobs.

The italic phrase parts are examples of pragmatics. •

When we design an end-user application program our design decisions are not
themselves formalised, or perhaps not even formalisable. But their result is:
the decision is recorded in the form of formal syntax and formal semantics.

When we design a programming language we choose to include certain
value types and exclude others.

Example 6.2 Programming Language Data Types and Expressions: LISP
[333] emphasises list structures and thus the manipulation of symbolic, typi
cally logical, structures.

FORTRAN [13] emphasises arrays of floating point values, i.e., scientific and
technical computations over one, two, three or more dimensional models of
physical or engineering structures.

COBOL [11] emphasises records and business processing, i.e., the admin
istrative handling of data, in particular text strings and formatted number
values. •

Example 6.3 Variable Access: We refer the reader to material given in
Chap. 4: When, as implied by Examples 8.17, 8.19 and 7.5, we choose among
any of the three environment and storage models (Example 7.5), then the
choice was based on pragmatic considerations: "Either is as good as any
other", in theory, but not, perhaps, in practice. And pragmatics is about
practice, not theory. •

6.4 Discussion

6.4.1 General

We have postulated that pragmatics is not formalisable, and that it is the most
important aspect behind our designs. In fact, these are indeed postulates. They
are statements made by us, and these statements are of philosophical nature.
They hinge upon, they imply issues of, and they reflect issues of philosophies
and theories of science and engineering.

It follows that there can be no formal resume of issues of pragmatics — at
least not based on the shallow treatment of this important subject as given
here. We do, however, refer to an important mathematical investigation into
this matter, made in:

148 6 Pragmatics

• N. Nikitchenko: Towards Foundations of a General Theory of Transport
Domains. Research Report 88, UNU/IIST, P.O.Box 3058, Macau (1996)
[379].

But pragmatics, as a concept, is much broader than treated here. Our presen
tation has been rather utilitarian: We have singled out and focused only on
the most trivial aspects of pragmatics. More general issues of pragmatics lie
beyond what these volumes needs to cover. Some of those issues play a role
in the concept of agents. Here the so-called speech acts performed between
agents relate strongly to pragmatics. But further than this "teaser" we shall
not go!

6.4.2 Principles and Techniques

Principles. A first principle of pragmatics is to "discover" what the prag
matics of a development problem is, that is, which parts cannot be formally
explained, but must be documented. •

Principles. A second, derived principle of pragmatics states: When docu
menting a software development it is mandatory that we (i) start (i.e., prefix),
(ii) annotate throughout (i.e., "infix"), and (iii) end (i.e., suffix) our informal
and formal development documentation with necessarily informal expositions
of the pragmatics underlying the documented development choices. •

In Vol. 3, Chap. 2 of this series, we introduce the notions of informative, de-
scriptional and analytical documents (or document parts). The role of the
informative parts is to be a placeholder for, i.e., to spur the careful documen
tation of, pragmatic concerns: those which really motivate software develop
ment.

Techniques. When "exposing" the pragmatics, or rather, when believing
that a design decision is based on some pragmatics, it is important to analyse
the pragmatics exposition for possible "pitfalls": It might be that the desired
semantics is ambiguous or indexical. •

6.5 Bibliographical Note

Pragmatics relates strongly to philosophy of language and theory of signs.
A wealth of books and journals cover the area. We refer only to a recent
monograph by Mey: [342]. Pragmatics also relates to speech act theory. We
refer here to two seminal works and a recent collection of papers [18,464,504].

6.6 Exercises 149

6.6 Exercises

Exercise 6.1 The Pragmatics of Implicit Goals. Background: Most cus
tomers, i.e., buyers, of software, on one hand, express very specific function
alities that they expect the acquired (i.e., the developed) software to offer.
On the other hand, they expect that use of such software will bring about
changes in their life, or in the "life" of the company using the software. Ex
amples are: (i) Use of the accounting software will make it easier for me to
keep track of my expenses and help ensure that I stay within budget, (ii) The
software, when deployed, will help ensure our company's competitive edge
wrt. our competitors, (iii) The software, when properly used, will help cut
down on work-related accidents.

Question: Can you list three further such implicit goals? And can you
discuss whether these listings, (i—iii) above and your additional three, are of
pragmatic nature, and why they might not be formalisable?

Exercise 6.2 User-Friendliness and Pragmatics. Try to find, from the lit
erature, characterisations of the concept of user-friendly software (systems).
Discuss which aspects of those characterisations are of pragmatic nature.

The next exercises (Exercises 6.3-6.5) form a preamble for the subsequent
design of STIL: a simply typed imperative language.

Future exercises relate to the design of STIL and are as follows:

• Exercise 7.3: a structured type concept
• Exercise 7.4: a structured value concept: types
• Exercise 7.5: a structured value concept: auxiliary functions
• Exercise 7.6: a structured location concept
• Exercise 7.7: a structured storage concept
• Exercise 8.7: syntax of STIL
• Exercise 8.8: syntactic well-formedness of STIL
• Exercise 9.2: semantic meaning functions for STIL

From STIL is designed three more, evolving languages: NaTaTIL, DiTIL and
DaUTIL:

• Exercise 9.3: NaTaTIL: a named types and typed imperative language,
• Exercise 9.4: DiTIL: dimension typed imperative language,
• Exercise 9.5: DaUTIL: dimension and unit typed imperative language.

Exercise 6.3 Type and Value System (Preamble for STIL). Background:
Normally programs, of a programming language, prescribe operations on data,
i.e., on values. These values are such as Booleans, integers (i.e., "whole" num
bers), floating point numbers, characters and structures — such as vectors and

150 6 Pragmatics

records — over these. Typically the programming language comes equipped
(i.e., "built-in") with such basic operations as addition, subtraction, multipli
cation, and division (over numbers); conjunction, disjunction, and implication
(over Booleans); and equality and non- or inequality (over pairs of numbers,
or pairs of Booleans, or pairs of characters). And usually these operations
do not extend, as built-in operations, to structures of data. The programmer
has to write algorithms if such generalisations are needed. The operations
on values are expressed by writing operator/operand expressions. But in all
this there "lurks" the possibility that the programmer makes the mistakes of
expressing the addition of two Booleans, of expressing the conjunction (the
"and") between a Boolean and a number, etc.

Question: Explain, in words, how you would design a language of expres
sions which could be constrained in such a way as to prevent, at run-time, the
addition of, for example, two Boolean values.

Exercise 6.4 Scalar and Structured Values (Preamble for STIL). Back
ground: To variables one can express the assignation of values. To structured
variables, such as vectors (of atomic type elements) or records (of atomic, i.e.
scalar type field elements), one can prescribe the assignation either of scalar
values to individual elements, respectively fields, or one could think of pre
scribing the assignation of "whole" vector, respectively "whole" record values
to these variables. By a whole vector value we mean a value which stands for
a vector value, i.e., which contains several, successive, vector element values,
and similarly for whole record values.

Question: Discuss the pros and cons, the advantages and/or disadvantages
of allowing only scalar values as being expressions, versus allowing also struc
tured values to be expressions.

Exercise 6.5 "Flat" vs. Structured Locations (Preamble for STIL). Back
ground: In certain programming languages, ALGOL 60 to wit, references
passed say to procedure calls, could only be to scalar values. That is, if a
reference was needed to elements of an array, they may have to be passed,
array element by array element! In other programming languages, for ex
ample ALGOL 68 (or even PL/I), references could be passed to procedure
invocation, of arbitrary "slices" of an array: a column, a row, or a submatrix
(several but not all, but ordered, row elements of several, but not all, but
ordered, column elements) of a matrix. (And similarly for arrays of arbitrary
higher dimension.)

Question: Examine current programming languages with respect to their
offering reference values, i.e., values that are references to (pointers to, loca
tions of) structured values. Include such languages as SML [168,359], C [263],
C++ [492], C# [207,346,347,401] and Java [8,15,146,301,465,513] in your
analysis.

Discuss the pragmatic reasons for thus allowing only flat or for allowing
structured location values, i.e., values which refer to arbitrary, well-formed
substructure of structured values.

7

Semantics

• The prerequisites for studying this chapter are that you are well-versed
in Vol. l's abstraction principles and techniques, and in Vol. 2, Chap. 3's
treatment of denotational and computational semantics.

• The aim is to present a wider variety of kinds of semantics models than
so far afforded.

• The objective is to bring the reader further along the road to choose
pleasing and appropriate semantics modelling types — as well as to en
courage the reader to more seriously study more specialised textbooks on
mathematical semantics.

• The treatment is systematic and semiformal.

This chapter presents a variety of forms of semantics: denotational, macroexpansion,
computational, attribute grammar, and, somewhat more lightly, axiomatic semantics.
The chapter provides only a brief overview. Chapter 3 covered two of these main
approaches to semantics: denotational and computation semantics. Chapters 16-19
cover several of these forms of semantics.

7.1 Introduction

Characterisation. Semantics is the study and knowledge (including speci
fication) of meaning in language [84].

By formal semantics we understand a semantics, M, such that we can
reason about properties of what the syntax describes.

type
Syntax, Semantics

value
M: Syntax —>• Semantics

152 7 Semantics

The challenge of formal semantics is to describe precisely the syntactic and
the semantics types as well as the meaning function which maps elements of
the former into elements of the latter. •

By syntax (as referred to above) we understand a set of abstract types
(i.e., sorts) or concrete types of syntactic constructs (statements, expressions,
clauses, commands, etc.). By semantics (as referred to above) we also under
stand a set of abstract (i.e., sorts) or concrete types of meanings.

If, for example, the syntax is of a notational system, i.e., a language (speci
fication, programming or otherwise), then the meaning of the sentential forms,
when denotationally expressed, are usually functions over certain types.

The structure of these types may have been given a syntax, and the mean
ing of these types are now that of the meaning of the language of description,
not the language being described.

7.2 Concrete Semantics

Characterisation. By concrete semantics we understand an "everyday de
scription" of meaning which is "heavily mixed up" with motivational, i.e.,
pragmatic, utilitarian and other "utterings", possibly including requirements
to computing support for the "thing" that the syntax and semantics is
"about". •

7.3 "Abstract" Semantics

There are several forms of abstract semantics. They are not entirely distinct,
that is, there are overlaps:

• denotational semantics
• macro-expansion semantics
• operational semantics
• attribute grammar semantics
• axiomatic semantics
• algebraic semantics

The variety given here is not always mathematically (i.e., metasemantically)
justifiable. Sometimes it is historically determined (i.e., pragmatically given).

7.4 Preliminary Semantics Concepts

Before we more systematically cover some of the above-listed semantic forms
we need to cover some common notions.

7.4 Preliminary Semantics Concepts 153

7.4.1 Syntactic and Semantic Types

By a semantics elaborator or an interpreter or an evaluator, we understand
the main functions which apply to syntactic values and yield semantic values.

Character isa t ion. By a syntactic type we understand a set of (concrete or
abstract) syntactic values. So, sooner or later, the specifier has to write down
— has to construct, has to decide upon — an abstract, and later a concrete,
syntax (respectively grammar) for the system or language in question:

type Syn

By Syn we shall in the following understand the syntactic types of interest. •

This chapter, however, is about what constitutes semantic types and on how
to decide upon them.

Character isa t ion. By a semantic type we understand a set of (concrete or
abstract) semantics values: meanings of syntactic values. So, sooner or later,
the specifier has to write down — has to construct or to decide upon —
abstract, and later concrete, semantic types for the system or language in
question:

type Sem, Val

By Sem we shall in the following understand the semantic types of interest.
By Val we shall mean some semantic type, colloquially thought of as values
of expressions. •

In preparation for the next sections, we remind the reader of the notions of
configurations, contexts and states, as introduced in Chap. 4.

7.4.2 Contexts

We refer to Sect. 4.4.1 for systematic coverage and a characterisation of the
concept of context.

Character isa t ion. By the context of a system, or of the evaluation of a
program, or of a specification in some programming, respectively some spec
ification language, we usually understand an aggregation, a structuring, of
those components whose values remain fixed, i.e., can be considered constant
over some "sizable" ("macro") time interval, or over the sequence of many
events or actions (operations), or over the evaluation of a sizable textual,
so-called block part, of a program or of a specification. •

154 7 Semantics

7.4.3 S t a t e s

We refer to Sect. 4.4.1 for systematic coverage and a characterisation of the
concept of state.

Character i sa t ion . By the s ta te of a system, or of the evaluation of a pro
gram, or of a specification in some programming, respectively some specifica
tion language, we usually understand an aggregation, a structuring, of those
components whose values changeover time, or over the sequence of one or
more events, or as the result of actions (operations), or over the evaluation
of any textual part of a program or a specification — no mat ter how close in
time or how many such events and actions there are. •

7 .4.4 Conf igurat ions

We refer to Sect. 4.4.1 for systematic coverage and a characterisation of the
concept of context.

Character i sa t ion . By a configuration we mean a pair of contexts and states
tha t are appropriate for a consistent and complete elaboration of a system or
a syntactic text. •

7.4.5 In terpre ta t ion , Eva luat ion and E labora t ion

For pragmatic reasons it is convenient to make the following distinctions.

Character i sa t ion . By interpretation we, more narrowly, understand a pro
cess, a mathematical or a mechanical computation, which yields state results.
So, sooner or later, the specifier has to write down — has to construct, has to
decide upon — whether the semantics of the system or language in question
calls for interpreter functions to be defined:

value I: Syn —>• Context —> State —> State

Thus we shall typically interpret s tatements. •

This chapter presents a number of principles and techniques for deciding upon
the issue of interpreter functions and for their definition. We say tha t the
meaning of the syntactic construct, usually what we would call a statement,
solely represents a side-effect (on the state) .

Character i sa t ion . By evaluation we, more narrowly, understand a process,
a mathematical or a mechanical computation, which does not yield state, but
some other semantic value results. So, sooner or later, the specifier has to write
down — has to construct, has to decide upon — whether the semantics of the
system or language in question calls for evaluator functions to be defined:

7.5 Denotational Semantics 155

value V: Syn —• Context —> State —> Val

Thus we shall typically evaluate pure, no side-effect expressions. •

This chapter presents a number of principles and techniques for deciding upon
the issue of evaluator functions and for their definition. We say that the
meaning of the syntactic construct, usually what we would call an expression,
expresses no side-effect (on the state).

Characterisation. By elaboration we, more narrowly, understand a process,
a mathematical or a mechanical computation, which yields both state and
some other semantic value results. So, sooner or later, the specifier has to
write down — has to construct, has to decide upon — whether the semantics
of the system or language in question calls for elaborator functions to be
defined:

value E: Syn ->• Context ->• State ->• State x Val

Thus we shall typically elaborate side-effect expressions or value-yielding
statements. •

This chapter presents a number of principles and techniques for deciding upon
the issue of elaborator functions and for their definition. We say that the
meaning of the syntactic construct, usually what we would call a clause (or
state-changing expression), expresses both a side-effect (on the state) and a
value result.

Summary: Collectively we refer to I, V, E as M (for Meaning). Let S
stand for the state type. The three kinds of semantic functions can now be
summarised:

• Interpretation: / : Syn —>• Context —>• S —>• S
• Evaluation: V : Syn ->• Context ->• S ->• VAL
• Elaboration: E : Syn ->• Context -t S ->• S x VAL

7.5 Denotational Semantics

In Sect. 3.2 we covered the concept of denotational semantics, and we did so
reasonably thoroughly. Suffice it here, therefore, to summarise.

Characterisation. By denotational semantics we understand a semantics
which to syntactic constructs associate mathematical functions and whose
formulation (i.e., composition) satisfies the homomorphism principle. •

Next, we illustrate simple and composite generic examples of the denotational
principle.

156 7 Semantics

7.5.1 S i m p l e Case

The meaning of a simple syntactic construct is a simple, explicitly presented
mathematical function.

t y p e Syn_a, A, B, Sem = A ->• B
value M: Syn_a —> Sem

7.5.2 C o m p o s i t e Case

The meaning, M, of a composite construct is a (i.e., the homomorphic) func
tion, F, of the meaning, M, of each of the immediate components of the
composite construct.

t y p e
Syn_ac = = atomic(a:Syn_a) | composite(c:Syn_c)
Syn_c = Syn_ac x Syn_ac x ... x Syn_ac

value
F: Sem x Sem x ... x Sem —• Sem
M: Syn_ac ->• Sem
M(sy) =

case sy of
atomic(sy') ->• M(sy'),
composite(syl,sy2,...,syn) ->• F(M(syl),M(sy2), . . . ,M(syn))

e n d

Sometimes:

value
F(sel,se2,...,sen) = (M(sn))(. . .(M(s2)(M(sl))). . .)

The above expresses the composition of functions.
A denotational semantics thus typically assigns to a program of a pro

gramming language a function from input arguments and (begin or s t a r t)
states to output results and (end or stop) states. These inputs and beg in
states can be thought of as those presented during elaboration of the program,
respectively those in which the elaboration s t a r t s .

t y p e
Program, Input, Output , State, ...

value
M: Program —>• Input —> State —> State x Output

7.6 Macro-expansion Semantics 157

7.6 Macro-expansion Semantics

We classify macro-expansion semantics as an operational, tha t is, a computa
tional semantics.

In Sect. 3.3 we covered the notion of computational semantics — a form
of operational semantics. Here we shall cover another form of operational
semantics: namely tha t of considering a semantics definition as prescribing
some sort of rewriting. In Sect. 7.7 we review the computational semantics of
Sect. 3.3.

7.6.1 R e w r i t i n g

We need to informally define some notions of rewriting a specification into an
other specification. In a specification we have a number of function definitions,
typically of the form:

value
f: A x B x ... x C -> D x E x ... x F
f(a,b,...,c) = £(a,b,...,c,f,g,...,h)
g: X - • Y, ...
h: P -> Q

Given a particular invocation of/ , say f(ea, e^, . . . , e c) , we can now rewrite tha t
"call" into something like: S(ea,eb,...,ec,f,g,...,h). Here we must take into
consideration the notions of free and bound variables, collision and confusion,
substitution, a-renaming and /^-reduction, for such subsidiary invocations as
might be expressed by the / s , gs, . . . , and hs in the function / definition
body S(a,b, ...,c, f,g, ...,h). In other words, the invocation f(ea, e^, . . . ,ec) is
rewritten into S(ea, e^,..., ec , / , g,..., h), and again into . . . , and so forth.

As the following short "symbol manipulation development" shows:

1. let f(x) = (... f ...) in f(a) e n d
2. let f = A g.Ax.(... g ...)(f) in f(a) e n d
3. let f = F(f) in f(a) e n d w h e r e F = A g.Ax.(... g ...)
4. let f = Y F in f(a) e n d
5. Law: Y F = F(YF)

one can eliminate named references to a recursively defined function by replac
ing the function name by its fix point. The operator Y is an example of such
a fix point-taking operator. Any function f which satisfies the equation f=F(f)
is said to be a fix point of F. Y "produces" one such fix point. There are many
such fix points, but we refer the reader to more foundational language seman
tics texts for a proper t reatment of this. Any of [93,158,432,448,499,533] will
do. We treated the notion of fix points in Vol. 1, Chap. 7, Sect. 7.8.

158 7 Semantics

7.6.2 M a c r o - e x p a n s i o n

Character i sa t ion . By a macro-expansion semantics we understand a se
mantics definition in which the meaning of some possibly recursively defined
syntactical structure is expressed in terms of a possibly fix point-oriented
rewriting of the semantic functions into expressions of the specification lan
guage void of any reference to semantic function definitions.

t y p e
Program, ..., R S L _ T e x t

value
M: Program -> R S L _ T e x t

Thus a macro-expansion semantics is like a compiling from syntactic values
into RSL text. •

Macro-expansion semantics is about substitution of "equals for equals", tex-
twise. Let there be three semantic function definitions:

f(a) = (^(a)...g(g/(a))...^(a))
g(b) = (&(b)...h(ftfl(b))...0m(b))
h(c) = n(c)

Here the curly capital letter "labelled" expressions, J-~i(a), J-~j(a), Gf(a), Ge(a),
Gm(a), T-Lg{b) and T~L{c), stand for arbitrary expressions with possible free
variables a, b and c, respectively, and in which there are no references to any
defined semantic functions like / , g and h.

The function invocation:

f(e)

macro-expands, ~>, stepwise:

^ (e) . . . g (a / (e)) . . . ^ (e)
^Fi(e)...(ge(gf(e))..Mng(Gf(e)))...gm(gf(e)))...Fj(e)
^Fi(e)...(ge(gf(e))...HWg(gf(e)))...gm(gf(e)))...Fj(e)

We refer to the macro-expansion semantics example, Example 7.2.
It is the ability to read any function definition as a macro-expansion defini

tion tha t eventually allows us to "convert" programming language semantics
definitions into compiling algorithm specifications, tha t is, definitions which
specify which target language text a compiler should generate for any given
source language text. For now we can read our semantics definitions as com
piling from source languages to RSL text.

7.6.3 Induct ive R e w r i t i n g s

Two kinds of semantic function recursion are possible: Static and dynamic
inductive semantics.

7.6 Macro-expansion Semantics 159

Static Inductive Semantics

Static inductive semantics derives from the recursive structure of the definition
of the syntactic construct. Although a syntax description usually employs re
cursion to define the syntactic structures these latter are usually finite. There
fore the semantic function recursion will usually terminate due to finiteness
of the argument. The recursive descent will finally "reach" atomic elements.

Example 7.1 Maximal Depth: Although hardly an example of a typical
semantics, let us express the maximal depth of finite trees:

type
Root, Branch, Leaf
Tree —— tree (root: Root subtrees(Branch »# SubTree))
SubTree = = leaf(lf:Leaf) | Tree

value
MaxDepth: Tree -» Nat
MaxDepth(tree(r,sts)) = max md(tree(r,sts))
md:Tree —J- Nat-set
md(tree(r,sts)) =

{ n | n:Nat,st: SubTree • st £ rng sts A
n = case st of: leaf() —> 1, _ -f l+MaxDepth(st) end }

where max takes the largest number of a set of natural numbers. •

Dynamic Inductive Semantics

The dynamic inductive semantics derives from the repeated computations
designated by the syntactic constructs. Thus it does not refer to a possible
recursive definition of a syntactic construct whose semantics is being defined,
but to a recursive invocation of the semantic function.

Example 7.2 While Loop: A macro-expansion semantics of a while loop is
a reasonable example at this stage:

type
Expression, Variable
Statement = Assign | While | Compound | ...
Assign = = mkAssign(v:Variable,e:Expression)
While =— mkWhile(e:Expression,s:Statement)
Compound = = mkComp(sl:Statement,s2:Statement)

ENV = Variable ^ Location
S = Location -^ Value

160 7 Semantics

The above defines a "classical" fragment of an imperative language, syntac
tically with variables, assignments, while loops, compound statements and
expressions; and semantically with environments, i.e., contexts (ENV) that
bind scoped variables to their storage locations, and storages, i.e., states (£)
that bind locations to values.

The following definition, although also "appearing" as a denotational se
mantics, is to be read as a macro-expansion semantics — this will be explained
shortly:

value
M: (Expression|Statement) -» ENV -» £ -» RSL_text
M(mkAssign(v,e))(p)((r) = a f [p(v) H* M(e)(p)(a)]

M(mkWhile(e,s))(p)(cr) =
if M(e)(p)(a) then M(mkComp(s,mkWhile(e,s)))(p)(<r) else skip end

M(mkComp(sl,s2))(p)(o-) =
let a' = M(sl){p)(a) in M(s2)(p)(a') end

The macro-expansion semantics for the while statement thus amounts to the
following identity:

while e do s end = if e then (s;while e do s end) else skip end

And so on. The above macro-expansion semantics definition of M leads, after
a few substitutions, to the following intermediate text:

ifM{e)(p){a)
then

let a' = M(s) (p)(tj) in
ifM(e)(p)(a')

then
let a" = M(s)(/?)(</) in
ifM(e)0>)(<r")

then let a'" = M(s)(p)0") in ... end
else skip end end

else skip end end
else skip end

where the ellipses, . . . , stand for an infinite unfolding of the
M(mkWhile(e,s))(p)(<r) body.

If we also expand M as applied to the eventual assignment statements and
to the finite expressions, then we end up with an infinite RSL text without any
reference to, i.e., invocation of, M.

We can avoid that infinite expansion if we allow ourselves to instead either
write the identities illustrated above and right below, or if we instead insert
the fix point operator Y. That is, either:

7.7 Operational and Computational Semantics 161

while e do s end = if e then (s;while e do s end) else skip end

or:

YAw.Ae.As.if e then (s;w(e,s)) else skip end

The line above is an expression and can be inserted anywhere a while loop
would otherwise appear.

7.6.4 Fix Point Evaluation

The fix point operator Y, as mentioned earlier (Sect. 7.6.1, and in Vol. 1,
Chap. 7, Sect. 7.8), satisfies:

YF = F(YF)
/* example */
F: Aw.Ae.As.if e then (s;w(e,s)) else skip end

Y(Aw.Ae.As.if e then (s;w(e,s)) else skip end)

(Aw.Ae.As.if e then (s;w(e,s)) else skip end)
(Y(Aw.Ae.As.if e then (s;w(e,s)) else skip end))

Ae.As.if e
then (s;(Y(Aw.Ae.As.if e then (s;w(e,s)) else skip end))(e,s))
else skip end

And so on, ad infinitum! •

7.7 Operational and Computational Semantics

In Sect. 3.3 we covered the concept of computational (i.e., operational) se
mantics, and done so reasonably thoroughly. Suffice it here, therefore, to
summarise, but also to bring some additional variations on the theme of com
putational, cum operational semantics.

Characterisation. By operational or, which we will take as the same, com
putational semantics, we understand a meaning that is expressed in terms
of the computation, that is, the "workings" of a possibly recursive machine
which elaborates the meaning. •

The operational semantics is thus often expressed in terms of a sequence of
steps of transitions from one machine state to another. The machine state is
itself oftentimes rather concretely presented.

162 7 Semantics

An operational semantics thus typically assigns to a program of a pro
gramming language a sequence (a trace) of state-to-state transitions — where
the state also contains the input and the output "media" on which input
arguments and result values are placed.

t y p e
Program, Input, Output , ...
State = Input x S x Output

value
M: Program ->• S ta te"

These inputs and begin states can be thought of as those presented during
elaboration of the program, respectively those in which the elaboration starts .

7.7.1 Stack S e m a n t i c s

We already covered the notion of stack semantics in Example 3.4 (Sect. 3.3.3).

Character i sa t ion . By operational stack semantics we understand an oper
ational semantics of a recursively defined syntax which is expressed without
referring to a machine tha t can "recurse", i.e., a machine tha t is not allowed to
recursively invoke the interpreter function. Recursion is resolved by suitable
push and pop operations on one or more stacks. •

7.7.2 A t t r i b u t e G r a m m a r S e m a n t i c s

Character i sa t ion . By an attribute grammar semantics we understand an
operational semantics description which is expressed in terms of a state con
sisting of a (usually large) number of semantic category variables, one set for
each syntactic category, and one instantiation of each such set for each syntac
tic category (i.e., nonterminal) labelled node in a parse tree of the language
defined by the syntax. •

More specifically, an a t t r ibute grammar can be expressed as a set of annotated
syntactic concrete type (i.e., rule) definitions.

Each syntactic rule has (i) a left-hand side (lhs) syntactic category (non
terminal) name (CJ), (ii) a right-hand side possibly empty (n = 0) list of
syntactic category (i.e., nonterminal) names (c^ , C j 2 , . . . ,Cjn) and syntactic
constants (i.e., literals, omitted below),

< C i > ::= <Ch> ... < C i 2 > <Gin>

and (iii) an unordered set of simple (/) assignments to a set of semantic
category typed variables:

7.7 Operational and Computational Semantics 163

(iv) The variables are associated with the lhs or the rhs cs: a,b,...,c =
0 , l , . . . , n .

We give two very simple examples. They both concern the evaluation of
floating point numerals into real numbers. Thus we must establish a syntax
for the numerals, a notion of parse trees and an abstract specification of the
problem. From this we "derive" the sets of attributed variables and the sets
of assignment statements to be associated with nodes of such trees.

Example 7.3 Synthesised Evaluation:

type
D = = mi|en|to|tr|fi|fe|se|sy|ot|ni
P = = p
R = N x P x F
N = = s(d:D) | c(n:N,d:D)
F = = s(d:D) | c(d:D,f:F)

value
fp: R -*• Real
no: N -> Nat
fr: F -> Real
ci: D -> Nat
fp(n„f) = no(n) + fr(f)
no(n) = case n of s(d)-»ci(d), c(n',d)->10*no(n')+ci(d) end
fr(f) = case f of s(d)-»ci(d)/10, c(d,f)->(ci(d)+fr(f))/10 end
ci(d) = case d of nu—M),en—•l,to—»2,...,ni—>-9 end

variable
vN type Nat, vF type Real, vD type Nat

A corresponding synthesised attribute grammar:

<D>
<D>

<D>
<R>
<N>
<N>r
<F>
<F>r

:= 0
:= 1

:= 9
:= <N>
:= <D>
:= <N>s
:= <D>
:= <D>

. <F>

<D>

<F>s

vD
vD

vD
vR
vN
vNr
vF
vFr

= ci(0)
= ci(l)

= ci(9)
= vN + vF
= vD
= 10*vNs + vD
= vD/10
= (vFs + vD)/10

The above attribute grammar "works", i.e., specifies evaluation, from the leaf
nodes up, assignments are made at leaf nodes, and value computation proceeds
from the leaf nodes towards the root node.

164 7 Semantics

The next attribute grammar — shown after a conventional definition —
"works", i.e., specifies evaluation, two ways: from the root node down, and
from leaf nodes up. Assignments made at leaf nodes and value computation
based on these proceed from the leaf nodes towards the root node. But as
signments made at the root node propagate towards the leaves — where they
merge with "opposite direction" evaluations.

Example 7.4 Synthesised and Inherited Evaluation:

type
D = = nu|en|to|tr[fi|fe|se|sy|ot|ni
R = N x N
N = = s(d:D) | e(n:N,d:D)

value
fp: R -> Real, val: N -» Int -> Nat
fp(n,f) = val(n)(0) + val(f)(-l)
val(n)(e) =

case n of
s(d) -> ci(d)*(10te),
c(n',d) -» val(n')(if e>0 then e+1 else e - 1 end) + ci(d)*(10te)

end

/ argument values "propagate" from the root towards leaves.

<D> ::= d

d=Q,l,...,9
<R> ::= <N>n . <N>f

<N> ::= <D>

<M>r ::= <M>s <D>

vD := ci(d)

vR

eNn
vN
vNr
eHs

= vNn + vNf,
= +1, eNf := -1
= vD*(10**eN)
= vNs + vD
= eNr + if eNr>0

then -1 else +1 end

Some characterisations and comments are in order:

• Synthesised attributes: An assignment rule associated with a node Co,
and of the form:

vu =/K-c
,Vtk), a,...,ui some of 1,.

that is, where a root attribute, i.e., a variable of type t{ is given a value
that is a function / of the value of variables associated with immediate
successor nodes va,...,vu, defines vti to be a synthesised attribute: That
is, its value is computed "bottom up": from subtree attributes to the root
attributes.

7.7 Operational and Computational Semantics 165

• Inherited attributes: An assignment rule associated with a node cp (for
ft in 1 , . . . , n), and of the form:

that is, where a subtree attribute, i.e., a variable of type t{ is given a value
that is a function f of the value of a root attribute v*. , defines v+- to be an
inherited attribute. Its value is computed "top up": from root attributes
towards subtree attributes.

• Composite attributes: An assignment rule associated with a node c^
(for P in 1 , . . . , n), and of the form:

VUC
 :=f(vtjca,---,vtkcui), ce,...,u some of 0 , . . . , n

that is, where a subtree attribute, i.e., a variable of type t{ is given a value
that is a function f of the value of both root attributes v*. and imme-
diate successor nodes va,... ,vu, defines vt{ to be a composite attribute.
Its value is computed "top down and bottom up": "across" subtree at
tributes towards subtree attributes. The notion of composite attributes
is, strictly speaking, not necessary since one can express the same by a
suitable introduction of additional attributes and both synthesised and
inherited assignments.

• Circular attributes: The totality of parse tree node attribute assign
ments may, erroneously, define circular assignments, that is, assignments
to an attribute which mutually depend on one another through the "path"
of other asssignments. We let Fig. 7.1 informally define what we mean by
path, etc.

• Theory: The last anomaly points to the need for a proper theory of at
tribute grammars. Such a theory exists; see [128,262,270,272,304,328,376,
532,541].

A Symbolic Attributed Parse Tree Example

Figure 7.1 shows a symbolic example of a fragment of a parse tree.
The parse tree is designated by the straight lines connecting the five fat

bullets (•). The rectangular boxes designate assignment statements. We have
shown three at each node but mean to indicate an arbitrary number of these,
hence the "two+... +one" rectangles. The ellipses, . . . , between the "two" and
the "one" indicate this "could be any finite number (even zero, one, two or
just three)"! It is symbolic since we do not make the box assignments exactly
precise. Dashed arrows designate sources of input values for the computation
of target attribute values. The text at the bottom of the figure lists which
variables are synthesised, inherited, composite and circular.

166 7 Semantics

»1
| | v 2

cA A ^ -̂ ^ | v3

^ . >; . . ! » I'14

c C * " ' ! I'15

»9 ! " . - ! - -

Synthesised attributes: v3, v6,... Inherited attributes: v8, v13,...

Composite attributes: v7, v11, . . . Circular attributes: {V3,v4,v13,v14,v15},...

Fig. 7 .1 . A symbolic attributed parse tree example

7.8 Proof Rule Semantics

Character isa t ion. By an axiomatic or a proof rule semantics we understand
a set of proof rules, one for each language clause. •

We shall not exemplify the notion of proof rule semantics at this place in these
volumes. Instead we will conclude the string of examples of storage models by
presenting one where assignment is expressed as an axiom. See Example 7.5.

The example presupposes material presented in subsequent chapters.

Example 7.5 Axiomatic Specification of Storage: Assignment to Variables:
In Examples 8.17 and 8.19 we will illustrate (three) syntactical models of

variable name, value, location and storage structures. In the present example
we illustrate a model of assignment in the storage model of Example 8.17 of
either scalar or composite values to similar locations.

The structured storage value and location model we wish to build shall
satisfy: The contents of the Vth component of a (record or vector) structured
location is the i 'th component of the structured (corresponding record, re
spectively vector) value for that storage location.

type
VAL = ScaVAL | ComVAL
ScaVAL = = NumVAL(i:Int) | TruVAL(b:Bool)
ComVAL = = SeqVAL(xl:Int*) | RecVAL(rv:(Nm ^ VAL))
L
LOC = ScaLOC | ComLOC
ScaLOC = = NumLOC(i:L) | TruLOC(b:L)
ComLOC = = SeqLOC(xl:LOC*) | RecLOC(rv:(Nm ^ L O C))
ENV = V ^ LOC
STG = LOC T# VAL

7.8 Proof Rule Semantics 167

It proves useful to define a number of auxiliary predicates and observer func
tions: SubLOCs: All (possibly nested) sublocations of a location.

value
SubLOCs: LOC -> LOC-set
SubLOCs(l) =

(case 1 of
RecLOC(rm) ->• rng rm U U {SubLOCs(l')|l':LOC«l' G rng rm}
SeqLOC(sl) -> eleras si U U {SubLOCs(l')|l':L001' e eleras rm}
_ --)• {} end) U {1}

IndLOCs: independence of locations, that is, there are two common subloca
tions:

IndLOCs: LOC x LOC ->• Bool
IndLOCs(l,l') = SubLOCs(l) n SubLOCs(l') = {}

is Dense: A vector index set is dense:

isDense: Int-set —>• Bool
isDense(xs) = xs = {rninxs .. rnaxxs}

Well-formedness of locations and values was already defined — except that
we "glossed" over the independence of locations! We show only the wf_LOC
case:

wf_LOC: LOC -> Bool
wf_LOC(l) =

case 1 of
RecLOC(rm) -> V l':LOC«l' € rng rm =>- wf_LOC(l'),
SeqLOC(sl)

->• (isDense(inds si)
A V l',l":LOC-l',l"isin eleras si =*

wf_LOC(l') A (l ' / l " =* IndLOCs(l',l")) A
x_type(l')=x_type(l"))

-> true end

Well-formedness of storage:

wf_STG: STG - • Bool
wf_STG(stg) =

V l:LOC«l € dom stg =4>
wf_LOC(l) A wf_VAL(stg(l))
A c_type(l) = c_type(stg(l))
A V l ' :L0Ol' € dom stg A 1~-1' => IndLOCs(U')

Unfolding a well-formed structured storage into a storage also of all subloca
tions can be defined:

168 7 Semantics

Unfold: STG -> STG
Unfold(stg) =

stgU
merge { Unfold([b-»v]) | 3 l':LOC •

1' G d o m stg =^ 1 £ ScaLOC A
case l' of

RecLOC(rm) ->•
3 n:Nm«nm € dora rm =>• (l=l'(n)) A (v=(stg(l'))(n)),

SeqLOC(sl) ->•
3 i:Int«i e eleras si => (l=l'(i)) A (v=(stg(l'))(i)) end }

merge: STG-set 4 STG
merge (stgs) =

[IH-̂ V I l:L0C,v:VAL.3 stg:STG«stg € stgs A stg(l)=v]
pre : V s,s':STG«s,s' € stgs=^dom s' D dom s={}

Finally, we are ready to bring in the three major storage functions. Please
recall that a location passed to storage can be any sublocation:

Allocate "fresh", unused, independent storage:

Allocate: Kind -> STG -»• STG x LOG
Allocate(k)(s) =

let 1-.L0C • 1£ dora Unfold(s)Awf_LOC(l)Ax_type(l)=m
in s U [1 H> Undef(k)] end

We leave Undef undefined: It yields an arbitrary initial value of the right kind.
Take Contents of storage location:

Contents: LOG ->• STG 4 VAL
Contents(l)(s) = (Unfold(s))(l)

pre 1 € dom Unfold(s)

Assign value to location in storage:

Assign: LOG x VAL -> STG H> STG
Assign(l,v)(s) as s'

p re wf_LOC(l)Awf_VAL(v) A
1 € dom Unfold(s) A x_type(l)=x_type(v)

post wf_STG(s')A
let us=Unfold(s), us'=Unfold(s') in
dom us = dom us' A es'(l)=v A
V l ' :L0Ol' £ dom us => (IndLOCs(lJ') => us(l')=us'(l')) end

7.9 Discussion 169

7.9 Discussion

7.9.1 Genera l

Syntactical structures beg (i.e., "cry out for") a semantic explanation. Seman
tics is what we mean in a phenomenological sense. Semantics is expressed in
terms of three things: the syntactical "things" to be explained, the seman
tical structures in terms of which to explain it, and the functions (or rela
tions) mapping the former into the latter. Whereas syntax deals with inert
structures, text strings or mathematical compounds, semantics is expressed in
terms of functions or relations between such, tha t is, mappings from syntac
tical structures to semantics structures. The choice of technique for, or style
of, semantical explication is based on pragmatic considerations.

7.9.2 Pr inc ip le s , Techniques and Tools

We summarise:

Princ ip le s . No syntax without a semantics, tha t is, semantics first, then
syntactics. •

Pr inc ip le s . Fit the form of semantics to the problem at hand. •

Such forms are listed next:

Techniques . There are many forms and techniques involved when developing
semantics: techniques related to denotational semantics, techniques related to
computational semantics, techniques related to axiomatic semantics, etc. •

Tools . There are many tools with which to express, i.e., to define syntax. RSL
is restricted to not handling reflexive, i.e., recursively defined functional types,
but is otherwise very useful. When faced with reflexive functional types then
use an appropriate subset of RSL, one tha t syntactically is similar to the deno
tational semantics specification languages used in either of the books referred
to in Sect. 7.10. Attr ibute grammars, as will also be illustrated in Sects. 16.9-
16.10, are useful as a means for expressing steps toward automatable syntax
checkers and code generators. When dealing with concurrency, e.g., parallel
programming languages, you may have to use the "surrogate" structural op
erational semantics style of RSL introduced in Chap. 19. For other semantics
situations use simple sorts and axioms. •

170 7 Semantics

7.10 Bibliographical Notes

There are many excellent textbooks on semantics. We list these explicitly:

[93] J. de Bakker: Control Flow Semantics (The MIT Press, Cambridge,
Mass., USA, 1995)

[158] C. Gunther: Semantics of Programming Languages (The MIT Press,
Cambridge, Mass., USA, 1992)

[370] P.D. Mosses: Action Semantics (Cambridge University Press: Tracts in
Theoretical Computer Science, 1992)

[432] J. Reynolds: The Semantics of Programming Languages (Cambridge
University Press, 1999)

[448] D.A. Schmidt: Denotational Semantics: a Methodology for Language
Development (Allyn & Bacon, 1986)

[499] R. Tennent: The Semantics of Programming Languages (Prentice Hall,
1997)

[533] G. Winskel: The Formal Semantics of Programming Languages (The
MIT Press, 1993)

7.11 Exercises

Exerc i se 7.1 Macro-expanding a X-Calculus Semantics. We refer to Vol.1,
Sect. 20.2, where we presented and explained A-expressions for a number of
imperative language constructs:
. A-Expressions for Imperative Language Constructs .

1. Declarations: variable v:Type := expression

t y p e
LOC, VAL
p:ENV = V yrt LOC
CT:STG = LOC Tjt VAL

value

1: RSL_Text 4 ENV 4 STATE 4 STATE

I[variable v := e; tx t](p)(cr) =
let loc:LOC • loc ^ d o m c ,

v a l = V(e)(p)(<7) in
let a' = a U [loc H->- val] i n
2 [t x t] (p f [v i-> loc])(cr')
e n d e n d

2. Assignments: v := expr

J [v := e](p)(<r) = a f [p(v) ^ V(e)(a)]

7.11 Exercises 171

3. The skip s tatement:

I [s k i p] = \a:S • a

4. Statement sequences: s tm_l ;s tm_2; . . . ; s tm_n

2[s_l;s_2](p)(<7) = I (s _ 2) (I (s _ l) (a))

5. Conditional statement: if expr t h e n stm_c e lse stm_a e n d

I [i f e t h e n c_s e lse a_s end](p)(t r) =
let b = V[e](p)(cr) in
if b t h e n X[c_s](p)(cr) e lse X[&_s](p)(a)
e n d e n d

6. Variable expressions: v

V[v](p)(<7)=<7(p(l))

Give a A-calculus semantics to the following "program":

variable v := e; v := e ; if v t h e n skip e lse v := e end; v := e

Exerc i se 7.2 Macro-expanding a Tree-Depth Computation. We refer to Ex
ample 7.1. Given a tree:

r : tree(r,[bi-)-^,b'i-^tree(r',[/Si-)-tree(io,[])]),b"i-^tree(r",[])])

use the definitions of Example 7.1 to macro-expand MaxDepth(r).

We continue the line of exercises which is centred around the design of a family
of programming languages start ing with STIL.

The STIL, NaTaTIL, DiTIL, and DUaLTIL series of language design ex
ercises are: Exercises 6.3-6.5, 7.3-7.7, 8.7-8.8, 9.2-9.4, and 9.5.

Exerc i se 7.3 A Structured Type Concept (STIL). You are to formalise the
below narrative:

1. A type is either a scalar type, or is a compound type.
2. A scalar type is either an integer, or is a Boolean, or is a real, or is a

character.
3. A compound type is either a vector type or is a record type.

172 7 Semantics

4. A vector type consists of vector lower and upper index bounds and a
vector element type.

5. Vector lower and upper index bounds are pairs of integer numerals such
that the first is smaller than the second.

6. A record type is a set of pairs where each pair consists of a record field
identifier and a type — such that all record field identifiers of a record
type are distinct.

7. A record field identifier is a simple identifier.

Exercise 7.4 A Structured Value Concept: Types (STIL). Isomorphic with
the above type concept, you are to express, informally, as a narrative, and to
formalise a value concept, i.e., to narrate and formalise value types.

Exercise 7.5 A Structured Value Concept: Auxiliary Functions (STIL).
Some constraints are to be imposed on the structured values of Exercise 7.4:

1. A vector value must consist of at least two elements.
2. The element values of a vector value must all be of the same type.
3. The indexes of a vector value must form a dense set of integers: If i and

j are indexes of a vector value, then for all integers k properly between i
and j , k is also an index of the vector value.

4. A record value must consist of at least two fields, that is, each with their
(distinct) field identifier.

Narrate and formalise the functions necessary to express the above.

Exercise 7.6 A Structured Location Concept (STIL). Isomorphic with the
structured value concept of Exercise 7.5 you are to narrate and formalise a
concept of structured locations and the auxiliary and well-formedness func
tions that go with the type definitions.

Exercise 7.7 A Structured Storage Concept (STIL). We now wish to design
and document, i.e., narrate and formalise, a storage concept which allows for
locations to be mapped into values of the same type, including, and this is the
interesting bit, for structured locations to be mapped into structured values
of the same type. Please do so! That is, narrate and formalise. Please consider
the following issues: allocation of fresh, unused locations; assignment of values,
also to sublocations; reading of values, also from sublocations; and freeing only
of allocated locations.

8

Syntax

• The prerequisite for studying this chapter is that you are familiar with
Vol. l's abstract specification principles and techniques and the RSL type
concept.

• The aims are to review the concept of grammars, notably BNF grammars,
and their relation to the concept of abstract syntax, as found in, for ex
ample, RSL, to review and further cover the concept of abstract syntax,
both as axiomatically specifiable, and as specifiable using, for example, the
RSL abstract type concept, and to exemplify uses of the RSL concrete type
concept in defining both syntactic and semantic structures, i.e., types.

• The objective is to ensure that you become a real software engineering
professional, able to choose pleasing and appropriate type abstractions.

• The treatment is semiformal and systematic.

. Conventional View on Syntax .

Syntax, is, in a sense, what we see (and hear). Syntax looks "smart" or
it looks "ugly". A person's attention is captured by syntax. One often judges
a technological gadget by its appearance, but one seldom asks: "What really
is behind the syntax?"

General View on Syntax

Syntax is more than "appearance". It is also structure: structure of
meaning, structure of configurations, contexts, states and values — such as
we have treated these concepts in previous chapters.

174 8 Syntax

8.1 The Issues

8.1.1 Form and Content : S y n t a x and S e m a n t i c s

Often, in ordinary, everyday talk, one speaks of form and content. By form is
then meant: "What one sees". And by content one then means: "The signifi
cance, the meaning, of tha t which one sees".

Throughout these volumes we shall use types and type definitions to for
malise form and we shall use function definitions and /or axioms to formalise
content.

Usually syntax is taken to be a concept associated with sentential forms:
"the syntax of a programming language", or "the grammar of English" [241-
244]. The following delineation, as we usually find 'syntax' characterised,
reflects this one-sidedness:

Character i sa t ion . By syntax we understand (i) the ways in which words are
arranged (cf. Greek: syntaxis: arrangement) to show meaning (cf. semantics)
within and between sentences, and (ii) rules for forming syntactically correct
sentences [84]. •

Syntax is important . We need to communicate, between people, often via
machines, and (thus also) between people and machines. We need to ensure
tha t communication is effective, elegant and pleasing, and tha t what is written
and said also covers what is meant — and, preferably, just that !

Character i sa t ion . (I) By a formal syntax we understand a syntax such
tha t we can also analyse sentential structures wrt. their possibly ambiguous
composition. •

But not only sentential structures have syntax. Meaning structures, i.e., se
mantical values also have syntax. Hence we expand on the above definition:

Character i sa t ion . (II) By a formal syntax we understand (i) on one hand,
the ways in which (i.l) either words are, or (i.2) information (i.e., data) is,
arranged in order to show (i.l) meaning within and between sentences, (i.2)
respectively relations between information parts , (ii) By formal syntax we, on
the other hand, also understand rules for analysing syntactically correct (ii. 1)
sentences, respectively (ii.2) information (i.e., data) structures. •

By the above distinction between (i) and (ii) we mean to express the following:
(i) Any particular sentence (any one particular "piece" of information) has its
own, specific, i.e., instantiated syntax. And (ii) there are, in general, rules for
most likely infinite sets of 'particular sentences'. By the above distinction be
tween (i-ii.l) and (i-ii.2) we mean to express the following: (i-ii.l) There is the
syntax of sentences, usually ut tered or written (hence syntactic) "things", and
(i-ii.2) there are the syntax of information structures (i.e., semantic "things").

8.2 Sentential Versus Semantical Structures 175

8.1.2 Structure and Contents of This Chapter

The present chapter is structured — and covers material — as follows. First,
in Sect. 8.2 we delineate the two main occurrences of syntax: of grammati
cal sentence structures and of semantical information and data structures. In
Sect. 8.3 we give the first presentation of abstract syntax, in the sense of John
McCarthy's paper from 1962 [330]. In Sect. 8.5, we review the important area
of conventional grammars and their dual role as generators of sentential struc
tures, and as bases for constructing recognisers that parse sentential structures
into parse trees. In Sect. 8.4 we review conventional BNF grammars and parse
trees and their possible representation. The thread of this section is taken up
from a previous section, i.e., Sect. 8.5. In Sect. 8.7 we revert to the concept
of abstract syntaxes, but now as "embodied" in RSL. Finally, in Sect. 8.8 we
indicate how abstract data types might be implemented in ordinary program
ming languages' rather more constrained concrete structures, notably using
their conventional record types.

8.2 Sentential Versus Semantical Structures

. Syntax for Defining Syntax

Rules of syntax can be and are used to describe classes of sentential struc
tures as well as classes of meaning structures. We shall use the RSL type
facility, both as concerns abstract types, i.e., property-oriented sorts, and as
concerns concrete types, i.e., model-oriented type definitions, to state rules
of syntax.

8.2.1 General

The syntax is sentential, i.e., of text-oriented structures, if we speak of the
syntax of a language, including a specification or a programming language.
The syntax is of semantic structures if we speak of a system of denotational
or computational types.

Syntax of Sentential Structures

Characterisation. By sentential structures we mean sequences of characters
such as you are reading right now, and such as those of formulas, expressions
and statements of specification and programming languages. •

But the sentential structures could also be those of certain utterings, certain
simple and composite terms of a domain-specific professional language such
as the language of bank clerks, of air traffic controllers or of train dispatchers,
etc.

176 8 Syntax

S y n t a x of Semant i ca l S truc tures

Character i sa t ion . By semantical structures we mean atomic and composite
configuration, context and state structures as well as the values tha t relate to
(i.e., are parts of) these structures. •

The semantical structures are thus those of the da ta structures of RSL [130]
and J ava [8,15,146,301,465,513] and other specification or programming
languages, or of other mathematical systems: algebras, logics, etc. Semantical
structures are also those of "real world" phenomena: the (context and state)
structures of a financial service institution, or of air traffic or of a railway, etc.

8.2.2 E x a m p l e s of Sentent ia l S truc tures

Syntax is about form, not content, "appearance", not meaning. One can ex
press the number seven in many different ways:

7, seven, vii, mum, 00111,13

Tha t is, we can express it as an Arabic-like numeral, as a name spelled out
in letters, as a Roman numeral, as a sequence of seven "strokes", as a binary
numeral or as a radix four numeral.

There may be many syntactic instances signifying the "same thing" (as
here the number seven), but one may say tha t there is exactly one (instance
of the) number (that we name) seven!

E x a m p l e 8.1 A Syntax for Sequences of Real Numerals: A BHF-like1 syntax,
albeit in RSL, for real numerals, and for suitably bracketed sequences of real
numerals is given next:

t y p e
RealNum = Sign x ISeq x Point x FSeq
Sign = = nosign | minus [plus
Point = = point
ISeq = = nil() | mkI(s:ISeq,d:Digit)
FSeq = = nilQ | mkF(d:Digit,s:FSeq)
Digit = = zero | one | two | three | four | five | six [seven | eight | nine

SeqRealNum = Left x RealNum x SRN x Right
Left = = left, Right = = right
SRN = = void() | mkS(co:Co,rn:RealNum,sq:SRN)
Co = = comma

By a BNF grammar we mean a Backus-Naur Form context-free syntax. The
Glossary (Appendix B of Vol. 1) defines these and related terms.

8.2 Sentential Versus Semantical Structures 177

A real numeral, one that we would normally write, for example:

12.40,

would, according to the above syntax, be represented by:

((nosign,
mkl(mkl(nil(),one),two)),
point,
mkF(one,mkF(two,nil())))

A sequence of real numerals, one that we would normally write, for example:

< + 1 . 2 , - 3 . 4 >

would, according to the above syntax, be represented by:

(left,
((plus,mkl(nil(),one)),point,mkF(two,nil())),
mkS(comma,
((mi nus,mkl(nil(), three)), point, mkF(four,ni I ())),void()),
right)

Example 8.2 A Syntax for Sequences of Reals: The meaning of a real nu
meral is a real number, and the meaning of a syntactic juxtaposition of real
numerals is here taken to be a mathematical sequence of the meanings of real
numerals:

type
RN = Real
SR = RN*

Note the distinction: syntactic juxtapositions versus semantic sequences. •

Modelling Simple Sentential Structures

On one hand, we have simple sentential structures such as identifiers and lit
erals (such as numerals, truth value designators, etc.). On the other hand, we
have their atomic meanings, viz.: denotations of identifiers, numbers, truth
values, etc. The former may be elaborately structured, such as were real nu
merals; the latter were just atomic, semantic types.

Principles. When modelling names of values that are atomic, instead of
modelling the syntax (i.e., the type) of these names, we suggest to represent
such syntax directly by the type names of that which they denote. •

178 8 Syntax

T e c h n i q u e s . Thus, to spell the above principle out in clear, but fully generic
examples, we have tha t :

• the syntax, i.e., the type for natural number numerals is N a t ;
• the syntax, i.e., the type for integer number numerals is Int;
• the syntax, i.e., the type for t ru th value literals is Boo l ; and
• the syntax, i.e., the type for identifiers is some sort name, say Id, Nm, or

other.

This simplifies mat ters . •

There will still be a need for modelling literals in the form of enumerated
types.

E x a m p l e 8.3 Syntax of Definite Sets of Literals: We show some simple,
rather obvious examples:

t y p e
Dice = = one | two | three | four | five | six
WeekDay = = monday | tuesday | Wednesday | thursday | friday
Season = = winter | spring | summer | fall
ValveSetting = = on | off
JobSta tus = = not_scheduled | waiting | running | suspended

8.2 .3 E x a m p l e s of Semant i ca l S truc tures

We give the syntax of three kinds of example of semantical structures: pro
gramming language da ta structures (and their types), operating system re
source "state", and the state of a securities exchange, i.e., a stock exchange.

The reasons why we show these three examples are, they all illustrate
concepts of semantical structures, they are widely different, i.e., come from
"entirely" different domains, and they therefore suggest the width and depth
of the concept of "semantical syntaxes".

E x a m p l e 8.4 Variant Record Structures of a Programming Language: Let
us assume the following kind of da ta structures of some (possibly hypothet
ical) programming language: integers, Booleans, characters, simple records,
simple vectors and variant records. All but the last kind of da ta s tructure are
called simple da ta structures. A simple record is a finite set of two or more
uniquely named simple fields. A field name is a further unexplained quantity.
A simple field is a simple da t a structure. A simple vector is a finite sequence
of simple da t a structures. A variant record da t a s tructure is a finite set of
two or more uniquely named variant or simple fields. A field is either a sim
ple da ta structure, or is a conditional field. A conditional field is a pair: The

8.2 Sentential Versus Semantical Structures 179

first element of the pair is a simple enumerated value from a "small" set of
such enumeration values. Let us refer to this enumeration set as {a, 6, .. . ,c}.
The second element is a simple data structure of a kind indicated by the first
element enumeration value. If, for example, that first element is a, then the
second element is a simple data structure of one kind. If, instead that first
element is b, then the second element is a simple data structure of another
kind, etcetera.

To formalise the above, we distinguish between kind of data structure and
value of data structure. By 'kind' we mean the same, basically, as type. First,
we define the types of data structures:

type
Fn, Enum
Nat2 = {| i:Nat • i>2 |}
DST = SiDST | VaRT
SiDST = IntT | BoolT | CharT | SiRT | SiVT
IntT = = integer
BoolT = = boolean
ChaT = = character
SiRT = = mkSiRT(rt:(Fnwf SiDST))
SiVT = = mkSiVT(hi:Natl,tp:SiDST)
VaRT = = mkVaRT(vt:(Enum ^ (Fn ^ SiDST)))

Then we define the values of data structures:

type
DSV = SiDSV | VaRV
SiDSV = IntV | BoolV | CharV | SiRV | SiVV
IntV = = mkIntV(i:Int)
BoolV = = mkBoolV(b:Bool)
CharV = = mkCharV(c:Char)
SiRV = = mkSiRV(rv:(Fn ^ SiDSV))
SiVV = = mkSiVV(hi:Natl,vv:SiDSV*)
VaRV = = mkVaRV(e:Enum,rv:(Fn7rf. SiDSV))

Type checking is now simple. Let a pair of a type and a value be postulated
to match one another:

value
type_check: DST x DSV -> Bool
type_check(t,v) =

case (t,v) of
(integer,mkIntV(i)) —> true,
(boolean,mkBoolV(b)) —>• true,
(character,mkCharV(c)) —> true,
(mkSiRT(rt),mkSiRV(rv)) ->

180 8 Syntax

dom rt = dom rv A
V f:Fn»f 6 dom rt =£• type_check(rt(f),rv(f)),

(mkSiVT(hi,vt),mkSiVV(hi',vv)) ->
hi <hi A len vv < hi A
V v:SiDSV«v £ elems vv • type_check(vt,vv),

(mkVaRT(vt),mkVaRV(e,rv)) ->•
e G dom vt A type_check(vt(e),rv).

_ —>• false
end

Example 8.5 Directory Structures of an Operating System: Let an operating-
system keep track of user resources: user directories (and their files), standard
operating system facilities (compilers, database management systems, etc.),
machine resources (storage by category, input/output units, etc.), and so on.
Let, for each of the suitable categories of user, operating system and machine
resources, there be a suitably, i.e., hierarchically (i.e., tree) structured subdi
rectory. Let the overall machine state "within" which the operating system
operates be referred to as a.

Here is a proposal:

S = SR x STG x ...
Uid, Cid, Mid
SR = UR x OR x MR
UR = Uid T& U_DIR
OR = Cid ^ 0_RES
MR = Mid -nf M_RES
U_DIR = (Fn T# FILE) x (Dn -^ U_DIR)
FILE = Text | Exec | ...
Exec = S 4 S
0_RES = (Fn rrt FILE) x (Dn ^ 0_RES)
M_RES = ...

We leave it to the reader to decipher the above! •

Example 8.6 Context and State Structures of a Stock Exchange: Let a
securities instrument exchange, i.e., a stock exchange, at any one time, say
during trading hours, be said to be in a state that reflects buy and sell of
fers. A buy (or a sell) offer refers to (i) the name of the buyer (seller), (ii)
the name of a securities instrument (a stock, e.g., IBM), (iii) the quantity
(i.e., the number of stocks) to be bought (respectively sold), (iv) the highest
(respectively lowest) price beyond which it cannot be bought (sold), (v) the
allowable lowest (highest) price beyond which it can (still) be sold (bought),

8.3 The First Abstract Syntax, John McCarthy 181

(vi) the time period, in terms of a pair of times (minute, hour, day, month,
year), i.e., a time interval, during which the offer is (expected to be) valid.
Let the stock exchange state also reflect the actually transacted buy and sell
offers (i.e., of some past), as well as those buy and sell offers that might have
been withdrawn from being offered.

type
Sn, Nm, Hour, Min, Day, Month, Year
SEC = OFFERS x ACTED x WTHDRWN
OFFERS = BuyOffers x SellOffers
BuyOffers,SellOffers = Sn ^ OFR
OFR = Nm -» (Intvl ^ (Quant x Low x High))
Intvl = TimeDate x TimeDate
TimeDate = Hour x Min x Day x Month x Year
Quant = Nat
Low, High = Price
Price = Nat
ACTED = N m ^ (Sn ^ (TimeDate-^ Quant x Price x (Low x High)))
WTHDRWN = TimeDate ^ (BuyOffers x SellOffers)

We leave it to the reader to decipher the above and to ponder about possible
well-formedness constraints. Also, the above reflects just one of a possible
variety of formalisations. Which to choose depends on which kind of operations
one wishes to perform on a stock exchange: place a buy offer, place a sell offer,
effect a buy/sell transaction, withdraw an offer, etc. •

8.3 The First Abstract Syntax, John McCarthy

In the present section we focus on abstract, implementation-unbiased syntaxes
for sentential structures. The first abstract syntax proposal was put forward
by John McCarthy in [330] where an analytic abstract syntax was given for
arithmetic expressions — given in BNF in Example 8.8 — the latter in what
McCarthy calls a synthetic manner. In an analytic abstract syntax we pos
tulate, as sorts, a class of terms as a subset of all the "things" that can be
analysed. And we associate a number of observer functions with these. We
covered an axiomatisation of McCarthy's notion of Analytic and Synthetic
Syntax in Vol. 1, Chap. 9, Sect. 9.6.5.

Example 8.7 Property-Oriented Abstract Syntax of Expressions: First we
treat the notion of analytic grammar, then that of synthetic grammar.

182 8 Syntax

8.3.1 Analytic Grammars: Observers and Selectors

For a "small" language of arithmetic expressions we focus just on constants,
variables, and infix sum and product terms:

type
A, Term

value
is_term: A —y Bool
is_const: Term -> Bool
is_var: Term —> Bool
is_sum: Term —>• Bool
is_prod: Term —> Bool
s_addend: Term —y Term
s_augend: Term —> Term
s_mplier: Term —> Term
s_mpcand: Term —> Term

axiom
V t:Term •

(is_const(t) A ~ (is_var(t) V is_sum(t) V is_prod(t))) A
(is_var(t) A ~ (is_const(t) V is_sum(t) V is_prod(t))) A
(is_sum(t) A ~ (is_const(t) V is_var(t) V is_prod(t))) A
(is_prod(t) A ~ (isc_const(t) V isv_ar(t) V is_sum(t))),

V t:A • is_term(t) =
(is_var(t) V is_const(t) V is_sum(t) V is_prod(t)) A
(is_sum(t) = is_term(s_addend(t)) A is_term(s_augend(t))) A
(is_prod(t) = is_term(s_mplier(t)) A is_term(s_mpcand(t)))

A is a universe of "things": some are terms, some are not! The terms are re
stricted, in this example, to constants, variables, two argument sums and two
argument products. How a sum is represented one way or another is imma
terial to the above. Thus one could think of the following external, written
representations:

a + b, +ab, (PLUS .4 B), 7° x l l 6 .

8.3.2 Synthetic Grammars: Generators

A synthetic abstract syntax introduces generators of sort values, i.e., as here,
of terms:

value
mk_sum: Term x Term —>• Term
mk_prod: Term x Term —> Term

axiom

8.4 BNF Grammars ~ Concrete Syntax 183

V u,v:Term •
is_sum(mk_sum(u,v)) A is_prod(mk_prod(u,v)) A
s_addend(mk_sum(u,v)) = u A s_augend(mk_sum(u,v)) = v A
s_mplier(mk_prod(u,v)) = u A s_apcand(mk_prod(u,v)) = v A
is_sum(t) => mk_sum(s_addend(t),s_augend(t)) = t A
is_prod(t) => mk_prod(s_mplier(t),s_mpcand(t)) = t

McCarthy's notion of abstract syntax, both the analytic and the synthetic
aspects, are found in most abstraction languages, thus are also in RSL.

8.4 BNF Grammars Pb Concrete Syntax

In the present section we focus on concrete, implementation-biased syntaxes
for sentential structures. Example 8.1 illustrated a BNF grammar-like usage of
the RSL type definition facility. BNF stands for Backus—Naur Form — first
widely publicised by the Algol 60 Report [24].

Section 8.5 will formalise the notions introduced in the present section.

Characterisation. By a BNF grammar we mean a context-free grammar —
for which there are special prescriptions for designating nonterminals, and for
designating sets of productions having the same left-hand side nonterminal
symbol. Such a set is "condensed" into one rule, a BNF rule, whose left-hand
side is the common nonterminal, and whose right-hand side is a list of alter
natives separated by the alternative metasymbol: |. •

For natural languages we do not have precise means of specifying the exact
set of their (syntactically) "correct" sentences, i.e., derivations. But for pro
gramming and for specification languages we do have means. In fact, a formal
language is a language which has a precise way of delineating all and only
its correct, i.e., allowable sentences. We use the term grammar to mean a
concrete syntax whose structuring is intended to resemble the structuring of
concrete representations.

8.4.1 BNF Grammars

Usually, the set of sentential (i.e., character string) forms that make up pro
grams and specifications (logical formulas, mathematical expressions — such
as in differential and integral calculi, etc.) are specified by a BNF (or a BNF-like)
grammar. An example BNF grammar of simple arithmetic expressions is given
in Example 8.8.

184 8 Syntax

Example 8.8 BNF Grammar of Simple Arithmetic Expressions: We present
a "classical" BNF grammar:

<E>:
<C>
(V)
<P):
(I) ,
(A)
(L):
(D)
(0)

:= (C> | (V) | <P> |
:= (D) 1 (D)(C)
:= (A) | <A)<V)
:= - (E)
= <E> <0> <E)

:= a | b | ... | z | A
: = 0 | 1 | ... | 9
:= + | - | * | /

(I) 1 ((E))

B | ... | 1

It is assumed that you are familiar with the form (i.e., syntax) of BNF gram
mars and their meaning. But just in case: Nonterminals ({id)) denote sets of
strings of terminals (i.e., the symbols not surrounded by pointed brackets).
A terminal denotes the singleton set of strings consisting just of itself. Juxta
position of terminals and nonterminals means concatenation of strings from
respective denotations.

The concatenation of strings is thus the main operator. •

8.4.2 BNF-H>RSL Parse Trees Relat ions

We refer to Sect. 8.5.2, where we first treated the notion of parse trees. A
syntax, whether — for example — given in the form of concrete (or even
abstract) type definitions in RSL, or as a BNF grammar, defines a set of parse
trees. Conventionally the language of BNF grammars corresponds to a subset
of concrete type definitions of RSL:

• Terminals in BNF correspond to values of type Char or Text in RSL.
• Nonterminals in BNF correspond to type names in RSL.
• A BNF rule: (Nt) : := Lhs corresponds to an RSL type equation Nt = Lhs.
• A set of BNF rules of the same right-hand side (Nt) but different left-hand

sides: Lhs\, Lhs?, ..., Lhsn, corresponds to an RSL type equation Nt =
Lhsi | Lhs2 | . . . | Lhs„.

• A BNF right-hand side expression of the Cartesian form (Nti) (IVt2) • • • (Ntn)
corresponds to the RSL type expression Nti x Nt2 x . . . x Nt„.

Right-hand BNF sides with terminals usually have these terminals "abstracted
away" (and "into" an appropriately chosen type name). Recursive sets of BNF
rules either end up as recursive RSL type definitions or as RSL set, list or map
type expressions.

Thus one BNF rule may end up in either of two RSL forms:

BNF: (N) ::= (A) (B) ... (C)
RSL: N = A x B x . . . x C
RSL: N = = mkN(a:A,b:B,...,c:C)

8.4 BNF Grammars ~ Concrete Syntax 185

The parse tree notion, as seen from the BNF grammar point of view, is based
on the Cartesian form rules, where (usually) n = 2 or more. The three rules
defined just above leads to the parse trees shown in the upper part (and
"across") in Figure 8.1.2 .

<N> ri mkN

<A>

Fig. 8.1. One BNF parse tree + data structure (left), two RSL "parse" trees (right)

The RSL ("parse tree") forms are just illustrative, and are used sometimes
for purely pragmatic, didactic or pedagogic reasons. One can devise a whole
system of RSL parse trees for RSL values other than Cartesians. Tha t is, for
sets, lists, maps and functions. We shall, however, refrain!

The BNF parse tree notion is, however, "real" in tha t texts composed as
per a BNF grammar can, and often must, be represented inside the computer
in the form of some da ta structure. It is therefore convenient to call this da ta

2The three figures in the upper half of Fig. 8.1 depict what we will refer to as
trees. As such they have roots and subtrees: leaves and proper trees. Roots and/or
subtrees may be labelled. The slanted lines are said to designate branches and to
"point to" subtrees. If a subtree label (is given and) is a terminal, then the subtree
is said to be a leaf. Otherwise it is said to be a proper tree. If a branch is labeled
then the label is said to designate a selector. If the root is labeled then that label
is said to designate a constructor (cf. RSL terminology). If the tree is said to be a
parse tree of a BNF grammar then the left-to-right ordering of subtrees reflects the
same ordering of a terminal text obtained by a traversal of the tree traversing (i.e.,
visiting) left subtrees before right subtrees and then noting down only the leaves.
The lower left boxes and arrow diagram are said to designate a data structure. It
consists of records (the boxes) having pointer-valued fields (the arrows). The arrows
that emanate from a part within the rectangular box and which are incident upon a
rectangular box are pointers stored in pointer-valued fields of the records and which
permit a linking (a traversal) to other records. The right pointing dangling arrows
are said to designate, to link to, sub-subtrees not otherwise mentioned.

186 8 Syntax

structure a parse tree. A possible form of such a parse tree is hinted at in
Fig. 8.1's lower left corner.

8.5 Structure Generators and Recognisers

We must raise an important point about BNF grammars. For a certain class of
BNF grammars one can, automatically, from the grammar, construct a finite
state recogniser, i.e., a simple algorithm, which given a string of characters
can decide, i.e., recognise, whether that string is in the language designated
by the grammar, and, if so, can decide how that string was generated by that
grammar. For another class of BNF grammars one can, automatically, from
the grammar, construct a pushdown stack recogniser, i.e., an algorithm with
a finite number of states and a stack, which given a string of characters can
decide, i.e., recognise, whether that string is in the language designated by
the grammar, and, if so, can decide how that string was generated by that
grammar.

8.5.1 Context-Free Grammars and Languages

In this section we formalise what was informally covered in Sect. 8.4.

Definition. By a context-free grammar, CFG, we understand the following: a
finite set, N, of what we shall call nonterminal symbols, i.e., names of syntactic
categories; a finite set, T, of terminal symbols; a distinguished member, no of
N, the start symbol; and a finite set of productions of the form rij —>• r, i.e.:

n,i ->• r, nt £ N, r e (N | T)*

That is, each production (sometimes we call them rules) has a left-hand side
nonterminal and a right-hand side sequence of zero, one or more nontermi
nals and terminals. For every nonterminal in the right-hand side of some
production there is at least one (possibly) other production which has that
nonterminal as its left-hand side. •

Example 8.9 A CFG Grammar: We show a rather construed example:

G = (N,T,P,R)
N = {P,Q,R}
T = {a,b,c,d}
R = {P-mQc, Q-^bQ, Q->(R), R^dR, R ^ }

The last production, R—¥, also maps R into an empty string. •

So the above defined and exemplified syntax of syntax! But what does it
mean? That is, what is the meaning of a CFG? To this we turn next:

8.5 Structure Generators and Recognisers 187

Definition. By a context-free substitution we understand the replacement of
a nonterminal, n (in any string, sns', of terminals and nonterminals), with a
string, r, of terminals and non-terminals, resulting in a string srs1, and such
that there exists a context-free grammar, G, for which n —>• r is a production.
We write the substitution as: sns' —»G srs1, said to be a substitution wrt. to
grammar G. •

Definition. By a context-free derivation, we understand a sequence, s\, S2,
. . . , s9, of strings, Sj, of terminal and nonterminals symbols such that there
is a context-free grammar, G, for which, for all 1 < i < q — 1, we have that
Sj+i represents a context-free substitution wrt. Sj, i.e.:

Sj - » G S j + i

and wrt. some production of that context-free grammar. We write the deriva
tion as:

s i ->G s 2 - » G • • • ->G V

And we abbreviate such a derivation by:

the closure of a derivation. •

Definition. By a context-free language, CFL, we understand a possibly infi
nite set, IQ, of finite length strings, s, of terminal symbols, such that there is
a context-free grammar G : (N,T,n, R) for which, for any (terminal) string,
s, in £G, we have that n —>•* s, i.e.:

£G = {s | s : T* • n —»G s}

The above reads: The set of all those strings, s, which are terminal strings,
and such that there is a derivation from the start symbol, n, to the string s. •

Example 8.10 A CFG Derivation: Based on Example 8.9:

P -J- aQc H> abQc H> ab(R)c -> ab(dR)c -J- ab(ddR)c H> ab(dd)c

The example is just that: an "abstract" example. •

Example 8.11 A CFG Language: Prom the example derivation of Exam
ple 8.10 we see that ab(dd)c is a sentence of CFL. Others are:

a()c, aQc, abQc, a(d)c, ab(d)c, abb(d)c, a(dd)c, ab(dd)c, abb(dd)c,

etcetera.

188 8 Syntax

8.5.2 Parse Trees

Definition. We define the notion of a production tree. Let there be given a
CFG production £ —> r, and let r be the symbol string cc'c" ... c'", where
each of the symbols c,c', c", . . . , and c'", is either a nonterminal or a terminal
symbol — any mixture — of some grammar G. Then (£, (c, c', c " , . . . , c'")) is
said to be a production tree. We can show production trees diagrammatically
(Fig. 8.2).

Production Tree: (c,(c',c" c'"))

Fig. 8.2. A production tree

Definition. We define the notion of a parse tree. Let G : (N, T, n, R) be a
context-free grammar. Let rij be any nonterminal in N, and tj be any terminal
in T, then rij and tj are parse trees with roots rij and nothing else, respectively
of root tj (equal to leaf tj) and nothing else. Let rij —> c^c^ .. .Cim., where Cjfe

(for all i\ < k < imi) is either a nonterminal or a terminal, be a production
in R, where imi > 0, then n ^ c ^ , Cj2 , . . . ,Cjm.) is a parse tree with root rij.
Given the parse tree rii(ci1 ,C j 2 , . . . , Cjm.), let ^ and p,. be parse trees with
root symbol Cj or Cj., whether Cj and Cj. is a nonterminal or a terminal, then
(rij, (f t^Pia, . . . ,p«m.)), is a parse tree. See Fig. 8.3 for an example parse tree.

If all "innermost" symbols Cj, are terminals, then the parse tree is a

complete parse tree. •

Recall that an empty production, rij —>, gives rise to the parse tree rij(). To
avoid confusion, one might wish to write this production as: rij —>• e.

Definition. We define the notion of a frontier of a parse tree. Let pi :
(p>i, (pi1, Pi2,..., Pim.)) be a parse tree. A frontier of a parse tree is a "read
ing" of the innermost symbols of pi, as follows: If pi is of the form (m, ()) then
the frontier of pi, <f>(pi) is the null string (often written e (so as to be able to
"see" it!)). If pij of production pi is of the form t, where t is a terminal or a
nonterminal symbol, then the frontier ofp^., (^(pij) is t. If pij of production pi
is of the form ptj : (nij, (pijx, p» - 2 , . . . , pijmi)), then the frontier of ptj, </>(pj.)
is (t>(pin)(t>(pi]2)...(f>(pijmt).

The frontier of (the original parse tree) pi, 4>{pi) is thus:

8.5 Structure Generators and Recognisers 189

A->aB...C
B->bD
C->E
E -> xYz
D -> cFe
F->pQ

Fig. 8.3. A parse tree

(f>(Pil)<t>(Pi2)---(f>(Pimi),

where the juxtaposition of the >̂(pj •) 's amounts to the concatenation of strings
of nonterminal and terminal symbols. •

Example 8.12 The Frontier of a Parse Tree: We refer to Fig. 8.3. The frontier
of that parse tree is abcFe...E. •

8.5.3 Regular Expressions and Languages

Definition. By a regular expression, r, we understand an expression over an
alphabet, A, of terminal symbols, and over the operators •,* , |, (,), such that:

Basis clause: If a, b,..., c are in A, then a, b,..., and c are regular ex
pressions.

Inductive clause: If r and r' axe regular expressions, then r • r1 ,r* ,r \ r'
and (r) are regular expressions.

Extremal clause: Only such expressions which can be formed from a
finite number of applications of the basis and the inductive clauses are regular
expressions. •

Example 8.13 Regular Expressions: Let an alphabet, A, of terminal symbols
be that of o, b, c. A specific regular expression is o, another is o-o, etc. Another
specific regular expression is:

a* • ((a • b)* \ (b • c)*)

And so forth. •

Given a regular expression we can always, from it, extract the alphabet, A,
of terminal symbols.

The meaning of a regular expression, since a regular expression is "but a
piece of syntax", is a regular language:

190 8 Syntax

Definition. By a regular language we understand a possibly infinite set, £r,
of finite sequences of symbols such that there is a regular expression r for
which the following relation between sentences in £r and r can be established:
If r is a, where a £ A, then a is in fr. If r is r' • r", then for all s' in fr/ and
s" in fr« we have that s's" is in tr. If r is r'*, then for all s' in £r< we have
that e, s', s's', s's'...s', etc., is in tr. Here e is the null string of no symbols. If
r is r' | r", then for all s' in lr* and s" in £r» we have that s' and s" are in
£r. If r is (r'), then for all s' in fr- we have that s' is in tr. •

Example 8.14 A Regular Language: Let a regular expression be:

o*- ((o -6) ' | (6 -c)*)

Some sentences of the corresponding regular language are:

e ,a ,oo ,aa . . .a,

o&, a6a6, a6a6. . . a&, 6c, 6c6c, fecfec... 6c

aa6, aabab, aabab.. .ab, abc, abcbc, abcbc ...be

aaabab,aaabab,aaabab...ab,aabc,aabebe,aabebe.. .be...

8.5.4 Language Recognisers

In Sects. 11.3-11.5 we shall touch upon the relationship between regular lan
guages, respectively context-free grammars, on one hand, and "devices", on
the other hand. We mean devices which, when provided with input in the form
of sentences of some postulated regular or context-free language, can decide,
i.e., recognise, whether the sentence is indeed a member of that language, and
then provide one or more parse trees for that sentence. These "devices" are
referred to as finite state automata, finite state machines and pushdown stack
automata (resp. machines). It is indeed this ability to precisely specify which
sentences are allowed, that is, can be generated, and to automatically con
struct a recogniser that makes regular expressions and context-free grammars
interesting.

8.6 XML: Extensible Markup Language

Extensible Markup Language (XML) is a language for adorning linear texts
with markers in a way that allows for easy parsing of the text into possibly
meaningful units. XML is, as of 2006, a preferred such language for regulating
the transfer of data over the Internet.

8.6 XML: Extensible Markup Language 191

8.6.1 A n E x a m p l e

To relate to the topic of XML consider the following RSL type definition of
programs in some small imperative programming language:

t y p e
Progr = = mkProg(b:Block)
Blk = = mkBlk(vs:Var_Decls,ps:Proc_Defns,sl:Stmtlist)
Var_Decls = = nil_dcl | mkVDcls(v:Var,i:Expr,vs:Var_Decls)
Pro_Defs = = ni l_proc | mkPDefs(pn:Pn,pl:Parlst,b:Blok,ps:Pro_Defs)
Parlst = = ni l_parl | mkParL(fp:Id,pl:Parlist)
Stmtlist = = ni l_s tmt | mkStmtL(s:Stmt,sl:Stmtlist)
Stmt = Block | Asgn | IfTE
Asgn = = mkAsgn(vr:Var,ex:Expr)
IfTE = = mkIfTE(be:Expr,cs:Stmt,as:Stmt)
Expr = Var | Prefix | Infix
Var = = mkV(vn:Vn)
Prefix = = mkPre(po:POp,e:Expr)
Infix = = mkInf(le:Expr,io:IOp,re:Expr)
P O p = = minus | not | ...
IOp = = add | subtract | multiply | divide | ...

Now consider the following concrete example program in the above language:

program
begin

variables
v :=e , v' :=e' ;

procedures

pl(fpll,fpl2,...,fpln) = blkl ,

p2(fp21,fp22,...,fp2n) = blk2 ;
v := e " ;

if be then cs else as fi ;
begin

variables

procedures ...

end
end

Abstractly the above program is a value in Progr which can be written as:

value
p: Progr

a x i o m
p = mkProg(

mkBlk(

192 8 Syntax

mkVDcls(v,e,
mkVDcls(v',e' ,nil_dcl))

mkPDefs(p,pl,blk,
mkPDefs(p',pl ' ,blk' ,nil_proc))

nikStmtL(mkAsgn(v,e),
mkStmtL(mkIfTE(be,cs,as),

mkStmtL(mkBlk(vs,ps,sl)
)))))

Here we have refrained from detailing "inner" clauses like: v, e, v , e , p, pi,
blk, p', pi', blk', e", be, cs, as, vs, ps and si. We are confident tha t the reader
can complete the picture!

Now if we "balanced" (i.e., replaced) any opening parenthesis mkX('s with
)unmkX's, then we get the following:

value
xml_p:Progr

a x i o m
x m l _ p = mkProg(

mkBlk(
mkVDcls(v,e,
mkVDcls(v' ,e ' ,nil_dcl)unmkVDcls)unmkVDcls

mkPDefs(p,pl,blk,
mkPDefs(p' ,pl ' ,blk' ,nil_proc)unmkPDefs)unmkPDefs

mkStmtL(mkAsgn(v,e)unmkAsgn,
mkStmtL(mkIfTE(be,cs,as)unmkIfTE,

mkStmtL(mkBlk(vs,ps,sl)unmkBlk
)unmkStmtL)unmkStmtL)unmkStmtL)unmkBlk)unmkProg

8.6.2 D i s c u s s i o n

The above shows the essence of XML. The essence of XML is tha t any da ta —
and here the da ta are the tokens of variables, operators, literals (for proce
dure , block, = , : = , if, t h e n , e lse , e n d , etcetera), and the da ta are also the
structure of the sentences into which they have been put — can be described
as shown above. The mkX(and)unmkX "brackets" are like XML tags.

8.6 .3 His tor ica l B a c k g r o u n d

The tagging concept thus derives from the abstract syntax notion of McCarthy
(1962 [330]) tha t we presented in Sect. 8.3.

McCarthy in a 1982 Stanford University report titled Common Business
Communication Language [332] proposed — 20 years after his first publication
on abstract syntax — a language for interbusiness intercomputer communica
tion based on the ideas of an abstract syntax's is_A, s_A and mk_A functions

8.6 XML: Extensible Markup Language 193

(Sect. 8.3). Most of the ideas in that paper have been reinvented in connection
with electronic commerce, specifically in connection with XML.

8.6.4 The Current XML "Craze"

XML is (2006) a so-called "hot topic". It is strange that it had to take such a
long time, 40 years, to reach this unscientific state of euphoria. Anyway, XML
is nevertheless and obviously a good idea. XML, as should be obvious, can be
used for describing not just sentential forms, but any kind of data structure.
This will be made more clear in the next section (Sect. 8.6.5). And hence XML
can be used when "moving" data from one computing platform to another,
i.e., for the transfer of arbitrary files.

8.6.5 XML Expressions

Characterisation. An XML expression is a string over terminal symbols and
over properly balanced opening and closing XML tags. •

Characterisation. An XML tag is either an opening XML tag, which is written
as <name>, where name is some identifier, or is a closing XML tag which is
written as </name>, where name is some identifier. •

Example 8.15 From RSL Values to XML Expressions: Let there be given the
following RSL type definitions (of something otherwise irrelevant):

type
A, B, C, D, E
F = G | H | J | K
G :: A-set
H :: B x C x D
J ::E*
K :: A ^ B

Typical values of type F are:

value
a,a ,...,a : A
b,b':B, c:C, d:D,
e,e':E
g: mkG({a,a',a"}) : G
h: mkH(b,c,d) : H
j : mkJ({e,e',e',e)) : J
k: mkK([at-*b,a'i->bIa"i->b']) : K

Let sets be represented by lists, and let maps be represented by lists of pairs:

194 8 Syntax

G' :: A*
AB :: A x B
K' :: AB*

Corresponding RSL values are:

value
g': mkG'({a,a',a"}) : G'
k': mkK'({mkAB{a,b},mkAB{a',b),mkAB(a"!b'))) : K'

In proper XML the g;, h, j and k' values could be represented as follows:

RSL:
g': mkG'«a,a',a"})

XML:
<G'>

<A> a < /A>
<A> a' < / A >
<A> a" < / A >

< /G '>

RSL:
j : mkj{{e!e

/,e',e»
XML:

< J >
<E> e < / E >
<E> e" < / E >
<E> e' < / E >
<E> e < / E >

< / J >

RSL:
k': mkK'({(a,b),(a',b),(a",b')))

XML:
<K'>

<AB>
<A> a < / A >
 b < / B >

</AB>
<AB>

<A> a' < / A >
 b < / B >

</AB>

8.6 XML: Extensible Markup Language 195

<AIJ>
< A > a" < / A >
< » > 1/ < / » >

< / . \ I J >

</K'>

8.6.6 XML S c h e m a s

C h a r a c t e r i s a t i o n . An XML schema is a syntax which describes a language of
strings over terminal symbols and over properly balanced opening and closing
XML tags. •

E x a m p l e 8.16 An XML Schema: An XML schema corresponding to the XML
expressions of Example 8.15 is:

t y p e = " s o r t A " / >
t y p e — " s o r t B " / >
t y p e = " s o r t C " / >
t y p e = " s o r t D " / >
t y p e = " s o r t E " / >

<xs : simpleType n a m e = " s o r t A " > ... < / x s : s impleType>
<xs : simpleType n a m e = " s o r t B " > ... < / x s : s impleType>
<xs: simpleType n a m e = " s o r t C " > ... < / x s : s impleType>
<xs : simpleType n a m e = " s o r t D " > ... < / x s : s impleType>
<xs : simpleType n a m e = " s o r t E " > ... < / x s : s impleType>

<xs:sch

<xs:
<xs:
<xs:
<xs:
<xs:

ema>

element name=
element name=
element name=
element name=
element name=

"A"
"B"

"c"
"D"
"E"

<xs : element n a m e = " F " t y p e = " F t " / >
<xs : complextype n a m e = " F t " >

<xs : choice>
<xs: element n a m e = " G ' " t y p e = " G t " / >
<xs: element n a m e - " H " t y p e = " H t " / >
<xs: element n a m e = " j " t y p e = " j t " / >
<xs: element n a m e = " K ' " t y p e = " K t " / >

< / x s : choice>
< / x s : complextype>

<xs : element n a m e = " G ' " t y p e = " G t " / >
<xs : complextype n a m e = " G t " >

196 8 Syntax

<xs: sequence maxOccurs="unbounded" minOccurs="o">
<xs: element name= A type= sortA / >

</xs: sequence>
</xs: complextype>

<xs: element name="B*" type="Ht"/>
<xs: complextype name="Ht">

<xs: sequence>
<xs: element name="B" type="sortB"/>
<xs: element name="C" type="sortC"/>
<xs: element name=' 7D" type="sortD"/>

</xs: sequence>
</xs: complextype>

<xs: element name="j" type="J t" />
<xs: complextype name="j">

<xs: sequence maxOccurs= unbounded minOccurs= 0 >
<xs: element name="E" type="sortE"/>

</xs: sequence>
</xs: complextype>

<xs: element name="AB" type="ABt"/>
<xs: complextype name= "ABt">

<xs: sequence >
<xs: element name= A type= sortA / >
<xs: element name="B" type="sortB"/>

</xs: sequence>
</xs: complextype>

<xs: element name="K'" type="Kt"/>
<xs: complextype name="K'">

<xs: sequence maxOccurs="unbounded" minOccurs="0">
<xs: element name="AB" type="ABt"/>

</xs: sequence>
</xs: complextype>

</xs:schema>

We leave it to the reader to decipher the relationships between this and the
previous example. •

8.7 Abstract Syntaxes 197

8.6.7 References

References are made to two books: [417] and [443]. [417] provides an easy-to-
read introduction to XML. [443] provides a more technical treatment of XML.
Otherwise we encourage the reader to "surf" the Internet looking for educa
tional, instructional and training material on XML. References are finally made
to a number a papers more or less relating to XML: [127,261,293,450,515].

8.7 Abstract Syntaxes

In the present section we focus on abstract, implementation-unbiased syntaxes
for semantical structures.

Characterisation. By an abstract syntax we understand rules for mathe
matically characterising a structure in terms of its composition — whether
property-oriented or model-oriented. •

We speak of such mathematical, i.e. model-oriented, structures as sets, Carte
sians, lists, maps, etc. A popular abstract form is that envisaged by a treelike
hierarchy. And we thus speak of such logical (cum algebraic), i.e., property-
oriented structures (that are characterised by their composition) — again —
as "trees". Some examples may be useful.

8.7.1 Abstract Syntax of a Storage Model

Example 7.5 introduced an axiomatic specification of storage. That specifi
cation also illustrated uses of abstract syntax. Examples 8.17-8.19 illustrate
further facets of abstract syntax and storage models.

Example 8.17 Model-Oriented Formal Syntax of Storages: We decompose
the example presentation of storage into three parts: the values stored and
their type, the structure of storage locations, and, finally, the combined stor
age as consisting of locations and values. We alternate between informal and
formal presentations.

Values and Value Types

We assume knowledge of integer and Boolean values.

• Informal:
• Values are either scalar or are composite.
• There are two kinds of scalar values: integers and Booleans.
• There are two kinds of composite values: vectors and records.
• Vectors are definite length sequences of values of the same kind.

198 8 Syntax

• Records are (here) finite (Cartesian) collections of named values (of
possibly, i.e., usually, different kinds).

• An integer is of kind number.
• A Boolean is of kind truth value.
• A vector is of kind sequence of a specific length and of the kind of its

element values.
• A record is of kind Cartesian of a definite number of fields with their

unique names and the kind of their values.
• Formal:

type
VAL = ScaVAL | ComVAL
ScaVAL = NumVAL | TruVAL
NumVAL :: Int
TruVAL :: Bool
ComVAL = VecVAL | RecVAL
VecVAL :: VAL*
RecVAL :: Nm ^ VAL

Kind = = number | truth
| mk_Seq(n:Nat,k:Kind)
j mk_Car(r:(Nm -# Kind))

Locations and Location Types

We continue the example just given. Before it was about values; now it is
about their locations.

• Informal:

* Locations (of values, in some abstract notion of storage) are either
scalar or composite.

* Scalar locations are either of kind number locations or truth value
locations, and are further unspecified.

* Composite locations are either of kind vector locations or record loca
tions.

* Vector locations associate vector element indexes (whose element values
are contained in the overall vector locations) with locations (of the
location kind of the contained element value).

* Record locations associate field names of the record with locations (of
the location kind of the contained field value).

• Formal:

t ype
LOC = ScaLOC | ComLOC

8.7 Abstract Syntaxes 199

ScaLOC = = numLOC | tmLOC
ComLOC = = SeqLOC | CarLOC
SeqLOC :: LOG*
CarLOC :: Nm ^ LOC

Storages

We now combine the value and the location definitions:

• Informal:
* Storages are functions from locations (of one kind) to values (of the

same kind).
• Formal:

type
STG = LOC ^ VAL

Type Constraints

Implicit in the three model components of Example 8.17 are the type extrac
tion and type-checking functions shown now in Example 8.18. We refer to the
functions defined in Example 8.18 as static semantics functions.

Example 8.18 Model-Oriented Type Checking of Abstract Storage:

value
x_type: (VAL|LOC) 4 Kind
x_type(valo) =

case valo of
mk_Num(_) —> number,
mk_Tru(_) ->• truth,
mk_VecVAL(vv) —> mk_Seq(len vv,x_type(hd vv)),
mk_CarVAL(cv) ->

mk_Car([n •#x_type(cv(n)) |n:Nm • n € dom cv]),
numLOC —> number,
truLOC -*• truth,
mk_VecLOC(vl) —¥ mk_Seq(len vl,x_type(hd vl)),
mk_CarVAL(cl) ->

mk_Car([n •j#-x_type(cl(n)) |n:Nm • n € dom cl])
end
pre: x_type(mk_VecVAL(vv)): V v,v':VAL •

v,v' € elems vv A v^v' =^ x_type(v) = x_type(v'),

200 8 Syntax

x_type(mk_VecLOC(vl)): etc. ...

Example 7.5 "digs" a bit deeper and secures independence of locations — not
satisfied by the above!

We see how recursion in syntax definition conveniently, following the de-
notational principle, leads to recursion in function definition.

c_type: (VAL[LOC) ->• Bool
c_type(vls) =

case vis of
mk_VecVAL(vv) ->

V v,v':VAL • v,v' £ elems vv A v^v' =>
x_type(v) — x_type(v')

mk_Vec.LOC(vl) ->
V l,l':LOC • 1,1' e elems vl A 1^1' =>

x_type(l) = x_type(l)
—> true

end

The above c_type function ("almost") expresses the static semantics of
the "language" of values and locations. Example 7.5 additionally shows well-
formedness of storages. •

Independence of locations was introduced earlier in Example 7.5.

8.7.2 Abstract Syntaxes of Other Storage Models

Example 8.17 illustrated one syntactical model of storage. There are others.
The one illustrated above models storages as found in such (past) program
ming languages as PL/1 [12,29,33,36,110,111,312] and ALGOL 68 [31,61,511].
In Example 8.19 (next) we illustrate not only the storage models of other
programming languages (such as ALGOL 60 [24] and Ada [54,103,222,223]),
but we link these models (semantically) to the notion of environments. The
models are all based on Bekic and Walk's work [37].

Example 8.19 Models of Variables, Their Binding and Storage:

Informal Exposition

In imperative languages variables are declared of simple or composite type,
and assignments to either of these (entire) variables may occur, as implied,
but not shown (since that is a semantic notion) in Example 8.17, or assign
ments may occur only to scalar parts. At the same time, variables may be
'passed by reference' to procedures — in whose bodies assignments may be

8.7 Abstract Syntaxes 201

specified as above — with procedure parameters either allowing "entire", i.e.,
full variable locations, or only scalar locations. Some languages may allow
assignments only to scalar parts of composite variables but the passing of
composite locations (as argument but not necessarily storable values). So we
have basically three situations: (1) declaration and passing (as procedure ar
guments) of and assignment to scalar as well as composite location variables;
(2) declaration and passing (as procedure arguments) of composite (etc.) lo
cation variables, but assignment only to scalar locations; and (3) declaration
of composite (etc.) location variables, but passing of and assignments only to
scalar locations. To keep track of, i.e., distinguish between these alternatives,
we introduce a notion of environment. Environments bind explicitly declared
variable or procedure parameter (i.e., argument) identifiers to locations. Stor
ages then map either composite or (only) scalar locations to corresponding
values.

Formal Exposition

type
sV, kV
gV = sV | kV
c.V = kV x (Nat|Nm)*
V = sV | cV
ENV_1 = gV ^ LOG
ENV_2 = gV -of LOC
ENV_3 = cV yd ScaLOC
STG_1 = LOC nf VAL
STG_2 = ScaLOC -tf ScaVAL
STG_3 = ScaLOC ^ ScaVAL

Annotations: sV stands for further undefined scalar variable names. kV stands
for names of ("entire") composite variables, also further undefined. gV thus
stands for general variable names. cV stand for composite variable ground
terms: the Nat and Nm lists designate indexes into compound variables —
to either scalar or compound locations. ENV stands for environments. EIW_i
and STG_i stand for respective models. Notice that EI\IV_1 and ENV_2 are
similar, but that STG_1 and STG_2 are not! And so on.

A model of assignment is a semantic model and hence is not illustrated
here. •

We showed such a model of assignment in Example 7.5.

202 8 Syntax

8.8 Converting RSL Types to BNF

. From Abstract RSL Types to Concrete BNF Types

Implementation of abstract da ta structures in terms of ordinary program
ming languages' concrete da ta structures need be indicated. When the ab
stract da ta structures are specified in terms of sets, lists and maps, then we
need to give the reader a hint at possible structure- or record-oriented con
crete da ta structures — the latter possibly with pointers. This is the aim,
therefore, of this final section of this chapter on syntax.

The present section "ties" in with Sect. 8.6 on XML.

8.8.1 T h e P r o b l e m

The problem is tha t of being able to represent, using just Cartesians, any
of the abstract da ta structures of sets, lists and maps. Why use Cartesians?
Simply because tha t kind of da ta structure is provided by all current program
ming languages. Most, if any, of these, do not support sets, lists and maps of
"variable size" (the "variable size" concept was defined in Vol. 1, Sect. 13.6).

8.8.2 A Poss ib l e S o l u t i o n

We shall hint at a uniform set of solutions, basically along the same line
for sets, lists and maps. Tha t uniform solution defines a variable size da ta
structure in terms of a recursively nested structure of Cartesians.

A variable size data structure, containing zero, one or more entities, such
as sets, lists and maps either contains no entities, and then we represent it by
a n i l element or it contains one or more such entities and then we represent it
by a Cartesian of the "one" such entity together with the rest, i.e., the "more
minus one".

We now show generic type definitions of the "abstract" da ta structures
of sets, lists and maps, followed by generic type definitions of the "concrete"
da ta Cartesian structures. For each of the "pairs" of abstract and concrete
da ta structures, we have to define functions converting between the abstract
and the concrete da ta structures, i.e., injection functions (rather, relations),
and vice versa, i.e., abstraction (or retrieval) functions. We also have to show
tha t we can define concrete counterparts of the "built-in" operations on the
abstract values.

t y p e
s A B = B-se t , £AB = B*, m A B C = B ^ C

ASB = = nilBs | mk_As(b:kB,a :Ass)
MB == nilBf| mk_A^(b:kB,a:A£B)
A m B C = = nilBCm | mk_As(b:kB,c :KC,a :Am B C)

8.9 Discussion of Informal and Formal Syntax 203

value
conv_sAs_Ass: sA# —>• AS_B
conv_^AB_AfB: tkB ->• AtB

conv_mABc_AmBc: mAsc —>• AmBc

conv_sAs_Ass(sa) =
if sa={}

then nilBs
else

let s U {b} = sa in
mk_As(b,conv_sAB_As_B(s))

end end

€: B x sAB ->• Bool
U, n, \, /: sAB x sAB ->• sAB

C, C, =: sAB x sAB ->• Bool
card: SAB —> Nat

is_in: B x AS_B —> Bool
union, inter, remove, remain: ASB X ASB —> ASB
subseteq, subset, equal: ASB X AS_B —> Bool
cardinality: AS_B —>• Nat

We leave it to the reader to complete the definition of the above, as well as
stating the similar function signatures and definitions of the other data types.
See Exercises 8.1-8.3.

8.9 Discussion of Informal and Formal Syntax

8.9.1 General

The point about informal and formal syntax is (also) this: When using formal
syntax we commit ourselves to precise meanings of what the syntax itself
denotes. Whereas, when we use informal syntax, we have to accept that it
may not be fully clear what the scope of that informal syntax is.

That is, there is a formal syntax, and its "meaning" is all the abstract
or concrete structures generated by that syntax: Sentences or phrase trees
for concrete syntaxes, i.e., for BNF grammars, and abstract, mathematical
structures for abstract (RSL or other abstract) syntaxes. What the meanings
of these sentences or phrase trees or abstract, mathematical structures are,
we have yet to say.

204 8 Syntax

Abstract (formal) syntax can be used to define sentential structures, such
as we may concretely or abstractly communicate them between people or
between man and machine. Or abstract (formal) syntax can be used to define
mathematical structures, say internal to machines. In current practice, BNF
is used to define concrete sentential forms and a programming languages'
type definition facilities are used to define data structures. In RSL we use one
mechanism to define either (i.e., both).

8.9.2 Principles, Techniques and Tools

We summarise:

Principles. Every structure that need be understood precisely need be given
a precise syntax. •

Principles. Not just sentential structures, i.e., text strings, need be given
syntax, also concrete or conceptual information (including data) structures. •

Principles. Syntax must also be given to what appears as diagrammatic in
formation from the software development field: GUIs, Flowcharts, UML Class
Diagrams, Petri Nets, Message Sequence Charts, Live Sequence Charts, Stat-
echarts, as well as from other universes of discourse: Civil engineering draw
ings, geodetic and cadastral charts, land maps, etc., mechanical engineering
drawings, electrical engineering drawings, etc. •

Techniques. Depending on the problem at hand: If conceptual, trying to
understand basic concepts, then abstraction is to be applied, if the problem
is of final, implementational, nature, then concretisation is to be applied.
Throughout express a suitable balance between expressiveness and captur
ing context-sensitive constraints. Thus choose also appropriate techniques for
expressing well-formedness. •

Tools. There are many tools with which to express, i.e., to define syntax: The
type expression and type definition constructs of RSL, those of BNF, those of
XML, and those of "truly" abstract syntax: Sorts and axioms. •

8.10 Bibliographical Notes

Classical textbooks on compiler development cover some, but really not many
BNF design techniques, but do cover implementation techniques: Design and
coding of lexical scanners and error correcting syntax parsers [6,21,297].

We also refer to the useful In te rne t Web page [295] which informs on
syntax handling tools (viz.: LEX, YACC and related or similar tools).

8.11 Exercises 205

8.11 Exercises

Exercise 8.1 Cartesian Sets. We refer to Sect. 8.8.2. Please complete the
definition of all the concrete versions of the €, U, fl, \ , / , C, C, = and card
functions, i.e., of is in, union, inter, remove, subseteq, subset, equal, and cardi
nality functions.

Exercise 8.2 Cartesian Lists. We refer to Sect. 8.8.2. Please state the func
tion signatures and the definitions of all the concrete versions of COD\I_^AB_MB

and the basic list operations: hd, tl, ~, •(•), elems, inds, len and =, i.e., of
head, tail, concatenate, index, elements, indices, length and equal.

Exercise 8.3 Cartesian Maps. We refer to Sect. 8.8.2. Please state the
function signatures and the definitions of all the "concrete" versions of
conv_mAs(7_AmB(7 and the basic map operations: U, f, •(•), dom, rng and
=, i.e., of union, override, apply, domain, range and equal.

Exercise 8.4 RSL Type Expressions and Type Definitions. This exercise is
part of a series of three related exercises that continues in Exercises 8.5-8.6.
Please read all three exercise texts carefully, as the solution to the present
exercise depends on the ability to express solutions to the next two exer
cises reasonably elegantly. The problem to be solved in the present exercise
is to suggest a suitable concrete RSL syntax for RSL type definitions. Here is,
for your help, our simplified version of RSL type definitions, one that seems
suitable for this series of exercises.

. Simplified RSL Type Expressions and Definitions .

• An RSL type expression is:
• either an atomic type literal (Bool, Int , N u m , Real , Char , Text)
• or a unit type literal (Unit)
• or a type name
• or a finite set type expression, which we take, for simplification, to

just be a type name suffixed with the type constructor name —set
• or a Cartesian type expression, which we take, for simplification, to

just be a finite sequence of two or more type names infixed with the
type constructor name x

• or a finite list type expression, which we take, for simplification, to
just be a type name suffixed with the type constructor name *

• or a RSL type expression is a finite map type expression, which we
take, for simplification, to just be a pair of type names infixed with
the type constructor name jrt

• In this exposition of simplified RSL type expressions and type definitions
there are four kinds of RSL type definition:
1. A sort definition

• which just consists of a type name;
2. simple token alternatives

206 8 Syntax

• which have left-hand side type names,
• and a right hand-side of one or more token names;

3. or a simple kind of type alternative:
• which has a left-hand side type name,
• and a right-hand side set of two or more type names;

4. or a record type constructor kind
• which has a left-hand side type name,
• and a right-hand side type expression.

• An RSL set of type definitions is now
• a list of one or more type definitions
• such that all sort and left-hand side names are distinct,
• such that all token names are distinct, and distinct from type names,
• and such that all uses of type names (in right-hand side type expres

sions) are defined, i.e., have a corresponding type definition of that
left-hand side name.

Example

typ
[11
[21
[3]
[41
[41
[4]

B

A, 1
D =
E =
P ::
Q :
R :

B, C
= alpha |

= P | Q I
A ^ B
C-set
Bool

beta
R

gamma delta

Define a suitable set of RSL type definitions for the above form of simplified
RSL type expressions and definitions.

Define suitable well-formedness functions.

Exercise 8.5 Abstract Syntax and Well-formedness for XML Schemas. This
exercise is part of a series of three related exercises, see Exercises 8.4 and 8.6.
You are to find out, say from the Internet, how an XML schema is defined. We
refer to [478]. Here is, in any case, our simplified version.

. Simplified XML Schemas .

• A simplified XML schema consists of a set of pairs of distinctly named
rules.

• Each pair has an element part and a simple or a complex type part.
• Each element part names a distinct type.
• A simple part identifies a further unexplained type.
• A complex part is either a choice rule or a sequence rule.
• A choice rule consists of a set of two or more element parts.
• A sequence rule consists of a list of one or more element parts.

8.11 Exercises 207

Given the above, or your own version, propose an RSL type definition for XML
schemas.

Define suitable well-formedness functions.
Please comment as to what might be missing from the simplified XML

schemas as sketched above and the "real" XML Schemas as reported at [478].

Exercise 8.6 Translation from Typed RSL Values to XML Values. This exer
cise is part of a series of three related exercises: Exercises 8.4-8.6. You are to
suggest a function, conv_RSL_to_XML, which takes values of type RSL type
definitions and yields values of type XML Schema.

Exercise 8.7 Syntax of STIL. You are to present formal, concrete type defi
nitions for STIL: Simply Typed Imperative Language whose design is covered
in Exercises 7.3-7.7, 8.7-8.8, and 9.2. We help you by stating the syntax
informally.

. The Syntax .

1. Programs are blocks.
2. Blocks consists of one or more variable declarations and a statement list.
3. A variable declaration consists of the name of the variable being declared,

its type and an initialising expression.
(a) Variable names are simple identifiers.
(b) Identifiers are further unexplained atomic quantities.
(c) Types are expressed by means of a ground term type expression.
(d) A ground term type expression is either the literal of a scalar type,

or is a ground term compound type expression.
(e) The literal of a scalar type is either an in teger literal, or is a

Boolean literal, or is a r e a l literal, or is a charac ter literal.
(f) A ground term compound type expression is either a ground term

vector type expression or is a ground term record type expression.
(g) A ground term vector type expression consists of a vector lower and

upper index bounds expression and a ground term vector element
type expression.

(h) A vector lower and upper index bounds expression is either a pair of
integer numerals such that the first is smaller than the second, or is
an enumerated type expression, for example, vector low: 1 high:
12 type type_expr.

(i) A ground term record type expression is a set of pairs where each pair
consists of a record field identifier and a ground term type expression
— such that all record field identifiers of a ground term record type
expression are distinct and such that no two ground term record
type expressions of a program share any record field identifiers, for
example, record: a integer, h boolean, c character end

(j) A record field identifier is a simple identifier.

208 8 Syntax

(k) Some variable declarations are marked as i n p u t / o u t p u t variables.
4. A statement list consists of a sequence of one or more statements.
5. A statement is either an assignment statement, or is a conditional, i.e.,

an i f - t h e n - e l s e - e n d statement, or is a while loop, i.e., a w h i l e - d o - e n d
statement, or is a simple iteration, i.e., a f o r - i n - d o - e n d statement, or
is a block, i.e., a b e g i n - e n d statement.
(a) An assignment statement consists of a pair: A (left-hand side) vari

able reference and a (right-hand side) which is an expression, for
example, var_ref := expression.

(b) A conditional, i.e., an i f - t h e n - e l s e - e n d , statement consists of a
test expression and two statement lists. Example: if test_expr then
cons_stmt_lst else alt_stmt_lst end.

(c) A while loop, i.e., a w h i l e - d o - e n d , statement consists of a test
expression and a statement list, for example, while test_expr do
stmt_lst end.

(d) A simple iteration, i.e., a f o r - i n - d o - e n d , statement consists of a
step identifier, a step range expression and a statement list, for ex
ample, for step_id in (lb..ub) do stmt_lst end.

i. A step identifier is a simple identifier,
ii. A step range expression is a pair of integer lower and upper

bound numerals (i.e., constants), i.e., akin to a vector lower and
upper index bounds.

6. An expression is either a value, or is a variable reference expression, or
is a prefix expression, or is an infix expression, or is a postfix expression,
or is a conditional (mix-fix) expression, or is a vector expression, or is a
record expression, or is a parenthesized expression.

(a) A constant expression is either an integer numeral (12345), or is a
real (or 'float') numeral (01234.56789), or is a Boolean literal (t r u e ,
f a l s e) , or is the mathematical constants: e (approx. 2.71828183...),
or 7r (approx. 3.14159265...), or other.

(b) A variable reference expression has two parts : A variable identifier
and an optional index or field selector part .

i. An index part has two subparts , first either an (integer-valued)
expression or a step identifier, and then an optional index or
field selector part .

ii. A field selector part has two subparts , first a field identifier, and
then an optional index or field selector par t .

(c) A prefix expression consists of two parts : a prefix operator and an
operand expression.

i. A prefix operator is either of the following (literals): either a
Boolean operator: -i (Boolean negation), or one of the arithmetic
operators: + (plus), - (minus), f (ceil), 1 (floor), s i n (sine), cos
(cosine), t a n (tangent), c o t a n (cotangent), s i n h y (hyperbolic
sine), coshy (hyperbolic cosine), t a n h y (hyperbolic tangent) ,
co tanhy (hyperbolic cotangent), a r c s i n (arc sine), a r c c o s (arc

8.11 Exercises 209

cosine), a rc tan (arc tangent), arccotan (arc cotangent), J~
(square root), logio (logarithm radix 10), log2 (logarithm radix
2), and possibly others,

ii. An operand expression is an expression.
(d) An infix expression consists of three parts: a left operand expression,

an infix operator and a right operand expression.
i. Left and right operand expressions are expressions.

ii. An infix operator is one of the following (literals): either a
Boolean operator: A (and, Boolean conjunction), V (or, Boolean
disjunction), D (implication, Boolean i f - then) , = (equal), ^
(not equal), or a character operator: = (equal), ^ (not equal),
or an arithmetic operator: + (add), — (subtract), / (divide),
x (multiply), = (equal), ^ (not equal), < (less than), ^ (not
less than), > (larger than), ^ (not larger than), < (less than or
equal), ^ (not less than or equal, i.e., larger than), > (greater
than or equal), ^ (not greater than or equal, i.e., less than),
modulo (the modulo function), gcd (the greatest common divi
sor function), * (exponent), or other.

(e) A postfix expression consists of two parts: an operand expression,
and a postfix operator.

i. Operand expressions are expressions.
ii. A postfix operator is one of the following (literals): ! (factorial),

or other.
(f) A conditional (mixfix) expression has three parts: a test expression,

a consequence expression, and an alternative expression — all being
expressions.

7. A vector expression is a pair: a vector lower and upper index bounds,
and a list of expressions (of the same type).

8. A record expression is a set of field-identifier marked expressions such
that no two expressions are marked with the same field identifier.
(a) A field identifier-marked expression is a pair: a field identifier and

an expression.
9. A test expression is an expression.

10. A parenthesised expression is an expression.

Exercise 8.8 Syntactic Well-formedness of STIL. The Syntactic Well-form
edness Constraints: We first define, in an intertwined manner, the notion of the
type of an expression, as well as the notion of type correctness of expressions.

Syntactic Well-formedness

1. The type of an expression which is a value is the type of that value.
2. Let variable identifier v be defined, in a block b, to be of type t.

210 8 Syntax

3. Then in any expression of b in which v occurs the expression v is of type
t.

4. Let v be a variable of type t vector whose elements have been denned to
be of type te. Let i be a valid index into the defined vector type. Then
v[i] is a variable reference expression and is of type te.

5. Let v be a variable of type record t. Let / be a field identifier of record
type t. Let the type expression associated with / in record type t he te.
Then v.f is a variable reference expression and is of type te.

6. Let vr be a variable reference of type t.
7. Let f be a vector type with element type te and index range

{ii,i2, • • •, in} (i-e., the set of consecutive integers from a lower bound i\Q

to an upper bound i^), and let e be any integer valued expression whose
value (which can only be determined at run-time) lies in the abovemen-
tioned index range, then vr[e] is a variable reference expression, and is
of type te.

8. If £ is a record type with field identifiers index set {/i, fa, • • •, / « } , and
such tha t the type expression associated with field identifier fi (where
i £ { 1 . . .n}) is te, then vr»fi is a variable reference expression, and is
of type te.

9. Let uie be a syntactically well-formed prefix expression. (That is: Let the
type of e be t.) If t is Boo lean , then ui must be the operator -i. Otherwise
t must be either i n t e g e r or r e a l . If the operator in the latter case is
either one of the arithmetic operators: s i n , c o s , t a n , c o t a n , s i n h y ,
coshy , t a n h y , c o t a n h y , a r c s i n , a r c c o s , a r c t a n , a r c c o t a n , J~,
logio or l o g 2 , then the type of the prefix expression is r e a l . If t is
i n t e g e r and the operator is either one of + , —, then the type of the
prefix expression is i n t e g e r . If t is r e a l and the operator is either one
of + , —, then the type of the prefix expression is r e a l . If t is r e a l and
the operator is either one of y, \., then the type of the prefix expression
is i n t e g e r . These are the only allowed type and operator combinations.

10. Let eicuer be a syntactically well-formed infix expression. Tha t is: Let
the types of ei be ti, and of er be tr. Either ti,tr are both of type
c h a r a c t e r and ui is either one of = , ^ . If so, type Boolean is the type
of the infix expression. Or ti, tr are both of type Boolean in which case
UJ must be one of the operators = , ^ , A, V, D. If so type Boolean is the
type of the infix expression. Or ti,tr are of type i n t e g e r and /or r e a l .
If so, the type of the infix expression is Boolean if the operator is one of
= , ^ , < , ft, > , j£, < , ^ , > , ^ . If the infix operator is one of + , —, x then
the type of the infix expression is i n t e g e r if both ti,tr are of type
i n t e g e r , else, including if ui = / , the type of the infix expression is
r e a l .

11. Let euj be a syntactically well-formed postfix or suffix expression. Tha t
is, let the type of e be t. We just assume w to be the factorial operator
!. Then t must be of type i n t e g e r . The type of eui is also i n t e g e r .

8.11 Exercises 211

12. Let e be a conditional expression: if et then ec e l s e ea end. The
type of et must be Boolean, and the types of ec and ea must be the
same, say t. Then the type of e is t.

We define the notions of nesting, surrounding, scope and inheritance.

1. Let b be a block: begin var_dcls; stmt_lst end. The scope of any variable
identifier, any record field identifier and any enumerated set identifier
declared in var_dcls is the statement list stmt_lst.

2. If a block b' occurs in the statement list of another block b, then b' is
said to be immediately nested within b, and b is said to be immediately
surrounding b'. b' is in the scope of any identifier defined in b. Any
identifier declared in b is inherited by b' — except if redeclared in b'.

3. Continuing the previous item: If b"s statement list contains blocks b",
then they are also nested within b, and b surrounds b" — but no longer
"immediately".

4. Let for step_id in (lb..ub) do stmt_lst end be any iteration statement.
The scope of step_id is the statement list stmt_lst, including embedded
(i.e., nested) blocks of stmt_lst.

5. Let id be an identifier declared in the var_dcls of a block b with state
ment list stmt_lst. If id occurs in some statement of stmt_lst which is
not a block, then id is said to occur directly in b.

6. Continuing the item just above: If id occurs in some block statement b' of
stmt_lst in which it is not redeclared, then id is said to occur indirectly,
i.e., inherited, in b.

7. Continuing the two items just above: And id's nearest surrounding dec
laration is & — in both cases.

We finally list some of the remaining syntactic well-formedness constraints.
Please formalise these.

1. Programs:
(a) Programs are well-formed if their blocks are well-formed.

2. Declarations:
(a) Let d be a declaration, for example, va r iab le v := value_expression

type type_expr.
(b) A declaration is well-formed if its type expression is well-formed and

if its value expression is well-formed.
3. Statements:

(a) Let & be a block: begin var_dcls; stmt_lst end. No two identifiers,
whether variable identifiers, or record field identifiers mentioned in
var_dcls must be the same. That is, if they occur at different textual
positions in the text of var_dcls then they must be distinct.

(b) The declaration of a variable, say v, of type, say t, establishes a
contribution to the static context of the block b in which it occurs,
and may do so for any inner block b' in which v is not redeclared.

212 8 Syntax

(c) We call such a static context, when we speak of type checking, a
dictionary. The dictionary inherited from outer blocks and modified
by current block declarations is called the current dictionary for all
statements in the statement list of the block.

(d) Any variable identifier of a statement must be declared either in the
block of whose statement list s is part, or in some surrounding block.
That is, must be found in the current dictionary.

(e) The type of a variable identifier is that prescribed in the current
dictionary.

(f) Let for id in (lb..ub) do stmt_lst end be any iteration statement.
i. The iteration "variable" id can only be used in variable reference

expressions vr[id]... of stint_lst (and in its inner, i.e., nested,
blocks).

ii. Thus the occurrence of an iteration statement step "variable" id
gives rise to a contribution to the current dictionary.

iii. The new, the iteration statement ("current" or "local") dictio
nary associates id with the in teger type.

iv. You are invited, please, to think of id designating an index into
a vector value.

9

Semiotics

• The prerequisites for studying this chapter are that you are familiar with
the basic abstraction and modelling principles and techniques: property-
and model-oriented specifications, respectively representation and opera
tion abstractions in terms of sets, Cartesians, maps and functions. Under
standing of Chap. 3 is also an advantage.

• The aims are to summarise and extend the concept of semiotics as consist
ing of the concepts of pragmatics, semantics and syntax, and to emphasise
the utter importance of considering and of modelling the world semiot-
ically: (i) adhering to pragmatics, (ii) focusing on achieving pleasing se
mantic types and functions, and (iii) based on pleasing abstract syntaxes.

• The objective is to free your mind so as to achieve a proper choice,
emphasis and prioritisation of pragmatics, semantics and syntax in all
phases of software development.

• The treatment is from systematic to formal.

9.1 Semiotics = Syntax © Semantics © Pragmatics

The language we use, whether informal or formal, whether our mother tongue,
or a professional, i.e., occupational language, determines much of our intellec
tual thinking, as well as our material action. Mastery is therefore expected
wrt. linguistic notions of language: (i) syntax, as formalisable rules of form,
i.e., of syntactical systems for expressing such rules, of abstract ways of ex
pressing this as well as concrete ways — where the latter corresponds to how
we "utter" [or concretely model] sentences, respectively model conceptual [i.e.,
data] structures; (ii) semantics, as formalisable rules of meaning, i.e., of se
mantical systems for expressing meaning of sentences or of conceptual [data]
structures; and (iii) pragmatics, as ("difficult to formalise") rules of use, i.e.,
of conventions as to why we utter certain things, why we "figure" or "picture"
certain conceptual [data] structures. This mastery is needed, but the ability to
express and to model "things", syntactically and semantically, while observing

214 9 Semiotics

proper use, including effective communication (as also determined by prag
matic concerns) may be considered an art! Much can, however, be learned,
and much confusion can be avoided, if we properly understand basic notions
of syntax, semantics and pragmatics.

We have therefore investigated, and we shall further, in this chapter, treat
various notions of syntax, various notions of semantics, and various notions of
pragmatics, so that you can handle these concepts with ease. We have found
— in the context of computing science and of software engineering — that
the kind of understanding of these concepts (syntax, semantics, pragmatics)
that we will put forward here, has been put to good use over the past 30
years and will undoubtedly come to good use for many more years. After all:
computing is a rather mechanistic world and the 'theory of semiotics' [73-
75,364,365,394-397,553] as here promulgated, the sum of syntax, semantics
and pragmatics, is a relevant one, one that seems to fit much in this world of
computing. But not all!

Why is "this thing" about language, and therefore syntax, semantics and
pragmatics, so important? It is important because almost all we do, in soft
ware engineering is describing (is prescribing, is specifying): is creating small,
to medium, to indeed very large scale descriptions (etc.). So we communicate,
first with one another, within and across stakeholder boundaries and commu
nities, then with the computer. Our final descriptions are actually the basis
for computations, i.e., for executions by computers. If these programs have
to be utterly precise, syntactically as well as semantically, is it therefore any
wonder that the prior communications — those among and between the soft
ware developers and the other stakeholders — must also be utterly precise?
A mistake in the use of language, an imprecision, an unintended looseness
or ambiguity made in early stages of development, in, for example, a domain
description, may only be, and, as evidence shows, is only discovered long after
the installation and first use of the software. No wonder we need to be utterly
precise all the time!

9.2 Semiotics

Characterisation. By semiotics of a language, or a system of sentential or
other structures, we understand a "sum" of the:

• pragmatics
• semantics and
• syntax

of that language or system. •

What we mean by "sum" is the subject of this chapter. We have listed the
components of semiotics in the direct order of their "importance". When we,

9.3 Language Components 215

being serious, utter something then there is a reason for doing so: the prag
matics. In what we utter there is a meaning: the semantics. How we utter
it, depending on the language we use, is formed by grammatical rules: the
syntax.

Normally, treatment of pragmatics, semantics and syntax is in the re
verse order of their importance. The reason (metapragmatics as it were) for
others doing so is partly historical, partly of convenience. First, the means
for formalising syntax were discovered, then means for formalising semantics
were discovered. Current technology seems not to provide a ready means for
formalising pragmatics. Formal syntactical systems are simpler than formal
semantical systems.

This chapter, although it is rather large, does not substitute for a proper
text on semantics. We refer to such textbooks as [93,158,432,448,499,533].
This chapter, however, treats the subject of programming language semantics
from a point of view which we consider complementary to those views pre
sented in the above-referenced literature. The treatment of those books lays
a firm mathematical foundation for the semantics specification languages and
deals with such issues as congruence between two different semantic definitions
of the same languages, that is, the correctness of one wrt. the other.

9.3 Language Components

The following decomposition of language concepts and their explication is
taken from [7]. The syntax-semantics-pragmatics sub-structuring is believed
to be due to Morris [73-75,364,365,553]. In fact, the term 'semiotics', as we
use it, is really to be taken in its widest meaning [84].

Language concepts embody several constituent concepts. Some are impor
tant, others are not important to the subject of these volumes.

Characterisation. Phonetics is the study of and knowledge about how
words are realised as sounds. In automatic speech recognition systems pho
netics is a core issue. •

Characterisation. Morphology is the study of and knowledge about how
words are constructed from basic meaning units called morphemes. Again we
shall not treat this subject further in these volumes. •

Characterisation. Semiotics is the study of and knowledge about the struc
ture of all 'sign systems'. •

Conventional natural language as spoken by people is but one such system.1

1 Examples of sign systems are sound (audio), sight (visual), touch (tactile), smell
and taste and in all contexts: dance, film, politics, eating and clothing [84].

216 9 Semiotics

Characterisation. Syntax is the study of and knowledge about how words
can be put together to form correct sentences and of how sentence words relate
to one another. •

This is, obviously, one of our central concerns: the correct syntactic use of
specification, design and programming languages, and the design of effective
such languages, and, as we shall see in Section 9.5, systems.

Characterisation. Semantics is the study of and knowledge about the mean
ing of words, sentences, and structures of sentences. •

Semantics is perhaps the most crucial issue treated in these volumes.

Characterisation. Pragmatics is the study of and knowledge about the use
of words, sentences and structures of sentences, and of how contexts affect the
meanings of words, sentences, etc. •

9.4 Linguistics

A number of concepts need be characterised:

Characterisation. Linguistics is the study of and knowledge about lan
guage.

Characterisation. Natural linguistics is the study of and knowledge about
national, ethnic, cultural ancient and/or extinct languages. •

Characterisation. Computational linguistics is the study of and knowledge
about natural language processing by machine. •

We shall not be concerned about this aspect!

Characterisation. Language Comprehension: In building computer sys
tems for the support of man-made systems we build models of terms and
fragments of sentences of the languages spoken by stakeholders in these sys
tems. •

Examples of man-made systems, i.e., domains, are: financial services, health
care, transport, manufacturing, etc. Comprehension, effectively understanding
what stakeholders of such domains utter, describe, etc., is of crucial concern.

Since natural languages are inherently informal and since "human frailty
is endemic", we shall never come to completely mechanise natural languages.
We shall forever have the greatest difficulties in ensuring that whatever world
knowledge has been communicated by words and sentences has not been detri
mentally misunderstood. The outlook may seem bleak. But we do know from

9.5 Languages and Systems 217

successful uses of computers, in fact, from adequately functioning human en
terprises and institutions, tha t "all is not lost". There is indeed a large body
of knowledge, which, when adequately mastered, will help its users in achiev
ing significant support in their work towards high-quality computing systems.
Mastery of a great number of language concepts, many covered in this and
the next chapters, has shown to assist greatly.

9.5 Languages and Systems

The problem tackled in this section is the following: Sometimes we refer to
a s tructure2 of composite phenomena as a system, sometimes as a language.
Wha t is the distinction? Is there any? In this section we basically equate an
intellectual concept of language with a formal, intellectual, physical world
phenomenon of system.

As we shall see, a language is a structure (i.e., a formal system) consisting
of a syntax, a semantics and a pragmatics. Languages, in the conventional
sense, are spoken and heard, and are written and read. They manifest them
selves in the form of sentences, or as we shall see it, as descriptions, i.e.,
designations, definitions and refutable assertions collected in specifications,
designs and programs.

A real world, physical system is, in this sense, perhaps not immediately
conceivable as a language in the previous sense. A system, and since we em
phasised its real world, physical, i.e., phenomenological,3 nature, is perhaps
more conventionally perceived by what can be seen through the eyes — when
what is seen is not written texts — rather than heard through the ears or read
as texts . We shall, however, in these volumes insist tha t the distinction be
tween a formal system and a real world, physical system is merely a fiction, is
merely psychologically and pragmatically motivated. We shall claim tha t since
we have to describe these real world, physical systems they become linguistic.
Tha t since some, if not most, of these systems (viz.: railways, manufacturing,
airports, fisheries industry, health care, etc.) contain sizable language com
ponents, they can also be understood as languages (or sets of languages),
namely including those spoken by actors or stakeholders of these systems.
And since we get to properly understand these real world, physical systems,
through verbal and otherwise communicated (e.g., written) language-based
discussion, they are languages. Some system components, such as a refraction

2By a structure we mean an aggregation of any number (incl. 0) of "things", that
is, phenomena or concepts, in such a way that we can model them mathematically,
for example, in terms of some functions, typically over Cartesians of numbers, sets,
lists, maps and functions (over these), or logically in terms of a set of axioms. The
term 'structure' is therefore basically the mathematical, or the logical structure of
these mathematical (incl. logic) entities.

3By phenomenology is understood the study and knowledge about what can be
perceived.

218 9 Semiotics

tower in a petrochemical plant, are describable, for example, in the form of
the languages of differential equations and fuzzy control. Note the distinction
between formal systems, on the one hand, and real systems or (real, human
or formal, i.e., programming) languages, on the other hand. The former allow
you to express models of the latter.

9.5.1 Professional Languages

We shall confine ourselves only to look at a small subset of languages: The
languages of domain-specific Gelds, such as the those used by those people for
whom we make software. These are, on one hand, the professional languages of,
for example, the financial service industry (of banking people, of insurance
people, of stock exchange staff and stock brokers and traders), of railway
staff, of the air transport industry (of airport, airline and air traffic control
staff) and, on the other hand, the professional language of software engineers:
the specification, design and programming languages. We shall refer to the
former group of languages as the application domain-specific languages and
to the latter group as the software engineering languages. Together we refer
to these languages as the professional languages.

Thus, in these volumes, we are not concerned with languages in general,
that is, those used in everyday communication. We are only concerned with
those (albeit natural language) subsets that relate to subjects that might be
the target of computing.

The professional languages are characterised by a relatively precise use of
terms. Certain verbs, nouns, adjectives and adverbs stand in relatively precise
relations to the phenomena they designate — they are, so to speak, part of
the jargon of the professional trade.

Example 9.1 Professional Languages: Some examples of professional lan
guage utterings are: (i) to offer a block of stocks for sale, (ii) to dispatch a
train according to the timetable from one station to a next (station) along a
specific line, (iii) to plan a project as a set of actions that use certain resources
at certain locations and according to a certain schedule, (iv) to abstractly
model the domain of a certain application and to model the requirements to
support certain operations in that domain. •

Examples 9.1 (i—iii) are all application domain specific. Example 9.1(iv) is from
software engineering.

The point we are now making is therefore this: with the techniques of
these volumes, perhaps culminating with the description principles outlined
in Vol. 3, Chaps. 5-7, we will be able to construct precise informal as well as
formal descriptions of what these terms mean. As we shall see in this chapter,
the terms are syntax, they are used in pragmatically determined (i.e., context
conditioned) situations, and they have a semantics. It is our job, as software
engineers, to make sure that we understand as precisely as is possible how

9.5 Languages and Systems 219

these three aspects, pragmatics, semantics and syntax, relate to the profes
sional language terms.

9.5.2 M e t a l a n g u a g e s

We cannot describe a language in itself. Tha t would lead to paradoxes and
anomalies. Thus the language used in describing another language is called the
metalanguage of the former. These volumes bring forth many metalanguages:
natural language, in general; and mathematics and logic in particular; RSL,
in general; and CSP, the D u r a t i o n C a l c u l i (DC) languages (Chap. 15) and
other formal languages in particular.

We will, however, not present the full formal syntax and semantics of these
languages — other than generally expressing tha t there is a (set of) type(s) of
syntactic values, a set of types of semantic values and denotations, cf. Sect. 3.2,
and a set of semantic functions (M) :4

t y p e
Syn, Sem

DEN = Sem ^ Sem
value

M: Syn -> DEN

where the semantic functions assign denotations to each syntactic value. The
design of a language is therefore based on properties of the domain within
which it is going to be used. Hence it is also based on the pragmatics of the
domain, the design of its semantic types ("what it is all about") , the design
of its syntactic forms, and the definition of semantic functions. We refer to
internal reports for the precise mathematical semantics of RSL [201,202,351-
354].

9.5 .3 S y s t e m s

We shall provide complementary answers to the question: "What is a sys
tem?" : As physical and as linguistic "devices"!

A Phys i ca l S y s t e m V i e w

In the first, the conventional, "mechanistic" view — which, in the present
formulation is due to Pirn Borst, Hans Akkermans and Jan Top [60] — a
system syntactically consists of a set of disjoint components, which are parts ,
where parts may have subparts which are par ts , and where components have

We have simplified and summarised the syntactic, semantic and denotation
types considerably. First hints were given in Sect. 3.2. The present chapter will
amply illustrate highly structured syntactic, semantic and denotational types.

220 9 Semiotics

terminals, with some or all terminals of one component being connected to
terminals of other components by means of connectors. A connection is a
sequence of terminals with "in-between" connectors.

A system semantically stands for the flow of "things" (energy, control,
information, or other) across connections, with parts designating and host
ing actions which consume and/or produce "things", and with disconnected,
"dangling" terminals designating interfaces to a surrounding world.

Examples of Physical and Nonphysical Systems

It is time for examples.

Magnet

k j Lever

DD

I
Part

with two

DCIIUW5

3
Pari

with two

one wilh one

Subpart

Fig. 9.1. An air pump, i.e., a physical mechanical system

Example 9.2 System Illustrations:
Figure 9.1 illustrates the above for the case of a physical air pump system.
Figure 9.2 might illustrate a rocket on a launch vehicle with six essential

components: four wheels, a 'flatbed' and the rocket, which is assumed "flexi
bly" connected to the flatbed. Wheels are likewise connected to the flatbed.

Figure 9.3, which is not a physical system, illustrates the related set of
documents and also the set of related activities that are relevant to the devel
opment of a typed, parallel programming language. These are the language
design, including syntax and (static and dynamic) semantics, the require
ments (including their staged and stepwise development of semantics analysis
requirements and requirements to generated code and to a runtime system for
the support of multiple tasks), and the software design (a likewise staged and
stepwise development of a multipass administrator and individual frontend
and backend passes). Chapters 16-18 and Vol. 3, Chap. 27, Sect. 27.2 will
illustrate what is behind a picture like that of Fig. 9.3.

9.5 Languages and Systems 221

6 ^ ^
Fig. 9.2. An "inverted" pendulum

BE:
Domain Engineering

Abstract
Syntax

Denotational

Semantics

Semantic
Analysis

Operational
Static
Semantics

BE T

Mechanical

Semantics

Compiling
Algorithm

R: Requirements Engineering

Compiler &

Runtime

Structure

Fig. 9.3. A development graph for Ada compilers

Figure 9.4 illustrates a rail net system.
Figure 9.5 illustrates a software architectee as a system of n -f 2 compo

nents (n clients (three shown, the rest indicated by ellipses (. . .)) , a timetable-
based reservation database and a staff) with (data communication) connec
tions allowing the flow of control and information.

Figure 9.6 illustrates a program system structure as a system of n -f 8
components. This latter figure relates to the former.

The last two figures are conceptual systems, not necessarily pfrysical sys
tems. The clients and the staff may be represented physically by terminals, but
some of the client and staff software may reside, physically, i.e., storagewise,
together with the timet able-based reservation database. •

222 9 Semiotics

Stat

[

on

v

Line

i i

Platform

: Track

'

\
1

Switchable Crossover >
H 1 |

' Linear Unit

Switch

x? J

-*=

Station

Siding

Fig. 9.4. A railway net

Client

Client
Timetable Staff

Fig. 9.5. A conceptual airline timetable system

client

client

client

...

client

. •

]j^-

client

mpx

connector

q_ CCJ

'L^,

A

q_a

queue

q_cc_o

:_o

v _

A

arbiter

mpx

connector

aq j as

v _

A
arbiter

aq o
q_acj

t t j

-u '

_o

' 1 ^

A

arbiter

timetable

connector

'
timetable

arbiter

staff

connector

as_i

tt_o

S J

' 1 ^

A

S_0

staff

Fig. 9.6. The software components of an airline timetable system

A Linguis t ic S y s t e m s V i e w

In the second, the linguistics view, a system determines one or more lan
guages. For a given (professional) language, and referring to the "physical
systems" view: The parts and components define certain nouns. Terminals

9.5 Languages and Systems 223

define values. An "inside" of parts (and components) defines certain verbs.
Dependent on whatever descriptive text may accompany a system diagram,
one may define additional nouns, verbs, adjectives, adverbs, etc. Often a part
is thought of as being a "carrier" of a behaviour, and several parts as a set
of parallel behaviours. What the nouns, verbs, adjectives, adverbs, etc., may
designate may be as follows: The things "residing" inside the parts and com
ponents may determine RSL-like types, classes, schemes and objects. That is,
they may designate semantic notions and their structuring: Disjoint parts may
correspond to a Cartesian type, and contained parts may correspond to a set,
list or map type. Components typically correspond to a class or scheme defi
nition. The parts and components may correspond to functions or processes.
The terminals and connectors may determine any of a number of modelling
choices: A set of two or more terminals connected together may correspond
to a shared variable or object, in which case their connector corresponds to
variable or object access from different functions (processes). Or a set of two
or more terminals connected together may correspond to an input/output
communication between two processes.

Example System Languages

Two examples of sentences of professional languages will be given.

Example 9.3 An Air Pump System Language: We refer back to Fig. 9.1
which illustrates an air pump system. The air pump consists of four com
ponents: a power supply, a pump, an air supply and an air load. The pump
consists of six parts: a coil/magnet, a lever, a bellows arrangement, two valves
(1 and 2) and an air reservoir. The air supplies are connected to respective
valves by means of air pump to air supply fittings. The power supply is con
nected to the coil/magnet. The lever is connected to the coil/magnet and the
bellows arrangement, which again is connected to the air reservoir — with
the air reservoir again being connected to both valves. •

For simplicity we focused here only on the assembly entities and their "topo
logical" layout. We could have gone on to explain the inner workings of the
parts and the transfer of energy (etc.) between the parts and components.

Example 9.4 A File System Language:
A file system consists of four parts: A sentinel, a Sle directory, a set of

disjoint page directories and a set of disjoint pages (Fig. 9.7). The sentinel
and the file directory is kept in storage, while the page directories and pages
are kept on disks. The file directory is a linked list of disjoint records with
three fields: a next record link, a file name and a storage to disk page direc
tory address. A first record is designated by the sentinel. A page directory is
an indexed table whose entries address distinct pages. Pages are contiguous
sequences of bytes.

224 9 Semiotics

We see that storage and disk are chosen as components, the sentinel, the
file directory and the respective collections of page directories, and pages
are proper immediate, i.e., direct parts. We also see that records, any one page
directory and any one page are direct parts of these latter, and that the fields of
records and page directory table entries again are direct parts of the previous
parts. The pointer, link and address fields are terminals, and the pointers
(themselves, i.e., the pointer, link, address values) are the connections. •

File Directory

Storage

Legend:

s: Sentinel

Internal
Storage Pointer

Storage
to Disk Pointer

Internal
Disk Pointer

3

4

5 -- - | - - . -

D

D: Page
Directories

Dn

1 J -

2 - - - | - - -

D

Pages P

Fig. 9.7. A simple file system

Example 9.5 A File System Formalisation, I: We can formalise the system
diagrams. We show first a simple, straightforward "solution" to the example
of the software engineering of The File System'.

Earlier and later examples have and will illustrate models of physical,
man-made systems.

type
FS = STG x DSK
STG = S x FD
DSK = PDS x PGS
S = = nill() | ptr(l:LOC)
FD = LOG -nf REC
REC :: S x Fn x Dn
PDS = Dn jft TBL
TBL = Entry*
Entry = = entry(pi:PgInfo,pn:Pn)

9.5 Languages and Systems 225

PGS = Pn -# PAGE

The file system (fs:FS) consists of a storage (stg:STG) and a disk (disk:DSK).
The storage contains (and we show only that) a sentinel (s:S) and a file di
rectory (fd:FD). The disk (disk:DSK) consists of page directories (pds:PDS)
and pages (pages:PGS). The sentinel is either nil, i.e., "contains" no storage
location value, or contains a valid storage location value. The file directory
(fd:FD) maps locations (LOC) to records (REC). A record has three fields:
a (next) sentinel, a file name (fn:Fn) and a directory name (dn:Dn) which is
like a disk address. The page directories map disk addresses (dn:Dn) to tables
(tbl:TBL). A table is a list of entries (Entry), and an entry has two fields:
a page information field (pi) and a page name (pn) field. The page names
are treated like (other) disk addresses. The pages map a disk address to a
page (page:PAGE). We omit expressing the usual constraints that ensure no
"dangling" pointers: that sentinel storage location values are indeed proper
storage locations of records, and that disk addresses point to appropriate page
directories or pages.

value
fstrec: STG 4 REC
fstrec(sid) = fd(l(s))

pre 3 loc:LOC • s=ptr(loc) A l(s) € dom fd

nxtrec: S 4 STG 4 REC
fstrec(s)(,fd) = fd(l(s))

pre 3 loc:LOC • s=ptr(loc) A l(s) £ dom fd

pgdir: Dn H> DSK 4 TBL
pgdir(dn)(pds,) = pds(dn) pre dn g dom pds

pg: Dn x Na t 4 DSK 4 PAGE
pg(dn,i)(pds,pages) = pages(pn((pds(dn))(i)))

pre dn £ d o m pds A i 6 inds pds(dn)
A pn((pds(dn))(i)) € dom pages

The type definitions reflect the system part and component structure. The
fstrec, nxtrec, pgdir and page function definitions reflect the system terminals
and connectors.

The types and functions are semantic models of syntactic software engi
neering professional language terms: storage, disk, file directory, file names,
pointers (links, chains, addresses), page directories, page directory, table, in
dex, pages and page, covering a view of information (noun), and get first file
directory entry, get next file directory entry, get page directory and get page,
covering a view of operations (verbs). •

226 9 Semiotics

Example 9.6 A File System Formslisation, II: The previous model (Exam
ple 9.5) expressed an abstract view, concentrating on the storage, disk, file
directory, page directories, page directory, pages, and page data structures and
on (some of) the basic, you may say primitive, functions that involve these
data structures (fstrec, nxtrec, pgdir, and pg). The next model looks at the
same issues bi;t now "endowing and enriching" them with a process view.

type
MSG = = getpgdir(dn:Dn) | getpg(dn:Dn,i:Nat)

channel
s_d : MSG | TBL | PAGE

value
storage: STG -» out s_d in s_d Unit
storage(stg) =

(... ; s_d!getpgdir(d) -> s_d?tbl ; ... ; s_d!getpg(d,i) -> s_d?page ;
... ; let stg' = ... in storage(stg') end)

disk: DSK ->• out s_d in s_d Unit
dsk(pds,pages) =

s_d?getpgdir(dn) —»• s_d!pgdir(dn)(pds,) ; dsk(pds,pages)
D s_d?getpg(dn,i) ->• s_d!pg(dn,i)(pds,pages) ; dsk(pds,pages)
[] ... -> ... ; let disk = ... in dsk(disk) end

A Flowchart Language

The next example is quite extensive. It can be skipped in a first reading.

Example 9.7 Flowcharts:
The domain of flowcharts includes that of sequential programs, usually

presented in the linear form of lines of possibly structured statements. Some
statements may contain or be goto statements. Labelled statements are then
the target of such gotos. But the reader of a sequential program has to "link
up", as it were, the goto source and targets. Flowcharts show these "link-ups"
explicitly. So we need to make precise the syntax of sequential programs and
their visual counterparts: that of flowcharts.

The domain of flowcharts also includes their animation. In the domain we
do not concretise exactly how the animation may take place: It may be your
tracing, with some finger or pencil, the flow of control, or your placing a small
token (a pebble or a coin) successively along the flowchart elements, or other.

It is the purpose of a subsequent requirements to make precise exactly how
we see a computer system providing the visualisation and animation. But first
we must get the basic notions right: sequential programs, flowcharts, and the
intrinsics of visualisation and animation.

9.5 Languages and Systems 227

We describe, informally and formally, the syntax of simple, unstructured
flowcharts. We then describe a variant of an abstract interpretation, i.e., se
mantics of such flowcharts, namely a form of flowchart animation. Finally we
describe structured flowcharts.

Informal Syntax of Simple Flowcharts

We give an example description of the syntax of simple flowcharts that is
terse, i.e., is short and describes only the very essentials.

• A flowchart consists of a number of uniquely labelled boxes infixed by
trees.

• There are four kinds of boxes:
• Circular "Begin" and circular "End" boxes, labelled with B's, respec

tively E's. Any one flowchart has exactly one B-box and one or more
E-boxes.

• Rectangular "Statement" boxes, (externally) labelled with some dis
tinct s, and internally filled out with some statement, S, — in a se
quential programming language that we shall otherwise not detail. Each
statement box has exactly one input and one output.

• Diamond-shaped "Predicate" boxes, (externally) labelled with some
distinct p, and internally filled out with some predicate — in the oth
erwise not detailed sequential programming language. Each predicate
box has exactly one input and two outputs: one affixed with true, the
other with false.

• There is one kind of tree. The root of the tree is indicated by an arrow.
The one or more leaves of the tree are left further unspecified. Each tree
infixes two or more boxes: The arrow is incident upon a box, i.e., provides
"its input". The leaves "provide box outputs".

• We say that a pair of boxes is connected if there is a tree one of whose
leaves designates the first box of the pair and whose arrow designates the
second box of the pair.

• A path of a flowchart is a pair of labels of connected boxes of the flowchart.
• A route of a flowchart is a sequence of labels such that an adjacent pair of

the sequence is a path of the flow chart.
• A trace of a flowchart is a route whose first label is that of a begin box

and whose last label is that of an end box.
• A cycle of a flowchart is a route whose first and last labels are the same.
• A well-formed flowchart is a flowchart such that for every box there is a

trace of the flowchart that contains the label of that box.

That's all!

228 9 Semiotics

A Simple Flowchart

Figure 9.8 shows a simple flowchart according to the above description. There
are seven trees, of which five are simple lines and two are binary trees. 51,52,
etc., stand for statements, and P1,P2 for predicates.

The notion of box labels is introduced solely to handle a number of tech
nicalities such as for example well-formedness.

The syntax description was informal, but supported with an illustrative
picture.

Fig. 9.8. A simple flowchart

Formal Syntax of Simple Flowcharts

We now give a formal syntax of simple flowcharts.

type
L, S ,P
FC' = Box-set, FC = {| fc:FC' • wf_FC(fc) |}
Box = = mk_B(lbl:L,l:L)

I mk_S(from:L-set ,lbl:L,s:Stmt,to:L)
| mk_P (from:L-set,lbl:L,p:Pred,tofalse:L,totrue:L)
I mk_E(from:L-set,lbl:L)

value
wf_FC(fc) =

let lbls:L-set = { lbl(b) | b:Box • b € fc } in

9.5 Languages and Systems 229

3 ! beg:Box, 3 e:L,l:L •
beg € fc A beg=mk_B(e,l) A V b:Box • b 6 fc =>

case b of
mk_B(,l) -> 1 € Ibis,
mk_S(ls„,l) ^ Is U {1} C Ibis,
mk_P(ls,,,fa,tr) -+ Is U {fa,tr} C Ibis,
mk_E(ls,e) —> Is C Ibis end

A ... /* well-formedness wrt. traces */
end

Structured Flowcharts

The notion of simple flowcharts corresponds to sequential programs with la
belled statements and conditional gotos. The flowchart of Figure 9.8 thus
corresponds to the following sequential program:

b:
si: SI;
s2: S2;
p i : if PI then goto s2 end:
s3: S3;
p2: if P2 then goto p i end;
s4: S4;

e:

Structured statements are introduced in order to avoid "wild" gotos.
Therefore we now cover the notion of structured flowcharts. We do so by

first introducing the notion of structured statements. Recall that statements of
the flowcharts introduced above were designated by simple rectangular boxes.
Now we wish to restrict flowcharts to only contain such compositions of boxes
and trees such that any flowchart can be simply decomposed to a sequence of
subflowcharts where each has exactly one input box and one output box —
as we shall now see.

A structured statement has either of the forms informally expressed below:

skip
| var := expr
| s tmt_l ; stmt_2 ; ... ; stmt_n
| if expr then stmt else stmt end
| while expr do stmt end

To each of the structured statements there corresponds the "extended"
flowchart shown in Figure 9.9. The extension is that of providing shaded,
respectively black, begin and end boxes.

Composition of these extended flowcharts now proceeds as described:

230 9 Semiotics

• A structured flowchart is the composition of one or more extended
flowcharts.

• Composition (";") of two extended flowcharts is the juxtaposition of these
extended flowcharts such that the (black) end box of one "cancels" the
(grey) begin box of the other — whereby the single arrow into a black
box (i.e., circle) coincides with the single arrow out from a grey box (i.e.,
circle).

• Composition is associative:

ci;(c2;c3) = (ci;c2);c3 = ci;c2;ci

• When no more compositions are needed the remaining grey box becomes
a begin box and the remaining black box becomes an end box.

We leave it as an exercise to formalise structured flowcharts.

T
skip

1
•

T
var := expij

1
•

]•
stmtl

\
stmt2

stmtn

\

false ^ - \ ^ t r u e false ^ J ^ t r u e

P^l

Fig. 9.9. Structured flowcharts

System Diagrams Versus Formal Specifications

Some comments may be in order. The terminals are now represented by the
specific guarded and unguarded input or output RSL commands. The connec
tors are represented by the channels. The two components are represented
by respective processes, and the various parts are represented by appropriate
data structures.

Example 9.8 An Air Pump System Fornmlisation: We refer to Fig. 9.1. We
can consider each of the boxes, i.e., each of the parts, a process, each of the
connections a channel. We could structure their formalisation into one scheme
for each of the three kinds of components, with one class for each part, and
then instantiating one power supply, one pump and two air supply objects.

9.5 Languages and Systems 231

We will first summarise a process and channel structuring. ps_p, p_as,
p al stand for power supply to pump, pump to air supply, and pump to air
load channels. These could be conceived of as externally observable. cm_l, l_b,
b_r, r_v_l, r_v_2 stand for coil magnet to lever, lever to bellows, bellows to
reservoir, and reservoir to the two valve channels. They could be conceived
of as internally observable. air_pump is the overall system process. It is the
parallel composition of four processes: power_supply, pump, air_supply and
air_load.

channel
PS_P) P_aS! P_&1
cm_l, l_b, b_r, r_v_l, r_v_2

value
air_pump: Unit —> Unit
air_pump() = power_supply() ||pump()||air_supply()||air_load()

power_supply: Unit —> in ... out ps_p Unit
pump: Unit -> in ps_p out p_as_ l , p_as_2 Unit
coil_magnet: Unit —>• in ps_p out cm_l Unit
lever: Unit —> in sm_l out l_b Unit
bellows: Unit —y in l_b out b_r Unit

power_supply() = ...

pump() = coil_magnet() ||lever() ||bellows()||reservoir() ||valves()
coil_magnet() = ...
lever() = ...
bellows () = ...

Before going on: You may think of these RSL/CSP-like process expressions as
specifying a "simulator" for the air pump. It "is not the air piunp itself", only
a model. As such the model cannot actually perform the air "pumping". There
is no power supply, there is no lever, there is no bellows arrangement, etc. The
individual processes "fake" that, but can be used as a basis for implementing
a "demo", that is, a software package which when deployed may "animate"
the functions of the air pump.

value
reservoir: Unit -> in b_r out r _ v _ l , r_v_2 Unit
reservoirQ = ...

valves: Unit -> in r _ v _ l , r_v_2 out p_as, p_al Unit
valves() = valve_l()||valve_2()

valve_l: Unit —> in r _v_ l out p_as Unit

232 9 Semiotics

valve_l() = ...

valve_2: Unit —> in r_v_2 out p_al Unit
valve_2() = ...

air_supply: Unit —> in p_as Unit
air_supply() = ...

air_load: Unit —» in p_al Unit
air_load() = ...

9.5.4 System Diagram Languages

We started with a systems view formulated in terms of conventional (to wit:
mechanical) engineering diagrams. And we supplied "ourselves", being in soft
ware engineering, data structure diagrams. Thus there is a metalanguage of
diagrams. We could not and cannot, not immediately that is, propose a se
mantics that would cover all such diagrams: mechanical as well as software
engineering, civil engineering, etc. There is simply too big a "spread" in the
denotations of boxes and arrows — as this chapter also shows. For both kinds
of diagrams we instead provided specific semantics in terms of RSL specifi
cations that were said to be specific to the specific diagram. Had we had a
universal diagram language and its semantics, and if that semantics could be
parameterised to the specific engineering field or subfield, as the case may be,
then — perhaps — we could see our specific formalisations as "compilations"
from the specific instances of the diagrams to the specific formalisations —
given suitable actual arguments to be substituted for the formal parameters.

9.5.5 Discussion of System Concepts

We observe and summarise the following: The physical system notions of
parts, components, terminals and connectors can be related to both classical
engineering system concepts and to software system concepts. There are two
complementary views of systems: The physical view and the linguistic view.
The structure and contents of systems relate — via the ways in which the
structure and contents are described — somehow to the formalisation of the
system. The 'somehow' — how to achieve a pleasing, concise and (validly) rel
evant relation — is an art. But this series, in Vol. 3, Chaps. 5-7, presents many
principles, techniques and tools that help achieve such relations: from the in
formal to the formal. We can schematically formalise the above. The meanings
(Me) of syntactic structures of linguistic systems are usually mathematical

9.6 Discussion 233

functions over semantic types. Whereas the meanings (M^) of syntactic struc
tures of physical systems are usually processes. The latter are, of course, also
mathematical functions over semantic types, but their signatures differ:

t y p e
LingSyntax, PhysSyntax, SemType
DEN^ = SemType -> SemType
DEN^ = U n i t ->• in icl ... out oc l ... U n i t

value
Mf. LingSyntax ->• DEN^
Mf. PhysSyntax -> D E N 0

A syntactic structure of a linguistic system is usually some text. A syntactic
structure of a physical system is usually the physically manifest mechanical
structure, but may be described by some diagram.

9.5.6 S y s t e m s as Languages

So we can claim tha t systems are languages. A system is "inhabited" by peo
ple, and, when "speaking" professionally about a system, they use terms tha t
designate system phenomena. So we should kindly advise the reader not to
make too much fuss about any difference: When an ISO standard deals with
"systems", it is actually characterising a limited kind of par t /whole composi
tional and compositional, cohesive or not cohesive language properties. The
conclusion tha t we draw from all this is expressed in the principle and the
techniques given next.

Princ ip le s . Physical Systems: Physical systems are t reated as linguistic sys
tems. •

Techniques . Physical Systems: Models of physical systems therefore centres
around the identification and modelling of semantic and syntactic types and
of functions (including) processes over these. •

9.6 Discussion

It is t ime to summarise.

9.6.1 Genera l

The point of showing the many figures of this chapter was to show you exam
ples, primarily of informal syntax, and then, for some of the examples, and
derived from those syntax examples, of related semantics. The diagrams were
intended, by those who first drew them, to denote a whole class of artifacts.
The meaning of the diagrams, the possibility of redrawing them with slight
changes, and exactly which artifacts might "satisfy" respective diagrams was
informally explained by those proposing the diagrams.

234 9 Semiotics

9.6.2 Principles, Techniques and Tools

We enunciate only a principle. The techniques and tools of semiotics are as
for respective parts: pragmatics, semantics and syntax.

Principles. Seek the semiotics of whatever "structure" of phenomena and
concepts that you come across: Look for and discover syntactical structures;
ask for, find and explore semantical structures; and inquire, all the time, about
the pragmatics. •

9.7 Charles Sanders Peirce

Of several founders of the field of semiotics, in particular the concept of signi
fication, we single out Charles Sanders Peirce. The quoted paragraph is based
on material from the Free Online Dictionary [118]:

Charles Sanders Peirce (1839-1914) studied philosophy and chemistry
at Harvard. Peirce's place as a founder of American pragmatism was
secured by a pair of highly original essays that apply logical and sci
entific principles to philosophical method. In The Fixation of Belief
(1877) he described how human beings converge upon a true opinion,
each of us removing the irritation of doubt by forming beliefs from
which successful habits of action may be derived. This theory was ex
tended in How to Make Our Ideas Clear (1878) to the very meaning of
concepts, which Peirce identified with the practical effects that would
follow from our adoption of the concept. In his extensive logical stud
ies, Peirce developed a theory of signification that anticipated many
features of modern semiotics, emphasizing the role of the interpreting
subject. To the traditional logic of deduction and induction, Peirce
added explicit acknowledgment of abduction as a preliminary stage in
productive human inquiry.

We recommend selected books on theories and philosophies of signs, pragmat
ics and semiotics: [394-397].

9.8 Bibliographical Notes

Several scholars, in addition to Peirce, have contributed to semiotics. Among
these we single out Carnap [73-75], and Morris [364,365]. Heinz Zemanek
brought my attention to the works of Morris [553].

9.9 Exercises 235

9.9 Exercises

Exercise 9.1 Structured Flowcharts. We refer to Example 9.7. Please com
plete that example by providing a syntax definition for structured flowcharts
as described at the end of that example.

Exercise 9.2 STIL: Semantic Meaning Functions. This exercise completes
Exercises 6.3-6.5 (pragmatics); 7.3-7.7 (semantics); and 8.7-8.8 (syntax).
Please formalise the semantic functions of STIL.

Exercise 9.3 NaTaTIL: Named Types and Typed Imperative Language:
This exercise is the second in a series of four exercises: (1) STIL: Exercises 6.3-
6.5, 7.3-7.7, 8.7-8.8 and 9.2, (2) the present exercise (NaTaTIL), (3) DiTIL:
Exercise 9.4, and (4) DaUTIL: Exercise 9.5.

Explication: NaTaTIL, as a programming language, represents a further
development of the previous language STIL. The change in NaTaTIL with
respect to STIL is only in the type "apparatus": Wherever in a STIL variable
declaration a ground term type expression occurred a type name shall occur
instead. And therefore we need the possibility of a new item in the block
preamble. That is, where before only variable declarations occurred, now also
a set of one or more type definitions shall occur:

1. By a set of one or more type definitions we understand a set of uniquely
identified, i.e., type-named, type expressions.

2. By a type expression we mean either a scalar or a compound type expres
sion.

3. A scalar type expression is the boolean type literal, or the in teger type
literal, or the f l oa t type literal, or the charac ter type literal.

4. A compound type expression is a vector type expression or a record type
expression.

5. A vector type expression consists of two parts: a (low integer to high
integer numeral) index range part and a type name (for the vector element
type).

6. A record type expression consists of a set of uniquely field-named (selector-
named) type names. Two or more fields may have the same type name.

7. No type name is allowed to be recursively defined.

Questions: Please repeat all the developments of the previous exercise: That is
modify the formalisations of the answers to Exercises 6.3-6.5, 7.3-7.7, 8.7-8.8
and Exercise 9.2.

Exercise 9.4 DiTIL: Dimension Typed Imperative Language. This exercise
is the third in a series of four exercises: (1) STIL: Exercises 6.3-6.5, 7.3-7.7,
8.7-8.8 and Exercise 9.2, (2) NaTaTIL: Exercise 9.3, (3) the present exercise
(DiTIL), and (4) DaUTIL: Exercise 9.5.

Explication: DiTIL, as a programming language, represents a further de
velopment of the previous language: NaTaTIL. The change in DiTIL with
respect to NaTaTIL is as follows:

236 9 Semiotics

1. First we introduce a concept of dimension associated with scalar types.
(a) By a dimension we mean either a base dimension or a derived dimen

sion.
(b) By a base dimension we mean one of the following: (1) A n e u t r a l

dimension, (2) a l e n g t h dimension, (3) a mass dimension, (4) a
t i m e dimension, (5) a c u r r e n t dimension, (6) a thermodynamic
t e m p e r a t u r e dimension, (7) an amount of s u b s t a n c e (8) and a
luminous i n t e n s i t y dimension.

(c) By a derived dimension we mean, for example, one of the following:
(9) a t i m e i n t e r v a l dimension, (10) A v e l o c i t y dimension, (11)
an a c c e l e r a t i o n dimension, (12) a r e s i s t a n c e dimension, (13) a
v o l t a g e dimension, (14) an a r e a dimension, (15) a volume dimension.

(d) These dimensions are either "measured" by integer or by floating point
values.

(e) There could be dimensions associated with Booleans, characters or
text strings. We leave it to the reader to motivate such.

2. Then we observe tha t one can: (16) add lengths and get a length, (17)
subtract lengths (or times) and get a length interval (respectively time
interval) — not a length (time), (18) multiply lengths and get an area,
multiply an area with a length and get a volume, (19) divide a length by
a time and get a velocity.

The above causes us to suggest the following extensions to NaTaTIL:

1. Type expressions for scalars are further annotated with a dimension, but
tha t dimension could be a neutral dimension — for example, concretely
designated by [I] — as when one divides a value of dimension length by a
value of dimension length;

2. and for every binary operator applicable to dimensioned (scalar) values
we define what the resulting dimension will be (if applied to such values).

The DiTIL language shall be such tha t for every expression — whose value
is a scalar — it is simply decidable which dimension it has. No inference (or
unification) is to be invoked.

Let the phrase [dn] r s tand for a dimension type, like [Km] float. In general,
we can characterise the relationship between scalar types, r , and dimensions,
d, with respect to the infix (i.e., binary, dyadic) operations, as follows:

a x i o m
+ ,— V d:Dn,r:{integer,float} • [dn] r x [dn] r —>• [dn] r
* V dn',dn":Dn,r:{integer,float} • dn' r x dn" r —> [dn 'dn"] r
/ V dn:Dn,r:{integer,float} • dn r x dn r —> [I] r
/ V dn',dn":Dn,r:{integer,float} • dn' r x dn" r —> [dn ' / dn"] r
etc., for other binary operations

For the unary operations:

9.9 Exercises 237

a x i o m
exp, In, sine, ... [I] —>• [I]

Questions: Please "repeat", basically, the definitions called for in Exer
cises 6.3-6.5, 7.3-7.7, 8.7-8.8 and 9.2-9.3. Focus, however, on the formulas
tha t are different. Tha t is: Do not "blindly repeat" everything. But show
where the 'dimension' concept alters the previous definitions.

E x e r c i s e 9.5 DUaLTIL: Dimension, Unit and Law Typed Imperative Lan
guage This exercise is the last in a series of four exercises: (1) STIL: Exer
cises 6.3-6.5, 7.3-7.7, 8.7-8.8 and Exercise 9.2, (2) NaTaTIL: Exercise 9.3, (3)
DiTIL: Exercise 9.4, and (4) the present exercise (DaUTIL).

Explication: DUaLTIL, as a programming language, represents a further
development of the previous language DiTIL.

The change in DUaLTIL with respect to DiTIL is as follows: with every
scalar type name we associate additionally a physical unit. For the length
dimension we may associate the units of millimeter, centimeter, decimeter,
meter, kilometer, etc. For the mass dimension we may associate the units
of milligram, gram, hectogram, pound, kilogram, ton, etc. For the thermo
dynamic temperature dimension we may associate the units of either degree
Kelvin, degrees Celsius (SI:5 Celcius, centigrade), degrees Fahrenheit, or de
grees Reamur. For the current dimension we may associate the unit Ampere
(SI: ampere) or the unit milli-Ampere (mA). For the 'amount of substance' di
mension we may associate the unit mole. For the luminous intensity dimension
we may associate the unit candela.

We thus introduce yet another block preamble component: To every listed
dimension we list a set of units of tha t dimension and their scale factors. For
example:

• u n i t s : * vm2:m type float dim. length
• un i t kilometer: km * vcmxm type float dim. length
• un i t meter: m * Vmm:mm type float dim. length
• un i t centimeter: cm ^ vhr:hr type integer dim. time
* uni t millimeter: mm
* uni t hour: h
* un i t minute: min (not an SI unit)
* un i t second: s

* vmin:min type integer dim. time
• vsec:sec type integer dim. time

dimensions and sca l e s :

• va r i ab le s : * dim. : length u n i t s :
• vkml:km type float dim. length {lm=100cm=1000mm=0.001km}
• vkm2:km type float dim. length * dim. : time u n i t s :
• vml:m type float dim. length {lh=60min=3600s}

The change is furthermore one of "adding" laws to our evolving language. The
laws are of the following nature: If, for example, we decide to endow a variable

5 SI stands for the international system of units [375].

238 9 Semiotics

with the type v e l o c i t y , and we intend to assign to this variable only values
that have arisen as the result of dividing a value of dimension length by a
value of dimension t ime, then we ought say so:

dimension
velocity : length/time
acceleration : velocity/time

unit
velocity : vel
acceleration : ace

variables
vvel : vel
vacc : ace

So the dimension declaration is a place holder for expressing such laws.
Questions: Revise, appropriately, all type definitions, well-formedness con

ditions, semantics and auxiliary function definitions when now formalising
DUaLTIL.

Exercise 9.6 Description Logic and Ontology Languages. Background: A
number of researchers are, as of 2006, studying the largest decidable sub
sets of suitable mathematical logics for representing domain knowledge. One
such "school" is called Description Logic [19,315]. One impetus to do so is the
Internet, that is, because of the claim that "via the Internet" vast amounts of
domain knowledge could be accessed if it was otherwise properly structured,
using, for example, XML. If, in addition, that information was otherwise sub
ject to logical constraints (also expressible using XML-like markers), then much
such information could be queried semantically. We covered some aspects of
XML in Sect. 8.6 and in Exercises 8.5-8.6.

A Description Logic: We give an example of a description logic (DL).
The logic is concerned with expressing facts about classes and properties (of
classes). To put it differently, to describe the structure of the entities, of a
universe of discourse in terms of classes and properties. Classes are sets of
resources, properties are relations over these. We can think of a "relation over
these" as a set of pairs of resources, one from each of two classes, that might
be the same. An ontology is now a set of axiomatic relationships between
classes and properties. Thus we need expressions to designate classes.

The following class-forming operators over classes are often proposed:

Constructor

I n t e r s e c t i o n O f
UnionOf
ComplementOf
OneOf

DL Syntax

d n c2 n • • • cn
d u c2 u • • • cn

-^c
{X!,X2,--- ,Xn}

Example

Human fl Male
Doctor U Lawyer

^Male
{John, mary}

The following class-forming predicate operators are often proposed:

9.9 Exercises 239

Constructor

ToClass
HasClass
HasValue

DL Syntax

VP.C
3P.C

3P.{x}

Example

VhasChild.Doctor
3hasChild.Lawyer
3citizenOf.{USA}

Further class-yielding operators are often proposed:

Constructor

MinCardQ
MaxCardQ
CardQ

DL Syntax

>nP.C
<nP.C

= InP.C

Example
> 2hasChild.Doctor
< lhasChild.Lawyer
= lhasParent.Female

The meaning of these operators are as follows:

• Intersect ionOf: Standard distributed set intersection, n-ary operator
for n > 2

• UnionOf: Standard distributed set union, n-ary operator for n > 2
• ComplementOf: Standard set complement, binary operator
• OneOf: Standard set enumeration, n-ary operator for n > 0
• ToClass: The class of all those resources which are property P related to

resources of type (i.e., of class) C
• HasClass: The class of all those resources which are property P related

to at least one resource of type (i.e., of class) C
• HasValue: Shorthand for HasClass and OneOf

The next three operators are generalisations of the ToClass and HasClass
operators.

• MinCardQ: The class < nP.C is the class all of whose resources (instances)
are related, via property P, to at least n different resources of class (type)
C

• MaxCardQ: The class > nP.C is the class all of whose resources (instances)
are related, via property P, to at most n different resources of class (type)
C

• CardQ: The class = nP.C is the class all of whose resources (instances)
are related, via property P, to exactly n different resources of class (type)
C

Assume two built-in class expressions:

• Thing: The full class of all resources.
• Nothing: The empty, void class of no resources.

Questions: Define a suitable class and property definition and expression lan
guage, syntactically and semantically. That is, there must be facilities in the
language for defining (i.e., naming) classes, for defining (i.e., naming) prop
erties, and for expressions over these named classes and properties and the
above operators.

Part V

FURTHER SPECIFICATION TECHNIQUES

We bring in two chapters on further specification techniques:

• Chapter 10, Modularisation: The specification technique of structuring
(typically large) specifications into modules. Modules are textual units,
themselves not necessarily "small" in (textual) "size". Modules come in
various 'guises': in RSL they are called schemes, classes, and objects.
In programming and in other specification languages they have other or
similar names, including module. UML's notion of Class Diagrams is a
module notion.

• Chapter 11, Automata and Machines: A classical discipline of com
puter science is that of Automata and Formal Languages [217]. The dis
covery, already in the 1940s, that the automata and machines discovered
in connection with research studies of computability and in the engineer
ing development of the first computers — that discovery — led to a flurry
of research. That research "discovered" the close connection between (for
mal) languages, on one hand, and automata and machines, on the other
hand. Automata and machines often offer a convenient, graphical, way
of formally specifying a phenomenon. We will show the "conversion" be
tween automata and machines, on one hand, and formal specifications or
programs, on the other hand.

10

Modularisation

• The prerequisite for studying this chapter is that you have read and
written large, formal specifications, which have — so far — not been mod
ularised, i.e., expressed in terms of what will be known as schemes, classes,
objects or modules.

• The aims are to introduce the concepts of modules and modularisation, to
introduce the R.SL mechanisms for expressing modules, and to introduce
"older" and "newer" mechanisms for expressing modules, i.e., those of
the concepts of entity relations (ER), frames, respectively the UML class
diagrams [59,237,382,440], and to relate the latter to the RSL scheme,
class and object specification mechanisms.

• The objective is to enable the reader to structure large, abstract and
formal specifications in terms of modules.

• The treatment is discursive, semiformal and systematic.

Example 10.22 and Sect. 10.3 is based on material first developed by Steffen
Holmslykke [9,10].

Little boxes on the hillside,
Little boxes made of ticky-tacky,
Little boxes, little boxes,
Little boxes, all the same.
There's a green one and a pink one —
And a blue one and a yellow one —
And they're all made out of t icky-tacky —
And they all look just the same.

And the people in the houses.
All go to the university,
And they all get put in boxes,
Little boxes, all the same.
And there's doctors and there's lawyers —
And business executives,
And they're all made out of t icky-tacky —
And they all look just the same.

© Malvina Reynolds (1900-1978, USA)

And they all play on the golf-course,
And drink their Martini dry,
And they all have pretty children,
And the children go to school.
And the children go to summer camp —
And then to the university,
And they all get put in boxes —
And they all come out the same.

And the boys go into business,
And marry, and raise a family,
And they all get put in boxes,
Little boxes, all the same.
There's a green one and a pink one —
And a blue one and a yellow one —
And they're all made out of t icky-tacky —
And they all look just the same.

244 10 Modularisation

We somehow like the above "poem", first sung by Pete Seeger in the 1960s,
when we lived and worked near San Francisco from where Ms. Reynolds hailed.
Although it must be said to represent a "radical cultural elite's" lack of human
compassion and this elite's usual love for "abstract man" and disrespect for
the specific ordinary man — who, in the eyes of God, is unique, and, lo
and behold, indeed is unique — this 1960's "protest" song, in my mind, can
be used to contrast with what this chapter is about: Namely putting parts
of specifications in little boxes and they are all either, when in the same
specification, different, or, when representing a series of steps of refinement,
they are all the same!

10.1 Introduction

We have, notably in Vol. 1, Chap. 8, Sect. 8.5 (Specification Algebras) and in
Vol. 1, Chap. 9, Sect. 9.6.5 (Property-Oriented Specifications), seen examples of
what we shall in this chapter refer to as modules (abstract data types, classes,
etc.).

Characterisation. By a module we shall understand a clearly delineated
text which denotes either a single complex quantity, as does an object decla
ration in RSL, or a possibly empty, possibly infinite set of models of objects,
as does a scheme declaration in RSL. •

The RSL module concept is manifested in the use of one or more of the RSL
class (class ... end), object (object identifier class ... end, etc.) and scheme
(scheme identifier class ... end), etc., constructs.

Characterisation. By modularisation we shall understand the act of struc
turing a text using modules. •

This chapter is more about principles and techniques for, i.e., the pragmatics
of modularisation, than about the "nitty-gritty" syntactic and semantic details
of specific languages' module constructs.

Characterisation. By a specification we shall, in RSL, understand a set of
module declarations, i.e., of scheme and object declarations. •

10.1.1 Some Examples

Let us show some nonmodule examples which then lead us on to a better
understanding of the module concept:

Example 10.1 Stacks — An Algebraic Model: Assuming the Boolean data
type, and assuming universal quantification wherever needed (!), we express
a model in terms of sorts, function signatures and axioms.

10.1 Introduction 245

type
E, S

value
empty: Unit -> S
is_empty: S -> Bool
push: E x S ^ S
top: S 4 E
pop: S ^> S

axiom
is_empty (empty ())
top (empty ())=chaos
pop (empty ())=chaos
top(push(e,s))=e
pop(push(e,s))=s

Where the ... indicates that, perhaps, we need some more axioms in order to
properly dispense of the stack data type operations. •

Example 10.2 Stacks — Model-Oriented Model: We can express a model in
terms of concrete types and explicit function definitions. Thus, if we gave a
model for stacks, say as lists of elements, then we would get:

type
E
S = E*

value
empty: Unit —> S, empty() = {)
is_empty: S -»• Bool, is_empty(s) = s={)
push: E x S -»• S, push(e,s) = (e}^s
top: S -3- E, top(s) = if s={) then chaos else hd s end
pop: S ^> S, pop(s) = if s={) then chaos else tl s end

Example 10.3 Hierarchical Directory: In this example we only illustrate a
model-oriented model. We leave it to the reader to decipher the formulas.

type
Dn, En, E
D = Dn ^ (D [(En ^ E))

value
empty: Unit —> D
empty () = []

246 10 Modularisation

is_empty: D —> B o o l
is_empty(d) = d = []

t y p e
Ename = = nil | mkEn(n:En)

v a l u e

get: Dn* x Ename -> D -4- (D | E)
get(dnl,en)(d) =

i fdn l={)
t h e n

c a s e en of
nil —)• d,
nikEn(n) —> if n G d o m d t h e n d(n) e lse c h a o s e n d

e n d
e lse

if h d dnl € d o m d
t h e n get(t l dm,en) (d(hd dnl}}
e l se c h a o s

e n d
e n d

t y p e
NmED = = mkE(en:En,e:E} | mkD(dn:Dn,d:D)

v a l u e

put: Dn* x NmED -s- D ^ D
put(dnl,ned)(d) =

c a s e dnl of
(dn) -»•

if dn g1 d o m d
t h e n c h a o s
e l se d f [dn 1-4 d(dn) f

c a s e ned of

mkE(en,e} -> [en i-> e] ,
kmD(dn' ,d ') -4 [dn' H* d']

e n d] e n d
(dnj^dnl ' ->

if dn € d o m d
t h e n put(dnl ' ,ned)(d(dn))
e l se c h a o s

e n d e n d

10.1 Introduction 247

Example 10.4 Graphs — An Algebraic Model: We again leave it to the
reader to decipher the formulas. Again sorts, observer functions, function sig
natures (with preconditions) and axioms.

type
N, G

value
obs_Ns: G ->• N-set
obs_Es: G -> (NxN)-set
empty: Unit —>• G
is_empty: G —>• Bool
insert_node: N ->• G 4 G

pre: insert_node(n)(g): n 0 obs_Ns(g)

delete_node: N - > G 4 G
pre: delete_node(n)(g): n € obs_Ns(g) A

~exist (n',n"):NxN • (n',n") 6 obs_Es(g) A n=nVn=n"
insert_edge: N x N ^ G ^ G

pre: insert_edge(n,n')(g): {tt)ii'}Cobs_Ns(g) A (n,n') ^ obs_Es(g)
delete_edge: N x N - > G 4 G

pre: delete_edge(n,n')(g): (n,n') e obs_Es(g)
axiom

is_empty (empty ()),
obs_Ns(empty()) = {}
obs_Ns(insert_node(n)(g)) = {n} U obs_Ns(g)
obs_Es(insert_edge(n,n')(g)) = {(n,n')} U obs_Es(g)

Where the ... indicates that, perhaps, we need some more axioms in order to
properly dispense of the graph data type operations. •

Example 10.5 Graphs: A Model-Oriented Model: We next give a rather sim
ple model:

type
N
G = N -# N-set

value
empty: Unit ->• G
is_empty: G —»• Bool
insert_node: N -s- G -> G
delete_node: N -+ G 4 G
insert_edge: N x N - > G 4 G
delete_edge: NxN -» G 4 G

248 10 Modularisation

empty() - [}
is_empty(g) = g=[]

insert_node(n)(g) =
if n £ d o m g t h e n chaos e lse g U [n i-> {}] e n d

delete_node(n)(g) =
if n #• d o m g t h e n chaos e lse g \{n} e n d

insert_edge(n,n')(g) =
if {n,n } C d o m g A n ^ g(n)

t h e n g f [n H g(n) U {n'}] e lse chaos e n d

delete_edge(n,n')(g) =
if {n,n'} C d o m g A n' £ g(n)

t h e n g f [n H g(n) \{n '}] e lse chaos e n d

We could have chosen a model of graphs tha t represented these rather directly
as sets of pairs, and nothing else. Try it out yourself! •

R e v i e w of E x a m p l e s

We gave Examples 10.1-10.5 above so tha t we could make some remarks,
such tha t these observations would help us motivate and justify the notion of
modules.

On Module Delineation: Objects and Schemes

In our characterisation of what a module is, see Sect. 10.1, we "mandated"
tha t there be some clear delineation. None of the examples above provided for
tha t . An easy provision, such as we shall provide in RSL, is first "surrounding"
the specification text by the keywords c lass and end:

class specification_text e n d

and then prefixing such a class expression in either of two ways:

objec t name : c lass ... e n d
s c h e m e NAME = c lass ... e n d

A class expression (class . . . end) , as we shall see, denotes a set of models. An
object declaration (object name : c lass . . . end) selects one such model and
binds it to the object name. A scheme declaration (s cheme NAME = c lass
... end) gives the name NAME to the set of all the class expression models.

10.1 Introduction 249

On Implementations

The property-oriented specifications gave no clue as how to implement, even
using abstract mathematical quantities (sets, Cartesians, lists and maps).
The model-oriented specifications gave some such clues. In particular, Ex
ample 10.3 presents a rather involved pair of function definitions. A further
implementation of put and get (of Example 10.3) would, in order to be be
lievable, most likely have to follow the involved structure of these function
definitions.

It would therefore be nice to have a property-oriented specification of the
hierarchical directory of Example 10.3 — then the developer who is charged
with providing efficient implementations is helped. To have one, equally ef
ficient implementation that covers a spectrum of "sizes" of directories, from
maximum a few hundred entries within a few (say, five to six) levels of hi
erarchy, to millions of entries and depths of the order of hundreds, is not
likely. Hence the provider of software that covers hierarchical directories can,
depending on circumstances, replace one implementation with another.

Stepwise Development

In other words, we often find it desirable to develop software by first spec
ifying its functionality abstractly, say by a property-oriented definition, and
then, in steps of refinement, concretising the specification. For that purpose
it is convenient, and helps focus our correctness reasoning, if what is being
implemented can be clearly delineated, i.e., "boxed"!

Separation of Concerns

Developing specifications, whether descriptions of domains, prescriptions of
requirements or definitions of software design, is hard. To keep track, in one's
mind even on paper, i.e., amongst computerised documents, of all specifi
cation parts is a formidable task. It can be ameliorated, helped and better
supported through separation of concerns: letting module specifications take
care of separate abstract data types. That is, it can be supported through
modularisation: through the judicious use of modules, of module interfaces
and of genericity of module specifications. Still, it is not easy!

10.1.2 Preparatory Discussion

We discuss these next topics, in a leisurely manner, for the reader's "arm
chair reading". We do so before we move into somewhat detailed coverage of
principles, techniques and tools for modularisation according to a number of
specification paradigms: the algebraic abstract data type approach, the RAISE
approach, the frames approach, the entity/relations (ER) approach, and the
UML class diagram approach [59,237,382,440].

250 10 Modularisation

Software D e v i c e s

Peter Lucas [307], we believe, was the first to enunciate the idea of "encapsu
lating" the types, variables, and functions (routines, etc.) tha t were specific
to a specific da ta structure — like a stack, a queue, a tree, a graph, etcetera.
He termed the name 'device', for such encapsulations. Devices usually are
thought of as "mechanisms" tha t can be "plugged" in here, out there, and
hence replaced. The idea of replacing one implementation of a device by an
other implementation of purportedly the same functions further justifies the
device encapsulation concept.

In one context, say small graphs, one implementation provides efficiency
(by, for example, having low storage overhead for the code and auxiliary data,
i.e., variables). However, in another context, say graphs with millions of nodes
and millions of edges, another implementation of, of course the same functions,
provides a bet ter efficiency than the former implementation.

A b s t r a c t D a t a T y p e s i—>• Algebra ic S e m a n t i c s

It was not till some years later tha t the seminal paper by Barbara Liskov and
Stephen Zilles on Abstract Data Types (ADTs) was published [302]. From
then on, the so-called School of Algebraic Semantics (for specifying algebras of
ADTs) "took off". In a flurry of papers, [68,134,138-140], (notably) Burstall,
Goguen and Thatcher laid out the semantic foundations, in terms of initial
algebra semantics, for the idea of ADTs. More generally, in [69,70,135,137] and
[124,136,162] they, Jouannaud and Futatsugi, followed up by proposing the
OBJ series of algebraic specification languages: 0BJ-0-OBJ3. The most recent
outgrowth of this line of research and development has been the two competing
algebraic semantic specification languages Caf e-OBJ [123] and CASL [40,371].

T h e Frames A p p r o a c h

We quote from Marvin Minsky [362]:

"Here is the essence of the theory: when one encounters a new sit
uation (or makes a substantial change in one's view of the present
problem), one selects from memory a structure called a 'frame'. This
is a remembered framework to be adapted to fit reality by changing
details as necessary.

We can think of a frame as a network of nodes and relations. The top
levels of a frame are fixed and represent things tha t are always t rue
about the supposed situation. The lower levels have many ' terminals '
— slots tha t must be filled by specific instances or data .
Much of the phenomenological power of the theory hinges on the in
clusion of expectations and other kinds of presumptions. A 'frame's
terminals are normally already filled with "default" assignments. Thus

10.1 Introduction 251

a frame may contain a great many details whose supposition is not
specifically warranted by the situation.
In this essay I draw no boundary between a theory of human thinking
and a scheme for making an intelligent machine; no purpose would be
served by separating them today, since neither domain has theories
good enough to explain, or produce, enough mental capacity.
Are there general methods for constructing adequate frames? The an
swer is both yes and no! There are some often-useful strategies for
adapting old frames to new purposes; but I should emphasize tha t hu
mans certainly have no magical way to solve "all" hard problems! One
must not fall into what Paper t calls the superhuman-human fallacy
and require a theory of human behavior to explain even things tha t
people cannot really do!
More "logical" approaches will not work ...

In simple cases, one can get such systems to "perform", but as we
approach reality, the obstacles become overwhelming. The problem of
finding suitable axioms — the problem of "stating the facts" in terms
of always-correct, logical assumptions — is very much harder than is
generally believed."

Minsky's notion of 'frame' is often considered a precursor of object oriented
programming.

T h e E n t i t y - R e l a t i o n s h i p (E R) A p p r o a c h

An entity represents a thing tha t can be identified. Usually a box is dia
grammed to represent a classified set, A, of entities, tha t is an entity set —
say a sharp-edged box. A box identifier, A, names the entity set. Entities of
an entity set may have at tr ibutes (types TAX , TA2 , • • •, TA0) • They are usually
shown with the entity set name "inside" the A box.

Entities can be related to each other. Relations are shown by lines between
two or more boxes, A,B, Usually lines connect just two boxes. One usually
adorns the edge (say, between two boxes) by some form of m:n labelling: m
near the edge and near one box, say A, and n near the edge and near the other
box, say B. The labelling shall mean: The m:n relation over A x B binds up
to m different occurences of A entities to up to n different occurences of B
entities.

For different fixations of m and n we get various forms of general binary, or
functional relations. As we shall see, entity-relationship diagrams (ER), can
be said to be precursors to UML class diagrams.

So we shall not go further into ER theory. Any textbook on relational
database design would be good to consult [129,507], as would Peter Chen's
paper on ER [79].

252 10 Modularisation

Genera l P r a g m a t i c s of M o d u l a r i s a t i o n

Modularisation is important for several reasons: Separation of concerns, dis
covery of basic concepts, validation and verification of developments, efficiency
of tool support (i.e., document handling), etcetera.

Genera l S e m a n t i c s of M o d u l a r i s a t i o n

"Small" modules (i.e., textually small, with few identifiers) capture "small"
models. The models are an easy way to understand what is being specified.
Small modules can better be ascertained as to whether they designate a single
model, as do objects, or possibly a "large", or even an infinite set, as do
underspecified abstract da ta types (i.e., modules).

Genera l S y n t a x of M o d u l a r i s a t i o n

Usually modules are simply and explicitly delineated by suitably suggestive
keywords: a matching (i.e., balancing, as do parentheses) pair of c lass and
ends, as in RSL, for classes. The named prefixing of a class expression, as
s c h e m e Scheme_Name = c lass . . . end, for schemes tha t can be further
extended, used as parameters in other scheme definitions, or used in object
declarations.

s c h e m e A = class ... e n d
s c h e m e B = e x t e n d A w i t h class ... e n d
s c h e m e C(a:B) = class ... e n d
objec t d:C(B)

or as objec t Objec t_Name = c lass ... e n d

Genera l M o d u l e Speci f icat ion M e t h o d

But the real gist or crux of the mat ter is: "How does one, i.e., the software
engineer, identify modules and compose specifications from modules?" This
chapter shall t ry to cover some such principles, techniques and tools.

But let the reader be duly warned: It is not easy. Tha t is, a decompo
sition of a specification into modules which is pleasing to some reader, may
not be pleasing to another reader, and it is the writer who decides on the
decomposition! So our advice, of this chapter, is not tha t clear-cut.

10 .1 .3 S truc ture of C h a p t e r

First, we cover the RSL module and the RAISE modularisation concepts
(Sect. 10.2). And then we cover the UML class diagram concept [59,237,382,440]
(Sect. 10.3). We also show how to reformulate RSL specifications of types and
type constraints using UML class diagrams, and suggest a model of UML class
diagram syntax and semantics in RSL.

10.2 RSL Classes, Objects and Schemes 253

10.2 RSL Classes, Objects and Schemes

We now show, using RSL, how one can structure "large" specifications into
"comfortable" parts . The key concepts of those parts are the RSL class , ob jec t
and s c h e m e concepts. The c lass concept is at the base of the two other.

10.2 .1 In troduc ing t h e RSL "class" C o n c e p t

We need to motivate why we bundle declarations into classes.

M e a n i n g of RSL D e c l a r a t i o n s — A R e v i e w

Each declaration of a t ype , a value (typically a function), variable, a chan
nel, or an a x i o m s tands for something. A t y p e declaration, colloquially, such
as we think about it when we write it down or read it, s tands for a set of val
ues. A function va lue declaration stands for a set of function values — a set
because we may just give a signature, or because the function definition body
is underspecified. A variable declaration, say with an initialising expression,
stands for a set of variables, each with a specific initial value. A channe l dec
laration stands for one channel. An a x i o m declaration typically constrains
the values declared elsewhere.

First M o t i v a t i o n of t h e RSL "class" C o n c e p t : Focus

We saw, in the previous subsection, tha t a single declaration could have many
denotations. And we saw, in Examples 10.1-10.5, of the previous section,
tha t a "bundle", tha t is, a collection of declarations together defined a soft
ware device, an abstract da ta type, tha t is, a useful, separable concept. By
bundling these declarations together by means of the delineating keywords
class . . . e n d , we may achieve a bet ter structuring of large specifications, i.e.,
specifications defining many such concepts.

S e c o n d M o t i v a t i o n of t h e RSL "class" C o n c e p t : S e m a n t i c A l g e b r a s

Now, what is then the meaning of a construct like c lass ... e n d (where the
... is a set of declarations)? Well, we shall here take the meaning of a c lass
clause to be a set of algebra mappings: one for each combination of values for
each of the declarations. There can be many such algebras, or there can be
zero. An algebra mapping maps identifiers of the declarations into a specific of
the chosen values. Since the informal semantics of RSL is an important issue,
let us give some contrasting examples:

E x a m p l e 10.0 A Small Set of Class Models:

class t y p e l:Int. va lue i:l. a x i o m i £ {!••"} e n d

254 10 Modularisation

The above class expression has seven models, expressed, not in RSL, but in
"ordinary" mathematics. These models, which look a lot like RSL, are:

{[>, ^ 1], [i t-» 2], [* i-> 3], [i i-» 4], [i h-> 5], [i •-> 6], [i <-->• 7]}

•

Example 10.7 A Singleton Set of Class Models: The simple class expression:

class type N:Nat, variable v:N := 7 end

yields the single model:

That is, initialisation helps secure unique models. •

Example 10.8 An Infinite Set of Class Models: The simple class expression:

class value i:Int end

yields the infinite set of models:

{[i *-* n]\ n : Int}

That is, under-definedness usually results in many, sometimes an infinite set
of models — and which one(s) were you thinking of when writing down the
specification? •

Example 10.9 An Empty Set of Class Models: The simple class expression:

class value i:Int, axiom i<0 A i>0 end

yields the empty set of models:
{}

That is, over-definedness sometimes results in no models. Make sure that your
specification does indeed specify something! •

It is important to realise that the meaning of a model is also that all the iden
tifiers of the definition set of the mapping of the model are visible "outside"
the class expression.

Third Motivation of the RSL "class" Concept

Example 10.10 Stack, I: Let us take the example of a stack class:

class

10.2 RSL Classes, Objects and Schemes 255

type
E, S = E*

variable
stackrS := {}

value
is_empty: UNIT —• read stack Bool
is_empty() = stacks {)
push: E -> wri te stack Unit
push(e) = stack := (e)^stack
top: Uni t ^ E
top() = if is_empty() t h e n chaos else hd stack end
pop: Uni t —> Unit
pop() = stack := if is_empty() t h e n chaos else t l stack end

end

Suppose we need to speak of a specific model of the class denoted by the above
class expression. Now, the idea is to introduce objects:

Example 10.11 Stack, II:

object
STACK:

class
type

E, S = E*
variable

stack:S := {}
value

is_empty: UNIT —» read stack Bool
is_empty() = stack={)
push: E -+ wri te stack Unit
push(e) = stack := (e)^stack
top: Unit -4- E
top() = if is_empty() then chaos else hd stack end
pop: Unit ^> Unit
pop() = stack := if is_empty() then chaos else t l stack end

end

STACK denotes a specific choice of value assignments — in this case there
really is only one model in the set anyway. When, in some text, we wish
to express operations on stack we do so by prefixing operation names with
STACK. For example, STACK.is_empty():

256 10 Modularisation

Example 10.12 Stuck. Ill:

... STACK.push(o) ...

... let o. = STACK.topQ in ... oriel ...

... STACK.popQ ...

Fourth Motivation of the RSL "class" Concept: Named Schemes

What are we to do when wishing several objects of the same class? Do we
have to repeat the whole class expression again and again? No, we name the
class expression, "making" it a scheme clause:

Example 10.13 Stack IV:

scheme
STACKS =

class
t ype

E, S = E*
variable

stack:S := {}
value

is_empty: UNIT —y read stack Bool
is_empty() = stack={)

push: E -> write stack Unit
push(e) = stack := (e)^stack

end

Now declaration of several objects is easy and operations on these following
the usual prefixing convention:

object

SI : STACKS, S2 : STACKS, ...

value

... let e = Sl.topQ in S2.push(e) end ...

10.2 RSL Classes, Objects and Schemes 257

We are now ready to introduce the RSL class, scheme and object concepts
more systematically.

10.2.2 The RSL "class" Concept

Let < declaration_l > stand for a type, a value, a variable, a channel, or an
axiom declaration. Then:

class
< declaration_l >
< declaration_2 >

< declaration_n >
end

is a class expression. It denotes a possibly empty, possible finite, possibly
infinite set of models, each model being (like) an algebra: a set of values (i.e.,
models of types), a set of functions (over these values), etcetera (variables,
channels). The axioms suitably constrain values, types, etc.

All identifiers of the declarations of a class expression are usually distinct.
Two or more identical, i.e., overloaded identifiers need be identifiers of function
values and need be distinguishable by their different signatures. Each identifier
declared in the class expression is bound, in the model, to a specific value, a
specific function, etc.

10.2.3 The RSL "object" Concept

We saw that an RSL class denotes a set of models. How do we designate just one
of these models? The answer is: by designating an object. That is, the decla
ration: object <class_expression> designates one model, an arbitrary one
selected from the set of models denoted by the <class_express ion>. Since
it may be cumbersome to list a whole <class_expression> every time we
want to designate an object of that class, we name the <class_expression>
and obtain a scheme. We shall show examples of object declarations later.

10.2.4 The RSL "scheme" Concept

There are several notions associated with schemes: naming, extension and
hiding are the ones we shall treat now.

Simple Schemes

Let class ... end be some class expression. By a scheme we give a name to
the set of models of that class expression:

scheme A = class ... end

258 10 Modularisation

Some examples are in order.

E x a m p l e 10 .14 Stack Scheme: We "schematise" Example 10.2:

s c h e m e
STACK =

class
t y p e

E
S = E*

va lue
empty: U n i t -> S, empty() = {)
is_empty: S —• B o o l , is_empty(s) = s={)
push: E x S -J- S, push(e,s) = (e}As
top: S —>• E, top(s) = i f s={) t h e n chaos e l se h d s e n d
pop: S —>• S, pop(s) = if s={) t h e n chaos e lse t l s e n d

e n d

E x a m p l e 10 .15 Graph Scheme: We next "schematise" Example 10.4:

scheme
GRAPH =

class
type N, G
value

obs_Ns: G -»• N-set
obs_Es: G -)> (NxN)-set
empty: Unit —• G
is_empty: G —> Bool
insert_node: N —¥ G -^ G

pre: insert_node(n)(g): n 0 obs_Ns(g)
delete_node: N - t G 4 G

pre: delete_iiode(n)(g): n 6 obs_Ns(g) A
~exist (n',n"):NxN • (n',n") <= obs_Bs(g) A n=n 'Vn=n"

insert_edge: NxN -4 G -4 G
pre: insert_edge(n,n')(g): {n,n'}Cobs_Ns(g) A (n,n') g obs_Es(g)

delete_edge: NxN -> G -^ G
pre: delete_edge(ii,ii') (g): (n,n') € obs_Es(g)

axiom
is_empty (empty ()),
obs_Ns(empty()) = {}
obs_Ns(insert_node(n)(g)) = {n} U obs_Ns(g)
obs_Es(insert_edge(n,n')(g)) = {(11,11')} U obs_Es(g) ...

end

10.2 RSL Classes, Objects and Schemes 259

Where the ... indicates tha t , perhaps, we need some more axioms in order to
properly dispense of the graph da t a type operations. •

S c h e m e E x t e n s i o n s

Often it may be useful to decompose a large "flat" specification, including a
large class expression, into several smaller class expressions. Most, if not all,
of the specifications we presented in Vol. 1 and so far in the present volume
have been "flat" specifications. Tha t is, they are without any class, object or
scheme structuring.

Let in the following conceptual scheme clause:

scheme A =
class
< declaration^ >
< declaration^ >

< declarationini >

< declaration! >
< declaration^, >

< declaration >

< declaration! >
< declaration^, >

< declaration,^ >
end

If declarations <declarationJfe, > only depend on declarations <declarationjfe„ >
for i strictly smaller than j , for j equal to 2 or 3, then the above scheme can
be decomposed into the following sequence of scheme extensions:

scheme A =
class
< declaration^ >
< declaration^ >

< declarationini >
end

scheme B =
ex t end A with
class

< declaration! >
< declaration^, >

< declaration„2 >
end

scheme D =
extend B with
class

< declarations! >
< declarations, >

< declaration,^ >
end

E x a m p l e 10.16 Scheme Extensions: From Example 10.1 we had:

scheme
STACK =

class
t y p e

E, S
value

empty: Unit
is_empty: S -
push: E x S -
top: S -4 E

>S
Bool

-s end

pop: S -^ S
:iom
is_empty (empty ())
top (empty ()) =chaos
pop (empty ())=chaos
top(push(e,s))=e
pop (push(e,s))=s

260 10 Modularisation

This scheme can be decomposed into three "successive" schemes:

scheme
STACK^ 'pes ~~ class type E, S end

scheme

STACKsjgriatul.es
 =

extend STACKfcvpes with
class

value
empty: Unit —¥ S
is_empty: S —> Bool
push: E x S - > S
top: S -4 E
pop: S -3- S

end

scheme
STACK. axioms

extend STACK,
class

signatures with

axiom
is_empty (empty ())
top (empty ()) =chaos
pop(empty())=chaos
top(push(e,s))=e
pop(pusli(e,s))=s

end

where the ... indicates tha t , perhaps, we need some more axioms in order
properly to dispense of the stack da ta type operations. •

H i d i n g

By "hiding" we mean to only "filter" some of the quantities, i.e., names (i.e.,
identifiers), away from being "visible" outside a scheme definition. But why?
Well, let us examine two scheme definitions. Examples 10.17 and 10.18, with
out, respectively with, hiding clauses.

E x a m p l e 10 .17 An Example in Need of Hiding:

s c h e m e AlgS —
class

t y p e E, S
value

empty: U n i t —»• S
is_empty: S —• B o o l
push: E x S - > S

top: S 4 E

pop: S ^ S
a x i o m

i s_empty (empty ())
top (empty ())=chaos
pop (empty ())—chaos
top(push(e,s))=e

10.2 RSL Classes, Objects and Schemes 261

pop (push (e,s))=s ...
end

scheme ModS =
class

type E, S = E*
variable stack:S := {}
value

is_empty: Uni t —J- read stack Bool
is_empty() = stack={)

push: E -+ wri te stack Unit
push(e) = stack := {e}"stack

top: Uni t 4 E
top() = if is_empty() t h e n chaos else hd stack end

pop: Uni t 4 Uni t
pop() = stack := if is_empty() t h e n chaos else t l stack end

end

In the algebraic specification we basically had to introduce the empty and the
is_empty operations only implicitly "used" in the model-oriented specification.
Also, outside the model-oriented scheme definition there really is no need to
know how stacks, s:S, are implemented, nor to know the variable stack. So thus
arises the idea of hiding what need not be knowable, that is, visible "outside"
respective scheme definitions. Let us therefore repeat the scheme definitions,
now with proper hiding clauses (hide ... in class ... end).

Example 10.18 Example 10.17, but with hiding:

scheme AlgS =
hide empty, is_empty in
class

type
E, S

value
empty: Uni t -> S
is_empty: S -4- Bool
push: E x S -J- S
top: S 4 E
pop: S 4 S

262 10 Modularisation

axiom
is_empty (empty ())
top (empty ()) =ehaos
pop(empty())=chaos
top(push(e,s))=e
pop (push (e,s))=s

end

scheme ModS =
hide stack, S in
class

type E, S = E*
variable stack:S := ()
value

is_empty: Unit —>• read stack Bool
is_empty() = stack=()
push: E ->• write stack Unit
push(e) = stack := (e)^stack
top: Unit -3- E
top() = if is_empty() then chaos else hd stack end
pop: Unit >̂ Unit
pop() =

stack := if is_empty() then chaos else tl stack end
end

Thus the basic hide clause syntactically is:

hide idi, id2, ..., idn in class ... end

where the identifiers idj are those of some of the declarations in the class
expression.

Please recall that all identifiers declared in a class expression are visible
outside that class expression. The hiding "takes place" at the level of the
scheme definition.

Etcetera

In the next section we treat a very important scheme concept: That of pa-
rameterisation. There are other scheme concepts. We shall not cover them
all here. That is, this book is not a reference manual to RSL. We leave that

10.2 RSL Classes, Objects and Schemes 263

to [130].1 The concepts that we shall not cover are those of module nesting
and renaming.

10.2.5 RSL "scheme" Parameterisation

Motivation: Why and How Scheme Parameters?

We motivate the pragmatic need for parameterised schemes through a com
mented example.

Example 10.19 Motivation for Parameterised Schemes: Arbitrary Stack El
ements: Let us consider the stack example of earlier. Now "imperialised" (i.e.,
made imperative), "classified", (partially) "hidden" and "schematised":

scheme STACK(E:class type Struct ... end) =
hide S,s in
class

type
S = E.Struct*

variable s:S :— {)
value

push: E.Struct —> write s Unit
push(e) = s:={e)~s
top: Unit ^ read s E.Struct
top() = if S=() then chaos else hd s end
pop: Unit >̂ Unit,
pop() = s:=if s=() then chaos else tl s end

end

Nothing has been said about stack elements. What are they? Well, as it ap
pears, it seems they are defined by the STACK scheme. But is that really
convenient? Probably not! Since the visible operations need provide (stack)
element arguments, it might be useful to have the stack concept, i.e., the
type that E is, be defined "elsewhere" and then "imported" into the STACK
scheme. In this way we can "instantiate" the STACK scheme to different kinds
of elements: graphs and directories. •

The above example leads us to the next example.

Example 10.20 Parameterised Graph and Directory Schemes: In this ex
ample we "rewrite" the directory and graph definitions of Examples 10.3 and
10.5 in scheme and class form. For these schemes (and classes) we make sure,

This book is out of print, but it is hoped that soon a revised edition will appear
on the open Internet.

264 10 Modularisation

in this example, that the type name of the "things" to be put on (inspected
on, and popped from) the stack, is the same type name as for its elements,
namely Struct:

scheme DIRECTORY =
class

type
Dn, En, E
Struct = Dn ^ (Struct | (En ^ E))
Ename = = nil | mkEn(n.-En)

value
get: Dn* x Ename -» Struct -3- (Struct | E)
get(dnl,en)(d) = ...

type
NmED = = mkE(en:En,e:E) | mkD(dn:Dn,d:Struct)

value
put: Dn* x NmED H> Struct -4 Struct
put(dnl,ned)(d) = ...

end

scheme GRAPH =
class

type
E
Struct = E -„} E-set

value
insert_node: E -> Struct -4- Struct
delete_node: E —> Struct ^> Struct
insert_edge: ExE -> Struct ^> Struct
delete_edge: E x E -> Struct -4- Struct

insert_node(n)(g) = ...
delete_node(n)(g) = ...
insert_edge(n,n')(g) = ...
delete_edge(n,n')(g) = ...

end

Now we can instantiate the abstract stack data type in at least two ways:

... STACK(GRAPH) ... STACK(DIRECTORY) ...

Such instantiations could be done in connection with object creations:

object graph_stack : STACK(GRAPH)
object directory_stack : STACK(DIRECTORY)

10.2 RSL Classes, Objects and Schemes 265

... graph_stack.push(g) ...

... let g = graph_stack. top() in ... e n d ...

... graph_stack.pop() ...

... director_stack.push(d) ...

... let d = director_stack.top() in ... e n d ...

... director_stack.pop() ...

T h e S y n t a x and S e m a n t i c s of P a r a m e t e r i s e d S c h e m e s

The general syntax of scheme declarations looks like:

s c h e m e
< scheme_definitioni >
< scheme_definition2 >

< scheme_defmitionm >

The general syntax of scheme definitions without and with parameters look,
respectively, like:

idg = class_expression
idp(idi:class_expressioni, ... , id„:class_expression„) = class_expression

for n > 1. If oidi, ... , oid„ are object identifiers, then the parameterised
scheme idp may be instantiated in a scheme instantiation as follows:

idp(oidi , ... , oid„)

The scheme instantiation is thus used when instantiating objects.
We shall leave out many technical details concerning proper matching of

argument objects to parameter class expressions. This book is not a reference
manual for RSL. For tha t consult a proper RSL reference manual such as the
definitive [130]. These books propagate proper, generally applicable abstract
and modelling principles and techniques. If we begin on the road to detailing
"nitty-gritty" syntactic issues of this or tha t specification language, then we
can easily lose sight of tha t .

It is high time for a realistic, large example!

10.2 .6 A "Large-Scale" E x a m p l e

The first part of Example 10.21 presents an "old" double-example, given as
Examples 2.5 and 2.6 in Sect. 2.3. Example 10.21 shall serve as a motivating
(and reminding) background for the main example, i.e., Example 10.22.

266 10 Modularisation

The Contrasting Background Example

Example 10.21 A Railway Net Specification: No Schemes:

Narrative

We introduce the phenomena of railway nets, lines, stations, tracks, (rail)
units, and connectors.

1. A railway net consists of one or more lines and two or more stations.
2. A railway net consists of rail units.
3. A line is a linear sequence of one or more linear rail units.
4. The rail units of a line must be rail units of the railway net of the line.
5. A station is a set of one or more rail units.
6. The rail units of a station must be rail units of the railway net of the

station.
7. No two distinct lines and/or stations of a railway net share rail units.
8. A station consists of one or more tracks.
9. A track is a linear sequence of one or more linear rail units.

10. No two distinct tracks share rail units.
11. The rail units of a track must be rail units of the station (of that track).
12. A rail unit is either a linear, or is a switch, or a is simple crossover, or is

a switchable crossover, etc., rail unit.
13. A rail unit has one or more connectors.
14. A linear rail unit has two distinct connectors; a switch rail unit has

three distinct connectors; crossover rail units have four distinct connectors
(whether simple or switchable), and so on.

15. For every connector there are at most two rail units which have that
connector in common.

16. Every line of a railway net is connected to exactly two distinct stations of
that railway net.

17. A linear sequence of (linear) rail units is a noncyclic sequence of linear
units such that neighbouring units share connectors.

Formalisation

type
N, L, S, Tr, U, C

value
1. obs_Ls: N -» L-set,
1. obs_Ss: N -> S-set
2. obs_Us: N -> U-set,
3. obs_Us: L —• U-set
5. obs_Us: S -J- U-set,

10.2 RSL Classes, Objects and Schemes 267

8. obs_Trs: S -» Tr-set
12. is_Linear: U -» Bool,
12. is_Switch: U ->• Bool
12. is_Simple_Crossover: U -> Bool,
12. is_Switchable_Crossover: U -> Bool
13. obs_Cs: U -)• C-set

17. lin_seq: U-set -> Bool
lin_seq(us) =
V u:U • u G us => is_Linear(u) A
3 q:U* • len q = card us A elems q = us A

V i:Nat • {i,i+l} C inds q => 3 c:C •
obs_Cs(q(i)) D obs_Cs(q(i+l)) = {c} A

len q > 1 => obs_Cs(q(i)) n obs_Cs(q(len q)) = {}

Some formal axioms are now given; but not all!

axiom
1. V n:N • card obs_Ls(n) > 1,
1. V n:N • card obs_Ss(n) > 2,
3. 1:L • lin_seq(l)
4. V n:N, 1:L • 1 G obs_Ls(n) => obs_Us(l) C obs_Us(n)
5. V n:N, s:S • s G obs_Ss(n) => card obs_Us(s) > 1
6. V s:S • obs_Us(s) C obs_Us(n)
7. V n:N,l,l':L'{l,l'}Cobs_Ls(n)Al^l'^obs_Us(l)n obs_Us(l') = {}
7. V n:N,l:L,s:S«l € obs_Ls(n)As G obs_Ss(n)=>obs_Us(l)n obs_Us(s) = {}
7. V n:N,s,s':S«{s,s'}Cobs_Ss(n)As^s'=>obs_Us(s)n obs_Us(s')={}
8. V s:S • card obs_Trs(s) > 1

9. V n:N, s:S, t:T • s G obs_Ss(n) A t G obs_Trs(s) =*- lin_seq(t)
10. V n:N, s:S, t,t';T •

s G obs_Ss(n) A | t , t '} C obs_Trs(s) A t ^ t '
=» obs_Us(t) n obs_Us(t') = {}

15. V n:N • V c:C •
c G U { obs_Cs(u) | u:U • u G obs_Us(n) }

^ card{ u | u:U • u G obs_Us(n) A c G obs_Cs(u) } < 2
16. V n:N,l:L • 1 G obs_Ls(n) =>

3 s,s':S • {s,s'} C obs_Ss(n) A s^s' =>•
let sus = obs_Us(s), sus' = obs_Us(s'), lus = obs_Us(l) in
3 u:U • u G sus, u':U • u' G sus', u",u'":U • {u",u'"} C lus •
let scs = obs_Cs(u), scs' = obs_Cs(u'),

lcs = obs_Cs(u"), lcs' = obs_Cs(u'") in
3 ! c,c':C • c ^ c' A scs (1 lcs = {c} A scs' f) lcs' = {c'}

end end

268 10 Modularisation

More axioms need be formulated to fully constrain the sorts. •

T h e S c h e m a t i s e d E x a m p l e

The presentation of Example 10.21 was what we in Chap. 2 called hierarchical,
from "largest" parts towards increasingly "smaller" (i.e., physically smaller)
par ts . In the reworking of Example 10.21 we shall "turn things around": pre
senting the schemes in order from what we may consider the physically "small
est" phenomena towards the "largest" such. There is a lesson to be seen here:
Namely tha t , when composing specifications (i.e., collections of scheme dec
larations) one may be well served in both developing and in presenting them
"compositionally", i.e., (colloquially speaking) "bottom-up"!

E x a m p l e 10 .22 A Railway Net Specification: Parameterisecl Schemes: To
each sort in Example 10.21 we associate a scheme.

s c h e m e Connectors = c lass t y p e C e n d

s c h e m e Units (connectors : Connectors) =
c lass

t y p e U
v a l u e

12 is_Linear: U->Bool ,
12 is_Switch: U ^ B o o l ,
12 is_SimpleCrossover: U - ^ B o o l ,
12 is_SwitchableCrossover: U - ^ B o o l ,
13 obs_Cs: U—•connectors.C-set,
17 lin_seq: U-set—>-Bool

lin_seq(us) =
(V u:U«u € us =>• is_Linear(u)A
(3 q:U*«len q — c a r d usAe lems q=usA

(V i :Na t«{ i , i+ l}Cinds q =>
(3 cxonnectors.C*

obs_Cs(q(i)) n obs_Cs(q(i+ l))={c}A
len q > l =$• obs_Cs(q(i)) ft obs_Cs(q(len q))={}))))

e n d

We could single out each of the mentioned four disjoint kinds of units, U,
representing them as schemes. We show it only for the linear case:

s c h e m e Linear (connectors : Connectors) =
e x t e n d Units (connectors) w i t h
c lass

t y p e LU = U
a x i o m

10.2 RSL Classes, Objects and Schemes 269

V u:LU«is_Lmear(u)A~is_Switch(u)
A ~is_SimpleCrossover (u) A~is_SwitchableCr ossover (u),

V u:LU: card obs_Cs(u}=2
end

We go on:

scheme Sequence (connectors: Connectors,units: Units(connectors)) =
class

type Seq
value obs_Us: Seq-mnits.U-set
axiom V s: Seq»units.lin_seq(obs_Us(s))

end

scheme Lines (connectors: Connectors,units: Units (connectors)) =
extend Sequence(connectors,units) with
class

type L
value
obs_Seq: L^Seq,
obs_Us: L—mnits.U-set
obs_Us(l) = obs_Us(obs_Seq(l))

end

scheme Tracks (connectors: Connectors,units: Units(connectors)) =
extend Sequence(connectors,units) with
class

type Tr
value
obs_Seq: Tr—»Seq,
obs_Us: Tr—>units.U-set
obs_Us(t) = obs_Us(obs_Seq(t))

end

scheme Stations(
connectors: Connectors,
units: Units (connectors),
tracks: Tracks(connectors,units)) =

class
type S
value
S obs_Us: S-mnits.U-set,
8 obs Trs: S-rtraeks.Tr-set

270 10 Modularisation

axiom
5 V s:S«card obs_Us(s)>l,
8 V s:S«card obs_Trs(s)>l,
7 V s,s':S«s#s' => obs_Us(s) n obs_Us(s')={}

end

scheme Nets(
connectors: Connectors,
units: Units(connectors),
lines: Lines(connectors,units),
tracks: Tracks(connectors,units),
stations: Stations(connectors,units,tracks)) =

class
type N
value
1 obs_Ls: N-»lines.L-set,
1 obs_Ss: N->-stations.S-set,
2 obs_Us: N-»units.U-set

axiom
1 V n:N«card obs_Ls(n)>l,
1 V n:N.card obs_Ss(n)>2,
4 V n:N,l:lines.L«l € obs_Ls(n)=^lines.obs_Us(l)Cobs_Us(n),
6 V n:N,s:stations.S'S € obs_Ss(n)=>stations.obs_Us(s)Cobs_Us(n),
7 V n:N,l:lines.L,s:stations.S«l € obs_Ls(n)As € obs_Ss(n)^>

lines.obs_Us(l) 0 stations.obs_Us(s)={}
end

We leave it to the reader to check that the previous and the present formali-
sations "cover the same ground". •

10.2.7 Definitions: Class, Scheme and Object

Characterisation. By an RSL class we mean, basically, a set of algebras; each
algebra being a set of distinctly named entities: types and values, including
functions and behaviours; and variables and channels. •

Characterisation. By a RSL scheme we mean a named class. •

Characterisation. By a RSL object we mean a specific algebra.

10.3 UML and RSL 271

10.3 UML and RSL

Note
This section was written by Steffen Holmslykke and edited by Dines Bj0rner.

The Unified Modeling Language, UML, is roughly a diagrammatic approach
to object-oriented modelling. UML has been widely used in industry as an aid
in the software development process, this is probably due to the wide use of
diagrams. A quality tha t diagrams provide is tha t they, for some, seem easy
to comprehend and are therefore a supplement to a structured description.

We refer to [59,237,382,440] for l i terature on UML. The Object Management
Group, OMG [382], is an industry association which tends to the interests of
UML users.

10.3 .1 O v e r v i e w of UML D i a g r a m s

Some of the more basic and classic diagrams of UML include: use case diagrams,
sequence/collaboration diagrams, statechart diagrams (or just s tatecharts) ,
and UML class diagrams.

U s e Case D i a g r a m s

Use case diagrams give an overview of the use cases (behaviours) and the
actors (including humans) who or which can perform them. A use case is a
requirement tha t the system must fulfill. This kind of diagram is used in the
requirements stage of the software development process and is a supplement
to textual (informal or formal) language (Fig. 10.1).

Browse concept notes

Create concept note

Fig. 10.1. Use case diagram with two use cases

Figure 10.1 shows two use cases: browse concept notes and create concept
notes. The figure is modified from [39].

272 10 Modularisation

We shall not cover use case diagrams in these volumes. The use case di
agrams of UML correspond to domain descriptions and requirements prescrip
tions where we model users (agents, actors) by processes tha t communicate
with the "things" shown as ovals in the use case diagrams, where these things
are also modelled as processes. So there is nothing in use case diagrams tha t
is not already to be modelled as behaviours according to the principles and
techniques of these volumes.

S e q u e n c e / C o l l a b o r a t i o n D i a g r a m s

Sequence/collaboration diagrams are used in order to describe interaction be
tween objects. Sequence diagrams and collaboration diagrams are isomorphic,
tha t is, the syntax of the diagrams is different but the semantics are the same.
Sequence diagrams have a strong resemblance to message sequence charts.

We shall cover sequence/collaboration diagrams, under the name of mes
sage sequence charts and live sequences charts, extensively in Chap. 13.

Statechart D i a g r a m s

Statechart diagrams are intended to model the internal state of an object and
its transition from one state to another. We shall cover statecharts extensively
in Chap. 14.

10.3 .2 Class D i a g r a m s

Class diagrams describe the static structure of a system, i.e., all the possible
states which the entire system can be in at any given time. Class diagrams can
be used both to describe a system at an abstract level focusing on relations,
and later at an implementation level focusing on the specification of states.
Figure 10.2 shows a class diagram for a stack such as described in RSL schemes
in earlier examples: from Example 10.10 to Example 10.19.

Elem

Graph

0..1
<-

7± + element

Directory

• o Stack

- isEmpty (): boolean
-push (e:Elem):void
- pop ():void
- top (): Elem

next
0..1 I

• prev
0..1

Fig. 10.2. UML Class diagram of a stack

10.3 UML and RSL 273

UML "Standardisat ion"

UML is under continuing development both in adding new diagrams to the
existing collection and in refining existing diagrams. This is coordinated by
the Object Management Group (OMG) [382].

Class diagrams are the subject of the rest of this section.

10 .3 .3 Class D i a g r a m s

A class diagram is a set of boxes and lines. Lines connect boxes, and a box
either represents a class or an object construct. The lines connecting the
boxes denote relationships of which there exist several kinds. In this section
the association and the generalisation will be mentioned — leaving out the
dependency relation and its derivatives.2

Classes

A class, syntactically speaking — i.e., a box — has three compartments: A
name compartment , a compartment for at t r ibutes and a compartment for
operations. Each class is uniquely named and represents a set of models, much
like the s c h e m e construct in RSL.

An at t r ibute corresponds to a variable declaration in RSL, and has a type
and a binding. It is the set of at t r ibutes which constitute the state of the
models which the class represents.

A class diagram operation definition is equivalent to the signature of a
value function declaration in RSL. A method in UML is an operation (a function)
in RSL. The function (method) definition body can, however, not be given in
class diagrams. The function can be specified, in UML, external to the box,
using the English language or any language tha t is relevant.

Unit_Measure
— length Real
+ GetLengthlnMeters () : Real
+ GetLengthlnMeters () : Real

Fig. 10.3. A UML class with one private variable and two public operations

The following RSL specification gives an "equivalent" description to the one
presented by the UML class diagram in Fig. 10.3. It should be noticed tha t

2 One argument for doing so is that the semantics of dependency is unclear and
its use mainly (and rarely) applies only when other relationships of class diagrams
do not suffice.

274 10 Modularisation

the visibility concept in UML denoted by the signs " + " for Public and "—" for
Private in the class is also to some extent available in RSL through the hide
construct.

s c h e m e Uni t_Measure =
hide length ,conv_to_meters ,conv_to_yards in
class

variable length : R e a l
value

getLengthlnMeters : U n i t —> read length R e a l
getLengthlnMetersQ = conv_to_meters (length)
getLengthlnYards : U n i t —>• read length R e a l
getLengthlnMeters () = conv_to_yards (length)
conv_to_meters : R e a l —> R e a l
conv_to_yards : R e a l —>• R e a l

e n d

objec t SomeUnit : Uni t_Measure

Objects are often used to depict complex situations of a system. This is useful
when generic descriptions with only classes are becoming hard to grasp.

A s s o c i a t i o n

Syntactically an association is a line between two or more classes, possibly
decorated with several ornaments at the ends and around the centre of the
line. An association semantically denotes the set of relationships (links) tha t
can exist between the instances of the classes which it connects. So-called
multiplicities can be added at the ends of the association denoting a constraint
on the number of participating instances in the relationship, thus also reducing
the valid relationships.

The line connecting Station and Line classes in Figure 10.4 is an ordinary
association. Tha t is, instances of the two classes may communicate with (or
"call") each other. The multiplicities mean tha t an instance of the Line class
must be connected to two instances of the Station class, and an instance of the
Station class must be connected to one or more instances of the Line class.

The lines connecting the classes in Fig. 10.5 are also association relation
ships, however, the filled diamonds at the Net class denote tha t they are
composite associations. This is a whole-part relationship which is an exten
sion of the ordinary association — meaning tha t the Net class is partly defined
by the three classes Unit, Line and Station. It also makes the whole, which
in this case is the Net class, "responsible" for the parts , tha t is, instantiating
the parts and establishing the links between them.

The line connecting the Sequence class with the Linear class in Fig. 10.6
is a shareable aggregation relationship denoted by the hollow diamond, and

10.3 UML and RSL 275

Station

connected to

1..*

Line

Fig. 10.4. Ordinary association with multiplicities at both ends

Fig. 10.5. Composite aggregate

is also an association relationship. The relationship has the same semantics
as composite aggregation apart from the "responsibility" for the parts .

Sequence

T
sequence of

1..*

Linear

Fig. 10.6. Shareable aggregate

Links

A link is a relationship between objects. It is an instance of an association.
The objects which it connects must thus be instances of the participating
classes of the association. So the link represents one of the relationships in
the set tha t the association holds. Consequently, the link must satisfy the
constraints added to the association through multiplicity. An association is
thus a prerequisite for a link to exist.

276 10 Modularisation

Genera l i sa t ions

Generalisations introduce a taxonomic structure between classes. The general
isation is a relationship between two classes which are designated as child and
parent. The nonprivate at tr ibutes and operations of the parent class are in
herited by the child class in addition to the association relationships in which
the parent participates.

Switch | | SimpleCross

Fig. 10.7. Generalisation of U class: parent for remaining classes

The extend construct in RSL is the counterpart corresponding to the general
isation relationship. A simple example follows:

s c h e m e Linear = e x t e n d U w i t h class e n d

10 .3 .4 E x a m p l e : Ra i lway N e t s

The UML class diagram presented in this section is based on the informal and
formal descriptions of railway nets from Examples 10.21 and 10.22. It is there
fore particularly interesting to compare the latter — which is a modularized
formal version — with the UML class diagram in Fig. 10.8 since it gives a hint
of the strengths and weaknesses of the two specification languages (one, RSL,
is formal, while the other, UML class diagrams, is informal).

Note: Where, in the RSL specifications we used and use U for the sort of rail
units, we shall, in the UML diagrams, use Unit, not to be confused with RSL's
U n i t literal (as the meaning of ()). In the class diagram of Fig. 10.8 the model
is divided into several smaller pieces which describe smaller par ts . In this case
the classes represent the phenomena introduced in the informal description.
These are basically the same which were used in Sect. 10.2.6 except for the
(rail) Unit class, which instead uses generalisation to partially describe each
of the specialised rail units.

Items 1, 2, and 8 of Example 10.21 describe a consist of relationship
between two phenomena. The latter item describes tha t a station consists of

10.3 UML and RSL 277

—| SimpleCross

| Connector | 1 SwitchCross
' ' 0 2

1 Switch

- | Linear \-

- ^ ^ | Stati

connected to

sequence of y V
Q j Sequence

Fig. 10.8. UML class diagram of railway nets

one or more tracks. This fits with the whole-part relationship that composition
provides in the class diagram. Here the station is the whole, and it is not
complete unless it has tracks, and the tracks cannot exist without a station.
For example, item 8 is depicted in the class diagram as a solid line between
the Station and Track classes, where the first is marked with a filled diamond
at the end of the line indicating that it is the whole.

Items 3, 9, and 5 of Example 10.21 use respectively a sequence of and set
of to describe a relationship. This is again a whole-part relationship, however
this time the parts are already part of the net. So to be able to maintain a
reference to an existing part a shareable aggregation is used as a relation. For
example, item 3 of Example 10.21 is depicted in the class diagram as a solid
line between the Station and the Unit classes, where the first is marked with
a hollow diamond at the end of the line indicating that it is the whole.

In item 12 in the formalisation of Example 10.21 a unit is described as
being either a Linear, Switch, SimpleCross or SwitchCross which in the class
diagram is substituted by a generalisation relationship where the Unit is an
abstract class (its class name is written in italics) so it cannot be instantiated.
Both the informal description in item 12 of Example 10.21 and the correspond
ing way it is modelled in the class diagram suggest that another axiom should
be added. In the formal model four Boolean functions are used to determine
the type of a given unit. Here an axiom could be added which ensures that a
unit only can be of one type. This is achieved in the class diagram since an
object can only instantiate one class. The axiom could be as follows:

V u : U • is_Linear(u) =^
~ (is_Switch(u) V is_SwitchableCrossover(u) V is_SimpleCrossover(u))

Additional axioms should be added for each of the three other possible situ
ations.

278 10 Modularisation

The two items 13 and 14 of Example 10.21 are overlapping, where the
latter contains more information. The latter explicitly describes the number
of connectors which a given unit must have, while the former just states that
a unit has at least one connector attached. If the latter is fulfilled then so is
the former, which makes it superfluous in this model. This was noticed while
drawing the associations between the Unit class and its specialisations. Here
item 14 would in the class diagram amount to an association between each of
the specialised classes of Unit to the Connector class which is shown in the
class diagrams. Item 13 would be an association between the abstract Unit
class to the Connector class. If this were to be added then it would mean that
each of the specialisations also would have this relation due to inheritance
through generalisation, which is not intended.

It is not possible to show items 4, 6, 7, 10, 11, 15, 16 and 17 of Exam
ple 10.21 in a class diagram, since they describe constraints on instances of a
static structure. For example, item 4 is used and redisplayed for convenience:
"The rail units of a line must be rail units of the railway net of the line". To
be able to express this requirement we must be able to identify a particular
unit and, if it is part of a line, then it must also be part of the net. This could
be achieved by using the Object Constraint Language [382, Sect. 6]. We will
not do so here.

There is some similarity between the two classes Track and Line since they
both represent a sequence of linear rail units. They are, however, still different
since a Line connects two stations and a Track only exists within a station.
The common features of the two can be generalised into a class Sequence,
which represents a sequence of linear rail units, and then the two classes Line
and Track can be specialisations of that class respectively specifying their
restrictions.

10.3.5 Comparison of UML and RSL OO Constructs

Phenomena described in informal domain descriptions or in informal require
ments prescriptions are, in RSL specifications, usually represented by sorts.
Besides a few observer functions these sorts are further unspecified. In class
diagrams they are represented by classes, and these, as for RSL schemes, can
be instantiated as objects (respectively RSL objects).

Initially we usually choose an applicative style for RSL specifications. There
is perhaps a closer relationship between schemes and classes if an imperative
modelling style had been used since the object in RSL would then contain an
explicit state based on variables. It is, however, a typical approach — when
using the RAISE Method — to start with an applicative specification and later
refine it to an imperative specification, one which is more implementation ori
ented. Hence we could argue that it is too early to determine the (assignable
variable) states by which the phenomena could be modelled. This approach
has also been used for class diagrams since none of the classes have any at-

10.3 UML and RSL 279

tributes or operations. (This is also the reason for not showing compartments
in the diagrams above.)

Links (which in UML are instances of associations) are (in terms of UML)
used to express the communication of messages, tha t is, to designate the
invocation of methods at the target UML object. The associations/links used
in class diagrams in RSL can perhaps best be compared with qualification,
tha t is, declarations from other objects including types, variables, functions,
etc. With the use of qualification it also becomes possible, in RSL, to access
the encapsulation of other objects and to invoke functions.

The generalisation relationship in UML and the e x t e n d construct in RSL
are similar since they both take respectively a class and a scheme and add
more information. A specialised class, in UML, can add at t r ibutes or operations
to the ones already present from the generalised class. This is also possible
with the e x t e n d construct in RSL.

10.3 .6 Re ferences

Although RSL has modules it may be claimed, by some, not to be a "true
object-oriented language". This does not, however, mean tha t it is impossible
to express object-oriented models in RSL. The reason tha t RSL may be said
to not be directly object-oriented is tha t it does not support references — in
particular with regard to objects.

As an example we use the three schemes Connectors, Units, and Lines
from Example 10.22. The headers of the mentioned schemes are replicated
below for convenience. The first scheme has no parameters since it does not
use any sorts or functions from outside its own scheme. The Unit scheme
needs to know of the Connectors scheme since it uses its sort.

s c h e m e Connectors = c lass end,
s c h e m e Units (connectors : Connectors) = c lass e n d

The Lines scheme only needs information from the Units scheme and not from
the Connectors scheme. However, to be able to instantiate the Units scheme
an object instantiated from the Connectors scheme must be provided.

It is not possible to pass an already instantiated object of units as the
only parameter to the Lines scheme or, formulated in another way, it is not
possible to pass an object by reference. This is a major difference between RSL
and object-oriented modelling. Thus it is necessary to give an object of type
Connectors as a parameter although it is not used by the Lines scheme.

s c h e m e Lines (
connectors : Connectors,
units : Units (connectors)) = c lass ... e n d

280 10 Modularisation

10.3 .7 Class D i a g r a m Limi ta t ions

As mentioned earlier, class diagrams do not provide "compartment" space for
all the information given in the informal description of railway nets, partic
ularly information tha t refers to the unique identity of an instance. Here it
is necessary to use UML's Objec t C o n s t r a i n t Language, OCL [526,527], or
resort, as we do, to RSL's predicate calculus. It is possible to express some
(trivial) information in UML class diagrams which in RSL models is described
using axioms. There are constraints on numbers such as the minimum number
of stations in a net: Here one may use multiplicities.

10.4 Discussion

Several diverse issues need to be discussed. Our discussion, below, is not ex
haustive. More discussion will follow at the ends of other chapters and in
other volumes of this series of three textbooks on software engineering. We
lump a discussion of selected issues into one part , and then conclude with a
'principles, techniques and tools' par t .

10.4 .1 M o d u l a r i t y I ssues

We have selected just five issues for closer examination.

M o d u l a r Speci f icat ion and P r o g r a m m i n g

The concept of modularity appears in many guises in the many different spec
ification and programming languages claiming to provide some form of modu
larity constructs. In this chapter we showed two extreme kinds of modularity:
tha t of RSL, provided for in textual form, and tha t of UML, provided for in
diagrammatic form. There are other formal specification languages also pro
viding modularity: B [2] and e v e n t - B [4], CAFEOBJ [96,123], CASL [40,369,371]
and Z [210,230,479,480,542,543].

Stabi l i ty of M o d u l a r i t y C o n c e p t s

In the mind of the current author the last word on modularity has yet to find
its way into a proper formal specification language, respectively into a proper
programming language. We have covered the modularity concept in these
volumes. But we have done it less deeply than many a reader might have
expected. We are happy with tha t . More final t reatments are needed. Some
fascinating ones are already available — reflecting, in our mind, crucial bases
which still have to find their way into commercially supported programming
languages. The most exciting is tha t of Abadi and Cardelli [1].

10.4 Discussion 281

W h i t h e r O b j e c t - O r i e n t e d (OO) " P r o g r a m m i n g " ?

Object-oriented (0 0) programming is but one of many useful programming
styles, but it is not the only one. Other programming styles focus on functions
(SML [168], and so on). Since languages like J ava [8,15,146,301,465,513] and
C# [207], for all their virtues, rather heavily represent the OO school, their
way of offering concurrent, i.e., parallel programming is "heavy-handed". It is
complicated and "expensive", therefore programmers might be led to believe
that concurrency is complicated and expensive [510], whereas it might not
be so! Indeed, it is not so. We refer to the delightful [510] for a view of
programming tha t plays down the singular importance of OO.

S c h e m a , Objec t and M o d u l e Calcul i

So an essence of this chapter and of our coverage is tha t it is, in our mind, too
early to decide on which singular set of modularity concepts, whether those
of UML, those of RSL, respectively those of C#, or other, to use.

How to know what to ask for when choosing specification and programming
languages? This question will not be answered here. To ask it properly the
reader must have studied all volumes of this series of textbooks in software
engineering.

Become familiar with, for example, the two modularity concepts of this
chapter and those of J ava [8,15,146,301,465,513], E i f f e l [344,345] or C# [207,
346,347,401]. And then, in future projects find out what is then available, in
some formal specification language or other (B, e v e n t B , . . . , RSL, Z) and
in some programming language. Then settle for what you consider the most
appropriate in which to abstract your ideas, respectively to finally program
their concretisation.

Formal i sa t ions of UML's Class C o n c e p t

We should also, in this closing section, not forget to mention a t tempts to
formalise the UML class (diagram) concept. One is given by the author of
Sect. 10.3, Steffen Holmslykke [9,10]; a previous, also in RSL, is given by
Ana Funes and Chris George [122]. A thorough, more theoretical t reatment
of many UML concepts is given in Martin Grofie-Rhode's book [153].

10.4 .2 Pr inc ip le s , Techniques and Tools

We summarise:

Princ ip le s . The principle of modularity is tha t it is indeed possible to divide
and conquer. •

282 10 Modularisation

Techniques. We have shown, basically, two sets of modularisation tech
niques: First we showed the RSL techniques of identifying classes, naming
classes (thus defining schemes), and declaring objects, being instances of
classes, i.e., one model out of the set denoted by a class. We also showed
the UML techniques of boxes and relationships, the latter of various kinds:
associations, links, generalisations, etc. •

Tools. Thus we have shown two tools for modularisation: the RSL class, object
and scheme constructs; and the UML class diagram constructs. •

10.5 Bibliographical Notes

The literature on modularisation is vast. The first object-oriented program
ming concepts, together with a language for expressing them, were those of
Simula'67 [41,85,87,88]. See also the Internet Web page [472]. David Lorge
Parnas has written persuasively about many issues of modularisation. We
mention a few works [388-391] — where the last reference is to a collection
of a sizable part of Parnas's rich production. SmallTalk is another fascinat
ing object oriented programming language. It has, as of 2004, its own home
page: [476]. See also [141,142,544].

We refrain here from referencing the vast literature on UML.

10.6 Exercises

Exercise 10.1 Scheme Constructions. You are to select and solve one or more
exercises, preferably one from each of the 6 groups of exercises listed below
and to convert their formalisation into a set of two or more scheme definitions:

1. Exercises 2.1 and 5.7: Documents
2. Exercise 2.2: Part Assemblies
3. Networks. Common to the next three exercises is that of a previous exer

cise, Exercise 4.1. Select one of either of:
(a) Exercises 2.3 and 5.3: City Road Nets — Streets and Intersections
(b) Exercises 2.4 and 5.4: Air Traffic Route Nets: Air Lanes and Airports
(c) Exercises 2.5 and 5.5: Shipping Nets: Lanes and Harbours

4. Exercise 2.6: Robots
5. Languages. Select one of either of:

(a) Exercise 3.3: Denotational Semantics: A Simple Bank
(b) Exercise 3.4: Denotational Semantics: A Simple Banking Script Lan

guage
(c) Exercise 3.5: Denotational (Continuation) Semantics: Language with

Storable Label Values

10.6 Exercises 283

(d) Exercise 3.6: Denotational (Continuation) Semantics: A Proper Corou
tine Programming Language

6. Systems. Select one of either of:
(a) Exercises 4.2 and 5.1: Supermarkets
(b) Exercises 4.3 and 5.2: Manufacturing

11

Automata and Machines

• The prerequisite for studying this chapter is that you are well familiarised
with Chap. 4's coverage of Configurations: context and States.

• The aims are to introduce the related concepts of finite state, infinite state,
and pushdown stack automata and machines, and to show the usefulness
of finite state and pushdown stack automata and machines in — mostly
— concrete, operational (i.e., computational) specifications.

• The objective is to help make sure that the reader can freely choose and
usefully apply, when appropriate, the modelling principles and techniques
of finite state and pushdown stack automata and machines — as well as to
encourage the reader to more seriously study more specialised textbooks
on automata and formal languages.

• The treatment is informal, but systematic.

. States .
A state is a summary of past behaviour. We may speak of a usually very
large — and as we shall call it — actual state space. And we may model
this actual state space in terms of abstracted model states. Often the actual
state space of past behaviours can be summarised in a small number of
discrete model states. A kind of equivalence relation over the actual state
space can be imposed. When this is possible, the principles and techniques
of the present chapter apply.

In this chapter we will survey a way of representing and hence "talking about"
a certain class of states concept — a way that is different, in style but not in
essence, from the way we have so far, above, treated the state concept. First
we will define the general notions of discrete state automata and discrete state
machines. These are "gadgets", or systems, sometimes also called "devices"
(i) that possess either a finite or an infinite set of ("internal") states, (ii) that
'accept', i.e., read, in any one state, (iii) any input from an environment, and
of a finite or infinite type, called an alphabet of inputs. Upon (iv) reading
such an input they undergo a state transition to a (possibly same) next state,

286 11 Automata and Machines

(v) while, possibly, yielding an output to an environment, and again of a finite
or infinite type, called an alphabet of outputs. Then we shall specialise this
notion to the two by two subclasses of finite and pushdown stack automata
and machines — usually abbreviated by: FSAs, FSMs, PDAs and PDMs.

11.1 Discrete State Automata

Recall that the valves of the liquid container tank in Example 4.3 are said to
be in either of two (mutually exclusive) states: open or closed. As a pair they
can thus be in any of four states. What "drives" them from state to state? In
this case it is the set and close valve operations. These operations sometimes
change the state, and sometimes not! In the formalisation of the valve states in
the imperative process model we used assignable variables. Their value range
was finite and small, to wit: open or closed! When the value range of certain
variables is finite and small, say two or three, then we can model the state of
the "things" — which leads us to the variable model — instead in terms of
finite state diagrams.

Example 11.1 A Liquid Container System, III: Finite State Valve Automa
ton: With each valve we can thus associate a two-state state diagram, or, as
we shall call it, a finite state automaton (left side of Fig. 11.1). We can also
combine the two automata into one that has four states. Figure 11.1 shows
the state transition effects in response to valve open and close actions (open_k
and close_k). •

in valve close_i

O I [C

open_i

close_i

close_o

o) [c

open_o

close_o

open_i f \

open_oi / * " " N C ^

^\p°/\

open_i [close_i

close_i { \yS*^

open_o\ J

Two Valve

c l o s e _ o \ w ^ N

Toe
open_o /

open_

close o ^ ^ " " ^
[CC

open_o V

System (in

\ close_o

. J open_i

o I close_i

* A close_i

J close_o

,out)
out valve

Legend:
o open, c closed, oo both open, cc both closed, oc in_valve open out_valve closed, co - vice versa

close_k: close valve k, open_k: open valve k - for k in {i,o}, i: in, o: out

Fig. 11.1. The valve system: separate valves versus combined

11.1 Discrete State Automata 287

We explain Fig. 11.1: The left side shows two state diagrams: The upper for
the in valve; the lower for the out valve. Each of these state diagrams consists
of two states and four transitions. States and transitions are labelled: states
with state identifiers, and transitions with automaton input. The right side
of Fig. 11.1 shows a four-state automaton. It is the product of the two
automata shown on the left. State labels are pairs of abbreviations of the
state labels of the left-hand-side diagrams. Transition labels are sets of
possible automaton inputs. A transition, labelled i, from state s to state s'
(where s may be s'), expresses that the automaton, when in state s and
accepting input i, transits to state s'. At any one time the automata can
be in exactly one state. How the inputs are presented and how the state
changes are effected are not described, either by the diagram of Fig. 11.1 or
by the formalisation given next. What is described is that in certain states
certain inputs are acceptable, and when accepted will lead to a state change.

Def in i t ion . By a deterministic state automaton we formally understand a
three grouping:

t y p e
SA' = I-infset x S-infset x ((IxS) ^ S)
SA = {|(a,tr,(/)):SA'«V(i,s):(IxS)«(i,s) € d o m ^=>i e aAs € crA</>(i,s) € <r|}

There is an input alphabet, a, a set of states, a, and an input and state to
next state transition function, <f>. Any or all of the three automaton compo
nents (alphabet, states and transition function) may be finite or infinite. The
deterministic nature of the au tomata stems from there being at most one
transition defined for every input and state pair. •

Had there been two or more such next state transitions for any given input
and state pair then the automaton would have been nondeterministic.

Def in i t ion . By a nondeterministic state automaton we formally understand
a three grouping:

t y p e
SA' = I-infset x S-infset x ((IxS) ^ S-infset)
SA = {|(a,cr,</)):SA'«V(i,s):(IxS)«(i,s) € d o m ^=>i e aAs € crA</>(i,s) C a\}

Possibly the same inputs and the same states. The difference between the
deterministic and the nondeterministic finite state au tomata is tha t the state
transitions of the deterministic au tomata are deterministic, tha t is, to one
next state, whereas the state transitions of the nondeterministic au tomata are
nondeterministic, tha t is, to any one of several next states. This is reflected
in the two transition functions: (IxS) ^ S versus (IxS) ^ S-infset. •

11 .1 .1 In tu i t ion

The intuition behind a deterministic state automaton is as follows: The au
tomaton is in some state. Upon receiving, and we do not tell how, an input,

288 11 Automata and Machines

the automaton undergoes a transition to a possibly other state. Thus the au
tomaton is a discrete, conceptual device. It either remains in states when no
next input is presented (and hence is stable), or it "moves" to a next state
when an input is presented — where this next state may be the same state
as the automaton was in before the input was presented. We do not explain,
at present, what we mean by "input is presented". You may think of it as the
automaton deciding, now and then, to input a symbol, i.e., to read from an
input stream of symbols.

11.1.2 Motivat ion

We motivate, partly, the existence of (finite) state automata by presenting
some derived examples.

Example 11.2 "Concrete" Finite State Automata: Intuition: To help your
intuition, let us present some familiar examples of automata, (i) The automa
ton that models the state of a four-door automobile with a (say, rear entry)
luggage compartment. Any of the five mechanisms, the four doors and the one
lid of the trunk, may be in an open or a closed "state". Hence the combined
automaton may be in one of 25(= 32) states. State transitions may allow only
for the single closing or the single opening of a door or the lid, or may al
low for multiple, simultaneous both openings and closings of these. A closed
[an open] door (lid) cannot undergo a "local state" transition "being closed"
["being opened"], (ii) Next, we present an automaton that is based on the
previous example, (i), but where no distinction is made as to which of the
four doors is open or closed. That is, there are two contributions: All or some
doors open, and all doors closed. Join to that the state of the compartment
lid and one gets a total of four states, (iii) Finally, we present an automaton
that is based on the previous example, (ii), but where no distinction is made
as to whether it is a door or a trunk lid that is open, or closed. Thus we have
just two states. Exercises 11.1 and 11.2 are based on the above example, and
ask you to draw appropriate finite state automata diagrams. •

11.1.3 Pragmat ics

We are fine with intuition, but why do we model certain phenomena and
certain concepts as (finite) state automata? Again, we answer that question
by discussing Example 11.2.

Example 11.3 "Concrete" Finite State Automata: Pragmatics: Let us focus
on case (ii) of Example 11.2. The four states could be labelled: Sffc, all doors
and the lid closed; S* ,̂ all doors closed and the lid open; Sef0, some or all doors
open and the lid closed; and S^, some or all doors open and the lid open.
Now, why might we wish to make those foi;r distinctions? An answer might be

11.1 Discrete State Automata 289

that we wish to make the performance of certain driver operations contingent
upon the state. For example: In S^c

c the ignition key can be engaged, but
headlamps cannot be turned off. In S(

d° the ignition key cannot be engaged
but the compartment light can be turned on (and off). In S{/0 the ignition
key cannot be engaged but headlamps can be turned on (and off). In Se

d°
only headlamps can be turned on (and off). This is just a very tiny sample of
possibilities. •

Fig. 11.2. An infinite state automaton

Example 11.4 An "Abstract, Informal" State Automaton: Figure 11.2 il
lustrates an infinite state automaton. State transition arrows labelled i have i
designating inputs. State transition arrows labelled l\{ij}, where ij designates
an input, stand for the possibly infinite set of labels ik for ik being an input,
except ij. An, albeit, construed class of examples of such automata as just
hinted at could be those which go from nonerror state to nonerror state when
input an increasing series of numbers adhering to some predicate: next_prime,
next_Fibonacci number, next_factoriaI, etc. At present, please do not ask for
the "usefulness" of such an automaton! •

We explain Fig. 11.2: The dashed and dotted right hand-side is intended
to show that the state machine is infinite, and, in this case, that its state
structure "continues" as indicated in the left part of the figure. By state
structure we, in this case, mean: The upper part sequence of input symbol
transitions (labelled ii, i-2, 13, ii) and next states (so, s\, S2, S3) continues
with 15, . . . , in-i, in, • • •, respectively 54, • • •, sn, sn+i, ..., "ad infinitum",
and the lower part ("error") state diversion se (with their ingoing, labelled
transitions), is intended to also be the next state for the "ad infinitum" ex
tension. How the infiniteness, shown very informally in the otherwise formal
state diagram, is representable, say inside a computer, is not indicated. In
the two-dimensional figure it is shown by the informal use of ellipses (•••),
dashed lines, etc.

We will now show how one might be able to formally represent an infinite state
automaton.

290 11 Automata and Machines

Example 11.5 An "Abstract, Formal" State Automaton: We continue Exam
ple 11.4 above. The problem we tackle is that of choosing the sequence of inputs.
We arbitrarily — so as to be able to represent infiniteness as a closed, finite size
expression — choose to let the sequence of acceptable inputs be the sequence of
(say) Fibonacci numbers:

F(0) = 1, F (l) = 1, F{n) = F{n - 1) + F{n - 2), n > 1

We could have chosen any other sequence for which some functional expression,
as above, can be established. Now the formal representation of the infinite state
automaton follows the definition of state automata:

o = Nat, a = { s(i) • i:Nat },
4>=[(F(i) ,s(i))^s(i+l) , (j_i ,s(i))^s_e | i , j_i :Nat . j_i /F(i)]

Even this definition is informal, i.e., it falls outside the formal syntax of B.SL, but it
is mathematically precise. By s(i) is understood, not necessarily a function s applied
to a natural number i, but basically just an ith state symbol such that no two such
state symbols (s(i),s(k) for i^k) are the same^By j_ i is understood a natural number
other than the ith Fibonacci number. The use of the suffix i in j _ i here is an informal
but sufficiently precise usage. By s_e is understood a state symbol different from
any s(i). •

11.2 Discrete State Machines

State automata can be extended into state machines. State automata have input
and states. State machines have input, states and output.

Definition. By a deterministic state machine we formally understand a four group
ing:

type
SM' = I-infset x S-infset x O-infset x ((IxS) ^ (SxO))
SM = {\(a,<r,ip,u):SM' •

V (i,s):(IxS) • (i,s) <E dom V =>
i G QAS G crAlet (s',o)=V'(i)s) m s ' £ a^° £ w end|}

where a, a and <j> are as for state automata, and u is an output alphabet (Fig. 11.3).
We will defer further explanation of the role of the output alphabet and its appear
ance in ip. m

Example 11.6 An "Abstract" State Machine: Figure 11.3 illustrates an (i.e., some
arbitrarily chosen) infinite state machine. State transition arrows labelled 'i.o' have
i designating inputs and o outputs. State transition arrows labelled l\{ij}.o' where

You could, of course think of s being such a state-generating function. It would
then be a bijection: no two s(i) and s(k) for i^k generating the same symbol!

11.3 Finite State Automata 291

i j designates an input and o' an output, stand for the possibly infinite set of labels
i k.o' for i k being any input, except i j , and o' some output. State transition arrows
labelled l.o' stand for the possibly infinite set of labels I.o' for i being any input, and
o' some output. •

l\{i1}.o' \l\{i2}.o' \l\{i3}.o' \l\{i4}.o'

Fig. 11.3. An infinite state machine

We explain Fig. 11.3: We refer to Figure 11.2 for the basic explanation
of this state diagram. The new concept in machines, different from that of
automata, is that of a specialised output. A state transition label i.o between
states s and s' shall mean: Upon input i in state s the state machine transits
to next state s' while yielding the output o. Neither the formalisation nor the
graphic representation tells us anything about how this output is presented
to an outside world: Only that it is.

11.3 Finite State Automata

On the basis of Example 11.1 we now generalise: Finite state diagrams — like
tha t of Figure 11.1 — are sometimes called finite state automata , and some
times finite state machines. Figure 11.1 is called a finite state automaton. It
is concretely characterised by a two-dimensional layout of a finite number of
states, drawn here as "fat" state name-labelled circles, and directed, labelled
edges (i.e., arrows) between these states. In the finite state automaton defi
nition below we shall abstract (i.e., formalise) this concrete representation —
making the drawing into a mathematical structure.

We can "arrow and box" conceive of a machine, more generally of a system,
as a box with input and output (Fig. 11.4).

We explain Fig. 11.4: It is just a very simple abstraction. It really "car
ries" only symbolic, iconic meaning: The box is intended to designate an
arbitrarily complex or simple system: Here any kind of finite state automa
ton. The input arrow is intended to show that this system 'accepts' (i.e.,
reads) input. The "sketchy", incomplete state machine "inside" the box is
intended to show two things: That inputs lead to next states and that the
system focus is on the state behaviour. The output arrow is finally intended
to show that the current state of the system can always be observed from
an outside.

292 11 Automata and Machines

input

1

FSA \/

~^</ J state

Fig. 11.4. An abstract machine [system]

You can disregard the fragment automaton shown inside the box in Fig
ure 11.4. It is there only to relate back to state diagrams like Figure 11.1:
The i's on arrows are the input i's provided to the machine [i.e., to the sys
tem]. The state output only means that one can observe, from outside the
"box", which state "its" state machine (the finite state automaton) is in.

11.3.1 Regular Expression Language Recognisers

Usually finite state automata are seen as acceptors, or recognisers, of sen
tences of regular expression languages. We will define the concept of regular
expressions shortly. For now, let us show an example.

Example 11.7 A Unite state recognising automaton: The example starts
with showing an initial and final state finite state automaton (Fig. 11.5).
The automaton accepts, for example, the following sequence of symbols: Ini
tially either an a or a &, then either a c followed by any number, including
zero, es, and then another e, or a d followed by any number, including zero,
,fs, and then another d — with all of this "terminated" by either an o or a b.
The above informal sentences are "modelled" by what is known as a regular
expression shown at the bottom of Fig. 11.5. As explained, we show some of
the acceptable transitions, but not all of the unacceptable transitions. The
latter are thought of as being suitably labelled and going to an error or reject
state which is not shown, but, as is the case for the also not shown transitions,
the error state and error transitions can easily be added to the diagram. •

We explain Fig. 11.5: In the initial state 0 the automaton of Figure 11.5
accepts either a or b. All other inputs are rejected, i.e., not shown. Hence this
leads to an error state, also not shown! We have shown the transitions from
state 0 to state 1 as two separate arcs. They could have been "collapsed"
into one whose label would then be the set of acceptable inputs (in state 0):
a,b — as a list of symbols separated by commas. The choice of showing one
or more arcs is just a stylistic choice! Accepting a or b leads to next state 1.
In state 1 either c or d will be accepted. All other input will be rejected —
and is hence not shown, again for simplicity. (As before, their input would
lead to a transition to an error state.) Input c leads to next state 2. Input d

11.3 Finite State Automata 293

R = (a l b) (c e * c l d f * d) (a l b)

Fig. 11.5. Finite state recogniser automaton

leads to next state 3. In states 2 and 3, any number of inputs e, respectively
f will be accepted — leading to the same state 2, respectively 3. Also in
states 2 and 3, inputs c, respectively d, will be accepted (all inputs other
than e,c, respectively f,d will be rejected, etc.), and lead to same next state
4. Finally, in state 4 either a or b will be accepted and lead to final state 5.

Example 11.7 shows tha t finite state au tomata can be used to model devices
tha t recognise certain input sequences while rejecting others. Rejection takes
place when a transition to an error state takes place. The languages of ac
ceptable sequences are called regular languages, and an acceptable sequence
is called a sentence of a regular expression (language).

11.3 .2 Regu lar E x p r e s s i o n s

In Sect. 8.5.3 we covered the notion of regular expressions. For the sake of
continuity, we present here another version of our explanation of this concept.

Def in i t ion . By a regular expression we understand the following:

• There is an alphabet, A.
• Letters a, b, . . . , c (etc., of the alphabet A) are regular expressions.
• If R and R' are regular expressions, then so are:

RR , R , R | R , (R)

The meaning of regular expressions a,RR',R*,R \ R' and (R) are:

• Regular expression a s tands for the set {(a)}
• Regular expression RR' s tands for the set

{ r V | r : R A r' : R'}

where ~ denotes concatenation of strings.

294 11 Automata and Machines

• Regular expression R* s tands for the set

{ e , r , r ~ r ' , r ~ r ' ~ r " , r " r ' " ... ~r" ,r~r'~ . . . | r,r',r" : R}

where . . . informally designate an arbitrary, including infinite number of
repetitions of string (i.e., sentence) concatenations, and where e designates
the empty (the null, the void) string2 .

• Regular expression R \ R' s tands for the set

{r | r : R V r : R1}

• Regular expression (R) s tands for the set

{r\ r : R}

tha t is: Parentheses are used for grouping and for disambiguation.

So regular expressions denote regular languages: specific strings, i.e., sen
tences, of symbols of an alphabet. •

Def in i t ion . By a regular language we understand the denotation of a regular
expression. •

11 .3 .3 Formal Languages and A u t o m a t a

So we have identified a class of languages called the regular languages. They
can be defined by a regular expression. We postulate, i.e., we claim, but do
not show:

T h e o r e m 1 1 . 1 . Regular Language Recognition: To every regular expression
there corresponds a finite state automaton that accepts exactly the sentences
in the language of the regular expression. •

T h e o r e m 11 .2 . Regular Language Generation: To every finite state automa
ton there corresponds a regular expression exactly whose sentences are accepted
by that automaton. •

We refer to appropriate textbooks (e.g., [6,200,217,444]) on automata and
formal languages for proper t reatment of the concepts of finite state au tomata
and regular languages, including algorithms for constructing regular expres
sions from finite state au tomata and finite state au tomata from regular ex
pressions.

2The empty string e juxtaposed (concatenated: ") to any string s yields that
string: s^e = s = e^s.

11.3 Finite State Automata 295

11.3.4 Automaton Completion

In, for example, the Unite state recogniser automaton of Fig. 11.5 only ac
ceptable transitions were shown, but a "completion" was described in the
explanation of Fig. 11.5. We show, in Fig. 11.6, the result of such a comple
tion: Now all states have (emanating) transitions which together "label" the
full automaton alphabet.

Regular epression: (alb)(ce'cldf'd)(alb)

Fig. 11.6. Complete finite state recogniser automaton

11.3.5 Nondeterministic Automata

So far we have assumed deterministic automata, and we will continue to do so,
and to consider also only deterministic machines. A deterministic (finite state)
automaton (dFSA) is one for which there is at most one transition leading out
from any state for any input. So, a nondeterministic (finite state) automaton
(nFSA) is one for which there may be more than one transition leading out
from any state for any input. Figure 11.7 shows an example nFSA.

It can be shown that:

Theorem 11.3. Nondeterministic FSA = Deterministic FSA. The recognis
ing power of nFSA is exactly the same as that of dFSA. In other words: To
every nFSA there corresponds a dFSA with the same 'behaviour'. •

We refer to classical texts [6,200,217,444] for more on nondeterministic au
tomata.

296 11 Automata and Machines

a,b,c

a,c

Fig. 11.7. Nondeterministic finite state automaton

11.3 .6 M i n i m a l S t a t e F in i t e A u t o m a t a

Figure 11.8 shows two finite state (regular language recognising) automata .

Def in i t ion . Minimal State Finite Automaton: An FSA is said to be minimal
if there is no other FSA which recognises the same language but with fewer
(number of) states. •

Legend:
IF: Initial and Final states; A, B, AB: other states

a,b: input symbols

Regular Expression, re: ((a | b) a* b)*

®J0J.
Minimal FSA

Fig. 11.8. Two FSAs for the same regular language

The automaton to the left in Fig. 11.8 is not a minimal state automaton for
the language denoted by the regular expression, re, shown in the Fig. 11.8.
The one to the right is minimal wrt. the re shown in the figure.

T h e o r e m 11 .4 . Minimalisation of FSAs: There is an algorithm for con
structing a minimal state finite state automaton from a given finite state
automaton. •

We refer to [6,200,217,444] for more on minimalisation.

11.3 Finite State Automata 297

11.3 .7 F in i t e S t a t e A u t o m a t a Formal i sa t ion , I

We state:

Def in i t ion . Deterministic Finite State Automaton: Formally speaking, a de
terministic finite state automaton, FSA, is a five grouping:

t y p e

FSA' = I-set x S-set x Sj-set x S 0 -set x F
F = (IxS) Trt S
FSA = {| fsa:FSA' • wf_FSA(fsa) |}

value
wf_FSA(a,tT,itTS,otTS,(^) =

a^{} A a^{} A i t r s^ j} A itrsCtr A o c s ^ { } A otrsCtr A
V (i,s):(IxS) • (i,s) e d o m (f>^i£aAs£aA (f>(i,s) £ a

Here we have tha t ct:l-set is a finite set of further unspecified tokens, the input
alphabet; S is a finite set of further unspecified tokens; itr:Sj are the initial
states; oa:S0 are the final states; and <f> : F is a finite map which represents an
(input,present_state) to next_state transition function. The (completed) finite
state automata , as defined, are said to be deterministic. For every state there
is one next state defined for every input. •

11 .3 .8 F in i t e S t a t e A u t o m a t a Rea l i sa t i on , I

The pragmatics of the initial state set is tha t the automaton is s tarted in one
of its initial states. Usually the set is a singleton set of just one state, the
initial state. The pragmatics of the Gnal state set is tha t the automaton is
expected to reach, sooner or later, one of its final states. Usually the set is
a singleton set of just one state, the Gnal state. Once a sentence delivers the
automaton, from an initial state, into a final state, the sentence is said to have
been recognised, i.e., to have been accepted. The definition is loose: It allows
incomplete, but not nondeterministic automata .

E x a m p l e 11.8 A Finite State Automaton: The State Transition Function:
We continue Example 11.7. We seek the representation of the au tomaton of
Figure 11.5 The representation is:

fsa: ({a,b,c,d,e},{0,l,2,3,4,5},{0},{5},<^)
^ = [(0 , a) h 4 l ,

(0 , b) ^ l ,
(l , c) ^ 2 ,
(1 4) ^ 3 ,
(2 , e) ^ 2 ,
(2 ,C)H4,

298 11 Automata and Machines

(3 , f) ^ 3 ,
(3,d)<-»4,
(4,a)H-5,
(4,b)->5]

Its regular expression was shown at the bot tom of Figure 11.5. •

11 .3 .9 F in i t e S t a t e A u t o m a t o n Formal i sa t ion , II

We can pseudo-formalise the notions of automaton input, s tate transition,
input acceptance and rejection. Let il be a sentence (i.e., a string in some
alphabet) , fsa some finite state automaton, Sj some (supposedly initial) state,
se an error state — possibly completing the fsa, and bl a list of outputs from
the fsa when started in state Sj with input il.

va lue
fsa:FSA, s e n t e n c e d

start : FSA -> S 4 I" 4 B o o l "
start(a!,cr,icrs,ocrs,</>)(sj)(il) =

let se:S • se £ a in
if Sj ^ itrs t h e n chaos

e lse run(a,cr,i(TS,0(TS,<^)(se)(il)(sj)(())
e n d e n d

run: FSA 4 S -> I" -> S 4 B o o l " 4 B o o l "
run(fsa)(se)(il)(s)(bl) =

if i l=() t h e n bl e lse
let (a,a,ias,oas,<j>) = fsa, i = hd il in
if i ^ a t h e n chaos

e lse
if (i,s) d o m </>

t h e n
let s' = <^(i,s) in
run(fsa)(s e)(t l il)(s')((s' € ocrs)~bl) e n d

e lse
run(fsa)(s e) (t l i l) (s e) ((fa lse)~bl)

e n d e n d e n d e n d

The functions start and run are not proper RSL functions for infinite input —
since they would then never terminate (hence the prefix "pseudo").

If the fsa is not complete, then a supposed error state, se, generated by
the start function, and its use in the run function can "mimic" completion. If
a supposed initial state, Sj, is not an initial s tate of the fsa then chaos ensues.
If a next state, s', is in oas then the sentence so far input has been accepted.
We decided to let the output response bl be reversed wrt. the sentence input.

11.3 Finite State Automata 299

In this way all we need to look at is the head of a possibly indefinitely long
output to see whether the sentence received so far has been accepted.

11 .3 .10 F in i t e S t a t e A u t o m a t a Rea l i sa t i on , II

In general, we can represent an automaton in row/column tabular form, cF:
the number of rows to equal the number of (completed) states, and the num
ber of columns to equal the number of symbols in the input alphabet. The
table entries to contain next states. Thus we may encode states and alphabet
symbols as natural numbers:

t y p e
cSs ' , d s ' :Na t - se t
cSs = {| cssxSs' • ess = { m i n ess ... m a x ess} |}
els = | | c isxls ' • cis = { m i n cis ... m a x cis} |}

cF ' = (N a t m) n , cF = {| cf:cF' • wf_cF(cf) |}
value

wf_cF: cF ' -> B o o l
wf_cF(cf) =

V i , j :Nat • i,j £ e l e m s cf =^
len cf(i)=len cf(j)AV k:Nat«k £ e l e m s cf(i)=^(cf(i))(k)g e l e m s cf

The notation (N a t m) n is not proper RSL. The type expression (Nat™)™ de
notes the n-fold Cartesians of m-fold Cartesians of natural numbers, i.e., the
encoded states. We leave it as an exercise to the reader to reformulate the
start and run functions (but consult Sect. 4.8.3). See Exercise 11.3.

11.3 .11 F in i t e S t a t e A u t o m a t a — A S u m m a r y

We have introduced core concepts of finite state automata: their structure,
their recognising power, notions of determinism and nondeterminism, notions
of minimality and ideas on realisation. It remains to summarise principles and
techniques for introducing and using finite state automata .

Princ ip le s . The principle of Unite state automata expresses when and where
to consider modelling a phenomenon or a concept as a finite state automaton.
The principle applies when a phenomenon or a concept (the thing) satisfies
the following three criteria: (a) the thing can be thought of as consisting of
one or more subthings (components, parts) , each of which can be thought of
as taking on values, i.e., having (sub-state space) at t r ibutes tha t vary over
a finite set of discrete, enumerable tokens (cf., Vol. 1, Chap. 10, Sect. 10.3),
(b) where the "whole thing" can then be thought of as taking on a state
space (of not necessarily all) of the combinations of the subthing at t r ibute
values, and (c) where the resulting states can be associated with the possibility

300 11 Automata and Machines

or nonpossibility of certain events and actions occurring: Tha t is, they are
acceptable or are being generated. •

Examples 11.2 and 11.3 illustrated applicability of the above criteria, (a) The
doors formed one subsystem, the compartment lid another (Example 11.2).
(b) And their composition into one state space made sense (Example 11.2), (c)
especially when, as illustrated in Example 11.3, seen in the light of permissible
operator actions.

Techniques . There are three parts to the formalisation of finite state au
tomata: (1) first, identification of possible state spaces; (2) then their "thin
ning" ("pruning") to just the "right" number; and (3) finally, the full rep
resentation of the automation as a two-dimensional diagram followed by its
"embedding" as a value in the FSA type is postulated. As for (2): In deter
mining the number of states to be modelled the deciding factor is whether the
resulting state space provides adequate discrimination. Either it is sufficient
(not too few states) or it is redundant (too many states) to make deterministic
(i.e., unambiguous) decisions as to admissibility of events and actions. •

Examples 11.2 and 11.3 also illustrated applicability of the sufficiency and
redundancy of state spaces: Cases (i) and (iii) provided too many, respectively
too few, states, whereas case (ii) provided the right number and kind of states
when compared with the desired driver operations (events and actions).

11.4 Finite State Machines

We refer to the definition of state machines given in Sect. 11.2. In this section
we will motivate the concept of finite state machines through two examples.
Example 11.9 shows the specification of the controller for a variant of the
liquid tank example discussed in Examples 4.3 and 4.5. Example 11.10 shows
the specification of a parser: a device which accepts sentences in a regular
language specified by some grammar — a set of numbered rules — and which
yields grammar rule numbers as their derivations3 are being recognised.

11.4 .1 F in i t e S t a t e M a c h i n e Contro l lers

We will now illustrate the use of finite state machines as a means of specifying
controllers for reactive systems.4 The example of this section does not even
touch upon the proper techniques for designing controllers for safety-critical

3A derivation from a rule, Ri, of a grammar, G (of rules Rl , R2, . . . , Rn), is a
sentence of the language defined by G starting with rule Ri.

We are not going to present definitive material on how to properly specify such
controllers! The reactive, embedded systems in question are usually also highly prone
to faults in the physical equipment they control, and may thus be safety critical.

11.4 Finite State Machines 301

systems. We refer to hints made and references given to proper literature in
Vol. 3, Chap. 27, Sect. 27.7. The example is illustrative. It is meant to motivate
the concept of finite state machines. It is not meant to give specific controller
design techniques.

in-valve

maxH sensor a
medH sensor R
minH sensor v

a
out-valve

Fig. 11.9. A liquid container sensor/actuator system

Example 11.9 A Liquid Container System (IV): Control: In Example 4.3
we illustrated a notion of states of a physical system. In Example 4.5 we
illustrated a notion of system development through domain modelling, re
quirements specification and software design. In this example we will look at
the notion of system development from another viewpoint— with respect to
a system essentially similar to that of Examples 4.3-4.5. Thus we shall exem
plify the system development notions of domain, requirements, and design.
We shall, as part of the system development (rather than just software devel
opment) notion exemplify the addition of (further) nonsoftware components
to the liquid container system: A lock, and some sensors and actuators, are
joined to the physical system in order to facilitate certain control require
ments. In Vol. 3, Chap. 25 we shall review the concept of systems engineering
— in contrast to the more narrow concept of software engineering that these
volumes primarily cover.

Compare Fig. 11.9 to Fig. 4.1. Basically the two systems that are desig
nated by these diagrams have very much in common.

Changes to the liquid tank system (as compared to Example 4.3) are: A
controller can (actuator) lock and unlock the out valve. A locked out valve
is closed and cannot be opened. When unlocked, anyone can (actuator) open
and close the out valve. A controller will be "sent" one of up to six inputs
(from appropriate sensors) when the height of liquid in the tank reaches one
of three positions: a maximal height, Hi, "from above" (sic!) or "from below"

302 11 Automata and Machines

(dHi, uHi), a medium height, Me, "from above" or "from below" (dMe, uMe),
and a minimum height, Lo, "from above" or (even) "from below" (dLo, uLo).

We assume that the reader understands the colloquial terms "reaches",
"from above", "from below" and "sent an input". We make no assumptions
about any specific relationship between s, the inflow capacity through the in
valve (actuator) and the outflow capacity, w, throi;gh the out valve. We also
assume that the controller system can be started in any state and that the
liquid content may evaporate or be replenished, say through precipitation, or
the like.

An example of a possible control requirements specification is: The liquid
tank contents must be fully replenished as soon as they reach the Low me
tering point (i.e.: the in valve must be open[ed]). During initial parts of this
replenishment no one must withdraw liquid from the tank (i.e., the out valve
must be closed). The in and out valves are otherwise allowed to be open at
the same times. The controller may be started in any of the states of the in
and out valves: opened/closed and locked/unlocked (with unlocked out valve
being either opened or closed.) The controller must anticipate that liquid may
disappear (e.g., evaporate) from or seep into the tank irrespective of the states
of the valves. The designer is allowed to interpret the requirements initial part
as is seen fit. The designer may, for example, make use, or may not make use,
of the Medium [liquid height] sensing position. The controller is not to send
open commands to an already open in valve, or to send unlock commands to
an already unlocked out valve.

A design specification for a finite state machine showing a controller that
satisfies these requirements is shown in Figure 11.10.

We now comment on the finite state controller design of Figure 11.10.
The design is one of several possible solutions to the (loose) requirements.
That is, the design reflects a number of design decisions that were taken by
the designer as a result of the requirements not being complete. That is, not
formulated in such a way as to answer all questions that a designer might wish
to pose. More specifically, the design specifies: Whenever the liquid content
falls below the minimum height, Lo, lock the out valve, and open — if not
already so — the in valve. Whenever the liquid content falls below a medium
height, Me, open — if not already so — the in valve. Whenever the liquid
content goes above a medium height, Me, unlock — if not already so — the out
valve. Whenever the liquid content attempts to rise above Hi, the maximum
height, unlock — if not already so — the out valve, and close the in valve, and
so on. Thus we leave it to the reader to decipher the meaning of all the state
transitions. Please observe that there might be transitions which would only
be encountered in a system that is started in a state (of the valves) and with
certain (seemingly abnormal) liquid contents. •

We have seen an example of a finite state machine primarily designed to
cope with, i.e., control a system in, a number of normal as well as seemingly

11.4 Finite State Machines 303

Uhi: Passing Hi from below

dHi: Passing Hi from above

uMe: Passing Medium from below

dMe: Passing Medium from above

uLo: Passing Lofrom below

uLo: Passing Lo from above

Op: Open in valve

CI: Close invalve

Lk: Lock out valve

Un: Unlock out valve

{e1,...,en}.{a1,...,am}

either of evemtsel , ...,en

cause all of actions a1,...,am

e.{a1,...,am}

event e

cause all of actions a1,...,am

{e1,...,en}.a

either of evemtsel , ...,en

cause action a

{e1,...,en}.n

either of evemtsel , ...,en

cause nonaction

e.a
event e

cause nonaction

CO

Ev
e

A
ct

io
ns

en

t[
s]

.A
ct

io
n[

s]

LU

Fig. 11.10. A liquid container controller

abnormal states. We will now show an example of a more straightforward use
of finite state machines, as so-called parsers.

11.4 .2 F in i t e S t a t e M a c h i n e Parsers

A parser is the same as a syntax analyser. By a syntax we shall here mean
an ordinary BNF grammar. 5 There is given a grammar, in the form of a set
of distinctly numbered rules. Each rule left-hand side names a nonterminal
which, through the full grammar, denotes a language: a set of sentences. A
parser for the grammar (wrt. some identified nonterminal root) inputs strings
in the alphabet of the grammar and issues (outputs) rule numbers if and
whenever part of an otherwise acceptable input string is a sentence in the
language of the left-hand side of the numbered rule. As is shown in the liter
ature [6,200,217,444], finite state machines can parse regular languages. We
will show an example.

E x a m p l e 11.10 A Finite State Parser: There is given a BNF grammar which
defines a language of numerals. Tha t BNF grammar is known to generate (to
denote) a regular language. Without presenting the algorithms, either for
deciding upon regularity, or for constructing the finite state (machine) parser
we present tha t parser (Fig. 11.11).

5We assume that the reader is familiar with the notion of BNF grammars — and
otherwise refer to Sects. 8.4-8.5.

{uLo,dLo}.n

304 11 Automata and Machines

We comment on the parser: The finite state parser requires what is known
as a "stop" character. It is here chosen as the blank (_). It helps the parser
to decide when a complete input has been received. We say that the grammar
is LR(1): can left-to-right parse its input with a look-ahead (Left to Right)
of one. Rule 0. is — separately from the other rules — introduced to provide
for that "stop", and for separating the "stop" concern from the definition of
the language, £JV, of numerals. The states s, i, p , r and f stand for the start,
integer, (fraction) point, rational numeral, respectively final states. The next
state label pairs {ij,... , •>'*}. < r}>;...; rq > express: any of the inputs it (for
I from j to k) result in the output sequence rp;...; rq of BNF rule identifiers
(here numerals). Empty outputs are allowed. The error output designates an
error message. An error state and its transitions complete the machine. Notice
that we have not provided for input (next state) transitions beyond the final
and the error states. The machine is supposed to have served its purpose when
it reaches either of these states and can be taken out of service, i.e., can be
freed! •

BNF Grammar

0. <L> ::=<N>

1. <N> ::=<!> '"' '3

2. <N> ::=<R>

3. <l> ::=<D>

4. <l> ::= <I><D>

5. <R> ::=<!> . <l>

6. <D> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

{0,1,2,3,4,5,6,7,8,9}.<6,4>

state

{0,1,2,3,4,5,6,7,8,9}.<6,4>
{.,_}.<error>

error state

Fig. 11.11. A BNF grammar and its finite state parser

11.4.3 Fini te Sta te Machine Formalisat ion

We express:

Definition. By a Unite state machine we generally understand a seven group
ing:

type
I, S, O
FSM' = I-set x S-set x S x S x S x O-set x F
F = (I x S) ^ (S x O*)

11.4 Finite State Machines 305

FSM = {| fsm:FSM' • wf_FSM(fsm) |}
v a l u e

wf_FSM: FSM' ->• B o o l
wf_FSM(a,cr,i_s,f_s,e_s,o_s,z/>) =

{i_s,f_s,e_s}CcrAV (i,s):(IxS) • (i,s) € d o m ip
=^ i € i_sAs £ crAlet (s',ol)=?/>(i,s) in s' € t rAelems olCo_s e n d

Notation: a is an input alphabet, a is a state set, i_s is an initial s tate,6 f_s
is a final s tate , 7 e_s is an error s tate,8 o_s is an action set, and ip is an "input
and current state to next state transition and action output function". A
finite state machine is also, sometimes, called a finite state transducer. Given
a prefix, pil, of any input il, an fsm delivers, when started in an appropriate
state, a transduction, tha t is, a prefix output , pol. •

11 .4 .4 F i n i t e S t a t e M a c h i n e R e a l i s a t i o n

Generally we can associate actions with machine outputs . And we can gen
eralise the finite state automaton functions start and run to machines. Let us
assume an action context and state configuration type r, and let action desig
nators o:0 denote functions tha t transform configurations into configurations:

t y p e
s, i, r
o = r -> r

v a l u e

run: FSM 4 S 4 l * 4 r 4 r
run(a,tT,i_s,f_s,e_s,o_s,z/>)(s)(il)7 =

ifil=(>
t h e n 7
e lse

le t i = h d il i n le t (s',ol) = ?/>(i,s) i n
run(a, tT, i_s,f_s,e_s,o_s,^)(s ') (t l il)(M(ol)7) e n d e n d e n d

p r e s € a A e l e m s il C a A ...

M-. o* ->• r -> r
M(ol)7 = if ol=(> t h e n 7 e lse M(t l o l) (M(hd 01)7) e n d

M: O -> r ->• r
M(o)7 = 0(7)

6In this definition we specify just one initial state. The reader is encouraged to
reflect on a set of initial states.

7In this definition we specify just one final state. The reader is encouraged to
reflect on a set of final states.

8Usually there is no need for more than exactly one error state. But the reader
is encouraged to reflect on the possibility of discriminating among error states.

306 11 Automata and Machines

Dispensing with the semantic (i.e., the meaning) function M, we can replace
the output list of action descriptions with a list of indices into branches of a
case construct:

t y p e
O = {l . .n}
FSM' = I-set x S-set x S x S x S x O-set x # ,

#• = = mk_!?(f :F, t : (0 ^ "RSL-Text")),
F = (I x S) ^ (S x O), etc.

The use of double quotes ("•••") is metalinguistic. The idea, as shown below,
is tha t the semantic M function (for meaning) above is replaced by a macro-
substitution M function (also M). Recall, from definition of W, tha t t in M
below selects the map in ^ which when applied to indices yields action text
to be interpreted. This is a rather informal explication.

v a l u e

run: FSM 4 S 4 l * 4 r 4 r
run(a,(T,i_s,f_s,e_s,o_s,V>)(s) (H)(7) =

ifil=(>
t h e n 7
e lse

le t i = h d il i n le t (s',o) = (f(^))(i,s) i n
le t 7 ' = "M('p s i) " (o) (7) in

run(a, tT, i_s,f_s,e_s,o_s,^)(s ') (t l il) (T ') e n (l e n (l e n (i e n (i
p r e s € a A e l e m s il C a A ...

The next function mimics a microprogrammed hardware computer:

M: <P -> N a t ->• T ->• T
M(^) (o) (7) =

(case o of:

1-> M((t(V0)(i)),
2 -> M((t(^))(2)),

n A- M((t^))(n))
e n d) (7)
p r e o € {l-.n} A d o m t(ip) = {l-.n}

M ("RSL-Text") = ...

n is the maximum number of different output symbols. Each output symbol
corresponds to an action as prescribed by some RSL expression RSL-Expr (i) .

11 .4 .5 F i n i t e S t a t e M a c h i n e s — A S u m m a r y

We have introduced core concepts of finite state machines: their structure,
their transducing power and ideas on realisation. Issues such as determinism

11.5 Pushdown Stack Devices 307

and minimality carry over from the concept of finite state automata. It remains
to summarise principles and techniques for introducing and using finite state
machines.

Principles. The principle of finite state machines is based on the principle of
finite state automata (Sect. 11.3.11). If criteria (a-c) of the principle of finite
state automata apply and if, in addition, the event phenomenon or an event
concept of a transition into a next state is associated with an action being
performed by the system being (hence) understood as a finite state machine,
then one may well choose such an abstraction. •

Techniques. The run and M functions together with the techniques for mod
elling finite state automata apply when modelling Unite state machines. •

11.5 Pushdown Stack Devices

Next, we move from finite states to infinite states. That is, we move from finite state
controllers to finite state controllers plus an infinite stack whose (stacked) items encode
"return" states. That is the topic of this section.

11.5.1 Pushdown Stack Automata and Machines

We have exemplified the use of pushdown stack machines in the section on
computational semantics (Sect. 3.3). Pushdown stack devices (whether just
automata or machines) are indispensable in practical compiler technology (as
well as in many other forms of software technology), and their theory has been
thoroughly studied [6,200,217,444]. We shall not, in these volumes, cover this
theory other than through recalling a few theorems. In this brief introduction
to pushdown stack devices (such as automata and machines) we shall, how
ever, attempt to motivate their existence — their pragmatics and hence aid
the reader in deploying such devices whenever appropriate, and in studying
automata and formal languages seriously. In the introduction to this section
on automata and machines we briefly touched upon the notion of infinite state
automata and machines. Pushdown stacks is one proper subclass of infinite
state devices. Basically, they consist of a finite state device connected to a
potentially infinite depth stack.

One way of explaining these pushdown stack devices is as follows: A finite
state device can handle regular languages. If a language consists of recursively
nested "almost" regular sentences — where the beginning ("[", "(", "{", "(")
and ending (")", " } " , ")", respectively "]") of recursion, in the sentences, is
marked with nonregular language input symbols ("[,]", etc.) — then the fi
nite state device that recognises the regular sublanguage can be extended with
transitions corresponding to the recursion markers ("[,]", etc.) where the out
put actions consist in stacking (pushing), respectively unstacking (popping),

308 11 Automata and Machines

state symbols corresponding to the bracketing symbols, and where the next
state transitions are to the initial state for the parser of the specific lan
guage "between" the bracketing symbols, respectively to the popped state
(Fig. 11.12).

Example 11.11 A Conceptual Pushdown Stack Device: The language L, de
fined in Fig. 11.12, is a "toy" language that is, just about "smallest" wrt.
recursion. Notice that upon input of "]" , the device resumes (dotted . . . tran
sition) in either state i or state p depending on the top stack state symbol.
We have not bothered to show error input transitions and an error state. •

<L> ::= <E>

<E> ::= <E> + <E>

<E> ::=[<E>]

<E> ::=a

L: {a, a+a a+a+...+a [a] [a+[a+[a]]],...} ^ ^

LEGEND: "[.s": stack, "].u": unstack -state" of push-down stack
after input o f " [a + [[a + ["

Fig. 11.12. A "toy" language and pushdown stack device

We have motivated the existence of pushdown stack devices in one way: by
referring to the handling (e.g., recognition) of sentences of a recursive —
properly "nested" — language. We could exemplify the use of finite state
controlled stack devices without first introducing (properly defining, etc.) a
proper language. That is, we could exemplify them without first conceiving
of the problem as that of handling (recognising or parsing) such a language.

Example 11.12 A "Last In/First Out" System: An example could be the
"last in, first out" (LIFO) handling of processes by an operating system for a
monoprocessor. Processes present themselves to the operating system through
interrupts (\/). The process irc being served at the moment of interrupt is
stacked. The new (the interrupting) process TJ-J is served. When a served pro
cess has to wait for a monoprocessor resource it replaces the top stacked
process, which is then served (i.e., unstacked). When a served process termi
nates it is removed from the system and the top stacked process is then served
(i.e., unstacked). See Fig. 11.13. Notice that an interrupt can only occur when
a process is running. We leave it to the reader to formalise the language of
"inputs" that correspond to the above, "casual" specification. •

[a+[[a+[..

11.5 Pushdown Stack Devices 309

/ w a i t i n g
esourJ (R u n n i n g) »(Finished) V for Resouro

.s: stack .u: unstack i

.w: switch .r: remove unstack y.S

t o p p3:Running

The state of a mo no-processor
operating system after:

p1 registers
p2 waits

p4 registers

p5 registers

p2 registers

p3 registers

p4 waits

p5 finishes

p4:Waiting

p1:Running

p2:Waiting

Fig. 11.13. A monoprocessor operating system LIFO job stack

11.5 .2 Formal i sa t ion of P u s h d o w n Stack M a c h i n e s

We shall only define a concept of pushdown stack machines — leaving it to
the reader to define a concept of pushdown stack automata , should tha t be
needed! We cover the case only of finite state controls for these stack devices.

Def in i t ion . A Unite state pushdown stack machine is a seven grouping:

t y p e
I, S, O, M
P D M ' = I-set x S-set x O-set x S x S x f x *
P D M = {| pda:PDA' • wf_PDA(pda) |}
\p = Symbol*
Symbol = = I | S | O | M
<P = (In x S x Sy) ^ (S x P P x Ou)
In = = nil | input(i:I)
Sy = = null | Symbol
P P = = void | push(sy:Symbol) | pop
Ou = = nix | ou tpu t (o :0)

value

wf_PDM: P D M ' -> B o o l
wf_PDM(a,cr,w,i_s,f_s,z/>,^) =

{i_s,f_s} C a A

V (input(i) ,s ,y) :(InxSxSy) • (input(i),s,y) £ d o m </> =^
i e a A s e o - A y e {I,S,0,M,null} A

V (i ,s ,y):(InxSxSy) • (i,s,y) € d o m </> =^
let (s',,o) = </>(i,s,y) in s' € a A
case o of output(o) —> o £ ui, —>true e n d e n d

The nil, null and nix "markers" are not input, are not stack-top symbols, are
not output symbols, and void is not a symbol to be pushed onto the stack.
Instead, when encountered in a next state transition they designate tha t the

310 11 Automata and Machines

current input, or the current stack-top is ignored, or that no output symbol is
issued, respectively that no symbol is pushed onto the stack. Appropriate well-
formedness conditions express (for example) that a next state transition either
accepts an input (i.e., input is different from nil), or accepts the stack-top
symbol (i.e., the Sy component is different from null), or both. You may assume
that an accepted input or stack-top symbol is consumed (i.e., removed). Many
more "formal" things may be said about pushdown machines — but we leave
that to appropriate textbooks. •

We leave it to the reader, as Exercise 11.4, to formalise the behaviour of a
pushdown stack machine — along the lines of the run function for finite state
machines (cf. Sect. 11.4.4).

Definition. We also leave it to the reader, as Exercise 11.5, to define and for
malise, as above, the concept of a pushdown stack automaton — achieving the
same kind of similarity between pushdown stack automata (Sects. 11.3.7 and
11.3.9) and pushdown stack machines (Sect. 11.4.3) as there exists between
finite state automata and finite state machines. •

The idea is, of course, and as hinted at in Sect. 8.5, that pushdown stack
automata recognise context-free languages as now recalled:

Definition. By a context-free grammar we understand a BNF grammar. •

BNF grammars were introduced in Sect. 8.4.

Definition. By a context-free language we understand the denotation of a
context-free grammar. •

We refer to Sect. 8.5 for the story on context-free grammars, context-free
languages and the pushdown stack automata that recognise whether a sen
tence (a string of terminal symbols) is a member of a context-free language
as denoted by a context-free grammar.

11.5.3 Pushdown Stack Device Summary

We summarise this very brief survey of pushdown stack devices by stating a
principle and referring to modelling techniques.

Principles. The principle of pushdown stack devices builds on the principle
of finite state automata and machines (Sects. 11.3.11 and 11.4.5), cf. selection
criteria (a-c) and (d), respectively. If these criteria (either just (a-c) or all:
(a-d)) apply, and if (e) in addition the phenomenon or concept being analysed
exhibits, or can be understood as possessing, some form of recursion, i.e., of
properly embedded ("nested") instances of the same phenomenon or concept,
or similar phenomena or concepts, then one may well choose abstraction in
the form of a pushdown stack device: as an automaton if criterion (d) does
not apply, as a machine otherwise. •

11.7 Exercises 311

Techniques. The techniques for modelling pushdown stack devices extend
those of modelling finite state automata and machines (Sects. 11.3.11 and
11.4.5). The extension amounts to the modelling of recursion. Many examples
already shown have illustrated such modelling. We refer to Examples 3.4 and
3.5.

11.6 Bibliographical Notes: Automata and Machines

The first paper on automata (and neural nets) was that of McCulloch and
Pitts [335] (1943).The next papers on automata — in the context of computers
— seem to have been those of Arthur W. Burks and Hao Wang [65,66] (1957),
Stephen Kleene [265] (1956), Marvin Minsky [360] (1956), and Michael O.
Rabin and Dana Scott [413] (1959).

The following information (relating to the above references) is from H.V.
Mcintosh [336]:

Automata theory itself has an ancient history, if one thinks of au
tomata as mechanisms capable of performing intricate movements;
but if the actual apparatus is discarded in favor of the activity itself,
such a theory more properly begins with the neurophysiological ab
stractions of McCulloch and Pitts. Their refinement into the theory
of regular expressions by Kleene constitutes one of several viewpoints,
which have gone on to include semigroups (or monoids) of mappings
of a set into itself, or even the theory of grammars.

A decisive textbook on the theoretical foundations of automata and formal
languages was, and is John E. Hopcroft and Jeffrey D. Ullman's [217] (1979).

In our treatment we have covered the so-called Mealy Machines. In con
trast a Moore Machine is a machine whose output depends only on the state,
whereas a Mealy Machine [548] is a machine whose output depends on the
input and the state.

11.7 Exercises

Exercise 11.1 Automobile Door and Lid State Automata. Please draw the
varieties of two-dimensional figures of finite state automata that model the
three cases (i-iii) outlined in Example 11.2 (and the singular only or multiple
openings and closings of doors and the lid) of an automobile.

Once you have drawn the finite state automata, answer the following ques
tion: Which is its contribution to the context of the automobile and which is
its contribution to the state of the automobile?

312 11 Automata and Machines

Exercise 11.2 Automobile States. We refer to Example 11.2 and to Exer
cise 11.1. In addition to the open or closed state of doors and the trunk lid
of an automobile, you are to come up with three or four other examples of
physical components of the automobile whose state value may affect the "driv-
ability" of the car. You are then to draw a two-dimensional figure of the finite
state automaton resulting from these considerations. For simplicity adopt case
(iii) of Example 11.2 as a starting point.

Once you have drawn the finite state automata, answer the following ques
tion: Which is its contribution to the contexts of an automobile and which is
its contribution to the state of an automobile?

Exercise 11.3 Finite State Automaton Realisation. We refer to Sects. 11.3.9
and 11.3.10. You are to redefine, for the formal model of Sect. 11.3.10, the
start and run functions, as per Sect. 11.3.9.

Exercise 11.4 Pushdown Stack Machine Behaviour. We refer to Sect. 11.5.2's
formalisation of pushdown stack machines, and to Sect. 11.4.4's formalisation
of the behaviour of finite state machines. Please formalise a function that
describes the behaviour of pushdown stack machines.

Exercise 11.5 Pushdown Stack Automata. We refer to Sect. 11.5.2's formal
isation of pushdown stack machines and to Sects. 11.3.7, 11.3.9 and 11.4.3's
formalisation of finite state automaton and machines. Please formalise a def
inition of pushdown stack automata.

Part VI

CONCURRENCY AND TEMPORALITY

• In this part we shall cover material that allows us to model both qualitative
and quantitative aspects of concurrency and temporality.

• The terms concurrency, temporality, qualitative, and quantitative will be
briefly explained here:
• By concurrency we mean the occurrence of two or more behaviours

(i.e., processes) at the same time, or, in other words, concurrently.
• By temporality we mean to characterise something with respect to

time, or emphasising the timewise, or absolute, or relative time be
haviour of a phenomenon.

• By qualitative aspects of concurrency and temporality we mean to
emphasise when two or more behaviours (i.e., processes) synchronise,
or exchange messages (i.e., communicate), or when one event occurs
before, or after, or at the same time as some other event, or that a
behaviour (i.e., a process) is deadlocked (unable to perform any action),
or live (i.e., ready to perform a next action).

• By quantitative aspects of concurrency and temporality we mean to
emphasise some absolute time of, or time interval between, the occur
rence of some events.

• Our coverage occurs in chapters named rather differently than how we
normally name chapters. Whereas we elsewhere in these volumes name
chapters after the methodological principles and techniques they cover,
we shall, in this part, name three chapters after the tools they cover: Petri
nets, message and live sequence charts, and statecharts.

12

Petri Nets

Christian Krog Madsen is chief author of this chapter [317].

• The prerequisites for studying this chapter are that you have an all-round
awareness of abstract specification (principles and techniques) and that
you have a more specific awareness of parallel programming, for example,
using CSP — as illustrated in Vol. 1, Chap. 21 of this series of textbooks
— and that you have wondered if there are other mechanisms than, say,
RSL/CSP, for modelling concurrency.

• The aims are to introduce three kinds of Petri net languages: condition
events, place transitions, and coloured Petri nets, to show varieties of ex
amples illustrating these specification mechanisms, and to relate Petri nets
to RSL: To define, more precisely, when a Petri net specification can be ex
pressed as an RSL specification — and vice versa!

• The objective is to enable the reader to expand on the kind of phenomena
and concepts that can be formally modelled, now also, or specifically, by
Petri nets, alone, or in conjunction with, for example, RSL — as well as to
encourage the reader to more seriously study more specialised textbooks
on Petri nets.

• The treatment is from systematic to semi-formal.

The field of Petri nets is fascinating. They were first conceived in the very early 1960s
[400] as a means for understanding, through modelling, issues of concurrency, notably in
physics. Petri nets have become a standard technique and tool in software engineering.

12.1 The Issues

In this chapter we review several variants of Petri nets, ranging from the
basic condition event nets to coloured Petri nets. Each of the discussed types
of Petri nets is modelled formally in RSL. Petri nets were first described by
Carl Adam Petri in his doctoral thesis [400] in 1962.

316 12 Petri Nets

Petri nets are composed from graphical symbols designating states (usually
shown as circles: Q), transitions (usually shown as rectangles: Q), and arrows
(shown as arrows: —>), linking states to transitions and transitions to states:
0 ~ ^ O - * 0 - Depending on the type of Petri net, states may be called places
or conditions, while transitions are also referred to as events. We refer to
Fig. 12.1 for a "picture" of these basic building blocks.

ARROW

? T
STATE TRANSITION

Fig. 12.1. Petri net symbols

The description of condition event nets and place transition nets is based on
Reisig [420]. The description of coloured Petri nets is based on Jensen [238].

In what follows we shall avail ourselves of a somewhat imprecise use of
language. This is done for reasons for readability. When some abstract entity
has a graphical representation we shall use the name of the abstract entity to
also denote its graphical representation. For example, in a Petri net a state is
usually represented graphically as a circle, while a transition is represented by
a rectangle. Suppose an arrow extends from the perimeter of the circle to the
border of the rectangle. Then, we shall say that the arrow links the state to
the transition. Really, what we should say is that the arrow links the graphical
representation of the state to the graphical representation of the transition.

Three kinds of Petri nets will be covered in Sects. 12.2-12.4.

12.2 Condition Event Nets (CENs)

This section is structured as follows: First, in Sect. 12.2.1, we informally ex
plain the syntax and semantics of condition event nets (CENs). Then, in
Sect. 12.2.2 we present some small, typical examples. In Sect. 12.2.3 we de
velop a model of the syntax and semantics of CENs, in RSL.

12.2.1 Description

Condition event nets (CEN) are the most basic type of Petri nets. A CEN
consists of conditions (states), events (transitions) and links (arrows) from

12.2 Condition Event Nets (CENs) 317

conditions to events and from events to conditions. Syntactically conditions
are represented as circles, while events are represented as oblong, i.e., "thin",
rectangles.

An event may have a set of preconditions, which are conditions — that
is, may be predicated by the holding of some conditions. Similarly, an event
may have a set of postconditions, which are also conditions — that is, may
be predicated by the holding of some conditions. A precondition of an event
is represented graphically by an arrow emanating from the precondition and
ending at the event. Similarly, a postcondition is represented by an arrow
emanating from the event and ending at the postcondition.

A condition may be marked with a token. Graphically this is represented by
drawing a disc, •, inside the condition. A marking of a CEN is an assignment
of tokens to some of the conditions in the CEN. A condition that is marked
with a token is said to be fulfilled. Conversely, a condition that is not marked is
said to be unfulfilled. If all the preconditions of an event are fulfilled and all the
postconditions of the event are unfulfilled, the event is said to be activated
(enabled)-1 An event that is activated may occur. If an event occurs, all its
preconditions become unfulfilled and all its postconditions become fulfilled.
Figure 12.2 illustrates the occurrence of an event.

Fig. 12.2. CEN event occurrence with markings before and after the occurrence

12.2.2 Small CEN Examples

The first three examples of this subsection are all edited from Reisig's delight
ful Elements of Distributed Algorithms: Modelling and Analysis with Petri
Nets [421].

Example 12.1 Producer-Consumer System, A One Element Buffer: We refer
to Fig. 12.3. The producer is shown as the leftmost five symbols: the leftmost
transition, the two leftmost states and the two leftmost arrows. The consumer
is shown as the rightmost five symbols: the rightmost transition, the two

This form of enablement amounts to the Petri net being contact-free. One can
also define a Petri net theory based on events that do not rely on the postcondition
being fulfilled.

318 12 Petri Nets

ready to
deliver

r^Sy-
| | produce

ready to

! empty

h^Dnr
; deliver t t

! filled

ready to

H §) ^
ready to

PRODUCER ONE ELEMENT BUFFER CONSUMER

Fig. 12.3. A producer-consumer Petri net — Example 12.1

rightmost states and the two rightmost arrows. The interface between the
producer and the consumer represents a one-element buffer. It is shown as
the centre two states, two transitions and eight arrows!

One scenario of behaviour could be: The producer-consumer system is in
a "total" state where the producer is ready to produce data, where the one-
element buffer is empty, and where the consumer is ready to remove data. See
the leftmost Petri net of Fig. 12.4.

A next "total" state is therefore one in which the producer makes a state
transition, that is, actually produces. See the leftmost Petri net of Fig. 12.4.

Now the deliver transition is enabled, and a next total state sees one
transition and two state changes: The produced "something" is delivered, the
producer changes from being ready to deliver to being ready to produce and
the buffer is no longer empty.

We leave it to the reader to show a next firing. •

Fig. 12.4. A sequence of two firings (three "total" states) — Example 12.1

12.2 Condition Event Nets (CENs) 319

buffer cell
#1 empty

ready to
produce

buffer cell
#1 ful l

buffer cell
#2 empty

buffer cell
#3 fi l led

ready to
remove

Fig. 12.5. Three element sequential producer-consumer buffer — Example 12.2

Example 12.2 Producer-Consumer, Three Element Sequential Buffer Sys
tem: To make a sequential queue, i.e., a first-in, first-out buffer, we replicate
the one-element buffer three times (Fig. 12.5).

We leave it to the reader to "experiment" with initial states and "try out"
some firing sequences. •

Example 12.3 A Producer-Consumer, Parallel (Heap) Buffer System: In
this example, the producer, when ready to deliver, may choose either of the
two buffer cells, if both are empty. In that case, the choice is nondeterministic.
If one is filled, the producer will choose the other (deterministically). If both
are filled, and one of these buffer cells gets emptied before the other, then the
producer will choose that which gets first emptied. The buffer is no longer
sequential, i.e., a queue, but is a heap (of capacity two). One buffer cell may
be filled before, but emptied after the other buffer cell. •

ready to
remove

PRODUCER CONSUMER

PARALLEL BUFFER

Fig. 12.6. Nondeterministic parallel buffer producer-consumer — Example 12.3

320 12 Petri Nets

The next example is a "classic". Many have tried their hand at expressing, in
one notation or another, the problem of the "Dining Philosophers", a problem
posed by Dijkstra [102]. See Reisig's delightful Elements of Distributed Algo
rithms: Modelling and Analysis with Petri Nets [421] for a thorough treatment
of various Petri net solutions to the "Dining Philosophers" problem.

Example 12.4 Dining Philosophers: Figure 12.7 illustrates a CEN with a
marking. The net represents a simplified model of the classical Dining Philoso
phers problem. The problem is set, say, in a monastery where five philosophers
spend their life engaged in thinking. Their thinking is only interrupted when
they have to eat. The monastery has a circular dining table with a place for
each of the philosophers. At the centre of the table is a bowl with an endless
supply of spaghetti. On the table there is a plate for each place and a fork
between each pair of adjacent plates. To eat, a philosopher must use the two
forks adjacent to his plate. The problem is then to devise a strategy that will
allow the philosophers to eat without risking starvation.

In the CEN there are only four philosophers, each of which is represented
by two conditions, labelled Pxt and Pxe, where x is the number of the philoso
pher. When Pxt is marked, philosopher x is thinking. When Pxe is marked,
philosopher a: is eating. The final four conditions, Fx, represent the four forks.
When Fx is marked, fork x is free.

In order for philosopher x to begin eating, he must currently be thinking,
and the two adjacent forks must be free. This is represented by an event with
preconditions Pxt, Fx and F(x + 1 mod 4). While philosopher x is eating he
cannot be thinking, and the two adjacent forks are not free. This is represented
by letting the postcondition of the event be Pxe.

When philosopher x stops eating, he places the two forks on the table and
begins thinking. This is represented by an event with precondition Pxe and
postconditions Pxt, Fx and F(x + 1 mod 4). •

12.2.3 An RSL Model of Condition Event Nets

Definition. By a condition event Petri net we shall understand a structure
as formalised in this section. •

Syntax of CENs and a Static Semantics

We first formalise a syntax and then a static semantics for CENs.

type
CEN = {[c : CEN' • wf_CEN(c) |}
CEN' = Cond-set x Event-set x PreCond x PostCond x Marking
Cond
Event

12.2 Condition Event Nets (CENs) 321

Fig. 12.7. Four dining philosophers condition event net — Example 12.4

PreCond = Event jft Cond-set
PostCond = Event ^ Cond-set
Marking = Cond jft Mark
Mark = = empty | token

value
wf_CEN : CEN' ->• Bool
wf_CEN(cs,es,precs,postcs,mark) =

[1] dom precs = es A
[2] dom postcs = es A
[3] cs = |J {rng precs U rng postcs}A
[4] (V e:Event • e € es => precs(e) U postcs(e)^{}) A
[5] dom mark = cs

Annotations

• A condition event Petri net (CEN)
consists of a set of conditions, a set
of events, preconditions, postcon
ditions and a marking.

• Only well-formed CENs will be
considered.

Conditions and events are further
unspecified entities.
Preconditions are mappings from
events to sets of conditions.
Postconditions are mappings from
events to sets of conditions.
A marking is an assignment of
marks to conditions.

322 12 Petri Nets

A mark is either empty or a token. 3 every condition is a pre- or post-
. „-,-,•,., . ,, r , .„ condition of some event, and

A CEN is well-formed if: , ^ . ^ . '
4 every event has at least one pre-

1-2 The set of events is identi- or postcondition, and
cal to the definition sets of the 5 the marking includes all condi-
maps of pre- and postcondi- tions.
tions, and •

A D y n a m i c S e m a n t i c s

Next, we describe the dynamic aspects of CENs, namely what it means for a
condition to be fulfilled or unfulfilled and what it means for an event to be
activated and to occur.

value

fulfilled : Cond x CEN 4 B o o l
fulfilled(cond,(cs,es,precs,postcs,mark)) = mark(cond)=token
pre cond £ cs

unfulfilled : Cond x CEN 4 B o o l
unfulfilled(cond,(cs,es,precs,postcs,mark)) = mark(cond)=empty
pre cond £ cs

activated : Event x CEN 4 B o o l
activated(evt,cen) =

let (cs,es,precs,postcs,mark) = cen in
(V c : Cond • c £ precs(evt) => fulfilled(c,cen)) A
(V c : Cond • c £ postcs(evt) => unfulfilled(c,cen))

e n d
pre let (cs,es,precs,postcs,mark) = cen in evt £ es e n d

occur : Event x CEN 4 CEN
occur (evt,cen) =

let (cs,es,precs,postcs,mark) = cen in
(cs,es,precs,postcs,
mark f [c H->- empty | c : Cond • c £ precs(evt)] f
[c !->• token | c : Cond • c £ postcs(evt)])

e n d
pre activated(evt,cen)

Annotations • A condition is unfulfilled if the
marking assigns empty to tha t

• A condition is fulfilled in a CEN condition.
if the marking assigns a token to
tha t condition.

12.3 Place Transition Nets (PTNs) 323

• An event is activated if all its pre- preconditions of the event are un-
conditions are fulfilled and all its fulfilled and all postconditions of
postconditions are unfulfilled. the event are fulfilled. •

• The occurrence of an activated
event gives a new CEN where all

12.3 Place Transition Nets (PTNs)

This section is structured as follows: First, in Sect. 12.3.1, we explain, infor
mally, the syntax and semantics of place transition nets (PTNs). Then, in
Sect. 12.3.2 we present some small, typical examples. In Sect. 12.3.3 we de
velop a model of the syntax and semantics of PTNs, in RSL. Section 12.3.4
brings in further examples.

12.3.1 Description

Fig. 12.8. Transition in a place transition net, markings before and after occurrence

We start by showing a place transition net, then we explain place transition
nets more systematically. A simple extension to the condition event nets is to
allow a marking to assign more than one token to a condition. The extended
nets are known as place transition nets (PTNs). Conditions are now called
places, and events are called transitions. In a PTN the places are labelled with
a positive integer called the capacity. This indicates the maximum number of
tokens that may be assigned to that place. The capacity may be omitted,
which is interpreted as unlimited capacity. Additionally, arrows are labelled
with a positive integer called the weight. If an arrow from a place, P, to a
transition, T, is labelled with x, this signifies that for T to be activated, there
must be at least x tokens at P, and when T occurs, x tokens will be removed
from P. If an arrow from a transition, T, to a place, P, is labelled with x,
this signifies that for T to be activated, x added to the number of tokens at P
must be at most equal to the capacity of P, and if T occurs, x tokens will be
added to the marking of P. If an arrow is not labelled it is to be understood as
an implicit labelling with 1. Figure 12.8 shows the occurrence of a transition
in a PTN.

324 12 Petri Nets

12.3.2 Small P T N Examples

The two examples of this section are edited from Reisig's two books: A Primer
in Petri Net Design [420] and Petri Nets: An Introduction [419].

Example 12.5 System of Two Producers, a Capacity 10 Buffer, and Three
Consumers: The PTN of Fig. 12.9 shows a system that can be understood as
a two-producer, three-consumer and an intermediate maximum 10 production
unit buffer system. Compare the present PTN with the CEN of Example 12.2.
In the present system the capacity limit removes the need for the place (i.e.,
state) distinction between empty and filled buffers. •

produce

consumer
receipt-
enabled

consume

Fig. 12.9. Two producer, buffer capacity 10 and three consumer system

Example 12.6 Critical Resource Sharing: Figure 12.10 shows an example
PTN modelling four processes that access a common critical resource. One
process writes to the resource, while the other three processes read from the
resource. To ensure data integrity, mutual exclusion must be enforced between
the writing process and the reading processes. The protocol for mutual exclu
sion requires a reading process to claim a key before it may read, while the
writing process is required to claim three keys before it may write. A process
that cannot get the required number of keys must wait until more keys become
available. The place Keys holds a token for each key that is unused. When
a process finishes reading or writing it returns the claimed keys to the place
Keys and proceeds to do some processing that does not access the critical
resource. •

12.3.3 An RSL Model of Place Transition Nets

Definition. By a place transition Petri net we shall understand a structure
as formalised in this section. •

Waiting
for keys

Prepare r
to write i

12.3 Place Transition Nets (PTNs) 325

rtingY I I 1 1 YwaKii
L-0\/C r ^ *-i r * — * ~ I -Fnr b a

Writing

ay-

Take keys | Take keys

Reading

.Keys

Return keys

Waiting
for keys

Prepare
to read

Processing Processing

Fig . 1 2 . 1 0 . Critical resource sharing

Syntax of PTNs and a Static Semantics

We first formalise a syntax and then a static semantics for PTNs (with finite
capacity places).

type
PTN = {| ptn:PTN' • wf_PTN(ptn) |}
PTN' = (Place ^ Nat) x Trans-set x Preset x Postset x Marking
Place
Trans
Preset = Trans ^ (Place x Nat)-set
Postset = Trans jfr (Place x Nat)-set
Marking = Place ^ Nat

value
wf_PTN : PTN' ->• Bool
wf_PTN(ps, ts, pres, posts, mark) =

[1] dom pres = ts A
[2] dom posts = ts A
[3] {p | p:Place •

3 pns: (PlacexNat)-set, n:Nat •
(p,n) £ pnsApns £ rng pres U rng posts} = dom ps A

[4] (V t:Trans • t £ ts => pres(t) U posts(t) ^ {}) A
[5] (Vt:Trans«

~(3 nl , n2 : Nat, p : Place •
nl / n2 A p £ dom ps A
({(p,nl), (p,n2)} C pres(t) V
{(p,nl), (p,n2)} C posts(t)))) A

[6] dom mark = dom ps A
[7] (V p:Place • p £ dom ps =^ mark(p)<ps(p))

326 12 Petri Nets

Annotations

• A place transition net consists of
a set of places with associated ca
pacities, a set of transitions, a pre
set, a postset and a marking.

• Only well-formed PTNs will be
considered.

• Places and transitions are further
unspecified entities.

• Presets are a mapping from transi
tions to sets of pairs of places and
weights.

• Postsets are a mapping from tran
sitions to sets of pairs of places
and weights.

• A marking is a mapping of places
to marks.

• A mark is a nonnegative integer.
• A PTN is well-formed if:

1-2 every transition in the set of
transitions is included in the
domain of the maps of presets
and postsets, and

3 every place is in the pre- or post-
set of some transition, and

4 every transition has a non
empty preset or postset, and

5 no transition can have a pre
set or postset that includes
the same place more than once
with different weights, and

6 the marking covers all places,
and

7 for every place the number of to
kens assigned to it in the mark
ing must be at most equal to
the capacity of the place.

A Dynamic Semantics

We formalise the dynamic aspects of PTN, namely what it means for a tran
sition to be activated and for a transition to occur.

value
activated: Trans x PTN ^ Bool
activated (t,ptn) =

let (ps,ts,pres,posts,mark) = ptn in
(V p:Place,n:Nat • (p,n) e pres(t) => mark(p)>n) A
(V p:Place,n:Nat • (p,n) e posts(t) =^ mark(p)+n<ps(p))

end
pre let (ps,ts,pres,posts,mark) = ptn in t £ ts end

occur: Trans x PTN ^ PTN
occur(t,ptn) =

let (ps,ts,pres,posts,mark) = ptn in
(ps,ts,pres,posts,

mark f
[p i->- mark(p)— n | p:Place,n:Nat • (p,n) e pres(t)] f
[p i->- mark(p)+n | p:Place,n:Nat • (p,n) e posts(t)])

end
pre activated(t,ptn)

Note, unlike for CENs, there is no notion of a place being fulfilled or unfulfilled.

12.3 Place Transition Nets (PTNs) 327

Annotations

• A transition is activated:
• if for every place in its preset

there are at least as many to
kens as the weight of the cor
responding arrow, and

• if for every place in its postset
the number of tokens at that
place added to the weight of
the corresponding arrow is at
most equal to the capacity of
the place.

The occurrence of an activated
transition produces a new mark
ing
• in which the number of tokens

at each of the places in the pre
set is reduced by the weight of
the corresponding arrow, and

• in which the number of to
kens at each of the places in
the postset is increased by the
weight of the corresponding ar
row.

Example 12.7 PTN for Two-Producer/Three-Consumer System: We refer
to Example 12.5. We illustrate, in this example, the RSL value of type PTN
corresponding to the Two-Producer, Three-Consumer example Petri net in
Fig. 12.9.

scheme TwoProducerThreeConsumer =
extend PlaceTransitionNet with
class

value
pd, pp, b, cr, cc : Place,
produce, deliver, receive, consume : Trans,
ptn : PTN = ([pd H> 2, pp ^ 2, b H> 10, cr H> 3, cc H> 3],

{produce, deliver, receive, consume},
[produce t-» { (pp, 1) },

deliver t-> { (pd, 1) },
receive i-» { (b, 1), (cr, 1) },
consume t-» { (cc, 1) }],

[produce i-+ { (pd, 1) },
deliver H-» { (pp, 1), (b, 1) },
receive t-» { (cc, 1) },
consume i-> { (cr, 1) }],

[pd H> 2, pp H 0, b H> 3, cc i-* 2, cr H-» 1]) end

Here we first define the five places, pd represents producer delivery-enabled,
pp represents producer production-enabled, b represents buffer, cr represents
consumer receipt-enabled and, finally, cc represents consumer consum.ption-
enabled. Next, we define the four transitions using the names from the Petri
net. Finally, we can define the value ptn representing the Petri net in Fig. 12.9.
Notice that we define the capacity of the places pd and pp to two even though
they do not have a capacity in the figure. This capacity is chosen such that
it never becomes a constraint, since the initial marking limits the number of

328 12 Petri Nets

tokens in pd and pp to two. Similarly, the two places cr and cc have a capacity
of three. •

12.3.4 Railway Domain Petri Net Examples

Acknowledgement

Martin Penicka, Czech Technical University, Prague, kindly provided the
example of this subsection from his PhD Thesis [398].

We now bring in an example that can be linked to the railway net examples
of either Chap. 2 (Examples 2.5-2.9) or Chap. 10 (Example 10.22).

Example 12.8 Railway System Petri Nets: The example is large — so we
dispense of shading. We will present a shaded paragraph to signal the end of
this example. •

Route Descriptions

The subjects of this example are interlocking: the setting up of proper routes
from station approach ("line departure") signals to platform tracks, and from
these to the lines connecting to other stations. We shall therefore focus on
constructing, for all such "interesting" routes of a station, a Petri net that
models a proper interlocking control scheme.

Routes are described in terms of units, switches and signals. In Sect. 2.3.3
informal statements 22 and 23 (and like-numbered formula) defined routes
and open routes. Routes are sequences of pairs of units and paths, such that
the path of a unit/path pair is a possible path of some state of the unit, and
such that "neighbouring" connectors are identical. There can be many such
routes in a station. We are interested only in routes which start at an approach
signal and end either at the track or on the line. In the example station of
Fig. 12.11 there are 16 such routes.

iV4 Sis 2 » "•• u"

Uz Xi . U 4 ^ ^ < UT 1 fc Uio \ U n t Y.
SigllT ^ S C i SigRl S i g u r / p 2 p4 ^SigR

Ui X2 . / u , 4 Ue 2 . _ , £
S\g2Lr p 3 ^S igR2 SigL2^

Fig. 12.11. Example station

12.3 Place Transition Nets (PTNs) 329

Interlocking Tables

Depending on the local or national traditions, there are rules and regulations
which stipulate how signals and switches are to be set (and reset) in order to
facilitate the safe movement of trains within a station. One can formalise such
rules (see, for example, [264]). From a mechanisation of such a formalisation
and from the specific topology of a station layout, for example that abstracted
in Fig. 12.11, one can then construct an interlocking table, such as the one
given in Table 12.1. In that table S and T stand for straight and turn (position
of switch), and R and G for red and green (colour of signal).

Each row in an interlocking table corresponds to a proper route. The table
expresses for each interesting route the requirements for switches (points and
switchable crossovers) and the requirements for signal states. The table also
lists all units which compose the route. If there are no requirements on the
setting of switch or signal, it is marked with dash (-). We do not show how
to formally construct such a table, but we refer to [164,165,264,471].

Table 12.1. Interlocking table for example station (by S* is meant Sigj)

Requirements —*

Routes 4.

1- s l t - i
2. S1L - 3

3. s2L - i

4. s2L - 2

5. 52L - 3

6. SL1 -Y

7- sL2 - Y

8- sL3 - Y

9. s H - i
10. S f l -2
11. S H - 3

12. s m - xj

1<J- S B 1 - x 2

14. sH 2 - x 2

lO- SH3 - x l

16. sR3 - x 2

Switches

acl PI PS Pi Pe

s - s - -

T - S - -

T - T

- S

S - T - -

S - S S

T - S S

T T

S - S S

T - S S

T T

S - S - -

T - T

- S

T - S - -

S - T - -

Signals

S 1 L S 2 L S L 1 s £ 2 s £ 3 S H S H 1 S H 2 S H 3

G - - - - - R - R

G - - - - - R - R

R G - R R R

G - - - - - R

R G - - - - R R R

G R R R -

R G R R -

R R G R -

R R R G -

R R R G -

R R R G -

R - - - - - G - R

R R - - - - G R R

R - - - - - G -

R - - - - - R - G

R R - - - - R R G

Units

" 2 , 2 , 4 , 7

" 2 , 2 , 5 , 8

" 1 , 3 , 4 , 7

" 1 , 3 , 6

" 1 , 3 , 4 , 5 , 8

" 1 0 , 1 3 , 1 4

" 9 , 1 0 , 1 3 , 1 4

" 1 1 , 1 3 , 1 4

" 1 3 , 1 0 , 7

" 1 3 , 1 0 , 9 , 6

" 1 3 , 1 0 , 1 1 , 8

" 4 , 2

" 4 , 3 , 1

" 3 , 1

" 5 , 4 , 2

" 5 , 4 , 3 , 1

We can now start to build up Petri nets for a partial railway net from four
subparts: Petri net for a unit, for a switch (i.e., point or switchable crossover),
for a signal, and for a route. Please observe that all units have a basic Petri
net. Additionally, switches have additional basic Petri nets — as we shall soon
see. And, finally, although routes are basically sequences of units, routes also
have their separate basic Petri nets. The full Petri net for a route is then a
composition of all its unit, all its switch, and all its signal Petri nets — where
the composition is implied by the interlocking table.

330 12 Petri Nets

Petr i N e t for U n i t s

A unit can be in either of two basic states. It is either free (a new route can
be opened through the unit) or it is blocked, i.e., there is an already opened
route through the unit.

The Petri net for units is shown in Fig. 12.12a. Two places represent the
two states: free and blocked. The initial marking consists of a token at the
free place.

One can notice tha t the Petri net for a unit in Fig. 12.12a will interminably
circulate ("oscillate"). But this is not the final Petri net for a route. It is
just one component. Later on, extra arcs will be added tha t will prevent
"oscillations".

Petr i N e t for S w i t c h e s

A switch can be either a point or switchable crossover. A typical switch has
two states: straight (S) and tu rn (T). A switch may be required to be set in
a certain state in two ways: as a direct part of a route, or because it must be
set for side protection (to avoid trains touching each other). In both cases,
if there is an open route through switches, these switches must never change
their states.

(a) (b)

1H<J1 ++ i. Straight

Turn

n_ fc j n 1
Fig. 12.12. Petri nets for (a) units, (b) switches, (c) signals, and (d) routes

Thus the Petri net for a switch has two places representing the two mentioned
states: straight and turn.

The initial marking consists of n tokens at the straight place, where n is the
total number of routes which require settings of tha t switch. This number can
be found from the interlocking table (here Table 12.1) as a count of required
setting in the switch column. For the example station in Fig. 12.11, one finds
tha t for switchable crossover sc l , n is 8; for point p2, n is 4 (that is, 4 routes
require settings of switch p2); etc. The switch can change state if and only if
all n tokens are available. Later, when the whole Petri net will be constructed,
we shall see tha t open routes through the switch cause the decrease of switch
token numbers. This will help ensure tha t the switch can only change its state

12.3 Place Transition Nets (PTNs) 331

when no route — tha t requires the actual state — is active. But the switch
can still be part of several routes, as long as these routes require the switch
to be in the same state. These requirements are captured by the Petri net in
Fig. 12.12b.

Petr i N e t for S ignals

A signal has two states: hold and proceed2 . The Petri net for a signal has two
places representing the two settings hold and proceed.

The initial marking consists of m tokens at the 'Hold' place, where m is
the number of routes which require setting of tha t signal. With Table 12.1,
for the example station in Fig. 12.11, one finds tha t for for signal Sig1L, m
is 8, for signal Sig2L, n 1S 6, etc. The signal can only change setting if all m
tokens are available. This will ensure tha t the signal can only change its state
when no route tha t requires the actual state is active, but the signal can still
be part of several routes, as long as these routes require the signal to be in the
same state. These requirements are captured by the Petri net in Fig. 12.12c.

Petr i N e t for R o u t e s

From text item 23 (Example 2.5, and formula 23 (Example 2.6)) of Sect. 2.3.3
you can find tha t routes can be open or closed. A route can be open only when
all its requirements on switch settings, signal settings and units occupancies
are fulfilled.

The Petri net for a route also has two places representing the two states:
Open and Closed. The initial marking consists of one token at the 'Closed'
place. The basic Petri net for a route is shown in Figure 12.12d. This corre
sponds to the route tha t has no requirements on switches, signals or units.

C o n s t r u c t i o n of Pe tr i N e t for Inter locking Tables

We will now indicate how to construct a Petri net, for the interlocking table
of a station, from the four components already described (unit, switch, signal
and route). The Petri net will be made by adding extra pairs of arcs for each
requirement between these components. The example station of Fig. 12.11
will be composed by these components: 16 Petri nets for routes, 14 Petri nets
for units, 5 Petri nets for switches and 9 Petri nets for signals. The station
shown has these numbers.

2This is a simplistic view — a real signal is able to indicate the speed with which
it may be passed.

332 12 Petri Nets

Routes and Units

A route can be open when all units that the route is composed of are free (not
occupied by trains or blocked by another route in the station). To satisfy this
requirement, a pair of arcs needs to be added between each route Petri net
and all unit Petri nets that make up the route (Fig. 12.13A).

i i i

(A) ' ' • (B) V J ^ (C) / ' ^

Fig. 12.13. Arc additions for route (A) units, (B) switches and (C) signals

Routes and Switches

For each switch requirement it must be ensured that the switch cannot change
state while the route through that switch is open. To satisfy this requirement,
a pair of arcs has to be added between each route Petri net and all switch
Petri nets of that route. The particular insertion of arcs depends on the re
quired state of the switch (as given in the interlocking table). This insertion
is captured in the Petri net of Fig. 12.13B. Note that it is assumed that the
route requires the switch to be set to the 'Turn' state. The case for 'Straight'
follows accordingly.

Routes and Signals

The signal can be in the 'Proceed' state if and only if the route that starts
at the signal is open. How to add a pair of arcs for a signal is illustrated in
Fig. 12.13C. This is clearly the precondition for opening the route, which is
the same as the precondition for adding switches.

Summary

The full Petri net for the example railway station and interlocking table thus
contains 16 Petri nets for routes, 14 Petri nets for units, 5 Petri nets for
switches, and 9 Petri nets for signals. The interlocking table then dictates very
many of the arcs to be inserted — so many that readable diagrams become
impossible. Clearly then, this is a case for tools. These tools can create the
complete control program, based on Petri nets, for a station, and can check
for liveness, deadlock, etc.

12.4 Coloured Petri Nets (CPNs) 333

This is the end of Example 12.8. •

Where the railway net examples of either Chap. 2 (Examples 2.5-2.9) or
Chap. 10 (Example 10.22) expressed basic domain properties of static and
dynamic rail nets, Example 12.8 (above) expresses basic requirements prop
erties of what a monitoring and control (computing) system must do.

We have thus, in an engineering way, shown how to relate formal textual , in
this case R.SL descriptions, to likewise formal, but now diagrammatic prescrip
tions. A formal, scientifically well-founded relationship between the Petri net
prescription and the R.SL description requires more research before it can be
soundly presented. This kind of research, of "integrating formal techniques",
is currently a rich field of study.3

12.4 Coloured Petri Nets (CPNs)

This section is structured as follows: First, in Sect. 12.4.1 we explain, in
formally, the syntax and semantics of coloured Petri nets (CPNs). Then, in
Sect. 12.4.2 we present some typical examples. In Sect. 12.4.3 we develop a
model of the syntax and semantics of CPNs, in RSL. In Sect. 12.4.4 we consider
timed CPNs.

12.4 .1 D e s c r i p t i o n

In the Petri net variants described above, tokens are indistinguishable, i.e.,
there is no way to tell one token apar t from another. In this section we discuss
coloured Petri nets (CPNs), which are an extension of PTNs: A type-value
system for tokens is now introduced. The term coloured refers to the fact tha t
tokens are now distinguishable in tha t they have a value, called their colour,
which is of a particular type, called their colour set. A colour set may define
both simple and composite values. In a CPN each place has an associated
colour set specifying the colour set of tokens at tha t place. The marking of
a place is a multiset4 over the colour set of the place. A transition may have
a sequence of guard expressions which evaluate to a Boolean value. Arrows
from places to transitions and from transitions to places are called arcs. Arcs
are inscribed with expressions tha t evaluate to a multiset over the colour set
associated with the place from which they emanate or terminate.

3— under the name: IFM: Integrating Formal Methods
A multiset is an unordered collection of values, in which the same value may

appear more than once. Multisets are also known as bags. The notation l , a + 2 ,6+4 ,c
denotes a multiset containing one a value, two b values and four c values. If the
number and reverse prime symbol are omitted, it is interpreted as a single value,
e.g., a + 2sb is equivalent to lvo + 2sb.

334 12 Petri Nets

Expressions may contain variables. A variable is typed with a colour set
and may be bound to any value in that colour set. A binding is an assignment
of colours to variables. A binding element is a pair (t, b) of a transition, t, and
a binding, b, where b assigns a colour to each variable that appears in an arc
expression of an arc emanating from or terminating at t. For a given binding
a transition is enabled if the conjunction of its guard expressions evaluates to
true, and for each arc terminating at the transition the multiset value of the
arc expression may be removed from the place at which the arc emanates. A
transition that is enabled under a given binding may occur. In that case tokens
are removed from its input places and tokens are added to its output places.
The colours of the tokens are determined by the value of the corresponding
arc expressions.

Complex CPNs may be simplified by splitting them into several smaller
nets organised in a hierarchy. The simple nets are called pages. A page may
have several instances that differ only in that each has its own marking, which
is independent of the markings of the other instances of the page.

A transition in a net may be elaborated 3JS cl pel ge, such that the page
specifies the detailed behaviour of the transition. In this case the transition
is labelled with the letters HS. It is important to realise that a hierarchi
cal net can always be converted to a nonhierarchical net specifying the same
behaviour. Therefore, allowing hierarchical nets does not add to the express-
ibility of CPNs, but it may improve readability.

The definition of CPNs does not mandate a particular language for dec
larations. The most often used language for specifying colours, colour sets,
functions and expressions is known as CPN ML. This language is an exten
sion of Standard ML [359]. Here, we briefly list the additional facilities and
assume the reader is familiar with Standard ML. Consult [341] for a thorough
reference to CPN ML.

Table 12.2 lists the facilities available in CPN ML for declaring colour sets.
A range of built-in operators are available for the simple colour sets derived
from bool, int, real and string. These operators include logical operators for
bool, arithmetic operators for int and real, standard trigonometric, logarithmic
and exponential functions for real and concatenation, substring and conversion
functions for string. Multisets play an important role in CPNs, so CPN ML
has operators for constructing, manipulating and comparing multisets over
colour sets. Multisets are constructed using the back-quote operator (v) and
the multiset union operator (+). The value empty denotes the empty multiset.

CPN ML supports typed variables, which are local to a transition. Refer
ence variables with global-, page- or instance-level scope are also supported.

12.4 Coloured Petri Nets (CPNs) 335

Table 12.2. CPN ML colour set declarations

1 '3

w

Pj.

g
o

Is

D
ec

la
i

[
M

L
 C

ol
ou

r
S

et

\C
CU

O

a;
to

s
o

"o
O

• T *

r~o

- i - r*2 *

^ N

"vi

<̂
Z.a

—A1

31
^ in

-< ^ n̂) ,S
—"AI.W 2

>o 3 i .s

Sv i f l j ^

° "? w ̂ a; 2
° T t i 3 3

» • 4>Ji S i

U
n

it

B
oo

l
In

t
R

ea
l

T
ex

t
=
 e

=

 n
o

{
|r

:l

{|
t:

T
c

{|
t:

T
e

=
re

d
:=

li
st

II II II II II II II II || || II II II

a a f t f t a a a a a a a a a
> + J + J + S + S + J + J + J + S + S + J + J + J + S

«J
^ • 3
-C >i

r+

3 „
r ==

V R« > 3 ^

- ^ 10 : „ _

r
A

 =
 u

n
it

r

B
 =

 b
oo

l
r

C
 =

 i
n

t
r

D
 =

 r
ea

l
r

E
 =

 s
tr

in
g

r
F

 =
 u

n
it

 w
it

h
 e

r

G
 =

 b
oo

l
w

it
h

 (
n

o,

r
H

 =
 i

n
t

w
it

h
 1

0.
.4

0
r

I
=

 r
ea

l
w

it
h

 0
.5

..1
.

r
J

=
 s

tr
in

g
w

it
h

 "
a"

r

K
 =

 s
tr

in
g

w
it

h
 "

a1

r
L
 =

 w
it

h
 r

ed
 |

 g
re

en

r
M

 =
 i

n
d

ex
 l

is
t

w
it

h

0 0 0 0 0 0 0 0 0 0 0 0 0
^ H ^ H - H - H ^ H ^ H ^ H - H - H ^ H ^ H ^ H - H
0 0 0 0 0 0 0 0 0 0 0 0 0
u u y y u u u y y u u u y

0^

o

O

e
o

o

CO

rt
CN

^
Pi

r-^

Mi Pi

V l ~ *-.

«a -
C u to
0 II ^

l ~c
CO -*~

^ pi
A l - i n "

S. I, S w

x •• * ^ • •

m J= ^ p i o a

X < ! as as" ^ „

II : : II II ^ || II

2 O &H 0*0^ c/} H

CU CD CD 0 0 0 CD

a a, a, a a a a,
>> >» >» >> >> >> >» -U -+J -+J -U -U -U -+J

'•xT
1-1
OO

o ^H"

u O
O * u

> m + § ;±

* # CI •• +>

r
N

 =
 p

ro
d

u
ct

r

O
 =

 r
ec

or
d
 a

r

P
 =

 l
is

t A

r
Q

 =
 l

is
t

A
 w

i
r

R
 =

 u
n

io
n
 a

r

S
 =

 s
u

b
se

t
C

r

T
 =

 s
u

b
se

t C

0 0 0 0 0 0 0
_ H —1 —1 , -H , -H - H —1

0 0 0 0 0 0 0
o y y o o o y

The only effect of this colour set is to rename false to no and true to yes.
Standard ML Boolean operators such as not, andalso and orelse may be applied
to no and yes just as to false and true.
There is no proper RSL equivalent for this colour set. A value definition is
probably the closest match: t y p e Ml = = list2 | list3 | list4 | list5 | list6 value
M = [2 >->• Iist2, 3 >->• Iist3, 4 >->• list4, 5 >->• list5, 6 i-> list6]

336 12 Petri Nets

12.4.2 A CPN Example

Example 12.9 Dining Philosophers Revisited: CPN: We illustrate CPN by
revisiting the Dining Philosophers example (Example 12.4). This time we have
five dining philosophers. The CPN diagram is shown in Fig. 12.14. Because
of the expressibility of CPN we need only three places compared with the 12
conditions in the CEN model. Before, we had a condition for each fork. Now,
there is only one place which can be marked with a colour to indicate which
of the forks are free. Similarly, the two conditions for each philosopher in the
first example are translated into two shared places which are marked with a
colour to indicate which philosophers are eating and which are thinking. The
function S(x) is introduced to provide the mapping from a philosopher to the
forks he uses. •

F

color P = with p1 | p2 | p31 p41 p5;
color F = with f 1 | f2 | f3 | f41 f5;
varx: P;
fun S(x) = case x of

p1 => Tf1 + 1'f2
|p2=>1'f2 + 1'f3
|p3=>1'f3 + 1'f4
|p4=>1'f4 + 1'f5
|p5=>1'f5 + 1'f1

net: dining philosophers

Comment on Fig. 12.14'-

The underlined characters £ and P. designate initial markings. P_ means
that place Think is initially marked with all values of its colour set, i.e.,
{PI-,P2,P3,PA,P5,}- Correspondingly for Free.

12.4.3 An RSL Model of Coloured Petri Nets

Definition. By a coloured Petri net we shall understand a structure as for
malised in this section. •

Syntax of CPNs and a Static Semantics

We first formalise a syntax and then a static semantics for CPNs.

Fig. 12.14. Coloured Petri

12.4 Coloured Petri Nets (CPNs) 337

The net inscriptions (i.e., colour set declarations, colour definitions, arc
expressions and transition guards) are abstracted as sorts to avoid having to
define the full syntax of CPN ML or some other inscription language.

Syntax and a Static Semantics

type
CPN = {| cpn:CPN' • wf_CPN(cpn) |}
CPN' = ColDcls x Guard x Preset x Postset x Marking
fi = i7-infset
S
ColDcls = Place ^ fi
Guard = Trans ^ Pred*
Place
Trans
Preset = Trans ^ ((Place x Exp) ^ N a t)
Postset = Trans ^ ((Place x Exp) ^ N a t)
Marking = Place ^ (S ^ Nat)
Binding = Var -^ (S ^ Nat)
Var
Exp
Pred

value
wf_CPN: CPN' ->• Bool
wf_CPN(cf,g,pres,posts,mark) =

dom pres = dom g A
dom posts = dom g A
{p|p:Place •

3 e: Exp ,t: Trans •
(p,e) £ dom pres(t) U dom posts(t)} = dom cf A

(V t:Trans«dom pres(t)^{}Adom posts(t)^{}) A
dom mark = dom cf A
(V p:Place«

p € dom cf =^
(V c:S • c £ dom mark(p) => typeof(c) = cf(p))) A

(V t: Trans •
t € dom pres U dom posts =^

(V p:Place,e:Exp •
(p,e) £ dom pres(t) U dom posts(t)

=> typeof(e) = cf(p)))
(V t:Trans, p:Place, e,e':Exp •

({(p,e),(p,e')}Cpres(t)V
{(p,e),(p,e')}Cposts(t) ! =e'))

338 12 Petri Nets

38

39

40
41
42

43

44
45

46
47
48

49
50
51

eval : Exp x Binding ^> S -^ N a t

evalP : P r e d x Binding ^> B o o l

evalPl : Pred*x Binding 4̂- B o o l
evalPl(pl,b) = eva lP(hd pl,b) A evalPl(t l pl,b)
p r e d o m b = obs_var(pl)

typeof: (E x p | £) ->• Q

typm: (17-^ N a t) ->• B o o l
typm(ms) = V c,c':7i7«{c, c ' } C d o m ms =>• typeof(c)=typeof(c')

typeof: (S ^ N a t) ^ £
typeof(ms) = le t c:i7«c € d o m ms in typeof(c) e n d
p r e typm(ms)

obs_var: (Exp|Pred) —• Var-set
obs_var: Pred* —> Var-set
obs_var(pl) = U{obs_var(p) |p:Pred«p € e l e m s pi}

Annotations

(2-3) A CPN consists of a colouring
declaration, a set of guards, presets,
postsets and a marking.
(4) A colour set (Q) is a possibly in
finite set of colours.
(5) A colour (E) is a further unde
fined entity.
(6) The colouring declaration maps
places to colour sets.
(7) For each transition there is a
guard, which is a possibly empty se
quence of predicates.
(8-9) Places and transitions are fur
ther undefined entities.
(10) Each transition has a preset,
which is a multiset of pairs of places
and expressions.
(11) Each transition has a postset,
which is a multiset of pairs of places
and expressions.
(12) A marking assigns a multiset of
colours to each place.
(13) A binding maps variables to
multisets of colours.

(14-16) Variables, expressions and
predicates are further undefined en
tities.

(17-19) A CPN is well-formed, if,
among other trivial things:

• (20) the set of transitions which
have a preset is identical to the
set of transitions which have a
guard, and

• (21) the set of transitions which
have a postset is identical to the
set of transitions which have a
guard, and

• (22-25) the set of places which
are in the preset or postset of
some transition is identical to the
set of those places which are as
sociated with a colour set, and

• (26) no transition has an empty
preset or postset, and

• (27) every place which is associ
ated with a colour set also has a
marking, and

12.4 Coloured Petri Nets (CPNs) 339

• (28-30) the marking of every • (39) There is a function which evalu-
place consists of a multiset over ates a predicate under a given bind-
the colour set associated with the ing to a Boolean value.
place, • (40-42) A predicate list is evaluated
to1 » , u , ... as the conjunction of the values of the

• (31-34) tor every transition every J

, • c J. • i member predicates, arc emanating trom or termmat-
, ,, , .,. . . ., , • (43) It is possible to observe the

ing at the transition is inscribed K ' , \ r

.,, • i - i i colour set (type) of an expression and
with an expression, which has a w r ' ^

, , i i it. i j. from a colour, colour set equal to the colour set
• i. J -ii. , v i c i i • (44-45) A multiset of colours has

associated with the place ot the y '
, matching types if any two colours in

arc, and b J r J

the multiset have the same type.
• (35-37) two (or more) "parallel" , (46-47) It is possible to observe the

arrows collapse into one single ar- colour set from a multiset of colours
r o w - if the multiset has matching types.

(38) There is a function which eval- • (49-51) The variables of an expres-
uates an expression under a given sion, predicate or predicate list can
binding to a multiset over some " e observed. •
colour set. •

D y n a m i c S e m a n t i c s of C o l o u r e d Pe tr i N e t s

Auxiliary Semantic Functions

Before we turn to the dynamic aspects of CPNs, we specify four operations
on multisets over colour sets: union, distributed union, difference and subset.

Auxiliary Semantic Functions

value
ms_union: (E ^ N a t) x (S -^ Nat)->-(Z' ^ N a t)
ms_union(msa,msb) =

m s a \ d o m msb U m s b \ d o m msa U
[d->-msa(c)+msb(c) | c : i>c € d o m msa fl d o m msb]

ms_dunion: (S jft N a t) - s e t —>• (S jft N a t)
ms_dunion(mss) =

if mss = {} t h e n []
e lse

let ms:(i7 -^ N a t) • ms £ mss in
ms_union(ms, ms_dunion(mss\{ms}))

e n d
e n d

ms_diff : (E ^ N a t) x (E ^ N a t) -)• (E ^ N a t)
ms_diff(msr,msa) =

msa \ d o m msr U

340 12 Petri Nets

[ci->if msa(c)— msr(c)>0 then msa(c)—msr(c) else 0 end
cr-S^c £ dom msr fl dom msa]

ms_subset: (Z '^Nat) x (S ^ N a t) ->• Bool
ms_subset(msr,msa) =

V cr-S^c £ dom msr =>• c £ dom msaAmsa(c)>msr(c)

Annotations

• The union of two multisets is ob
tained as the union of those ele
ments which are in only one of the
multisets with the sum of those el
ements which are in both multi
sets.

• The distributed union of a set
of multisets is defined recursively
as the union of one member of
the set with the distributed union
of the rest of the set. The dis
tributed union of the empty set is
the empty multiset.

The difference between two multi
sets is obtained by removing the
elements of the first multiset from
the second multiset. If the second
multiset does not contain as many
elements as should be removed, all
elements are removed.
A multiset is a subset of another
multiset, if and only if for every
element in the first multiset, the
second multiset contains at least
as many instances of that element
as the first multiset. •

Transition Functions for Coloured Petri Nets

With the above specification of multisets of colours we are now ready to specify
what it means for a transition to be enabled and to occur in a CPN.

Transition Functions

value
enabled : Trans x Binding x CPN ^> Bool
enabled(t, b, cpn) =

let (cf, gu, pres, posts, mark) = cpn in
evalPl(gu(t), b) A
(V p : Place •

let ms={eval(e, b)|e:Exp«(p,e) £ dom pres(t)}
in ms_subset(ms_dunion(ms), mark(p))
end)

end
pre let (cf, gu, pres, posts, mark) = cpn in

t £ dom gu A
dom b = obs_var(gu(t)) U variables(t)(cpn) end

variables: Trans —>• CPN —• Var-set

12.4 Coloured Petri Nets (CPNs) 341

variables (t) (_ , _ ,pres,posts,_) =
U{obs_var(e) |e:Exp • 3 p:Place •

occur : Trans x
occur(t, b , cpn)

Binding x CPN 4

=

(p,e)e pres(t) U posts(t)}

CPN

let (cf, gu, pres, posts, mark) = cpn in
(cf, gu, pres, posts,
mark f
[p i->

let ms=
in ms_
e n d | i

[p i->
let ms:
i n ms_
e n d | i

e n d
pre let (cf, gu,

t £ d o m gu

={eval(e,b) e:Exp«(p
diff(ms_dunion(ms)
>:Place«3 e:Exp«(p,e)

={eval(e,b) e:Exp«(p

e) € d o m pres(t)}
,mark(p))
£ d o m pres(t)] f

e) € d o m posts(t)}
union(ms_dunion(ms), mark(p))
>:Place«3 e:Exp«(p,e)

pres, posts, mark) =
A

d o m b = obs_var(gu(t)) U vari
A enabled(t, b, cpn) e n d

£ d o m posts(t)])

cpn in

ables(t)(cpn)

Annotations • When an enabled transition oc-

. A transition is enabled under a curs> t o k e n s a r e removed from its
given binding if its guard condi- m P u t P l a c e s a n d t o k e n s a r e a d d e d

tion evaluates to true, and for ev- t o l t s o u t P u t P laces> a s determmed
ery input place the value of the b^ t h e v a l u e o f t h e a r c expressions
corresponding arc expression is a u n d e r t h e S l v e n b m d l n S -
subset of the marking of the place.

12.4.4 Timed Coloured Petri Nets

In the above description of CPNs we have neglected temporal aspects in CPNs.
The CPN model of time is based on a global discrete or continuous clock.
Discrete or continuous durations may be attached to transitions and arc ex
pressions of arcs from transitions to places. Tokens may be labelled with a
time-stamp indicating the earliest time the token may be removed from a
place.

To indicate that tokens of a particular colour set should have timestamps,
the keyword timed is appended to the declaration of the colour set: color
A = product int * string timed; A timed multi-set is a multi-set with
time-stamps: 2V (2,"monday")@[5,16]+3v (3,"tuesday")@[14,20,21].

342 12 Petri Nets

Durations of transitions are specified as @ + x indicating that tokens added
to the output places should be time-stamped with the time of the global clock
plus x, where x is an integer or real value. Durations may also be specified on
output arcs by appending @ + x to the arc expressions.

In a timed CPN a transition may occur if it is both enabled and ready, i.e.,
guards are fulfilled, the required tokens are available, and the time-stamps of
the tokens to be removed are less than or equal to the current model time.

The execution of a timed CPN proceeds by executing all transitions that
are enabled and ready. Whenever no further transitions are ready to be ex
ecuted, the global clock is advanced to the next time at which one or more
transitions are enabled and ready.

The model of CPNs given above could be refined to include a global clock,
timestamps and durations, but we will not give such a model here.

12.5 CEN Example: Work Flow System

Example 12.10 Flow Systems and Petri Nets: This entire section (i.e.,
Sect. 12.5) is really one large example. Hence it is registered in this short,
shaded paragraph, but otherwise set in ordinary text, figures and formulas! •

In this section we shall analyse manufacturing production projects (i.e., their
planning and execution) from the point of view of what goes on in the "real
world". That is, our investigation is one of examining mostly the application
domain, and only secondarily the requirements to possible software support.

12.5.1 Project Planning

Project Plans

We make a distinction between project plans and projects. A project plan
describes, generically, in which order, i.e., by what flow of control, the activities
of a project must be carried out. (Whether they will be carried out in this
way is immaterial to the problem we have decided to tackle.) A project is one
of perhaps several ways in which a set of project plan-prescribed activities are
indeed carried out. The project plan thus describes flow of control: in which
orders activities are sequenced, etc. From a syntactic point of view, a project
plan consists of nodes and directed edges. From a semantic point of view nodes
denote activities, and edges denote transfer of control, i.e., flow of control.
From a syntactic point of view, some edges are incident upon nodes from an
"outside"; some edges emanate from nodes to an "outside"; and remaining
edges connect nodes. Thus, to summarise, nodes prescribe actions (a,), and
edges prescribe two things: the conveyance of resources of a specific kind (kj),
and the flow of control from a set of activities to a next set of activities.

12.5 CEN Example: Work Flow System 343

Figure 12.15 shows an example project plan that prescribes five activities.
By Oj we here mean both the distinct labels of the nodes as well as further
attributes of these nodes. By kj we mean some description of the kinds of
"things" that flow from a node, or an outside, to a next node, or the outside.
These things can be materials when the project is about manufacturing, or
documents when the project is about software development, or completion
and status (measurement, test) reports when the project is that of a major
(preventive maintenance) overhaul of an aircraft.

Fig. 12.15. A project plan

type
An, Ad, K
PP ' :: s_i:(An ^ K)

x s_g:(An ^ Ad x (An ^ K))
x s_o:(An ^ K)

PP = {| P P : P P ' . wf_PP(pp) |}
value

mk_PP(
[al H-» kl, a3 H-»k3"], /* s_i */
[al H-» (adl,[a2 H> k2, a3 h-» k3']), /* s_g */
a2 H+ (ad2,[a4 i-> k4", a5 ^ k5']),
a3 ^ (ad3,[a4 i-> k4', a5 i-> k5"j),
a 4 ^ (ad4,[]),
a5 i-)- (ad5,[])],

[a4 H> k7,a5 H> k6]) /* s_o */

The s_i part models which nodes are initial, i.e., input nodes and which kinds
of resources flow into these nodes. The s_o part models which nodes are final,
i.e., output nodes and which kinds of resources flow out from these nodes.
The s_g part models the graph structure of the project plan: an acyclic —
something not mentioned above — graph. A project might consist of several
unrelated activities. But each activity has some inputs and some outputs,
whether internally or externally. All project activities are distinctly designated

344 12 Petri Nets

(named, An). All input and all output activities (i.e., nodes) are nodes of the
project plan graph with no other inputs, respectively outputs , than those
denned by the the s_i and the s_o parts . Ad and K denote activity and
resource descriptions (i.e., types and definitions).

The expression value m k _ P P (. . .) is tha t of the project plan of Fig
ure 12.15. PP is a subtype of PP ' . Well-formedness of pp:PP expresses tha t
the " i /o" graph formed by the triple of the set of all external input nodes, the
graph of nodes mapping to sets of successor nodes and the set of all external
output nodes is a well-formed i /o graph.

A well-formed i /o graph has (i) all external input and (ii) output nodes
are nodes of the graph (i.e., in the definition set of this graph). In addition,
(iii) no external input node has any predecessor nodes in the graph, (iv) no
external output nodes has any successor nodes in the graph, and the graph
itself is well-defined and acyclic.

The well-definedness of a graph is tha t all nodes tha t can be reached, in
one step, from a node (of the definition set d o m g) are defined in tha t set,
and tha t no node can reach itself in one or more steps. The graph mapping g
defines what a step is: If a is a node defined in the graph, then g(a) is the set
of nodes tha t can be reached in one step from a.

wf_PP: P P ' -> B o o l
wf_PP(xim,im,xom) =

w f _ I O G r a p h (d o m xim,
[a !->• nas |

a:An,nas:An-set«a £ d o m im A
le t (,nxt) = im(a) i n nas = d o m nxt e n d] ,

d o m xom)

wf_IOGraph: An-se t x (An ^ An-se t) x An-se t
wf_IOGraph(ias,g,oas) =

(i,ii) ias C d o m g A oas C d o m g A
(iii) V a:An • a £ ias =>

~ 3 a':An • a' £ d o m g A a g" g(a')
(iv) V a:An • a £ oas => g(a)={} A
(v) wf_Graph(g)

wf_Graph: (An jjt An-se t) —> B o o l
wf_Graph(g) = DefNodes(g) A aCyclic(g)

DefNodes: (An ^ A n - s e t) ->• B o o l
DefNodes(g) = d o m g = U r n g g

aCyclic: (An ^ An-se t) —>• B o o l
aCyclic(g) = V a:An • a £ d o m g => a g- Nodes(a,g)

12.5 CEN Example: Work Flow System 345

Nodes: A n x (A n ^ An-se t) -3- An-se t
Nodes(a,g) =

let as = g(a)U{a' | a',a":An«a" £ asAa'isin g(a")} in as e n d
pre a € d o m g

The function Nodes recursively gather the nodes, as, tha t can be reached from
the node a in graph g in one or more steps. The recursion is well-founded: It
s tarts with the set of successor nodes of a in g (which might be empty, and
recursion stops), and goes on to gather successor nodes of those nodes already
gathered in as. When no more nodes can be gathered — figuratively speaking,
when a next recursion yields only nodes already in as — recursion stops. Tha t
is, a minimum fixed point has been computed. So we here assumed a minimum
fixed point semantics of such recursive equations as defining as.5

P r o j e c t P l a n C o n s t r u c t i o n

We distinguish between two kinds of project plan information: the structure
of the inpu t /ou tpu t graph and its content. The structure has to do solely with
nodes and edges and the labelling of nodes. The content has to do solely with
at tr ibutes (descriptions) to be at tached to nodes and edges. The below items
cover both.

Project plans can be initialised: A project plan name is all tha t is provided.
The project plan (i.e., the inpu t /ou tpu t graph) is initialised to empty. Activity
descriptions (i.e., nodes and their at tr ibutes) can be inserted, [rejdefmed and
deleted. Flow of control (i.e., edges and their at tr ibutes) can be inserted,
[re]prescribed and removed. These project plan editions can be thought of as
describing domain properties or prescribing requirements. In any case project
plans are programmable active dynamic components.

t y p e
P P n
P P S = P P n ^ P P
Cmd = = mk_ in i tPP(ppn :PPn)

| mk_newAct(an:An,ad:Ad) | mk_oldAct(an:An,ad:Ad) | ...
J mk_newCtl(en:En,k:K) | mk_oldCtl(en:En,k:K) | ...

value

In t_Cmd: Cmd -> P P S H> P P S

PPS models a project plan repository (a file cabinet full of plans, as in the
domain description, or a database of such, as in a requirements prescription).
Cmd models our scribblings when, with paper and pencil we draw and an
notate project plans, as in the domain, or a set of update commands tha t

5Please note, however, that RSL does not have a minimum fixed point, but an all
fixed point semantics.

346 12 Petri Nets

can be issued against such a database, as in requirements. The semantic func
tion expresses tha t the project planning system (PPS) is a dynamic active
programmable one.

The node at tr ibutes, ad:Ad, may contain a rich variety of components,
structured in some schematic way or another. We list some example of ad:Ad
attr ibutes.

• A description of the operation to be performed at the node, i.e., the action,
together with its type (also called signature): from which predecessor nodes
does it receive input values to the operation, of which type and in which
quantities.

• Which kind of other, the production resources, may be needed in order to
carry out the operation: people (how many and with which skill qualifica
tions), equipment (machinery, etc.).

• A further example: what is the expected duration of the operation (r time
units ±6 t ime units, where i f C r) .

• Wha t might be an earliest start time of the operation (say relative to
project start t ime), and a latest such start time, and what might be the
earliest, respectively latest finish t ime (etc.).

• Wha t is the (expected and /or actual) cost per time unit, or total cost of
carrying out the operation.

• A final example: which are the reporting requirements: Must notification
of readiness to commence (for example, arrival of all input) be given and to
whom, notification of progress (or just recording thereof) and completion
of activity, notification of unexpected events, including failures.

• And so on.

12.5 .2 P r o j e c t A c t i v i t i e s

The following two sections present an analysis of the intended semantics of
project plans.

P r o j e c t F low of Control : "Waves" and Traces

Project plans are "programs" tha t denote projects. Activities take time. Once
an activity has finished, it "flows" [49,143-145] the produced resources (ma
terials, products) to an outside or provides these as input to next activities,
thereby passing flow of control toward those next activities. An activity can,
at the earliest, be commenced, i.e., initiated, once flow of control resides on
all input edges. This is a clear restriction of the kind of meaning we at tach to
project plans. If we wished to let two syntactically sequenced nodes stand for
possibly overlapped, or overlappable activities, then we would advise another
kind of graph, with perhaps more than one kind of node and one kind of edge.
But we would basically describe those other graphs as we describe the present
proposal: informally and formally. Once initiated flow of control passes from

12.5 CEN Example: Work Flow System 347

the incident edges to the activity. A project plan may thus give rise to flow of
control residing across many edges or in many nodes such that no two edges
or nodes of a flow of control are on a path between any two activities or edges,
and such that the flow of control captures all paths from any in-edge to any
out-edge.

We define a few technical terms: Priming: When a node activity has com
pleted it places the results of this activity (simultaneously) on each emanating
edge, thereby priming all the edges. Firing: A node activity can be fired, i.e.,
starts at the earliest when all edges incident upon it are primed. Whether it
actually fires is subject to a nondeterministic choice. For the time being we
assume that that choice is internal to the node. Later we can refer to that
choice externally, that is, to a project monitoring and control system.

w3vy4 w5 v\(6 vy7,yv8,i|v9

Fig. 12.16. A project trace: wo — wg

Figure 12.16 shows an example "execution" of a project plan. Each dashed
curve, a "wave", wt, stands for a point in time. At time t = 5(ws) the project
activities reside at node az and on edges from 122 to a^ and ci2 to 05. The
transition from time t = 5 to t = 6 results in no activities in any node. In
transiting from (sometime after) time t = 6 to (possibly sometime before)
time t = 7 an input takes place of "things" to node 05 from nodes a^ and
CI3 (and the two corresponding edges are preempted; a firing or transition has
taken place). Execution around this point in time could have seen a transition
that also fired node a^ (simultaneously with that of node as). Thus there
are many traces for any one graph. For the graph of Fig. 12.17 we have four
example traces as shown in Fig. 12.18.

We have not shown, but could show, several successive waves covering the
same set of edges and nodes. We explain this as follows: Since activities in a
node take time that would be fine wrt. just the nodes. Since flow of control
transitions, in general, depend on the availability, i.e., also the nonavailabil
ity, of production resources that actually carry out the activities of a node,
projects will, in general, have to be prepared for what appears to be "waiting"
time along edges.

348 12 Petri Nets

Fig. 12.17. Production plan

Fig. 12.18. Production traces

Theoretically speaking an edge does not, in and by itself, incur time con
sumption, but since firing a node can only take place when all edges incident
upon it are primed, it may so appear as if time is "consumed" by an edge.

Let En stand for edge names (i.e., names of possible locus of one flow of
control), made up in either of three ways from relevant activity names: input,
infix (graph internal) and output . We use the following abbreviations: FoC,
flow of control; PT, project trace and PPD, project plan denotation.

t y p e
En = = mk_i(i :An) | mk_g(fn:An,tn:An) | mk_o(o:An)
FoC = (An|En)-se t
P T = FoC*
P P D = P T - s e t

Figure 12.16 shows the following project trace:

12.5 CEN Example: Work Flow System 349

({el,e3},{al,e3},{el2,el3,e3},{a2,el3,e3},{a2,a3},{e24,e25,a3},
{e24,e25,e34,e35},{e24,a5,e34},{a4,e5},{e5,e6})

Many other project traces are possible. We chose not to show any repetitions
of successive waves (project execution states). We leave to the reader to pencil
a few alternatives onto Fig. 12.16.

Project Plan "Execution"

Given a project plan we can analyse it, and we can set it in motion! We
will here only show the latter. We elaborate on the above: Given a project
planning system, i.e., a collection of named project plans, and given a project
plan name, we can initiate a project. For the time being we omit supplying the
initial resources required to satisfy flow of control material needs. What this
means will be explained later, but it essentially means that we can start the
project, but no initial nodes will have anything to do, and will not fire since
no input material is being provided. We model a project as a set of processes,
one activity process for each node, an in-edge (input flow of control) process
for each complete set of edges into a node, and an out-edge (output flow of
control) process for each complete set of edges from a node of a project plan.
Each in-edge process gathers input from a number of predecessor activities.
Once all have been gathered, the sum total of input (material, documents, or
other) is delivered to 'its' node process. (By 'its' node process we mean the
node [activity process] of the triple: in-edge, node and out-edge processes.)
Each initial node in-edge gathers its sole input from an outside activity node
which is not defined, i.e., which is not part of the project plan as we have so
far defined it. Each node process accepts such input from its in-edge process,
processes the input, and delivers the result to its out-edge process. Each out-
edge process accepts input from 'its' activity process and then distributes it
to a number of successor activity nodes' in-edge processes.

An in_edge process An out_edge process The two generic processes
correspond to the following

generic project plan segment

ak :

TCI TCO

An activity process

Fig. 12.19. Generic flows of control and activities

350 12 Petri Nets

Figure 12.19 shows what was implicit in the narrative above: that flows of
control and activities can be modelled by generic processes. We show only the
interior edge processes and related activities.

For the project plan of Fig. 12.15, also shown to the left in Fig. 12.20, we
get the configuration of in- and out-edge processes and of activity processes
as shown to the right in Fig. 12.20.

Abstract Project Plan In-edge, Activity and Out-edge Process Diagram

Fig. 12.20. An instantiated process diagram

For each activity process there are two channels: one from its in-edge process
and another to its out-edge process. For each distinct (node-to-node) edge in
the project plan (graph) there is a distinct channel from an out-edge process
to an in-edge process.

Tables CM, modelled as a maps, record some unique allocation of channels
by indexes into collections of channels. No two recordings of channel indexes
are the same, i.e., all (channels) are distinct. Tables CM record resource ori
gins: "such-and-such" nodes deliver "such-and-such" resources. Functions 0
model activity input/output functions: Activities take resources and deliver
resources (having machined them, or assembled and/or disassembled them,
having augmented them, or otherwise). From the rm:RM's the activity is able
to see the identity of the source activities which provide it with input. Simi
larly, the result resources are marked (or labelled) as to where they should be
sent.

type
Ca, Ce, R
CM' :: xim:(An ^ Ce) /* in-edge in channel index */

im:(An ^ ((CaxCa) x (An ^ Ce)))
xom:(An ^ Ce) /* out-edge out channel index */

CM = {| cm:CM' • wf_CM(cm) |}
RM = An ^ R
O = RM ->• RM

value

12.5 CEN Example: Work Flow System 351

obs_K: R -> K

To edges correspond a set of edge channels and their indexes, Ce; to nodes
correspond a set of node (input and output) channels and their indexes. Edge
channels carry (i.e., communicate) value pairs (i.e., values): the identity a:An
of the source node of its other component, the resource value r:R of kind (type
and quantity) k:K. Node input and output channels carry aggregations (here
modelled as maps) of such pairings, rm:RM.

Looked at in isolation, channel index maps, cm:CM, must satisfy the in
dex uniqueness criterion and otherwise be well-structured as (i.e., wrt.) an
inpu t /ou tpu t graph — since it must fit, "hand-in-glove", with a project plan
inpu t /ou tpu t graph.

value
wf_CM: CM' -> B o o l
wf_CM(xim,im,xom) =

w f _ I O G r a p h (d o m xim,
[a I—>• nas | a:An,nas:An-set • a £ d o m im A

let (,nxt) = im(a) in nas = d o m nxt e n d] ,
d o m xom) A

let cs = |J { {c,c',cr,cd,co} U rng nxt
| a:An,c,c':Ca,nxt:(A ^ C) •

a £ d o m im A ((c,c'),nxt) = im(a) } in
card cs = 2 * card d o m im + noe(xim,im,xom) e n d

noe: CM' -> N a t
noe(xim,im,xom) =

card (d o m xim U d o m xom)
+ { card as

| a:An • a £ d o m im A
let (,acm) = im(a) in as = d o m acm e n d }

/ * + is a distributive sum operator */

The number of distinct channel indexes is calculable as follows: There will be
two channels per node and one per edge. Among the edges we also have the
external input and output edges.

So we collect in cs a set of all the nonexternal channels and compare its
cardinality to the what it should be based on the number of nodes and edges.
If the values are equal, then all channel indexes are distinct.

Please refer to Fig. 12.21. Given a node label (a:An) and given an appro
priate cm:CM one can identify, Cxi, the in-edge process input channel index
for a, with a designating an input node; Cie, the internal out-edge process to
internal in-edge process channel for for a, with a designating an internal node
with successor node a'; and Cxo, the out-edge process output channel index
for a, with a designating an output node. Cai and Cao yields activity a input,
respectively output , channels.

352 12 Petri Nets

out foe in foe
xin foe

XI = A->Ce

r-~4

is VS7A

act

f ^ l X -
xout foe

IM=A -> ((Ca*Ca)*(A->Ce))

CM = XIM * IM * XOM

Fig. 12.21. A channel allocation

XO=A -> Ce

channel ke[i:Ce] (An x K), ka[i:Ca] RM

value
/* external input flow of control in-edge channel */
Cxi: An ->• CM ->• Ce, Cxi(a)(xim„) = xim(a)

/* flow of control infix-edge channel */
Cie: AnxAn ->• CM ->• Ce
Cie(a,a)(,im,) = let (,imm) = im(a) in let ce = iim(a) in ce end end

/* activity in channel */
Cai: An —• CM —• Ca, Cai(a)(,im,) = let ((ci„),) = im(a) in ci end

/* activity out channel */
Cao: An —• CM —• Ca, Cao(a)(,im,) = let ((,co,),) = im(a) in co end

/* external output flow of control out channel */
Cxo: An ->• CM ->• Ce, Cxo(a)(,,xom) = xom(a)

Note : The specification of in and out channels in the xin_foc, in_foc, act,
out_foc and xout_foc signatures is not proper RSL [130]. Instead we use an
ad hoc "shorthand" as follows:

• In the function (i.e., process) signature we not only give the type of func
tion (i.e., process) parameters, but also the generic name of the parameter,
viz.: a:An, sas:An-set, etc.

• Then we use this parameter name to calculate the specific index of the in
and out channels defined elsewhere in the signature.

The above "improvisation" can be properly expressed in RSL by suitable use
of parameterised schemes and object arrays.

12.5 CEN Example: Work Flow System 353

Any input edge flow of control process of an activity a maintains a vari
able, initialised to "empty", in which is collected the output from predecessor
activities, designated by the set of names of these (pas), i.e., from predeces
sor output edge flow of control processes. Once all predecessor activity results
have been collected the accumulated result is provided as input to the activity.

Technically this is modelled in terms of parallel comprehension.

in_foc: p a s : A n - s e t x a : A n x C M
—>• in {ke[Cie(a ' ,a)(cm)]|a ' :as} o u t ka[Cai(a)(cm)] U n i t

in_foc(pas,a) =
(va r i ab l e rm:RM := [];
|| {let r=ke[Cie(a ' ,a)(cm)]? in

r m : = r m U [a'l-^r] end|a ' :An«a' £ pas};
ka[Cai(a)(cm)]!rm)

Any output edge flow of control process parallel distributes to all its successor
activities, designated by the set of names of these (sas), the result of ('its')
activity a operation.

out_foc: a : A n x s a s : A n - s e t x C M
—> in ka[Cao(a)(cm)] o u t |ke[Cie(a,a ')(cm)]|a':sas} U n i t

out_foc(a,sas) =
le t rm = ka[Cao(a)(cm)]? in
|| {let r= rm(a ') in

ke[Cie(a' ,a)(cm)]!r end|a ' :An«a ' € sas} e n d

Any activity process collects input from its in-edge process, applies the activity
operation, o :0 , to the input, and outputs the operation result to its out-edge
process.

act: o : O x a : A n x C M —>• in ka[Cai(a)(cm)] o u t ka[Cao(a)(cm)] U n i t
act(o,a,as) = ka[Cao(a)(cm)]!o(ka[Cai(a)(cm)]?)

External input and output edge processes are special:

v a l u e
xin_foc: An ->• CM ->• U n i t
xin_foc(a)(cm) = c[Cai(a)(cm)]!c[Cxi(a)]?

xout_foc: An ->• CM ->• U n i t
xout_foc(a)(cm) = c[Cxi(a)(cm)]!c[Cao(a)(cm)]?

12 .5 .3 P r o j e c t G e n e r a t i o n

Plans are to be carried out. The denotation of a plan, which is a syntactic
entity, is a possibly infinite set of projects, i.e., a possibly infinite set of traces.

354 12 Petri Nets

Traces are semantic entities. In this section we shall see how we "convert" from
a plan to its denotation.

The denotation is embodied in the behaviour of a set of processes, i.e., of
their communication along edge and node channels. So we need "convert" a
project plan, pp:PP to an RSL expression. We shall first s tate the pp:PP to RSL
"conversion", in Section 12.5.3. Then, in Section 12.5.3, an abstract algorithm
for assigning channel indexes to node and edge processes.

P r o c e s s G e n e r a t i o n

Project processes are multidimensional graphs.
Given a project plan, pp:PP, we can express a comprehension of the project

(process) of all the processes. Tha t is, a project plan, pp:PP, can be considered
a program, i.e., "a piece of syntax", in the form of a da ta structure. Given
the informal and formal expression of the semantics of each node and its
inpu t /ou tpu t edges, a translation is required from the da ta structure, pp:PP,
into RSL text. We do not express the translation in the form of a compiling
algorithm from pp:PP into abstract RSL text, but in the form of the concrete
text. You may thus consider project as being an interpreter: It takes the project
plan da ta structure (i.e., syntax) and expresses the interpretation in the form
of a comprehended RSL process expression.

gCM(xi,g,xo) generates a pair of channels for each node in g, and one chan
nel for each internal (infix) and each external (in or out) edge and structures
these into a cm:CM.

value
cm:CM = gCM(pp),

project: P P —> U n i t
project(xi,g,xo) =

|| {xin_foc(a)(cm)
| a:An • a £ d o m xi}

II (| |{in_foc(pas,a)(cm)
| a:An«a £ d o m g A

pas={a' |a ' :A«a' £ d o m g A
let (,m)=g(a) in a £ d o m m end}})

|| (| |{act(o,a)(cm)
| a:An«aisin d o m g A

let (o' ,)=g(a) in o = o ' end})
II (| |{out_foc(a,sas)(cm)

| a:An«a £ d o m g A
let (,m)=g(a) in s a s = d o m m end})

|| (| |{xout_foc(a)(cm)
| a:An«a £ d o m xo})

12.5 CEN Example: Work Flow System 355

The above generates, based on a project plan, a set of in and out flow of
control edge and activity processes, and starts these.

C h a n n e l A l l o c a t i o n

The channel index generator function is now defined.
Let us first recall the syntax of project plans pp:PP and the structure of

the cm:CM channel allocations:

t y p e
A, K
PP' :: (An ^ K)

x (An ^ Ad x (An ^ K))
x (An Tjt K)

P P = {| p p : p p ' . wf_PP(pp) |}
Ce, Ca
CM' :: xim:(An ^ Ce) / * in-edge in channel index */

im:(An ^ ((CaxCa) x (A n ^ C e)))
xom:(An ^ Ce) / * out-edge out channel index */

CM = {| cm:CM' • wf_CM(cm) |}

Ce and Ca are index sets. Each index indexes a channel in an appropriate
object array of channels.

objec t
channe l ke[i :Ce] : (AnxR), ka[i :Ca]:RM

From a pp:PP a " l ink_load_and_go-t ime" channel index generator process
gen generates an appropriate cm:CM. gCM "traverses" the pp:PP da ta struc
ture. For each distinct node and each distinct edge gCM invokes appropriate
gCs, five times, respectively once, by accepting input from them via "compile-
time" channels eke, cka.

objec t
channe l cke:Ce, cka:Ca, chs:{s top}

value
gen: PP ->• CM U n i t , gen() = gCM(pp) || gCa() || gCe()

gem: P P —>• in eke,cka out chs CM U n i t
gCM(i,g,o) =

let cm =
([a i->- eke? | a:An • a € d o m i] ,
[a i->- ((cka?,cka?),

(let (,m) = g(a) in
[a I—> eke? | a :An • a £ d o m m] e n d)

356 12 Petri Nets

| a: An • a € d o m g)],
[a i->- eke? | a:An • a £ d o m o]) in

(chs!stop| |chs!stop);
cm e n d

The generation of channel indexes is left to two gCz/ processes, one for 1/ = a,
and one for v = e. As long as the gCM process requests generation of indexes
it does so. As soon as the gCM process signals tha t all necessary indexes have
been generated they stop. We show just the generic such process. The reader
is asked to edit the below process into five similar processes each with their
syntactic value (e or a) for v.

gGv: U n i t —> out ck^ in ckz/ U n i t

gCM) =
variable cs^:Cz/-set := {}; loop:Bool := true;
(while loop do

let cz/:C^«c^ ^ cav in
cs^:=cs^ U{cz/};
ckz/!cz/ e n d

end)

D
(chs?; loop := false)

12.6 C P N and RSL Examples: Superscalar Processor

In this section we present two models of the MIPS R10000 superscalar pro
cessor [549]. One model is specified as a CPN, while the other is specified in
RSL. The aim here is to compare the two styles of models rather than to give
a complete model. The CPN model is closely based on a model by Burns et
al. [67].

12.6 .1 D e s c r i p t i o n

The description of this section is common to Examples 12.11 and 12.12.
The R10000 is a 64-bit RISC microprocessor implementing the MIPS 4

instruction set. The processor fetches and decodes four instructions per cycle
and employs branch prediction. The processor has five fully pipelined exe
cution units: one load/s tore unit, two 64-bit integer ALUs, one 64-bit IEEE
754-1985 floating point adder and one 64-bit floating point multiplier. The
entire pipeline has seven stages. The R10000 has 33 64-bit logical integer
registers and 32 64-bit logical floating point registers.

Instructions are issued and executed out of order which may lead to da ta
hazards. Data hazards arise when two instructions reference the same register.

12.6 CPN and RSL Examples: Superscalar Processor 357

If these instructions are executed out of order, the meaning of the program
may be altered. To avoid data hazards the processor analyses dependencies
among instructions and stalls instructions when there is a read-after-write
(RAW), write-after-read (WAR) or write-after-write (WAW) dependency.

When a conditional jump instruction is encountered, the processor at
tempts to predict the direction of the jump before the condition is evaluated.
The prediction algorithm simply assumes the branch will go in the same di
rection as it did the last time it was evaluated. If it has not been evaluated
before, it is assumed that no branch occurs.

Subsequent instructions are fetched from the predicted direction and ex
ecuted speculatively. When the value of the condition is later evaluated, it
is checked whether the branch prediction was correct. If the prediction was
incorrect, instructions following the jump are cleared from the pipeline and
new instructions are fetched from the other direction of the jump. Data eval
uated by instructions following a predicted branch is only written back to
registers when the prediction has been confirmed. The R10000 may execute
speculatively with up to four unconfirmed branches at a time.

The MIPS instruction set uses three operand instructions, i.e., all arith
metic instructions take three arguments: two source registers and one des
tination register. The integer ALUs have a dual-stage pipeline, so they can
operate on two instructions at a time. The floating point units have a four-
stage pipeline. The address unit has a three-stage pipeline.

12.6.2 Coloured Petri Net Model

Example 12.11 Super Scalar Processor; Petri Net: The example is large, six
pages, so we leave it unshaded. We end it with a shaded paragraph. •

Figure 12.22 shows the CPN model of the R10000 microprocessor. The accom
panying colour set declarations and function definitions are given below. We
consider a model with five types of instructions: INT for integer operations to
be handled by one of the two ALUs, FPADD for floating point addition, FP-
MULT for floating point multiplication, LS for load/store operations handled
by the load/store unit and BRA for conditional jump.

The model only represents the control part of the processor. Thus we
cannot from the model infer the value of a given register at a particular place
in the execution. Since the behaviour of jumps depends on values evaluated in
the registers, we need some way to decide which instruction should be executed
after a conditional jump. We choose to let this be a nondeterministic choice
with an equal probablility of branching and continuing.

The model is divided into six phases: instruction fetch, decoding, issue,
execution, writeback and retire.

In the fetch phase, instructions are loaded from memory (represented by
the place In) one at a time. With each instruction loaded the program counter

12 Petri Nets

f 1 "token

[#no

Fetch

fetch=pc]

< PC

pc+1 /*

resetpc(wb,value,bp,pc1)

1'flcw=1. highly

Fig. 12.22. Simplified CPN model of the superscalar microprocessor MIPS R10000

(PCI) is incremented by one. Instructions are buffered in the instruction
queue (Instr. Queue) which may hold up to four instructions (this limit is
enforced using the place Queue Limit).

In the decode phase, the instructions are labelled with a branch gener
ation number. The branch generation number is incremented each time a
conditional jump instruction is decoded and is used to ensure that instruc
tions which depend on unconfirmed branch predictions are not written back

12.6 CPN and RSL Examples: Superscalar Processor 359

to registers before the predictions have been confirmed. The program counter
PC2 is used to ensure instructions are decoded in order. The place BP holds a
branch prediction table, which records the direction of each of the previously
evaluated branches. If a branch instruction is decoded, the program counters
are updated to the address the branch is predicted to go to.

In the issue phase, instructions are issued to one of the five execution
units. Instructions are only issued if they have no conflicting register depen
dencies with any of the currently executing instructions and if the required
execution unit is available. Instructions may be issued out of order when some
instructions are stalled.

In the execution phase, instructions are evaluated simultaneously in the
five execution units and the results are stored temporarily.

In the writeback phase, the place BW records the window for confirmed
branch predictions. The lower bound is used to discard instructions that have
been evaluated under an erroneous prediction, while the upper bound is used
to stall instructions that depend on unconfirmed predictions. When jump
instructions pass the writeback phase, the branch prediction table is updated
to reflect the actual direction taken by the jump. If the branch prediction
is confirmed, the upper bound of the branch window is incremented. If the
prediction is found to be erroneous, the lower and upper bound of the branch
window are increased to the current branch generation plus one. This ensures
that instructions depending on the erroneous prediction will be discarded once
they reach the writeback phase. Also, the program counters are changed to
the actual target address of the jump. The place Eval is used to simulate the
evaluation of conditions by randomly producing either the value true or false.

color
Line
P C
Branchgen
Branchwindow
Value
InstType
Inst

IReg
FReg
Reg
RegLine
BraPredElem

= int;
= int;
= int;
= record low : int * high : int
= bool;
= with INT | ADD | MULT | L!
= record

no : Line *
instr : InstType *
soul : Reg *
sou2 : Reg *
tar : RegLine *
branchgen : Branchgen;

= index ireg with 1..33;
= index freg with 1..32;
= union ir : IReg +fr : FReg;
= union reg : Reg +line : Line
= record

no : Line *
jmp : Line;

BRA;

360 12 Petri Nets

BraPred = list BraPredElem;
FUnit = w i t h ALU1 | ALU2 | FPADD | FPMULT | ADR;
Limit = w i t h token;

The colour set definitions are fairly straighforward. Line numbers (i.e., ad
dresses), program counters and branch generations are all integers. The branch
window is a record with an upper and a lower bound. The instruction type
is one of the five options. An instruction is characterised by a line number,
an instruction type, two source and one target register and a branch gene
ration. For load/store and branch instructions, the two source registers are
not used. The branch generation is not initially specified, but is added in the
decode phase. There are 33 integer registers and 32 floating point registers,
each identified by an indexed identifier (e.g., ireg(10) or freq(32)). A register
may be either an integer register or a floating point register. For load/s tore
and branch instructions, the target field contains an address rather than a
register, hence the colour set RegLine. The branch prediction table is a list of
records with the line number of the branch instruction and the line number
of the instruction most recently jumped to.

(* lookup : Line * BraPred —V Line *)
lookup(no, bp) =

if bp=[] then 0 else
if #no (lid bp) =no then # jmp (hd bp) else lookup(no, tl bp)

(* modbp : Inst * Line * BraPred —V BraPred *)
modbp(inst, a, bp) = if #instr inst=BRA then

if bp=[] then [{no=#no inst, jmp=a}] else
if #no (hd bp)=#no inst
then {no=#no inst, jmp=a} :: (tl bp)
else (h d b p) :: modbp(inst, a, tl bp)

else bp

(* evaljmp : Inst * bool —V Line *)
evaljmp(inst, t r) = if tr then #line (#tar inst) else (#no inst)+l

(* updpcl : Inst * BraPred * PC —> PC *)
updpcl(inst, bp, pel) = if #instr inst=BRA then

let val a =lookup(#no inst, bp) in
if a<>0 then a else pcl + 1

end
else pel

(* updpc2 : Inst * BraPred * PC ^ PC *)
updpc2(inst, bp, pc2) = if #instr inst=BRA then

let val a =lookup(#no inst, bp) in
if a<>0 then a else pc2+l

end
else pc2+l

12.6 C P N and RSL Examples : Superscalar Processor 361

(* u p d b g : Inst * Branchgen —> Branchgen *)

updbg(ins t , bg) = if # i n s t r i n s t = B R A t h e n b g + 1 e l s e bg

(* u p d b p : Inst * BraPred * Line —> B raPred *)
updbp(ins t , bp , pc) = if l o o k u p (# n o inst, bp) = 0

t h e n modbp(ins t , p c + 1 , bp)
e l s e bp

(* add t ag : Inst * BraStack —> Inst *)
add tag (ins t , bg) = { n o = # n o inst,

i n s t r = # i n s t r inst,

s o u l = # s o u l inst,
s o u 2 = # s o u 2 inst,
t a r = # t a r inst,

b r anchgen=bg }

(* isg : I n s tType * FUni t —> bool *)
isg (ins t t , fu) = c a s e inst t of

B R A =S> f u = A L U l o r e l s e fu=ALU2
| LS => f u = A D R
| MULT =S> f u = F P M U L T
| A D D => f u = F P A D D
J I N T =S> f u = A L U l o r e l s e fu=ALU2

(* regdeps : Inst —• Reg *)
regdeps(ins t) =

c a s e ^ i n s t r inst of
B R A =>• empty

| LS =>• # r e g (# t a r inst)

| MULT => l ' (# s o u l inst) + l ' (# s o u 2 inst) + l ' (# r e g (# t a r inst))
| A D D => l ' (# s o u l inst) + l ' (# s o u 2 inst) + l ' (# r e g (# t a r inst))
| INT => l ' (# s o u l inst) + l ' (# s o u 2 inst) + l ' (# r e g (# t a r inst))

(* isfu : Inst * FUni t * FUni t —> Inst *)
isfu (inst , fu, fud) = if fu=fud t h e n inst e l s e empty

(* wbg : Inst * Branchgen —• bool *)
wbg(ins t , bw) = (# i n s t r i n s t = B R A a n d a l s o ^ b r a n c h g e n i n s t < (# h i g h b w) + l)

o r e l s e # b r a n c h g e n i n s t < # h i g h bw

(* eval : uni t —> bool *)
eval () = Random. rnd () <0 .5

(* resetpc : Inst * Value * BraPred * P C —> P C *)
rese tpc (ins t , value, bp , pc) =

if # i n s t r i n s t = B R A t h e n
l e t j t =eva l jmp(ins t , va lue) i n

if j t = l o o k u p (# n o inst, bp) t h e n pc e l s e j t
e n d

362 12 Petri Nets

else
pc

(* corbp : Inst * Value * BraPred —> BraPred *)
corbp(inst, value, bp) = if value then modbp(inst, #line (# tar inst), bp)

else modbp(inst, (#no inst)+l)

(* updret : Inst * Branchwindow —> Inst *)
updret(inst, bw) =i f ^branchgen inst<#low bw then empty else inst

(* bpOK : Inst * Value * BraPred —• bool *)
bpOK(inst, value, bp) = i f value then #line (# tar inst)=lookup(#no inst, bp)

else (#no inst) + l=lookup(#no inst, bp)

(* updbw : Inst * Branchwindow * Branchgen * Value * BraPred
—> Branchwindow *)

updbw(inst, bw, bg, value, bp) =
if #instr inst=BRA then

if bpOK(inst, value, bp) then
{ low=#low bw, high=#branchgen inst }

else
{ low=bg+l, high=bg+l }

else bw

(* resetbg : Inst * Value * BraPred * Branchgen —> Branchgen *)
resetbg(inst , value, bp, bg) =

if #instr inst=BRA then
if bpOK(inst, value, bp) then

bg
else

bg+1
else bg

This paragraph marks the end of Example 12.11.

12 .6 .3 RSL M o d e l : Supersca lar P r o c e s s o r

E x a m p l e 12 .12 An RSL Model of the Superscalar Processor: We now present
an RSL model corresponding to the CPN model. Again the example is large,
eight pages, so we leave it unshaded. We end it with a shaded paragraph. •

First, types corresponding to the colour sets of the CPN model are defined.
The translation from CPN ML to RSL is straightforward. The map type in
RSL is used to simplify the type for the branch prediction table. The last four
types in the RSL model are needed for communication along channels or to
return composite values from functions.

s c h e m e SuperscalarProcessorTypes =

12.6 CPN and RSL Examples: Superscalar Processor 363

class
type

Line = Int,
PC = Int,
Branchgen = Int,
Branchwindow :: low : Int high : Int,
InstType = = INT | ADD | MULT | LS | BRA,
Inst = =

mk_Inst(
no : Line,
instr : InstType,
soul : Reg,
sou2 : Reg,
tar : RegLine,
branchgen : Branchgen <-> recon_bg),

Reg' = = IReg(Nat) | FReg(Nat),
Reg =

{| r : Reg' •
case r of

IReg(n) ->• n e {1 .. 33},
FReg(n) ->• n £ {1 .. 32}

end |} ,
RegLine = Reg | Line,
BraPred = Line ^ Line,
FUnit = = ALU1 | ALU2 | FPADD | FPMULT | ADR,
Limit = Nat ,
BGCom = = RequestBG | UpdateBG(Branchgen),
BPCom = = RequestBP | UpdateBP(BraPred),
InstReadyls = = Some(Nat, Reg-set, FUnit) | None,
InstReadyWb = = Some(Nat) | None

end

Annotations

• Program line numbers, program counters and branch generations are in
tegers.

• A branch window has a lower and upper bound, both integers.
• There are five types of instructions: integer instructions, floating point

addition, floating point multiplication, load/store and conditional branch.
• An instruction is characterised by a line number, an instruction type, two

source registers and one destination register, and a branch generation.
• A register is one of 33 integer registers or 32 floating point registers.
• The branch prediction table maps branch instruction line numbers to the

line they most recently caused a jump to.
• There are five functional units: two ALUs, one floating point adder, one

floating point multiplier and one address unit.

364 12 Petri Nets

• Limit is used to limit the number of instructions in the instruction queue
to four.

• BGCom describes the syntax for requesting and updat ing the current
branch generation in the decode phase.

• BPCom describes the similar syntax for requesting and updat ing the
branch prediction table.

• InstReadyls and InstReady Wb are returned by functions indicating whether
instructions are ready in the issue and writeback phases, respectively. •

In moving from the CPN model to the RSL model we use the following princi
ple: transitions become processes and places become parameters for processes.
The principle is motivated by the observation tha t places are really buffers
for values needed for computations, i.e., transitions. We aim to join places
and transitions to form processes in such a way tha t we achieve a minimum
of interprocess communication.

Figure 12.23 illustrates the processes and channels in the RSL model.
Processes are represented as boxes and channels as arrows. The arrow head
indicates the direction of communication. All channels are used for one-way
communication only.

qi

uq_alu1 uq_adr

ic_alu1

uq_alu2
;_alu2

uq_fpadd

_<
ic_fpmult

ic_fpadd

exec_fpadd exec_fpmult

ic_adr

uq_fpmult

wq_fpadd

wq_fpmult
wq_alu1

Fig. 12.23. RSL channels and processes

c o n t e x t : SuperscalarProcessorTypes

s c h e m e SuperscalarProcessor =
e x t e n d SuperscalarProcessorTypes w i t h
class

channe l
iq ,eq,uq_alul ,uq_alu2,uq_fpadd,uq_fpmult ,uq_adr ,wq,rq : Inst,

12.6 CPN and RSL Examples: Superscalar Processor 365

ql : U n i t ,
rs : Reg-set ,
p e l , pc2 : P C ,
ic : FUnit,
w b _ b p : BraPred,
b p _ w b : BPCom,
wb_bg : Branchgen,
bg_wb : BGCom

value
1 system : (Line ^ Inst) —> in any out any U n i t

system(prg) =
fetch(prg, 4, 1)

II
decode«>, [], 1, 1)

II
issue (

() -fr I r ; Hesc!
[ALU1^2,ALU2h^2,FPADDh^4,FPMULTh^4,ADRh^3])

II
execute ()

II
writeback((), mk_Branchwindow(l , 1))

II
retire(())

2 fetch : (Line ^ Inst) x Limit x P C —>• in ql, pe l out iq U n i t
fetch(prg, 1, pe l) =

if p e l ^ d o m prg t h e n chaos
e lse

(if 1 > 0 t h e n iqlprg(pcl) ; fetch(prg, 1 — 1, pe l + 1) end)

D
(ql? ; fetch(prg, 1 + 1, pe l))

D
(let p e l ' = pe l ? in fetch(prg, 1, pel ') end)

e n d

3 decode :
Inst* x BraPred x P C x Branchgen —>

in iq, b p _ w b , bg_wb out ql, p e l , eq, wb_bp , wb_bg U n i t
decode(il, bp, pc2, bg) =

if no(hd il) ^ pc2 t h e n decode(tl il, bp, pc2, bg)
else

(let i = iq? in decode(il ~ (i), bp, pc2, bg) end)

366 12 Petri Nets

(case bp_wb? of
RequestBP —>• wb_bp!bp ; decode(il, bp, pc2, bg),
UpdateBP(bp') ->• decode(il, bp', pc2, bg)

end)

D
(case bg_wb? of

RequestBG —• wb_bg!bg ; decode(il, bp, pc2, bg),
UpdateBG(bg') ->• decode(il, bp, pc2, bg')

end)
D
(let i = hd il in

ifinstr(i) = BRA
then

eq!recon_bg(bg + 1, i) ;
ql!() ;
if pc2 £ d o m bp
then pcl!bp(pc2);decode(tl il,bp,bp(pc2),bg+l)
else decode(tl il,bpt[pc2i->-pc2+l],pc2+l,bg+l)
end

else eq!recon_bg(bg,i);ql!();decode(tl il,bp,pc2+l,bg)
end

end)
end

4 issue : Inst* xReg-set x(FUnit ^ N a t) ->• in eq,rs,ic
out uq_alul,uq_alu2,uq_fpadd,uq_fpmult,uq_adr Unit

issue(il, regs, units) =
(let i = eq? in issue(il ^ (i), regs, units) end)
D
(let r = rs? in issue(il, regs U r, units) end)
D
(let u = ic? in issue(il, regs, units f [UH> units(u) + 1]) end)
D
(case findready_is(l, il, regs, units) of

None —>• issue(il, regs, units),
Some(n, re, fu) —>•

(case fu of
ALU1 ->• uq_alul!il(n),
ALU2 -> uq_alu2!il(n),
FPADD -> uq_fpadd!il(n),
FPMULT -> uq_fpmult!il(n),
ADR ->• uq_adr!il(n)

end) ;
issue(remove(n,il),regs\ re,unitsf [fuH->-units (fu) — 1])

end)

12.6 CPN and RSL Examples: Superscalar Processor 367

5 execute : U n i t —> in any out any U n i t
executeQ =

exec_alul(())

II
exec_alu2(())

II
exec_fpadd(())

II
exec_fpmult(())

II
exec_adr(())

6 exec_alul : Inst* —>• in u q _ a l u l out wq, ic U n i t
exec_alul(i l) =

(let i = u q _ a l u l ? in exec_alul(i l ^ (i)) end)

D
(wq!hd il ; icIALUl ; exec_a lu l (t l il))

7 writeback :
Inst* x Branchwindow —>•

in wq ,wb_bp ,wb_bg out bp_wb,bg_wb, rq ,pc l ,pc2 U n i t
writeback (il, bw) =

(let i = wq? in writeback(il ^ (i), bw) end)

D
(case findready_wb(l, il, bw) of

None —>• writeback(il, bw),
Some(n) —>•

let i = il(n), valu = random() in
if branchgen(i) < low(bw)
t h e n writeback(remove(n, il), bw)
else

if instr(i) = BRA
t h e n / * Branch instruction */

bp_wb!RequestBP ;
let bp = wb_bp? , target = evaljmp(i, valu) in

if target = bp(no(i))
t h e n / * Branch prediction correct */

rq!i ;
writeback(

remove(n, il),
mk_Branchwindow (

low(bw),
if high(bw) > branchgen(i)

t h e n high(bw)

368 12 Petri Nets

else branchgen(i)
end))

else /* Branch prediction incorrect */
rq!i ;
pclltarget ;
pc2!target ;
bp_wb!UpdateBP(bpf[no(i)i->'target]);
let bg = wb_bg? in

bg_wb!UpdateBG(bg + 1) ;
writeback(remove(n,il),

mk_Branchwindow(bg+1 ,bg+1))
end

end
end

else /* Nonbranch instruction */
rq!i ; writeback (remove (n, il), bw)

end
end

end
end),

8 retire : Inst* —>• in rq Unit
retire(il) = retire(il ~ (rq?))

9 findready_is :
Int x Inst* x Reg-set x (FUnit jft Nat) —> InstReadyls

findready_is(j, il, rs, fu) =
if il = () then None
else

let i = hd il in
case instr(i) of

INT ->•
avail (j,il,

{soul (i) ,sou2(i) ,RegLine_to_Reg(tar(i))},
(ALU1, ALU2),rs,fu),

ADD ->•
avail (j,il,

{soul (i) ,sou2(i) ,RegLine_to_Reg(tar(i))},
(FPADD),rs,fu),

MULT ->
avail (j,il,

{soul (i) ,sou2(i) ,RegLine_to_Reg(tar(i))},
(FPMULT),rs,fu),

LS ->
avail (j,il,{RegLine_to_Reg(tar(i))},(ADR) ,rs,fu),

12.6 CPN and RSL Examples: Superscalar Processor 369

BRA ->•
avail(j, il, {}, (ALU1, ALU2), rs, fu)

e n d
e n d

e n d

10 avail : Int xInst* x Reg-set xFUni t*x Reg-set x (FUnit ^ N a t) —>•
InstReadyls

avail (j, il, regreq, fureq, rs, fu) =
if fureq = ()
t h e n

findready_is(j + 1, t l il, rs, fu)
else

if regreq C rs A fu(hd fureq) > 0
t h e n Some(j, regreq, hd fureq)
else avail (j, il, regreq, t l fureq, rs, fu)
e n d

e n d

11 findready_wb : Int x Inst* x Branchwindow —>• Ins tReadyWb
findready_wb(j, il, bw) =

if il = () t h e n None
else

if branchgen(hd il)<high(bw) V
(instr(hd il)= BRAAbranchgen(hd i l)<h igh(bw)+l)

t h e n Some(j) e lse findready_wb(j + 1, il, bw)
e n d

e n d

12 evaljmp : Inst x B o o l —> Line
evaljmp(i, t) =

if t t h e n RegLine_to_Line(tar(i)) e lse no(i) + 1 e n d

13 remove : N a t x Inst* —>• Inst*
remove(n, il) =

if il = () t h e n () e lse
i f n = 1

t h e n t l il e lse (hd il) ^ remove(n — 1, t l il) e n d
e n d

14 random : U n i t —>• B o o l
e n d

Annotations

370 12 Petri Nets

(1) The effect of running the system with a program prg is the parallel
composition of the six phases.
(2) The parameters of the fetch process are the program, the number of
free places in the instruction queue and the program counter. The process
will either send the next instruction to the instruction queue, provided it
has a free place, or receive notification that a place has been freed in the
instruction queue, or receive a request to change the program counter.
(3) The parameters of the decode process are the list of instructions in
the instruction queue, the branch prediction table, the second program
counter and the branch generation counter, decode will either receive an
instruction from fetch, or receive a request to send or update the branch
prediction table, or receive a request to send or update the branch gen
eration, or decode an instruction. If a branch instruction is decoded, the
branch generation is incremented and the program counters set to the pre
dicted direction of the jump, otherwise the instruction is labeled with the
current branch generation and the program counter is incremented.
(4) The parameters of issue are the instructions in the execute queue, the
set of unblocked registers and the free functional units. The issue process
will either receive an instruction from decode, or receive notification of
a register being freed, or receive notification of a functional unit being
freed, or find an instruction that is ready to be issued and send it to the
appropriate functional unit.
(5) The execute process is simply the parallel composition of the five func
tional units. The exec_alul process will either receive an instruction from
issue, or execute an instruction, pass it to writeback and signal that the
unit is free.
(6) The processes for the remaining functional units are entirely analogous
and are omitted.
(7) The parameters for writeback are the instructions in the writeback
queue and the branch window, writeback will either input an instruction
from the execute phase, or find an instruction whose result is ready to be
written back. Instructions labeled with branch generations below the lower
bound of the branch window are discarded. For branch instructions, the
actual target is evaluated. If the branch prediction was correct, the branch
window is updated and the instruction passed to retire. If the branch
prediction was incorrect, the program counters are set to the correct target,
the branch prediction table, the branch generation and the branch window
are updated.
(8) The retire process records all instructions that have been fully exe
cuted.
(9) findready_is finds an instruction that may be issued, or signals that
no such instruction is available. An instruction can be issued when there
are no data hazards or structural hazards. A data hazard arises when two
instructions require the same register. A structural hazard arises when two
instructions require the same functional unit.

12.7 Discussion 371

• (10) avail checks whether a given instruction may be issued.
• (11) ftndready_wb finds an instruction whose result is ready to be written

back, or signals that no such instruction exists.
• (12) evaljmp evaluates the actual target of a branch instruction.
• (13) remove removes the nth instruction in the instruction list.
• (14) random produces a random value simulating the nondeterminism of

branching.

This paragraph marks the end of Example 12.12.

12.7 Discussion

The two models of the superscalar processor presented above describe the
same behaviour using two very different notations.

Of the two models, it seems to be easiest to get an initial understanding of
the CPN model. This is because the graphical notation supports a layering of
understanding. One layer is the structure of the diagram viewed as a directed
graph combined with the labels of places and transitions. At this layer an
initial intuitive understanding of the parts of the system and the main data
flow is built. The next layer adds the colour set of places to get an idea of
the possible values at that place. The last layer of understanding adds arc
inscriptions to get the full picture. This is essentially a top-down progression
of understanding.

It is more difficult to get an initial understanding of the RSL model. This
is because all the aspects of the model are mixed in the equations. This means
that the layered way of understanding is not feasible. Instead, the way to un
derstand the specification is to study each function in isolation and then build
up the full picture by composition. This is essentially a bottom-up progression
of understanding.

Even though the two models are in essence the same, there are some sub
tle differences, since the Petri net semantics is a true concurrency semantics,
where two events (i.e., occurrences) may take place simultaneously. The RSL
semantics, on the other hand, is an interleaved semantics, where two concur
rent events are interleaved, i.e. they may occur in arbitrary order, but not
simultaneously. This difference is mostly a theoretical problem.

Unlike most other graphical notations, coloured Petri nets have a well-
established formal semantics and there are several tools available for verifi
cation of Petri net models. Therefore, coloured Petri nets might not be an
obvious candidate for integration with a formal specification language, such
as RSL. However, one could imagine replacing CPN ML with a subset of RSL
as the language for inscriptions to give greater expressivity.

372 12 Petri Nets

12.8 Bibliographical Notes

The — by now — classical literature on Petri Nets is made up from the
following one report [400] and seven books [238,399,419-421] — [238] is a
three volume book on Coloured Petri Nets. The field ('Petri Nets') is very
much "alive and kicking" — as is witnessed by a vast, ever growing literature
and regular conferences. Cf. the following URLs [239]:

• www.daimi.au.dk/PetriNets/:
Welcome to the Petri Net World

• www.informatik.hu-berl in.de/top/pnml/about.html:
Petri Net XML Markup Language.

• p e t r i - n e t . s o u r c e f o r g e . n e t / :
Platform Independent Petri Net Editor (PIPE).

• p d v . c s . t u - b e r l i n . d e / ~ a z i / p e t r i . h t m l :
What Is a Petri Net?

• www.informatik.uni-hamburg.de/TGI/pnbib/:
The Petri Nets Bibliography

• www.informatik.uni-hamburg.de/TGI/pnbib/newsletter.html:
Petri Net Newsletter.

12.9 Exercises

Exercise 12.1 PTiV for a Reader/Writer System. Consider a system where
five processes access a common resource. Two of the processes write to the
common resource, and the three other processes read from the resource. Devise
a PTN model of this system, such that the following requirements are met:

• A reader can read if no writers are currently writing.
• A writer can write if no readers are currently reading and no writers are

currently writing.
• A process that cannot read or write must wait until it can do so.

Exercise 12.2 PTN for a Fair Reader/Writer System. A simple solution to
Exercise 12.1 has the problem that if readers continually arrive to read, a
writer may have to wait indefinitely. This situation is called starvation. Modify
the solution to Exercise 12.1 so that starvation can not occur, i.e. any process
which attempts to access the common resource will eventually be granted
access to the resource. Use the following strategy:

• If a reader arrives when there are writers waiting, the reader must wait
until one writer has written.

• If a writer arrives when there are readers waiting, the writer must wait
until all the readers have read.

12.9 Exercises 373

Exercise 12.3 CPN for a Fair Reader/Writer System: Solve Exercise 12.2
using a coloured Petri net instead.

Exercise 12.4 Petri Nets for Railway Nets: Study the following papers: [161,
276,277]. Suggest comparative, complementing Petri net models of railway
phenomena based on CENs, PTNs and CPNs.

13

Message and Live Sequence Charts

Christian Krog Madsen is chief author of this chapter [316,317].

• The prerequisite for studying this chapter is that you have an all-round
awareness of abstract specification (principles and techniques).

• The aims are to introduce the concepts of message sequence charts and
of live sequence charts, and to relate these sequence charts to RSL/CSP.

• The objective is to enable the reader to expand the kind of phenom
ena and concepts that can be formally modelled using message sequence
charts and live sequence charts — or, we suggest, live sequence charts in
conjunction with, for example, RSL.

• The treatment ranges from systematic to formal.

Live sequence charts (LSC) is a graphical language introduced by Damm
and Harel [89] for specifying interactions between components in a system.
It is an extension of the language of message sequence charts (MSC). MSCs
are frequently used in the specification of telecommunication systems and
are closely related to the sequence diagrams of UML [59,237,382,440]. Both
the graphical and textual syntax of MSCs are standardised by the ITU in
Recommendation Z.120 [227-229]. The standard gives an algebraic semantics
of MSCs. LSC extends MSC by promoting conditions to first-class elements
and providing notations for specifying mandatory and optional behaviour.

Reader's Guide

The description material on basic (and on high-level) MSCs in Sects. 13.1.2-
13.1.3 and on LSC in Sect. 13.2.1 is intended as quick tutorials as well as
for quick reference. Sect. 13.3, on the important computer science topic of
process algebra, and Sect. 13.4, on an algebraic semantics of LSCs, are both
rather involved and may seem a bit detached from the context. The reader
is encouraged to refer to the example in Sect. 13.2.2 for an understanding of
LSCs, and to its continuation in Sect. 13.4.3 to see how the algebraic semantics
of a chart is derived using the material of Sect. 13.3.

376 13 Message and Live Sequence Charts

13.1 Message Sequence Char ts

13.1 .1 T h e Issues

In this section we describe message sequence charts (MSCs). They are a
graphical notation for specifying sequences of messages exchanged between
behaviours.1 We describe the components of MSCs and then provide a for-
malisation of the syntax in RSL. We follow the syntax requirements defined
by Reniers [422,423]. Finally, we give a trace semantics of MSCs.

Message sequence charts were first standardised by the C C I T T (now ITU-
T) as Recommendation Z.120 in 1992 [227]. The s tandard was later revised
and extended in 1996 [228] and in 1999 [229]. The original s tandard specified
the components of an MSC. The 1996 s tandard also specified how several
MSCs (called basic MSCs) can be combined to form an MSC document, in
which the relation between the basic MSCs is defined by a high-level MSC
(HMSC). The most recent s tandard provides additional facilities for specifying
the da ta tha t is passed in messages and also allows in-line expressions.

13.1 .2 Bas ic M S C s (B M S C s)

Informal P r e s e n t a t i o n

A basic MSC (BMSC) consists of a collection of instances. An instance is an
abstract entity on which events can be specified. Events are message inputs,
message outputs , actions, conditions, timers, process control events and core-
gions. An instance is denoted by a hollow box with a vertical line extending
from the bot tom. The vertical line represents a time axis, where time runs
from top to bot tom. Each instance thus has its own time axis, and t ime may
progress differently on two axes. Events specified on an instance are totally
ordered in time. Events execute instantaneously and two events cannot take
place at the same time. Events on different instances are partially ordered,
since the only requirement is tha t message input by one instance must be
preceded by the corresponding message output in another instance.

Actions are events tha t are local to an instance. Actions are represented by
a box on the timeline with an action label inside. Actions are used to specify
some computation tha t changes the internal state of the instance.

A message output represents the sending of a message to another instance
or the environment.

A message input represents the reception of a message from another in
stance or the environment. For each message output to another instance there
must be a matching message input.

1An alternative way of phrasing sequences of messages exchanged between be
haviours is events shared between two behaviours where these events may involve
the communication of information.

13.1 Message Sequence Charts 377

A message exchange consists of a message output and a message input. A
message exchange is represented as an arrow from the timeline of the send
ing instance to the timeline of the receiving instance. In case of messages
exchanged with the environment, the side of the diagram can be considered
to be the timeline of the environment. Each arrow is labelled with a mes
sage identifier. Message exchange is asynchronous, i.e., message input is not
necessarily simultaneous with message output.

Example 13.1 Figure 13.1 shows an MSC with two instances, A and B.
Instance A sends the message mi to instance B followed by message mo sent
to the environment. B then performs some action, a, and sends the message
« 3 to .4. •

A

m7

m3

B

a

Fig. 13.1. Message and action events

Example 13.2 Figure 13.2 shows two situations that violate the partial order
induced by message exchange. Thus it is an invalid MSC. Because events are
totally ordered on an instance timeline, the reception of message mi precedes
the sending of mi. This conflicts with the requirement that message input be
preceded by message output.

The exchange of messages m-2 and m3 illustrates another situation that
violates the partial order, as shown by the following informal argument. Let
the partial order be denoted < and let the input and output of message tn
be denoted by in(m) and out(m), respectively. Using the total ordering on
events on an instance timeline we have:

111(1713) < out{m-2)

in(m.2) < ov-t(m-j)

Using the partial ordering on message events we have

out{m-2) < in(ni2)

Now, by transitivity of <, in(m-j) < out^m-s), thus violating the partial or
dering on message events. •

378 13 Message and Live Sequence Charts

A B

m,

m2

Fig. 13.2. Illegal message exchanges

Conditions describe a state that is common to a subset of instances in an
MSC. Conditions in MSCs have no semantic importance and merely serve
as documentation. (As we shall later see, they do have meaning in LSCs.)
Conditions are represented as hexagons extending across the timelines of the
instances for which the condition applies. The condition text is placed inside
the hexagon.

/

<z

>i E 3 C

>

< C3 >

Fig. 13.3. Conditions

Example 13.3 Figure 13.3 illustrates conditions. Condition c\ is local to in
stance B. Condition c-2 is a shared condition on instances A and B. Condition
C3 is a shared condition on instances A and C. Note that the timeline of B
is passed through the hexagon for condition C3 to indicate that B does not
share condition C3. •

There are three timer events: timer set, timer reset and timeout. Timers are
local to an instance. The setting of a timer is represented by an hourglass
symbol placed next to the instance timeline and labelled with a timer identi
fier. Timer reset is represented by a cross (x) linked by a horizontal line to
the timeline. Timer timeout is represented by an arrow from the hourglass
symbol to the timeline. Every timer reset and timeout event must be preceded

13.1 Message Sequence Charts 379

by the corresponding timer set event. There is no notion of quantitative time
in MSC, so timer events are purely symbolic. Extensions of MSC with time
have been studied in [38,280,296].

Example 13.4 Figure 13.4 shows the syntax for timer events. On instance
A, the timer T is set and subsequently timeout occurs. On instance B, the
timer T' is set and subsequently reset. •

Fig. 13.4. Timer events

An instance may create a new instance, which is called process creation. An
instance may also cause itself to terminate. This is called process termination.
Process creation is represented by a dashed arrow from the timeline of the
creating instance to a new instance symbol with associated timeline. Process
termination is represented by a cross as the last symbol on the timeline of the
instance that terminates.

A

w

B

m,
/

Fig. 13.5. Process creation and termination

Example 13.5 Figure 13.5 shows the creation of instance B by instance A
and the subsequent termination of B. •

Coregions are parts of the timeline of an instance where the usual requirement
of total ordering is lifted. Coregions are represented by replacing part of
the fully drawn timeline with a dashed line. Within a coregion only message

380 13 Message and Live Sequence Charts

exchange events may be specified and these events may happen in any order,
regardless of the sequence in which they are specified. Message exchanges
between two instances may be ordered in one instance and unordered in the
other instance.

Example 13.6 Figure 13.6 illustrates a coregion in instance B. Because of
the coregion, there is no ordering on the input of messages mi and m.2 in
instance B, so they may occur in any order. •

A

m,

B

m2

C

Fig. 13.6. Coregion

In order to increase the readability of complex MSCs, the standard speci
fies a form of hierarchical decomposition of complex diagrams into a collec
tion of simpler diagrams. This is known as instance decomposition. For each
decomposed instance there is a sub-MSC, which is itself an MSC. The sin
gle instance that is decomposed is represented by more than one instance in
the sub-MSC. The behaviour observable by the environment of the sub-MSC
should be equivalent to the observable behaviour of the decomposed instance.

Example 13.7 In Fig. 13.7 instance B is decomposed into two instances,
Bi and B2 in the sub-MSC. The message events in which B participates are
represented as message exchanges with the environment in the sub-MSC. The
message mint. exchanged between Bi and B-2 is internal to the decomposed
instance, and is thus not visible in the main MSC. •

An Example BMSC

Example 13.8 A Basic Message Sequence Chart: Figure 13.8 shows an ex
ample BMSC that displays most of the event types discussed above. The
chart contains three instances, ,4, B and C. Five events are specified on in
stance A: message output of a message labelled Msgl to instance B, a local
action Actl, a condition Condi shared with B, message output of Msg4 and
message input of Msg5. Seven events are specified on instance B: input of
message Msgl from .4, a process creation event creating instance C, two mes
sage exchanges with C, a condition shared with .4, and a coregion with two

13.1 Message Sequence Charts 381

A

— - ^ i - _

B
decom
posed

m2

submsc B

m,

B?

m int

m2

Fig. 13.7. Instance decomposition

message exchanges with A. Note that B may either receive Msg4 and then
send Msg5, or may send Msg5 and then receive Msg4- Instance C has six
events: its creation by B, the setting of a timer, two message exchanges with
B, timer timeout and subsequent process termination. •

1 1

/•

Msg1

Condi

1 1

Msg4 j

1 1

Msg5

>

1 1

Msg2

Msg3

C
.1
'1

>

\ /

< 1

<

Fig. 13.8. A basic message chart example

An RSL Model of BMSC Syntax

We first formalise basic message sequence charts. We defer the discussion of
well-formedness conditions to Section 13.1.6.

Definition. By a basic message sequence chart we shall understand a struc
ture as formalised in this section and in Sect. 13.1.8. •

382 13 Message and Live Sequence Charts

scheme BasicMessageSequenceChart =
class

type
BMSC' = BMSC_NamexInstanceSpec*xBody*,
InstanceSpec = Inst_NamexKind,
Kind = TypexKind_Name,
Type = = System|Block|Process|Service|None,
Body = Instance|Note,
Instance = = mk_Inst(instn:Inst_Name,kind:Kind,evtl:Event*),
Note = = mk_Note(t:Text),
Event =

ActionEvent | MessageEvent | ConditionEvent | TimerEvent |
ProcessEvent | CoregionEvent,

ActionEvent = = mk_Action(actname:Act_Name),
MessageEvent = =

mk_Input(inpid:MsgID,inpar:Par_Name*,inaddr: Address) |
mk_Output(outid:MsgID,outpar:Par_Name*,outaddr: Address),

ConditionEvent = = mk_Condition(conname:Con_Name,share:Share),
TimerEvent = =

mk_Set(setname:TimerId,dur:Duration)|
mk_Reset(resetname:TimerId) |
mk_Tinieout(toname:TimerId),

ProcessEvent = = mk_Create(name:Inst_Name,par:Par_Name*)|mk_Stop,
CoregionEvent = = mk_Concurrent(mess:MessageEvent*),
MsgID = =

mk_MsgN(mn:Msg_Name,parn:Par_Name*)|
nik_MsgID(mid:Msg_Name,min:MsgInst_Name,parid:Par_Name*),

Address = = mk_Env|nik_InstNanie(nanie:Inst_Name),
Share = = mk_None|mk_All|mk_Shared(instl:Inst_Name*),
Timerld = =

mk_Tn(nametn:Timer_Name) |
nik_Tid(nanietid:Timer_Name,tin:TimerInst_Name),

Duration = = mk_None|mk_Name(name:Dur_Name),
BMSC_Name,
Inst_Name,
Kind_Name,
Act_Name,
Par_Name,
Con_Name,
Timer_Name,
TimerInst_Name,
Dur_Name,
Msg_Name,
MsgInst_Name

end

Annotations

13.1 Message Sequence Charts 383

• A BMSC has a name, a sequence of instance specifications and a sequence
of body elements.

• An instance specification has an instance name and an instance kind.
• An instance kind has a type and a name.
• The type of an instance is either missing or is one of system, block, process

or service.
• A body element is either an instance or a note.
• An instance has an instance name, an instance kind and a sequence of

events.
• A note is a textual description or comment.
• An event is an action, message, condition, timer, process or is a coregion

event.
• An action event has a name.
• A message event is either a message input or a message output. A message

input is characterised by a message identifier, a possibly empty sequence of
input parameters and an address identifying the sender. A message output
has a message identifier, a possibly empty sequence of output parameters
and an address identifying the recipient.

• A condition event has a name and an identification of the instances that
share the condition.

• A timer event is the setting of a timer, the resetting of a timer or a timeout.
All are characterised by a timer identifier, and, additionally, timer setting
may specify a duration.

• A process event is either a process creation or a process termination. A
process creation gives a name and a sequence of parameters to the new
process.

• A coregion event contains a sequence of message events.
• An address is either the environment or the name of an instance.
• A condition may be local to an instance shared by all instances or shared

by a subset of instances.
• A timer identifier is either a timer name, or a timer name and a timer

instance name.
• A (timer-specified) duration is either unspecified or has a name.
• Names are further unspecified entities. •

13.1.3 High-Level MSCs (HMSCs)

An Informal Presentation

We now extend the above definition of BMSCs to allow several BMSCs to
form an MSC document. To provide the link between BMSCs the high-level
message sequence chart (HMSC) is defined.

A HMSC consists of a number of nodes, each representing a BMSC, con
nected with arrows. One node is the start node and several nodes may be

384 13 Message and Live Sequence Charts

end nodes. Arrows denote vertical composition of the BMSCs they connect,
i.e., the events of the origin BMSC occur first, followed by the events of the
destination BMSC. Nodes may have arrows to several other nodes, indicating
alternatives. In that case the origin BMSC is composed vertically with one of
the alternative destination BMSCs. The graph of nodes and arrows may have
loops, indicating iteration.

Nodes are represented by circles or rounded rectangles labelled with the
name of the BMSC it denotes. Start nodes are indicated by an upside-down
triangle (V) with an arrow pointing to the node. End nodes are indicated
by a triangle (A) pointed to by an arrow from the node. Connectors may be
introduced to improve legibility. When connectors are used, each node may
have at most one incoming arrow and one outgoing arrow. Connectors then
serve as junctions for arrows, where one incoming arrow may split into several
outgoing arrows or vice versa. Connectors are represented as small circles.
The annotations of the formal model of the syntax of HMSCs provide more
specific details, see below.

An Example HMSC

Example 13.9 A High-Level Message Chart: Figures 13.9-13.10 show a sim
ple HMSC with three BMSCs. The chart models a client-server system, where
a server offers some service, which the client can access. The start node of the
HMSC is the BMSC Init in which the client logs on to the server and the
server responds with a confirmation. Then one or more cycles of the BMSC
Transfer follow, in which the client requests a resource and the server responds
by returning that resource. Finally, the client logs off and the server closes the
connection. •

brw I
Fig. 13.9. HMSC example, part 1 of 2

13.1 Message Sequence Charts 385

MSC Init

Client Server

Logon

LogonOK

I I I I

MSC Transfer

Client Server

Request

Response

I I I I

MSC End

Client Server

Logoff

Close

I I I I

Fig. 13.10. HMSC example, part 2 of 2

13.1.4 An RSL Model of HMSC Syntax

Definition. By a high-level message sequence chart we shall understand a
structure as formalised in this section, in Sects. 13.1.6 and 13.1.8 and as a
solution to Exercise 13.3. •

The formalisation of HMSCs is simple, given the formalisation of BMSCs.

context: BasicMessageSequenceChart

scheme HighLevelMessageSequenceChart =
extend BasicMessageSequenceChart with
class

type
HMSC = (BMSC_Name^BMSC)

x (BMSC_Name ^ BMSC_Name-set)
x BMSC_Name
x BMSC_Name-set

end

Annotations

• A high-level message sequence chart is composed of a mapping of BMSC
names to BMSCs,

• a set of outgoing arrows for each BMSC,
• a start node
• and a possibly empty set of end nodes. •

13.1.5 MSCs Are HMSCs

Definition. By a message sequence chart we shall understand a high-level
message sequence chart. •

386 13 Message and Live Sequence Charts

13.1 .6 Syntac t i c We l l - formedness of M S C s

Now tha t we have defined the full syntax of MSCs we are ready to specify the
requirements for a chart to be well-formed. First, we specify conditions for a
BMSC to be well-formed. These conditions were derived by Reniers [423].

context : HighLevelMessageSequenceChart
scheme WellformedBMSC =
extend HighLevelMessageSequenceChart with
class

type BMSC = {| b:BMSC'*wf_BMSC(b) |}

value
wf_BMSC:BMSC' -)• Bool
wf_BMSC(n,s,b) =

let
inst=instances(n,s,b),
instnames={instn(i)|i:Instance*i £ elems inst}

in
/* 1 */
(Vj,k:Nat*

j ^ kA{j,k}Cinds inst=>
inst(j) ^ inst(k)Ainstn(inst(j)) ^ instn(inst(k)))A

/* 2 */

(s + <>=•
(V i:Instance*

(i £ elems inst) = ((instn(i),kind(i)) £ elems s)))A
/* 3 */
({name(a)|

a: Address*
3 i:Instance,inpid:MsgID,pl:Par_Name*«

i £ elems instAa ^= mk_EnvA
mk_Input(inpid,pl,a) £ elems inputEvts(i)} U

{name(a)|
a: Address*

3 i:Instance,inpid:MsgID,pl:Par_Name*«
i £ elems instAa ^= mk_EnvA
mk_Input(inpid,pl,a) £ elems outputEvts(i)}Cinstnames)A

/* 4 */
(V i:Instance*

i £ elems inst=>-
(V evt,evt':MessageEvent*

(evt £ inputEvts(i)Aevt' £ inputEvts(i)A
inpid(evt)=inpid(evt)Ainaddr(evt)=inaddr(evt)=>

evt=evt')A
(evt £ outputEvts(i)Aevt £ outputEvts(i)A

outid(evt)=outid(evt')Aoutaddr(evt)=outaddr(evt')=>
evt=evt')))A

/* 5 */

13.1 Message Sequence Charts 387

(V i:Instance«
i G elems inst=>-

(V mi:MsgID,pl:Par_Name*,inaddr:Address*
mk_Input(mi,pl,inaddr) G inputEvts(i)Ainaddr ^ mk_Env=>-

mk_Output(mi,pl,mk_InstName(mstn(i))) G
outputEvts(lookup (name(inaddr) ,b))) A

(V mi:MsgID,pl:Par_Name*,outaddr:Address*
mk_Output(mi,pl,outaddr) G outputEvts(i)A
outaddr ^ mk_Env=>

mk_Input(mi,pl,mk_InstName(instn(i))) G
inputEvts(lookup(name(outaddr),b))))A

/* 6 */
~is_cyclic(

{ss|
ss:SxS,sss:(SxS)-set*

ss G sssA
sss G

{po_inst(i,el,{}) U po_comm(i,el)|
i:Inst_Name,k:Kind,el:Event* •

mk_Inst(i,k,el) G inst}})A
/* 7 */
(V ^Instance*

i G elems inst=>-
(V c:ConditionEvent«

c G evtl(i)=^
case share(c) of

mk_Shared(il) —>
(V i:Inst_Name«

i G il=^
(3 k:Kind,el:Event*«

mk_Inst(i,k,el) G b)),
—> true

end))A
/* 8 */
(V i:Instance«

i G inst=>-
(V cn:Con_Name,sh:Share•

mk_Condition(cn,sh) G evtl(i)=>
case sh of

mk_None —> t r ue ,
mk_All -)•

(V i':Instance«
i' G inst=^

len (c|c in evtl(i) ,c=mk_Condition(cn,sh)} =
len (c|c in evtl(i')*

c=mk_Condition(cn,mk_All))),
mk_Shared(il) —¥

(V i':Instance«
i' G instAinstn(i') G elems il=>-

388 13 Message and Live Sequence Charts

len (c|c in evtl(i)*c=mk_Condition(cn,sh)} =
len (c|c in evtl(i')*

3 il':Inst_Name*«
c=mk_Condition(cn,mk_Shared(il'))A

eleras il =
(elems il \ {instn(i')}) U

{instn(i)}))
end))A

/* 9 */
(V i:Instance*

i G inst=>-
(V n:Inst_Name,p:Par_Name**

mk_Create(n,p) £ evtl(i)=>-
n £ instnamesAn ^ instn(i)))A

/* 10 */
(let

pcl=
((name(Event_to_ProcessEvent (pc)) |

pc in evtl(Body_to_Instance(i))*
3 n:Inst_Name,p:Par_Name*«

pc=mk_Create(n,p))|i in b*i £ inst)
in

(V l:Inst_Name**l £ e lems pcl=>len l=card eleras 1)A
(Vj,j':Nat*

{j,j'}Cinds pclAj ^ j '=>
eleras pcl(j) (~1 elems pcl(j) = {})

end)
end,

instances:BMSC —> Instance*
instances(n,s,b) =

(Body_to_Instance(i)|i in b*(V t:Text*i ^ mk_Note(t))),

inputEvts:Instance —> MessageEvent*
inputEvts(i) =

(Event_to_MessageEvent(e) |
e in evtl(i)*

(3 inpid:MsgID,inpar:Par_Name*,inaddr:Address*
e=mk_Input (inpid,inpar ,inaddr))),

outputEvts:Instance —>• MessageEvent*
outputEvts(i) =

(Event_to_MessageEvent(e) |
e in evtl(i)*

(3 outid:MsgID,outpar:Par_Name*,outaddr:Address*
e=mk_Input (outid,outpar,outaddr))),

lookup:Inst_NamexBody* ^> Instance
lookup(i,bl) =

13.1 Message Sequence Charts

case hd bl of
mk_Inst(i ' ,_,_) —>

if i=i ' t h e n Body_to_Instance(hd bl) else lookup(i,tl bl) end,
—• lookup(i,tl bl)

end
p re (3 k:Kind,el:Event*,mk_Inst(i,k,el) £ bl)

t y p e
Dir = = In|Out,S=Dirx(Inst_NamexInst_NamexMsgID)

value
po_inst:Inst_NamexEvent*xS-set —• (SxS)-set
po_inst(i,el,prev) =

if el=() t h e n {}
else

case hd el of
mk_Input(mi,p,ia) —>

{(n,(In,(i,name(ia),mi)))|n:S»n £ prev} U
po_inst(i,tl el,{(In,(i,name(ia),mi))}),

mk_Output(mi,p,oa) —>
{(n,(Out,(i,name(oa),mi)))|n:S«n £ prev} U
po_inst(i,tl el,{(Out,(i,name(oa),mi))}),

mk_Concurrent(mel) —>
{(n,(In,(i,ia,mi)))|

n:S,ia:Inst_Name,mi:MsgID,p:Par_Name*«
n £ prevAmk_Input(mi,p,mk_InstName(ia)) £ mel} U

{(n,(Out,(i,oa,mi)))|
n:S,oa:Inst_Name,mi:MsgID,p:Par_Name*•

n £ prevAmk_Output(mi,p,mk_InstName(oa)) £ mel}
po_inst(

i,tl el,
{(In,(i,ia,mi))|
ia:Inst_Name,mi:MsgID,p:Par_Name*•

mk_Input(mi,p,mk_InstName(ia)) £ mel} U
{(Out,(i,oa,mi))|
oa:Inst_Name,mi:MsgID,p:Par_Name*«

mk_Output(mi,p,mk_InstName(oa)) £ mel}),
_ —> po_inst(i,tl el,prev)

end
end,

po_comm:Inst_Namex Event* —¥ (SxS)-set
po_comm(i,el) =

if el=() t h e n {}
else

case hd el of
mk_Output(mi,p,oa) —>

{((Out,(i,name(oa),mi)),(In,(name(oa),i,mi)))} U
po_comm(i,tl el),

390 13 Message and Live Sequence Charts

_ —> po_comm(i,tl el)
end

end,

is_cyclic:(SxS)-set —> Bool
is_cyclic(sss) =

(3 s:S*-
(V i:Nat«i>0Ai < len s=>(s(i),s(i+l)) G sss)A
s(l)=s(len s))

end

Annotations

• A BMSC is well-formed if each of the following conditions hold:
1. In a BMSC instances are uniquely named.
2. If an interface is specified for a BMSC, then for each instance in the

interface there must be an instance with the same name and kind in
the body of the chart and vice versa.

3. Every input and output event must reference instances which are de
clared in the body of the chart.

4. On an instance there may be at most one message input with a given
message identifier and address. On an instance there may be at most
one message output with a given message identifier and address.

5. For each message output to an instance, there must be a corresponding
message input specified on that instance. For each message input from
an instance, there must be a corresponding message output specified
on that instance.

6. A message output may not be causally dependent on its corresponding
message input, directly or via other messages. This property is verified
by constructing a partial order on communication events and checking
that the directed graph obtained from this partial order does not con
tain cycles. A message event precedes all message events that follow it
in an instance specification, and every message input is preceded by its
corresponding message output.

7. Only declared instances may be referenced in the shared instance list
of a condition.

8. A shared condition must appear equally many times in the instances
sharing it.

9. Only declared instances may be referenced in a process creation.
10. There must not be more than one process creation event with a given

instance name.
• A timeout or reset event can only occur after a corresponding timer set

event, and a stop event must be the last on the time line. •

Now, we specify conditions for a HMSC to be well-formed.

context: WellformedBMSC

13.1 Message Sequence Charts 391

scheme WellformedHMSC =
extend WellformedBMSC with
class

type HMSC = {| h : HMSC' • wf_HMSC(h) |}

value
wf_HMSC : HMSC' -)• Bool
wf_HMSC(b, a, s, e) =

/* 1 */
d o m a = d o m b A
/* 2 */
(V bmscs : BMSC_Name-set • bmscs £ rng a => bmscs C dom a) A
/* 3 */
s £ dom b A
/* 4 */
e C dom b

end

Annotations

• A HMSC is well-formed, if each of the following conditions hold:
• The set of arrows must emanate from BMSCs tha t are in the mapping of

BMSC names to BMSCs.
• The set of arrows must terminate at BMSCs tha t are in the mapping of

BMSC names to BMSCs.
• The start node must be in the mapping of BMSC names to BMSCs.
• The end nodes must be in the mapping of BMSC names to BMSCs. •

13 .1 .7 A n E x a m p l e : I E E E 802 .11 W i r e l e s s N e t w o r k

E x a m p l e 13 .10 An IEEE 802.11 Wireless Network: We bring in a large ex
ample, this t ime without shading. •

D e s c r i p t i o n

We illustrate the use of MSCs by modelling the possible exchanges of frames
between an access point and a station in an IEEE 802.11 wireless net
work [224].

We assume the wireless network is operating under the Distributed Coor
dination Function and tha t no frames are lost due to transmission errors or
collisions. Also, we omit some frame subtypes used for power save functions,
etc.

A station is any device tha t conforms to the physical layer and medium
access control layer specifications in the IEEE 802.11 standard. An access

392 13 Message and Live Sequence Charts

point is a station that additionally routes frames between the wireless net
work and some other network (usually a wired LAN). IEEE 802.11 uses the
carrier sense multiple access/collision avoidance (CSMA/CA) technology for
accessing the medium. The HMSC is shown in Fig. 13.11 and the referenced
BMSCs in Fig. 13.12.

_s , , x , , i _
Deauth | |Disassoc| |Reassoc| | aBC | | aSend | |aRCSend]

ES
I sBC I I sSend I bRCSend

TTT
Fig. 13.11. HMSC of 802.11 wireless network with one access point and one station.

Initially, the station has no contact with the access point. It discovers the ac
cess point by scanning the available channels. Scanning may be either passive,
in which case it waits for a beacon frame from the access point, or it may be
active, in which case it emits probe frames. If an access point receives a probe
frame it will respond with a probe response frame giving information (timing,
SSID, etc.) necessary for joining the network. Once the station has contact
with a network, it must be authenticated. In an 802.11 network there are
two authentication methods: open system and shared key. In the former, any
station requesting authentication may become authenticated. More specifi
cally, the station will send an authentication request and the access point
will respond with an authentication response. In the latter, only stations with
knowledge of a shared secret key may become authenticated. In this case the
authentication protocol consists of four messages.

First, the station sends an authentication request. The access point replies
with a challenge message containing a nonce value. The station encrypts the
nonce value using the shared secret key and returns it in an authentication
response frame. Then the access point decrypts the received encrypted nonce

13.1 Message Sequence Charts 393

AP STA

• •
MSC SKAuth

AP STA

SKAuthRequest

SKAuth Challenge

SKAuthResponse

MSC Disassoc

nz\
STA

Disassociation

• •

nn
STA

• CD

MSC Assoc

AP

AssocRequest

MSC Reassoc

ReassocResponse

AP STA

1 ™? 1

r^

OSAuthResponse

AP STA

Deauthentication

• •

n
STA

• •
AP STA

L °!* 1

i 1
MSC sRCSend

AP

1 RTS

STA

1 CTS .1
1 Data

1 ACK

Fig. 13.12. BMSCs referenced in Fig. 13.11

and compares it with the original nonce. If they match the station is con
sidered authenticated. The outcome of the comparison is sent to the station,
confirming either tha t it is authenticated or tha t authentication failed.

394 13 Message and Live Sequence Charts

The next step is for the station to become associated with the access point.
Several 802.11 networks, each with their own acces point, may be joined to
form an extended logical network, within which stations may move freely.
Association is a means of recording which access point in such an extended
network a given station is currently able to communicate with. Each station
may be associated with only one access point at a time, while an access point
may be associated with zero, one or more stations. An association is estab
lished by the station sending an association request frame to the access point it
wishes to associate with. The access point replies with an association response
frame.

A n RSL M o d e l of t h e I E E E 802 .11 E x a m p l e

E x a m p l e 13 .11 An RSL Model of the IEEE 802.11 Example: We now show
an RSL model tha t conveys the same information as the MSC model, namely
the sequence of messages tha t may be passed in the given 802.11 wireless net
work. We model the two entities as two concurrent processes which exchange
messages by communicating on two channels. We do not take advantage of
the features of RSL to describe the contents of the messages or how they are
formed.

Text and formulas are not framed. •

First, we define the types of frames. In IEEE 802.11 there are three overall
types of frames: data, management and control frames. Each type of frame
has several subtypes.
s c h e m e IEEE80211 =

class
t y p e

Frame = ManFrame | CtrFrame | DataFrame,
ManFrame = =

Beacon |
ProbeRequest |
ProbeResponse |
OSAuthRequest |
OSAuthResponse |
SKAuthRequest |
SKAuthChallenge |
SKAuthResponse |
SKAuthFinish |
AssocRequest |
AssocResponse |
Deauthentication |
Disassociation |
ReassocRequest |
ReassocResponse,

13.1 Message Sequence Charts 395

CtrFrame = = ACK | CTS | RTS,
DataFrame = = Data | Broadcast

channel s_a : Frame, a_s : Frame
e n d

Annotations

• A frame is a management, control, or data frame.
• A management frame has one of 15 subtypes.
• A control frame has subtype acknowledgement, clear-to-send, or request-

to-send.
• A data frame is a unicast data frame or a broadcast frame.
• There is a pair of channels between the access point and the stations. •

Now we describe the behaviour of the access point in terms of the communi
cations in which it will participate. Note tha t received messages only serve to
advance the communication, while the contents and type of message received
is ignored. Also note tha t in situations where the access point may do one of
several things we abstract this choice as a nondeterministic internal choice.
The specification is not robust in the sense tha t the access point does not
check tha t the messages received from the station are of the correct type and
subtype.

contex t : IEEE80211

s c h e m e IEEE80211_ap =
e x t e n d IEEE80211 w i t h
class

value
AP : U n i t —> in s_a out a_s U n i t
AP() = (a_beacon() [] a_probe()) ,

a_beacon : U n i t —>• in s_a out a_s U n i t
a_beacon() = a_s!Beacon ; (a_osauth() \] a_skauth()) ,

a_probe : U n i t —> in s_a out a_s U n i t
a_probe() =

let proberequest = s_a? in skip e n d ;
a_s!ProbeResponse ;
let ack = s_a? in skip e n d ;
(a_osauth() \\ a_skauth()) ,

a_osauth : U n i t —>• in s_a out a_s U n i t
a_osauth() =

let osauthrequest = s_a? in skip e n d ;

396 13 Message and Live Sequence Charts

a_s!OSAuthResponse ;
let ack = s_a? in skip end ;
a_assoc(),

a_skauth : Unit —• in s_a out a_s Unit
a_skauth() =

let skauthrequest = s_a? in skip end ;
a_s!SKAuthChallenge ;
let skauthresponse = s_a? in skip end ;
a_s!SKAuthFinish ;
let ack = s_a? in skip end ;
a_assoc(),

a_assoc : Unit —• in s_a out a_s Unit
a_assoc() =

let assocrequest = s_a? in skip end ;
a_s!AssocResponse ;
let ack = s_a? in skip end ;
a_op(),

a_op : Unit —> in s_a out a_s Unit
a_op() =

a_deauth()

D
a_disassoc()
D
a_reassoc()
D
a_abc()
D
a_asend()
D
a_arcsend()
D
a_sbc()
D
a_ssend()
D
a_srcsend(),

a_deauth : Unit —>• in s_a out a_s Unit
a_deauth() =

let deauthentication = s_a? in skip end ;
(a_osauth() \\ (a_skauth() 0 AP())),

13.1 Message Sequence Charts 397

a_disassoc : Unit —• in s_a out a_s Unit
a_disassoc() =

let disassociation = s_a? in skip end ;
(a_deauth() [] a_assoc()),

a_reassoc : Unit —>• in s_a out a_s Unit
a_reassoc() =

let reassocrequest = s_a? in skip end ;
a_s!ReassocResponse ;
let ack = s_a? in skip end ;
a_op(),

a s b c : Unit —> in s_a out a s Unit
a_sbc() = let broadcast = s_a? in skip end ; a_op(),

a_ssend : Unit —>• in s_a out a_s Unit
a_ssend() = let data = s_a? in skip end ; a_s!ACK ; a_op(),

a_srcsend : Unit —• in s_a out a_s Unit
a_srcsend() =

let rts = s_a? in skip end ;
a_s!CTS ;
let data = s_a? in skip end ;
a_s!ACK ;
a_op(),

a_abc : Unit —>• in s_a out a_s Unit
a_abc() = a_s!Broadcast ; a_op(),

a_asend : Unit —• in s_a out a_s Unit
a_asend() = a_s!Data ; let ack = s_a? in skip end ; a_op(),

a_arcsend : Unit —>• in s_a out a_s Unit
a_arcsend() =

a_s!RTS ;
let cts = s_a? in skip end ;
a_s!Data ;
let ack = s_a? in skip end ;
a_op()

end

We now give the corresponding behaviour of the station. This is essentially the
inverse of that of the access point. Again, choices are abstracted as internal
nondeterminism.

context: IEEE80211_ap

398 13 Message and Live Sequence Charts

scheme IEEE80211_sta =
extend IEEE80211_ap with
class

value
STA : Unit —> in a_s out s_a Unit
STA() = (s_beacon() 0 s_probe()),

s_beacon : Unit —>• in a_s out s_a Unit
s_beacon() =

let beacon = a_s? in skip end ;
(s_osauth() Q s_akauth()),

s_probe : Unit —>• in a_s out s_a Unit
s_probe() =

s_a!ProbeRequest ;
let proberesponse = a_s? in skip end ;
s_a!ACK ;
(s_osauth() [] s_akauth()),

s_osauth : Unit —> in a_s out s_a Unit
s_osauth() =

s_a!OSAuthRequest ;
let osauthresponse = a_s? in skip end ;
s_a!ACK ;
s_assoc(),

s_akauth : Unit —> in a_s out s_a Unit
s_akauth() =

s_a!SKAuthRequest ;
let skauthchallenge = a_s? in skip end ;
s_a!SKAuthResponse ;
let skauthfinish = a_s? in skip end ;
s_a!ACK ;
s_assoc(),

s_assoc : Unit —>• in a_s out s_a Unit
s_assoc() =

s_a!AssocRequest ;
let assocresponse = a_s? in skip end ;
s_a!ACK ;
s_op(),

s_op : Unit —>• in a_s out s_a Unit
s_op() =

13.1 Message Sequence Charts 399

s_deauth()

n
s_disassoc()
n
s_reassoc()
n
s_abc()
n
s_asend()
n
s_arcsend()
n
s_abc()
n
s_asend()
n
s_arcsend(),

s_deauth : Unit —>• in a_s out s_a Unit
s_deauth() =

s_a!Deauthentication ; ((s_osauth() [] s_akauth()) \\ STA()),

s_disassoc : Unit —>• in a_s out s_a Unit
s_disassoc() = s_a!Disassociation ; (s_deauth() [] s_assoc()),

s_reassoc : Unit —>• in a_s out s_a Unit
s_reassoc() =

s_a!ReassocRequest ;
let reassocresponse = a_s? in skip end ;
s_a!ACK ;
s_op(),

s_sbc : Unit —> in a_s out s_a Unit
s_sbc() = s_a!Broadcast ; s_op(),

s_ssend : Unit —> in a_s out s_a Unit
s_ssend() = s_a!Data ; let ack = a_s? in skip end ; s_op(),

s_srcsend : Unit —> in a_s out s_a Unit
s_srcsend() =

s_a!RTS ;
let cts = a_s? in skip end ;
s_a!Data ;
let ack = a_s? in skip end ;
s_op(),

400 13 Message and Live Sequence Charts

s_abc : Unit —• in a_s out s_a Unit
s_abc() = let broadcast = a_s? in skip end ; s_op(),

s_asend : Unit —>• in a_s out s_a Unit
s_asend() = let data = a_s? in skip end ; s_a!ACK ; s_op(),

s_arcsend : Unit —> in a_s out s_a Unit
s_arcsend() =

let rts = a_s? in skip end ;
s_a!CTS ;
let data = a_s? in skip end ;
s_a!ACK ;
s_op()

end

This example has hopefully demonstrated the power of MSCs as a specifica
tion method. Clearly, the MSC specification is much more compact than the
corresponding RSL specification, and it is also much more readable. The power
of RSL, however, becomes apparent if one wants to add an additional layer of
detail, for example, by adding parameters to the messages and explaining how
parameters from incoming messages are related to the parameters of outgoing
messages. While MSCs are good at specifying one aspect (namely sequences
of events) of a system, RSL is expressive enough to specify many aspects.

13.1.8 Semantics of Basic Message Sequence Charts

We now give a semantics of BMSCs by defining an RSL function, S, that yields
the possible traces of a given BMSC. A trace is a causally ordered sequence
of events. Note that the semantics is in general nondeterministic, in the sense
that a given BMSC may have many legal sequences of events.

scheme BMSC_Semantics =
extend WellformedBMSC with
class

value
S : BMSC ->• (Event*)-set
S(bmsc) =

{el|el:Event*«el £ interleave(bmsc)AisValid(el,{})}

interleave : BMSC -t (Event*)-set
interleave(bmsc) =

interleave((evtl(inst)|inst in instances(bmsc)),())

interleave : (Event*)* x (Event*)* —>• (Event*)-set

13.1 Message Sequence Charts 401

interleave(evtll, evtll') =
i fev t l l= (>

a t hen {}
else

let head = hd evtll in
(let rest = interleave((tl head)^tl evtlPevtll',()) in

b {(hd head)^r|r:Event*«r £ rest} end)
c U interleave(tl evtll, (head)^evtll')

end
end

isValid : Event* x Msg_Name-set —>• Bool
isValid(evtl, mnms) =

case hd evtl of
mk_Outpiit(mnm,pars,adr) —>•

isValid(tl evtl,mnms Ujmnm}),
mk_Input(mnm,pars,adr) —>•

id £ ids A isValid(tl evtl,mnms\{mnm})
end

end

Annotations

• The semantics of a BMSC, S(bmsc), is a set of lists of events, where each
list is an interleaving of the events of each of the instances in the BMSC,
and the set contains only those lists that are valid.

• The interleaving of a BMSC is an interleaving of the event lists of its
instances.
(a) The interleaving of an empty list of events is the empty set.
(b) The interleaving of a non-empty list of event lists is obtained by selecting

the head element of the head of the list and adding that element as the
first element of all interleavings of the remaining event-lists,

(c) and forming the union with the set of interleavings obtained from the
rest of the list.

• An event list is valid if every input event causally follows its corresponding
output event in the list. •

13.1.9 Semantics of High-Level Message Sequence Char t s

We leave it as Exercise 13.3 for the reader to combine the above into functions
which give a semantics of HMSCs.

402 13 Message and Live Sequence Charts

13.2 Live Sequence Charts: Informal Presentation

13.2 .1 Live S e q u e n c e Chart S y n t a x

In this section we informally describe the components of live sequence charts
(LSC). We return to the question of a formal semantics of a subset of LSCs
in Sect. 13.4.

Graphica l S y n t a x of Live S e q u e n c e Char t s

LSCs were proposed by Damm and Harel [89] as an extension of MSCs. They
identified a number of shortcomings and weaknesses of the MSC standard and
proposed a range of new concepts and notation to overcome these problems.

One of the major problems with the semantics of MSCs is tha t it is not
clear whether an MSC describes all behaviours of a system or just a set of
possible behaviours. Typically, the latter view would be used in early stages of
development, while the former would apply in later stages when the behaviour
is more fixed. Another problem noted by Damm and Harel is the inability
of MSCs to specify liveness, i.e., MSCs have no constructions for enforcing
progress. Damm and Harel also view the lack of semantics for conditions to
be a problem.

Universal and Existential Charts

The most prominent feature of LSCs is the introduction of a distinction be
tween optional and mandatory behaviour. This applies to several elements in
charts. A distinction is introduced between universal charts and existential
charts.

Universal charts specify behaviour tha t must be satisfied by every possible
run of a system. This may be compared to universal quantification over the
runs of the system. On the other hand, existential charts specify behaviour
tha t must be satisfied by at least one run of the system. This is like exis
tential quantification over the runs of the system. The typical application of
existential charts would be in the early stages of the development process, par
ticularly in domain modelling. An existential chart specifies a scenario tha t
may be used to describe characteristic behaviours of the domain.

Universal charts would typically be used later in the development process,
particularly in requirements engineering and in requirements documents. Uni
versal charts are designated by a fully drawn box around the chart, while
existential charts are designated by a dashed box.

E x a m p l e 13 .12 Figure 13.13 shows a universal LSC with two instances, .4
and B. The behaviour specified by this chart must (i.e., shall) be satisfied by
every run of the system.

13.2 Live Sequence Charts: Informal Presentation 403

Figure 13.13 shows an existential LSC. This represents a scenario that at
least one run of the system must satisfy.

The four messages of Fig. 13.13 are discussed in Example 13.14 below. •

A

1 1
B

1 1
m,

m2

m 3

m 4

1

l _

A

1
m,

m2

B

1 1

J

Fig. 13.14. Existential LSC

Fig. 13.13. Universal LSC

Precharts

LSC introduces the notion of a prechart to restrict the applicability of a chart.
The prechart is like a precondition that when satisfied activates the main
chart. A given system need only satisfy a universal chart whenever it satisfies
the prechart. An empty prechart is satisfied by any system. A prechart can be
considered as the expression in an IF statement where the body of the THEN
part is the universal chart. The prechart is denoted by a dashed hexagon
containing zero, one or more events.

Example 13.13 Figure 13.15 shows a universal LSC with a prechart consist
ing of the single message activate. In this case, the behaviour specified in the
body of the chart only applies to those runs of the system where the message
activate is sent from instance .4 to instance B. •

"Hot" and "Cold" Messages

LSC allow messages to be "hot" or "cold". A hot message is mandatory, i.e., if
it is sent then it must be received eventually. This is denoted by a fully drawn
arrow. For a cold message reception is not required, i.e., it may be "lost". This
is denoted by a dashed arrow.

Synchronous and Asynchronous Messages

Also, a message may be specified as either synchronous or asynchronous. Syn
chronous messages are denoted by an open arrowhead •>, while asynchronous
messages are denoted by a closed arrowhead -E>.

404 13 Message and Live Sequence Charts

A B

activate

ready

initialise

ready

Fig. 13.15. Prechart

Example 13.14 Figure 13.13 illustrates the four kinds of messages: hot and
cold, synchronous and asynchronous. Message mi is cold and synchronous.
Message m2 is hot and synchronous. Message m% is cold and asynchronous.
Finally, message m^ is hot and asynchronous. •

Conditions

In LSC conditions are promoted to first-class events. The difference is that con
ditions now have an influence on the execution of a chart, while in MSC they
were merely comments. Again, a distinction is made between a hot (manda
tory) condition, which, if evaluated to false, causes nonsuccessful termination
of the chart, and a cold condition (optional) which, if evaluated to false, causes
successful termination of the chart. A hot condition is like an invariant which
must be satisfied.

By combining a prechart with a universal chart containing just a single
hot condition that always evaluates to false, it is possible to specify forbidden
scenarios, since the scenario expressed in the prechart will then always cause
nonsuccessful termination. A shared condition forces synchronisation among
the sharing instances, i.e., the condition will not be evaluated before all in
stances have reached it and no instance will progress beyond the condition
until it has been evaluated.

Example 13.15 Figure 13.16 illustrates two conditions. The first is hot,
while the second is cold. If the hot condition evaluates to false, the chart is
aborted, indicating an erroneous situation. If the second condition evaluates
to false, the current (sub)chart is exited successfully. •

Subcharts

Iteration and conditional execution are obtained by means of subcharts. Sub-
charts are LSCs that are specified for a subset of the instances of the containing

13.2 Live Sequence Charts: Informal Presentation 405

A B

A.enabled = true >
4-

^ A. ready = true /

Fig. 13.16. Conditions

LSC and possibly additional new instances. Iteration is denoted by annotating
the top-left corner of the chart with an integer constant for limited iteration
or an asterisk for unlimited iteration. A subchart is exited successfully either
when a limited iteration has executed the specified number of times, or when
a cold condition evaluates to false.

By combining subcharts with cold conditions, WHILE and DO-WHILE
loops may be created. Additionally, a special form of subchart with two parts
is used to create an IF-THEN-ELSE construct. The first part of the subchart
has a cold condition as the first event. If the condition evaluates to true, the
first part of the subchart is executed. If the condition evaluates to false, the
second part of the subchart is executed.

Example 13.16 Figure 13.17 illustrates limited iteration. Instance A will
send the message mi 60 times to instance B. •

_ j nz
60

m,

Fig. 13.17. Limited iteration

Example 13.17 Figure 13.18 illustrates unlimited iteration with a stop con
dition, essentially like a DO-WHILE loop. The message mi will be sent re
peatedly until the condition becomes false. Once that happens, the subchart
is exited. •

406 13 Message and Live Sequence Charts

A B

Fig. 13.18. DO-WHILE loop

Example 13.18 Figure 13.19 is similar to the previous situation, except that
the condition is now checked before the first message is sent, thus mimicking
a WHILE loop.

• •

Fig. 13.19. WHILE loop

Example 13.19 Figure 13.20 is like Fig. 13.19 except that there is no iter
ation. Thus, the message nil will be sent once if the condition evaluates to
true, and it will not be sent if the condition evaluates to false. Therefore, this
construction is like an IF-THEN construct. •

Example 13.20 In Fig. 13.21 the special construction for IF-THEN-ELSE
is illustrated. The two subcharts represent the THEN and ELSE branches. If
the condition evaluates to true, the first subchart is executed, otherwise the
second subchart is executed. In either case, the subchart not chosen is skipped
entirely. •

Locations

The distinction between hot and cold is also applied to the timeline of an
instance. Any point where an event is specified on the timeline is called a

13.2 Live Sequence Charts: Informal Presentation 407

A B

—NT— -*• \

< B.response = false /
N . ^ . _ £ w

m1

Fig. 13.20. IF-THEN conditional

A B

terminate

continue

Fig. 13.21. IF-THEN-ELSE conditional

location. A location may be hot indicating tha t the corresponding event must
eventually take place, or cold indicating tha t event might never occur. A hot
location is represented by the time line being fully drawn, while a cold location
is represented by a dashed time line. The timeline may alternate between being
fully drawn and dashed.

The addition of cold locations conflicts with the representation of coregions
inherited from MSCs. For this reason, the syntax for a coregion is modified to
be a dashed line positioned next to the part of the time line tha t the coregion
spans.

E x a m p l e 13 .21 Figure 13.22 illustrates the syntax for optional progress.
The timeline is fully drawn at the location where the message mi is sent
and received, indicating tha t these events must eventually take place. This
guarantees liveness. At the location where the message m^ is sent and received,
the time line is dashed, indicating tha t neither instance is required to progress
to the sending or receiving of m%. If an instance does not progress beyond a
location /, then no event on the t ime line of tha t instance following I will take
place. Thus, in this case, if ni2 is never sent, m^ will never be sent. •

408 13 Message and Live Sequence Charts

A B

II II
m,

m2

m3

Fig. 13.22. Optional progress

13.2 .2 A Live S e q u e n c e Chart E x a m p l e , I

E x a m p l e 13 .22 A Live Sequence Chart, Part I: We conclude this section
with an example. This example is concluded by Example 13.23 in Sect. 13.4.3.
We omit shading. •

Figure 13.23 shows an example LSC with three instances. The first step is
to convert the graphical syntax into the textual syntax. The result is shown
below.

A B

• CD
' < cond, \ \

^ >

c

\ m,

m2

cond2 u.

/ /
m3

7 " \ /

m s ,

'
Fig. 13.23. Example live sequence chart

lsc Example;
ins tance A

prechart
hot hotcondition(conrfi) ;
hot out rti\ t o B a sync ;

e n d prechart b o d y hot out mi t o B a sync ;
hot coldcondition(conrf2) ;
hot out 1JI4 t o B sync ;

e n d b o d y

13.3 Process Algebra 409

end instance
instance B

prechart
hot hotcondition(conrfi) ;
hot in mi from A async ;

end prechart
body

hot concurrent
in 77i2 from A async ;
in 77i3 from C async ;

end concurrent ;
hot coldcondition(conrf2) ;
hot in 77J4 from A sync ;
hot out 7715 to C async ;

end body
end instance
instance C

body
hot out 7713 to B async ;
cold in 77J5 from B async ;
cold out me to env async ;

end body
end instance

end lsc

13.3 Process Algebra

The ITU standard Z.120 for MSCs includes a formal algebraic semantics based
on the process algebra PAf introduced by Baeten and Weijland [27]. In this
section we first briefly review the definition of PAf following [326] and [26],
and then present an extension of that algebra (named PAce), which will be
used for defining the semantics of a subset of LSCs in Section 13.4.2 and for
expressing communication behaviours of RSL specifications in Sect. 13.5.2.

The material in this section cannot be considered to belong to the field of
software engineering. Rather, it belongs to the field of computer science. The
reader whose interest is mainly focused on the application of MSCs and LSCs
to actual engineering problems may skip the rest of this chapter. Those who
wish to gain a deeper understanding of the relations between sequence charts
and RSL are encouraged to read on.

The material that follows only scratches the surface of the topic of process
algebras. The theoretical foundations for the process algebras presented here
are given in [317].

410 13 Message and Live Sequence Charts

13.3 .1 T h e P r o c e s s A l g e b r a PAe

The algebraic theory of PAe is given as an equational specification (SpAe,
EpAe), consisting of the signature, SpAe, and a set of equations, EPAC. We
first define the signature and equations and then give the intuition behind the
definitions.

Signature

The one-sorted signature, SPA, , consists of

1. two special constants 6 and e
2. a set of unspecified constants A, for which {5, e} fl A = 0
3. the unary operator y/
4. the binary operators + , •, || and []_

The unspecified set A is a parameter of the theory. Thus, applications of the
theory require the theory to be instantiated with a specific set A. When the
theory is applied to MSCs, the set A consists of identifiers for the atomic
events of the chart.

For convenience and following tradition, we will apply the binary operators
in infix notation, i.e., instead of + (x,y) we will write x + y. To reduce the
need for parentheses, operator precedences are introduced. The • operator
binds strongest, the + operator binds weakest.

Let V be a set of variables. Then terms over the signature SpAe with
variables from V, denoted T{SpAe,V), are given by the inductive definition

1. v € V is a term.
2. a £ A is a term.
3. 6 is a term.
4. e is a term.
5. If t is a term, then y/(t) is a term.
6. If t\ and £2 are terms, then t\op £2 is a term, for op £ {+ , •, ||, []_}.

A term is called closed if it contains no variables. The set of closed terms over
SpAe is denoted T(SpAe).

E q u a t i o n s

The equations of PAf are of the form t\ = £2, where t i , t 2 G T(SpAe, V). For
a £ A and x, y, z £ V the equations, EpAe, are given in Table 13.1.

The special constant 8 is called deadlock. It denotes the process tha t has
stopped executing actions and can never resume. The special constant e is
called the empty process. It denotes the process tha t terminates successfully
without executing any actions. The elements of the set A are called atomic
actions. These represent processes tha t cannot be decomposed into smaller
par ts . As mentioned above, the set A is given a concrete definition when

13.3 Process Algebra 411

Table 13.1. Equations of PAe

x + y = y + x (Al)

(x + y) + z = x + (y + z) (A2)

x + x = x (A3)

(x + y)-z = x-z + y-z (A4)

(x -y) • z = x • (y • z) (A5)

x + S = x (A6)

S • x = S (A7)

x • e = x (A8)

e • x = x (A9)

x || y = x\Ly + y\Lx + y/(x) • y/(y) (Fl)

e\lx = S (F2)

6\Lx = S (F3)

a • x\Ly = a-(x\\y) (F4)

(x + y)\Lz = x\Lz + y\Lz (F5)

V(6) = 6 (Tl)

V(S) = S (T2)

Via -x)=5 (T3)

V(* + y) = y/(x) + V(y) (T4)

the theory is applied. For example, in defining the semantics of MSCs, the
set A will contain the symbols tha t identify the events in the chart, such
as in(a,b,ml) identifying the event of instance b receiving message m l from
instance a.

The binary operators + and • are called alternative and sequential com
position, respectively. The alternative composition of processes x and y is the
process tha t behaves as either x or y, but not both. The sequential composi
tion of processes x and y is the process tha t first behaves as x until it reaches
a terminated state and then behaves as y.

The binary operator || is called the free merge. The free merge of processes
x and y is the process tha t executes an interleaving of the actions of x and y.
The unary termination operator ^J indicates whether the process it is applied
to may terminate immediately. The termination operator is an auxiliary oper
ator needed to define the free merge. The binary operator []_ is called the left

412 13 Message and Live Sequence Charts

merge and denotes the process that executes the first atomic action of the left
operand followed by the interleaving of the remainder of the left operand with
the right operand. Like the termination operator, the left merge operator is
an auxiliary operator needed to define free merge.

To see why the termination operator is necessary, consider Eq. F l . What
happens in the free merge is that all possible sequences of atomic actions
from the two operands are generated. When both operands become the empty
process, we want the free merge to be the empty process as well, i.e., we want
the equation e || e = e to hold. Because of Eq. F2, the two first alternatives in
F l become deadlock. However, the last alternative becomes the empty process,
because of Eq. T l . Thus, with Eq. A6 we get the desired result. It is possible
to give a simpler definition of the free merge without using the empty process
or the termination operator, see [26], but for our purposes we need the empty
process.

Derivability

We now define what it means for a term to be derivable from an equational
specification. First, the two auxiliary notions of a substitution and a context
are introduced.

Definition 13.1. A substitution a : V —>• T(S,V) replaces variables with
terms over S. The extension of a to terms over S, denoted a : T(S, V) —>
T{E,V), is given by

1. a(8) = S
2. o-(e) = e
3. a (a) = a for a £ A
4. a(v) = cr(v) for v £ V

5. a(V(x)) = V(Hx))
6. o(x op y) = a(x) op a(y) for op £ {+, •, ||, []_}

A substitution that replaces all variables with variable-free terms, i.e., closed
terms, is called closed. •

Definition 13.2. A S context is a term C £ T(S,V U {•}), containing
exactly one occurrence of the distinguished variable • . The context is written
C[] to suggest that C should be considered as a term with a hole in it.
Substitution of a term t £ T(S, V) in C[] gives the term C[0 i-» t], written
C[t].

Definition 13.3. Let (S,E) be an equational specification and let t, s and u
be arbitrary terms over S. The derivability relation, \~, is then given by the
following inductive definition.

13.3 Process Algebra 413

s = t£E => (S,E)\-s = t

{S,E)\-t = t

(S,E)\-s = t => (S,E)\-t = s

(S,E)\-s = t A (S,E)\-t = u => (S,E)\-s = u

(S,E) \- s = t =>• (E,E) h a(s) = a(t) for any substitution a

{S,E)\-s = t => {£, E) h C[s] = C[t] for any context C[-]

If (S,E) \- s = t, abbreviated E h s = t, then the equation s = t is said to be
derivable from the equational specification (£,E). •

Reduct ion to Basic Terms

We now venture deeper into the theory of process algebra and term rewriting
systems. The goal is to show that there exists a model of the equational speci
fication for PAe and that the equations EpAr form a complete axiomatisation,
i.e., that whenever two terms are equal in the model, then they are provably
equal using the equations.

The first step is to show that any PAe term can be reduced to an equivalent
so-called basic term consisting of only atomic actions, 5, e, + and •. This result
makes subsequent proofs easier, because we need only consider these simpler
terms.

Definition 13.4. d and e are basic terms. An atomic action a £ A is a basic
term. If a £ A and £ is a basic term, then a • t is a basic term. If t and s are
basic terms, then t + s is a basic term. •

The next step is to show that any PAe term can be reduced to a basic term.
To do this, a term rewriting system is defined.

Definition 13.5. A term rewriting system is a pair (£, R) of a signature,
S, and a set, R, of rewriting rules. A rewriting rule is of the form s —> t,
where s,t € T(S, V) are open terms over S, such that s is not a variable and
vars(t) C vars(s), where vars(t) denotes the set of variables in the term t.

The one-step reduction relation, —>, is the smallest relation containing the
rules, R, that is closed under substitutions and contexts. •

Definition 13.6. A term s is in normal form if there does not exist a term
t, such that s —>• t. A term s is called strongly normalising if there exist no
infinite sequences of rewritings starting with s:

S —> Si —>• S2 —> • • •

A term reduction system is called strongly normalising if every term in the
system is strongly normalising. •

414 13 Message and Live Sequence Charts

Table 13.2. Term rewriting system for PAe

x + x ->• x (RA3)
(x + y) • z —> x • z + y • z (RA4)
(x • y) • z —• x • {y • z) (RA5)
x + 5 ->• x (RA6)
S • x ->• S (RA7)
x • e ->• x (RA8)
e • x ->• x (RA9)

x || y ->• x[Li/ + y_x + y/(x) • Av) (RF1)
e|]_x -)• <5 (RF2)

Sl_x -)• <5 (RF3)

a • x|]_y ->• a • (x || y) (RF4)
a|]_x -)• a • x (RF4')

(x + y)|L^^x|L^ + y|L^ (RF5)

7(e) ^ e (RT1)
7(5) ->• 5 (RT2)
7(a • x) -> <5 (RT3)

V(* + I/) -»• >/(*) + Av) (RT4)

The term rewriting system for PAe is shown in Table 13.2. Essentially, a term
rewriting system is a collection of equations, that can be applied only one way.
Compared with the equations of PAe in Table 13.1, there are no rewrite rules
corresponding to Al and A2, because these equations have no clear direction.
Also, having a rule for Al would render the rewrite system non-terminating.

A common method for proving normalisation of a term rewriting system
is to define a partial ordering on the operators and constants of the signature
S, and then extend this ordering to terms over S. There are several ways to
define this extension. For our purposes, the so-called lexicographical variant
of the recursive path ordering will suffice. The main reference for the following
material is [26]. Other references are [27,95,251,267].

Definition 13.7. Let s,t € T(E,V). We write s >ipo t if s ->•+ t, where
—>•+ is the transitive closure of the reduction relation —• defined by the rules
RPOl-5 and LPO in Table 13.3.

13.3 Process Algebra 415

Table 13.3. Reduction rules

•

•

•

•

•

•

R P 0 1 . Mark head symbol (k > 0):

H(ti,... ,tk) —• H*(ti,... ,tk)
R P 0 2 . Make copies under smaller head symbol (H > G, k > 0):

H*(tu ...,tk)^ G(H*(tu .. .,tk),..., H*(tu .. .,tk))
R P 0 3 . Select a rgument (k > 1, 1 < i < k):

H*(ti,... ,tk) —tti
R P 0 4 . Push * down (k > 1, I > 0):

H*(ti,...,G(si,. ..,si),...,tk) -> H(ti,... ,G*(si,... ,si),... ,tk)
R P 0 5 . Handling contexts:

s ^ t => H(...,s,...)^H(...,t,...)
L P O . Reduce i t h a rgument (k > 1, 1 < i < k, I > 0,
i f has lexicographical s t a tus wrt . the i t h a rgument) :

Let t = H*(ti,... ,ti-i,G(si,... ,si),tt+i,... ,tk)
t hen t —> H(t,..., t, G*(si,..., si),t,... , t)

Theorem 13.8. Strong Normalisation (I) (Kamin and Levy [259]). Let (£, R)
be a term rewriting system with finitely many rewrite rules and let > be a well-
founded partial ordering on S. If s >ipo t for each rewriting rule s —>• t € R,
then the term rewriting system (S,R) is strongly normalising. •

Proof. See [259].

The intuition behind Theorem 13.8 is that if x >ipo y, then y is a less com
plicated term than x, where we consider basic terms to be the simplest and
general terms to be the most complicated. Thus, if all the rules can only make
terms less complicated, we are bound to eventually reach a term that can not
be simplified.

Lemma 13.9. Strong Normalisation (II) The term rewriting system for PAe

in Table 13.2 is strongly normalizing. •

Proof. According to Theorem 13.8, it is sufficient to define a partial order
ing on SpAe and show that each rewriting rule satisfies the extension of the
ordering to T(S). We use the partial order | | > [] _ > A / > - > + > e > (5 . • has
lexicographical status with regard to the first argument. Below, we illustrate
the derivation for rewrite rules RA4 and RA5. The remaining derivations are
given in [316].

(x + y)-z >ipo (x + y)*z RPOl

>iPo (x + y) •* z + (x + y) •* z RP02

>iPo (x+*y)-z + {x +*y)-z RP04, RP05

>iPo x-z + yz RP03, RP05

416 13 Message and Live Sequence Charts

(x -y) • z >ipo (x -y) •* z RP01

>iPo (x •* y) • ((x • y) •* z) LPO

>iPo x • ((x •* y) • z) RP03, RP05, RP05

>iPo x-(yz) RP03, RP05

Thus, the term rewriting system for PAe is strongly normalising. •

We are now ready to prove that every PAe term has an equivalent basic term.

Theorem 13.10. For every PAe term, s, there is a corresponding basic term,
t, such that PAf h s = t. •

Proof. By the strong normalisation (II) theorem the term rewriting system
for PAe is strongly normalizing. Thus, for every term t, there is a finite se
quence of rewritings

t ->• t\ ->• h ->• • • • ->• s

where s is in normal form.
We use a proof by contradiction to show that s cannot contain 11, []_ or y/.

Assume, therefore, that s is in normal form and that s = C[x \\ y]. But then
the rewriting RF1 can be used, thus contradicting that s is in normal form.
Now assume that s is in normal form and that s = C[x_y]. Then there are
three cases

• x = u_w. in this case we can use the argument recursively to show that
u or one of its sub-terms can be reduced by a rewrite rule. This line of
reasoning is valid since we deal with finite terms.

• x = y/(u): in this case either x can be rewritten using one of RT1-4, or we
can apply the whole argument to u to show that some sub-term of u can
be rewritten.

• in all other cases one of the four rewrite rules RF2-4 may be applied to s,
thus forming a contradiction.

Finally, we can use the same argument as above to show that if s = C[yf(x)]
then either we can use one of the rewriting rules RT1-4 on s directly, or some
sub-term of x can be reduced using a rewrite rule.

Thus, in all cases we have a contradiction and the theorem follows. •

13.3.2 Semantics of PAe

We now proceed to define a semantics for PA€. See Table 13.4.
We use a structural operational semantics in the style of Plotkin [402].

Based on the semantics, we define a behavioural equivalence on PAe terms,
called bisimulation equivalence. We then show that the quotient algebra of PAf

terms under bisimulation equivalence is a model of the equational specification

13.3 Process Algebra 417

PAe, which implies soundness of the equations. Finally, we prove completeness
of the equations.

A Plotkin-style operational semantics is defined using a set of derivation
rules. For our purpose, the premises and conclusion of a derivation rule are
formulas of either the form

a i

or of the form

Informally, the former formula means tha t process x can evolve into process x'
by performing action a. The latter formula means tha t process x can terminate
immediately and successfully.

A formula </> is provable from a set of deduction rules, if there is a rule

fl f2 <Pn

such tha t there exists a substitution a : V —>• T(S, V) satisfying cr(ip) = <p
and if a(tfi) is provable from the deduction rules for i = 1,2,... ,n.

The deduction rules of the operational semantics for PAe are shown in
Table 13.4. An empty premise is designated by a • above the line.

Table 13.4. Structural operational semantics of PAe

a

a —> e
a

X —>

x + y a

a

y ->
x + y

X

x- y

x \,

x -y

X

x || y

y

x || y

X

a

a

a

y
a

a

a

a

a

a

/
X

> x'

y

• y '

X

x' -y
a. I

->• v
> y'
• X

• x' || y

• y'

• x\\y'

f

X

c|]_y

Act

Choi

Cho2

Seql

Seq2

Pari

Par2

Line

•
e I

x I
x + y I

y I
x + y I
x I y I

x -y {
x I y I
x || y I

x I y I
x\Ly

xl

X

4

EpT

ChoTl

ChoT2

SeqT

ParT

—> x

LmeT

TerT
y/(x) I

X' || V

418 13 Message and Live Sequence Charts

We seek a means of identifying terms that behave "in the same way". This
form of behavioural equivalence is captured in the notion of bisimulation.
Here, we use the strong formulation of bisimulation, due to Park [387].

Definition 13.11. Strong bisimulation equivalence ~C T(S) x T(U), is the
largest symmetric relation, such that for all x,y £ T(£), if x ~ y, then the
following conditions hold

1. Vx' £ T(S) : x A x' => V £ T{£) : y ^ y' A x' ~ y'

2 . x J. •<=> y J.

Two terms, a; and y, are called bisimilar, if there exists a bisimulation relation,
~, such that x ~ y. •

It follows from the definition that the bisimulation relation is an equivalence
relation, since it is reflexive, symmetric and transitive.

The next step is to show that the bisimulation relation is a congruence.
Having established this result, it is easy to show that the deduction system
in Table 13.4 is a model of the equational specification PA€. This is the same
as saying that the equations for PA€ are sound.

Definition 13.12. (Congruence) Let R be an equivalence relation on T(S).
R is called a congruence if for all n-ary function symbols / £ S

x1Ry1A...AxnRyn =>• f{xi,...,xn)Rf(yi,...,yn)

where xi,...,xn,yi,.-.,y„ £ T{E). •

Definition 13.13. (Baeten and Verhoef [25]) Let T = (S,D) be a term de
duction system and let D = D(Tp, Tr), where Tp are the rules for the predicate
(here J.) and Tr are the rules for the relation (here —>). Let / and J be index
sets of arbitrary cardinality, let ti, Sj,t £ T(S, V) for all i € / and j £ J, let
Pj,P G Tp be predicate symbols for all j £ J, and let Ri,R £ Tr be relation
symbols for all i £ I. A deduction rule d £ D is in path formal if it has one of
the following four forms

{PjSj I j e J} u {uiUyi | i e / }
f(xi,...,xn)Rt

with / £ S an n-ary function symbol, X = {x\,... ,xn}, Y = {yi \ i £ / } ,
and X U Y C V a set of distinct variables;

{PjSj j j £ J} U (frifryj I i € J}

with X = {x},Y = {yi \ i £ / } , and X U F C V a set of distinct variables;

{P j g j I j £ J} U (frifryj I i € 1}
Pf(x!,...,Xn)

13.3 Process Algebra 419

with / £ S and n-ary function symbol, X = {x±,... ,xn},Y = {i/i \ i £ I},
and X U Y C V a set of distinct variables or

{PjSj | j £ J} U {frifrj/i | i € J }
Pa;

with X = {x}, F = {j/j | « £ / } , and X U Y C V a set of distinct variables.
A term deduction system is said to be in path format if all its deduction

rules are in path format. •

Theorem 13.14. (Baeten and Verhoef [25], Fokkink [117]) Let T = (S,D)
be a term deduction system. If T is in path format, then strong bisimulation
equivalence is a congruence for all function symbols in S. •

Proof. See [25].

Lemma 13.15. Let TpAe be the term deduction system defined in Table 13.4.
Bisimulation equivalence is a congruence on the set of closed PAt terms. •

Proof. We show that the deduction rules EpT and Choi are in path format.
Writing 4- in non-fix notation, deduction rule EpT can be rewritten to

H
4(e)

which is in the third form in Definition 13.13. Similarly, Choi can be rewritten
to

\X —} X \

x + y —t x'

which is in the first form.
It is easily verified that the remaining deduction rules are also in path

format, so the lemma follows from Theorem 13.14. •

Having established that bisimulation equivalence is a congruence, we can con
struct the term quotient algebra T(SPA£)/ ~. The reason we want to construct
the quotient algebra is that it is an initial algebra, which is characterised by
being the smallest algebra that captures the properties of the specification.

Recall that given an algebra A with signature £, the quotient algebra
under the congruence =, written A/= is defined as

• The carrier set of A/= consists of the equivalence classes of the carrier set
of A under the equivalence relation =, i.e., \A/=\ = { [x]= \ x £ \A\ },
where [x]= = { y \ y £ \A\ A x = y }.

• For each n-ary function symbol JA in A, there is a corresponding n-ary
function symbol JA/= m A/=, defined by

fA/=([xi] = ,---,[xn] =) = [fA(xi,...,Xn)] =

420 13 Message and Live Sequence Charts

Theorem 13.16. The set of closed PAf terms modulo bisimulation equiva
lence, notation T(SpAe)/ ~, is a model of PAt. •

Proof. Recall that a i7-algebra, A, is a model of an equational specification
(£, E), if A |= E, i.e., if every equation derivable from E holds in A. Because
bisimulation equivalence on PAe terms is a congruence by Lemma 13.15, it
is sufficient to separately verify the soundness of each axiom in EpAe, i.e., to
show if PAe \- x = y, then x ~ y.

We illustrate the procedure by verifying equation Al. We have to show
that there exists a bisimulation equivalence ~* such that x + y ~* y + x. Let
~* be defined as { (x + y,y + x) | x,y £ T(EPAe) } U { (x,x) | x £ T(SPAJ}.
Clearly, ~* is symmetric. We now check the first bisimulation condition, x + y
can evolve only by following one of the two deduction rules Choi and Cho2.
Suppose x —>• x', then x + y —>• x', but then we also have y + x —> x'. By
definition x' ~* x', so the condition is satisfied in this case. The symmetric
case y —>• y' follows from the same argument. Next, the second bisimulation
condition must be checked. Suppose x \., then by ChoTl x + y 4- But in that
case by ChoT2 y + x 4- Again the symmetric case y J. follows immediately.

The above procedure can be applied to the remaining equations to show
that equal terms are bisimilar. Thus, the theorem follows. •

Finally, we show that PA€ is a complete axiomatisation of the set of closed
terms modulo bisimulation equivalence, i.e., whenever x ~ y, then PAe h x =

y-

Theorem 13.17. The axiom system PAe is a complete axiomatisation of the
set of closed terms modulo bisimulation equivalence. •

Proof. Due to Theorems 13.16 and 13.10 it suffices to prove the theorem for
basic terms. The proof for basic terms is given in [26]. •

13.3.3 The Process Algebra PAce

The process algebra PAt introduced in the previous section is sufficiently
expressive to define the semantics of MSCs. However, the extension to LSCs
calls for the introduction of an additional operator.

In this subsection we introduce the extended process algebra, called PAce,
for process algebra with conditional behaviour. PAce is a conservative exten
sion of PAf, meaning that the theory of PAf also holds in PAct. We give an
axiom system and a model of PAce, and show that the axiom system is sound
and complete. Our task now is considerably easier, since most of the results
for PAt can be directly transferred to PAc€.

The signature of PAce, SpAce, consists of

1. two special constants 6 and e

13.3 Process Algebra 421

Table 13.5. Additional equations of PAce

e > x = x CI

6>x = e C2

x + y > z = (x > z) + (y > z) C3

a • x t> y = a • (x t> y) + a, where a £ A\ {a} C4

2. a set of unspecified constants A, for which {5, e} fl A = 0
3. the unary operator y/
4. the binary operators + , •, ||, [|_ and >

The binary operator > is the conditional behaviour operator. The conditional
behaviour of processes x and y is the process tha t either terminates success
fully or executes x followed by y. The other operators and constants have the
same meaning as they do in PAe.

Table 13.5 lists the additional equations EPACC for a £ A and x,y,z £ V.

Table 13.6. Additional term rewriting rules for PAce

e>x—>x RC1

S > x ->• t RC2

x + yt> z —>xt>z + yt>z RC3

a • x t> y —> a • (xt> y) + a RC4

a>y —> a- y + a RC4'

T h e o r e m 13 .18 . The term rewriting system for PAce in Table 13.6 is strongly
normalizing. •

Proof. The proof is based on the proof of theorem 13.9. We add the condi
tional operator to the partial ordering: > > | | > [] _ > A / > - > - | - > e > (5 . We
now show tha t the additional rewrite rules for PAcf satisfy the extension of
the partial ordering to terms.

e > x >iPo e >* x R P O l

>ipo e RP03

422 13 Message and Live Sequence Charts

6 > x >ip0 5 >* x RPOl

>ipo e RP02

x + y > z >iPo x + y >* z RPOl

>ipo {x + y >* z) + (x + y >* z) RP02

>iPo (x+*y>z) + (x+*y> z) RP04, RP05

>ipo (xt>z) + (yt> z) RP04, RP05

a-xpy >ip0 a • x >* y RPOl

>ipo (a • x >* y) + (a • x >* y) RP02

>ipo (a-xt>* y)+a RP02, RP05

>ip0 (a • x >* y) • (a • x >* y) + a RP02

>ipo {a* x)-(x>y)+a RPOl, RP03, RP05

>ipo a • (x > y) + a RPOl, RP03

a>y >iPo a>*y RPOl

>iPo (a>*y) + (a>*y) RP02

>iPo (a >* y)+a RP02, RP05

>iPo (a >* y) • (a >* y) + a RPOl, RP03

>iPo a-y + a RP03 , RP05

Thus, the rewrite system for PAce is strongly normalizing. •

In Theorem 13.10 we showed that every PAe term has an equivalent basic
term. With the definition of a basic term from Definition 13.4, we have the
similar result for PAce.

Theorem 13.19. For every PAce term, s, there is a corresponding basic term,
t, such that PAf h s = t. •

Proof. We have already shown that the subset of PAct that corresponds to
PAf can be reduced to basic terms. Thus, we only need to show that terms
with the conditional operator can be reduced to basic terms.

Because the term rewriting system for PAce is strongly normalizing by
Theorem 13.18, then for every term t, there exists a finite sequence of rewrit-
ings

t ->• t\ ->• h ->• • • • ->• s

where s is in normal form.
We use a proof by contradiction to show that s cannot contain >. Assume

therefore, that s is in normal form and that s = C[x > y\.
If x = C[u > w] then the argument can be applied recursively to show that

u > w or one of it's sub-terms can be reduced, thus contradicting that s is in
normal form. Otherwise, there are five possibilities

13.3 Process Algebra 423

• x = e: then s can be reduced by RC1.
• x = 6: then s can be reduced by RC2.
• x = u + w: then s can be reduced by RC4.

': then s can be reduced by RC5.
• x = a: then s can be reduced by RC5 ' .

All cases contradict tha t s is in normal form. Thus, every PAce term can be
reduced to an equivalent basic term. •

13 .3 .4 S e m a n t i c s for PAc£

The additional semantical rules for PAcf are shown in Table 13.7.

Table 13.7. Extra semantic rules for PAce

Conl
x>y

x > y —> x' > y
a l

a ,

e> x —> x

x { y { x > y J,

x I

x>y I

Con2

Con3

ConTl

ConT2

In order to prove tha t bisimulation is a congruence on the set of closed PAcf

terms we need to introduce a generalisation of the path format used in the
previous section. The generalisation is known as panth format for "predicates
and ntyft/ntyxt hybrid format". It generalises the path format by allowing
negative premises in the deduction rules. It is also a generalisation of the
ntyft/ntyxt of Groote [154], which in tu rn along with the path format is a gen
eralisation of the tyft/tyxt format of Groote and Vaandrager [155]. The names
of these formats are derived from the format of the premises and conclusion
of the deduction rules, see Verhoef [514] for an explanation.

The reference for the following material is Verhoef [514].

Def in i t ion 13 .20 . (Verhoef [514]) Let T = (S,D) be a term deduction sys
tem and let D = D(Tp,Tr), where Tp is the set of predicate symbols and Tr

is the set of relation symbols. Let / , J , K and L be index sets of arbitrary
cardinality, let Sj,ti,ui,Vk,t £ T(S,V) for all i£l,j£j,k£K and I £ L,
and let Pj,P € Tp be predicate symbols for all j £ J , and let Ri,R £ Tr be

424 13 Message and Live Sequence Charts

relation symbols for all i £ I. A deduction rule d £ D is in panth format if it
has one of the following four forms

{PjSj | j € J} U {URiyi | i € 1} U {^P;M; | i € £ } U {vk^Rk \ k £ K}
f(xi,...,xn)Rt

with / £ 17 an n-ary function symbol, X = {x\,... ,xn}, Y = {yi \ i £ / } ,
and X U Y C V a set of distinct variables;

{PjSj | j € J} U {URiVi | i € J} U {^P;M; | ? € £ } U {vk^Rk \ k £ K}
xRt

with X = {x}, Y = {yi | i £ / } , and I U F C ^ a set of distinct variables;

{P j S j | j € J} U {fjifri/i | i € 1} U {-.fjm | I € £ } U {vk^Rk \keK}
Pf(x!,...,Xn)

with / £ S and n-ary function symbol, X = {ici,... ,xn},Y = {yi | « £ / } ,
and X U F C V a set of distinct variables or

{P j S j | j € J} U {fjifri/i | i € 1} U {-.fjm | ? € L } U {ffc^Pfc \keK}
Px

with X = {x}, Y = {yi \ i £ / } , and X U Y C V a set of distinct variables.
A term deduction system is said to be in panth format if all its deduction

rules are in panth format. •

Before we can introduce the congruence theorem for the panth format we need
to define some additional notions.

Definition 13.21. Let T = (£, D) be a term deduction system. The formula
dependency graph G of T is a labelled directed graph with the positive for
mulas of D as nodes. Let PF(H) denote the set of all positive formulas in H
and let NF(H) denote all the negative formulas in H, then for all deduction
rules H/C £ D and for all closed substitutions a we have the following edges
inG:

• for all h £ PF(H) there is an
• for all s^R £ NF(H) there is for all t £ T(S) an edge a(sRt) A cr(C);
• for all -iPs £ NF(H) there is an edge a(Ps) A- a(C).

An edge labelled with a p is called positive and an edge labelled with an n is
called negative. A set of edges is called positive if all its elements are positive
and negative if the edges are all negative. •

Definition 13.22. A term deduction system is stratifiable if there is no node
in its formula dependency graph that is the start of a backward chain of edges
containing an infinite negative subset. •

13.3 Process Algebra 425

Def in i t ion 13 .23 . Let T = (E, D) be a term deduction system and let F be
a set of formulas. The variable dependency graph of F is a directed graph with
the variables occurring in F as its nodes. The edge x —>• y is an edge of the
variable dependency graph if and only if there is a positive relation tRs £ F
with x £ vars(t) and y £ vars(s).

The set F is called well-founded if any backward chain of edges in its
variable dependency graph is finite. A deduction rule is called well-founded if
its set of premises is so. A term deduction system is called well-founded if all
its deduction rules are well-founded. •

We are now ready to formulate the main result of Verhoef [514].

T h e o r e m 13 .24 . (Verhoef [514]). Let T = (E, D) be a well-founded strati
fiable term deduction system in panth format, then strong bisimulation is a
congruence for all function symbols in E. •

Proof. See [514].

L e m m a 13 .25 . Let T = (EPACC,D) be the term deduction system in Ta
ble 13.7, then strong bisimulation is a congruence on the set of closed PAcf

terms. •

Proof. The proof relies on Theorem 13.24.
First, we must check tha t the term deduction system is well-founded. No

variable occurs more than once in the set of premises for any of the deduction
rules, so it is clear tha t there are no cycles in the variable dependency graph.
Hence, the term deduction system is well-founded.

Next, we must show tha t the term deduction system is stratifiable. We
use proof by contradiction. Assume the term deduction is not stratifiable.
Then, there is some backward chain of edges in the formula dependency graph
tha t contains an infinite negative subset of edges. The only negative edge in
the graph is the one tha t stems from ConT2. Thus, there must be a cycle
containing the edge a(x \) —>• a(x > y 4-)- This cycle must also contain at
least one edge originating at the node a(x > y 4-) and terminating at some
node, Z, see Figure 13.24.

• <r(x I)

: n

f
Z "* <r(x>y 4-)

Fig. 13.24. Illustration for proof of congruence

By the definition of the formula dependency graph, the edge a(x > y 4-) —> Z
can only be in the graph because there is a deduction rule with x > y 4- as one

426 13 Message and Live Sequence Charts

of its premises. However, there is no such rule, and we have a contradiction.
Therefore, the term deduction system is stratifiable.

Finally, we must verify that each of the deduction rules is in panth format.
Since any rule that is in path format is also in panth format, we only need
to check the additional rules for PAce, since the remaining rules were shown
to be in path format in the proof for Lemma 13.15. The rule Conl can be
trivially rewritten to

\X —} X \

x > y —>• e
which is in the first panth form. The rule ConT2 can similarly be rewritten to

b4-(s)}
i(x>y)

which is in the third panth form. The remaining three rules are easily shown
to also be in panth format.

Thus, all the conditions of Theorem 13.24 are satisfied and the result
follows. •

Theorem 13.26. The set of closed PAct terms modulo bisimulation equiva
lence, notation T(SpACe)/ ~ , is a model of PAcf. •

Proof. Recalling the proof for Theorem 13.16 we have to show that for each of
the equations in EPACC , PAce h x = y implies the existence of a bisimulation,
~, such that x ~ y.

We give the proof for axiom C4. Let ~* be defined by { (a • x > y, a • (x >
y)+a) \x,y G T(EPACe),a £ A } U { (x,y) | x,y GT(SPACf) }. Clearly, ~ .
is symmetric. We first check the termination condition. By ConTl a • x > y J,,
since a • x / . Similarly, a • (x > y) + a \., since a I (and actually also a-(x>y) I).
Thus, the termination condition for bisimulation equivalence is satisfied.

Now, we check the first bisimulation condition. There are two ways a-x>y
can evolve:

• a-x>y —>• e: then we get a- (x>y) + a —>• e and since e ~* e by definition,
the bisimulation condition is satisfied in this case.

• a-x>y —t x>y: similarly, a- (x>y) + a —>• x>y and again x>y ~* x>y,
so the bisimulation condition is satisfied.

The symmetric case for evolutions of a • (x > y) + a is entirely analogous.
The remaining axioms can be checked with the same technique. •

We now come to the final result showing that the axiom system for PAc€ is
both sound and complete.

Theorem 13.27. The axiom system PAce is a complete axiomatisation of the
set of closed PAce terms modulo bisimulation equivalence. •

Proof. Due to Theorems 13.26 and 13.19 it suffices to prove the theorem for
basic terms. The proof for basic terms is given in [26]. •

13.4 Algebraic Semantics of Live Sequence Charts 427

13.4 Algebraic Semantics of Live Sequence Char ts

In this section a subset of LSCs is given an algebraic semantics using the
process algebra PAc€ from the previous section (Sect. 13.3). The presentation
here is adapted from the description of the semantics of MSC given by Mauw
and Reniers [326].

13.4 .1 Tex tua l S y n t a x of Live S e q u e n c e Chart s

We give a textual syntax for LSC. The textual syntax is used to define the
semantics in the next section. The textual syntax is presented as an extended
BNF (EBNF) grammar below. The nonterminals Iscid, msgid and inst name
are further unspecified identifiers. The nonterminal cond represents a further
unspecified conditional expression.

Table 13.8. EBNF grammar for textual syntax of LSCs

(chart) ::= lsc <lscid> ; <inst def list> end lsc

(inst def list) ::= <inst def> <inst def list> | < >

(inst def) ::= instance <inst name> <prechart> <body> end instance

(prechart) ::= prechart <location> end prechart

(body) ::= body <location> end body

(location) ::= hot <event> ; <location> | cold <event> ; <location> | < >

(event) ::= <input> | <output> | <condition> | <coregion>

(input) ::= in <msgid> from <address> <mode>

(output) ::= out <msgid > to <address> <mode>

(condition) ::= hot condition <cond> | cold condition <cond>

(coregion) ::= concurrent <coeventlist> end concurrent

(coeventlist) ::= <input> <coeventlist> | <output> <coeventlist> | < >

(address) ::= <inst name> | env

(mode) ::= sync | async

We do not explain the mapping from an LSC to the textual syntax further as
this is straightforward. Example 13.22 in Sect. 13.2.2 illustrates the mapping.

428 13 Message and Live Sequence Charts

13.4 .2 S e m a n t i c s of Live S e q u e n c e Char t s

In order to define the semantics of the subset of LSC, we instantiate the
process algebra PAcf by specifying the set of atomic actions. We assume a
set, A0, of atomic actions representing asynchronous (out) and synchronous
(outs) message output

A0 ={out(i,j,m) | i,j £ C((inst name)),m £ £((msgid))}U

{outs(i,j,m) | i,j £ C((inst name)),m £ C((msgid))}

Similarly, we assume a set, A{, of atomic actions representing asynchronous
(in) and synchronous (ins) message input

A{ ={in(i,j,m) | i,j £ C((inst name)),m £ £((msgid))}U

{ins(i,j,m) | i,j £ C((inst name)),m £ C((msgid))}

Conditions are also viewed as actions, so there is a set of atomic actions
representing hot conditions

Ahc = {hotcond(c) | c £ C((cond)) }

and a set of atomic actions representing cold conditions

Acc = {coldcond(c) | c £ C((cond)) }

The set of atomic actions, A, of the instantiated process algebra is then

A = A0UAiUAhcU Acc

The process algebra PAc€ defined above does not place any constraints on
the order of atomic events. In expressing the semantics of LSC the constraint
tha t message input must follow the corresponding message output has to be
expressed. To do this, the state operator \M,C is introduced. It is an instance
of the general state operator [27].

For M C £((msgid)), x,y £ V, a £ A, i,j £ C((inst name)) and
m £ C((msgid)), the state operator is defined by the equations in Table 13.9.
The subscript M records the message identifiers of messages tha t have been
output , but not yet input. The subscript C records the message identifiers of
those synchronous messages tha t have been output , but not yet input. If C is
nonempty and the next event is not the corresponding input event, deadlock
occurs. This ensures tha t no other events can come between the output and
input of a synchronous message. The instantiated process algebra with XM,C
will be referred to as PALSG in the following.

The semantics of LSCs will be defined by semantic functions over the syn
tactical categories of the textual syntax of LSCs. If (cat) denotes a syntactical
category (nonterminal) in the ENBF grammar, then C((cat)) denotes the lan
guage of text strings derivable from tha t syntactical category. The notation
VX denotes the power set of the set X.

13.4 Algebraic Semantics of Live Sequence Charts 429

Table 13.9. Definition of state operator \M,C

^M,c(e) = e
AM,c(e) = 8
AM,C(5) = 5

\M,c(a • x) = 6
\M,c(a • x) = a • XM,<6(X)

\M,c(out(i, env, m) • x) = 5
\M,c(out(i, env, m) • x) = out(i, env, m) • A M , J (I)

^M,c(out(i,j, m) • x) = 6
\M,c(out(i,j,m) • x) = out(i,j,m) • \Mu{m},${x)
\M,c(outs(i, env,m) • x) = S
\M,c(outs(i, env,m) • x) = outs(i, env,m) • \M,$(X)
\M,c(outs(i,j, m) • x) = 5
\M,c(outs(i,j,m) • x) = outs{i,j,m) • \Mu{m},{m}(x)
\M,c(in(env,j,m) • x) = S
\M,c(in(env,j,m) • x) = in(env,j, m) • XM,<6(X)

\M,c(in(i,j,m) • x) = in(i,j,m) • AM\{m},0(aO
\M,c(in(i,j,m) • x) = 5
\M,c(ins(env,j, m) • x) = 5
\M,c(ins(env,j,m) • x) = ins(env,j,m) • \M,$(X)

\M,c(ms(i,j,m) • x) = ins(i,j,m) • \M\{m},<l(x)
\M,c(ins(i,j,m) • x) = S
XM,C(X + y) = \M,C(X) + XM,C(H)

XM,C(X t> y) = \M(X) > \M(V)

if M = 0
if M ^ 0

if a £ A0 U Ai and C ^ 0
if a <£ A0 U Ai and C = 0
if C ^ 0
if C = 0
if m G M or C ^ 0
if m 0 M and C = 0
if C ^ 0
if C = 0
if m G M or C ^ 0
if m <£ M and C ± 0
if C ^ 0
f C = 0
f m G M and C = 0
f m <£ M or C ^ 0
f C ^ 0
f C = 0
f m G M and C = {m}
f m ^ M o r C ^ {m}

The semantic function for LSCs,

SLscl •] : C((chart)) -»• T (^ P ^ S C) ,

is defined by

< 5 L S C [C / I] = \$,$ {{\\i€lnstc(ch) Smstpcli]) > (\\ielnstc(ch) Sinstbodyli}))

where Instc : C((chart)) —>• V(£((inst def))) is the set of instance definitions
in the chart. It is defined by

Instc(lsc (Iscid) ; (inst def list) endlsc) = Instidi((inst def list))

where in turn Instm : C((inst def list)) —> V(C((inst def))) is defined by

Instldl(()) = 0

Instidi((inst def) (inst def list)) = {(inst def)} U Instidi((inst def list))

The semantic function for instance precharts,

Sinstpcl •] : £((mst def)) -> T(SPALSC),

430 13 Message and Live Sequence Charts

is defined by

Sinstpc[instance (inst name) (prechart) (body) e n d i n s t a n c e] =

n(inst name) j- , , > |

^pre-chart i \precnari) I

The semantic function for instance bodies,
^instbody\

] : C((inst def)) -> T(SPALSC),

is defined by
Sinstbody[instance (inst name) (prechart) (body) e n d i n s t a n c e] =

ciiinst name) rr /i j \ n

Sbody '[(body)}

For iid £ C((inst name) the semantic function for precharts,

Stddyl • 1 : ^{(prechart)) -»• T(SPALSC),

is defined by

S^fechart[prechart (location) e n d p r e c h a r t] = S[^ation[(location)]

For iid £ C((inst name) the semantic function for instance bodies,

^ [•] : A (6 o d ! / » - ^ n ^ P A l s o) ,

is defined by

Sb*dylbody (location) e n d b o d y] = Sgd
cationl (location)]

For iid £ C((inst name) the semantic function for event lists,

SiHationl • 1 = C{(locaUon)) -> T (^ P ^ £ S C) ,

is defined by:

" ioco t ton l 0 J = e

Sj"cotton[hot (event) ; (location)] = SeuentI (event)] • Sj"cot,0„[(location)]

^"cotton I c o l d (eweni) ; (location)] = e + [S"^ent\ (event)] • S u t t o n I (location)]

For iid £ C{(inst name) the semantic function for events,

S^entl-j:C((event))^T(SPALSC),

is defined by:

13.5 Relating Message Charts to RSL 431

S"Ventlou^ (msgid) to (address) async] = out(iid, (address) , (msgid))

S"Ventlou^ (msgid) to (address) sync] = outs(iid, (address) , (msgid))

S"ventl*n (msgid) from (address) async] = in((address), iid, (msgid))

S'etientP11 (msgid) from (address) sync] = ins ((address) , iid, (msgid))

S"vent[hotcondition (cond)} = hotcond((cond))

S'^ent[coldcondition (cond)} = coldcond((cond))

S"vent[concurrent (coeventlist) endconcur ren t]
II Qtid [r T|

We EC o E v ents ({coeventlist)) ^ event li^J

where CoEvents : C((eventlist)) —>• V(£((event))) is defined by:

CoEvents(O) = 0

CoEvents {(event) (eventlist)) = {(event)} U CoEvents((eventlist))

13 .4 .3 T h e Live S e q u e n c e Chart E x a m p l e , II

E x a m p l e 13 .23 The Live Sequence Chart, Part II: We end this section with
an example tha t concludes Example 13.22 of Sect. 13.2.2. The example il
lustrates the process of deriving a PAisc term from the LSC diagram of
Sect. 13.2.2. We derive the PALsc term from the textual syntax by using
the semantic function for LSCs. Let the chart be denoted by ch, then the
semantics of ch is given by the PALSC term below.

Sisclchj -
\®$((hotcond(condi) • ov,t{A,B,mi) ||

hotcond (cond \) • in(A,B,mi))
>
(out(A, B, m-i) • coldcond(cond-2) • outs(A, B, 777,4)

(in(A,B,777,2) || in(C, A,m3)) • coldcond(cond-2) •
ins(A,B,m,i) • out(B,C,m-i)

ov,t(C, B, 7773) - (e + in(B, C, 777.5) • (e + ov,t(C, env, m$)))))

13.5 Relating Message Char ts to RSL

In this section, as well as in Sect. 14.7, we briefly review a number of ways of
integrating different specification notations. We then define a subset of RSL
and give an operational semantics based on the semantics for Timed RSL as
defined by George and Xia [132] (see Sect. 15.4). We extend the semantic
rules with behaviour annotations capturing the communication behaviour of

432 13 Message and Live Sequence Charts

the RSL expression. Utilizing these behaviours, we define three satisfaction
relations: one relating a universal LSC to an RSL specification, one relating
an existential LSC to an RSL specification and, in Sect. 14.7, one relating a
statechart to an RSL specification.

13.5.1 Types of Integration

Haxthausen [203] identifies three approaches to integrating different specifi
cation techniques:

• the unifying, wide-spectrum approach
• the family approach
• the linking approach

The wide-spectrum approach provides a complete semantical integration of
the techniques. This was the approach adopted in the development of RSL.
The advantage of this approach is that the same language is used throughout
the development process. The disadvantage is that this approach results in a
complicated semantics.

The idea in the family approach is to define a reasonably expressive base
language and then integrate other techniques by defining extension languages.
The semantics of the extension languages are required to be consistent with
the semantics of the base language. This approach is used in the CoFI [371]
project, for which the base language is called CASL [40]. The advantage of the
family approach is that the semantics is "only as complicated as it needs to
be", in the sense that for a particular project, one uses the smallest language
in the family that has the required facilities.

In the previous two approaches a new semantics that subsumes the se
mantics of the individual techniques is developed. In contrast, in the linking
approach the individual semantics are preserved, and the integration instead
takes the form of a formal relation between the individual semantics. This
approach is particularly suited for specification techniques that are funda
mentally different.

There is also a fourth approach to integration, namely what we call the
combination approach. In this approach one notation is embedded in the other
to extend its expressiveness. An example is the coloured Petri nets, which are
the result of the combination of classical Petri nets with an ML-like lan
guage [238,275] used for inscriptions on arcs and type definitions. Other ex
amples are the combinations of statecharts with CASL and statecharts with
Z mentioned in the introduction.

We believe that of the four approaches described, the linking approach is
most suited for our purpose. By using this approach we do not have to "mas
sage" the familiar semantics of the individual techniques into a new frame
work. Additionally, all the tools (proof system, syntax checkers, code genera
tors) developed for RSL are immediately available in the integrated method.

13.5 Relating Message Charts to RSL 433

In the rest of this chapter we therefore present how to link LSCs with RSL.
In the next chapter we will explain how to link statecharts with RSL.

13.5.2 An RSL Subset

Syntax

The subset of RSL defined below is almost the same as the subset defined
by George and Xia [132] for Timed RSL. We omit the wait construct and
use the standard input and output operators from RSL rather than the cor
responding operators in timed RSL (TRSL, [132]). Also, we exclude the special
notation for recursive functions. For use in establishing the relation to LSCs
and statecharts, we annotate the input and output operators with a message
identifier. Similarly, the parallel and interlocking operators are annotated with
two process identifiers.

We assume familiarity with RSL and therefore skip an informal description
of the operators and constructs of the RSL subset.

The syntactic categories are

• expressions denoted by E
• variables denoted by x
• identifiers denoted by id
• channels denoted by c
• reals denoted by r
• types denoted by r
• value definitions denoted by V
• message identifiers denoted by msgid

• process identifiers denoted by n

The grammar of the subset of RSL is given below.

V ::= id : r | id : r, V

E ::= () | true | false | r | id | x | skip | stop | chaos
| x := E | if E then E else E | let id = E in E | c?msgid | c\msgidE
| E n E | E D E | E „ | | „ E | E „ H „ E | E ; E
j A id : T • E | E E

When in the following we refer to an RSL expression, we mean an expression
within the subset of RSL defined here.

Operational Semantics with Communication Behaviour

Before presenting the rules of the operational semantics a number of defini
tions are needed. A store s is a finite map from variables (x) to values (v):
s = [x I—>• « , . . .] . An environment p is a finite map from identifiers (id) to
values (v) : p = [id i->- v,...]. A closure is a pair consisting of a lambda
expression (A id : r • E) and an environment (p): [A id : r • E, p].

434 13 Message and Live Sequence Charts

Compared to George and Xia [132], we modify the notion of a configuration
to a triple < E,s,n >, where E is an expression, s is a store and n is a process
identifier. Moreover, we augment configurations of the form a op s op P for
°P =ll) II to include three process identifiers, i.e., a op (s,n, 771,772) op /?,
where 771 is the identifier of the process represented by the configuration a,
while 772 is the identifier of the process represented by /?.

Inspired by Haxthausen and Xia [204], the rules of the operational seman
tics are extended to include communication behaviour in the form of a PAisc
term. The transition relation has the form

i _ e /

p r <3!with <j> ~t a w i t h <f>'

where p is the environment, a and a' are configurations, <f> and </>' are be
haviours and e is an event. The intuition is that the configuration a with the
behaviour </> can evolve to the configuration a' with behaviour </>' by perform
ing the event e.

There are two types of events, silent events and communication events.
The silent event, e, denotes an internal change that is not externally visible.
Communication events are either input events of the form c?msgid or out
put events of the form c\msgidE. The symbol o is used to denote any event,
i.e., a situation where the transition is the same for a silent event and for a
communication event.

The only operational rules that change the communication behaviour are
the rules for input, output, communication across a parallel or interlocking
combinator and merging of two parallel processes. In all other rules, the com
munication behaviour is preserved.

The process identifier, n, stored in a configuration is used to name pro
cesses in PAisc events. This information is needed to identify the sender and
recipient in message input and message output events in the behaviours.

The rules for the parallel and interlocking combinators apply the function
merge that merges the stores on either side of a parallel composition. It is
defined in RSL notation by:

value
merge(s,s',s") = s'f[xH>s"(x) | x £ dom(s")n dom(s) 's(x)/s"(x)]

In the rules below we use a notation of the form:

C

P \- C2

C3

shorthand for the two rules:

C

P \~ C2

and:

13.5 Relating Message Charts to RSL 435

C

P \~ C3"

Also, for rules without premises, i.e., axioms, we write the symbol • above

the line.
Tables 13.10-13.23 each contain one rule. They are:

Basic Expressions
Configuration Fork
Look Up
Sequencing
Assignment
Input
Output
Internal Choice
External Choice
Parallel Combinator
Interlocking Combinator
Function
Let Expression
If Expression

Table 13.10
Table 13.11
Table 13.12
Table 13.13
Table 13.14
Table 13.15
Table 13.16
Table 13.17
Table 13.18
Table 13.19
Table 13.20
Table 13.21
Table 13.22
Table 13.23

Table 13.10. Basic expressions

p

p

h

h

<

<

skip, s

chaos,

n

s,

•
-^with <p

Tl > w i t h

•
<P ^

(),s,n >

< chaos,

with

s,n

4>

^ w i t h 4>

Table 13.11. Configuration fork

•
p h < Ei op E2,s,n > w i t h 0 —• < Ei, s,n > w i t h <p op < E2, s,n > w i t h <p

where op € {|~l>0}

436 13 Message and Live Sequence Charts

Table 13.12. Look up

p

p

t[«

h

d

<

!->• v]

id, s

h

t[

<

d

id, s

i-¥ v]

n

n

D

-^with

-^with

4>

D

4>

e

e

—>

<

<

V

V

S, Tl ^ w i t h (p

s f [id '-H, n ^ w i t h 4>

Table 13.13. Sequencing

D

P

P

P

h < E1;E2,s,n >with <#> ^> (< Ely s, n >; E2) wi th (p 1

P I" « w i t h <p ->• « w i t h 0'

h (a ; i ?) w i t h 0 —> (t t ' ; B) w i t h f

a
h (< t;, s,n >; S)wi th <#> -̂ » < E, s, n >with <#>

Table 13.14. Assignment

p \- < x := E,s,n >with <p -^ (x :=< S, s, n >)with

P l~ Qwith 0 —r Ctwjth 0'

p h (x := a)with <#> —• (a; := a') with 0'

•
p h < w, s, n >with 0 -̂ » < (), s f [a; i-¥ v], n >with <#>

13 .5 .3 R e l a t i n g Live S e q u e n c e Chart s to RSL

Syntact ica l R e s t r i c t i o n s

There are a number of problematic issues with conditions in LSCs. For tha t
reason we choose to omit hot and cold conditions when relating an RSL spec
ification to an LSC. This is done by removing all condition events from the
PAisc term prior to checking satisfaction.

13.5 Relating Message Charts to RSL 437

Table 13.15. Input

•
P I - \ C . msgid j S, 71 - > w i t h <p r \ Vf S, 71 ^ w i t h <p • ins(env,n,msgid)

Table 13.16. Output

•
p \~ < c\magidE,s,n >with 4, —> {c\msgid < E,s,n >)with 4,

9 ^~ "with 4, ~» «with 4'

P I - \CmsgidQ^Jwith. <p r \CmsgidCX J w i t h <p'

n
1 / 1 \ msrp.d <- / \

P ' \ C msgid ^ V^S^Tl - > J w i t h <p ' \ U l ^? " - ^ w i t h <p • outs(n,env, msgid)

Table 13.17. Internal choice

•
p h (Q 11 /3)with 4>

e
—•

e
—•

G^with

Pwi th

4>

4>

Since RSL only supports synchronous communication on channels, we re
strict the relation to cover synchronous messages only. More specifically, if an
LSC contains asynchronous messages, no RSL specification can satisfy it.

Sat i s fact ion R e l a t i o n

Before we can define what it means for an RSL expression to satisfy an LSC,
we introduce some auxiliary notions. In most cases we do not want an LSC to
constrain all par ts of an RSL specification. Typically, we only want to constrain
the sequence of a limited number of messages. For this reason we label each
LSC with the set of events it constrains. We allow this set to contain events
tha t are not mentioned in the chart. For an LSC ch this set is denoted Cch-

Below we need an event extraction function tha t yields the set of those
event identifiers tha t occur in the PALSC te rm for an LSC. The event extrac
tion function, events : T(SpACe) —>• VEvent, is defined as

438 13 Message and Live Sequence Charts

Table 13.18. External choice

p

p

p

h

h

h

1_ " ,
P <~ O w i t h 4> —>

C l w i t h <p Q / 3 w i t h tp

P w i t h ^ [J Q ^ w i t h <p

p I - Q w i t h 0

i t h if

/ ? w i t h tp Q a - w i t h <p

< v,s,n >with <p

a w i t h <f>' D < v->s->

a w i t h </>'
a

a

e
—•

e

e

i
*-*with <p'

f

*-*with <p'

a w i t h </>'

^ w i t h (p' U P w i t h <p

P w i t h ^ U ^ w i t h <p'

a
D awith <j>' - ^ <v,s,n >with <p

n >with <p —> < Vy s, n > w i t h <p

events (e) = 0

events(in(ni,n2,m)) = {m}

events(out(ni,7i2,7n)) = {m}

events (ins (ni,ri2,m)) = {m}

events (outs (n\,n2,m)) = {m}

events(hotcondition(cond)) = 0

events(coldcondition(cond)) = 0

events(X • Y) = events(X) U events(Y)

events(X + Y) = events(X) U events(Y)

events(X || Y) = events(X) U events(Y)

events(X > Y) = events(X) U events(Y)

remcond(e) = e

As explained above, we do not check LSC conditions when making the relation
to RSL. The function removing conditions, remcond : T(SPACC) —>• T(SpACe),
is defined as:

remcond (in(n\,n2,m)) = m(ni,ri2,m)

remcond (out (ni,n2,m)) = out(ni,n2,m)

remcond (ins (ni,n2,7n)) = in(n\,n2,m)

remcond (outs (ni,n2,7n)) = out(n\,n2,m)

13.5 Relating Message Charts to RSL 439

Table 13.19. Parallel combinator

•

p

p

p

p

p

p

y- < Ei n i | | „ 2 E2,s,n > w i t h 4,

h

h

h

h

h

1_ „ c'-n,.V,idV
i

"wi th 4, (s , n , m , n 2) /3,

/3with v || (s, n , m , n 2) || a .

p h a v

"wi th 4, (s , n , n i , n 2) /3,

/3with v || (s , n , n i , n 2) || "

"wi th 4> (» , n , m , n 2) | |<

< V, s', 112 > w i t h <p\\ (» , 11,

p h ttw

"wi th 4, (» , n , n i , n 2) s^

s with *, II (s , n , n i , n 2) || a .

< v, s",n\ > w i t h 4>|| (s , n ,

s with v II (s , n , m , n 2) | |<

^> < Ex

" w i t h

v i t h v

fl/ith 0

iMth <£

» l t h v

j v i t h 0

0'

0

0

0

V, s ' , 712 >

n i , n a)

/ i t h <£

„ i t h ¥

w i t h 0

m , n2

», »i >wi th 4>|| (s , n , n i , n 2) | |< -Bi, s, n 2 > w i t h (4

P H /3with v > / 3 w i t h v ,

"wi th 4, • . . ((n i , n 2 l i i) II (s , n , n i , n 2)

/ ^ w i t h y> • i . (« l > » 2 , » ' l i ')

/3with ,, • ^(na.nj.irf) II (s , n , n i , n 2)

II "wi th </> • ,„.t(n2,n1,m..,;;,i)

" w i t h </>'

"wi th «' II (« , n , n i , n 2) || /3with *,

/3with ,, II (* , n , m , n 2) || a'„ith ^

a

with v A « w i t h </> || (s , n , m , n 2) || s^ , i t h v

c^with <*. -^ s with ^ (s , n , m , n 2) a w i t h $

A
A

4

)n
v, s", ni >

" w i t h 0 '

"wi th «' II (* , n , n i , n 2) || s'„ith v

«with *, II (s , n , m , n 2) || « ^ i t h ^,

a

s with v -^ < v,merge(s,s',s"),n > w i t h </>|l<̂

with 4, A < v, merge(s, s'',»"), n > w i t h </>|l<̂

remcond(hotcondition(cond)) = e

remcond(coldcondition(cond)) = e

remcond(X • Y) = remcond(X) • remcond(Y)

remcond(X + Y) = remcond(X) + remcond(Y)

remcond(X \\ Y) = remcond(X) || remcond(Y)

remcond(X > Y) = remcond(X) > remcond(Y)

Definition. A PALSC term, x, can simulate a PAce term, y, notation x >; y,
if

y 4-=>- x 4- A Vy' : j / -^ y' ^-3x' : x -^ x' Ax' yy'

440 13 Message and Live Sequence Charts

Table 13.20. Interlocking combinator

•

p

p

p

p

p

p

y- < Ei ni\\n2E2,a,n > w i t h 4, - ^ < -El,

h

h

h

h

h

c'-mnnid" t _ ,

"wi th 4> tt (» , n , m , n 2) \\ /3with v

/3with v tt (», n , n i , n 2) tt "wi th </>

P l~ "wi th </>

"wi th (4 tt (s , n , m , n 2) tt Avith ^

/3with v tt (si n,m,n2) tt "wi th </>

"wi th (4 tt (» , n , m , n 2) tt < " , * ' ,

<*'

>̂

>̂

4

« 2

< v, s',n2 >wi th v # (» , n , m , n 2) t

P H "wi th </>

"wi th « tt (* , n , n i , n 2) tt *with v

«with *, tt (s> " . " i . ™2) tt "wi th «

A

^

"

s, »i >wi th 4, tt (* , n , n i , n j)

)t < Ei,s, n2 > w i t h </>

P H / 3 w i t h *, > / 3 w i t h v ,

"wi th « • . , ((M , „ 2 ,M) tt (s , n , m , n 2)

tt P w i t h ^ • /n(w1,w2,m.*fl'^)

/3with v • i„(n2,ni,;.d) tt (s , n , m , n 2)

tt " w i t h 4, • . a i (n 2 , n 1 , » . . j i i)

" w i t h 4>'

"wi th «' tt («. " . "i> «a) tt /3with ,,

/3with v tt (* , n , m , n 2))t "wi th </><

n

>with v ^ "wi th 4, tt (s, " , " i , n 2) tt s with v

"wi th </> ^ * w i t h v tt (» , n , n i , n 2))t "wi th </>

w i t h 0 '

"wi th «' tt (s , n , n i , n 2))t s w i t h v

«with *, tt (s, n , m , n 2) tt "wi th </><

n

< v, s " , n i > w i t h (4 tt (s , n , n i , n 2))t s w i t h ^ 4- < u, merge(s, s',s"),n > w i t h <*||v

s with *, tt (s> " . " i . ™2) tt < v, s", m >with ,̂ 4- < t), merge(s, s'',»"), n > w i t h <*||v

Definition. A PALSC formula c&/i is called a communication behaviour of
an RSL expression i? wrt. an initial store SQ, if and only if there exists a
configuration a, such that

[] h < E, s0,n >with e (A)* awith c6/i

where (A)* denotes the transitive closure of the transition relation. If a is of
the form < v,s,n >, where v is a value literal or a lambda expression, cbh is
called a terminated behaviour. •

We are now ready to define the satisfaction relations for universal and exis
tential LSCs.

13.5 Relating Message Charts to RSL 441

Table 13.21. Function

•

p

p

p

p

p

p

p

p

h < Ex E2,s,n > w i t h 4, - ^ (< -Ei, s , n > E 2)wi th 4,

P H "wi th 4> " ^ "wi th 4,'

H (a -B)with 4, A (a ' - B) w i t h ^,

a

h < A id, : T • E, s, n > w i t h 4, - ^ < [A id : r • -B, p] , s, n > w i t h </>

a

h (< [Aid : T • - B i , p i] , s, n > -B2)with .̂ - ^ ([A irf : r • £ 1 , p i] < E2, s, n >) w i t h 4,

P H "wi th 4, A a ^ . t h ^,

h ([Aid : r • B , p i] a) w i t h 4, A ([A «d : T • -B, p i] a ') w i t h 4,'

a

h ([Aid : T • £ , p i] < v, s, n >) w i t h 4, A ([A id, : r • E, p i] v) w i t h 4,

pi t [id i-> -y] H a w i t h 4, A « w i t h 4/

h ([Aid : r • a , p i] «) w i th </> ^> ([A id : T • a ' , p i] - y) w i t h ^

pi t [id M--u] h a w i t h (4 A < i / , s , n > w i t h ^/

h ([Aid : r • a , p i] «) w i th 4 ^ < « ' , s, n > w i t h 4,1

Definition. (Satisfaction for universal LSC) An RSL expression E satisfies a
universal LSC, ch, if for any initial store, SQ, for any terminated behaviour,
cbh, of E there exists a PALSG term </>prefix and a PALSG term </>suffix, such
that

events (<f>preRx) C\Cch = 0

evente(>suffix) n Cc/j = 0

and
^prefix • remcond(SLSclchJ) • Suffix h cbh

Definition. (Satisfaction for existential LSC) An RSL expression E satisfies
an existential LSC, ch, if for any initial store, so, there exists a terminated
behaviour, cbh, of _E, a PALSC term </>prefix and a PALSC term < ŝuffix, such
that

442 13 Message and Live Sequence Charts

Table 13.22. Let expression

•

p

p

p

h < let id = Ei in _B2,s,n >with </> —l (let id =< Ei,s, > in -E2)with 4,

p r Qwith 4> —> a w i t h 0'

h (let id = a in i?)with <#> —> (let id = a ' in -B)with ^

a
1- (let id =< v,s,n> in S)w i th <#> -̂ » < -B[w/id], s, n >with 0

Table 13.23. If expression

•

p

p

p

p

h

h

h

h

< if E t h e n E\ e l se E2,s,n > w i t h 4, —> (if < E, s,n > t h e n i ^ e lse -B2)w i th </>

P H "wi th 4, A a V t h ^,

(if a t h e n E\ e l se -B2)with (4 —• (if a ' t h e n i ^ e lse B 2) w i t h ^/

a

(if < t r u e , s,n > t h e n i ^ e lse i?2)with </> —> < -Ei, s, n > w i t h 4,

a
(if < false , s,n > t h e n _Bi e lse i?2)with </> —> < -B2, s, n > w i t h 4,

events(<f>preRx) C\Cch = 0

evente(^ su f f ix) n Cc/j = 0

and
"̂ prefix • remcond(SLSclchJ) • Suffix >z cbh

13.5 .4 Check ing Sat i s fact ion

The satisfaction criteria defined in Definition 13.5.3 require checking tha t
all behaviours of the RSL expression can be simulated by the semantics of
the corresponding chart. In some situations the RSL expressions may have
infinitely many behaviours, so in tha t case, this simple form of checking is not
possible.

13.6 Communicating Transaction Processes (CTP) 443

13.5 .5 Tool S u p p o r t

Actually checking an RSL specification against a behavioural specification in
the form of LSCs can be very tedious. For tha t reason, the methods defined
above are of limited applicability without tool support . Tools should be de
veloped to extract the semantic terms from LSCs and RSL specifications and
for checking the satisfaction relations. It would also be convenient to have a
way of translating an LSC into a skeleton RSL specification. An automatic
conversion would force the software engineer to use one particular style.

13.6 Communicating Transaction Processes (CTP)

Section 13.6 is the joint work of Yang Shaofa and Dines Bj0rner. Yang provided
the Dining Philosophers example, Sect. 13.6.3, and the formalisation, Sect. 13.6.4.

We refer to the published paper [439]. C T P s are formed by a relatively simple
and elegant composition of Petri net places and sets of message sequence
charts.

13.6 .1 In tu i t ion

CTPs are motivated by considering first a Petri net such as the one de
picted in the upper half of Fig. 13.25. The conditions (or places) are labelled
Spll, Spl2, Spi , Sp2i, Sp22, Sp3i and SpS2. The events (or transitions) are la
belled T i , T 2 and T3. Our labelling of places reflects a pragmatic desire to
group three of these (Sp1 , Spt , Spt) into what we may then call control
states of a process P i , two of these (Sp2 , Sp2) into control states of process
Pi and the remaining two (Sp2 , Sp2) into control states of process J 3 .

Fig. 13.25. Left: a Petri net. Right: a concrete CTP diagram

444 13 Message and Live Sequence Charts

Secondly we consider each event as a message sequence chart. T\ has two
instances corresponding to processes Pi and P^. For tha t (and the below
implied) message sequence chart (s) messages are being specified for commu
nication between these instances and internal actions are being specified for
execution. The firing of event T\ shall thus correspond to the execution of this
message sequence chart. T2 has two instances corresponding to processes P?
and Pz and T3 has three instances corresponding to processes P\, P? and J 3 .

As for condition event Petri nets, tokens are placed in exactly one of the
control states for each process. Enabling and firing take place as for condition
event Petri nets. Transfer of tokens from input places to output places shall
take place in two steps. First when invoking the transition message sequence
chart where tokens are removed from enabling input places, and then when all
instances of the invoked message sequence chart have been completed (where
tokens are placed at designated output places).

Thirdly we consider each event as a set of one or more message sequence
charts with all message sequence charts of any given event involving the same
processes. In doing so, we refine each event into a transaction schema. There is
now the question as to which of the message sequence charts is to be selected.
Tha t question is clarified by the fourth step motivating CTPs .

Fourthly we predicate the selection of which message sequence charts are to
be selected once a transaction schema is fired by equipping each of the message
sequence charts with a guard, tha t is, a proposition. Associated with each
process there is a set of local variables tha t can be, and usually are updated by
the internal actions of the instances. The propositions are the conjunctions of
one proposition for each of the instances, i.e., processes. A message sequence
chart of a transaction schema is enabled if its guard evaluates to t rue. If
two or more message sequence charts are enabled one is nondeterministically
(internal choice) selected. A transaction schema is enabled if its input places
are marked and at least one of the message sequence charts in this transaction
schema is enabled. If a transaction schema has no message sequence charts
enabled, then we will not enter this transaction schema.

We are now ready to introduce CTPs properly.

13.6 .2 N a r r a t i o n of C T P s

C T P D i a g r a m s

Consider Fig. 13.26. It is a generalisation of the right part of Fig. 13.25 which
itself is just a reformatting of the left part of Fig. 13.25.

A C T P diagram consists of an i n d e x e d set of s e t s of process (control)
s t a t e s , an indexed set of transaction schemas, an indexed set of sets of process
variables, and a "wiring" connecting control states via transaction schemas to
control states. (The wiring of Fig. 13.26 is shown by pairs of opposite directed
arrows.)

13.6 Communicating Transaction Processes (CTP) 445

Process

Control

States

"Wir ing"

Transaction
Schemas

Process P1

si_p1

o o o
Sj_p2

o o o

1 ..
P1 || P2 || Pq

Process Pq

sk_pq

o o o

,

""]

PI II Pq

Process • • » • D D D
Variables

n

Variables of P1 Variables of P2

Fig. 13.26. A schematic CTP diagram

D D •
Variables of Pq

C T P P r o c e s s e s

Figure 13.26 suggests a notion of processes, here named pi, P2, • • •, Pq (m

Fig. 13.26 P I , P2, . . . , Pq). It also suggests a number of transaction schemas,
here named TSi, TS2, • • •, TSS. The figure then suggests tha t the processes
have the following control states:

-Pi ' Vspi i spi i • • • i spi J

P2 ' 1 S P 2 ' S P 2 ' • • • ' SP2 J

Pq '• \spq JPq' • > bVq S

in Fig. 13.26: s i_p l ,
in Fig. 13.26: sj_p2,

in Fig. 13.26: sk_pq.

The schematic C T P diagram indicates some transaction schema input states
for process pi\

i s 1 s2
1 p . ' Pi

s m i l
bPi J '

by an arrow from the pi control states to TSj and some transaction schema
output states for process pi by an arrow from TSj (back) to the pi control
states. These two sets are usually the same.

• The set of all allowable, i.e., specified state to next state transitions can
be specified as a set of triples, each triple being of the form:
• (s,tsn,s') for process pj : (sPi,tsn,s')

where tsn names a transaction schema and where s and s' belong to a process.

• If tsn supports processes Pi, Pj, ..., Pk, then there will be triples:

* \ s P i i * s n , s
V i) i \ s P j T t S n , S p .) , . . . , \Spk,ZSn,Spk)

Figure 13.27 hints at such transition triples.

446 13 Message and Live Sequence Charts

Process P1 Process P2

Control O G O G
States (1 L.

Process Pq

sk-pq

o o o

Transaction
Schemas

TS_1 TS.

{S1ITS 1,s1|)
(s2k,TS_1.s2m)

II |

• • •" • • • "• •

Variables of P1 Variables of P2

Fig. 13.27. State to next state transitions shown for TS_1 only

C T P Transact ion S c h e m a s

Figure 13.28 indicates tha t a transaction schema consists of one or more t rans
action charts.

PI ii PI ii PK
Pi Pj Pk Pi Pj Pk Pi Pj Pk

Transaction Chart # i.1 Transaction Chart # i.2 Transaction Chart # i.m

T r a n s a c t i o n S c h e m a # i

Fig. 13.28. Transaction charts of a transaction schema

Each transaction schema, TS{, thus contains one or more transaction charts:
Chj (for suitable i's and j ' s) . 2 Each transaction chart contains one simple
message sequence chart. Instances (i.e., vertical lines) of the message sequence
charts are labelled by distinct process names. All transaction charts of a t rans
action schema contain message sequence charts whose instances are labelled
by the same set of process names.

C T P Transact ion Chart s

To each transaction chart there is associated a process name indexed set, G3
n,

of propositions for TSn t ransaction chart Ch3
n. See Fig. 13.29.

2In Fig. 13.28 Ch\ is represented by Transaction Chart # i.j.

13.6 Communicating Transaction Processes (CTP) 447

Simple CTP Message Sequence Charts

Each instance of each simple message sequence chart of each transaction chart
of each transaction schema may contain zero, one or more internal actions,

• ° f >
and input/output events:

(input value offered on channel from process pj to process pi and assigned to
process p^s variable v"), respectively,

• (Pi-tPiV-el

(output value of expression e\ over variables of process pi from process pi to
process pj). The variables of respective processes are shown as square boxes
in Fig. 13.26.

ch-cn
pi: prop-ci

Pi

(Tjri]

(1)

(31

r

k pi

ei => vj

vi <= ej'

pj: prop-cj

P

E
(2)

(41

i

(i i

r
(3)

ej => vk

vj ' <= ek

pk: prop-ck

P k

(21

a-Pk

3
(4)

Fig. 13.29. A transaction chart with a simple message sequence chart

Figure 13.29 shows a transaction chart with a simple message sequence
chart which prescribes the interaction among three processes, pi, pj and pk-
Instance pi shows the following sequence of events:

• {aPi , (Pi^PjV-ei , a'pi , {pi^PjY-Vi , a'p\)

The output/input messages (£,£') [or (P,1)], shown as labelled arrows: —> or
i— correspond to the pairs of (output,input) events in respective processes.

(1 e%—¥ 1'): the pair of ((pi ->• Pj)\eu (pj <- Pi)?Vj),

448 13 Message and Live Sequence Charts

(2 —> 2'): the pair of ((pj ->• PkV-ej, (pk <- Pj)?-vk),

(3' m ^ 3): the pair of ((pj -> Pi)\e'^ (pt «- Pj)?Vi),

(4' %^- e* 4): the pair of ((pfc ->• Pj)\ek, (pj <- PkY-v)).

E n a b l e d C T P Transact ion Char t s

If the transaction schema is labelled with process names {pi,Pj,Pk} then one
transition from control states of each of processes pi, pj and pk leads into each
transaction chart of tha t transaction schema. In order for a transaction chart
(of a transaction schema) to be enabled the following two conditions must be
fulfilled:

• One each of the input control states of processes Pi,Pj and pk must be
marked. Tha t is, one each of si,., si., si™1, and si,., si., s™1, and ? Pt? Pi? ? Pi ? Pj? Pj? ? Pj ?

slk' s'i>k' • • •' s pl 1 ' m u s t be marked. More precisely, all the control state
preconditions of the transaction schema to which this chart belongs are
fulfilled.

• The indexed set of propositions for the transaction chart must all evaluate
to true.

In the example of the transaction chart of Fig. 13.29 the indexed set of proposi
tions are the three propositions prop-ci, prop-cj and prop-ck. Each proposition
for any process pi of any transaction chart may contain variables, if so they
must only be variables of tha t process.

E n a b l e d Versus Invoked S c h e m a s and Chart s

A distinction is being made between being enabled and being invoked. An
invoked schema or chart must be enabled. Enablement means tha t the con
ditions for invocation are satisfied. Invocation means tha t an actual interpre
tat ion (i.e., execution) takes place with all a t tendant state changes possibly
occurring.

D e t a i l s of Invoca t ion and E x e c u t i o n

We elaborate a bit further on the interpretation of a C T P program (i.e.,
diagram). Initially control rests in the process initial control states. No trans
action schema is invoked.

Now zero, one or more transaction schemas may be enabled. For a t rans
action schema to be enabled the following must hold. One or more of the
transaction charts of this transaction schema must be enabled. Tha t is, their
guards must hold. Tha t is evaluate to t rue in the initial s tate of the process
variables. One or more enabled transaction schema may now be invoked pro
vided tha t no two of them share processes. Invoking an enabled transaction

13.6 Communicating Transaction Processes (CTP) 449

schema means the following: One of its enabled transaction charts will be non-
deterministically selected. To thus invoke an enabled and selected transaction
chart means that the marking (i.e., the tokens) of the enabling process control
states will be removed and "converted" into an instance ("program point")
pointer for each of the process instances of the enabled and selected transac
tion chart, and those pointers are initially set to zero (0), i.e., the beginning,
the "entry", of the transaction chart instances.

The preceding paragraph outlines a step (in this case a zeroth step) of
CTP program interpretation (i.e., execution).

Now an interpretation of the instances of the enabled and selected trans
action chart takes place. Here we refer to the description of the semantics
of BMSCs (basic MSCs) earlier in this chapter. A step is made up from ei
ther interpreting an internal action (which usually will update process control
variables and hence atomic propositions), or interpreting an output event, or
interpreting an input event. The instance program pointers are advanced one
position for each such interpretation. When all instance program pointers of
a specific transaction chart (of a specific transaction schema) reach their re
spective last positions, then the transaction chart and its transaction schema
are disabled and the designated output control states are marked.

At the same time as a step related to one particular enabled and invoked
transaction schema and a transaction chart within it is being performed sim
ilar steps may be performed, concurrently, at or within other enabled and
invoked transaction schemas and transaction charts within them. So, as an
illustration, as one step of interpretation occurs properly within a transaction
chart of one transaction schema, another such step of interpretation may oc
cur properly within a transaction chart of another transaction schema, and
yet a third transaction chart may be enabled, selected, invoked, and so on.

CTP Transitions

The semantics of CTP calls for transitions from input control states via en
abled transaction schemas to (output) control states. Figure 13.27 hinted at
such transitions.

An invoked transaction chart will then result in the appropriate input
states no longer being marked, in the execution of the simple message sequence
chart, from top to bottom, in the updating of process variables (as the result
of execution of each of the instances of the simple message sequence chart),
and, once message sequence chart execution terminates, in the marking of one
appropriate output state for each of the processes labelling that transaction
chart.

Which of the output states, for processes Pi,Pj and pk, that is,

• which of s'p., s'p., . . . , s'™', and
• which of s'1, s'2 , . . . , sPj', and

450 13 Message and Live Sequence Charts

are selected is determined by which of the

• \spi' " i n spi)

transition rules had their

part apply in the invocation of transaction schema tsn to which this chart
belongs.

For technical reasons no two otherwise distinct transition rules (sj., tsn, ss
Vi)

and (s%., tsn,s^.) can have identical first pairs, i.e., 7 / ^ and cannot have
identical last pairs, i.e. 6 ^ ip. Thus we assume that each transaction schema
tsn, has exactly one input and one output control state for each process.

The process control states are like places (conditions), and the transaction
schemas are like transitions in a condition event Petri net.

Firing (i.e., invocation) means that one or more enabled transaction
schemas (that do not share processes) are selected, that is, one or more trans
action schemas for which the guards of one or more transaction charts evalu
ate to true (i.e., is enabled) — and that within each such selected transaction
schema one such (enabled) transaction chart is selected (invoked). The invoked
transaction charts are then "executed", as would a normal message sequence
chart. Once any such message sequence chart execution has completed, the
transition completes by marking the designated output control states. Since
several transaction schemas may be enabled in this way one or more are cho
sen nondeterministically. And since within each transaction schema several
transaction charts may be enabled one is chosen nondeterministically.

13.6.3 A Dining Philosophers Example

Before we formalise the diagrammatic language of CTPs we bring in an ex
ample.

Example 13.24 Dining Philosophers: This whole section is one example, but
we omit shading. •

We model the classical dining philosophers problem using CTP. For simplicity,
we consider the setting of just two philosophers. As illustrated in Fig. 13.30,
two philosophers P I and P2 are seated on opposite sides of a round table and
two forks Fl and F2 are placed between P I and P2.
A plate of spaghetti is placed at the centre of the dining table. A philosopher
alternates between eating and thinking. To eat the spaghetti, a philosopher
must try to grab (the) two forks (here P I and P2). And when a philosopher
finishes eating, he puts down both forks. The problem is to devise a strategy
of using the forks such that the philosophers do not suffer starvation.

The CTP program for the dining philosophers problem is shown in
Fig. 13.31.

13.6 Communicating Transaction Processes (CTP) 451

Fig. 13.30. Two dining philosophers table with forks

Process P1 Process F1 Process F2 Process P2

Process
Control

States

F1 || P2 F2||P2

TS_1 TS_2 TS_3 TS_4 TS_5 TS_5' TS_4' TS_3' TS_2' TS_1'

Process • • n n n n n n n n n n
V a r i a b l e s isLeftFork isRightFork isHungry isPIReq heldBy isP2Req isPIReq heldBy isP2Req isLeftFork isRightFork isHungry

Variables of P1 Variables of F1 Variables of F2 Variables of P2

Fig. 13.31. Two dining philosophers CTP program

There are four processes P I , P2, Fl and F2 corresponding to the two philoso
phers and the two forks. In transaction schema TS_1, PI tries to grab its
left fork F l . In TSJ2, PI tries to grab its right fork F2. TS_3 represents
the behaviour where P I is eating (after getting hold of both forks P I and
P2). TS_A represents the behaviour where P I puts down both forks (after
finishing eating). Finally, TS_b models the behaviour where P I is thinking.
Analogously, transaction schemas TS_V, TSJ2', TS_3', TS_4', TS_5' rep
resent the behaviours where P2 tries to grab its left fork P2, P2 tries to grab
its right fork P I , P2 is eating, P2 puts down both forks, and P2 is thinking.

The initial control states of each process are shown by darkened places.
The process P I has three variables, isLeftFork, isRightFork and isHungry, all

of which are of type Bool. These three variables indicate whether P I holds its
left fork, whether P I holds its right fork, respectively whether P I is hungry.
Initially, P I holds neither fork and is hungry. The variables of P2 are set up
similarly to P I .

The process P I has three variables isPIReq, heldBy and isP2Req. The
variable isPIReq (respectively isP2Req) is of type Bool and records whether
there is a request from P I (respectively P2) to hold P I . The variable heldBy is
an enumerated type variable that takes one of the three values mkNil (meaning

452 13 Message and Live Sequence Charts

tha t F l is held by neither philosopher), mkPl (meaning tha t Fl is held by
P I) and mkP2 (meaning tha t F l is held by P2). The variables of F 2 are set
up similarly to F l .

In Fig. 13.32 we show the transaction charts of TS_1.

P1 || F1
P1:isHungry F1: heldBy = mkNil P1:isHungry F1: heldBy = mkNil P1:isHungry F1: heldBy = mkNil
A-isLeftFork A- isPIReq A-isLeftFork A- isPIReq A-isLeftFork AisPIReq

true => isPIReq

isLeftFork<= true

heldBy := mkP1
I

isPIReq := false

true => isPIReq

isLeftFork<= false

isLeftFork<= true

heldBy := mkP1

|
isPIReq := false

Transaction Chart 1.1 Transaction Chart 1.2 Transaction Chart 1.3

Fig. 13.32. Transaction schema TS_1

There are three transaction charts 1.1, 1.2, 1.3. Chart 1.1 models the scenario
tha t F l grants a fresh "grab" request by F l , while chart 1.2 models tha t F l
rejects a fresh "grab" request by F l (but remembers this request). The chart
1.3 models tha t F l grants a previously recorded request from F l . Obviously,
the transaction charts of TS_2 are similar to those of TS_1 and thus we omit
the details of TSJ2.

Transaction schema TS_3 is shown in Fig. 13.33.

PI
P1: isLeftFork
A isRightFork

isHungry := false

Transaction Chart 3.1

Fig. 13.33. Transaction schema TS_3

Since it only involves F l , we would have only internal actions of F l . In
particular, the activity of eating is modelled by setting isHungry to false.

The transaction schema TS_A is shown in Fig. 13.34.

13.6 Communicating Transaction Processes (CTP) 453

P1: isLeftFork
A isRightFork F1: heldBy=mkP1

mkNN =>heldBy

isLeftFork := false

mkNM => held By

isRightFork := false

Transactio n Chart 4.1

P1

F2: heldBy=mkP1

II F1 | F 2

P1: IsLeftFork
MsRightFork F1: heldBy=mkP1

mkNM =>heldBy

isRightFork := false

mkNN => held By

isLeftFork := false

Transaction Chart 4.2

F2: heldBy=mkP

Fig. 13.34. Transaction schema TS_4

There are two charts corresponding to whether P I first puts down its left
fork or its right fork.

Similarly to TS_3, the transaction schema TS_5 (shown in Fig. 13.35)
models the activity of thinking by setting isHungry to true! Process P I (and
also P2) alternates between communicating with P I and P2. Initially P I is
ready to communicate with P I and P2 is ready to communicate with P2.

PI

P1: -isHungry

isHungry := true

Transaction Chart 5.1

Fig. 13.35. Transaction schema TS_5

We omit the details of TS_V, TS_2', TS_3', TS_4', TS_5' as they are
analogous to TS_1, TSJ2, TS_3, TS_4, TS_5.

End of Example 13.24.

13.6.4 Formalisation of CTPs

The Syntactic and Some Semantic Types

type
P, T, S, Var, Typ, VAL, Chtn, Exp, AP, Act

454 13 Message and Live Sequence Charts

A n n o t a t i o n :

P, T, S, Var, Typ, VAL, Chtn, Exp, AP, Act: Process names, transaction sche
ma names, process control states (i.e., names), variable identifiers, type
designators (for example i n t e g e r , Boolean and so on), semantic values
(for example I n t , B o o l and so on), chart names, expressions (further un
defined, but are usually variables, prefix expressions and infix expressions
over usual integer operators and Boolean connectives), atomic proposi
tions (i.e., Boolean valued expressions over variables) and internal actions
(assignments, conditional actions, etc.). »3

t y p e
Prog ' = PDecls x TDecls x Wiring x Init
Prog = {| prog:Prog'« wf_Prog(prog) |}

A n n o t a t i o n :

Prog: A C T P program consists of well-formed combinations of process vari
able and transaction schema declarations, of wiring and the definition of
an initialisation (of process control states and variable values). •

t y p e
PDecls = P TTI VarDecl
TDecls = T ^ (Chtn ^ (Gd x Cht))

A n n o t a t i o n :

PDecls, VarDecl: For each process there is a set of variables of specified type.
TDecls: For each transaction schema name, T, there is a set of uniquely

named, Chtn, transaction charts, with each chart consisting of a guard,
Gd, and the chart proper Cht. •

t y p e
Wiring = T ^ (P ^ S x S)
Init = P ^ (S x Varlnit)
VarDecl = Var ^ Typ

A n n o t a t i o n :

Wiring: For each transaction schema and for each process (that applies to this
schema) there is a pair of respectively input and output control states.

Init, Varlnit: Wi th each process a control state, S, is associated an initialisa
tion, respectively the current values of all variables of this process. •

t y p e
Gd = P TTI Prop
Prop = = mkTrue | mkAP(ap:AP) | mkNot(pr:Prop)

| mkAnd(pr:Prop,pr :Prop) | mkOr(pr :Prop,pr :Prop)

3m means: end of annotation.

13.6 Communicating Transaction Processes (CTP) 455

A n n o t a t i o n :

Gd, Prop: A transaction chart guard associates
• to each of the processes associated with tha t chart
• a proposition which is
• either the value true,
• or is an atomic proposition,
• or a negated,
• or a conjunctive
• or a disjunctive
proposition. •

t y p e
Cht = (P T& Ev*) x SendRecv
Ev = = mkSe(p:P,e:Exp) | mkRe(p:P,v:Var) | mkAct (ac tAc t)
SendRecv = (P x Pos) ^ (P x Pos)
Pos = N a t
S = Var ^ VAL
Varlnit = £

A n n o t a t i o n :

Cht, Ev*, SendRecv: A transaction chart maps each of its associated processes
into an instance — which is an event list — and a mapping, SendRecv,
tha t relates output and input events in respective process instances.

Ev: An event is either a send event (sending to p the value of expression e), or
a receive event (receiving a value from p and storing it in v); or an event
is an internal action.

Pos: A position is an index into an event list. •

Aux i l iary Syntac t i c and S e m a n t i c Func t ion S ignatures

value
typeof: Exp ->• VarDecl ->• Typ

wf_AP: AP -> VarDecl -> B o o l
wf_Exp: Exp —>• VarDecl —>• B o o l
wf_Act: Act ->• VarDecl ->• B o o l

A n n o t a t i o n :

typeof: Extracts from an expression, given a set of variable declarations, the
type of the value of the expression, if well-formed.

wf_AP: Examines whether an atomic proposition is well-formed.
wf_Exp: Examines whether an expression is well-formed,
wf Act: Examines whether an internal action text is well-formed. •

456 13 Message and Live Sequence Charts

value
eval_AP: AP -> S -> B o o l
eval_Exp: Exp ->• £ ->• VAL
int_Act : Act ->• £ ->• S

A n n o t a t i o n :

eval_AP: Evaluates an atomic proposition.
eval_Exp: Evaluates an expression.
int_Act: Interprets an internal action, possibly leading to changes in the val

ues of variables. •

Aux i l iary Func t ion S ignatures and Def in i t ions

value
participants: T —>• Prog' —> P - se t
participants(t) (prog) = let (_ ,_ ,wir ing ,_)= prog in d o m wiring(t) e n d

instances : Cht —>• P - s e t
instances(cht) = let (pevs,_) = cht in d o m pevs e n d

A n n o t a t i o n :

participants: Extracts the set of process (names) participating in a transaction
schema

instances: Extracts the set of instances of a chart. •

va lue
x t r _ A P s : Prop ->• A P - s e t
x t r_APs(p r) = case pr of mkTrue —> {}, mkAP(ap) —>• {ap}, ... e n d

eval_Prop: Prop —> S —>• B o o l
eval_Prop(pr) (a) =

case pr of mkTrue —>• true , mkAP(ap) —>• eval_AP(ap) (cr), ... e n d

A n n o t a t i o n :

xtr_APs: Extracts , from a proposition, the set of atomic propositions occur
ring in a proposition.

eval_Prop: Evaluates a proposition. •

We l l - formedness of C T P

value
wf_Prog : Prog ' —>• B o o l
wf_Prog(prog) =

All_Wired(prog) A All_Initialized(prog) A
wf_Gds_and_Chts (prog) A wf_ Wiring (prog) A wf_Init(prog)

13.6 Communicating Transaction Processes (CTP) 457

A n n o t a t i o n :

wf_Prog: Conjunction of five constraints. •

v a l u e
All_Wired: Prog' ->• B o o l
All_Wired(_,tdecls,wiring,_) = d o m tdecls = d o m wiring

All_Initialized: Prog' -t B o o l
All_Initialized(pdecls,_,_,init) = d o m pdecls = d o m init

A n n o t a t i o n :

AII_Wired: All transaction schemas are wired.
All Initialized: Each process is initialized. (The initialization of a process in

cludes not only the variables but also an initial control state.) •

v a l u e
wf_Gds_and_Ch t s : Prog ' —>• B o o l
wf_Gds_and_Chts (prog) =

le t (pdecls,tdecls,_,_) = prog in
V t:T«t £ d o m tdecls =>•

le t (gd,cht) = tdecls(t)(chtn) in
d o m gd = instances(cht) = participants(t)(prog) A
wf_Gd(gd) (pdecls) A wf_Cht(cht) (pdecls)

e n d e n d

wf_Gd: Gd ->• PDecls ->• B o o l
wf_Gd(gd) (pdecls) =

V p:P«p £ d o m gd => V a p A P • ap £ x t r_APs(gd(p))
=>• wf_AP(ap)(pdecls(p))

A n n o t a t i o n :

wf_Gds_and_Chts: The guards and charts are well-formed.
wf_Gd: Examines whether a guard is well-formed. •

v a l u e
wf_Cht: Cht ->• PDecls ->• B o o l
/ * see later */

wf_Wiring: Prog —> B o o l
wf_ Wiring (prog) =

le t (pdecls,_,wiring,_) = prog in
V t:T«t € d o m wiring =£>
participants (t) (prog) C d o m pdecls

e n d

458 13 Message and Live Sequence Charts

A n n o t a t i o n :

wf_Wiring: The wiring is well-formed. •

va lue
wf_Init: Prog ' —>• B o o l
wf_Init(prog) =

let (pdecls,_,_,init) = prog in
V p:P«p € d o m init =>•

let (s,varinit) = init(p) in
(3 t:T,s':S • (s,s ')=wiring(t)(p)) A wf_VarInit(varinit)(vardecl(p))

e n d e n d

A n n o t a t i o n :

wf_lnit: The initialisation is well-formed (the initialisation includes both ini
tial control states and initial values of variables). •

va lue
wf_VarInit: Varlnit —>• VarDecl —>• B o o l
wf_VarInit(varinit)(vardecl) =

d o m vardecl = d o m varinit A
V var:Var«var € d o m vardecl =>•

typeof_VAL(varinit (var))= vardecl (var)

typeof_VAL: VAL -> Typ

A n n o t a t i o n :

wf_Varlnit: All variables are initialised to values of the declared type.
typeof_VAL: Similar to typeof. •

We l l - formedness of Char t s

value
wf_Cht: Cht ->• PDecls ->• B o o l
wf_Cht(cht)(pdecls) = wf_Evs(cht)(pdecls) A wf_SendRecv(cht)(pdecls)

A n n o t a t i o n :

wf_Cht: All events are well-formed and so are all send-receive pairs. •

va lue
wf_Evs: Cht -> PDecls -> B o o l
wf_Evs(pevs,_)(pdecls) =

V p:P,ev:Ev«
p e d o m pevs A ev € e l e m s pevs(p) =>

case ev of

13.6 Communicating Transaction Processes (CTP) 459

mkSe(q,exp)—>-q € d o m pevs\{p}Awf_Exp(exp)(pdecls(p)),
mkRe(q,var)—>-q £ d o m pevs\{p}Ais_decl(var)(pdecls(p)),
mkAct(act)—»wf_Act(act)(pdecls(p))

e n d

A n n o t a t i o n :

wf_Evs: All events are well-formed (with respect to source/target processes,
expressions, etc.)
• Sends and receives are between different instances, tha t is, processes.
• Corresponding expressions are well-formed and corresponding vari

ables are declared.
• Internal actions are well-formed. •

v a l u e
is_decl: Var —>• VarDecl —>• B o o l
is_decl(var)(vardecl) = var € d o m vardecl

wf_SendRecv: Cht ->• PDecls ->• B o o l
wf_SendRecv(cht)(pdecls) =

Well_Matched(cht)(pdecls) A All_Matched(cht) A ~is_cyclic(cht)

A n n o t a t i o n :

is decl: Examines whether the variable is properly declared.
wf_SendRecv: The send-receive matching relation is well-formed. •

v a l u e
is_cyclic: Cht —>• B o o l
is_cyclic(cht) = ... / * straightforward */

A n n o t a t i o n :

is_cyclic: The transitive closure of the send-receive and instancewise mes
sage ordering relation contains cycles. (The specification of this predi
cate is clear from item / * 6 * / (Page 387) of Sect. 13.1.6 "Syntactic Well-
formedness of MSCs".) •

v a l u e
Well_Matched: Cht ->• PDecls -> B o o l
Well_Matched(pevs,sendrecv)(pdecls) =

c a r d d o m sendrecv = c a r d r n g sendrecv A
V (p,i) ,(q, j) :PxPos • sendrecv((p,i)) = (q,j) =>•

3 exp:Exp,var:Var*
pevs(p)(i) = (q,exp) A
pevs(q)(j) = (p,var) A
typeof(exp)(pdecls(p)) = pdecls(q)(var)

460 13 Message and Live Sequence Charts

A n n o t a t i o n :

Well_Matched: The matching is proper. •

value
All_Matched: Cht -> B o o l
All_Matched(pevs,sendrecv) =

doni sendrecv = {(p, i) | (p, i) :PxPos • is_Send_Ev(pevs(p)(i))}

A n n o t a t i o n :

AII_Matched: All send/receive events are matched. •

value
i s_Send_Ev: Ev ->• B o o l
i s_Send_Ev(ev) = ca se ev of mkSe(_ ,_) —> t r u e , —> false e n d

A n n o t a t i o n :

is_Send_Ev: Examines whether an event is a send event. •

D y n a m i c S e m a n t i c s , T y p e s

Semantic Types

t y p e
P<7 = P ^ W

& = n x E x 0

A n n o t a t i o n :

P<? : The current "stage" of a C T P program is given by associating with each
process, a stage, &.

<7: The process stage consists of a triple: the current program point, 77, the
current values of all its variables, E, and the (evaluated) values of expres
sions of executed output (send) events, 0. •

t y p e
77 = = mkS(s:S) | mkT(t:T,chtn:Chtn,i :Pos)
0 = Pos ^ VAL
Pos = N a t

A n n o t a t i o n :

77 : The program pointer (of a process) either designates a process control
state mkS(s:S) or a position i:Pos within a transaction chart chtn:Chtn of
a transaction schema t:T; i=0 indicates tha t the process has just entered
the chart.

13.6 Communicating Transaction Processes (CTP) 461

0: The output value queue (of executed output events) is a map from posi
tions, Pos, of output events to values VAL.

Pos: Position of events (input /output events and internal actions). •

t y p e
PA = P ^ A

A n n o t a t i o n :

PA : For each (invoked) process P we record its stepwise progress A. •

t y p e
A = T x Chtn x <P
$ = = mkEnter | mkEv(i:Pos) | mkExit

A n n o t a t i o n :

A : The stepwise progress within a transaction chart, Chtn, of a transaction
schema, T, is recorded by a quanti ty <P.

$: Either the process, at an instance, is at the point of entering, mkEnter, or
leaving, mkExit, or is at some event position, mkEv(i:Pos). •

Well-formedness

value
wf_PZl: PA -> Prog ->• B o o l
wf_PZ\(p(5)(prog) =

let (pdecls ,_ ,_ ,_) = prog in
d o m p8 C d o m pdecls A
V p:P«p £ d o m 6 => wf_/\(p)(p£)(prog)
e n d

A n n o t a t i o n :

wf_PZl :
• The invoked processes must first have been declared.
• And for each such process its progress must be well-formed. •

va lue
wf_Z\: P -)• PA ->• Prog ->• B o o l
wf_4(p)(p(5)(prog) =

let (pdecls,tdecls,_,_) = prog, (t,chtn,</)) = pJ(p) in
t £ d o m tdecls A chtn e d o m tdecls(t) A p e participants(t)(prog) A
case (f> of

mkEv(i)
—> let (pevs,_) = tdecls(t)(chtn) in i £ inds pevs(p) e n d

_ —>• V q:P«q £ participants(t)(prog) ^ ~pS(q) = p<5(p)
e n d e n d

462 13 Message and Live Sequence Charts

Annotation:

wf_Z\ : For the invoked process
• the designated transaction schema and transaction chart (of that

schema) must be declared, and the designated process (name) must
be an instance of that chart.

• In addition the program point (ppt) must be well-formed:
• if an event index it must be into the process instance, otherwise
• all processes of that transaction chart must be in the same (either

entry or exit) state. •

Dynamic Semantics, Functions

Auxiliary Functions

value
xtr_preS: Prog ->• T ->• P ->• S
xtr_preS(_,_,wiring,_)(t)(p) =

let (s,_) = wiring(t)(p) in s end
pre t £ dom wiring A p £ dom wiring(t)

Annotation:

xtr_preS : Extract from a transaction schema, the precondition (a control
state) corresponding to a process. •

value
xtr_postS: Prog ->• T -> P -> S
xtr_postS(_,_,wiring,_)(t)(p) =

let (_,s) = wiring(t)(p) in s end
pre t £ dom wiring A p £ dom wiring(t)

Annotation:

xtr_postS : Given a
• program, a transaction schema (name) and a process (name)
• yield the output control state (from the wiring). •

value
xtr_Ev: Prog -> (T x Chtn x P x Pos) -> Ev
xtr_Ev(_,tdecls,_,_)(t,chtn,p,i) =

let (_,(pevs,_)) = tdecls(t)(chtn) in pevs(p)(i) end
pre t £ dom tdecls A chtn £ dom tdecls(t) A

let (_,(Pevs)—)) = tdecls (t) (chtn) in
p £ dom pevs A i £ inds pevs(p) end

Annotation:

13.6 Communicating Transaction Processes (CTP) 463

xtr_Ev : Given
• a program,
• a transaction schema name (within tha t program),
• the name of a chart (within tha t schema),
• a process (name) and
• a position (within the designated chart) ,

yield the designated event. •

v a l u e
x t r _ P r o p : Prog -t (T x Chtn) ->• P ->• Prop
x t r_Prop(_ , tdec l s ,_ ,_) (t , ch tn) (p) =

le t (gd,_) = tdecls(t)(chtn) i n gd(p) e n d
p r e t £ d o m tdecls A chtn £ d o m tdecls(t) A

le t (_,cht) = tdecls(t)(chtn) i n p £ instances(cht) e n d

A n n o t a t i o n :

xtr_Prop :
• Given

• a program,
• a transaction schema name (within tha t program),
• the name of a chart (within tha t schema), and
• a process (name)

• yield the designated proposition. •

v a l u e
las t_Pos: Prog -> (T x Chtn) ->• P ->• Pos
las t_Pos(_ , tdec ls ,_ ,_) (t,chtn) (p) =

le t (_,(pevs,_)) = tdecls(t)(chtn) i n l en pevs(p) e n d
p r e t £ d o m tdecls A chtn £ d o m tdecls (t) A

le t (_,cht) = tdecls(t)(chtn) i n p £ instances(cht) e n d

A n n o t a t i o n :

last_Pos :
• Given

• a program,
• a transaction schema (name, within tha t program),
• a chart (name, within tha t schema), and
• a process (name, within tha t chart)

• yield the position of the last event of the designated process ins tances

v a l u e
x t r_Send: Prog ->• (T x Chtn) -> (P x Pos) -> (P x Pos)
x t r_Send(_, tdecls ,_ ,_)(t ,chtn)(p , i) as (q,j)

p r e t £ d o m tdecls A chtn £ d o m tdecls(t) A
le t (_ ,(pevs,_))=tdecls(t) (chtn) in

464 13 Message and Live Sequence Charts

p € d o m pevs A i € inds pevs(p) e n d
pos t let (_,(_,sendrecv))=tdecls(t)(chtn) in

sendrecv((q,j)) = (p,i) e n d

A n n o t a t i o n :

xtr_Send : Extract the matching send event, given a receiving event.
• The transaction schema and chart names must be declared and the

event position be appropriate.
• The matching send event (q,j) is then found from the send-receive

mapping. •

Initialization

value
init_Plf ,: Prog ->• P&
init_P<?(prog) =

let (_,_j_,init) = prog in
[pi->'Convert_ ,Z'(init(p))|p:P«p € d o m i n i t] e n d

c o n v e r t ^ : (S x Varlnit) —>• \P
convert_>?(s,varinit) = (mkS(s),varinit,[])

A n n o t a t i o n :

init_P<? : To initialise a program is to create the collection of all process initial
states.

convert_!? : Mark the initial control state, use the initial control variable
values and set the initial queues of values of expression of send events to
empty. •

Enabling

value
is_enabled: PA -t (Prog x P<?) ->• B o o l
is_enabled(p(5)(prog,pz/>) =

V p:P«p £ d o m p5 =>• let (t,chtn,<^>) = p<5(p) in
case </> of

mkEnter —>• is_enabled_Enter_Chtn(t,chtn)(prog,pz/>),
mkExit —• is_enabled_Exit_Chtn(t,chtn)(prog,p?/>),
mkEv(i) —• is_enabled_Ev(t,chtn,p,i)(prog,pz/>)

e n d e n d
pre wf_PZ\(p(5)(prog)

A n n o t a t i o n :

is_enabled : A program step, p6, is enabled at the current stage of the pro
gram, if every process step corresponding to processes in the domain of
this program step is enabled. •

13.6 Communicating Transaction Processes (CTP) 465

v a l u e
i s_enab led_Ente r_Chtn : (T x Chtn) ->• (Prog x P #) ->• B o o l
i s_enabled_Enter_Chtn(t ,ch tn) (prog,p?/>) =

V p:P«p £ participants(t)(prog) =>•
le t s = xt r_preS(prog)(t) (p) ,

pr = x t r _ P r o p (prog) (t,chtn) (p),
(TT,O-,_) = pV>(p) in

(7r=mkS(s)) A eval_Prop(pr)(tr) e n d

A n n o t a t i o n :

is_enabled_Enter_Chtn : A chart of a transaction schema can be entered if for
every process participating in this transaction schema, its current control
state is the precondition of this transaction schema, and the proposition
associated with this process in the guard associated with this chart eval
uates to t rue with respect to the current values of variables. •

v a l u e
i s_enab led_Exi t_Chtn : (T x Chtn) -> (Prog x PW) ->• B o o l
i s_enab led_Exi t_Chtn(t , chtn) (prog, pip) =

V p:P«p £ participants(t)(prog) =>•
le t (mkT(t ,chtn, i) ,cr ,_)=p^(p) in i=last_Pos(prog)(t ,chtn)(p) e n d

A n n o t a t i o n :

is_enabled_Exit_Chtn : A chart of a transaction schema can be exited if for
every process participating in this transaction schema, it has executed all
its events in this chart. •

v a l u e
is_enabled_Ev: (T x Chtn x P x Pos) ->• (Prog x P\P) ->• B o o l
is_enabled_Ev(t ,chtn,p, i) (prog,p?/>) =

le t (mkT(t ,chtn, i ') ,_ ,_) = pV'(p) i n i'=i—1 A
case xtr_Ev(prog)(t ,chtn,p, i) of

mkRe(q,_) —>•
le t (q,j) = xtr_Send(prog)(t ,chtn)(p, i) in
le t (mkT(t ,chtn , j ') ,_ ,_) = p^(q) i n j < j e n d e n d

_ —>• t r u e
e n d e n d

A n n o t a t i o n :

is_enabled_Ev : An event at a position of a process in a chart of a transaction
schema is enabled, if this process has come to the previous position, and
in case this event is a receive event, the matching send event has been
executed. •

466 13 Message and Live Sequence Charts

Firing

value
fire: (Prog x P\P) ->• PA ->• (Prog x P&)
fire(prog,p^)(p(5) as (prog,p?/>')

p r e is_enabled(p(5)(prog,p?/>)
pos t pz/y=pz/>t[pi->-iipcl_|Z'(prog,pz/>)(p(5)(p)|p € d o m p5]

A n n o t a t i o n :

fire : Firing an enabled program step updates the current stage of every pro
cess. •

va lue
upd_<£: (Prog x PW) ->• PA ->• P -> &
upd_<?(prog,pz/')(p(5)(p) =

let (TT,(T,0) = pz/>(p), (t,chtn,^>) = p<5(p) i*1

case (f> of
mkEnter -> (mkT(t,chtn,0),<7,[])
mkEv(i) ->

let a' = upd_i7(prog,cr)(p)(t ,chtn,i),
8' = upd_(9(prog,#)(p)(t ,chtn,i) in

(mkT(t,chtn,i),cr',6l') e n d
mkExit —> let s = xtr_postS(prog)(t) (p) in (mkS(s),a,[]) e n d

e n d e n d
pre ...

A n n o t a t i o n :

upd_!/' : Upon firing an enabled program step, the current stage of a process
should be updated as follows.
• If this process enters a chart of a transaction schema, then this process

goes to position zero of this chart (in this transaction schema), retains
the current values of variables and initializes an empty map of positions
to values of expressions of send events.

• If this process executes an event at a position of a chart of a transaction
schema, then this process goes to this position and updates the current
values of variables and the map of positions to values of expressions of
send events.

• If this process exits a chart of a transaction schema, then this process
goes to the postcondition associated with this process of this transac
tion schema, retains the current values of variables and empties the
map of positions to values of expressions of send events. •

va lue
u p d _ i 7 : (Prog x P f) - > P - > (T x Chtn x Pos) ->• S
upd_i7(prog,p^)(p)(t ,chtn, i) =

13.7 Discussion 467

let (_,cr,_) = pV'(p), ev = xtr_Ev(prog)(t ,chtn,p, i) in
case ev of

mkSe(q,exp) —>• a,
mkRe(q,var) —>

let (_,_,#) = p ^ (q) ,
(q,j) = xtr_Send(prog)(t ,chtn)(p, i) in a f [var i->- 6(j)] end,

mkAct(act) —• int_Act(act)(cr)
e n d e n d

pre ...

A n n o t a t i o n :

upd_i7 : Upon execution of an event, the current values of variables should
be updated as follows.
• Executing a send event does not change the value of any variable.
• Executing a receive event amounts to assigning the value of the expres

sion of the matching send event to the variable associated with this
receive event, and leaving the values of all other variables untouched.

• Executing an internal action amounts to evaluating it with respect
to the current values of variables, possibly leading to changes in the
values of variables. •

va lue
u p d _ 0 : (Prog x P f) 4 P - > (T x Chtn x Pos) ->• 0
upd_@(prog,p^)(p)(t ,chtn, i) =

let (_,a,6) = pV>(p) in
case ev of mkSe(q,exp) —> 6 U [i i->- eval_Exp(exp) (a)],

—>• 6 e n d e n d
pre ...

A n n o t a t i o n :

upd_(9 : Upon execution of an event, the map of positions to values of expres
sion of send events is updated as follows. Executing a send event amounts
to adding to this map the value of the expression of this send event as
sociated with its position. Executing a receive event or an internal action
does not touch this map. •

13.7 Discussion

13.7 .1 Genera l

We have covered two notions of sequence charts (SCs): Message SCs (MSCs)
and Live SCs (LSCs).

468 13 Message and Live Sequence Charts

MSCs arose in connection with the design of software for telephone switch
ing and da ta communication systems in the 1970s. MSC, as a language, was
then known as the System Description Language (SDL). Work on SDL and
MSC took place mainly under the auspices of the International Telecommu
nication Union, ITU. We refer to various URLs related to ITU, SDL and
MSC [226].

MSCs, most likely due to the influence of Ivar Jacobson, one of the three
technologists who did the principal design of UML4 [59,237,382,440], became
one of the many diagrammatic facets of UML.

LSCs took off from MSC. On one hand, David Harel and his colleagues
(notably Werner Damm), have spearheaded LSC research and development,
notably through the Come, Let's Play — Scenario-Based Programming Using
LSCs and the Play-Engine [195]. On the other hand, it seems tha t , so far, the
mostly software oriented computer science community has been at work on
studying LSCs. The author happily confesses: The Play-Engine is a fascinating
concept.

We have also presented some material on theoretical foundations of MSCs
and LSCs. The material presented in Sects. 13.3-13.5 represents one direction
of research in the field of integrated formal methods. It is included to illustrate
tha t certain techniques have advantages for certain applications in software
engineering, and tha t choosing one technique (e.g., diagrams) does not pre
clude also using other techniques (e.g., formal specification in RSL). Indeed,
in complex software engineering projects, several techniques will be needed
to specify all the relevant aspects of a system. To ensure consistency between
the different parts of the system specified using different techniques, relations
among these techniques must be established. The relation between LSCs and
RSL presented above and the corresponding relation between statecharts and
RSL — presented in the next chapter (Sect. 14.7) — are two such examples.

13.7 .2 Pr inc ip le s , Techniques and Tools

This chapter has basically covered a tool: The sequence charts (MSCs and
LCSs). As such we can hardly speak of 'A Principle of Sequence Char ts ' —
such as we could for most other chapters ' title subjects. So we shall rearrange
things a bit in this section on "Principles, Techniques and Tools".

Princ ip le s . Choosing Sequence Charts: Sequence charts, as a modelling de
vice, can be chosen when the phenomenon to be abstracted and modelled
exhibits concurrent and interacting behaviours, where the interaction "pat
terns" are of main interest, and then usually when there is a definite, "small"
number of behaviours, typically less than a couple of dozen. •

4Ivar Jacobson was with Ericsson in the later 1970s and early 1980s when SDL
was first designed, and played a decisive role in that effort.

13.8 Bibliographical Notes 469

Which kind of sequence chart, whether MSCs or LSCs are chosen, is then a
matter of sophistication, whether MSCs will do, or whether the more elaborate
properties of LSCs are needed. Please contrast the above principle with that
of Choosing Statecharts Sect. 14.8.2.

Techniques. Creating Sequence Charts: The basic parts of sequence charts
are the instances, corresponding to behaviours (i.e., processes), and the in
puts/outputs, corresponding to events (in the CSP jargon). All else are adorn
ments. •

Tools. Sequence Charts: We refer to [226] for reference to MSC tools. The
main, and overwhelmingly sophisticated, LSC tool is that of the Play-Engine
[195]. A number of research investigation and exploratory tools are provided
by Sun and Dong [493] for model-checking LSCs via translation to CSP and
then using the FDR2 tool [442]. Others are provided by Wang, Roychoudhury,
Yap and Choudhary [525] for symbolically executing LSCs using translation
to constraint logic programming. There are many more. •

13.8 Bibliographical Notes

The basic references to MSCs are the three consecutive recommendations from
the International Telecommunication Union, labelled Z.120 [227-229] (1992,
1996 and 1999). Syntax recommendations for MSCs are given in Reniers [423].
Extensions of MSCs with time have been studied in [38,280,296].

The basic reference to LSCs is Damm and Harel's paper [89]. The main
text on LSCs is now the book [195]. A delightful presentation of MSCs and
LSCs is Harel and Thiagarajan [199]. The literature on Live Sequence Charts
is emerging. A sample is: [58,64,89,187,191,278,493,525]. In [191] Harel,
Kugler and Pnueli put forward further proposals for time in LSC, i.e., the
"rich version" of LSC. Report [493] shows relations between the language of
LSCs and CSP, and reports on translations of LSCs into CSP for purposes of
using CSP's model checker FDR2 http:/ /www.fsel .com/fdr2_manual.html
[442]. [525] shows how LSCs can be "symbolically executed" using constraint
logic programming. Christian Krog Madsen [316, 317] analyses both MSCs,
HMSCs and LSCs, establishes proper semantics for these and relates LSCs to
RSL. UML contains various rudiments of MSCs [59,237,382,440].

Recent work by Roychoudhury and Thiagarajan merges ideas of Petri nets
and MSCs. The result is called communicating transaction processes (CTP)
[439] — and was treated in Sect. 13.6.

A flurry of recent publications explore various uses of live sequence charts
in software engineering and in biology! They are all authored or coauthored
by D. Harel. Some recurrent coauthors are I.R. Cohen, S. Efroni, N. Kam,
H. Kugler, R. Marelly and A. Pnueli [106-108,115,116,133,176-180,182-184,
186,188-192,194,196,253-258,279,325].

470 13 Message and Live Sequence Charts

13.9 Exercises

Exercise 13.1 Automatic Teller Machine. Automatic teller machines (ATM)
usually services credit and cash cards of a consortium of financial institutions
(Diners, Mastercard, Visa, etc., as well as Citibank (New York, NY, USA),
HSBC (Hong Kong and Shanghai Bank Corporation, London, UK), etc.). So
you may think of four sets of "players": You, the card holders, the ATMs, the
consortia, and the specific financial institutions of the consortia. A particular
ATM is bound to a specific set of card types, one consortium, and a specific
set of financial institutions. An ATM usually offers a number of services: cash
withdrawal, cash deposit, cash transfer, inquiry about account status, etc. An
example protocol for the opening of a card transaction using an ATM is as
follows: user inserts card into the ATM; the ATM requests card password from
the user; the user keys password into the ATM; the ATM requests verification
from the consortium; the consortium requests verification from the financial
institution of the card; the financial institution either OKs or does not OK
the transaction and so informs the consortium; the consortium passes the
verification response back to the ATM; and the ATM passes it back to the
user. If response was OK, the user may continue.

Exercise 13.1.1: Develop an appropriate MSC for a quadruplet of User, ATM,
Consortium and Financial Institution instances.

Exercise 13.1.2: Develop a possible MSC, following a successful, i.e., OK'ed
verification opening, for a cash withdrawal transaction.

Exercise 13.1.3: Develop a possible MSC, following a successful, i.e., OK'ed
verification opening, for a cash transfer transaction.

You are to fill in all relevant details left out above and to take into account
that the user makes mistakes.

Exercise 13.2 Two-Phase Commit Protocol. In many forms of distributed
systems, the need arises for a group of parties to reach an agreement to perform
some action. Each party has the option of vetoing the action, in which case all
the other parties must not perform the action. Another possibility is that one
or more parties fail before either committing or vetoing the action. In that
case, the action must also be aborted by all parties.

One application of this protocol is to implement distributed transactions.
In this case, the parties must agree whether to commit or roll back the trans
action, such that it is either performed by all parties or by none.

The protocol to be formalised is centralised, since a single distinguished
party acts as the coordinator. The remaining parties are slaves (A and B).

The informal description (given below) derives from [147] and is based
on [469]. Based on this informal description you are to solve the following
problems.

Exercises 13.2.1-5: Formalise interactions between the environment, the co
ordinator and the slaves in terms of live sequence charts.

13.9 Exercises 471

Exercise 13.2.6: Formalise the internal behaviour of the coordinator in terms
of a finite state machine.

Exercise 13.2.7: Formalise all of the above in RSL.

The informal description of our version of the two-phase commit protocol goes
as follows, one description part per live sequence chart:

1. Protocol initiation: To start the whole thing it is assumed that an environ
ment requests the coordinator to set up requests to all slaves (here just
two). Once that assumption (modelled in terms of a prechart) is satisfied,
the coordinator in any order sends requests to all (i.e., both) slaves.

2. Commit: When all (both) slaves commit to the requests (by sending such
messages to the coordinator) the coordinator informs the slaves that the
protocol has been successfully opened (by sending appropriate messages
to the slaves).

3. Abort by slave A: If slave A cannot participate in the protocol (i.e., send
an abort message), but slave B can (i.e., commits), then the coordinator
has to inform slave B of the abort.

4. Abort by slave B: Vice versa: If slave B cannot the protocol (i.e., aborts),
but slave A can (i.e., commits), then the coordinator has to inform slave
A of the abort.

5. Abort by both slaves: If all (i.e., both) slaves cannot participate in the
protocol (i.e., abort), then the coordinator has to inform all slaves of the
abort.

It is suggested that the assumption, the when and the if's of the above five
cases be modelled by precharts.

6. Internal behaviour of coordinator:

Coordination evolves around a finite state machine. In each state the coor
dinator expects input (i.e., messages) from either (initially) the environment,
or, subsequently, from the slaves. In response to an input the coordinator
sends outputs that amount to messages being sent to some or all slaves.

In an initial state the coordinator will expect the environment, i.e., a user
to request some action to be performed as a distributed transaction. Once
the coordinator receives such a request it is passed on to, i.e., transmitted
to the slaves. The coordinator now waits for responses from the slaves. The
coordinator can only receive one response at a time. Either a commit from
some slave or an abort from some slave. The coordinator, upon receiving one
commit or one abort enters respective states in order to be able to receive,
distinguish and properly react to subsequent responses from remaining slaves.
If all slaves responds with commit, the transaction is committed. If at least
one slave responds with abort, the whole transaction is aborted.

7. An RSL Model:

472 13 Message and Live Sequence Charts

You are to model the protocol in RSL. More specifically, to define a number
of processes for the system, for example, the coordinator and the two slaves.
The system process is suggested to be just the parallel composition of the
coordinator process and the two slave processes.

The coordinator process will wait to be invoked by inputting a request
from the user. The requested action is transmitted to the two slaves. Next,
the coordinator will input the responses from slave A and B, in some order. If
both choose to commit, they are informed that agreement has been reached to
commit. A function commit-action can be postulated to abstract the actual
action to be performed. If either slave responds with abort, the other slave
is informed that the transaction is aborted and the coordinator performs the
necessary clean-up, abstracted, for example, by a function abort-action.

The slave processes are entirely analogous. They first wait for a request
to be received from the coordinator. Upon receipt, they decide - internal
nondeterminism choice - to commit or abort. In the latter case, they tell the
coordinator to abort and perform the necessary clean-up, abstracted by abort-
action. In the former case, they tell the coordinator to commit and await the
response. Based on the coordinator's response, they either commit or abort
the transaction. The nondeterministic choice is an abstraction of the process
used to decide whether to commit or abort.

Exercise 13.3 Semantics of HMSCs. We refer to the syntax and well-
formedness of BMSCs (Sects. 13.1.2 and 13.1.6), the semantics of BMSCs
(Sect. 13.1.8), the syntax and well-formedness of HMSCs (Sects. 13.1.4 and
13.1.6).

Please define the semantics of HMSCs based on the formalisation given in
the above referenced sections.

Exercise 13.4 Remote Procedure Calls/Remote Method Invocation and Bro
ker Design Pattern.

Procedure calls are a fundamental notion in most imperative computer
languages. A procedure call occurs when the calling procedure requests the
execution of the behaviour of the body of the called procedure. Typically, the
called procedure returns some value once (and if) its execution terminates.
A prerequisite for procedure calls is that the caller and callee are contained
in the same executable or in shared libraries, which are linked in at runtime.
The extended notion of remote procedure calls (RPC) does away with this
limitation by allowing the caller and callee procedures to be contained in dif
ferent executables, processes and even on different computers. In the context
of Java, RPC is called remote method invocation (RMI). The basic principle
of "remoting" is to replace the callee with a proxy procedure, which exposes
the same interface as the callee. Instead of performing the action the callee
would, the proxy encodes the parameters it is passed, sends them to another
proxy, which decodes the parameters and calls the real callee. Figure 13.36
illustrates the setup, where the caller is named the Client, while the callee is
named the Server. The ClientProxy appears to the Client as the Server would

13.9 Exercises 473

(i.e., it has the same interface). The Server Proxy appears to the Server as the
Client would.

Client Client Proxy Server Proxy Server

mi CD nn

unmarshallResult

•
unmarshallCall

marshallResult

• • • •
Fig. 13.36. A remote procedure call protocol

The purpose of the two Proxy objects is to hide the details of the t rans
mission of the call parameters and return value over some medium, which
could be a network connection (for processes distributed on separate com
puters) or shared memory (for inter-process communication within the same
computer) . The operation of encoding a call including its parameters is tra
ditionally called marshalling. The inverse operation of decoding a call with
parameters is traditionally called unmarshalling.

Exercise 13.4.1: Formulate an RSL specification of a simple RPC mechanism
for a procedure (function) tha t takes two integers as arguments and re
turns their sum. Create a type to represent the marshalled format of the
arguments.

A downside with RPC is tha t once the program is written, the Client is locked
to the Server. Suppose now tha t a more efficient implementation of the addi
tion function is written (call it Server'). To make Client call Server' instead
of Server, Client must be modified. Thus this system works best in a static
environment, where both Client and Server are developed at the same time.
It can not easily adapt to a dynamic environment. One mechanism to intro
duce dynamic binding of the Client and Server is captured in the so-called
Broker Design Pattern [71], which is central to CORBA [381] and J ava J i n i
(J i n i e x t e n s i b l e remote i n v o c a t i o n (J i n i ERI)) [494] technology. The
idea is to introduce a broker, which maintains a list of available services in a
distributed system. In the broker architecture, the ServerProxy will register

474 13 Message and Live Sequence Charts

itself as a service with the broker and provide some form of identification of
what the service does. When the ClientProxy is called, it will query the broker
to find the location of a service that performs the action it needs. The broker
will return some form of address or pointer to the ServerProxy. At this point,
the rest of the protocol behaves like the R.PC protocol. Hence, once the broker
has pointed the ClientProxy to the service, it no longer participates in the
communication.

Typically a service is identified by a text string, so the ClientProxy will
ask for a service called Addition.

Exercise 13.4.2: Extend the MSC in Fig. 13.36 to include the broker.
Exercise 13.4.3: Extend the previous RSL specification to include the broker.

The interested reader may like to compare the above description to the build
ing blocks of Web services such as XML [417,443,478,546], SOAP [516],WSDL
[517] and UDDI [506].

Exercise 13.5 Generalised Dining Philosophers. We refer to Sect. 13.6.3.
The example of that section showed a two-dining philosophers CTP program.
Please show a CTP program solution for five dining philosophers

14

Statecharts

Christian Krog Madsen is chief author of this chapter [316,317].

• The prerequisites for studying this chapter are that you have an all-round
awareness of abstract specification (principles and techniques) and that
you have a more specific awareness of parallel programming, for example,
using CSP — as illustrated in Vol. 1 of this series of textbooks — and you
have wondered about, or desired, other mechanisms than, say, RSL/CSP for
modelling concurrency.

• The aims are to introduce the concept, principles and techniques of using
statecharts, to show varieties of examples illustrating uses of Statecharts,
and to relate Statecharts to RSL/CSP: To define, more precisely, when a
statechart specification can be expressed as an RSL/CSP specification —
and vice versa!

• The objective is to enable the reader to expand the kind of phenomena
and concepts that can be formally modelled by, or in conjunction (com
plementary) with, for example, RSL using statecharts.

• The treatment is systematic and semiformal.

Statecharts are ascribed to David Harel [174, 175,185, 193, 197]. Others have con
tributed, notably Amir Pnueli [404]. Besides very professional tool support, in the form
of S T A T E M A T E [197,198], the diagrammatic Statechart language has achieved some
prominence by being coopted into UML [59,237,382,440].

14.1 Introduct ion

In this section we describe statecharts [174,175]. As a language, Statecharts
provides a graphical notation tailored for specifying the control Bow of re
active systems, i.e., event-driven systems which react to internal and exter
nal stimuli. Many electronic devices, such as digital clocks, radios, kitchen

476 14 Statecharts

appliances, smoke alarms, motion sensors, etc., are reactive systems. Com
puter programs, such as word processors and Internet browsers, that require
some form of input from the user during execution are other examples of reac
tive systems. An "opposite" to reactive systems are transformational systems.
They perform some computation and terminate once the result has been eval
uated. On closer examination, a reactive system actually encompasses several
transformational systems, since whenever an event triggers a transition, the
resulting change of state may be expressed as a function from states to states,
i.e., a transformation on the state. There are several well-established methods
for specifying transformational systems, for example, a direct definition of a
function relating input values to output values, or indirectly through post
conditions stating properties of the output values, assuming the inputs satisfy
some pre-conditions.

Statecharts extends conventional state machines and state diagrams. It
does so by providing a notation for hierarchical states and ways of specify
ing concurrency and communication. The addition of hierarchy is intended
to prevent exponential increases in the number of states required to model
complex systems. A variant of Harel's Statechart language has been included
in the UML suite of diagram types [59,237,382,440].

14.2 A Narrative Description of Statecharts

Like state machines and state diagrams, statecharts are centred around states
and transitions. The behaviour of the system in response to internal and exter
nal stimuli depends on the state(s) it is currently in, called the active state(s).
A transition describes a change of active state. A transition is triggered by
an event or action and may set off other actions. Statecharts are represented
graphically as so-called higraphs [175], utilizing area inclusion rather than the
more conventional tree or graph structure for representing hierarchy. States
are represented as rounded rectangles (for simplicity called boxes in the fol
lowing). A state, sc, that is fully contained within another state, sp, is called
a substate of sp.

States may be decomposed into substates using either AND or XOR de
composition. AND decomposition captures the property that when a system is
in a given state, it must also be in all substates of that state. Conversely, XOR
decomposition captures the property that when a system is in a given state,
it must be in exactly one of the substates of that state. XOR decomposition
is represented by having several substates. AND decomposition is represented
by subdividing the box of the containing state with a dashed line and placing
concurrent substates on either side of the line.

Transitions are represented as arrows from states to states. An arrow
is labelled with an identifier for the event that triggers the transition and,
optionally, a condition enclosed in parentheses. In an extension of the original
Statechart language, Pnueli and Shalev [404] allowed negative events to trigger

14.2 A Narrative Description of Statecharts 477

transitions. A negative event is interpreted as the absence of the event itself.
The unary logical negation operator, -i, is used to negate events. Typically, a
transition will be triggered by both positive and negative events, i.e., it will
only occur if all the positive events are offered by the environment, while none
of the negative events are offered.

When a transition occurs, control is transferred from the origin state to
the destination state. If the origin of a transition is a state with substates,
control is relinquished by all substates. If the destination of a transition is
a state that is AND decomposed into substates, control is assumed by all
substates. If the destination is XOR decomposed, control is assumed by the
default substate. Default states are indicated by a small filled circle with an
arrow pointing to the box of the default substate. A default state functions
like an initial state in a state machine.

Example 14.1 Figure 14.1 shows a statechart with four states, A,B,C and
D. State .4 is XOR decomposed into B and C, with B being the default state.
The statechart responds to three different events, a, b and c. When the system
is in state D it may go to state C upon receiving event c, or it may go to
state A upon receiving event a. Since A is XOR decomposed, activating state
.4 leads to activating state B as well, since B is the default substate for .4.
If state A is active and event b occurs, the system will transition to state D,
regardless of which substate of .4 is active. •

'C W-

J

• *

C

C

(D

Fig. 14.1. Statechart with XOR decomposition

Example 14.2 Figure 14.2 shows a statechart with AND decomposition. The
statechart responds to three events, a, b, and c. When the system is in state G
and receives event c, states C and E will be activated concurrently. If either a
substate of .4 or a substate of B is active, the occurrence of event c will cause
G to become the active state. •

The introduction of the concepts of AND and XOR states is the key to avoid
ing the exponential blow-up in the number of states as the system being mod
elled becomes increasingly complex. However, any statechart including either
form of decomposition may be transformed into an equivalent (in a sense to

478 14 Statecharts

fc]

•it.
(D)

v '

(E

"It-
fF]
^ J

Fig. 14.2. Statechart with AND decomposition

be defined precisely later) statechart without hierarchical states. The proce
dure to eliminate an XOR state is to extend every incoming transition to the
default substate and for every outgoing transition add an outgoing transition
with the same event trigger and action and target state to every substate. An
AND decomposed state may be eliminated by forming new states for every
possible combination of concurrent substates.

Example 14.3 Figure 14.3(L) illustrates the unwinding of the statechart with
XOR decomposition in Fig. 14.1 into a nonhierarchical statechart. In this
case the unwound statechart is not more complicated than the original, since
it has one less state but one more transition. In general, an unwound AND
decomposed statechart will have at most the same number of states as the
original and at least the same number of transitions as the original.

Similarly Fig. 14.3(R) illustrates the unwinding of the Statechart with AND
decomposition in Fig. 14.2 into a nonhierarchical statechart. In this case the
resulting Statechart is considerably more complicated that the original. There
are only 5 states compared to 6 in the original, but there are 13 transitions
compared to 6 in the original. •

(L)
fE 1*

b ~~~^\

J^-i~y~
W ^ c 7~

\
s

Fig. 14.3. Unwinding of XOR (L) and AND (R) into a simple statechart

14.2 A Narrative Description of Statecharts 479

Statechart supports the modelling concepts of abstraction and refinement.
Abstraction is the process of extracting common properties from a model.
Refinement is the process of adding additional details to a model. In the
setting of statecharts both concepts rely on hierarchical decomposition.

Abstraction is supported by moving the common properties (i.e., tran
sitions with the same event trigger and same destination state) of a set of
states to a new state that has the original states as substates. Refinement
is supported by adding new substates and internal transitions to an existing
state.

Example 14.4 (Example is taken from [174].) Figure 14.4 illustrates the pro
cess of abstraction for statecharts. In the statechart on the left, the transition
on event b from states B and C is a common property of these two states. By
introducing a new superstate, these two transitions can be replaced by one
common transition, as shown in the statechart on the right.

Figure 14.5 shows the process of refinement. In the intermediate step in
the middle, the state D is refined to show additional details of its internal
structure. However, now the two transitions from A to D become underspec-
ified, since it is not clear which of B and C should become active after one
of the transitions has occurred. In the statechart on the right, the transitions
have been extended to remove the underspecification. Alternatively, either B
or C could have been defined as the default substate of D. •

B

•1
(c -]

> « >

>> J f j
•1

'C

^ a

b

c

A

Fig. 14.4. Abstraction

^ \ a

* —

A

c

—>

fD
B

i
c

•s
>

a

b

< —

A

c

- •

fD
B

'1
C

> >
• -

a

b

c

A

Fig. 14.5. Refinement

A special kind of transition causes control to be transferred to the substate (s)
that most recently had control instead of the default substate. This history-

480 14 Statecharts

dependent type of transition may be related only to the immediate substates,
or recursively to substates, substates of substates, and so on.

In cases where no history is available, i.e., the first time control is trans
ferred to a state, the default substates are used. History-dependent transitions
are represented by letting the arrow of the transition point to a symbol com
posed of an 'H' inside a circle. If the transition depends on the recursive
history, the H symbol is decorated with an asterisk.

In some situations, it is convenient to be able to forget the past history.
For this purpose, a distinguished action, clh(S), that resets the history of a
state S and all substates of S is introduced. Once the history has been reset,
the next time a history-dependent transition occurs, the default state and not
the most recently visited state will become the active state.

Example 14.5 Figure 14.6 illustrates a Statechart with history dependent
transitions. The first time a state is activated by a history transition, there
is no history, so the default substate becomes the active state. Thus, in this
case, the first time B is activated, F becomes active.

Suppose now that E is the active state and that event a occurs, so .4
becomes the new active state. If event a occurs now, D becomes the active
state, since only the first level of the activation history is used. C was the
most recently activated substate of B, so the default substate of C, namely
D, is activated. If, on the other hand, event b occurs, E becomes the active
state, since in this case the entire history is used. Finally, if B is active and
event d occurs, all history is cleared for B, so the next history transition will
cause the default substate to be activated. •

Fig. 14.6. Statechart with history and recursive history

The events that trigger transitions are typically the result of external stimuli,
but may also be generated by timeouts when control has been in a given state
for a predetermined period of time. We do not consider such timeouts here.

rx
14.3 An RSL Model of the Syntax of Statecharts 481

~\

Fig. 14.7. Example statechart

Example 14.6 Figure 14.7 shows an example statechart modelling a reactive
system that receives four kinds of stimuli from the environment (essentially
like four buttons).

Each kind of stimulus generates a unique event, called o, 6, c and d. The
system is represented by state A. Initially, the system is in state B. When an
event d occurs, control is transferred to state F. A b event will now transfer
control to state E. An additional b event will transfer control to state G and
H, which is the default substate of G, while a c event will transfer control
back to state F. When the system is in any of the substates of G, a b event
will cause control to be transferred to F.

When the system is in any substate of D, an a event will transfer control to
both J and K. Similarly, when another b event occurs, control is relinquished
by both J and K and all their substates. Control is then transferred to the
most recently visited states in D down to the lowest level, i.e., the states from
which control was relinquished when the last a event occurred.

The label "/clh(C)" on the transition from B to C is an action that in
dicates that when this transition occurs, the history of C and its substates is
deleted all the way down to the lowest level. Thus, the next time the transition
from J/K to D occurs, the default state will be entered.

14.3 An RSL Model of the Syntax of Statecharts

Definition. By a statechart we shall understand a structure such as infor
mally described in Sect. 14.2, a structure whose syntax is given in this section
and a structure whose semantics is given in Sects. 14.5 and 14.6. •

482 14 Statecharts

The syntactic description of the Statechart language, as given in Sect. 14.2,
is formalised in RSL.

scheme Statechart =
class

type
Statechart = {| sc : Statechart' • wf_Statechart(sc) |} ,
Statechart' = Stateld x StateHier x Trans x History,
StateHier = Stateld ^ StateDef,
StateDef = = mk_XOR(OptSId, Stateld-set) | mk_AND(StateId-set),
OptSId = = mk_None | mk_Id(StateId),
Trans = Stateld -^ Tr-set,
Tr ::

stid : Stateld
typ : Type
evt : Event
cond : Condition
act : Action,

Type = = mk_History | mk_HistoryRec | mk_Direct,
Event = Text,
Condition,
Action,
History = Stateld ^ Stateld,
Stateld

value
wf_Statechart : Statechart' —>• Bool
wf_Statechart(sid, shi, tr, hi) =

/* 1 */
sid € dom shi A
/* 2 */
dom tr C dom shi A
/* 3 */
dom hi C dom shi A
/* 4 */
(V s : Stateld •

s £ dom shi =>•
case shi(s) of

mk_XOR(_,ss) —>• ss C dom shi,
mk_AND(ss) —> ss C dom shi

end) A
/* 5 */
(V s : Stateld •

s £ dom shi =>•
case shi(s) of

14.3 An RSL Model of the Syntax of Statecharts 483

mk_XOR(os , ss) ->
case os of

mk_None —> true ,
mk_Id(sid ') —• sid' £ ss

end,
mk_AND(ss) -t t rue

end) A
/ * 6 */

(V s : Stateld •
s £ d o m shi =>•

case shi(s) of
mk_XOR(os , ss) ->

ss # {} =>
(3 s' : Stateld, t : Tr •

s' € d o m t r A t £ tr(s ') A stid(t)
has_default(s, shi),

mk_AND(ss) ->•
ss # {} =>

(3 s' : Stateld, t : Tr •
s' € d o m t r A t £ tr(s ') A stid(t)

has_default(s, shi)
end) ,

has_default : Stateld x StateHier —>• B o o l
has_default(sid, shi) =

case shi (sid) of
mk_XOR(os , ss) ->•

ss = {} V
case os of

mk_None —> false,
mk_Id(sid ') —> has_default(sid' , shi)

end,
mk_AND(ss) ->•

ss = {} V (V s : Stateld • s € ss =>• has_default(s, shi))
e n d

e n d

Annotations

• A statechart consists of an initial s tate identifier, a state hierarchy, a set
of transitions and a history.

• A state hierarchy maps state identifiers to state definitions.
• A state definition is either an exclusive-or state or a both-and state. An

exclusive-or state has an optional default substate identifier and a set of
identifiers of substates. A both-and state has a set of identifiers of sub-
states. A substate is a state.

= s)=>

= s)=>

484 14 Statecharts

• From a state identifier the set of transitions emanating from that state can
be found.

• A transition is composed of destination stated identifier, a type, a trigger
ing event, a condition and an action.

• A transition may either cause a transfer of control to the most recently
visited state at the top level, or a recursive transfer of control to the most
recently visited state all the way down to the lowest level, or a direct
transfer of control to the destination state.

• An event is a textual label identifying an exterior interaction.
• Conditions, actions and state identifiers are further undefined entities.
• The history is a mapping from state identifiers to substate identifiers.
• A statechart is well-formed if

• the initial state is in the state hierarchy, and
• the states from which transitions emanate are in the state hierarchy,

and
• the states with a history are in the state hierarchy, and
• all substates are in the state hierarchy, and
• when an exclusive-or state has a default substate, then that substate

is in the state hierarchy, and
• if a transition terminates at a composite state, then that state has a

default substate.
• A state has a default state if it has no substates, or if it is an exclusive-or

state and it has a default substate which in turn has a default state, or if
it is a both-and state and all its substates have a default state. •

The stdi function in case /* 6 */ is a selector function defined by the type
equation for Tr.

14.4 Examples

We give a number of examples. The first two are by Martin Penicka.

14.4.1 Railway Line Automatic Blocking

Author: Martin Penicka
This example was provided by Martin Penicka, the Faculty of Transporta
tion, Czech Technical University, Prague.

Example 14.7 Railway Line Automatic Blocking: The example is large —
so we present it without shading. •

14.4 Examples 485

The problem with high train speeds and low coefficients of friction between
train wheels and tracks is tha t the drivers cannot stop their trains within
sighting distance of another train or within sighting distance of a signal. This
is the reason why automatic signalling is used on some lines. If there are
junctions or turnouts then semiautomatic signalling is required.

In this example we first narra te the principle of automatic line signalling.
Then we give formal descriptions using statecharts .

Narrat ive

Lines are usually divided into segments I = (s\, S2, •••, S j - i , s«, Sj+i, •••, sn)
(Fig. 14.8). Line I connects exactly two stations, staA and staB. A line can be
in one of three possible states: OpenAB, OpenBA and Close . These states and
their possible transition are described in detail in Sect. 14.4.2 on line direction
agreement systems (LDAS).

© sigBAn I sigBAui sigBA,, sigBAM, i
— ••• — — ••• —
~ \sigABu higAB,>sigABM I lsigAB„

S] ... Si.j St Sl+i ... Sn

Fig. 14.8. Automatic line signalling

Each segment can be in two states: s egFree and segOccupied. Segment Sj
is in s egFree when no train is detected in the segment. Segment S{ is in
segOccupied when a train is detected in the segment.

General Line Segment

For each inner segment S{, where i = (2, . . . , n — 1), there are two signals sigABi
and sigBAi (one in each direction of travel). With each signal we associate four
possible states: sigOnRed, sigOnYellow, sigOnGreen and sigOf f (Fig. 14.9).

Signal sigABi is in

sigOnRed state, when line I is in OpenAB state
and segment Si is in segOccupied state;

sigOnGreen state, when line I is in OpenAB state
and both segment Si and Si+i are in segFree state;

sigOnYellow state, when line I is in OpenAB state,
and segment Si is in segFree
and segment Si+i is in segOccupied state,

sigOf f state, when line I is in OpenBA or Closed state.

StaB

Signal sigBAi is in

486 14 Statecharts

sigOnRed state, when line I is in OpenBA state,
and segment Si is in segOccupied state;

sigOnGreen state, when line I is in OpenBA state,
and both segment Si and Si-i are in segFree state;

sigOnYellow state, when line I is in OpenBA state,
and segment Si is in segFree,
and segment Si-i is in segOccupied state;

sigOf f state, when line I is in OpenAB,
or Closed state.

sigOnGreern

\ sigOnOff ^ [sigOnYellow \

^ sigOnRed \

Fig. 14.9. Signal state machine — possible transitions

Each segment has two signals, and each signal can be in four states. Therefore
we have a potential number of 16 states, but possible combinations are:

sigABi
sigOnRed

sigOnYellow
sigOnGreen

sigOff

sigOff

sigOff

sigOff

sigBAi
sigOff

sigOff
sigOff

sigOff
sigOnRed

sigOnYellow

sigOnGreen

First Line Segment

For segment si there is only one signal sigBA±. And for segment sn there
is only one signal sigABn (Fig. 14.8). The signals in the opposite directions
(sigABi and sigBAn) are controlled manually or by interlocking in the sta
tions.

Sta techar t s

In this section, we show how description of automatic line signalling can be
expressed using statecharts .

General Model

See Fig. 14.10.

14.4

Fig. 14.10. Statecharts of automatic line signalling

Special Cases

• First segment of a line: Fig. 14.11 left part .

488 14 Statecharts

Last segment of a line: Fig. 14.11 right part.
General line segment: Fig. 14.12 left part.
Line with one segment: no line signals.
Line with two segments: Fig. 14.12 right part.

(SEGMENT(1)

H SIGNAL
OFF]

OFF
LINE

(SEGMENT(n)

J

Fig. 14.11. First and last line segment

14.4.2 Railway Line Direction Agreement System

Author: Martin Penicka
This example was also provided by Martin Penicka, the Faculty of Trans
portation, Czech Technical University, Prague.

Example 14.8 Railway Line Direction Agreement System: The example is
large — so we present it without shading. •

In this example we first narrate the principle of the line direction agreement
device. Then we give formal description examples using statecharts and live
sequence charts.

Each line connects exactly two stations. At any point in time, the line
can be open in at most one direction. This is a safety requirement to protect
head-on train crashes on the line. In the old days, a line specific sheet of
paper (or a baton) was used, and only the station that had the sheet (or the
baton) could send trains to the line. The sheet (or the baton) was sent by
trains between stations. Later on, the sheet of paper was replaced by abstract

14.4 Examples 489

SEGMENT(i)

AB-DIRECTION

f j SIGNAL 1

\
SIGNAL

OFF

GREEN

SegFreefl-1)

SIGNAL!
I YELLOW |

15 SegFraeflJ

SIGNAL
RED

15-
OFF
LINE

AUTOMATIC LINE SIGNALLING

SEGMENTS)

SIGNAL in BA-DIRECTION

H SIGNAL
OFF

H

SEGMENT(2)

SIGNAL In AB-DIRECTION

H J5"
OFF
LINE

Fig. 14.12. General segment and two segments

tokens with electronically produced transitions (electric token block or radio
electronic token block).

Narrat ive

The line direction agreement system (LDAS) is a device tha t is responsible
for fail-safe communication (token transition) and train direction control on
the line between two stations.

Consider a line I tha t connects two stations: stationA and stationB. The
line can be in one of three basic states: OpenAB (trains are allowed to travel
from stationA to stationB), OpenBA (trains are allowed to travel from stationB
to stationA) and Close (trains are not allowed to travel in either direction).

490 14 Statecharts

In each station there is one operator, who is responsible for sending trains
to the line. Agreement on train direction between two such stations is then
made by sending messages between the stations and the LDAS (Fig. 14.13).

/ I n i t A B ^
/ AgreeA
/ DisagreeA

STATION
A

LDAS

AskChangsA / \ AskChangeB
OpenA J \ OpenB

- \ ^ & o s e A / VcioseB^^-'

AgreeB \
DisagreeB \

STATION
B

Fig. 14.13. Communication with LDAS

The line direction agreement device therefore comprises three parts : LDAS,
STATION A and STATION B.

In both stations, the operator has three buttons: YES, NO and CHANGE. From
STATION A to LDAS there are four types of commands which can be sent:
ChangeA, AgreeA, DisagreeA and In i tAB. From STATION B to LDAS there
are also four types of commands: ChangeB, AgreeB, DisagreeB and Ini tBA.
LDAS can send any of three different commands to STATION A: OpenA, CloseA
or AskChangeA, or three different commands to STATION B: OpenB, CloseB
or AskChangeB.

The behaviour of the system in response to internal and external stimuli
depends on the state(s) it is currently in. Therefore, for graphical representa
tion of internal behaviour we introduce statecharts . The line direction agree
ment problem can be described by three statecharts and eight live sequence
charts.

Internal B e h a v i o u r of L D A S (Sta techart)

The first statechart tha t represents internal behaviour of the LDAS is shown in
Fig. 14.14. The LDAS can be any one of several states during its operation. The
three basic states tha t correspond with directions of the trains on the line are
OPEN AB, OPEN BA and CLOSE. These basic states have several substates.
All possible transmissions between these states are shown as arrows with a
label in Fig. 14.14.

The initialisation process starts in a default s tate of the system. The de
fault s tate is when the line is closed for both directions of train travel. The
state is called the DEAD state. Two other states, INIT AB and INIT BA, can
be reached from the s t a t e by receiving In i tAB or Ini tBA.

14.4 Examples 491

LDAS

'ON-LINE

^

r OPENAB

ASKED
AB

^

DisagreeA/ 1 A c h a n g e B /

CloseB y AskedChangeB

•

V
k

OFF-LINE

LOCKED
AB

J
k

AgreeA / CloseA, OpenB _ ^ .

^ AgreeB / CloseB, OpenA

f

\

OPEN BA

LOCKED
BA

>

ChangeA/ 1 A a s a g r e e B /

AskChangeAy CloseA

V

ASKED
BA

A
AgreeB/OpenA 1 Stop V Failure/CloseA, CloseB

INIT
AB

* \ _
^InitAB/AskedChangsA

DisagreeB/CloseA ,w DEAD
initfiA/AskedChangeB ^

^ DisagreeA/ CloseB

J

AgreeA/ OpenB

INIT
BA

^J
Fig. 14.14. LDAS statechart

Internal B e h a v i o u r of S t a t i o n A (Sta techart)

The statechart tha t represents the internal behaviour of STATION A is shown
in Fig. 14.15 (left). It is composed of four states: LINE CLOSED, ASKED OPEN,
ASKED CLOSE and LINE OPEN.

The LINE CLOSED s tate is the default s tate of the station component. In
Statecharts , default states are indicated by an arrow with a filled black dot
at the end.

When station manager presses the CHANGE but ton, a ChangeA command is
sent to LDAS and the state is changed to ASKED OPEN. An answer CloseA
changes the state back to LINE CLOSED, and an answer OpenA changes the
state to LINE OPEN. When the STATION A component is in LINE OPEN s tate
and LDAS sends AskChangeA command, a reply from the station manager is
expected.

STATION A

•

CHANGE / d l

LINE
CLOSED

a n S 6 A j fcio.
ASKED
OPEN

^YES/AgreeA

• * AskCh

OpenA ^

ASKED
CLOSED

A JNO/
angeA y

LINE
OPEN

)lsagreeA

STATION B

•

ChangeBirtton/Ch

LINE
CLOSED

an9eB| Ac t e

ASKED
CHANGE

^YES/AgreeB

« * AskCh

OpenB ^

ASKED
CHANGE

A 1 NO/
angeB y

LINE
OPEN

)isagreeB

Fig. 14.15. Station A (left) and B (right) statecharts

492 14 Statecharts

Internal B e h a v i o u r of S t a t i o n B (Sta techart)

The statechart tha t represents the internal behaviour of STATION B is shown
in Fig. 14.15 (right).

E x t e r n a l B e h a v i o u r (Live S e q u e n c e Chart)

In this section we show all possible communication scenarios — there are nine
such — as live sequence charts. See Figs. 14.16-14.19.

SA

Q..
SB SA

(PEAD)'\
InltAB _ /

AskChangeB

(ASI CED^

.___,s SB

/ T

»>

Fig. 14.16. Initialisations to AB and BA directions

The first pair of scenarios in Fig. 14.16 expresses the initialisations of the
device. LDAS sends AskChange to one of the stations when two preconditions
are fulfilled. These preconditions are: LDAS is switched off, and one of the
stations has sent an initialisation command. A reply from the station manager
is expected. The reply can be either YES or NO.

5 SA

(AS
YES V - ^

KED,

LD

E

AgreeA

CloseA

AS

E
S

E

OpenB

B

E
S

E
A

E
LD

E

OpenA

AS

P /

SB

< ASKED)

AgreeB

CloseB

€ i ts

5

Fig. 14.17. Change direction approvals

. Q .
LDAS

EE EE
s

E
A

E
LD

E

CloseA

AS SB

/ (. AS

DisagreeB

KED)
NO

J
>

Fig. 14.18. Change direction disapprovals

14.4 Examples 493

, 3 S S S E_
(LDAS: ON-LIME, Direction; BA, Une Free) \ /<(LDAS: OH-LINE, Direction: AB, Line Free"

l=P

ASKED) < ASKED)

<c
-g-—-g.

>>

Fig. 14.19. Change direction requests and failure detection

14 .4 .3 W i r e l e s s R a i n G a u g e

E x a m p l e 14.9 Wireless Rain Gauge: In this section we present a model of
a wireless rain gauge. •

D e s c r i p t i o n

The rain gauge has two units: a container tha t collects and measures rain
drops and a base station tha t displays the measurements. The container is
mounted outdoors, while the base station is placed indoors. The two units
communicate via a radio signal. The base station is shown in Figure 14.20.

Fig. 14.20. OBH wireless rain gauge base station

The base station records the daily precipitation and keeps a history of the
precipitation for each of the previous nine days. Also, it records the accumu
lated precipitation from a given start date. The base station also includes a
digital clock.

494 14 Statecharts

The base station has three displays and four but tons tha t are used to
set up the station and switch between its modes. Additionally, the station
has a reset but ton for restarting the station. The top display initially shows
the current t ime and accumulated precipitation. If the but ton mode/set is
pressed, the date is displayed, and if the but ton since is pressed, the start
date of the accumulated precipitation measurement is displayed. The middle
display indicates whether the base station receives a signal from the container.
The but ton search is used to initiate a scan for a signal. The bot tom display
shows the daily precipitation, and with repeated presses of but ton history the
daily precipitation for each of the previous nine days.

Statechart M o d e l

Figure 14.21 shows the statechart for the rain gauge. In the initial s tate there
are no batteries in the rain gauge. When batteries are inserted the three
displays become operational. This is modelled by AND decomposition giving
three concurrent states.

The da te / t ime (top) display has four overall modes: time, date, s tart date
of cumulative measuring and setup. Setup mode is entered by pressing and
holding but ton mode/set for two seconds. If the but ton is released (indicated
by the symbol m/s in the chart) before 2 seconds have elapsed, the date is
displayed.

The signal (middle) display has three modes: either there is no signal, or
a scanning is in progress, or there is a correct signal. A new scan may be
initiated by pressing search.

The rain (bottom) display has two modes: normal operation showing pre
cipitation for the current day, or history mode, where total precipitation for
one of the last nine days is shown.

RSL M o d e l

We translate the above statechart into RSL by creating a process for each state
tha t has no sub-states. The process then responds to the events tha t cause
transitions from the corresponding state. Special at tention must be awarded to
the AND composition. Whenever a transition causes several concurrent states
to assume control, the translation in RSL starts multiple concurrent processes
in parallel. Whenever several concurrent states lose control, the translation in
RSL causes all but one of the concurrent processes to terminate. The single
remaining process calls the process corresponding to the next state.

Timeouts are modelled as an external event. Note tha t the timeout du
rations specified in the Statechart are lost in this translation to RSL. If this
quantitative temporal information is to be preserved, the extension of RSL
with the Duration Calculus, called Timed RSL (TRSL [132]), may be used.

14.4 Examples 495

Wireless Rain Gauge

battery inserted

Dead ;

battery removed

Fig. 14.21. Statechart for wireless rain gauge

scheme RainGauge =
class

t y p e
Event = =

Battlns |
BattWeak |
BattRem |
SigFound |
SigLost |
ModeSet |
ModeSetRel
History |
Since |
Search |
Reset |
Timeout

> Searching()
|| Normal()
II Time(),

Dead()
end,

SinceDate : Unit —> in evt Unit
SinceDate() =

case evt? of
Timeout —> Time(),
Since —>• Time(),
Reset —>• Time(),
BattRem —>• sk ip ,
BattWeak ->• sk ip ,
_ —> SinceDate()

end ,

channel evt : Event

value
Dead : U n i t —>
Dead() =

case evt? o f
Battlns

in evt Unit

Date : Unit —> in evt Unit
Date() =

case evt? of
Timeout —> Time(),
ModeSet -> Time(),
Reset —>• Time(),
BattRem —>• sk ip ,

496 14 Statecharts

BattWeak ->• sk ip ,
_ ->• Date()

end ,

Wait : U n i t —• i n evt U n i t
Wait() =

Ti
Ti

S
S_

S
S_

S_

case evt? o f
Timeout ->• S_1224(),
ModeSetRel ->• Date(),
Reset —• Time(),
BattRem —> sk ip ,
BattWeak ->• sk ip ,
_ ->• Wait()

end ,

me : U n i t —> i n evt U n i t
me() =
case evt? o f

ModeSet ->• Wait(),
Since —• SinceDate(),
Reset —• Time(),
BattRem —> sk ip ,
BattWeak ->• sk ip ,
_ —> Time()

end ,

1224 : U n i t ->• i n evt U n i t
_1224() =

case evt? o f
Timeout —> Time(),
ModeSet ->• S_Hour(),
Reset —>• Time(),
BattRem —> sk ip ,
BattWeak ->• sk ip ,
_ ->• S_1224()

end ,

Hour : U n i t —> i n evt U n i t
_Hour() =

case evt? o f
Timeout —> Time(),
ModeSet ->• S_Min(),
Reset —>• Time(),
BattRem —> sk ip ,
BattWeak ->• sk ip ,
_ ->• S_Hour()

end ,

Min : U n i t —)• i n evt U n i t

S_

S
S_

S
S_

S
S_

N<
N<

_Min() =
case evt? o f

Timeout —> TimeQ,
ModeSet ->• S_Mon(),
Reset —• Time(),
BattRem —>• sk ip ,
BattWeak ->• sk ip ,
_ - > S_Min()

end ,

Mon : U n i t —• i n evt U n i t
_Mon() =

case evt? o f
Timeout —> Time(),
ModeSet ->• S_Day(),
Reset —>• Time(),
BattRem —)• sk ip ,
BattWeak ->• sk ip ,
_ - > S_Mon()

end ,

Day : U n i t —> i n evt U n i t
> a y () =

case evt? o f
Timeout —> TimeQ,
ModeSet ->• S_Date(),
Reset —>• Time(),
BattRem —)• sk ip ,
BattWeak ->• sk ip ,
_ ->• S_Day()

end ,

Date : U n i t —> i n evt U n i t
_Date() =

case evt? o f
Timeout —> TimeQ,
ModeSet -> TimeQ,
Reset —• TimeQ,
BattRem —)• sk ip ,
BattWeak ->• sk ip ,
_ ->• S_Date()

end ,

Drmal : U n i t —>• i n evt U n i t
DrmalQ =

case evt? o f
History ->• H_D1(),
Reset ->• NormalQ,
BattRem ->• DeadQ,

14.4 Examples 497

BattWeak ->• Dead(),
_ —> Normal()

end ,

H_D1 : Uni t ->• in evt Uni t
H_D1() =

case evt? of

Timeout —> Normal(),
History ->• H_D2(),
Reset —• Normal(),
BattRem ->• Dead(),
BattWeak ->• Dead(),
_ - > H_D1()

end,

H_D2 : Uni t ->• in evt Uni t
H_D2() =

case evt? of

Timeout —> Normal(),
History ->• H_D3(),
Reset —>• Normal(),
BattRem -> Dead(),
BattWeak ->• Dead(),
_ -> H_D2()

end,

H_D3 : Uni t ->• in evt Uni t

H_D3() =
case evt? of

Timeout —> Normal(),
History ->• H_D4(),
Reset —• Normal(),
BattRem -> Dead(),
BattWeak ->• Dead(),
_ ->• H_D3()

end,

H_D4 : Uni t ->• in evt Uni t
H_D4() =

case evt? of
Timeout —> Normal(),
History ->• H_D5(),
Reset —>• Normal(),
BattRem -> Dead(),
BattWeak ->• Dead(),
_ -> H_D4()

end,

H D5 : Uni t ->• in evt Uni t

H_D5() =
case evt? of

Timeout —> Normal(),
History ->• H_D6(),
Reset ->• Normal(),
BattRem ->• Dead(),
BattWeak ->• Dead(),
_ - > H_D5()

end,

H_D6 : Uni t -> in evt Uni t

H_D6() =
case evt? of

Timeout —> Normal(),
History ->• H_D7(),
Reset ->• Normal(),
BattRem ->• Dead(),
BattWeak ->• Dead(),
_ - > H_D6()

end,

H_D7 : Uni t -> in evt Uni t
H_D7() =

case evt? of

Timeout —> Normal(),
History ->• H_D8(),
Reset ->• Normal(),
BattRem ->• Dead(),
BattWeak ->• Dead(),
_ - > H_D7()

end,

H_D8 : Uni t -> in evt Uni t

H_D8() =
case evt? of

Timeout —> Normal(),
History ->• H_D9(),
Reset ->• Normal(),
BattRem ->• Dead(),
BattWeak ->• Dead(),
_ - > H_D8()

end,

H_D9 : Uni t -> in evt Uni t

H_D9() =
case evt? of

Timeout —> Normal(),
History —> Normal(),
Reset ->• Normal(),

498 14 Statecharts

BattRem —> Dead(), Timeout —> NoSignal(),
BattWeak ->• Dead(), SigFound -)• SignalOK(),
_ ->• H_D9() Reset ->• Searching(),

end , BattRem —• sk ip ,
BattWeak ->• sk ip ,

NoSignal : U n i t —• i n evt U n i t _ —> Searching()
NoSignal() = end ,

case evt? o f
Search —• Searching(), SignalOK : U n i t —• i n evt U n i t
Reset —• Searching(), SignalOKQ =
BattRem —> sk ip , case evt? o f
BattWeak —• sk ip , Search —> Searching(),
_ —> NoSignal() SigLost —• Searching(),

end , BattRem —• sk ip ,
BattWeak ->• sk ip ,

Searching : U n i t —> i n evt U n i t _ —> SignalOK()
Searching() = end

case evt? o f end

This example vividly demonstrates the compactness of the Statechart nota
tion. The diagram fits on half a page, while the corresponding RSL specification
takes up three pages double column. The statechart is certainly the easiest
of the two models to gain an initial understanding of. The advantage of the
RSL specification is that the expressivity of RSL allows the RSL model to be
augmented to give a full specification of the system.

Another issue is the ease with which one may go from a specification to an
implementation. The step from a statechart to an implementation language is
not obvious. As it stands, the RSL specification is closer to an implementation
language, and the step may be made smaller by one or more steps of refinement
of the model.

14.5 A Process Algebra for Statecharts

In this section we shall present a process algebra that may be used to give a
semantics for the Statechart language. In the next section we link this process
algebra to statecharts. Both of these sections contain advanced material that
really belongs to the field of computer science rather than software engineer
ing. The reader primarily interested in the applications of statecharts may
skip these two sections.

It has proven difficult to provide a semantics for Statecharts This diffi
culty arises partly because of the property that an external event may trigger
a transition that produces an event that in turn triggers a transition, etc.
Thus one event may start a chain reaction of internal events. Furthermore,
if a statechart is in a given state, it is also in all states enclosing the first
state. Therefore, the global state or configuration of a statechart consists of a

14.5 A Process Algebra for Statecharts 499

variable number of states. An internal transition is called a microstep, while
the whole chain reaction caused by an external event is called a macrostep.

There are three desirable properties for a semantics for statecharts: the
synchrony hypothesis, compositionality and causality. The synchrony hypoth
esis states that for any set of input events, the reaction of a statechart must
be maximal in the sense that the chain reaction of microsteps should continue
until no further microstep is possible. This is sometimes referred to as the
maximal progress assumption. Also, the chain reaction must terminate before
the next external event enters the system. The compositionality property en
sures that the behaviour of a system composed from subsystems is defined in
terms of the observable behaviour of the subsystems. Thus the internal details
of the sub-systems need not be known. The causality property ensures that
for every event, there is a chain of events that lead to that event. Thus, no
event can occur spontaneously. This property only applies to internal events,
since external events — when viewed from the Statechart — will occur spon
taneously.

14.5.1 SPL: The Statechart Process Language

The process algebraic semantics for Statecharts is presented by Liittgen, van
der Beeck and Cleaveland [314]. It is defined using the process algebra named
Statecharts Process Language (SPL), which is inspired by the Timed Process
Language of Hennessy and Regan [209].

The SPL process algebra is defined as a labelled transition system with
two types of transitions: action transitions and clock transitions. Action tran
sitions correspond to events in Statecharts. Clock transitions represent pro
gression of time. The previously discussed microsteps of a Statechart corre
spond to action transitions, while clock transitions signal the beginning and
end of a macrostep composed of a sequence of microsteps.

Let A be a countable set of events, and let a $ A be a distinguished event
called a clock event. Input actions are defined as (E, N), where E, N C A. The
special case of (0, 0) is called an unobservable or internal event, designated
by • (bullet). Output actions E are defined as subsets of A.

The syntax of SPL is given by the BNF grammar:

P ::= 0 | X | {E, N).P | [E]a{P) \P + P\P>P\P>aP\P\\P\P\L

where AT is a process variable that stands for a process term, and L is a restric
tion set, i.e., a set of action identifiers that are hidden from the environment
of X \ L. 0 is the empty process, i.e., the process which does not perform any
actions. (E, N).P is the prefix operator applied to the process P. It represents
the instantaneous input of the input action (E,N), which can only occur if
all the events in E are offered by the environment, and none of the events in
N are offered by the environment. The signal operator [E]a(P) signals the
output of output action E to the environment of process P. The output ac
tion is cleared by the next clock transition. The disabling operator applied

500 14 Statecharts

to processes P and Q, written P>Q, is the process that either behaves as Q
permanently disabling P, or behaves as Pt>aQ. The enabling operator applied
to processes P and Q, written Pt>aQ, behaves as P disabling Q until the next
clock transition. In combination, the disabling and enabling operators serve
to define the behaviour when there are enabled transitions on several layers
of a hierarchical state.

14.5.2 Semantics of SPL

The semantics of SPL is a Plotkin-style operational semantics [402] in the
form of a labelled transition system. The labelled transition system is defined
as (<S, E,—>,S), where S is the set of states, E = A\J {a} is the set of actions,
including the special clock action, a, —»€ S x E x S is the transition relation,

and S is the start state. Following tradition, P —>• P' will be used as an
N

abbreviation for (P,(E,N),P') £->•, and P A P' as an abbreviation for

(P, tr, P ') £—>. The meaning of P —> P' is that process P can evolve to a
N

process P' whenever the environment of P outputs all the actions in E and
none of the actions in N.

Before the transition deduction system can be defined, the initial output
action set must be defined. The initial output action set, notation S(P) for
P £ <S, is defined by the equations in Table 14.1. Intuitively, S(P) is the set
of actions that process P is immediately ready to output.

Table 14.1. Initial output action sets

I([P]a(P)) = E

S(P + Q) = S(P) U S(Q)
S(P| |Q) = S(P)u5(Q)

S(P>Q) = S(P)uS(Q)

I(X) = I(P), ifXd=P
5(P \ L) = 5(P) \ L

5(P >CT Q) = S(P)

The term deduction system for action transitions is presented in Table 14.2.
The term deduction system for clock transitions is presented in Table 14.3.

14.5.3 Equivalence for SPL Terms

We can now define a behavioural equivalence on SPL terms. As we did previ
ously for PAe, we choose the strong bisimulation equivalence.

14.5 A Process Algebra for Statecharts 501

Table 14.2. Action transitions

•

(P ,] V } . P 4 P
N

P 4 P '
N . , „ def p

I 4 F
N

p 4 P '
N

Pt>CTQ4P'>CTQ
N

P 4 P '
AT

P > Q 4 P ' > C T Q
N

? 4 P '
N

P + Q 4 P'
N

Q 4 Q '
N

P + QjQ'

N

P > Q 4 Q '
N

P 4 P '
N ;f \^n T\(n\

P\\Q*^»p.\\Q

Q 4 Q '
W if \T Pi HYP1!

P | | Q ^ T) p | | Q ,
II - v N II - »

P 4 P '
^ if p n f (?)

P \ L 4 P ' \ L
N\L

Act

Rec

En

Disl

Suml

Sum2

Dis2

= 0

= 0

Pari

Par2

Pari

Def in i t ion 1 4 . 1 . Bisimulation1 equivalence, ~ C S x S, is the largest sym
metric relation such tha t whenever P ~ Q, then the following conditions hold:

1In theoretical computer science a bisimulation is an equivalence relation between
state transition systems, associating systems which behave in the same way in the

502 14 Statecharts

Table 14.3. Clock transitions

•
0 ^ 0

if (E, N) + »
{E,N).P ^ {E,N).P
p Z» pi n 1+ Qi

M w i f . g l (P N Q)
P II Q ^ P' II Q'

P ^ P',Q ^ Q'

P>Q ^ P'>Q'
p £^ pi

if . 0 I (P \ L)
P\L 1+ P>\L

 K X '

D

[E]a(P) ^ P

P ^ P',Q A Q'

P + Q ^ P'+Q'

p ^ p>

Pt>C TQ ^ P>>Q

p ^ p' if x '^ p
X A P'

tOut

tSum

tEn

tRec

tNil

tAct

tPar

tDis

tRes

i . t{p) c S (g)

2. If P 4 P', then 3Q' <E S : Q 4 Q' A g ~ Q'.
TV JV

Note tha t compared to the bisimulation relations defined for the process alge
bras PAe and PAce in Sect. 13.3.2 we have the extra requirement tha t bisimi-
lar processes have the same initial output sets. This requirement ensures tha t
bisimilar processes have the same observable behaviour in terms of both input
and output actions.

sense that one system simulates the other and vice versa. Intuitively two systems
are bisimilar if they match each other's moves. In this sense, each of the systems
cannot be distinguished from the other by an observer [530].

14.6 Semantics of Statecharts 503

14.6 Semantics of Statecharts

14.6 .1 A n S P L S e m a n t i c s for S ta techar t s

We have now presented the tools for expressing the semantics of Statechart .
The next step is to define the correspondence between a statechart and an
SPL term. First, we place some restrictions on the composition of statecharts
by defining a textual syntax, in the form of Statechart terms. Then we define
a semantic function tha t maps Statechart terms to SPL terms.

We need some additional notation. Let M be a countable set of names
for statechart states, T be a countable set of names for statechart transitions
and 77 a countable set of Statechart events. Every event e £ 77 has a negated
event -ie. By definition, —i—ie = e. If E C 77 U {->e | e £ 77} then —*E is an
abbreviation for {-ie | e £ E}.

Now, Statechart terms are introduced. In order for a statechart to be ex
pressible as a Statechart term, it must have exactly one top-level state and
it must have no history or interlevel transitions, i.e., transitions tha t cross
the boundary of its containing state. History transitions are disallowed be
cause they make the semantics much more complicated. Interlevel transitions
are disallowed because they preclude compositionality in both the syntax and
semantics. Note, however, tha t a statechart with interlevel transitions can
always be transformed into an equivalent statechart without interlevel t ran
sitions.

1. Basic state: If n £ TV, then s = [n] is a Statechart term.
2. XOR state: If n £ TV, si,...,Sk are Statechart terms for k > 0, T C

T x { 1 , . . . , k} x V(n U -.77) x V{n) x { l , . . . , k}, and 1 < I < k, then
s = [n : (s i , . . . , Sfc), l,T] is a Statechart term. Here, s\,...,Sk are the
sub-states of s, I is the index of the currently active state and T is the
set of transitions between the substates of s. The default s tate is defined
to be s±. A transition (t, ni, E, A, 77,2) with name t links state sni to state
s„2, is triggered by the events in E and produces the actions in A.

3. AND state: If n £ A", and s i , . . . , su are Statechart terms for k > 0, then
s = [n : (s i , . . . , Sk)] is a Statechart term.

A Statechart term is considered well-formed if:

• the set of names for states is disjoint from the set of names for transitions,
i.e., j V n T = 0 ;

• no transition produces an event tha t contradicts its trigger, i.e., for every
transition {t,ni,E, A,n2), E n -<A = 0;

• no transition produces an event tha t is in its trigger, i.e., for every transi
tion (t,n1,E,A,n2), E<^A = %.

The set of well-formed Statechart terms is denoted SC.
The function root yields the name of the state it is applied to. The function

out yields the name of the destination state of the transition it is applied to.

504 14 Statecharts

Now, the embedding is defined. We give the definition first and then explain
it below. The process algebra SPL is instantiated with the set of events A =
II U -ill and the set of process variables V = {h \ n £ TV}. Let S Q be the
distributed nondeterministic choice between the elements of the set Q, with
S{ } = 0. Then the embedding function Sstc\"] : SC —> TJJSPL is defined as:

1. If s = [n], then Sstclsj=0.
2. If s = [n : (s i , . . . , sra), I, T] , then if ni = root(si), SstclsJ = ni, where for

1 < i < n, hi = SStc\si\ > £{{[t}} \t£TA root (out (t)) = n»} along with
the equations produced by S s t c l s i] , • • • > -^stclsn]- The translation {[i]} of
a transition t is defined below.

3. If s = [n : (s i , . . . , s„)] , then Sstcls] = Sstclsij \\ • • • \\ SStclsnj, along
with the equations produced by S'stc[siL • • • > •5s'tc[sn].

The translation of a transition t = (t, i, E, A,j) is defined as

{[t]} = (E',N').[A^(En^n)]a(hj),

where E' = ED II is the set of positive events in E, and N' = -i(Er\-iII)U-iA
is the set of negated negative events in E combined with the negated events
in A.

The definition of the embedding requires an explanation. First, the se
mantics of a statechart is expressed as a set of equations rather than a single
process term. This allows for recursion. The semantics of a basic state is the
inactive process 0, since a basic state will not take part in any transitions.
The semantics of an AND state is just the parallel composition of the seman
tics of its substates. The semantics of an XOR state is more involved. First
observe tha t an XOR state may either stay in the currently active substate,
or a transition t may occur, making out(t) the new active substate. This be
haviour is modelled by the disabling operator. In the former case the XOR
state behaves like the currently active substate, disabling all transitions until
the next clock event. In the latter case, the transition becomes an input prefix
handling the triggering events in E, and an output signalling handling the
actions in A. For the transition to occur, all the positive events in E and none
of the negative events in E must be offered by the environment. This explains
E' and partly N'. We include ->A in N' to ensure global consistency, meaning
tha t no subsequent transition which requires the absence of the events in A
fires in the same macrostep. The global consistency requirement also explains
why the output includes the negative events in E, since the process is not
allowed to produce an event which contradicts its trigger.

14.6 .2 Sta techart E x a m p l e

In this section the process of deriving an SPL expression from a statechart is
illustrated. The example statechart is shown in Fig. 14.22. In this case, the
statechart is already in a form suitable for conversion to a Statechart term.

14.7 Relating Statecharts to RSL 505

9 >
" h

T
n2

Fig. 14.22. Example statechart

If this were not the case, the statechart would first have to be modified to
remove interlevel transitions and to have exactly one top-level state.

The corresponding Statechart term si is listed in Table 14.4, along with
terms for each of the substates of state m . The translation of the Statechart
terms into SPL is straightforward. The result is listed in Table 14.5.

Sl =

S2 =

S3 =

S4 =

S6 =

S6 =

S7 =

S8 =

S9 =

SlO =

[ni

[H
[n3

[n4]

M
M
M
[n8]

[ng

[nio

(S2,S3);l;{<ii ,3,{S},M),(i2 ,2,{A},0,3>}]

(S9,si0)]

(s4, s5, s6); 4; {{t3, 4, {a}, {x}, 5), (t4, 6, {6}, {y}, 5), (5, s4, {c}, {a}, 6),

(t6,4,{d},{w},6)}]

: (87, s8); s7; {<t6, 8, {e}, {g}, 7), (t7, 7, {/}, {r}, 8)}]

Table 14.4. Statechart and substate terms

14.7 Relating Statecharts to RSL

We continue the subject of relating diagrammatic notations to RSL tha t we
started in Sect. 13.5.

506 14 Statecharts

[*l] =

M =
M =
N] =
[s6] =

[se\ =

M =
M =
M =

[*io]

= n2

n2 =

n3 =

= 0

= M
= 0

= 0

= 0

= 0

= 0

= fli

hi =

«6 =

« 6 =

= fig

fls =

n-j =

[S2]>

IS3J>

II [siO]

[S4]>

[SB]>

[se]>

[S8]>

({h},0>.[0]a(n3)

<{5},0).[0]a(n2)

({a},{-x».[{x}] f f(n6) +

(W,{-I/})-[{ff}]^(fte)
({c},{^}>.[{«}]a(n7)

<{e},{-g}>-[W]^(«7)

({f},hr}).[{r}]a(ns)

({d},{- vw}).[{w}]a(m)

Table 14.5. Translation of statechart terms into SPL

14.7.1 Syntactical Restrictions

In statecharts negative events, i.e., the absence of events, can be part of the
trigger of a transition. In RSL there is no way of checking whether a message
is available on a channel without actually performing an input. Thus, the
absence of an event cannot be detected. We therefore restrict the relation
between Statechart and RSL to cover only triggers with all positive events.
Specifically, if a statechart contains a negative event in a trigger, no RSL
specification can satisfy it.

14.7.2 Satisfaction Relation

Similar to the approach for live sequence charts, we now want a method of
extracting from an RSL specification its communication behaviour in the form
of an SPL term. We do this in two steps: first we extract the communication
behaviour as a PAisc term using the procedure defined for LSCs and then
apply a function translating a PALSC expression into an SPL expression.

Definition 14.2. Let translate : PALSC —> SPL be the function defined by

14.7 Relating Statecharts to RSL 507

translate(e) = 0

translate(in(s,r,m)) • X) = 0 > ({m}, ®).[$]a(translate(X))

translate(ins(s, r, m)) • X) = 0 > ({TO}, 0)\%]a{translate{X))

translate(out(s,r,m)) • X) = [{m}]a(translate(X))

translate(outs(s,r,m)) • X) = [{m}]a(translate(X))

translate(X || Y) = translate(X) \\ translate(Y)

translate(X + Y) = translate(X) + translate(Y)

The result of the translate function may not be in a convenient form, so we
define an additional function, normalise, tha t simplifies an SPL term.

Def in i t ion 14 .3 . Let normalise : SPL —t SPL be the function defined by

normalise(0) = 0

normalise(0 > (m, 0).(X)) = (0 > (m, 0}.normalise(X))

[m]a(normalise(X)) if X ^ [n]cr(Y) for every n and Y
\ normalise([m U n]cr(Y)) if X = [n]a(Y) for some n and Y

normalise(X || Y) = normalise(X) || normalise(Y)

normalise(X + Y) = normalise(X) + normalise(Y)

We can now define the satisfaction relation for a statechart . Unlike for LSCs
we do not allow prefixes and suffixes, since the single statechart is supposed
to provide the full specification of the communication behaviour of the object.

Def in i t ion 14 .4 . (Satisfaction for statechart) An RSL expression E satisfies
a statechart , eh, if for any initial store, SQ, for any terminated behaviour, cbh,
of E

Sstc\ch\ y normalise(translate(cbh))

14 .7 .3 Check ing Sat i s fact ion

The satisfaction criteria given in Definition 14.2 require checking tha t all be
haviours of the RSL expression can be simulated by the semantics of the cor
responding chart. In some situations the RSL expressions may have infinitely
many behaviours, so in tha t case this simple form of checking is not possible.

Another problem arises when processes are recursive, as is often the case
for statecharts . In this case, it is not enough to simply perform the transitions
to check satisfaction. If the processes eventually terminate, an inductive proof
on the number of recursions may be used to prove satisfaction. If the processes
are nonterminating there is no base case, so induction cannot be used. In this
case the more powerful principle of coinduction may be used.

508 14 Statecharts

14.7.4 Tool Support

Actually checking an RSL specification against a behavioral specification in
the form of statecharts can be very tedious. For that reason, the methods
defined above are of limited applicability without tool support. Tools should be
developed to extract the semantic terms from diagrams and RSL specifications
and for checking the satisfaction relations. It would also be convenient to
have a way of translating a statechart into a skeleton RSL specification. An
automatic conversion would force the software engineer to use one particular
style.

14.8 Discussion

14.8.1 General

We have covered the concept of statecharts. An important property of state-
charts, as of Petri nets and of the sequence charts, is its reliance and focus on
visualisation [174,175]. Over the years since statecharts were first put forward
(around 1987), the semantics of the Statechart language has been studied and
changed, both by the originators and by other researchers. So it is in keeping
with this dynamic state of Statechart semantics that we also present ours!

The material presented in the latter part of this chapter, i.e., Sects. 14.5-
14.7, like that of the latter part of the previous chapter, represents one di
rection of research in the field of integrated formal methods. So we repeat
the words of Sect. 13.7.1: The later parts of the present chapter are included
in order to illustrate that certain techniques have advantages for certain ap
plications in software engineering, and that choosing one technique (e.g., dia
grams) does not preclude also using other techniques (e.g., formal specification
in RSL). Indeed, in complex software engineering projects, several techniques
will be needed to specify all the relevant aspects of a system. To ensure consis
tency between the different parts of the system specified using different tech
niques, relations among these techniques must be established. The relation
between Statechart and RSL presented in Sect. 14.7, and the corresponding
relation between LSC and RSL, presented in the previous chapter, are two
such examples.

14.8.2 Principles, Techniques and Tools

This chapter has basically covered a tool: the Statechart language. As such
we can hardly speak of 'a principle of statecharts' — such as we could for
most other chapters' title subjects. So we shall rearrange things a bit in this
section.

14.10 Exercises 509

Principles. Choosing Statecharts: Statecharts, as a modelling device, can be
chosen when the phenomenon to be abstracted and modelled exhibits concur
rent and interacting behaviours, where the internal state "machinery" of each
behaviour is of main interest, and usually when there is a definite, "small"
number of behaviours, typically less than a couple of dozen. •

Please contrast the above principle with that of Choosing Sequence Charts,
Sect. 13.7.2. Note the distinction between interaction "patterns" in the former
and internal state "machinery" as here.

Techniques. The main techniques for constructing statecharts have been
covered in Sects. 14.1, 14.2, and 14.4. Some techniques focus just on the
construction of the statechart. Other techniques combine statecharts with
sequence charts. And yet other techniques combine these with RSL. •

Tools. The main statechart tool is that of STATEMATE. It is provided com
mercially by the firm of i-Logix (www.ilogix.com). •

14.9 Bibliographical Notes

The Statechart literature has been mentioned at various points in this chapter.
A series of introductions and semantics have been presented by David Harel et
al. [174,175,185,193,197]. Others have contributed, notably Amir Pnueli [404].
Professional tool support in the form of STATEMATE is covered in [197,198].

The process algebraic semantics for Statechart covered in this chapter
is presented by Liittgen, van der Beeck and Cleaveland [314]. It is defined
using the process algebra named Statecharts Process Language (SPL), which
is inspired by the Timed Process Language of Hennessy and Regan [209].

Christian Krog Madsen, in his pre-MSc and his MSc thesis work [316,317]
analysed Statecharts, and reformulated the above process algebraic semantic
models and related a semantics of Statechart to RSL.

Various forms of statecharts are found in UML [59,237,382,440].

14.10 Exercises

Exercise 14.1 An Automated Train System.
The following exercise is based on [185,188]. Consider Fig. 14.23. To the left

is shown an abstraction of the simple topology of a cyclic railway net with six
train terminals. Exactly two lines connect adjacent terminals, and terminals
are connected to exactly two (other) terminals. Each pair of lines between
adjacent terminals allows train traffic in opposite directions (as indicated by
track arrows). Trains consists of single cars. Trains thus travel in clockwise
and counterclockwise directions along the lines and may stop at terminals.

510 14 Statecharts

Within each terminal there are four tracks. All tracks can be reached from
each of the two input lines. Both of the two output lines can be reached from
all tracks. (This is, for example, secured by the shown topology of rail units:
simple switch units, crossover switch units, crossover units and linear units.
But the reader can ignore this detail.)

r—[~^>—I P ' " "
Linear

| Unit

Fig. 14.23. An automated train system: net and terminal

A sequence of connected rail units between a line (into or out of a terminal)
and a track (of tha t terminal) is called a route: an entry, respectively an exit
route. A sequence of connected rail units is called a path. (Routes are special
paths.)

Each track can hold one train. Several trains are available to t ransport
passengers between terminals.

The system tha t we are to model, besides the lines, tracks and trains, also
contains for each terminal a destination board, and also for each terminal a
set of (as shown in Fig. 14.23, three) panels of but tons . Each panel provides
a pushbut ton for each destination terminal, i.e., five but tons .

Each train2 is equipped with an engine and a cruise control, the latter
for controlling the train speed. The cruise control can be off or engaged or
disengaged. A train in movement is to maintain maximum speed as long as it
never comes within 80 meters of any other train (on a pa th) . A stopped train
will continue its travel only if the shortest distance to any other train (on a

2We do not show trains in Fig. 14.23 — but encourage the reader to sketch
possible distributions of trains.

14.10 Exercises 511

path) is at least 100 meters. A train also has a destination board (with six
buttons). The train destination board is otherwise as for terminals.

A control centre receives (i.e., monitors), processes and sends (i.e., con
trols) data from and to the components indicated above and as implied below.

There possible scenarios, or, as they are called in UML [59,237,382,440],
use cases — stated as requirements — are:

Train approaching terminal: When a train is 100 meters from a terminal, the
system shall (i) allocate it a track, shall (ii) allocate it an entry route
(which connects from the line of the train to the allocated track) and
shall (hi) set the relevant rail unit simple crossover switches from the
incoming line along the entry route. If the train is to pass through the
terminal without stopping, the system shall also (iv) allocate it an exit
route. If allocations are not completed within the train being 80 meters
from the terminal, the system shall (v) delay the train until all is ready.

Train departing terminal: A train departs the terminal (vi) after being parked
at a track (i.e., along a platform) for 90 seconds. The automated train
system shall (vii) set the relevant rail unit simple crossover switches to the
outgoing line along the exit route, shall (viii) engage the train engine and
shall (ix) turn off the destination indicators on the terminal destination
board. The train can then depart (x) unless it is within 100 meters of
another (moving) train; if so, the system delays departure.

Passenger in terminal: A passenger in a terminal wishes to travel to some
destination terminal (other than the terminal at which the passenger is
located). If there is no available train in the terminal destined for that
terminal the passenger shall (xi) push the desired destination button (on
a relevant panel) and shall wait until an appropriate train arrives. If the
terminal contains an idle train, the system shall (xii) allocate it to that
destination. If not, the system shall (xiii) send in a train from some other
terminal. The system shall (xiv) indicate that a train is available by turn
ing on a flashing sign on the destination board.

The problems to be solved are indicated as follows:

1. Analyse the above text. Sharpen it if believed imprecise. State assump
tions not explicitly stated, but needed for answering below questions.

2. Identify all relevant events.
3. Draw suitable finite state machines, if felt useful in the prescription of

requirements to the automated train system.
4. Draw suitable UML (object) class diagrams, if felt useful in the prescription

of requirements to the automated train system.
5. Draw appropriate statecharts for trains, arrival, departure, and so on.
6. Compare your solution to that of [185].

You may wish to augment and/or contrast your solutions, or that of [185], to
solutions of either or both of the following questions:

512 14 Statecharts

7. Draw appropriate message or live sequence charts for relevant aspects of
the automated train system.

8. Reformulate the whole set of requirements in terms of:
(a) An applicative specification program expressed in RSL.
(b) An imperative specification program expressed in RSL.
(c) A concurrent specification program expressed in RSL, i.e., in CSP/RSL.

Exercise 14.2 A Shooting Game. The following exercise is based on material
placed on the Internet by Matthew Carey [72]. It illustrates the reverse concept
of unwinding. Unwinding a statechart was exemplified in Example 14.3. In
this exercise we present a finite state machine and ask you to wind it into a
statechart.

Consider Fig. 14.24. The finite state machine represents the behaviour of
a simple opponent in a computer game. State transitions are labelled by event
names.

player visible

Fig. 14.24. Shooting game

You can either read the text now following or, after carefully having studied
Figs. 14.24 and 14.25, go straight to the formulation of the exercise at the end,
just before the start of the next exercise. That is, the following italicised text
pragmatically motivates the finite state machine of Fig. 14.24, but brings no
material that is relevant to the construction of a proper statechart!

The player is called H (for human) and the computer game is referred to
as Q (for game). The computer game Q has four basic behaviours: stationary
BLUE, random GREEN, hunting YELLOW, and fleeing R E D .

Q starts in stationary BLUE. In stationary BLUE Q waits for an event to oc
cur. Either of the events TIMER going off, 7i approaching ('PLAYER NEARBY),

14.10 Exercises 513

or being SHOT. Suppose that the TIMER goes off while Q waits in station
ary BLUE. This causes a transition to random GREEN. Q will start to move
aimlessly about. This state prevents the world going into stasis when % is
not around. At any one time most of Q 's fellows (so it is assumed) just stand
there, but occasionally somebody will move to a new location. Relevant events
for this state, i.e., random GREEN, are similar to stationary BLUE. The only
difference is a separate timer setting. A % approaches. Q is informed that
PLAYER H is NEARBY. Q then moves to a different random GREEN state. Be
haviour is same as before but different events become relevant. Q will now
respond to observing SEEING PLAYER % (PLAYER VISIBLE), H LEAVING the
area (PLAYER NOT VISIBLE), andTi being SHOT. If player H leaves (PLAYER

NOT VISIBLE) then Q changes back to previous state. If Q spots player %
(PLAYER VISIBLE) then Q will change to hunting YELLOW, trying to home in
on PLAYER "H. While hunting Q may lose sight of the target (LOST TARGET).

Q will then move back to most recent random GREEN. Etcetera, etcetera. We
leave it to the reader to further analyse and verbalise Fig. 14.24.

There are, however, some aspects with the finite state machine diagram of
Fig. 14.24 that are less than desirable. As the reader may discover, there are
several duplicate event transitions, for example, many shot events. This is a
relatively simple behaviour.

The idea therefore is to replace the finite state machine description of
this game by a statechart description in which, approximately the states of
the finite state machine of Fig. 14.24 are aggregated into superstates of the
desired statechart as hinted at in Fig. 14.25.

shot shot

Fleeing & Shot

Initial States

Hunting, Erratic Sight

- ^ Hunting & Lost

Hunting, in Sight

Fig. 14.25. Shooting game

514 14 Statecharts

Exercise 14.2.1 Shooting game sta.techa.rt: In the statechart to be drawn by
the reader there will be three superstates: The fleeing R E D , the initial Blue
&: Green and the hunting Green & Yellow. The latter has two substates,
etc. You are to redraw Fig. 14.25 into a proper statechart with indications
of default states, etcetera. Instead of the 17 state transitions of the finite
state machine of Fig. 14.25 one can come down to nine state transitions,
one for shot (in contrast to six), three for timer and one each for all of
the rest.

E x e r c i s e 14 .3 A Digital Watch. This exercise derives from [174,175]. We
have changed the informal specification of the digital watch since there seem
to be some inconsistencies and a certain kind of incompleteness amongst and in
those papers. Harel's seminal papers also illustrates stepwise, albeit informal,
but convincing development.

The digital watch has a (i) display, (ii) five external but tons (a, /?, 7, 6,
ui), a (iii) chime, an (iv) alarm, a (v) stopwatch, a (vi) a light illuminator, and
a (vii) weak-battery indicator.

QQSQQ
' 10:21 am '

] P

]y
QQgQQ

Monday 16 May

] p

] y

Fig. 14.26. A digital watch showing time or date

The display (i) can show the time (hour, minutes and seconds) or the date
(weekday, day of month and month) . The chime (iii) can be turned on or off,
i.e., be enabled or disabled, beeping on the hour if enabled. The alarm (iv)
can likewise be enabled or disabled. The alarm beeps for 2 minutes when the
time in the alarm setting is reached — unless any one of the but tons is pressed
earlier. The stopwatch (v) has two display modes: regular and lap.

External events (ii) a, /3, 7, 6 and ui signify the pressing of respective
but tons . Event 2 m (not shown in Fig. 14.26, since it cannot be shown!) signifies
tha t two minutes have elapsed since the last t ime any but ton was pressed.

The digital watch states:

The watch embodies the following states: time, alarm, chime, stopwatch, date,
time/date update and alarm update, with time being the default s tate. A cycle
of pressings of but ton a leads from state time through states alarm, chime,
and stopwatch back to state time. The date s tate can be entered and left by
pressing but ton S. When in the date s tate the display shows the date. The
time/date update s tate is thus reached by pressing but ton 7. It can be left

14.10 Exercises 515

from any of its substates by a pressing button /?. The alarm update state is
likewise reached by pressing button 7. It can be left from any of its substates
by a pressing button /?. If the user of the digital watch lingers on in the alarm,
date, time/date update or alarm update states for more then 2 minutes, then
an automatic time-out occurs, and the watch returns to the time state.

Exercise 14.3.1: A statechart for the digital watch states: Construct a state-
chart for the digital watch as described up to this point.

The time/date update state:

The watch display time/date update occurs as the result of the cyclic settings
of buttons 7 and UJ as follows. From the initial time/date update state sec one
can reach the min, hour, day of week, day of month, and month substate by
successive pressings of button 7 while button UJ is not pressed. In any of the
states sec, min, hour, day of week, day of month, and month holding button ui
pressed continuously while repeatedly pressing button 7 (one or more times)
will advance the corresponding time or date counter.

Exercise 14.3.2: A Statechart for the update state: Construct a statechart for
the time update state as described up to this point.

The alarm update state:

The alarm update occurs as the result of the cyclic settings of button 7.
From the initial alarm update substate min one can reach the min and hour
substates, and one can update the corresponding setting by repeated pressings
of the 7 and ui buttons as explained for the time/date update state. When in
the alarm date state the display shows the alarm setting. If the user of the
digital watch lingers on in the alarm date state for more then 2 minutes, then
an automatic time-out occurs, and the watch returns to the time state.

Exercise 14.3.3: Construct a statechart for the alarm update state as de
scribed up to this point.

The stopwatch state:

The stop watch state has two substates: zero and display/run, the first being
the default state. The display/run state consists of two (orthogonal) states:
display and run. The display state has two substates: regular and lap. The run
state likewise has two substates: on and off. In the regular state the digital
watch display shows the ordinary time, while in the lap state it shows the
lap time. In the on state the stopwatch is running. And in the off state it is
stopped. Pressing button /? from the zero to the display/run state causes it to
make a transition to both (orthogonal) states: display and run, and to their
substates regular and on, respectively. Repeatedly pressing button j3 while the
digital watch is in the run causes it to stop and start alternatively. If button

516 14 Statecharts

6 is pressed in substate regular while state run is in substate off then the
digital watch leaves the display/run state and returns to the zero state, else
(state run in substate on) a transition is made to substate lap. Repeatedly
pressing button S (state run in substate on) causes the display to switch to
lap and back to regular.

Exercise 14.3.4: Construct a statechart for the stop watch state as described
up to this point.

High-level description of the digital watch:

We now assume that repeated pressing of the a button will lead the digital
watch into substates of the states as they were previously left, i.e., we assume
history dependence.

Exercise 14.3.5: Combine the above statecharts, and add initialisations and
history to the individual statecharts. Then construct an overall statechart
for the digital watch.

15

Quantitative Models of Time

• The prerequisite for studying this chapter is that you are well familiarised
with abstract modelling, but have wondered how to model temporal issues
such as explicit timing and explicit time durations.

• The aims are to introduce the modal logics of temporal logic (TL), linear
temporal logic (LTL), interval temporal logic (ITL), the duration calculus
(DC), Timed RSL (TRSL), and to relate TRSL to the duration calculus.

• The objective is to finally, with earlier chapters' coverage also of Petri
nets, live sequence charts and statecharts, put the reader on a very strong,
professional footing as concerns modelling concurrency and timing.

• The treatment ranges from systematic to formal.

Chapters 12-14 covered methods: principles, techniques and tools for expressing quali
tative aspects of systems such as concurrency, synchronisation between behaviours and
events. We now cover methods for expressing such quantitative aspects of concurrent
systems as timing within and between behaviours.

15.1 The Issues

We first identify a spectrum of from "soft" to "hard" temporalities, through
some informally worded texts. On that background we can introduce the term
real-time, and hence distinguish between soft and hard real-time issues. From
an example of trying to formalise these in RSL, we then set the course for this
chapter.

15.1.1 Soft Temporalities

First we present some examples of soft real-time statements:

• You have often wished, we assume, that "your salary never goes down, say
between your ages of 25 to 65".

518 15 Quantitative Models of Time

• Taking into account other factors, you may additionally wish tha t "your
salary goes up" .

• Taking also into account tha t your job is a seasonal one, we may need to
refine the above into "between un-employments your salary does not go
down".

The issue now is: How do we formalise those statements?

15.1 .2 Hard T e m p o r a l i t i e s

The above statements may not have convinced you about the importance of
what this chapter has to offer. So let's t ry some other examples:

• "The alarm clock must sound exactly at 6 am unless someone has turned
it off sometime between 5 am and 6 am the same morning".

• "The gas valve must be open for exactly 20 seconds every 60 seconds".
• "The sum total of t ime periods — during which the gas valve is open and

there is no flame consuming the gas — must not exceed one twentieth of
the time the gas valve is open".

• "The t ime between pressing an elevator call but ton on any floor and the
arrival of the cage and the opening of the cage door at tha t floor must not
exceed a given time ^ a r r j v a i " •

This chapter presents some tools, i.e., languages, and some principles and
techniques for expressing and analysing such, as we shall call them, temporal
matters .

15 .1 .3 Soft and H a r d R e a l - T i m e

The informally worded temporalities of Sect. 15.1.1 can be said to involve
time in a very "soft" way: No explicit times (e.g., 15:45:00), deadlines (e.g.,
"9 February 2006") or t ime intervals (e.g., "within 2 hours") were expressed.
The informally worded temporalities of Sect. 15.1.2, in contrast, can be said
to involve t ime in a "hard" way: Explicit times were mentioned.

For pragmatic reasons, we refer to the former examples, the former invo
cations of temporality, as being representative of soft real-time, whereas we
say tha t the latter invocations are typical of hard real-time.

Please do not confuse the issue of soft versus hard real-time. It is as much
hard real-time if we say tha t something must happen two years and five sec
onds from tomorrow at noon!

15.1 .4 E x a m p l e s — "Ye Olde Way"!

To paraphrase the point we try express the soft temporalities in an ordinary
RSL way, in which we use an explicit model of time.

15.1 The Issues 519

Example 15.1 Soft Real-Time Models Expressed in "Ordinary" RSL Logic:
Let us assume a salary data base SDB which at any time records your salary.
In the conventional way of modelling time in RSL we assume that SDB maps
time into Salary:

type
Time, Sal
SDB = Time -tf Sal

value
hi: (Salx Sal)| (TimexTime) ->• Bool
eq: (SalxSal)| (Timex Time) -> Bool
lo: (Salx Sal)| (TimexTime) ->• Bool

axiom
V a:SDB,t,t':Time • {t,t'}CdomcrAhi(t',t)=>~lo(CT(t'),<r(t))
V t,t':Time •

(hi(t',t)=~(eq(t',t)Vlo(t',t))) A
(lo(t\t)=~(eq(t',t)Vhi(t',t))) A
(eq(t',t)=~(lo(t',t)Vhi(t',t))) ... /* same for Sal */

Example 15.2 Hard Real-Time Models Expressed in "Ordinary" RSL: To
express hard real-time using just RSL we must assume a demon, a process
which represents the clock:

type
Time = Real

value
time: Unit —• Time
time() as t

axiom
time() j£ time()

The axiom is informal: It states that no two invocations of the time function
yield the same value. But this is not enough. We need to express that "im
mediately consecutive" invocations of the time function yield "adjacent" time
points. Time provides a linear model of real-time.

variable
t l , t2 : Time

axiom
• (tl := time();

t2 := time();
t2 - t l — /* infinitesimally small time interval: ITime*/ A
t2 > t l A ~ 3 t:Time« t l < t < t2)

520 15 Quantitative Models of Time

ITime provides a linear model of intervals of real-time. The • operator is here
the s tandard RSL modal operator over states: Let P be a predicate involving
globally declared variables. Then DP asserts tha t P holds in any state of these
variables. But even this is not enough; much more is needed. •

At any rate, with the above extensions we really do have a "hard (even soft)
t ime" in expressing the hard real-time problems! So we give up, and tu rn to
the duration calculus to provide appropriate means. We shall, in Sect. 15.4,
take up the above a t tempt .

15 .1 .5 S t r u c t u r e of T h i s C h a p t e r

In Sect. 15.2 we first briefly cover notions of intervals and some simple interval
modal operators, indicating a logic of intervals, before we briefly survey classi
cal temporal logic. In Sect. 15.3, the main part of this chapter, we then cover
the duration calculus. We do so by first showing examples before we build
up a proper, albeit basically informal, presentation of the duration calculus.
Some larger, strongly related examples end our t reatment of the duration cal
culus. They span from domain descriptions via requirements prescriptions to
the specification of software design decisions. In Sect. 15.4 we extend RSL
with timing, i.e., we introduce explicit temporal constructs thus making RSL
into TRSL. Finally, in Sect. 15.5 we extend TRSL with features of the duration
calculus.

15.2 Temporal Logic

We quote from [126]:

"The term temporal logic has been broadly used to cover all ap
proaches to the representation of temporal information within a logical
framework, and also more narrowly to refer specifically to the modal-
logic type of approach introduced around 1960 by Arthur Prior under
the name of tense logic and subsequently developed further by logi
cians and computer scientists."

"Applications of temporal logic include its use as a formalism
for clarifying philosophical issues about t ime, as a framework within
which to define the semantics of temporal expressions in natural lan
guage, as a language for encoding temporal knowledge in artificial
intelligence, and as a tool for handling the temporal aspects of the
execution of computer programs."

1Of course, we really do not need to make a distinction between Time and ITime.
The former tries to model a real-time since time immemorial, i.e., the creation of the
universe. If we always work with a time axis that "started recently", i.e., a relative
one, then we can "collapse" Time and ITime into just Time.

15.2 Temporal Logic 521

15.2.1 The Issues

The basic issue is simple: to be able to speak of temporal phenomena without
having to explicitly mention time. That goes for vague, or soft notions of time:
what we could call soft real-time, that something happens at a time, or during
a time interval, but with no "fixing" of absolute times nor time intervals. It
also, of course, goes for precise, or hard notions of time: What we could call
hard real-time, that something happens at a very definitive point in time,
or during a time interval of a very specific length, and thus with "fixing" of
absolute times or time intervals.

Definition. By a temporal logic we shall understand a formal logic, for ex
ample, a propositional logic or a predicate calculus which is extended with one
or more logical connectives that allow one to express time without explicitly
having to quantify over times. •

In this chapter we shall see a variety of systems of such connectives. These sys
tems are referred to as temporal logic, linear temporal logic, interval temporal
logic and the duration calculi.

15.2.2 A Philosophical Linguistics Background

According to [126], Arthur Prior [409-411] developed a tense logic along the
lines presented below:

• Pp: "It has at some time been the case that p held"
• Fp: "It will at some time be the case that p holds"
• Hp: "It has always been the case that p held"
• Gp: "It will always be the case that p holds"

P and F are known as the weak tense operators, while H and G are known as
the strong tense operators. The two pairs are generally regarded as interde-
finable by way of the equivalences:

Pp = ~H(~p)
Fp = ~G(~p)

On the basis of these intended meanings, Prior used the operators to build
formulas expressing various philosophical theses about time, which might be
taken as axioms of a formal system if so desired. Some examples of such
formulas, with Prior's own glosses (from [410]), are:

Gp^Fp:
What will always be, will be.

522 15 Quantitative Models of Time

G(p=>q)=>(Gp=>Gq)
If p will always imply q, then if p will always be the case, so will q.

Fp^FFp
If it will be the case that p, it will be (in between) that it will be.

~Fp^>F~Fp
If it will never be that p then it will be that it will never be that p.

A special temporal logic is the minimal tense logic Kt. It is generated by the
four axioms:

p^HFp
What is, has always been going to be.

P^GPp
What is, will always have been.

H(p^q)^(Hp^Hq)
Whatever always follows from what always has been, always has been.

G(p^q)^(Gp^Gq)
Whatever always follows from what always will be, always will be.

We will end our philosophy-based tense (i.e., temporal) logic discourse here,
to take up a line more akin to how temporal logics are usually presented in
software engineering. We strongly encourage the reader to, for example, read
the Web page: h t t p : / / p l a t o . s t a n f o r d . e d u / e n t r i e s / p r i o r / [126].

15 .2 .3 Interval T e m p o r a l Logic , ITL

Although of broader importance than just for the classical temporal logic, we
will now bring in some general notions of time intervals and time-interval-
related properties. Thus this section amounts to a very brief introduction to
a variant of an interval temporal logic [105,372,373].

To paraphrase tha t we are working with a real-time concept, we use the
type name Time:2

t y p e
Time = R e a l

We assume, for simplicity, Time to be linear in the sense of Sect. 5.1.4.

2We remind the reader that we are using a relative time interval, cf., Footnote 1.

15.2 Temporal Logic 523

Intervals and Subintervals : [c, d] C [b, e]

By an interval we here mean an interval of time. By a subinterval we mean
an interval embedded within another interval: Let b and e denote times, i.e.,
be R e a l s . Allow e to "move" toward oo. Let b < e. Then [b,e] denotes an
interval. If b = e then [b, e] denotes a point (interval) of length 0. Let c and d
denote times such tha t b < c < d < e, then the interval [c, d] is a subinterval
of [b,e], written [c,d] C. [b,e].

L e n g t h of an Interval: [•]

Let [b, e] designate an interval. Assume b < e. Tha t is, the interval is not a
point. Let <f> be a predicate (over a state, i.e., over some state variables), such
tha t (f> holds exactly in the interval [b, e]. Then we say tha t [</>] designates the
length of time when <j> holds, and tha t tha t length is exactly e — b.

In general \<f\ designates a length of time:

[•]: (State -> Boo l) ->• ITime

Where ITime stand for t ime intervals over real numbers. Tha t is: Not a Time,
but a t ime interval, i.e., the difference between two real Times. We shall later
' interpret ' States in the formula above as functions from Time to B o o l .

E x a m p l e 15.3 Some Standard Suhinteivah:

• The t ime period of a weekday is a subinterval of the week, and its length
is exactly 24 hours, or 1,440 minutes, or 86,400 seconds, or . . . 86.4 bil
lion microseconds, etc.

• The next hour is a subinterval of the future, and its length is exactly
60 minutes, etc.

• The previous hour was a subinterval of the past , and its length was exactly
60 minutes, etc.

• The present hour is a subinterval of my life, and its length is exactly
60 minutes, etc.

T h e " S o m e t i m e " M o d a l i t y : O

We often wish to express tha t some property, </>, holds of a phenomenon in
some (possibly point) subinterval [c, d],c < d of an interval [b,e], b < e. For
tha t we use the 'sometime' modality, i.e., operator, O:

o<t>
We read O </> as: It will sometime, from now on, but not necessarily just now,
into a future, which, for our consideration starts now, at time b and stretching
until time e, be the case tha t <f> holds.

524 15 Quantitative Models of Time

—-Of

b e d e

— — 4 , - - ~

Fig. 15.1. Visualisation of the O modality

Graphically we can show a meaning of O </> (Fig. 15.1).

E x a m p l e 15 .4 O: Some Current Possibilities:

• O Emergency services will show up.
• O Lunch will arrive.

T h e '"Always" M o d a l i t y : •

Given O, we can define the 'always' modality, • :

• </> = -1 O->((>

We thus read the above as: It will always, from now, and necessarily from
just now, into a future, which, for our consideration starts now, at t ime b
and stretching until t ime e, be the case tha t <f> holds. Here we have to make
allowance for e going to infinity, 00.

E x a m p l e 15.5 Platitudes and Truisms:

• • The sun rises every day.
• • The grass is greener on the other side.

T h e R i g h t N e i g h b o u r h o o d E x p a n d i n g M o d a l i t i e s : O r , D r

An interval [b,e] satisfies Or <p iff a right neighbourhood {[e,c],c > e) of the
interval satisfies <j>.

Graphically we can show a meaning of Or <f> (Fig. 15.2).
We read Or(f> as follows: We are considering the usual time span: [b,e\. The
expression Or<f> is to be thought of as being expressed, at a time sometime
within tha t interval. Or<f> then expresses tha t right after expiration of tha t
interval, i.e., as from time e and for some time (i.e., up till c), </> will hold. Or

"provides access" to the immediate future.

We can define D r : D r </> = - iO r- i^>. Tha t is, D r </> iff any right (i.e.,
immediate or very next future) neighbourhood of the ending point e of the

15.2 Temporal Logic 525

"present" "future" \

b e c

[*--- Or t|) - - - ~\~ t|) «-|

Fig. 15.2. Visualisation of the <>r modality

interval [b, e] satisfies </>. We read nr<j> as follows: We are considering the usual
time span: [b,e\. The expression Ur<p is to be thought of as being expressed,
at a time sometime within that interval. Or<f> then expresses that right after
expiration of that interval, i.e., as from time e and for any time (into the
future), <f> will hold.

Example 15.6 Future Hopes, Political Claims:

• <>r Peace in our time.
• D r It will get better and better.

The Left Neighbourhood Expanding Modalities: O^, U^

An interval [b,e] satisfies Oi <p iff a left neighbourhood ([a,b],a <) of the
interval satisfies <j>.

Graphically we can show a meaning of Oe<j> (Fig. 15.3). Og "provides
access" to "the immediate past".

"past" "present"

a b e

h 4> - - - - -Hh 0/<i> H

Fig. 15.3. Visualisation of the <>i Modality

We read <>£<j> as follows: We are considering the usual time span: [b,e]. The
expression <>£(f) is to be thought of as being expressed, at a time sometime
within that interval. <>i4> then expresses that just before commencement of
that interval, i.e., as from time a and for some time (i.e., up till b), <f> will hold.

We can define Uf. Ut <f> = -i Oe -i </>. Ut <f> iff any left (i.e., immediate past)
neighbourhood of the begin point b of the interval [b, e] satisfies <j>. We read Oe(f>
as follows: We are still considering the usual time span: [b,e\. The expression
Of<j) is to be thought of as being expressed, at a time sometime within that
interval. Ot(f> then expresses that for all times, a, stretching "infinitely" back
into a past, and up to b, <f> will hold.

526 15 Quantitative Models of Time

Example 15.7 "Rewriting History":

• <>£ It was better under the previous regime.
• Ut The past was always better.

The "Chop" Modality: ; (^)

We often wish to express that some property, </>, holds of a phenomenon in
some initial subinterval of an interval [b, e], and then that another property,
ip, holds of a phenomenon in the remaining subinterval of an interval. For that
we use the "chop" modality, i.e., operator, ;:

<j> ; ip

Graphically we can show a meaning of </> ; ip (Fig. 15.4).

h <l> ; v H

b e e

h — <l> — 4 - v H

Fig. 15.4. Visualisation of the "Chop" Modality

Sometimes the chop operator, ;, is written as ". Sometimes we will use one,
and sometimes the other form of operator symbol.

Example 15.8 ";": "One Thing at a Time": Please consider the italicized
sentences below as predicates. Then the examples illustrate uses of the chop
operator.

• He spent some time driving 5
then he walked.

• After motoring for some time;
lie took a short walk;
and finally he swam.

• She waited for the bus;
then the bus arrived',
she got on the bus;
then she watched the landscape glide by.

15.2 Temporal Logic 527

Defining O in Terms of Chop: ; ()

We can then relate the operators: O and ; (^):

O cj) = (t rue ; <f> ; t rue) = (true " </> true)

Since • can be denned in terms of O (D̂ > = -iO-i^>), and since O can be denned
in terms of 'chop': ' ; ' (" '), we can take 'chop' as the basic "primitive" of an,
or the, interval logic.

Definition. By an interval temporal logic we shall understand a temporal
logic whose concepts of time are captured by Time, a total partial order over
a dense (time) point set, and ITime, i.e., time intervals, and whose connectives
are those of • (always), Dr (always in right neighbourhood), Oe (always in
left neighbourhood), O (sometime), Or (sometime in right neighbourhood),
Oe (sometime in left neighbourhood), and the chop operator, expressed either
by ~ or by ';'.

Definition. By a linear temporal logic we shall understand the same as an
interval temporal logic. •

15.2.4 The Classic Temporal Operators: O, •

The classical temporal logic basically "makes do" with the following two (in-
terdefmable) modalities:

O: Sometime
• : Always

To recall, let <j>,ip denote any predicates, then:

O ip : Sometime (from now on) ip will hold.
• </> : Always (from now on) <f> will hold.

Definition. By a classical temporal logic we shall understand a temporal
logic whose connectives are those of • (always) and O (sometime). •

We now "transfer" into (i.e., move on to) the main part of this chapter, to
cover, in some detail, the duration calculus. In so doing we "bring with us",
from the present section, the three (interdefmable) modalities:

• (f> : (f> holds always
O ip : ip holds sometime
cj) ; ip : First </> holds, for some time; then ip holds, for some time

528 15 Quantitative Models of Time

15.3 The Duration Calculus

Just as I consider VDM and RSL, not only two specification languages, but also two
strongly related approaches to software development, as being seminal in the current
history of software engineering — and, mind you, I was strongly involved in the R&D of
both — so I consider the duration calculi as being a similarly important development
in our quest to conquer the complexity of systems specification. Hence I shall devote
quite some space to covering the duration calculi — while otherwise referring to the
seminal monograph [557]. Again, I am grateful to have been instrumental in bringing
forth the duration calculi.

The duration calculi is the creation, notably, of:

• Zhou ChaoChen [166,167,169,170,221,438,475,522-524,545,551,552,554-564],

and of his colleagues since 1989:

Michael Reichhardt Hansen [166,167,169,170,555-558,562],
Tony Hoare [559],
Dang Van Hung [78,219-221],
Anders Peter Ravn [475,558,559,562,563],
Hans Rischel [475,558],
Pandya K. Paritosh [166,545],
Jens Ulrik Skakkebaak [473-475],
Wang Ji [324,521,563],
Xu QiWen [412],

and many others — as shown from the citations. Above I have, except for the
2004 monograph,

• [557] by Michael Reichhardt Hansen and Zhou ChaoChen,

listed only publications and reports for the first seven or so years of the du
ration calculus (actually duration calculi) history. The definitive book on the
duration calculi is [557]. It contains an extensive list of references from earliest
documents till and including 2003!

15.3 .1 E x a m p l e s , Part I

We show an example to lead the reader in the direction of what the duration
calculus is all about . We leave it to you to decipher the below example.

E x a m p l e 15.9 Elevator cum Lift: The "Quickie" Version:
(1) For a lift system to be adequate it must always be safe and function

adequately. There are three functional requirements.
(2) For the lift system to be safe, then for any duration t ha t the door on

floor i is open, the lift must be also at tha t floor.

15.3 The Duration Calculus 529

(3) The length of time between when someone pushes a but ton , inside a
lift cage, to send it to floor i, and the arrival of tha t cage a t floor i must be
less than some t ime ts.

(4) The length of t ime between when someone pushes a but ton , a t floor
«', to call it to tha t floor, and the arrival of a cage at tha t floor must be less
than some time tc-

(5) The length of t ime t ha t a door is open when a cage is at floor i must
be a t least some time t0.

(1) Req =
• (SafetyReq A FunctReql

(2) SafetyReq = '
[door=i] => [floor=i]

(3) FunctReql =
(fi € send]

(4) FunctReq2 =
(fi € call] :

(5) FunctReq3 =
[door^i] ;

; t rue =>- •£<£«)

; true => (<tc)

A FunctReq2 A

V (t<ts

V (£<tc

|"door=i] ; [door^i] => {

; [dooi

; [door=

l>t0

FunctReq3)

•=i]

=i] ;

; true)

true)

A more detailed version of this example is found in Example 15.11.

Maybe you got the idea? In any case, before going on to further, more extended
examples, we bring in what might be called the three cornerstones of the
duration calculus. Then we present some more examples. Then we bring in a
proper reasonably detailed presentation of the duration calculus. Then, again,
some more examples, and finally an axiom system, part of a proper proof
system, for the duration calculus.

15.3 .2 S o m e Bas ic N o t i o n s

B o o l e a n S t a t e s , S t a t e A s s e r t i o n s and Character i s t i c Funct ions

We model the behaviour of systems by expressing assertions about states and
events. (For events we refer to Sect. 15.3.7.) Each state component can be
thought of as an assignable (say RSL-declared) variable of some (say RSL-
defined) type.

A Boolean state model of a system is a set of predicates over its state
components. We call these predicates s ta te assertions. A s ta te assertion is a
Boolean-valued function over time. For state component a the type of the
predicate Pa is:

variable
a

value
Pa: Time ->• B o o l

530 15 Quantitative Models of Time

Time is the set of real numbers, i.e.:

R e a l
t y p e

Time

Each such Boolean-valued function (over time) is also called a Boolean state
(sometimes just a state) of the system. It is a characteristic function of the
particular facet of the system tha t the state component, i.e., the variable,
models. The set of all Boolean state functions thus describes the behaviour
of the system.

S t a t e D u r a t i o n s

By a state duration of a state component, i.e., a state variable, a, we mean
the duration of a Boolean state Pa (i.e., the state value being t ru th : t t) over
a t ime interval [b, e] as the accumulated presence of tha t state in the interval:

rt=e

/ (if P(t) = tt t h e n 1 e lse 0 end)St.
h=b

We shall mostly adopt the (type-incorrect) abbreviation:

t=e

P(t)5t,
t=b

in lieu of the former. It works if you encode t t as 1 and f f as 0! For the case
tha t b < e and Jt~b P(t)St > £, we shall abbreviate ft~b P(t)St by \P~\, which
reads: The duration of P.

If P is t rue at some point t, but not in an interval before t, [b, t), nor in an
interval after t, (t,a], then JP(t)5t = 0, i.e., [P~\ = 0.

Ignition Flame Detector

ah Valve

Gas Reservoir

Fig. 15.5. An abstracted gas burner

15.3 The Duration Calculus 531

Example 15.10 Preliminary Gas Burner Considerations:

What Is "the" Gas Burner?

A gas burner consists of the following electromechanical components: a pipe
leading from a gas reservoir to a valve; a valve which can be in either of four
states:

type
Valve = = closed | opening | open | closing;

an ignition apparatus which can be in either of two states:

type
Ignition = = ignite | idle;

and a flame sensor which can be in either of two states:

type
Flame = = flame_on | no_flame

We will presently not need to deal with the ignition; it is included for later
reference. We can summarise these components in three state variables:

variable
valve:Valve
ignitiomlgnition
flame:FlameSensor

The valve and the flame state components thus define two Boolean state as
sertions:

value
valve: Time —} Bool
flame: Time —> Bool

There is gas flowing iff the valve is opening, open or c los ing . There is flame
burning iff the flamesensor senses f lame_on.

Gas Leakage

We can now define a general state assertion, leak:

value
leak: Time -> Bool
leak(t) = valve(t) A ~flame(t)

But what does it mean, with respect to valve(t), when we earlier stated that
gas is flowing iff the valve is either opening, open or closing? We will not
formally detail this issue here. Instead we appeal to the reader's intuition:
When the valve is c losed, obviously no gas is flowing. When the valve is
opening, and as from some degree of being between closed and open, gas
is also flowing, and so on.

532 15 Quantitative Models of Time

Gas Burner Requirements

The real-time requirement for a gas burner is that the proportion of leak time
in an interval [6,e] is not more than one twentieth (i.e., ^-) of the interval
provided the interval [b, e] is at least 60 seconds long:

(e - ft)>60sec => J^ leak{t)5t<^

We rewrite the above into:

GasBurnerReq = £ > 60 => 20*/ Leak < t

15.3.3 Examples , Pa r t I I

We bring in one more detailed example before we explain the duration cal
culus. In Example 15.11 we give a detailing of the above elevator (cum lift)
example (Example 15.9). By carefully explaining the application, its safety
and functional requirements, and bringing in — so to speak out of thin air —
the duration calculus formalisations of these requirements, it is hoped that the
reader is better motivated for the subsequent systematic, and at times dry,
presentation of the syntax and (informal) semantics of the duration calculus.

Example 15.11 Elevator cum Lift: Function and Safety Requirements, the
"Full" Version, Part I: We refer to the "quickie" version of this example,
Example 15.9.

P rob l em Descript ion

We first give a problem domain description, and then we give a combined
set of formal functional and safety requirements, expressed in the duration
calculus.

A simple, single lift system allows movement of a single lift cage between
a finite number of floors, the starting and stopping of the lift [cage] and the
opening and closing of floor doors — all in response to the pressing of floor
call and cage send buttons.

Components

The lift system has the following immediate components:

• a lift cage with send buttons, one for each floor, as immediate sub
components

• motor (engine)

15.3 The Duration Calculus 533

• N floors, each with a floor door and a call button as immediate sub
components

In this version we abstract from passengers — assuming that a lift can carry
any number of clients!

The terms introduced are: lift system, [lift] cage, send buttons, floor, floor
number, [floor] door, call button. The taxonomy is implied by their composi
tion. The system state is made up from the above components together with
their attributes — which we now detail.

There is a tacit understanding above that might have to be made more
explicit: namely that floors are identified by natural numbers, say 0 to JV
inclusive — and hence that two immediately adjacent floors differ by 1 in
their floor number.

Attributes

The system and its components have the following attributes (that is: are of
the following types, and have the following values):

• The lift cage is either stopped at floor j for j lying between 0 and N
inclusive, or is moving up (or down) between floors i and i + 1 (i and i — 1)
for i lying between 0 and N — 1 (N and 1).

• A floor door is either open or closed.
• The motor is either running up (or down) or is stopped.
• The motor, when running, runs at a constant speed — which causes the lift

cage to move between immediately neighbouring floors in tm time units.

The new terms introduced are: stopped, moving, open, close, running, speed,
and time unit. Their taxonomy is implied by their interrelations, for example,
motor running implies cage moving, and so on.

Events

We consider only the following events:

• A send button is pressed for floor k, for k in the interval 0 to N inclusive.
• A call button on floor k is pressed.
• The opening (and closing) of floor doors.
• The upward (downward) starting [and stopping] of the motor — implying

the same for the cage!

New terms are: [button] pressing, opening, closing, starting, stopping. As part
of what we could call the taxonomy: button pressings are external input events
caused by users, whereas motor and (hence) cage starting and stopping, and
door opening and closing, are internal events caused by the system (in response
to the system state and external events).

534 15 Quantitative Models of Time

Behaviour

A lift journey is behaviourally described:

• Servicing a floor means that the lift cage is stopping at the floor (implying
opening and closing of floor doors, etc.).

• There is a request on floor j if floor j has not been serviced since a send
button for that floor was last pressed.

• If a lift moves from floor i to floor i + n where — 2 > n > 2, and a request is
outstanding (pending) for any intermediate floor j (where j lies between i
and i +n) then the lift will service floor j before proceeding to floor i +n.

Invariants

The above plus the invariants fully describe expectations:

• There are at least two floors (a component invariant).
• The cage has exactly one send button for each floor (a component invari

ant).
• Pressing a call button at floor i causes the lift to service that floor within

tc time units (a procedural, functional requirement).
• Pressing a send button for floor i causes the lift to service that floor within

ts time units (a procedural, functional invariant).
• When a floor is serviced then the floor door is simultaneously open for at

least t0 time units (a procedural, functional invariant).
• A floor door may only be open if the lift cage is at that floor (a component

[+event] safety invariant).

Requirements: L Req

The lift system, LS, shall be monitored and controlled by a computing sys
tem that shall respect the components, handle the events and satisfy the
procedures and invariants enumerated above.

Base Model

type
LS :: cage:Cages x floors:Floors x motor.Motor
Cages = Buttons
bs : Buttons = Nat ^ Button
fs : Floors = Nat -^ Floor
Floor :: call:B x door:Door
Button = = Pressed | Off
Motor = = Stopped | Up | Down
Door = = Open | Closed

15.3 The Duration Calculus 535

Formal Requirements

To model that the lift is only at one floor, and the door is only open at, at
most, one floor at a time we choose the following state variables:

call: {0 , . . . ,n}—set call buttons pressed
send: {0, n}-set send buttons pressed
floor: {0, n} lift position
door: {0 , . . . , n, closed} door state

Thus we do not model lift positions between floors, call and send relate to fs,
and 6s, respectively.

L_Req = • (SafetyReq A FunctReq)

To specify the requirements we introduce a static variable i which ranges over
the floors 0 , . . . ,n.

The safety property for the lift control system is:
For every floor the door may only be opened if the lift is at that floor:

SafetyReq = [door=i] => [floor=i]

Notice, SafetyReq is equivalent to stating that "if the lift is not at floor i,
then door i must be closed".

In the formulation of the functional requirements we use the phase "to
service a floor", which means that the lift is at the floor and that the door is
open. As the safety requirement states that a door must only be open if the
lift is at the floor, we will formalise servicing a floor by the door being open
at that floor.

FunctReq = FunctReql A FunctReq2 A FunctReq3

Pressing a send button causes the lift to service the corresponding floor within
ts tim.e units:

FunctReql =
([i G send] ; t rue =$> £<ts) V {£<ts ; [door=i] ; t rue)

This requirement states that for every observation interval for which * € send
holds initially, i.e., the send button for the ith floor is pressed, either the inter
val is shorter than or equal to ts or it may be divided into three subintervals
where the first lasts at most ts, in the second the door at floor i is opened,
and a final subinterval which is unconstrained.

A similar condition must hold when pressing a call button:
Pressing a call button causes the lift to service the corresponding floor

within tc time units:

536 15 Quantitative Models of Time

FunctReq2 =
([i E call] ; true =$> £<tc) V (£<tc ; |"door=i] ; true)

The system must guarantee that when a floor is serviced, the doors are open
for at least ta time units:

FunctReq3 =
[door^i] ; |~door=i] ; [door^i] =• l>t0

This completes the first part of the lift system example. The second part is
given in Example 15.12.

15.3.4 The Syntax

The presentation of this part follows that of Skakkebaek et al. [475] (1992).

Simple Expressions

We define simple, i.e., atomic expressions.

x,y,... ,z:State_ Variable
a,b,...,c:Static_ Variable
ff,tt:Bool_Const
k,k',...,k":Const

Static variables designate time-independent values. We assume some context
which helps us determine the type of variables.

State Expressions and Assertions

We define state expressions and state assertions. A state assertion is a state
expression of type Bool, and op is an operator symbol of arity n. We assume
a context which helps us determine that an identifier is an op!

se:State_Expr ::= Const | Bool_Const | op(sei,...,se„)
P:State_Asrt ::= State_Expr

We assume a context which helps us determine that a state expression is of
type Bool, i.e., is a state assertion.

15.3 The Duration Calculus 537

D u r a t i o n s and D u r a t i o n T e r m s

If P is a state assertion, then J P is a duration.
We define duration terms.

d t :Dur_Term ::= / P | R e a l | op(dti , . . . ,dt„) | t

i is an abbreviation for the duration term j tt. op is an n operator symbol of
type Rea l . We assume a context which helps us determine tha t an identifier
is an op!

D u r a t i o n Formulas

We define duration formulas. Let A be any n-ary predicate symbol over real-
valued duration arguments. We assume a context which helps us determine
tha t an identifier is an A\

d:Dur_Form ::= A(dt i , . . . ,d t„)
t rue | false |
~ d ' | d iVd„
di ;d„
diAd„
di=>d„
diAd„
V a: d / * a is * / Static_Variable

Delimiting parentheses can be inserted to clarify precedence.

C o m m o n D u r a t i o n Formula A b b r e v i a t i o n s

We make free use of the following common abbreviations:

Od
ad

d\ ->• d'2

£ = 0
fP = £A£>0

true; d; t rue
-•(o- id)

iii; t rue =^ d\ V (d : 1; d : 2; true)

Precedence Rules:

First
Second

Third

-i • o

V A ;

point duration
almost everywhere P
somewhere d
always d
d<i follows d\

538 15 Quantitative Models of Time

15.3.5 The Informal Semantics

The presentation of this part also follows that of Skakkebaek et al. [475] (1992).
A particular system behaviour B assigns, for each state variable x, a func

tion from the semi-open time definition set [0, oo)3 to the type of the values
containable in x. For each static variable a the function "selects" a value V(a).
Each state expression then denotes a function obtained by evaluating the state
expression for each point of time.

For state assertions, P, we assume Unite variability, i.e., for any behaviour
B, any observation interval can be divided into finitely many sub-intervals
with P constant on each open subinterval, not including the interval begin
and end points.

An observation interval is an open and bounded interval: [b, e\. For a given
interval the duration J P of a state assertion denotes the real number:

rt=e

/ (if P(t) = tt then 1 else 0 end)dt.
h=b

The integral is a measure of the set of points where P has the value tt.
For any behaviour B and interval [b, e] duration terms denote real values,

and atomic duration formulas denote Boolean values. The values of compos
ite duration formulas are obtained by the usual interpretation of the logical
operators and quantification. The value of a "chop" formula d\ ; d^ is tt iff
the interval [b,e] can be divided into [b,m] and [m,e], where b <m < e such
that d\ evaluates to tt in [b,m] and G?2 evaluates to tt in [m, e].

The duration formula d holds on the interval [b, e] for the behaviour B just
when d has value tt on [b, e] with any assignment V of values to the static
variables. The duration formula d holds from start on the interval [b, e] for
the behaviour B just when it holds on any interval of the form [0, T] for the
behaviour B. A duration formula d is valid (a tautology) just when it holds
for every behaviour B and every interval [b,e\. It is sufficient for a formula to
be valid, that it holds from start for every behaviour.

Definition. By a duration calculus we shall understand a temporal logic
whose concept of time is captured by Real, whose formula connectives in
clude those of • (always), O (sometime), —>• (follows) and the chop operator,
expressed either by " or by ';'> whose state, P, duration terms include those
of JP (), o(ti, ...,tn), and t, and whose formulas further include those of |"|
(point duration) \P~\ (almost everywhere P) and whose syntax and semantics
is otherwise as stated in Sect. 15.3.4 and in this section. •

3That is: from and including time 0 up to infinity (but, of course, not including
infinity)!

15.3 The Duration Calculus 539

15.3.6 Examples, Part III

We bring in a long series of examples that illustrate a number of specification
principles and techniques. Notably, they show the decomposition of problems
into that of understanding the requirements, that of understanding the appli
cation domain (usually abbreviated the domain) and that of recording design
decisions. We end this section by expressing some observations.

The Elevator cum Lift Example: Design

Example 15.12 The Elevator cum Lift Example: The Software Design:

The Software Design, L_Design

The simplest design we can think of is to let the lift service the floors suc
cessively, no matter whether they have requested service or not. We start by
letting the lift service the ground floor, thereafter it services the first floor, the
second floor, and continues in this way, until it reaches the top floor. Having
serviced the top floor the lift returns to the ground floor, and the operation
cycle is repeated.

The state space for the simple design is the state space for the requirements
extended with the variable move, which describes where the lift is heading or
if it is idle:

move : {0 , . . . , n, idle}

We define the simple design by the predicate S:

L_Design = Slinit A • SOperation

Initially the lift is idle at the ground floor with the doors open and no requests
for the lift:

SInit =
[move=idle Afloor=0 Adoor=0 Asend= {} Acall= { }]; tr ue

vn
SOperation is defined as:

SOperation = SBehaviour A Door A Send A Call A Timing

SBehaviour describes the lift behaviour:

SBehaviour = Up A Down A Stop

If the system is in a state where the lift is idle at floor i, it may proceed to a
state where it moves towards the next floor upwards:

540 15 Quantitative Models of Time

Up = [move=idleAfloor=iAi<n] -> [move=i+l]

If the lift is at the top floor, it may move towards the ground floor:

Down = |~move=idleAfloor=n] ->• [move=0]

If the lift is moving towards a floor, it may reach this floor and become idle:

Stop = [move=i] -> [move=idleAfloor=i]

Door describes the door behaviour. If the lift is idle and at floor i, the door
at floor i is open. Notice that because of the domain of the variable door all
other doors are closed. If the lift is not idle, all doors are closed:

Door =
([move=idleAfloor=i] =$* [door=i])
A ([move^idle] => [door=closed])

If the lift is idle at position i, then i does not belong to send. At all other
times i may belong to send:

Send = fdoor=i] => fi 0 send]

The specification of Call is similar to the specification of Send:

Call = [door=i] =*• |"i g call]

Timing defines the timing constraints which the system must fulfill.

Timing = MinOpenTime A MoveTime

MinOpenTime states that when a door is open, it is open for at least t0 time
units. If t0 is chosen to be sufficiently large, this assures that people have a
chance to get in and out of the lift before the door closes:

MinOpenTime = [door^i] ; |~door=i] ; [door^] => £>t0

It takes at most tm time units to move from one floor to another:

MoveTime = [move^idle] => (<t

15.3 The Duration Calculus 541

Domain Description: Assumptions, L_Domain

If we try to prove that the design implies the requirements, i.e., that the
design is a correct implementation of the requirements, we find that it is not
possible. In order to succeed we need an assumption about the environment,
namely that a door is open for at most tmnx time units:

L_Domain = • SMaxOpen
SMaxOpen = |~door=i] =^ (<tm(liC

We make this assumption because if something prevents the door from closing
we cannot guarantee that a request for the lift will be serviced within ts time
units.

The maximum time it may take before a floor is serviced corresponds to
the maximum time it takes to service every other floor before the requested
floor:

ts<(n + l)- (tmax + tm)

The time a door is open is less than or equal to the maximum time the door
is open:

Correctness of Simple Design wrt. Dom,ain and Requirements

In order to check that the simple design, L_Design, is an implementation of
the requirements, L_Req (see Page 535), we must prove that:

L_Design A L_Domain =^ L_Req

We omit the proof. •

The Road-Rail Level Crossing Examples

The presentation of this part also follows that of Skakkebaek et al. [475] (1992).
We have chosen a rather large example, but we will present it in parts. In

this way the reader can read the first example, or the first two, and so on.
The aim of bringing in the examples is to illustrate well-nigh all aspects of the
duration calculus, as well as to show a reasonably realistic, i.e., "large", i.e.,
"industrially scaled" example. We are grateful to Dr. Jens Ulrik Skakkebaek
and to Profs. Anders Peter Ravn and Hans Rischel (and the publisher, the
IEEE Computer Science Press) for permission to bring in the extensive, albeit
substantially edited, quote.

We will "chop" our presentation of the referenced paper [475] up into
five parts: Example 15.13 deals with the safety and functional expectations

542 15 Quantitative Models of Time

that one should have from a properly designed road-rail level crossing system.
The next three examples deal with various assumptions about the domain of
road traffic, rail traffic, i.e., trains, and the optical/mechanical devices that
are to assist the road-rail level crossing system in achieving required safety
and functionality. Example 15.14 deals with assumptions about road traffic.
Example 15.15 deals with assumptions about train traffic, and Example 15.16
deals with assumptions about the devices. Finally Example 15.17 outlines the
monitoring and control strategy for the computing system, i.e., the machine
design.

The real purpose of the paper, i.e., [475], is, additionally, and hence quite
importantly, to also show that one can indeed with the duration calculus
axiom system prove correctness of a design with respect to the requirements
and assumptions.

road signal

approaching , ... ,. ,. gate I
. . ° traffic direction
train »•

ft os-1 rai l .
^ s i g n a l . | [_ _ ^ ' ,

approaching

H — road

area of crossing

. single rail track

• os-3: optical sensor #3
gate

-3>| passing

* f ^ road signal

Fig. 15.6. A road-rail level crossing

Example 15.13 Road-Rail Level Crossing: Function and Safety Require
ments:

Problem Description

The problem is to describe the function and the safety of an optical-mechanical
traffic system. The problem, in this example, is not to specify how to achieve
function and safety, but only to specify what we mean by function and safety.
Thus the problem is more a domain and a requirements specification than a
computing systems design problem.

Consider a road-rail level crossing (Fig. 15.6). All dimensions are rather
"out of scale". The road-rail level crossing is for a single track rail with all
trains passing only in one direction (left to right on the figure). Many factors
determine the monitoring and control of road and rail traffic:

(i) Road traffic is controlled by gates, one on either side of the track.

15.3 The Duration Calculus 543

(ii) The gates close only when road traffic is not "stuck" in the crossing
area (shown dashed).

Road traffic is advised of approaching and crossing trains by road signals,
one on either side of the track. When the gates are to be lowered these road
signals are set to red. When the gates have been fully raised the road signals
are set to green.

(iii) Train traffic is controlled (i.e., advised) by a rail signal on the right
side of the track of approaching trains, well before the crossing area.

(iv) The rail signal indicates either STOP or GO for oncoming (i.e., ap
proaching) trains.

(v) Optical sensors (os) monitor trains in the vicinity of the crossing area.
(vi) A sensor, osi, is placed at a reasonable distance from the rail signal

such that a train will reach the first sensor before it reaches the rail signal.
(vii) A train enters the system whenever it is so determined by sensor (osi).
(viii) A train has left the crossing whenever sensor 0S3 determines that the

rear end of the train has passed the crossing.
(ix) When a train approaches the gates are to be closed — provided there

is no traffic "stuck" in the crossing area.
(x) The rail signal is (to be) set to GO after the gates have closed.
(xi) When no trains are approaching or passing, the rail signal must be

set to STOP and the gates are to be opened.
The main goal of the combination of optics and mechanics with a comput

ing system monitoring the traffic and controlling the gates and the signal is
to ensure safety:

(xii) The complete system (optics, mechanics, computing) must never al
low road and train traffic to pass the crossing area at the same time.

(xiii) Furthermore, the system must ensure that both road and rail traffic
are able to pass the crossing area within some reasonable time.

(xiv) A train is passing whenever it is between sensors os-2 and 0S3.

Forraalisation

Let us refer to the required system as the Road-Rail Level Crossing System:
R2tcs.

The R2£cs accepts inputs from the optical and the gate sensors, and offers
output (commands) to the signals and the gates.

[1] State Variables

The state consists of a number of variables: (a) one for the (rail) signal, (b)
one for the two gates, (c) one for the road traffic and (d) one for the rail
traffic.

type
Rail_Signal = = s top [go

544 15 Quantitative Models of Time

Gates —— opening | open | closing | closed
Road_Traffie = = stopped | stuck_in_cross | free_to_cross

variable
signal:Rail_Signal
gates-.Gates
traffic:Road_Trafnc

Trains are either approaching or passing.

variable
approach: Nat-set
pass: Nat-set

That is, a train is identified by a unique, natural number, i. If some part of
train i is between the first two sensors (0S1-OS2), then train i is approaching,
i.e.,

approach := {i} U approach ;

And, if some part of train i is between the last two sensors (0S2-OS3), then
train i is passing, i.e.:

pass := {i} U pass ;

Trains are active (wrt. crossing) if either approaching or passing (or both).
One can define three state assertions concerning the state of trains:

value
passing: Unit —»• Bool
passing() = pass / {}

approaching: Unit —• Bool
approaching() = approach ^ {}

active: Unit —>• Bool
active() = (approaching U passing) 7̂ {}

[2] Requirements

Now we are ready to express requirements:

Req = •(SafeReqAFunReqiAFunReq-iAFunReqs)

It turns out that we can express the functional requirements in terms of three
state assertions.

15.3 The Duration Calculus 545

[2.1] Safety Requirements

If the gates are not closed or road traffic is "stuck" in the crossing, then the
train must not pass:

SafeReq = [((gates^closed)V(traffic=stuck))] =>• [~passing()]

[2.2] Functional Requirements

There are three functional requirements:

1. FunReqi: The road traffic should maximally be held back for a predefined
period of time tgtop:

FunReqi = [trafflc=stopped] => £<£stop

2. FunReqo: When all trains have left the crossing, the gates must be open
for at least time £open:

FunReq2 =
[active]; [~active]; [active] => J*(gates=open)Mopen

3. FunReq3: Provided the road traffic is not stuck, a single train must be able
to pass within time ^ a c t ive :

FunReqg = [i G activeA(traffie^stuck)] =$> ^<^active

Example 15.13 illustrated principles and techniques of prescribing require
ments, as they were decomposed into those of safety and those of functional
ity.

In the next three examples, Examples. 15.14-15.16, we "go backwards", as
it were, to record the assumptions that any (later) design must (usually) make.
That is, we describe (some facets of) the (application) domain. Normally,
according to our "dogma", we first establish a domain description, before we,
as we have just done, produce a requirements prescription, and, certainly long
before we develop a software design specification. The design for the present
problem domain of railway level crossings is recorded in Example 15.17.

We somewhat arbitrarily, it may seem, but pragmatically this is very
sound, decompose the domain description into three parts: Describing the
road traffic, i.e., Domaini, describing the train traffic, i.e., Domain2, and de
scribing the supporting technology, i.e., the device technology, i.e., Domains.
The relevant domain "theory" is the conjunction of these:

546 15 Quantitative Models of Time

3

Domain = • A Domain^
i=\

Example 15.14 Road-Rail Level Crossing: The Road Traffic Domain:
We continue the railway level crossing example based on [475].
When running freely, i.e., without control, that is, without proper road

signaling and gate control, the road traffic may eventually either stop properly
in front of the gates, or get stuck in the crossing. Such stopped or stuck road
traffic may subsequently become free, i.e., neither stopped nor stuck:

RoadTrafficAssumpi =
([Traffic=stopped] -»[Traffic=free])
A (fTraffic=free] -> ([Traffic=stopped] V [Traffic=stuck]))
A ([Ttaffic=stuck]-»[Traffic—free])

Road traffic is stopped iff the gates are not open:

RoadTrafficAssurnp2 = [Traffic—stopped] = [Gates^open]

In closing, we record:

Domaini = • A RoadTrafficAssump,
8 = 1

Example 15.15 Road-Rail Level Crossing: The Train Traffic Domain:

Problem Description

We continue the railway level crossing example based on [475].
Trains must only pass if the rail signal is set to GO:

TrainTrafncAssumpi = [Passing] => [Signal]

An active train travels in one direction only, i.e., initially approaches and
finally passes:

TrainTrafficAssump2 =
[i £ ACt->]->[i € Appr A i 0 Pass]
A [i € Appr A i $ Pass] -*• [i £ Pass]
A [i e Pass] -s- [i g Act]

The last train in a series of trains passes the crossing before leaving the cross
ing:

TrainTrafficAssump3 =
([~Active] -> [Approaching A ~Passing])

15.3 The Duration Calculus 547

A ([Approaching A—Passing] -> [Passing])
A ([Passing] -> ([—Active] V [Active]))
A ([Active]-?-[Passing])

The trains do not hesitate when the rail signal is GO:

TrainTrafficAssump4 = [SignalAActive]=>f<Tgcjie(j

The railway lines are not overloaded with trains:

TrainTrafficAssump5 =
[Active]; [~ Active]; [Active]

=> t> T j n a c t j v e + T w a ^ t + T g a t e _ 0 p e n + T 0 p e n

Assumptions 1, 2 and 4 are really just obvious domain facts.
In closing, we record:

Domain2 = • A TrainTrafficAssump,-
i=X

Example 15.16 Road-Rail Level Grossing: The Device Domain:
We continue the railway level crossing example based on [475].
It takes, at most, time T„a^e close ^or * n e gates to close if the road traffic

is not stuck in the crossing:

DeviceAssumpi =
[Gates=closingATraffic^stuck] =>(<T„ate c i o s e

It takes, at most, time T„&^e open f° r the gates to open:

DeviceAssumpa =
[Gates=opening] =>£<Tg a t e _ o p e n

The physical properties of Gates constrain the value of gates to cycle: open,
closing, closed, opening, open, ... (in that order):

DeviceAssump3 =
([Gates=open] ->• [Gates=closing])
A ([Gates=closing] -> [Gates=closed])
A ([Gates=closed] —»• [Gates=opening])
A ([Gates=opening] -> [Gates=open])

The rail signal switches between STOP and GO:

DeviceAssump4 =
([-Signal]-»[Signal]) A ([Signal]->• [-Signal])

548 15 Quantitative Models of Time

In closing, we record:

4

Domain3 = • A DeviceAssumpj

•

Finally we are ready to record the design decisions.

Example 15.17 Road-Rail Level Crossing: The Software Design:
We continue the railway level crossing example based on [475].
The software design was chosen by the system designers (Skakkebask, Ravn

and Rischel of [475]) to facilitate a proof of correctness with respect to the
requirements and the assumptions (i.e., the domain).

The design decisions now presented are a formalisation of a finite state
control, one that cycles through phases with inactive, approaching and passing
trains. The overall design specification predicate is:

3 4

Design = • (A Approach Trains^ A A PassingTrainSj)

Approaching Trains

The gates will remain open when no trains are present:

ApproachTrainsi =
([~Active] A ([Gates=open] ; true)) =$> [Gates=open]

If trains are present, then the gates are open for at most T r e a c t :

ApproachTrains2 = [Gates=openAActive]^>f<rreac^

It takes, at most, Tn^s before the rail signal is GO when the gates have closed:

Approach Trains.3 = [()A~SignalAActive]^£<T-^n^g

Passing Trains

The gates remain closed as long as the rail signal is GO:

PassingTrainsi = [Signal] ̂ > [~Gates=closed]

The rail signal remains GO while trains are present:

PassingTrains2 = [Active] A ([Signal] ; true) => [Signal]

The rail signal will only indicate GO for at most Tin a c t ive a ^ e r t n e trains
have left:

15.3 The Duration Calculus 549

PassingTrains3 = [^ActiveASignal] =>£< ̂ Inactive

The gates will remain closed for at most Twajt after all trains have left:

PassmgTrains4 =
[(Gates=closed)A~ActiveA~Signal]=^<Twa | t

Some Observations

Comments

Some observations — after a long series of detailed examples — may now be
in order:

(1) For the first time, perhaps, in these text books, we have sketched one
part of an entire, albeit small, development, reordering a bit: from domain
descriptions (in the form of assumptions about the environment in which a
software design is to serve), via requirements prescriptions, to software design.

(2) The examples all focused, initially, on requirements. That is to be
expected, as real-time applications are typically those related to safety-critical
issues.

(3) And those examples have then shown requirements to be expressible
in two parts: safety-critical requirements issues, and functional requirements
issues. We shall later, in Vol. 3 of these textbooks, call functional requirements
domain requirements.

(4) But there is one issue that we have "skirted": that of actually verify
ing the software designs that evolved from requirements prescriptions. Two
examples illustrated the design versus requirements issue: Example 15.17 ver
sus Example 15.13: The road-rail level crossing; and Example 15.12 versus
Example 15.11. So what are we to expect?

Issues of Verification and Model Checking

It was mentioned in Examples 15.17 and 15.12 that given domain assumptions,
the design and the requirements, one could now, in the duration calculus,
verify the correctness of the design with respect to the requirements and in
light of the assumptions. But are we going to do that? No, not in the present
three volumes of this series of textbooks!

This requires an explanation! So we shall give one, briefly. As mentioned
earlier, the three textbook volumes concentrate on 'formal methods "lite" '.
That is, specification. Before we can state theorems to be proven we must
master specification. But, of course, a, but not "the", main reason for formal
specification is the ability to formally prove properties. We hope to write a
volume in this series dedicated to verification and model-checking principles
and techniques. These principles and techniques, however, become very much

550 15 Quantitative Models of Time

"bound" to the chosen specification language (i.e., tools), whereas the specifi
cation principles and techniques "carry over" from one specification language
to another. So we claim!

The specificity of the model-checking and theorem-proving principles and
techniques for specific specification language(s) is, presently, best covered in
user manuals, monographs and textbooks dedicated to these specific nota
tions: Model-checking using SMV [80] or SPIN [149,215], and theorem-proving
using HOL [380,393] or PVS [384,385].

A word of caution is, however, needed. Only when actually carrying out
proofs of correctness, or only when actually preparing material for model
checking can the developer really know how to structure certain specifica
tions: select which parts of a domain to emphasise, and how; formulate cer
tain requirements in one way, rather than another; and, accordingly choose
one design over another. So by not covering these aspects here, the developer,
you, the reader, has really not (yet) been taught "the final" word. So be it!

To become a full-fledged, professional software engineer, takes more than
just the present series of textbooks. For the present we refer to such semi
nal monographs and textbooks as [131] for RAISE and [557] for the duration
calculus.

15.3 .7 Trans i t ions and E v e n t s

So far, in this chapter, we have considered states, assertions about these and
their duration. In this brief section we shall consider how we express transi
tions between states — as an extension to the current duration calculus.

Thus, if P is a state assertion which holds in a neighbourhood [t — 6-t,t)
up to time t, and does not hold in a neighbourhood (t, t + 6+t] after time t,
then we say tha t J. P holds at t. Vice versa, if Q is a state assertion which
does not hold in a neighbourhood [t' — 6-f,t') up to t ime t', but which holds
in a neighbourhood (t',t' — S+t'] after time t', then we say tha t f Q holds at
t'. Figure 15.7 informally illustrates the issue. We can paraphrase this: f P

to

time

Fig. 15.7. State Transitions

is t rue at a point, and J, P is t rue at another point.

15.3 The Duration Calculus 551

More generally, let [b, e] be an interval, and let P be a state assertion
that holds for an interval [b — 6, b], S > 0 before b, then "YP holds for the
interval [b, e] iff P holds during [b — 6,b]. Conversely, if Q holds for an interval
[b, e + 6], 6 > 0 after e, then J*Q holds for the interval [b, e] iff Q holds during
[b,e + S\.

Figure 15.8 informally illustrates the issue.
We can paraphrase this: * \ P holds in a non-point interval ([&, e]) after P

held, and J*Q holds in a non-point interval ([&, e]) before Q holds.

P

J
true

false

P Q

8 b \ p / Q e 8

Fig. 15.8. "Single" state transitions

To express that certain before, respectively after, state assertions hold in a
point interval, i.e., when (using the above interval notation [b,e]) b = e, we
introduce the variant operator symbols: \ , respectively /^

\P= \ P A t = 0

SQ = J*Q A i = 0

We can paraphrase this: \P holds at a point (if P held for some time before
that point), and /-Q holds at a point (if Q holds for some time after that
point).

To express that at some point (b, i.e., also e) a system changes state
from (jp to GQ, that is, from P holding to Q holding, we write \PA /-Q.
Figure 15.9 informally illustrates the issue.

Finally, we introduce temporal operators which shall help us express that a
state assertion holds, or does not hold at a point: T, respectively _L. Thus TS
expresses: The state characterised by S holds at a point, and ± 5 expresses:
The state characterised by S does not hold at a point. Formally:

±S= \ n S A / n S
TS = \ S A / S

Figure 15.10 informally illustrates the issue.
It is high time for an example.

552 15 Quantitative Models of Time

true

false

time

b
e

\ P
/ Q

Fig. 15.9. System state transition

p

i ,
true

false

0

now

i

T P

now

Q

J_Q
time

Fig. 15.10. Holds now, does not hold now

Example 15.18 The Gas Burner State Machine:
This example and its treatment within the duration calculus has been

reported and published in several places: [300,522,523]. The proceedings [3]
record many other ways of formalising the problem requirements and design
solutions. The present exposition is edited from [557].

Example 15.10 stated the gas burner requirements:

GasBurnerReq = £> 60 => 20*/ Leak < I

A first design decision is that any leak should last for a period shorter than 1
second:

GasBurnerDesigni = n([Leak] => £<l)

And the second design decision is that the distance between any two consec
utive leaks must be more than 30 seconds long:

GasBurnerDesign2 = •(([Leak] ; [~Leak] ; [Leak]) =>• i'>30)

Given the axiom system for the duration calculus one can prove:

(GasBurnerDesigni A GasBurnerDesign2) => GasBurnerReq

In [415,416] studies are made of the design problem. A finite state machine is
suggested. In Fig. 15.11 we show a refinement of that machine.

15.3 The Duration Calculus 553

Prepare

Burning Ignite

Fig. 15.11. A gas burner finite state control machine

At any one time the gas burner is exactly in one of the five states: Idle: In state
Idle gas is off (i.e., is being turned off and kept turned off). The gas burner is
willing to accept a Heat_On_Request. If such an external event occurs, then
the gas burger makes a transition to state Prepare. Prepare: The gas burner
waits for 30 seconds after having arrived to state Prepare. Then it transitions
to state Ignite. Ignite: In state Ignite the gas valve is opened and ignition
attempts to set on the flame. If Eame is detected on then the gas burner
control transitions to state Burning. Otherwise a "flame-on" detector — at
some time after ignition and with (still) no flame causes a Flame_off event
and the gas burner transitions to state Gas_Leak. Burning: In state Burning
the flame is on. The flame will remain on, either until a flame Flame_off is
detected, or a Heat_oiF_Request event occurs. In the former case a transition
is made to Gas_Leak. State Gas_Leak handles both ignition and flame-off
failures. The gas valve is to be closed within one second. Internally a gas
burner event l_second is issued after at most one second, and the gas burner
transitions to state Idle (in which gas is turned off). Now let us examine the
properties of the gas burner control machine.

It should now be obvious that the gas burner control machine is in some
state:

f| V [idle V Prepare V Ignite V Burning V Gas_Leak] (15.1)

and is in at most one of these states:

where «,; is any of the five states.

554 15 Quantitative Models of Time

There are four events:

Heat_On_Req

30_seconds

Flame_off

Heat_Off_Req

and seven state transitions:

4 Idle => t Prepare (15.7)
4- Prepare => f Ignite (15.8)

4 Ignite =>• f (Burning V Gas_Leak) (15.9)

4 Burning => t (Idle V Gas_Leak) (15.10)
4. Gas_Leak => t Idle (15.11)

Event 30_seconds occurs 30 seconds after the gas burner control machine has
entered the Prepare state:

(t Prepare ; {£ = 30)) = (f Prepare ; [Prepare] ; 30_second). (15.12)

Flame_off handling must be done within one second:

[Flame_off] => (I < 1) (15.13)

Let us name expressions 15.1-15.13 Gas_Controller. Given the axiom system
for the duration calculus one can deduce:

Gas_Controller h GasBurnerDesigiii A GasBurnerDesign2

In [477] transitions of that machine are subject to probabilities, and a Markov
model is studied. We shall content ourselves here with transition probabilities
one (i.e., 1) for all transitions.

15.3.8 Discussion: From Domains to Designs

We have covered core aspects of the duration calculus. The duration calcu
lus offers a logic based on intervals and real-time. One can use the duration

(4 Idle A f Prepare) (15.3)
(4 Prepare A f Ignite) (15.4)
(4 (Ignite V Burning) A t Gas_Leak) (15.5)
(4 Burning A t Idle) (15.6)

15.4 TRSL: RSL with Timing 555

calculus to abstractly express constraints, i.e., requirements, on the duration
of states. This was illustrated in Examples 15.9-15.11 and Example 15.13.
One can also use the duration calculus to abstractly express properties of
the domain, i.e., of the application area for which software is sought. This
was illustrated in Examples 15.14-15.16. And one can finally hint at major
design decisions also using the duration calculus. This was illustrated in Ex
amples 15.12, 15.17, and 15.18.

Only in a very implicit sense can duration calculus expressions be said
to specify sequential programs — such as we are normally prepared to im
plement in computing systems: in terms of sequential programs. A duration
calculus expression, however, usually implies a sequential program, or a set of
cooperating such. RSL specifications, the "closer" we get to software design,
i.e., the more "concrete" such specifications become, rather specifically specify
sequential programs. At least, it would be a good idea for the developer to
make sure that this is so!

Now how can we combine the ability of the duration calculus to express
quantitative properties of software (to be designed) and the actual specifica
tion of such software?

We turn to this question next. That is, we may seem to completely abandon
thoughts and concepts of duration calculus, in favour of rather "down to
earth" concepts of explicit timing in what could be considered a specification
programming language, Timed RSL, TRSL.

1 5 . 4 TRSL: RSL w i t h T i m i n g

In this
full RSL
do it in

section
, just a

we "extend"
subset. It is

actual software eng

a subset of RSL with timing.
enough, in a textbook like this
ineering practice.

Note
to in

we do not
dicate how

mean the
one might

This section is very much based on [132]. In a sense, we take up where Ex
ample 15.2 left us: That example tried, but it did not really achieve anything
substantial. It just hinted at something! That "something" will now be put
forward. That is, we shall present an extension to RSL which includes real-time
facets.

15.4.1 TRSL Design Criteria

We wish to motivate why the extension of RSL is as it is. So we wish to express
quantitative aspects of timing in what is basically RSL, i.e., in TRSL. RSL
already allows us to express qualitative aspects of time. Notable illustrations
are: First, something is specified to occur before something else. This is done
using sequencing operators, notably ";". But it is also implied in the let ...
in ... end construct. Second, something is specified to occur during the same
time interval as something else. This is done using the parallel, ||, and the

556 15 Quantitative Models of Time

interlock, jj- , composition of processes (P and Q): P\\Q and P \\ Q. Finally,
something is specified to occur at the same time as something else. This is
done using the inpu t /ou tpu t synchronisation and communication actions: c ?
and civ. The quanti tat ive aspects of timing have to do with how long things
take to do!

T h e First TRSL D e s i g n D e c i s i o n

In line with our long-held assumptions tha t applying a function to an argu
ment and obtaining the result value, and evaluating a composite expression
in general, takes no time, tha t is, it occurs "instantaneously", we make the
first design decision.

To do this, we introduce an explicit new, i.e., not RSL, but TRSL construct:

wait (e)

Here e is an expression which yields real number values, t, of type time. If
they are integers or natural numbers they are promoted to real values. If they
are negative, they are promoted to the zero (real) value (0.0).

The idea is tha t occurrence of wait (e) in some process P:

clausebefore ; wait (e) ; clauseafter

shall mean tha t process P waits t t ime units between evaluation of clausebefore
and evaluation of clauseafter.

T h e S e c o n d TRSL D e s i g n D e c i s i o n

It is only natural to allow such wait clauses to occur in texts of process defi
nitions, and of different, i.e., several, such definitions. It is therefore natural to
expect tha t outputs from one process and inputs to another process take time.
Tha t is, tha t processes P and Q which wish to synchronise and communicate
via channel c may be delayed, one or the other. In RSL we might schematically
write:

t y p e
V

channel
c:V

value
P: U n i t ->• out c U n i t
P() = ... c!v ...

Q: U n i t —>• in c U n i t
Q() = ... let v = c? in ... e n d ...

15.4 TRSL: RSL with Timing 557

P||Q P||Q P||Q

k?

value
of k?
is 0

Fig. 15.12. I/O elapsed times: three cases

In reality RSL/CSP output/input may take time as shown in Fig. 15.12:
In TRSL an output is an expression which yields a real-time interval value,
namely, the time it takes from the start of evaluation of the TRSL output
expression till the time that output is being consumed by some other process.
If that other process's TRSL input expression is already ready to engage in the
output/input event the TRSL output expression value is 0.

In TRSL an input is an expression which yields both a value, the usual
input value read from the channel, and a real-time interval value. In balance
with the output expression value, an input expression's real-time interval value
"measures", i.e., represents, the time elapsed from the input being ready and
the communication taking place.

So, only wait, output and input clauses when subject to "executions" may
cause or allow time to elapse. In giving precise meaning to the wait and the
output/input constructs, we adopt the maximal progress assumption: The
time between an input or an output being ready to engage with one another
and the actual communication event taking place is minimised. If an execution,
based on an expression, can evolve without waiting for the environment, it
will not wait.

Consider the following construct:

clausei |] (wait r ; clause2).

What do we mean by it? clausei and clause2 do not initially wait. Taking the
maximal progress assumption literally means that execution would evolve to
be based only on clausei. But this would prevent the possibility of prescribing
an execution that immediately performs clausei, or might wait r time units
and then perform clause2. So we need a new operator (i.e., a new interpretation
of |]) in the parallel and interlock expansion rules.

Consider:

value
of k?
is v
and T

k! v -

value
of k!v
is X

value
of k?
is v
and T

value
of k!v
is 0

x=0

558 15 Quantitative Models of Time

(let v = c ? in clausei e n d) Q (wait r ;)

An execution based on this whole expression waits for its environment to offer
an output on channel c.

If the communication of channel c is available within r t ime units then the
communication must be accepted and execution continues — now based on
just clausei. If an output is not available within r time units then execution
(of this whole expression) continues — now based on just clause2.

15.4 .2 T h e TRSL L a n g u a g e

We present the syntax and informal semantics of TRSL.

S y n t a x

We use the following abbreviations:

E: expressions c: channels T: types
x: variables r: reals V: value definitions
t,id: identifiers T: Time

We consider all constructs of TRSL to be expressions:

= id:r
id:T, V

0
t r u e
false
r
T

id
X

skip
s top
chaos
x := E
if E t h e n E e
let id =
wait E
let t =
let t =

-- E i n

c?x in
c'.E in

lse E end
E e n d

E e n d
E e n d

E\\E
E \\ E
E || E
E \\E
E ; E
A id:T • E
E(E)
rec id:r • E

S e m a n t i c s

We need only concern ourselves with the following constructs:

E ::= wait E \ E \\ E
| let t = c?x in E e n d | E || E
| let t = c!E in E e n d | E ff E
\E\\E

We explain these constructs:
wait e: The expression e is evaluated. For simplicity we assume a good style

of specification, tha t is, the expression e is a simple expression not involving
any of the constructs now covered. Instead, e evaluates either to a real value,

15.4 TRSL: RSL with Timing 559

r, or to a natural number, and in both cases a positive such. The natural
number value is "promoted" to a real value, r . The behaviour in which wait
e is being interpreted waits r time units and then proceeds.

let t = c?x in e end: The behaviour in which this expression is being
interpreted, at t ime to, expresses willingness to input a value, v, from channel
c. Once it receives a value, v, at t ime t\, v is assigned to variable x and t is
bound, in e, to the t ime interval value t\ — to promoted to a time value (!).4

Then e is interpreted in a context tha t binds t to t\ — to and stores v in x.

let t = c!e0 in e;, end: The behaviour in which this expression is being
interpreted, at t ime to, expresses willingness to output a value, e0, to channel
c. Once it delivers tha t value at t ime t\, £ is bound, in e, to the t ime interval
value t\ — to promoted to a t ime value (!). Then e;, is interpreted in a context
tha t binds t to t\ — to-

d\ 0 e2-' This is external choice between two expression processes. The
environment determines whether e\ or e^ is chosen, as before.

&L [I e 2 ; This is nondeterministic choice between two expression processes.
The environment plays no role in which choice is made. One of the two ex
pressions is selected nondeterministically.

ei || e%: This is the usual parallel combination of two expression processes.
ei |f e 2 ; This is the interlock expression. It is similar to the parallel expres

sion combination, only more aggressive [132]. The two interlocked expression
processes will communicate only if they are able to communicate with one
another. If they are able to communicate with other concurrent processes,
but not with one another, then they deadlock — unless one of them can ter
minate. According to [132], the interlock is the main novelty of the RSL/CSP
process algebra.

15 .4 .3 A n o t h e r Gas B u r n e r E x a m p l e

For the next example we assume tha t the reader has followed earlier install
ments in the "unfolding saga" of gas burners: requirements, design, and so on
(that is, Examples 15.10 and 15.18).

E x a m p l e 15.19 A Gas Burner Software Design: Consider a possible system
design as shown in Fig. 15.13. The four components have been singled out as
follows:

The gas burner "mechanics, etc." is the gas burner with gas pipe, valve,
ignition and flame detector. We can think of this component as being the
environment.

Tha t environment will issue requests for Heat_0ff and Heat_On to be
considered events tha t occur spontaneously in the environment. The flame
detector similarly issues a Flame_On signal, which is likewise an event.

4 See footnote 1.

560 15 Quantitative Models of Time

Flame
Control

Flame_On

gas off

flame on

flame off

Main
Control

Gas_On

heat req on

heat req off

no flame

Heat_

Heat
Control

On Heat_off

Environment: The Gas Burner Mechanics, etc.

Fig. 15.13. A gas burner system: mechanics and computing system

And that environment will respond to a Gas_On signal from the Main
Controller.

Let us first recall that the gas burner design decisions were:

GasBurnerDesigni = •([Leak] => f<l)
GasBurnerDesign2 = •(([Leak] ; [~Leak] ; [Leak]) => £>30)

as expressed in Example 15.18.
By introducing two state variables, gas and fiame, such that:

Leak = gas A ~flame

(and) into respectively the Main Controller and the Flame Controller pro
cesses, we may eventually be able to reason that the current (i.e., the evolv
ing) design is a correct implementation of the design decisions. This, then, is
our reason for the decomposition into the components shown.

The Flame Controller monitors the flame — in fact, it "mimics" the flame.
It does so by maintaining a state variable flame, set to t rue when the flame
is to be on, and to false otherwise. It responds to signals from the Main
Controller: Flame_On, from the environment, sets flame to t rue , informs the
Main Controller that the flame is on: flame_on, and, when receiving flame_off
from the Main Controller sets flame to false.

The Heat Controller senses whether the environment is requesting
Heat_0n or Heat_0ff, and informs the Main Controller accordingly:
heat_req_on, respectively heat_req_off.

The Main Controller, through the Flame Controller and Heat Controller,
monitors the environment, and, through directly issuing Gas_On signals to
the environment that valve is to be opened and ignition "fired". The Main
Controller maintains a variable gas, which is initially false, is set to t rue
after a heat_req_on request has been received, is reset to false heat_req_off
request has been received, and so forth!

This prepares us for the TRSL specification of the Gas_Burner_System as
consisting of the four processes:

15.4 TRSL: RSL with Timing 561

channel
flame_on, heat_req_on, heat_req_off: Unit,
Flame_On, Heat_On, Heat_Off: Unit.
gas_off, flame_off, no_flame, Gas_On: Unit,

variable
gas:Bool :— false,
flame:Bool := false,

value
Main_Control: Unit —>

in heat_req_on ,heat_req_off,fiame_on
out gas_off,flame_off,no_flame,Gas_On
write gas
Unit

Flame_ Control: Unit ->
in gas_off,flame_aff,Flame_Ori
out flame_on
write flame
Unit

Heat_ Control: Unit ->•
in no_flame,Heat_On,Heat_Off
out heat_req_on,heat_req_off
Unit

Gas_Burner: Unit —»•
in any
out any
write gas,flame
Unit

Gas_Burner_System: Unit —• write gas,flame Unit

Gas_Burner_System() =
while true do (Environment(} {} Gas_Burner()) end

Gas_Burner() =
Flame_Control() || Main_Control() |[Heat_Control()

Flame_ Control () =
flame := false,
((Flame_On?; flame := true; flame_on!; flame_off?; flame := false)

562 15 Quantitative Models of Time

D
(gas_off?))

Heat_Control() =
Heat_On? ; heat_req_on!{)
(no_flame? Q (Heat_Off? ; heat_req_off!()))

Main_Control() =
gas := false ; heat_req_on? ; wait(30) ; Gas_0n!() ; gas := true ;
((flame_on? ; heat_req_off? ; gas := false ; flame_off!())

D
(wait(l) ; gas_off!() ; gas := false ; no_flame!()))

The Environment is here modelled in terms of four time durations:
initial, Ttum_on, Twait_for_flame and rdo_nothing- We do not, i.e., we cannot, pre
scribe these. The Environment is biddable, but is not programmable, as are
the other processes.5

value
Environment: Unit —•

in Gas_On
out Heat_On,Heat_Off,Flame_On
Unit

EnvironmentQ =
waitfrinitiai) ; Heat_On!() ; Gas_On ? ;
((wait(r tur„_on) ; Flame_On!{) ; wait(Twait_for_flame) ; Heat_Off!Q)
n .
W a i t (rclo_nothing))

15.4.4 Discussion

Example 15.19 was postulated. Although it hinged upon Example 15.18, there
really was nothing very explicit about the connection between Examples 15.19
and 15.18. That is, we really ought prove that the Gas_Bumer_System of
Example 15.19 is correct with respect to the design decisions of Example 15.18.
The possibility of, and a reference to such a proof will be given in the next
section, which links TRSL with the duration calculus.

5The terms 'biddable' and 'programmable' will be explained in detail in Vol. 3,
Chap. 10.

15.5 RSL with Timing and Durations 563

15.5 RSL with Timing and Durations

This section was written by Chris W. George and Anne E. Haxthausen. It
is reproduced here with their kind permissions. It constitutes an excerpt of
Sect. 6 of our joint [48].

15.5.1 Review of TRSL

To remind you of TRSL, see the previous section, we give here a few illustrative
fragments. First, wait may just indicate a delay. Execution of the expression
(cf. Sects. 15.4.1-15.4.2 and Example 15.21):

sensor_state := high ; wait 6 ; sensor_state := low,

will set and keep sensor_state high for precisely time 6, and then make it low.
A time out can be modelled by an external choice involving a wait. Sup

pose we need to take some special (abnormal) actions if a signal normal does
not occur within time t. The expression

normal? ; ...

D _
wait t ; abnormal!()

will take the first choice provided an output on the channel normal occurs
within time t. Otherwise, at time t, the wait terminates and the second choice
becomes available. Provided there is some process waiting to handle the output
abnormal, the principle of maximal progress will ensure the second choice
occurs, and we would say the normal behaviour has timed out.

Example 15.20 Train Separation Time: An example to illustrate the use
of time dependence (which is used later in Example 15.21) follows. Suppose
the correct behaviour of a system depends on an assumption that trains are
separated by more than time S. It may be safe to just record this as an
assumption on our part, because we know it is ensured by other parts of the
system, or we may need to specify that if the trains are too close together then
an error will be recorded, and some appropriate action taken. In the second
case, where we need to record an error, we can specify something like:

value
detect : Unit —• in detect_train out train_detected, error Unit
detect() =

while true do
let t = detect_train? in

if t < S then error!()
else train_detected!()
end

564 15 Quantitative Models of Time

end
end

An input or output can optionally return the time that it waited for synchro
nisation: This supports time dependence, i.e., following behaviour can depend
on the value of this time. Here the behaviour of detect depends on the time t
that the input detect_train (representing the hardware train detection unit)
waits. If t is too small an error is signalled. Otherwise we pass on the detection
event using another channel train_detected. Note that correct behaviour of
detect, in the sense of only reporting actual errors (trains too close together),
assumes that the value t is the same as the time since the last train, i.e., since
the last communication on detect_train. This will only be true if there is no
wait anywhere in the loop except for the communication on detect_train. In
particular, we see that the process doing input on train_detected must always
be ready when detect is ready to do output on that channel. This further im
plies that this other process must have a cycle time of at most 6. This process
is described later in Example 15.21. •

In [298,299] denotational semantics of Timed RSL are given using Duration
Calculus, to the combination of which we now turn.

15.5.2 TRSL and Duration Calculus

The Duration Calculi are covered in the seminal work [557]. While TRSL is
well-suited for timed design specifications, Duration Calculi is well-suited for
timed requirement specifications. This suggests the following development
method [204] (illustrated in Fig. 15.14) for real-time systems integrating TRSL
and Duration Calculi specifications:

R

r ^
RSL Specification

^ J

SL Method

RSL Spe

Refinement

cification

DC Requirements

^)
Refinement

DC Requ

DC Method

irements

TRSL Specification

Fig. 15.14. A development nethod for real-time systems

15.5 RSL with Timing and Durations 565

1. The RAISE method [131] is used for stepwise development of a speci
fication of the untimed properties of the system, start ing with an ab
stract, property-oriented RSL specification and ending with a concrete,
implementation-oriented RSL specification.

2. In parallel with the RSL development of the untimed system, a Duration
Calculus requirement specification of the real-time properties of tha t sys
tem is developed. State variables in the Duration Calculus specification
are variables defined (at least) in the last RSL specification (and in the
TRSL specification).

3. Timing information is added to the RSL specification achieving a TRSL
specification of a real-time implementation.

4. It must be verified tha t the TRSL specification satisfies the DC specifica
tion.

Hence, there is no syntactic integration between the DC and TRSL specifica
tion, but only a consistency requirement tha t state variables used in the Du
ration Calculus specification are variables defined in the TRSL specification.
The integration is made in the form of a satisfaction (or refinement) relation.
The approach for defining this relation has been to make an abstract inter
pretation within the Duration Calculus formalism of TRSL process definitions.
Technically this is done by extending the operational semantics of TRSL [132]
with behaviours which are Duration Calculus formulas describing (parts of)
the history of the observables of the system. The satisfaction relation between
sentences in the two languages is then defined in terms of behaviours. The
formal definition and proof rules can be found in [204].

E x a m p l e 15 .21 Implementation of Train Separation: We continue Exam
ple 15.20.

P r o b l e m D e s c r i p t i o n

In some railway control systems sensors are used for train detection. When a
train s tar ts passing a sensor, the sensor becomes "high", and after a while it
falls back to "low". In order for the control system to be able t o detect the
high s tate , the sensor must stay in the high s ta te for a certain minimum of
time, S.

D C R e q u i r e m e n t s

• ((|"sensor_state=low] • [sensor_state=high] • [sensor_state=low])=>£><*>)

This requirement says tha t any complete period with high state (i.e., one with
a low state before and after) has a duration (£) of a t least 5.

566 15 Quantitative Models of Time

TRSL Spec i f i c a t i on

v a l u e
S : Time

type
SensorState = = low | high

variable
sensor_state:SensorState := low

channel
train_detected:Unit

value
sensor : Unit -* in train_detected write sensor_state Unit
sensor() =

sensor_state := low
while true do

train_detected? ;
sensor_state := high ;
wait S ;
sensor_state := low

end;

The process sensor models the behaviour of a sensor. It ensures the Duration
Calculus requirement in terms of the sensor _state staying high for exactly d
time units each time.

In order to meet the system requirement that the sensor_state goes high
after each and every train (or an error is reported) we also need to use the
specification in Example 15.20 of the function detect to check that the trains
are more than S apart. Recall that detect required that the loop containing
the train_detected inputs has a delay between such inputs of at most (5, and
that is clearly satisfied by sensor. (We also need some assurance that every
train causes an output on detect_tram, which is an assumption about the
train detection hardware.)

Satisfaction Relation

The following satisfaction relation expresses that the sensor process satisfies
the previously stated Duration Calculus requirements:

sensorQ satisfies
D(([sensor_state=low] • [sensor_state=high] • [sensor_state=low])^i>5)

The satisfaction relation can be proved to hold using proof rules in [204] and
the Duration Calculus proof rules given in [557]. •

15.6 Discussion 567

15.6 Discussion

15.6 .1 Genera l

We have covered three closely related facets of temporal logics. The classical
temporal logic of 'sometimes' and 'always' (derived from Prior 's work), the
more recent Interval and Linear Temporal Logics (which, for our purposes
are the same, i.e., ITL=LTL) and the Duration Calculus (DC). For the latter
there were extensions with respect to transition modalities. And for the latter
there are further variants, for which we refer to the seminal book on DC [557].
Section 15.7 discusses further aspects of temporal logics.

15.6 .2 Pr inc ip le s , Techniques and Tools

We summarise:

Princ ip le s . Quantitative Models of Time: A main principle concerning the
t reatment of time appears to be: Try avoid bringing explicit t ime into your
models. When reasoning, in your models, about time-dependent properties of
the universe of discourse, avoid establishing (possibly quantified) variables of
type time. Instead use the temporal logic modalities (for example, of 'some-
times' , 'always', etc.). •

Techniques . Quantitative Models of Time: The techniques follow from the
explicit choice of which temporal logic is chosen as the medium or tool of
expression. With classical temporal logic, using only the 'sometime' (O) and
the 'always' (•) modalities, the techniques can be cumbersome. With the
Interval/Linear Temporal Logics the techniques allow for more sophistication.
And with Duration Calculus we believe we have a comprehensive and rather
satisfactory set of techniques covered in this chapter. •

Tools . Quantitative Models of Time: Several tools, i.e., both languages of
expression and software tools for supporting the use of these languages, exist:

• (Ana)Tempura: An interpreter for executable Interval Temporal Logic for
mulae developed over the years [77].

• DCVALID: A suite of tools for Duration Calculus programmed by Paritosh
K. Pandya at Tata Insti tute of Fundamental Research [386].

• TLA+ Tools : A set of tools for T L A + including syntax analyser, model
checker and simulator [283].

There are many more.

568 15 Quantitative Models of Time

15.7 Bibliographical Notes

We have brought in material on temporal logic based primarily on Bruno
Dutertre's I n t e rva l Temporal Logic (ITL) [105], and on Zhou ChaoChen
and Michael Reichhardt Hansen's Duration Calculus (DC) [557]. Instead of,
or as an adjunct to, the Duration Calculus, we could have presented Leslie
Lamport's also very elegant and considerably researched and engineered TLA+,
Temporal Logic of Actions [281,282,339]. We encourage the reader to study
[557] (Duration Calculus) and [282] (TLA+).

Amir Pnueli first [403], it seems, reported on the idea of using temporal logic
to specify properties of certain kinds of programs. Zohar Manna and Amir
Pnueli developed this idea into book form: [320,321]. Those books, as well as
a third, so far unpublished volume [322] are at the basis of the powerful tool
set: STeP, Stanford Temporal Prover [55,56,319].

Manna and Pnueli's approach, as many other verification-based approaches
(HOL and I s abe l l e [380], PVS [384,385,466,467], and SPIN [215]), seems fo
cused, not on specification in the sense of the present volumes, namely of
complete domains, complete requirements and complete software designs,
but on the specification of a claimed property of some isolated, say cru
cial part of a domain, of some requirements or of some software design.
The HOL, I s a b e l l e , PVS, SPIN, and STeP tools can then support verifi
cation of such a property. Linear Temporal Logic, LTL, a predecessor of
Dutertre's work on In t e rva l Temporal Logic, ITL, is associated with Ben
Moszkowski [372,373]. Sometimes LTL is also referred to as ITL.

15.8 Exercises

These exercises were kindly provided by Dr. Michael Reichhardt Hansen.

Exercise 15.1. Miscellaneous Small Examples. Specify the following proper
ties using propositional duration calculus (i.e. Vx and 3x must not be used):

1. Pressing the button, a green lamp is on within 3 seconds or a red lamp is
on within 7 seconds.

2. Gas is not leaking continuously for more than 5 seconds.
3. An elevator door is open for at least 6 seconds.
4. A light is on at least 15 seconds after the button has been pressed.

Exercise 15.2. An Inverting C-Gate. An inverting C-gate is a circuit with
two input ports X and Y and with an output port Z. The circuit has a
constant delay of 6 > 0. The function of the gate is described by:

• If X and Y are different at time t (i.e. X(t) ^ Y(t)), then Z(t + S) = Y(t).

15.8 Exercises 569

• If X and Y have the same value at time t (i.e. X(t) = Y(t)), then Z does
not change its value at time t + 6.

Specify an inverting C-gate in propositional Duration Calculus.

Exercise 15.3. Scheduling. Give specifications of the following scheduling
disciplines: (1) Round Robin scheduling with a fixed time slice and (2) a
first-come first-served scheduling.

Try to avoid using universal and existential quantifications in your speci
fication. Make your specifications as simple as possible.

Part VII

INTERPRETER AND COMPILER
DEFINITIONS

This part will show how to specify compilers and interpreters for various
kinds of programming languages.

What do we mean by "specifying compilers and interpreters for a pro
gramming language"?

• To specify the semantics of a programming language means to present
formulas that ascribe semantic meanings to programs in that language.

• To specify interpreters for a programming language means to present for
mulas that to each program in that language prescribe computations that
yield the same result as if the meaning (function) was applied to program
arguments.

• To specify compilers for a (source) programming language, for a given tar
get computer, means to present formulas that to each program in that
(source) language prescribes a sequence of instructions of the target com
puter — a sequence which, when applied to an initial computer state
embodying (i.e., encoding) the program arguments, yields the same result
as if the meaning (function) was applied to program arguments.

We shall illustrate four kinds of programming language developments:

• SAL: Interpreter and compiler specification of a simple applicative lan
guage.

• SIL: Interpreter specification of a simple imperative language.
• SMIL: Interpreter specification of a simple, modular imperative language.
• SPIL: Interpreter specification of a simple parallel, imperative language.

The CHILL [159,160] and Ada [54, 82] compilers developed in Denmark in
the early 1980s were developed using the principles and techniques outlined
in the next four chapters.

16

SAL: Simple Applicative Language

• The prerequisi te for studying this chapter is that you are well familiar
with the applicative modelling styles of RSL.

• The aims are to introduce a notion of stepwise, informal, but systematic
development of compiler specifications from denotational semantics defi
nitions, to do so for a simple applicative, i.e., functional language, and to
illustrate classical, yet still fully relevant run-time structures for procedu
ral program execution (stacks, dynamic and static (lexicographic) chains,
and the functional result (i.e., the FUNARG) problem.

• The objective is to enable you — we claim — to far better understand,
and hence far more safely implement, compilers for procedural languages.

• The t r ea tmen t is systematic and ranging informal to formal.

By applicative programming we shall mean the same as functional programming.
Functional programming languages — including LISP [333], and modern ones like
SML [168,359], Miranda [505] and Haskell [503] — focus on programming in terms
of (i) function definitions, of (ii) function applications and (iii) functional values. Im
perative programming languages inherit two (i- i i) or all of these concepts.

In this section we shall illustrate the development of a requirements for a
compiler for a functional language, here referred to as the Simple Applica
tive Language (SAL). We start with a domain model of SAL in Sect. 16.3.
Sections 16.4-16.6 "unravel" that semantics into a semantics definition ex
pressed, not in terms of an abstract specification, but in terms of constructs
very close to ordinary (machine) programming. Section 16.7 defines an assem
bler language, and Sects. 16.8-16.10 define, as compiling algorithms, and in
three different ways, the requirements: exactly which assembler language code
a compiler must generate for each specific source language, SAL, construct.
Section 16.8 does so semi-abstractly, while Sects. 16.9-16.10 do so in terms of
what is known as attributed grammars.

This chapter is necessarily detailed. The techniques and the main results
of this chapter are those of Sects. 16.6 and 16.8. These results will be applied,

574 16 SAL: Simple Applicative Language

amongst others, in Chaps. 17 and 18. There we will present the denotational
and the macroexpansion semantics without much detail — relying on the
present sections' many such details. Only in this chapter will we present the
further development of the macroexpansion semantics into compiling algo
rithms.

16.1 A Caveat

The formulas in this and the next chapters (Chaps. 17-19) are deliberately
expressed in a deterministic subset of RSL, and in such a way that the chosen
subset constitutes a general denotational semantics specification language,
which allows full recursive map definitions involving recursive functions as
range elements. The problem is that "full" RSL cannot handle the recursive
definition of maps

let rp = ip U [n i-> f(s(n))(rp)] in rp end

where \p, n, f and s are some appropriate quantities. By resorting to a severely
restricted subset of RSL and endowing that subset with a suitable minimal
semantics — commensurate with the full RSL's all fix point semantics — we
can meaningfully express such recursively defined maps. We thus take the
liberty of doing so in this chapter of these volumes, and otherwise referring
the interested reader to any of the standard textbooks on semantics: [93,158,
432,448,499,533].

16.2 The SAL Syntax

An informal description of a language would ideally consist of four parts: (i)
a presentation of the pragmatics, (ii) informal presentation of the semantic
types, (hi) informal presentation of the syntactic types, and (iv) informal pre
sentation of the semantics of each syntactic construct — all presented in some
possibly interwoven fashion. Recall that we have argued that pragmatics is
most important, that the semantic types capture the essence of the semantics,
and that it is entities of the syntactic types that denote entities of semantic
types.

16.2.1 Informal Exposition of SAL Syntax

SAL is a simple applicative language whose programs are expressions. There
are nine expression categories:

16.2 The SAL Syntax 575

EXPRESSION CATEGORIES

Constants
Variables
Prefix expressions
Infix expressions
Conditional expressions
Lambda. Functions
Simple Let Blocks
-Recursive Functions
Applications

EXAMPLES

k
id
-e
el + e2
if et then ec else ea fl
fun id.ed
let id = ed in eb end
le t rec gfid) = ed in eb end
ef(ea)

ABSTRACT SYNTAX NAME

mk_Cst
mk_Var
mk_Pre
mk_Inf
mk_If
L, mk_Lam
mk_Let
mk Rec
mk_App

Most of our RSL elaboration functions, not quite incidentally, will be expressed
in a simple language like SAL. Blocks with multiple definitions can be "mim
icked" by multiply nested simple (Let) blocks. Multiple mutually recursive
functions, however, cannot be explicitly defined other than through the use
of formal function arguments.

16.2.2 Formal Exposition of SAL Syntax

From Sect. 16.2.1, it should be relatively easy to construct a formal syntax:

type V
Pro :: E
E = = mk_Cst(i:Int)

| mk_Var(v:V)
© | mk_Pre(po:POp,e:E)
0 j mk_Inf(le:E,io:IOp,re:E)

| mk_If(b:E,c:E,a:E)

I L

| mk_Let(v:V,d:E,b:E)
j mk_Rec(f:V,Ae:L,b:E)
j mk_App(f:E,a:E)

L = = mk_Lam(x:V,e:E)
© POp = = minus | factorial | not | ...
0 IOp = = add | sub | mpy | div | eq | neq | ...

Constants stand for Integer numbers. No provision is made for explicitly repre
senting Booleans. The prefix constant operators, generically referred to as 0 ,
are then the usual ones: Arithmetic MINUS and FACTorial, and the Booleans,
the logical NEGation; and so are the infix constant operators, generically re
ferred to as 0 , the arithmetic ADDition, SiJBtraction, MultiPlY, Divide, etc.,
and the logical AND, O R , iMPly, EQual, and Not EQual. Booleans can be
represented implicitly as terms involving arithmetics and logical operators.

576 16 SAL: Simple Applicative Language

16 .2 .3 C o m m e n t s

SAL may seem awfully trivial to those who are used to programming with
an ample supply and type variety of assignable variables, but its realisation,
as shown here, illustrates most of the more intricate aspects of interpreter
and compiler design. The main reason for this should be seen in SAL's abil
ity to express nested block structures and to yield FUNction VALues out of
their defining scope (that , is the so-called FUNARG 1 property [368,529]).
The development thus concentrates on implementing the block structure and
function invocation aspects.

16.3 A Denotational Semantics

16.3 .1 A n Informal S e m a n t i c s

We suggest tha t the reader also keep a finger on the formula pages of
Sect. 16.3.2 in order to bet ter follow the informal semantics explanation tha t
now follows. Our use of initially capitalised sequences of pronouncable names
is meant to refer to identifiers of the formal model.

SAL programs express only three kinds of VALues: integer numbers, t ru th-
valued Booleans, and FUNction VALues. These latter are entities which are
functions from VALues to VALues, where these latter VALues again include
FUNctions, etc. The VALue of a variable identifier, 'id', is tha t of the possibly
recursively defined defining expression: 'ed' (respectively: 'fixAg.Aid.ed') of the
lexicographically youngest incarnation, tha t is, the "outward-going" statically
closest embracing block, fix is the fix point-finding function which when ap
plied to 'Ag.Aid.ed' yields the "smallest" solution to the equation: 'g(id)=ed',
in which 'g' occurs free in 'ed' (see Vol. 1, Chap. 7, Sect. 7.8.3). Infix and
conditional expression VALues are as you expect them to be. The VALue of
a block is tha t of the expression body, 'eb', in which all free occurrences of
the 'id' of a let , respectively the 'g' of a l e trec . block header definition have
been replaced (or substituted) by their VALues. Tha t is, 'ed' is evaluated in an
environment, env' , which is exactly tha t extension of the block-embracing en
vironment, env, which binds 'id' (respectively 'g') to its VALue, and otherwise
binds as env. The VALue of a lambda-expression, 'Aid.ed', is the FUNction of
'id' tha t 'ed' denotes in the environment in which it is first encountered, tha t
is, is first defined. Finally: the VALue of an application, 'ef(ea)', is the result
of applying the FUNction VALue, tha t 'ef designates, to the VALue designated
by 'ea'.

1A specification or a programming language is said to have the FUNARG prop
erty if functions are first class values, that is, can be yielded as results of function
invocation. See also footnote 5.

16.3 A Denotational Semantics 577

16.3 .2 A Formal S e m a n t i c s

This definition expresses the semantics of SAL denotationally, i.e., in terms of
mathematical functions, and homomorphically, i.e., the semantics of a com
pound syntactic object is expressed as the (homomorphic) functional compo
sition of the denotations, i.e., semantics of the individual, proper components.
The denoted functions are themselves expressed in terms of semantic types,
and these are again functional.

The specification language used in this section is a syntactic subset of RSL
whose semantics "subset" is one which allows recursive definition of functional
values and which prescribes a minimum fix point semantics. We shall only
assume this "subset RSL" in this section.

S e m a n t i c T y p e s

We make the distinction between designated values and (denoted) denota
tions. A value (v:VAL) is the result of an evaluation of an expression in some
context which binds identifiers to values. A denotation (D:DEN) is the (usu
ally functional) meaning of an expression, regardless of the environment, i.e.,
as a function from environments to "something".

t y p e
ENV = V jd VAL
VAL = Num | Tru | FCT
Num :: Int
Tru :: B o o l
F C T :: VAL ^ VAL
DEN = ENV ^ VAL

Denotations are the semantic values of expressions. Expression evaluation
must refer to values of identifiers, the evaluation of which needs an environ
ment in which to look up these values. Hence the denotation is a function from
environments to values. Thus we speak of the denotation of an expression as
its "semantic (i.e., denoted) value" and of the value of an expression as the
"evaluated (i.e., designated) value".

Operator M e a n i n g s

The meanings of the operators are seen, denotationally, as functions from their
operand values to result values. These functions are here expressed in terms
of the specification language lambda function concept:

value
M: P O p ->• (Int ->• Int)
M(o) = case o of: minus —>• Ax • —x, ... e n d

578 16 SAL: Simple Applicative Language

M: IOp -> (Int x Int ->• (Bool | Int))
M(o) =

case o of:
add —> Ax • Ay • x+y, ..., eq —> Ax • Ay • x=y ...

end

We shall use the operator meaning function M throughout the many-development-
stage treatment of SAL.

Semantic Functions

Programs are expressions to be evaluated in an empty environment. Otherwise
we refer the reader to our informal exposition of the semantics of SAL starting
in Sect. 16.3.1.

value
M: Pro 4 VAL, M: E 4 DEN

[0
[1
[2
[3
[4
[5
[6

[7
[8

M(mk_Pro(e)) = M(e)[]
M(mk_Cst(k))p = k
M(mk_Var(v))p = p(v)
M(mk_Pre(o,e))p = M(o)M(e)p
M(mk_Inf(le,o,re))p = M(o)(M(le)p,M(re)p)
M(mk_If(b,c,a))p = if M(b)p then M(c)p else M(a)p end
M(mk_Lam(v,e))p = Aa.(let np = p I [v H->- a] in M(e)np end)
M(mk_Let(v,d,b))p = let np = p f [v h-> M(d)p] in M(b)np end
M(mk_Rec(f,mk_Lam(v,e),b))p =

let np = p f [v 4 M(e)np] in M(b)np end
M(mk_App(f,a))p = (M(f)p)(M(a)p)

Observe the recursion in the definition of np in the definition of the meaning of
recursive 'let' expressions. (It is the np, in the next but last line of the formulas
above, which is being recursively defined.) Compare that to the definition of
np in the two other semantics equations: Those of 'lambda' and simple 'let'
expressions.

By "moving" (~>) the M function argument p "over, onto the other side"
of the defining equation (=) we get:

M(e)p = £{p) ~> M(e) = Xp£(p)

and we see that the meanings of expressions are indeed denotations of the
right kind.

16.3 A Denotational Semantics 579

16.3.3 Review of SAL Semantics, 1

The reader may feel cheated: We have explained the semantic functions of
SAL in a language reminiscent of a subset of the RSL specification language.
How can we defend this apparent circularity? Well, it is not circular. First,
the two languages are indeed different. SAL has two environment bindings:
one that allows defined (simple) functions to have their free identifiers bound
in the embracing environment, and another that allows defined (recursive)
functions to have free occurrences in the body of their definition of their
function identifier bound in the environment their definition gives rise to,
hence recursive.

/* a simple binding */
(let f=4 in
(let f=Ax.a+f

in f(3) end)
end)

7

/* in contrast to a recursive binding */
(let f=4 in
(letrec f=Ax.if x=0 then 1 else x*f(n—1) end

in f(3) end)
end)

6

RSL has only recursive bindings, and since it always has that we leave out the
suffix rec. Second, SAL is explained in terms of RSL, and RSL is defined in
terms of mathematics. (We do not show, in these volumes, the RSL semantics
— we only explain it informally!) So they only cosmetically look the same.
In fact, we have indeed cheated: When in the semantics of recursive function
definitions in SAL we defined a new environment recursively, we "went outside
the realm" of RSL. Such recursive definitions of higher-order function types
are, in general, not possible in RSL. So how can we defend that? We cannot,
really, other than by saying: Since the function defined recursively is only
recursive in itself, not by reference to several other functions defined at the
same level — and since this is not possible in SAL, where at most one function
can be defined at every let • in • end level, i.e., in each such "block activation"
— one can show that there are indeed solutions to the recursive equations
within the RSL semantics.

We have, however, achieved a good basis for a development that now
follows: via increasing steps of concreteness to a compiling algorithm for a hy
pothetical machine. In that sense it is not so important that SAL is a rather

580 16 SAL: Simple Applicative Language

"timid" language. Its concept of function definitions, blocks and function ap
plications is so powerful it can serve as a basis for our subsequent imperative,
modular and parallel process language developments.

16.3 .4 T w o A s i d e s

Of T h i n g s to C o m e !

In subsequent sections we shall follow each example by giving further, in
creasingly more concrete examples. These definitions are increasingly more
'computational ' , tha t is, can best be understood as specifying sequences of
computations given an input, or, in other words, an initial binding of vari
ables to their meaning. The last definition "unzips" user-defined functions by
permitt ing a compile-time macro-expansion of the definition. In doing so it
relies on pre-processing SAL program-defined functions into label and g o t o
"bracketed" metalanguage texts, and calls of these functions into (branch and
link-like) gotos to such texts . The principles of properly saving, updating —
tha t is, "setting-up" — and restoring — tha t is, "taking-down" and "rein
stalling" — calling and defining environments, form a detailed description.
This description does this more than any of the preceding definitions, and of
otherwise published accounts of this so-called static (environmentally preced
ing) and dynamic (call) activation chain mechanism.

T h e M o s t R e c e n t Error

Consider the following program2 :

1. (let p = Ax.
2. (let h = A().
3. skip
4. in x(h())
5. end)
6. in p(p)
7. end)

We will now assume tha t the reader has informally learned about implemen
tat ion of block structures, function definitions and function invocation, for
example, in programming courses on functional or imperative programming.
If not, then please skip this aside section, and proceed. These volumes, in
particular the next sections, will then teach you that ! Tha t is, a main purpose
of Sect. 16 is to show how informal explications, from [414] via [6,150] to [14],
can be sharpened into far more precise descriptions.

2This example is taken from Hans Langmaack [383]. In that reference Langmaack
shows how Edsger W. Dijkstra [100] implemented his Algol 60 compiler for the X I
machine.

16.3 A Denotational Semantics 581

correct

(F)

(T)

ra

ra

h i -

procedure h

P
X

proc edure h

erroneous

procedure p

program:
begin

I. procedure p(x) =
begin

2. procedure h() =
3. begin skip end in
4 X(h())
5. end in

6 P(P)
7. end

Run time stack

Fig. 16.1. The "most recent error" example

Figure 16.1, in addition to repeating the program text in a slightly different
notation, also shows a so-called activation stack for a program execution that
has reached program point (3) via program points (6) and (4) in that order.
As a result a "bottom-most" activation, [A"|, has been first established, at
program point (1). The definition corresponding to program points (1-4) leads
to activation [A~] recording the meaning, V, at this point, of procedure p.
At program point (6) invocation (i.e., "call") p(p) results in activation _B_.
It binds both the procedure identifier p and the formal parameter x to V.
"Inside" procedure p's definition we note the meaning, H, at this program
point (2), of procdure h in activation [cT|. At program point (4) invocation (i.e.,

"call") x(h) results in activation [_D]. It binds formal procedure identifier x,
which has actual argument p, to V, and it binds formal parameter x, which has
actual argument h, to "H. It is formal parameter x since the (formal) procedure
invoked is named p whose formal parameter is x. Eventually program point
(2) will be entered — since the actual argument, h(), of x(h()) has to be
evaluated. This leads to an activation E which records a new meaning, H',
for the locally defined procedure h. "Entering" the body of procedure named
h, program point (3), leads to a final activation E which records the bindings
of the formal procedure identifier h. The value of h passed as part of the actual
argument in x(h()) is, of course, the value that h had at program point (4) —
namely the "old", first % — and not the "most recent" 7i'.

582 16 SAL: Simple Applicative Language

16.4 A First-Order Applicative Semantics

We continue our use of initially capitalised sequences of pronounceable names
which are meant to refer to identifiers of the formal model.

Implementation languages, including hardware machines, usually do not
have function values — hence we must "transform" and make more concrete
the function VALue, FCT, and the ENVironment concepts of the previous
step of development (Sect. 16.3). Thus the abstract VALue of the previous
stage of development (Sect. 16.3 Semantic Types) will be implemented in
terms of less abstract , but still applicative, values VALa. FunCTion VALues
are constructed from lambda expressions, i.e., text values, mk_Lam(v,e) and
from ENVironments (Sect. 16.3 Semantic Types). Concrete FunCTion VALues
(see Page 577) will be called CLOSures — referring to the "wrapping" of
lambda-expression texts with concrete, implemented ENVironments. So we
implement FunCTions as CLOSures. ENVironments — which before were maps
from identifiers to abstract values — will now be implemented, ENVa, as lists
of binding: pairs of identifiers and their now more concrete values, Bind*.

By a first-order (applicative) semantics definition we mean one whose se
mantic types are nonfunctional, but which is still referentially t ransparent . 3

Hence, if we were given, as a basis, a denotational semantics we would have
to transform its functional components into such objects which by means of
suitable "simulations" can mimic the essential aspects of the denotational
definition. We now exemplify the notion of transforming functional types into
non-functional ones.

16 .4 .1 S y n t a c t i c T y p e s

See Sect. 16.2.2 for the formal SAL syntax.

16 .4 .2 S e m a n t i c T y p e s

From the denotational semantics definition of SAL, two kinds of types are to
be transformed: ENV = Id ^ DEN, and among DENotations: FUN = DEN
-> DEN.

The former objects were constructed by means of expressions:

l e t np = p I [v I—>• a] i n M(e)np e n d
le t np = p f [v i-)- M(d)p] in M(b)np e n d
le t n/9 = p | [v H> M(Ae)np] in M(b)np e n d

3 By referential transparency we mean a property that a language may possess
or not possess. A language is said to be referentially transparent if the meaning of
a composite sentence remains the same whenever any sentence component has been
replaced by another sentence component having the same meaning as the replaced
component.

16.4 A First-Order Applicative Semantics 583

The latter objects were denoted by an expression basically of the lambda form:

Aa.(let np = p f [v i->- a] in M(e)np end)

We shall not motivate the transformation choices further, nor state general
derivation principles. Rather we present the transformed objects as "faits ac-
complis": ENV objects, which are maps {yd), as ENVa objects of the tuple
type, with extensions (f) accomplished in terms of concatenations (~), and
functional application as directed, linear searches (l_search). The mathemat i
cal functions, fun, denoted by lambda-expressions are then realized as so-called
closures. These are "passive" (i.e., semisyntactic) structures, which pair the
(syntactic) expression, d, to be evaluated, with the defining (semantic) envi
ronment, env', so tha t when fun is to be applied, fun(val), then a simulation
of the application of clos to the transformed counterpart , arg, of val, is per
formed: applyl(clos.arg).

Instead of now presenting the more concrete, first-order functional ela
boration functions we first present arguments for why we believe tha t our
choices will do the job. Those arguments are stated as retrieve, tha t is, ab
straction functions and abs_ENV, abs_DEN, which apply to the transformed
objects and yield the more abstract "ancestors" from which they were derived.
We next observe tha t the definition is still functional, as was the denotational.
All arguments are explicit, there is no reference to assignable/declared vari
ables. And we finally note tha t we cannot, given a specific expression, e, "stick"
it into the I (function definition together with an initial, say empty environ
ment) and by macrosubsti tution eliminate all references to I. The reason for
this failure will be seen in our stacking closures, whose subsequent application
requires I.

t y p e
ENVa = Bind*
Bind = = mk_Simp(id:V,den:VALa) | mk_Rec(f:V,Ae:L)
VALa = Num | Tru | CLOS
CLOS = = mk_CLOS(Ae:L,env:ENVa)

DENa = ENVa ^ VALa

We refer to the introductory parts of this section for a guide to the above
definitions.

16 .4 .3 A b s t r a c t i o n Funct ions

Whenever a step of development concretises some types wrt. their appar
ently more abstract , earlier counterparts, it behooves the developer to state
in which way the pairs of concrete versus abstract types relate. This is done
here in terms of abstraction functions. Two such must be expressed: One tha t
maps concrete (list of pairs) environments to the abstract (map) associations,
abs_ENV; and one, abs_VALa, tha t maps concrete values, VALa, to abstract
values, VAL. abs_ENV invokes abs_VALa.

584 16 SAL: Simple Applicative Language

value
abs_ENV: ENVa ->• ENV
abs_ENV(enva) =

if enva = () t h e n [] e lse
let p = a b s _ E N V (t l enva) in
case hd enva of

mk_Simp(v,den) —• p f [v i->- abs_VAL(den)],
mk_Rec(f,£) —> let np = p I [f i-» M(£)np] in np e n d

e n d e n d e n d

Observe how abs_ENV makes use of the M function of the previous stage, as
does abs_VAL:

value
abs_VAL: VALa -> VAL
abs_VAL(vala) =

case vala of

mk_CLOS(mk_Lam(v,e) ,enva)
->• Aa.(M(e)(abs_ENV(enva)) I [v ^ a]) ,

_ —>• vala
e n d

16 .4 .4 Auxi l iary Funct ions

Since the environment is no longer a map to which one can just provide
identifiers and obtain, by map application, their values, we must search for
it in the list. Since we conjoin new pairs to the list at its head, we search as
from the head of the list.4

value

I_search: V x ENVa 4 VALa
I_search(v,env) =

if env = () t h e n chaos e lse
case hd env of

mk_Simp(v,den) —> den,
mk_Rec(v,Ae) —>• mk_CLOS(Ae,env),
_ —>• I_search(v, t l env)

e n d e n d

A series of embedded blocks, from outer to inner, may redefine an identifier.
That is, an identifier of an embracing block may be redefined by an enclosed block.
Identifier value pairs of inner blocks are concatenated to the head, and since they
are the lexicographically scoped identifier values bound to inner occurrences of these
identifiers we must first retrieve them.

16.4 A First-Order Applicative Semantics 585

And similarly, since function values are no longer "real" functions, but clo
sures, we must interpret these closures:

value

apply: CLOS x VALa 4 VALa
apply(clos,arg) =

case clos of
mk_CLOS(mk_Lam(v,e) ,env) —>

let env = (mk_Simp(v,arg))^env in I(e)env end,
—>chaos

e n d

16.4 .5 S e m a n t i c Funct ions

The reader is well-advised to compare, function definition by function defini
tion, those below, named I, with those, named M, in Sect. 16.3.2.

. Semantic Function Signatures .

Previous step:

value
M: Pro 4 VAL, M: E 4 DEN

Present step:

value

I: Pro 4 VALa, I: E 4 DENa

Program Interpretation

Previous step:

[0] M(mk_Pro(e)) = M(e)[]

Present step:

[0] I (mk_Pro(e)) = 1(e)()

Constant Expression Interpretation

Previous step:

[1] M(mk_Cst (k))p = k

586 16 SAL: Simple Applicative Language

Present step:

[1] I(mk_Cst(k))(env) = k

. Variable Expression Interpretation

Previous step:

[2] M(mk_Var(v))p = p(v)

Present step:

[2] I(mk_Var(v))(env) = I_search(v,env)

. Prefix Expression Interpretation

Previous step:

[3] M(mk_Pre(o,e))p = M(o)M(e)p

Present step:

[3] I(mk_Pre(o,e))(env) = M(o)(I(e)(env))

. Infix Expression Interpretation

Previous step:

[4] M(mk_Inf(le,o,re))p = M(o)(M(le)p,M(re)p)

Present step:

[4] I(mk_Inf(le,o,re))(env) = M(o)(I(le)(env),I(re)(env))

. Conditional Expression Interpretation

Previous step:

[5] M(mk_If(b,c,a))/9 = if M(b)p then M(c)p else M(a)p end

16.4 A First-Order Applicative Semantics 587

Present step:

[5] I(mk_If(b,c,a))(env) = if I(b)(env) then I(c)(env) else I(a)(env) end

Lambda-Expression Interpretation

Previous step:

[6] M(mk_Lam(v,e))p = Aa.(let np = p f [v i->- a] in M(e)np end)

Present step:

[6] I(mk_Lam(v,e))(env) = mk_CLOS(mk_Lam(v,e),env)

It is especially in the above function [re] definition we start to see the devel
opment!

. Simple Let Expression Interpretation, 1

Previous step:

[7] M(mk_Let(v,d,b))p =
let np = p f [v H->- M(d)p]
in M(b)np end

Present step:

[7] I(mk_Let(v,d,b))(env) =
let val = 1(d) (env) in
let env = (mk_Simp(v,val))^env in
1(b) (env) end end

Recursive Let Expression Interpretation

Previous step:

[8] M(mk_Rec(f,mk_Lam(v,e),b))p =
let np = p f [v i->- M(e)np]
in M(b)np end

588 16 SAL: Simple Applicative Language

Present step:

[8] I(mk_Rec(f ,mk_Lam(v,e) ,b))(env) =
let env = (mk_Rec(f ,mk_Lam(v,e)))^env in 1(b) (env) e n d

Function Application Expression Interpretation

Previous step:

[9] M(mk_App(f ,a))p =
let fct = M(f)p, arg = M(a)p in fct(arg) e n d

Present step:

[9] I(mk_App(f,a))(env) =
let arg = 1(a) (env), fct = 1(f) (env) in apply (fct, arg) e n d

16 .4 .6 R e v i e w

The example development of this section is based on Reynolds [428]. The
FUNARG notion5 is described in [368,529]. It remains to show tha t the
first-order semantics of this section is correct wrt. the denotational semantics
of the previous section. We shall not prove tha t here, instead we refer to
the literature. The theorem to be proved amounts to a recursively defined
predicate (see [350,498]). Early examples of fully rigorous proofs are given
in [349,355,486,487]. Standard, more recent textbooks on semantics [93,158,
432,448,499,533] also give correctness proof examples.

We remind the reader tha t , in the case of the SAL, SIL and SMIL language
definitions of Chaps 16-18, we are relying on a non-standard variant of the
RAISE specification language RSL, a variant in which we basically disallow all
nondeterminism (inch sets!) and otherwise constrain RSL in such a way as to
obtain a traditional denotational semantics definition language with minimal
fix point meanings. In this way we can define functional values recursively, as
np.

16.4 .7 R e v i e w of S A L S e m a n t i c s , 2

In a small step of development we have concretised maps as lists of pairs,
and functions as closures of function definitions and the context which binds

5The FUNARG notion is that of being able to pass functions as parameters,
and, more particularly, to have functions returned as values of function applications
— whereby such returned functions may subsequently be applied "outside" their
denning environment.

16.5 An Abstract, Imperative Stack Semantics 589

free identifiers of the function definition text. Simple value bindings are kept
simple (mk_Simp), whereas recursively defined value bindings are marked as
being so (mk_Rec). We have kept a functional (also known as applicative)
definition style.

This means that the semantics definition of this step does not yield func
tions as values, only closures. But function applications take place as if the
applied closures are indeed functions. The definition of this chapter relies on
the specification language scope concept to define local environments.

16.5 An Abstract, Imperative Stack Semantics

So far our semantics definitions have been recursively specified: on the induc
tive structure of the syntax of the object (source) languages, and on the com
putations they denote. In this section we unravel these recursions by means
of stacks. That is, we transform (not necessarily only tail-recursive6) function
definitions into nonrecursive function definitions plus a stack data structure.

By an abstract state (machine) stack semantics we understand a defini
tion which typically employs globally declared variables of abstract, possibly
higher-level, type. It expresses the semantics (not in terms of applicatively
defined, "grand" state transformations on this state, but) in terms of state
ment sequences denoting a computational process of individual, "smaller"
state transformations.

16.5.1 Design Decisions — Informal Motivation

In this section we shall state, and informally motivate, our decisions to change
the applicative, hence explicitly provided semantic arguments (of semantic
functions), to imperative, global state components. Hence these arguments
now become implicitly provided.

In the case of SAL we choose to map the semantic ENVa arguments onto
a globally declared variable, estk (for environment stack), thereby removing
these arguments from the elaboration function references. By doing so we must
additionally mimic the metalanguage's own recursion capability. Otherwise we
would be cheating by making no progress towards a more concrete definition,
one that is expressed in a language more directly mechanisable by a computer
without built-in stacks.

Thus the type of estk is to become a stack of stacks. Each estk element
is that stack of Vs and their values, which when looked_up properly (cf.

By a function being tail-recursively denned we mean that the function definition
is, schematically, of the form: value f,g: A —> B, h: A —• A, p: A —• Bool, f(a) =
if p(a) then g(a) else f(h(a)) end. An example of a recursive function definition
which is not tail-recursive is: value f,g,k: A —> B, h: A —• A, p: A —• Bool, f(a) = if
p(a) then g(a) else let a = f(h(a)) in k(a) end end.

590 16 SAL: Simple Applicative Language

abs_ENV) reflects the bindings of the so-called "lexicographically youngest
incarnations" of each identifier in the static scope, tha t is, in "going outwards"
from the identifier-use through embracing blocks towards the outermost pro
gram expression level. As long as no let or l e trec defined function is being
applied, the estk will contain exactly one ENVa element. As soon as a defined
function is applied, the calling environment is dumped on the estk stack. On its
top is pushed the ENVa environment current when the function was defined.

In addition, we choose to mechanize the recursive stacking of temporaries,
by means of a global value stack, vstk. We could have merged vstk into estk,
but at present we decide not to . Hence this abstract machine definition also
requires further decomposition of the look_up operation. As before, we state
our beliefs as to why we think the present development is on the right track.
We do so by presenting retrieve (also known as abstraction) functions.

16.5 .2 S e m a n t i c s Sty le Observat ions

The abstract state machine semantics definition is said to be an operational,
or to be a mechanical or, which is just a third name for the same idea, a
computational semantics definition, since it specifies the meaning of SAL by
describing the operation of a machine which effects the computation of the
desired value.

Such definitions rather directly suggest, or are, realisations. They do not
possess or involve implicit, but instead explicit allocation and freeing. The
implicit allocations and freeings would have to be done by the implemen
tat ion language processor (compiler) and its run-time system. The explicit
allocations and freeings are determined by the definer, the person who writes
down this stage of development. The allocation and freeing is of otherwise
recursively nested (that is, stacked) values.

The definition, however, still requires the presence, at run-time, of 0 —
the interpreter. It still cannot be completely factored out of the definition
for any given, nontrivial expression. Thus there still cannot be an exhaustive,
macrosubsti tution process which completely eliminates the interpretive nature
of the definition.

The reason is as before: CLOSures are triplets of a function definition
bound variable, id, a function body, d, and the recursive, defining environment,
env2'. Together they represent, but are not, the function, fun. It must instead
be mimicked; hence the required presence of 0 .

16 .5 .3 Syntac t i c T y p e s

See Sect. 16.2.2 for the formal SAL syntax.

16.5 An Abstract, Imperative Stack Semantics 591

16.5.4 Semantic Types

It is always important to fix the semantic types first. But, since we are in
a step of development where the syntactic types are fixed throughout most
steps, we fix the semantic types second!

type
ENVi = ENVa*

variable
e_stk:ENVi := (());
v_stk:DENa* := ();

16.5.5 Abstraction Functions

value
abs_ENVa: Unit 4 ENVa
abs_ENVa() = hd cestk

abs_DENa: Unit H> DENa
abs_DENa() = hd c vstk

16.5.6 Run-Time Functions

We have the usual push, pop and top functions:

value
push_e: Bind —>• Unit
pop_e: Unit —> Unit
push_v: DENa ->• Unit
pop_v: Unit ->• Unit DENa

push_e(bind) = e_stk := ((bind)^hd ce_stk)^t l ce_stk
pop_e() = e_stk := tl ce_stk
push_v(v) = v_stk := (v)^c v_stk
pop_v() = let val = hd c v_stk in v_stk := tl c v_stk; val end

top_e: Unit —>• Bind, top_e() = hd hd ce_stk
top_v: Unit ->• DENa, top_v() = hd c v_stk

as well as some slightly less usual functions on stacks:

len_e_stk: Unit ->• Nat
len_e_stk() = len hd ce_stk

592 16 SAL: Simple Applicative Language

push_new_e : ENVa —>• U n i t
push_new_e(env) = e_stk := (env)^ce_s tk

pop_o ld_e : U n i t —> U n i t
pop_old_e() = e_stk := t l c e _ s t k

The l_search function (Sect. 16.4.4) was recursively denned. Hence it was a
function which returned a value. If a search is a t tempted for an identifier
(id) which is not in the environment, then l_search specified chaos. We now
respecify the applicative l_search into an imperative, operational 0_search in
which we choose to change the recursion to iteration (more specifically, to a
while loop search).

We remind the reader tha t we here use a version of RSL variables in which
these designate references. To get at their contained values we apply the
contents operator c. In proper RSL there is no provision for making the dis
tinction between a variable designating a reference and a variable designating
a value. All variables basically designate values. Variable names passed as pa
rameters to functions are passed by value, not by reference. But we will make
the distinction anyway.7

value
0_search : V —> U n i t
0_search(v) =

variable
found:Bool := false,
index:Nat := 1;

whi le ~c_found do
case (top_e())(index) of

mk_Simp(v,den) —> (push_v(den); found := t rue) ,
mk_Rec(v,e) —>

let env = ((top_e())(k) | index<k<len_es tk()) in
push_v(mk_CLOS(mk_Lam(v,e) ,env)) ;
found := t rue end,

_ —> if index = len_estk()
t h e n chaos e lse index := c index + 1 e n d

e n d e n d

16 .5 .7 S e m a n t i c Funct ions

T w o Invariants

The two most important invariant properties to be obeyed by the semantic
functions 0 are:

7And we may probably miss a few such distinctions, forgetting to use the c
operator.

16.5 An Abstract, Imperative Stack Semantics 593

1. They "each and all" specify the pushing of a value onto the value stack
(i.e., the value stack after (some execution) contains one more element
than before (such an execution)).

2. They "each and all" specify that the environment stack is unchanged!

Any stacking (pushing) onto the environment stack, as specified by any of
the elaboration functions (0) must be restored (i.e., popped) by that same
invocation of the 0 function.

[0] Interpret Programs

The reader is well-advised to compare function definition by function defini
tion, those below, named 0, with those, named I, in Sect. 16.4.5.

Interpret Programs

Previous step:

value
I: Pro 4 VALa
I(mk_Pro(e)) = 1(e) ()

Present step:

value
O: Pro ->• Unit
0(mk_Pro(e)) = 0(e)

Recall: I is applicative, hence explicitly shows all arguments. 0 is imperative
and relies on a global state, not shown.

[1] Interpret Constant Expressions

. Interpret Constant Expressions .

Previous step:

value
I: E 4 DENa
I(mk_Cst(k))(env) = k

Present step:

value

594 16 SAL: Simple Applicative Language

O: E -> U n i t
0 (m k _ C s t (k)) = push_v(k)

Recall: I results in a value, 0 in a side effect on the global state — here
explicitly shown.

[2] Interpret Variable E x p r e s s i o n s

In both the previous and the present step of development we avail ourselves
of the applicative, now imperatively defined search functions.

Interpret Variable Expressions .

Previous step:

value

I: E 4 DENa
I(mk_Var(v))(env) = I_search(v,env)

Present step:

value
O: E -> U n i t
0(mk_Var (v)) = 0_search(v)

Here the "packaging" of the ("further") evaluation into "similarly" named
search functions at least leaves the impression tha t similar evaluations take
place. Only careful comparisons of the l_search and 0_search functions —
short of formal proofs — will reveal their "equivalence".

[3] Interpret Pref ix E x p r e s s i o n s

We keep on listing the previous step of development as a back-up for informal
derivation.

. Interpret Prefix Expressions .

Previous step:

value

I: E 4 DENa
I(mk_Pre(o,e))(env) = let val = 1(e)(env) in M(o)(val) e n d

Present step:

value

16.5 An Abstract, Imperative Stack Semantics 595

O: E -> U n i t
0(mk_Pre (o ,e)) = 0 (e) ; let val = pop_v() in push_v(M(o)(val)) e n d

Observe how the 0 function effects the unstacking of val by "overwriting" the
entire stack!

[4] Interpret Infix E x p r e s s i o n s

. Interpret Infix Expressions .

Previous step:

value

I: E 4 DENa
I(mk_Inf(le,o,re))(env) =

let (rv,lv)=I(le)(env),I(re)(env) in M(o)(lv,rv) e n d

Present step:

value
O: E -> U n i t
0(mk_Inf(le,o,re)) =

0(le) ; 0 (re) ;
let r v=pop_v() , l v=pop_v() in push_v(M(o)(lv,rv)) e n d

Again, a pair of unstackings is avoided through complete rewrite of, i.e., as
signment update to, the entire value stack.

[5] Interpret C o n d i t i o n a l E x p r e s s i o n s

. Interpret Conditional Expressions .

Previous step:

value

I: E 4 DENa
I(mk_If(b,c,a))(env) =

let t = 1(b) (env) in if t t h e n 1(c) (env) e lse 1(a) (env) e n d e n d

Present step:

value
O: E -> U n i t

596 16 SAL: Simple Applicative Language

0(mk_lf(b,c,a)) =
0(b); let t = pop_v() in if t then 0(c) else 0(a) end end

Definitions [0-5] were the simple semantic functions. Now we move on to the
more interesting ones!

[6] Interpret Lambda Expressions

The two CLOSure-taking functions are, of course, different: One is applica-
tively denned, the other is imperatively denned.

. Interpret Lambda-Expressions .

Previous step:

value
I: E 4 DENa
I(mk_Lam(v,e))(env) = mk_CLOS(mk_Lam(v,e),env)

Present step:

value
O: E -> Unit
0(mk_Lam(v,e)) = push_v(mk_CLOS(mk_Lam(v,e),top_e()))

In either case, no real evaluation takes place; just the return, respectively the
stacking, of a packed closure value.

[7] Interpret Simple Let Expressions

. Interpret Simple Let Expressions .

Previous step:

I(mk_Let(v,d,b))(env) =
let val = 1(d) (env) in
let env = (mk_Simp(v,val))^env in
1(b) (env') end end

Present step:

0(mk_Let(v,d,b)) =
0(d);
let val = pop_v() in
push_e (mk_Simp (v, val));
0(b); pop_e(); end

16.5 An Abstract, Imperative Stack Semantics 597

Now value stack unstacking must be performed explicitly. Furthermore, the
applicative block structure of the specification language means that the lo
cally defined environment, env', no longer is known once l(b)(env') has been
evaluated. The imperative, global state "stacking-up" to a new environment
must, in contrast, be unstacked in order to bring balance, that is, to maintain
the invariant.

[8] Interpret Recursive Let Expressions

Interpret Recursive Let Expressions

Previous step:

I(mk_Rec(f,mk_Lam(v,e),b))(env) =
let env = (mk_Rec(f,mk_Lam(v,e)))^env in
1(b) (env) end

Present step:

0(mk_Rec(f,mk_Lam(v,e),b)) =
push_e(mk_REC(f,mk_Lam(v,e)));
0(b); pop_e()

Again, the local scope of env' is in contrast to the side effect on the global
environment state: The latter stack (on environment activations) must thus be
restored. Otherwise we see "practically speaking, the same kind of" recursive
function value being bound in the environment before block body evaluation.

[9] Interpret Function Application Expressions

With this interpretation function the difference between the previous and the
present step of development becomes obvious.

. Interpret Function Application Expressions .

Previous step:

I(mk_App(f,a))(env) =
let arg = 1(a)(env), fct = 1(f)(env) in apply(fct,arg) end

Present step:

0(mk_App(f,a)) =
0(a); 0(f);
case pop_v() of

mk_CLOS(mk_Lam(v,e),env) —>•

598 16 SAL: Simple Applicative Language

(push_new_e((mk_Simp(v ,pop_v()))^env) ;
0 (e) ; pop_o ld_e()) ,

—>• c h a o s e n d

The first lines of the two function definition bodies "correspond" (an induction
hypothesis). The rest of the 0 body definition "corresponds" to the apply
function of Sect. 16.4.4.

The reader is kindly invited to follow, for example, using left- and right-
hand index fingers, the previous and the present step formulas, clause by
clause, in order to, informally, yet systematically, reason why the present step
might well be "correct" wrt. the previous step!

16.5 .8 R e v i e w of S A L S e m a n t i c s , 3

We have motivated a change from an applicative to an imperative state for
mulation of our SAL semantics. This change entailed the introduction of two
kinds of global variables: a stack for computed expression values, and a stack
for deployed environments. The implicit stackings and unstackings of values
and environments of a previous definition then had to be done explicitly while
preserving respective invariants. We have shown the systematic transcription
of previous I functions into the present 0 functions, and we have carefully
related this step of development to a previous step.

The classical example of stack semantics was tha t of Landin's SECD ma
chine: [284,286,288], also treated in Wegner's seminal book [528]. In the 1960s
the IBM Vienna group developed elaborate (albeit applicative) stack machine
semantics of the P L / I programming language [32,305,312]. The locally de
fined environments of Section 16.4 have been globalised into an imperative
environment stack. Similarly for the locally defined expression values: Instead
of keeping them locally defined they are pushed onto a value stack, and are
unstacked when applied to primitive operations.

From a functional definition we have therefore evolved into an imperative,
assignment-oriented definition. This means tha t the implicit environment ex
tensions and the implicit "reversion" to embracing environments must now
be explicitly defined. And this means tha t the definition of this section is
more operational and technically detailed — with such details "clouding" the
semantics picture.

16.6 A Macro-expansion Semantics

The idea of macro-expansion semantics seems to have first originated at the
IBM Vienna Laboratory — as early as in 1961, with the late Hans Bekic [32],

16.6 A Macro-expansion Semantics 599

in connection with the development of an Algo l 60 compiler for the first Aus
tr ian transistorised computer, the Mailiifteml (May breeze).8 Semantic function
definitions are seen as defining compilers from source object languages to the
target metalanguage. In this section, as well as in Chaps. 16-17, we deal with
the special problems of effecting translations into such simple metalanguage
constructs which have a direct counterpart in actual target object languages.
Thus the basic idea is tha t semantic function (i.e., interpreter) definitions can
be read as compilers from (as here the SAL) source language constructs into
(as here RSL) specification language constructs.

16.6 .1 A n a l y s i s of Stack S e m a n t i c s

The unit of binding in the previous SAL definitions is tha t of a pair: an
identifier and its abstract , respectively concrete, value. The abstract values
were integers and functions. The concrete values were integers and closures.
The bindings were, in the most recent models, kept as elements marked either
"simple" or "recursive", and otherwise containing these pairs. Henceforth we
shall implement such a pairing element as a so-called activation.

An environment, till now, was first modelled as a map from identifiers to
abstract values, then as a tuple of elements. Environment maps contained at
most one pairing for any given identifier. Environment tuples were searched
linearly, from head to tail, for a first occurrence of an identifier pairing — and
thus allowed for subsequent, "earlier" bindings of the same identifier. These
(earlier) bindings correspond to bindings in Let or Rec blocks embracing a
binding of an inner block.

In the abstract state machine stack semantics of SAL we observe a number
of storage wise inefficient object representations. These are caused almost
exclusively by our choice to stay with the closure representation, CLOS, of
functions. Closures "drag" along with them, not only the function body text,
but also the entire defining environment. This generally results in extensive
duplication of dynamic scope information recorded (i.e., "stored") in ENVi.

Therefore, the basic object transformation objective of this development
step is now to keep only nonredundant environment information in the t rans
formed activation stack. We shall achieve this by "folding" the ENVi stack
of ENVa stacks "back into" a pointer-based, tree-structured activation stack
(STG).

The collection of environment activations are tree-structured because SAL
has the FUNARG property. This property is the following: Functions may not
only accept, as arguments, but also result in functions. These argument and
result functions will normally have been defined in environments different
from the one (to and) from which they are (passed, respectively) returned.
The previous sentences do not fully argue why the collection of environment
activations are tree-structured. Such an explanation is given below.

8— in poetic naming-contrast to the (imperial) Whirlwind computer designed
at MIT (1951)

600 16 SAL: Simple Applicative Language

Each binding, to recall, will now become an activation (record). The linear
list of bindings will be effected by augmenting the activation record with
pointers.

Let:

((idn,vn),(idm,vm),...,(idi,vi),...,(id3,v3),(id2,v2),(idl,vl))

be one such CLOSure (and stack) environment. Then:

[pn i->- (pm,idn,vn),
pm H-» (pk,idm,vm),

pi H-» (pi—l,idi,vi),

p3 h-» (p2,id3,v3),
p2 h-» (pl,id2,v2),
pi H> (nil,idl,vl)]

could be a naive rendition of the tuple-modelled environment. The pointers pj
'chain' the activation bindings in the order starting with the most recently (dy
namically) invoked blocks. (Bindings only — but always — occur in blocks.)

If one of the values, for example, v2:

((idn,vn),(idm,vm),...,(idi,vi),...,(id3,v3),(id2,v2),(idl,vl))

describes a closure whose environment part is a copy of the environment tuple
as from the ith item:

mk_CLOS (lambda, ((idi,vi),...,(idm,vm),(idn,vn)))

then the list-modelled environment can be expressed:

((idn,vn),
(idm,mk_CLOS(lambda,((idi,vi),...,(id3,v3),(id2,v2),(idl,vl)))),

(idi,vi),

(id3,v3),
(id2,v2),
(idl,vl)>

Instead of repeating the closure environment, we replace the environment
part of a closure with a pointer whereby the map-modelled environment can
be expressed:

[pn i->- (pm,idn,vn),
pm i-» (p£,idm,mk_CLOS(lambda,pi)),

16.6 A Macro-expansion Semantics 601

pi H-» (ph,idi,vi),

p2 h-» (pl,id2,v2),
p i H> (n i l , id l ,v l)]

Invoking the closure identified by id2 in the stack model corresponded to
pushing an entirely new environment, namely the one start ing from position
i, as a new stack element.

In the model we are about to decide upon, this will be effected by first
introducing an additional pointer into each activation record, i.e., (pc,pe,id,v),
such tha t the existing pointer, as before, designates the dynamic call (hence
pc) sequence of activations. The new pointer designates the so-called lexico
graphically embracing environment chain of activations.

This leads to the following last expression:

[po H-» (pn,pi,id,v),
pn i->- (pm,pm,idn,vn),
pm H-» (p£,p£,idm,mk_CLOS (lambda,pi)),

pi H-» (ph,ph,idi,vi),

p2 h-» (pl ,pl , id2,v2) ,
p i i->- (n i l ,n i l , id l ,v l)]

where v is the value of e.
We can visualise the above. Figure 16.2 does so, and also shows some

state components, etc., components whose purpose will be explained now and
formalised later.

The six rectangles in the left column of Fig. 16.2 designate six registers.
The big "almost" rectangle with the many (2 + . . . + 1 + . . . +2) five-component
rectangles, labelled DSAO, DSA1, DSAi, DSAm and DSAn, inside it, denotes
a storage whose space (cells, bytes, etc.) can be allocated, i.e., "claimed".
Each of these 2 + 1 + 2 five-component (DSA) rectangles designates a record
whose fifth field, the one shown to the right on the figure and labelled stack,
designates local stack, i.e., varying space. The other fields are fixed-space
record components. The arrows symbolise pointers. Thus the cp register links
to the top rectangle: Given cp we can access the contents of tha t top rectangle.
The three-pronged partly solid, partly dashed fork leading out from the ep
register designates tha t the contents of tha t register successively "traverse"
the ep chain. Notice tha t the traversal follows the (link, i.e., pointer) contents
of the record ep fields. Thus it links directly from the top, DSAn, to the middle,
DSAi, and onwards (. . .) .

Activations, as we shall see, are never deleted.
Hence, paths via dynamic pointers from activations (i.e., leaves) to the

root signify a chain of dynamically preceding (i.e., calling) activations, with one

602 16 SAL: Simple Applicative Language

cp

ep

br

Registers

cp ep ra va stack s

ran van <...>

ram | (l,p)| <...>

rai vai <...>

Activation
Stack

ral val <...>

Allocatable Storage

Fig. 16.2. "Snapshot" of a run-time state

of these chains signifying the current, all other chains those of defining, en
vironment chains of FUNARG functions, i.e., functions having been returned
as values of function applications. Each chain is statically and dynamically
linked, corresponding to the sub chain of environmentally preceding, lexico
graphically youngest, that is, most recent, incarnations of statically embrac
ing blocks; respectively the complete chain of dynamically (call/invocation)
preceding activations. We shall later call our activations DSAs (for dynamic
storage activations), and the map from pointers to DSAs storage (STG).

We can, however, only succeed in achieving this realisation of activations
if, at the same time, we refine CLOSures into pairs of resulting program label
points, Ifct, and defining environment activation stack pointers, p. From Ifct
we are able to retrieve the Lambda-expression, and from p we are able to
retrieve the defining environment.

Informal Design Description

To realise this goal we also, in this step, refine CLOSures by macro-expansion
compilation of SAL texts, e, into extended meta-language texts. By a meta
language, macro-substitution, compiled (interpretive) semantics, to recall, we
basically understand a definition in the metalanguage not containing any refer
ences to specifier-defined elaboration functions. We shall, however, widen the
above to admit forms which contain such references. These are now thought of
as references to elaboration macros. Hence they imply a preprocessing stage,
called compiling, prior to interpretation of "pure" metatext. Pure metatext is
a text which is free from references to specifier-defined functions.

16.6 A Macro-expansion Semantics 603

We are given input source texts in the form of arguments to elaboration
functions. To achieve an extended metalanguage definition, which can be so
macro-expanded, recursive definitions of objects must be eliminated. We do
so either by taking their fix points, or by "unzipping" them into mechanical
constructions.

Taking fix points, for example, results in:

env' = fixAp:ENV • (env I [id H-> M(d)p])

but tha t does not help us very much when we come to actual, effective rea
lisations on computers: Fix points are beautiful in theory, but "costly" in
practice. Even though computers may be claimed to possess fix point-finding
instructions, fix, they would have to be general enough to cater for the most
complex case. Instead we unravel each individual use of recursion separately,
and so far by hand. In the case of env' we do this by providing suitable stacks,
pointer initialisations and manipulations. The guiding principle is to derive,
from the more abstract definition to each occurrence of an otherwise recursive
definition, a most fitting, efficient and economical realisation. In the next
five subsections ([l]-[5]) we now go into a characterisation of the resulting
definition at this stage. The definition represents two intertwined efforts: the
further concretisation of run-time objects, here the ENVi stack into a further
refined state, and the further decomposition of elaboration function definitions
so tha t we can come to the point where C references can be successively
eliminated.

[1] T h e R u n - T i m e S t a t e

We refer to Fig. 16.2 which shows a snapshot run-time state.
In the abstract stack rendition of SAL we had separate environment and

value stacks. We now merge these two stacks. Thus cstk and vstk are merged
into the separately allocated DSAs of a storage (STG). These are chained
together: dynamic chains by a CP (for: calling pointer) register, and lexico
graphic chains to (defining) youngest activations (block incarnations) by an
EP (for: environment pointer) register. The exact functioning of this scheme is
precisely described by the formulae. Hence it will not be informally described
here.

[2] M a c r o - e x p a n s i o n

As outlined above we shall make extensive use of macro substitutions.
Two kinds of text appear in our definitions: text tha t specifies compile-

time (i.e., macro-expansion) actions, and the text being generated. The former
is preceded by asterisks (*, one per line of compile t ime action).

The stacking (pushing) and unstackings (pops) of activations and values
will be implemented by two pairs of functions. One may choose to do likewise

604 16 SAL: Simple Applicative Language

for these auxiliary functions, pop and push, or one may wish to keep these as
s tandard run-time routines. At this stage we make no decision in this respect.

[3] R e a l i s a t i o n of CLOSures

Note the Rec or Lamb cases, " l e t r ec g(id)=d in b", respectively "Aid.ed".
Upon evaluation of a Rec or a Lamb their defined function bodies, d, are not
elaborated (until actually Applied). Since we have decided to macro-expand
these texts "in-line" with the text in which they were defined, and since we are
not to execute this text when otherwise elaborating the two definition cases, we
shall (i) label their expansions, (ii) label the text immediately following these
expansions, (hi) precede the expansion with a (metalanguage) g o t o around
the thus expanded text (iv) and terminate the expanded text itself with a
g o t o intended to return to the caller. The caller, it is expected, "dropped" a
suitable return address in a global r a (return address) branch label register
before going t o the label of the expanded function text. All this is performed in
functions C (m k _ L a m (. . .)) (. . .) , respectively C(mk_Rec(. . .)) (. . .)) . So what
is left in the environment of the former CLOSures? The answer is: just the
"bare bones", enough to reconstruct (that is, retrieve) the id, the d (text),
and their defining environment: the former two from the (fct) label and the
environment from contents of cp.

Thus, in this definition, a function CLOSure has been realized as a FCT
pair: (fct.ptr). This solution closely mirrors the way in which procedures are
realized in actual programming language systems.

[4] T h e C o m p i l e S t a t e — C o m p i l e - T i m e Spec i f i ca t i on

We observe tha t Labels had to be generated for each Lamb, Appl and Rec
(actually its Lamb par t) . We describe only once (in C (m k _ L a m (. . .)) (. . .) and
C (m k _ R e c (. . .)) (. . .)) what metalanguage text to be generated. We shall view
semantic function formulas as subject to (as already mentioned) a two phase
process: the compile phase which macro-expands the SAL program into "pure"
metatext , and the interpretation phase which performs actions as prescribed
by the expanded text.

Thus a number of lines of the formulae are executed at compile-time (they
are marked by a preceding asterisk, *). All diet (in DICT) objects are likewise
compile-time computed (marked d). All references to C functions are elimi
nated by the compile-time macro-substitution process already mentioned. Re
maining le t s are then to be executed at run time, tha t is, in the interpretation
phase. In summary, the abstract compiler, whose working behaviour will not
be formalized, performs three actions: it generates labels; it computes, dis
tributes and uses dictionaries (see next paragraphs, below); and it generates
metalanguage (i.e., RSL) texts.

16.6 A Macro-expansion Semantics 605

[5] The Compile Sta te — The Dict ionary

Whereas in ENV1 and ENV2, VALues of ids were explicitly paired with these,
in DSAs only the VALues are left, but in fixed positions (VR).

Consider any variable, id. It is most recently defined at block depth n
(respectively at block depths n,n',... ,n" since the same identifier may be
redefined in embracing or even nonembracing, "disjoint" scopes). And it is
used, for example, at block depth In, where 0 < n < In.

There is thus no need to keep the variable names (i.e., identifiers) in the
activation stack. The compile time DICT component thus serves the following,
singular purpose (at least in this sample definition): for all ids in some context,
to map them into the static block depth, n, at which they were defined.
Since the static chain also touches exactly the embracing blocks, the difference
In-n denotes the number of levels one has to chain back to get to the VALue
corresponding to id. In fact, that is the whole, singular purpose of the static
(EP) chain. Since it is furthermore observed that the only phase diet is used,
in the compile phase, any reference to diet is seen also to be eliminated.

Finally, observe that the unique label objects required for naming and by
passing defined function texts and for returning to calling points (designated,
respectively, by Ifct, Ibyp and Iret), these unique label objects, once generated,
shall be substituted into respective uses.

Execut ion

We refer — again — to the C function definitions below. The result of execut
ing what a SAL program prescribes is found on top of the temporary list (TL)
set aside in each activation (about which — at block exit — we can assert a
length of exactly one). So C pushes the result of any expression elaboration
on top of the current DSA's TL — with the working register, ur, invariably
also holding this result at the instance of pushing.

A simple Let expression is executed by first finding the VALue of the locally
defined variable, id, in the environment in which the Let is encountered. Then
a new activation is set up to elaborate the body, b, of the Let. Working register
ur is used to store the result temporarily while the activation is terminated,
but not necessarily disposed of. The result is pushed on the TL of the invoking
activation's DSA. Since the VALue so yielded might be a function which was
"concocted" by the activation just left, and since that FunCTion may depend
on its locally defined Variable VALues, we cannot, in general, dispose of the
activation.

This then accounts for our use of the square brackets, [...], around the
reclamation of STorage shown. Normally these actions must not be performed
unless it can be decided (for example, through some flow analysis means) that
the FUNARG property is not used. FunCTion VALues will be realized as pairs:
mk_FCT(lfct,ptr), where ptr is a pointer to that, or a contained, activation.
This is again the FUNARG situation previously mentioned. By not disposing

606 16 SAL: Simple Applicative Language

of the DSA we are later able to "reactivate" the FunCTion defining activation.
We leave it to the reader to "exercise" remaining aspects of the definition.

16.6.2 Syntactic Types

See Sect. 16.2.2 for a formal definition of syntactic types.

16.6.3 Compile-Time Types

Based on the above informal explanation we can now specify our design:

type value
LN = Nat get_Lbl: Unit ->• Unit Lbl
DICT = Id ^ LN get_Lbl() =
RSL /* macro-expanded text */ let lbl:Lbl • lbl ^ clbls in
Lbl Ibis := {lbl} U clbls;

variable lbl end
lbls:Lbl-set := {}

16.6.4 Run-Time Semantic Types

Figure 16.2 shows a "snapshot" of a run-time state to which, more generally,
correspond the following type and variable definitions:

type
Ptr, Lbl
Pt = = nil() | ptr(Ptr)
Lb = = null() | lbl(Lbl)
Va = = void() | VAL
STG = Ptr ^ DSA
DSA = = mk_DSA(s_cp:CP,s_ep:EP,s_ra:RA,s_va:Va,s_stk:VAL*)
CP,EP = Pt
BR,RA = Lb
VAL = Num | Tru | FCT
Num :: Int
Tru :: Bool
FCT = = mk_FCT(s_br:BR,s_ep:EP)

16.6.5 Run-Time State

The state is initialised to a "bottom" activation with pointer ptr.

16.6 A Macro-expansion Semantics 607

value
pt r :P t r

variable

stg:STG := [ptr ^ mk_DSA(nil(),nil(),null(),void(),())];
cp,ep:Ptr := ptr;
br,ra:Lbl := null();
ur,wr:VAL := void();

16.6 .6 R u n - T i m e Stack O p e r a t i o n s

The value stack is now "within" each activation. Two operations, therefore,
serve to pop and push from, respectively to, tha t value stack, into, respectively
from, a register whose content is of type VALue, hence we (augmenting the
specification language, as we shall be doing quite a lot in this section) express
their type in terms of references to VALues.

value
pop: refVAL ->• U n i t
pop(r) =

let (c,e,a,v,stk) = (cstg)(cp) in
stg := c s t g U [sp !->• mk_DSA(c,e ,a ,v , t l stk)]
r := h d stk
e n d

push: refVAL —>• U n i t
push(r) =

let (c,e,a,v,stk) = (cs tg) (ccp) in
stg := c s t g U [cp !->• mk_DSA(c ,e ,a ,v , (c r)^s tk)]
e n d

16 .6 .7 R u n - T i m e Stack Search for Variable Values

The C_search operation should be compared, line for line, to the similarly
named operation 0_search of Sect. 16.5.

value
C_search: N a t —>• U n i t
C_search(n) =

for i = l t o n d o ep := s_ep((cs tg) (cep)) end;
ur := s_va((cs tg) (cep)) ; push(ur);
ep := c c p

Before, in l_search and 0_search, the search was by identifier. Here it is by
block depth. Before we had tha t each iteration of the search had to compare a

608 16 SAL: Simple Applicative Language

given identifier to an identifier of the stack. Here there is a "straight chaining
back" to the defining activation.

Assertions: The static chain pointer ep has the same value upon invo
cation of the above macro expanded text as the dynamic chain pointer cp.
Search satisfies the invariant: After completion the top of the value stack —
as well as register ur — has the value that results from evaluation of any
expression.

16.6.8 Macro-expansion Functions

In the definitions that follow we will be using two forms of let . . . in . . . end
constructs. One kind is here — extralinguistically — prefixed by asterisks (*),
the others not. The former are to be read as directing compile-time generation
of labels. Once generated, and the appropriately named label values properly
substituted into the text following those asterisked let constructs, those as
terisked let constructs can be removed. What remains is the RSL text being
generated. Invocations of the macros, C, result in text substitution.

It is now important to observe that we have made all our design deci
sions: on how to represent environment as a stack of (dynamic save/storage)
activations (DSAs), on how to represent CLOSures as pairs, not of text and
environments, but as labels (to macro-expanded versions of that text) and
pointers (to the top activation of the environment).

Therefore all that remains is to rewrite the I interpretation function of
Sect. 16.5.

Invariant: Each invocation of C now leads to RSL text which interpreted
by the RSL (semantics, i.e., by "its") machine shall lead to the value of the
expression being thus evaluated left both on top of the current value stack
and the ur register. This is true for all but the C function (etc.) when applied
to programs. Here the evaluated value is to be also the value of the RSL clause.

The reader is well-advised in comparing, function definition by function
definition, those below, named C, with those, named 0, in Sect. 16.5.7.

[0] Program Macro-expansion

. Program Macro-expansion .

Previous step:

value
O: Pro ->• Unit
0(mk_Pro(e)) = 0(e)

Present step:

value
C: Pro ^ Unit RSL

16.6 A Macro-expansion Semantics 609

C(mk_Pro(e)) =
C(e)([],0); ur := hd s_stk((cstg)(ccp)); r e t u r n c u r

Assertion: C(e)([],0) leaves the value stack of the activation pointed to by
cp with just one value: that of the expression being evaluated. The invariant
is satisfied.

[1] Constant Expression Macro-expansion

. Constant Expression Macro-expansion .

Previous step:

value
O: E -> Unit
0(mk_Cst(k)) = push_v(k)

Present step:

value
C: E ->• (DICTxLN) -> RSL Unit
C(mk_Cst(k))((5,ln) = (ur := k; push(ur))

Assertion: The invariant is satisfied.

[2] Variable Expression Macro-expansion

. Variable Expression Macro-expansion

Previous step:

value
O: E -> Unit
0(mk_Var(v)) = 0_search(v)

Present step:

value
C: E ->• (DICTxLN) -^ RSL Unit
C(mk_Var(v))((5,ln) = C_search(ln-(5(v))

Assertion: From the definition of search we see that the invariant is satisfied.

610 16 SAL: Simple Applicative Language

[3] Pref ix E x p r e s s i o n M a c r o - e x p a n s i o n

. Prefix Expression Macro-expansion

Previous step:

value
O: E -> U n i t
0(mk_Pre (o ,e)) = 0 (e) ; let val = pop_v() in push_v(M(o)(val)) e n d

Present step:

value
C: E ->• (DICTxLN) -> RSL U n i t
C(mk_Pre(o,e))((5,ln) = C(e)(c5,ln); ur := M(o) (cur) ; push(ur)

A s s e r t i o n : The invariant is satisfied.

[4] Infix E x p r e s s i o n M a c r o - e x p a n s i o n

. Infix Expression Macro-expansion

Previous step:

value
O: E -> U n i t
0(mk_Inf(le,o,re)) =

O(le); O(re);
let r v=pop_v() , l v=pop_v() in push_v(M(o)(lv,rv)) e n d

Present step:

C: E ->• (DICTxLN) -^ RSL U n i t
C(mk_Inf(le,o,re))((5,ln) =

C(le)((5,ln); C(re)(<J,ln);
pop(ur); pop(wr); u r :=M(o) (cu r , cwr) ; push(ur)

A s s e r t i o n : The invariant is satisfied.

[5] C o n d i t i o n a l E x p r e s s i o n M a c r o - e x p a n s i o n

. Conditional Expression Macro-expansion

Previous step:

value

16.6 A Macro-expansion Semantics 611

O: E -> U n i t
0(mk_lf(b ,c ,a)) =

0 (b) ; let t = p o p _ v () in if t t h e n 0(c) e lse 0 (a) e n d e n d

Present step:

value
C: E ->• (DICTxLN) -> RSL U n i t
C(mk_If(b,c,a))((5,ln) =

* let l_al t = get_Lbl() , l_out = get_Lbl() in
C(b)((5,ln); pop(ur); if ~ c u r t h e n g o t o 1 alt e lse skip end;
C(c)((5,ln); g o t o l_out; label l_alt : C(a)((5,ln); labe l l_out:
* e n d

Asser t ion : The invariant is satisfied: ur and the top of the activation value
stack both contain either the value of c or the value of a — as resulting from
the above-specified evaluation.

[6] L a m b d a - E x p r e s s i o n M a c r o - e x p a n s i o n

. Lambda-Expression Macro-expansion .

Previous step:

value
O: E -> U n i t
0(mk_Lam(v ,e)) = push_v(mk_CLOS(mk_Lam(v ,e) , top_e()))

Present step:

value
C: E ->• (DICTxLN) -> RSL U n i t
C(mk_Lam(v,e))((5,ln) =

* let lbypass = get_Lbl() , lfct = get_Lbl() in
g o t o lbypass;
label lfct: B(e)(d f [v H d n + l] , l n + l) ; g o t o e r a ;
label lbypass: ur := mk_FCT(l fc t , ccp) ; push(ur)
* e n d

The 0 definition specifies the value stacking of a CLOSure. Similarly here we
value stack a FunCTion. The earlier definition embedded the program text in
the value stack. Here tha t text is macro-expanded "in-line" with the program
text with a "jump around" it!

A s s e r t i o n : The invariant is satisfied: The CLOSure value,

612 16 SAL: Simple Applicative Language

mk_CLOS(mk_Lam(v,e),hdccstk),

of the previous step of development is now a FunCTional value

mk_FCT(lfct,ccp),

Ifct designates the beginning of the macro-expanded text e, and c cp designates
the top activation of env — with the static chain of the stack of activations
designating "the rest". The FunCTional value is both in the working register
ur and on top of the current activation's value stack.

[7] Simple Let Expression Macro-expansion

Simple Let Expression Macro-expansion

Previous step:

value
O: E -> Unit
0(mk_Let(v,d,b)) =

0(d);
let val=pop_v() in push_e(mk_Simp(v,val)); 0(b);
pop_e(); end

Present step:

value
C: E ->• (DICTxLN) -> RSL Unit
C(mk_Let(v,d,b))((5,ln) =

C(d)((5,ln); pop(ur); B(b)(c5t[v^ln+l],ln+l)

Assertion: The invariant is satisfied: Line one of the body of C(mk_Let(v,d,b))
above corresponds to line one of 0(mk_Let(v,d,b)).

Block Macro-expansion

The B function (below, and as invoked, for example, from C(mk_Let(v,d,b))
above) derives from the last three lines of the 0(mk_Let(v,d,b)) function def
inition. The first and last of these prescribe the environment stacking, respec
tively environment unstacking, of a simple pairing of a variable to "its value".
The first four lines of the body of the B(b)((5,ln) function definition correspond
to line two of the body of the 0(mk_Let(v,d,b)) definition. The last five lines
of the body below correspond to line four of the body of the 0(mk_Let(v,d,b))
definition. See lines two and four of the body of 0(mk_Let(v,d,b)) above.

16.6 A Macro-expansion Semantics 613

value
B: E ->• (DICT x LN) ->• RSL Unit
B(b)(<5» =

let ptr:Ptr • ptr ^ dom cstg in
stg := cstg U [ptr i-» mk_DSA(ccp,cep,cra,cur,())];
cp,ep := ptr;
C(b)((5,ln);
pop(ur);
ep := s_ep((cstg)(ccp));
ra := s_ra((cstg)(ccp));
cp := s_cp((cstg)(ccp));
[stg := cstg \ {ptr};]
push(ur) end

The following assumptions are made about the auxiliary function B — in
voked both in C(mk_Lam(v,e))((5,ln) and C(mk_Let(v,d,b))((5,ln): When in
voked from C(mk_Lam(v,e))((5,ln) register ur contains a function argument
value. See C(mk_App(f,a))((5,ln), the last pop(ur) below (subsection [9]). When
invoked from C(mk_Let(v,d,b))((5,ln) register ur contains simply bound values.
In either case the B(b)((5,ln) function definition specifies the copying of that
register content onto the activation stack.

We observe that the 'removal' of the DSA established upon block entry is
put in square brackets ([...])! If the language (SAL) being modelled has the
FUNARG property then (usually) we cannot remove activations as they may
be referred to by ["returned"] function values.

Let us consider the following SAL program fragment:

(let f=Aa.G(a) in f(3) end)

The first occurrence of f is a defining occurrence; the last occurrence is a using
occurrence. The second occurrence of f is bound to the first. Let us assume
the environment before entry to this fragment to be p. Let us annotate (to
the left of the first and to the right of the second vertical divides) the above
program with its environment bindings in the style of Section 16.3:

p | (let f=Aa.G(a) in | p> =p f [f ^ M(Aa.G(a))p]
J I f(3) I p'
p' I end) | p

Here we have been a little lax in allowing ourselves to express the syntactic
argument to M "as the text" rather than as the corresponding abstract value
mk_Lam(a,G(a)). C(mk_Let(v,d,b)) places the function f value on top of the
current activation's value stack as well as in working register ur. The body of
B(b) places the ur content in the variable location (f) of the new activation
— colloquially speaking in p', the one "on top of" p. ("Colloquially" since we
are no longer working with p's but with DSA activations.)

614 16 SAL: Simple Applicative Language

[8] Recursive Function/Let Expression Macro-expansion

Recursive Function/Let Expression Macro-expansion .

Previous step:

value
0: E -> Unit
0(mk_Rec(f,mk_Lam(v,d),b)) =

push_e(mk_REC(f,mk_Lam(v,d))); 0(b); pop_e()

Present step:

value
C: E ->• (DICTxLN) -> RSL Unit
C(mk_Rec(f,mk_Lam(v,e),b))((5,ln) =

* let lfct = get_Lbl(), lbypass = get_Lbl() in
goto lbypass;
label lfct: B(e)(c5 f [fHdn+l,vHdn+2],ln+2); goto era;
label lbypass:
let ptr:Ptr • ptr ^ dom c stg in
ur := mk_FCT(lfct,ptr);
stg := cstg U [ptr i->- mk_DSA(c cp,cep,c ra,cur,())];
cp,ep := ptr;
C(b)((5t [f^ ln+l] , ln+l) ;
pop(ur);
ep := s_ep((cstg)(ccp)); ra := s_ra((cstg)(ccp));
cp := s_cp((cstg)(ccp)); [stg := cstg \ {ptr};]
push(ur)
end
* end

Assertion: The invariant is satisfied: The interpretation of a block with a
recursively defined procedure is the composition of the interpretation of an
ordinary block and a function definition — with the proviso that the DSA
pointer is also contained in the function closure. The above remark on the
FUNARG property also applies here.

Let us, in the style of the simple definition of f above, in the annotations
after definition of the B function, as invoked by the C(mk_Let(v,d,b) function
definition body, consider the following recursive program:

(letrec f = An.if n=0 then 1 else n*f(n—1)
in f(3) end end)

16.6 A Macro-expansion Semantics 615

Inspecting C(mk_Rec(f,mk_Lam(v,e),b)) we see tha t the f function value is
"concocted" in the next, not the previous activation, and placed on this next
activation.

[9] F u n c t i o n A p p l i c a t i o n E x p r e s s i o n M a c r o - e x p a n s i o n

. Function Application Expression Macro-expansion .

Previous step:

v a l u e
O: E -> U n i t
0 (mk_App(f ,a)) =

0 (a) ; 0 (f) ;
case pop_v() of

mk_CLOS(mk_Lam(v,e) ,env) —>•
(push_new_e((mk_Simp(v ,pop_v()))^env) ;
0 (e) ; pop_o ld_e()) ,

_ —>• c h a o s e n d

Present step:

v a l u e
C: E ->• (DICTxLN) -> RSL U n i t
C(mk_App(f,a))((5,ln) =

* le t lret = get_Lbl() in
C(a)((5,ln); C(f)(<J,ln);
case c_ur of

mk_FCT(lfc t ,p t r) ->•
{ep:=ptr ,br :=lfct , ra:=lret , (pop(ur) ;pop(ur))};
g o t o cb r ; l a b e l lret:,

_ —>• c h a o s
e n d * e n d

A s s e r t i o n : The invariant is satisfied:

• The value stack unstacking 0 : vstk := t l t l cvstk; corresponds to C:
(pop(ur);pop(ur)).

• The function body evaluation 0 : 0(e) ; corresponds to C: br:=lfct; ...; g o t o
c br;.

• The C: ra:=lret, and the C: l a b e l lret:, "balance" the function definition
C(mk_Lam(v,e))((5,ln)'s C: g o t o era; .

• Otherwise stacking and unstacking of activations takes place inside B as
invoked in C(mk_Lam(v,e))((5,ln).

616 16 SAL: Simple Applicative Language

16.6.9 Review of SAL Semantics, 4

Function values of earlier steps of development so to speak embodied the func
tion definition texts (and their defining context, the environment). They did
so either very implicitly, as in the "real" function values, FCT of Section 16.3,
or they "packed" the function values into pairs of explicit text and concrete
environments, as in the closures, CLOS of Sects. 16.4-16.5. In this section
function values were finally implemented in terms of concepts close to actual
(machine) programming: labels prefixing program texts and pointers to en
vironment stack records. In Sects. 16.3-16.5 the function definitions can be
viewed as interpreters. The M, I and 0 function definitions interpret syntactic
"things", that is, they express their values (or denotations). In this section
C defines a compiler from source language texts into specification (viz.: RSL)
texts — where the latter texts are void of any reference to interpretation
and compilation functions. To do so it was necessary to extend RSL beyond
proper RSL (!) by introducing labels and gotos. The result is a definition, C,
which uses concepts very close to those of low-level (machine) programming
languages.

In the next section we shall postulate and define a computer architecture
in terms of its machine programming concepts: registers, storage, storage ad
dresses, machine instructions and code (as sequences of instructions). Then,
in the three subsequent sections, we end our development of SAL by present
ing three algorithms for compiling SAL expressions into machine code. In the
section on the denotational semantics of SAL we laid down a domain model
of SAL. The sections on first-order applicative, imperative stack and macro-
expansion semantics of SAL serve to develop part of a domain requirements
for SAL. The compiling algorithms express those requirements.

16.7 ASM: An Assembler Language

In this section we illustrate the definition of a hardware computer, and its
derivation from a macro-expansion semantics. The hardware computer defini
tion is in the form of an assembler language, that is, uses symbolic identifiers
rather than absolute bit patterns.

The structure of the hardware computer is solely determined by what we
can "read off" from the macro-expansion semantics of Section 16.6.

16.7.1 Semantic Types

We systematically relate types and state variables of the macro-expansion
semantics presented earlier to types and state variables of the hardware com
puter; we refer to Sect. 16.6.4 and to the formulas below. Labels correspond to
labels. The DSA structured storage is mapped onto a "flat" storage: Pointers
become locations. A DSA becomes a sequence of words: The first four words

16.7 ASM: An Assembler Language 617

are fixed, and are expected to be compiled so, and to contain two location
values, a label value and an expression value. The next words are to act as a
value stack for intermediate expression evaluation values.

The fixed environment pointer registers, cp and ep, branch and return
label registers, br and ra, and the intermediate expression evaluation value
registers, uw and wr, will be mapped onto a group, reg, of general-purpose
registers. Functions were pairs of a branch label and an environment pointer
and become pairs of an instruction list label and a storage location. Values
are type marked.

value
n,r:Nat a x i o m n > 3 2 , r > 5

t y p e
Lbl
LBL = = mkLbl(lbhLbl)
LOC = = mkLoc(loc:Loc)
Loc = {| 0. .2n-l |}
RNO = = mkRno(rno:Rno)
Rno = {| 0. .2 r-l |}
STG = Loc ^ VAL
REG = Rno ^ VAL
VAL = Int | B o o l | LBL | LOC | F C T
F C T = = mkFct(lbl:LBL,loc:LOC)
OUT = VAL*

OUT shall, primitively, model computer output .

16.7 .2 T h e C o m p u t e r S t a t e

The basic state components are the storage, the group of registers and the
output list.

variable
stg:STG := [...]
reg:REG := [...]
out :OUT := (... >

16 .7 .3 T h e A d d r e s s C o n c e p t

An address is a syntactic quanti ty consisting of a base register designator, and
an integer displacement. An address denotes a location.

t y p e
Adr = Bas x Dis
Bas = Rno

618 16 SAL: Simple Applicative Language

Dis = I n t

v a l u e
A: Adr ->• Loc

A(b,d) = loc((creg)(b)) + d
p r e 3 lo:Loc • (creg)(b)=mkLoc(lo)
p o s t 0 < loc((creg)(b)) + d < 2™

16.7 .4 M a c h i n e I n s t r u c t i o n s

The computer performs actions on the state as prescribed by code. The code
is a linear, indexed sequence of instructions, kept separately from storage,
with some instructions being (symbolic) labels, designated by unconditional
and conditional jump instructions.

t y p e
Lbl
Code = Ins*
Ins = Sim | Sto | Lim | Lod | Fct | Jmp | Cjp |

Mov | Adj | Pck | Unp | Out | Sto

In detail:

t y p e
Sim = = mkSim(a:Adr,v:SiVal)
Sto = = mkSto(a:Adr, r :Rno,n:Nat)
Lim = = mkLim(r:Rno,v:LiVal)
Lod = = mkLod(r :Rno,n:Nat ,a :Adr)
mFct = = mkmFct(r :Rno,uo:mOp)
dFct = = mkdFct(r :Rno,bo:dOp,ra:(RNO|Adr))
J m p = = mkJmp(tar :Tar)
Cjp = = mkCjp(r:Rno,c:Cmp,tar:Tar)
Cmp = = t ru th | falsity | zero | not_fct | ...
Mov = = mkMov(fr:Rno,tr:Rno)
Adj = = mkAdj(r:Rno,i:Int)
Pck = = mkPck(frl:Rno,fr2:Rno,tr:Rno)
Unp = = mkUnp(fr:Rno,tr l :Rno,tr2:Rno)
Out = = mkOut(sou:Sou)
Sou = = RNO | mkTx t (t :Tex t)
Sto = = finish

Storable and loadable values, monadic (unary) and dyadic (binary) operators,
and jump target labels are:

16.7 ASM: An Assembler Language 619

t y p e
SiVal = I n t | B o o l | ...
LiVal = I n t | B o o l | LBL | ...
mOp = = minus | not |...
dOp = = add|sub|mpy|div|and|or |not |xor | lo| leq|eq|neq|geq|hi | . . .
Tar = LBL | RNO

A n n o t a t i o n s :

• Sim designates the "store immediate" instruction. Sim is motivated by
evaluation of constants. See the right hand side of C(mk_Cst(k))((5,ln).
We have, rather conservatively, decided to maintain any (intermediate)
expression value both in a working register and "on top" of the ("DSA"
local) evaluation stack.

• Sto designates the "store" instruction. Sto is motivated by the "end" of any
expression evaluation. See the right hand side of C(mk_Cst(k))((5,ln) and
the ur := ...; push(ur) lines of the C_search(n) variable stack search, and the
C(mk_Pre(...))((5,ln), the C(mk_lnf(...))((5,ln), and the C(mk_Lam(...))((5,ln)
interpretation functions. See also the "conservative" remark above (under
Sim).

• Lim designates the "load immediate" instruction. Lim is motivated by eval
uation of constants. (See the "conservative" decision remark just above,
and at the right-hand side of C(mk_Cst(k))((5,ln) =.)

• Lod designates the "load" instruction. Lod is motivated in the same way
as was the store instruction.

• mFct, dFct designates the monadic, respectively the dyadic, operation "ap
ply function" instructions. They are motivated by prefix and infix opera
tor applications. See the M(o)(...) clauses of the C(mk_Pre(o,_))(£,In) and
C(mk_lnf(_,o,_))(£,In) functions.

• Jmp designates the "unconditional jump" instruction. Jmp is motivated by
the g o t o Ibypass and the g o t o era lines of the C(mk_Lam(...))((5,ln) and
C(mk_Rec(...))((5,ln) functions.

• Cjp designates the "conditional jump" instruction. Cjp is motivated by the
if ~c_ur t h e n g o t o I a It e lse s k i p e n d line of the C(mk_lf(b,c,a))((5,ln)
function.

• Mov designates the "move" instruction. Mov is motivated by the ep := c cp
line of the C_search(n) function and the cp,ep := ptr line of the interpreter
function C (m k _ R e c (. . .)) (. . .) .

• Adj designates the "adjust" (increment) instruction. It is motivated by
the loop decrements (or, vice versa, increments) expressed in the for i = l
to n d o ... e n d line of the C_search(n) function, as well as by the need
to set aside sufficient storage, in each DSA-like invocation, for the local
evaluation stack. Its size can be calculated, depth, from the expression,
e, being evaluated. Stack DSA's are prescribed to be set aside in the two
functions, B(b)((5,ln) and the C(mk_Rec(f,mk_Lam(v,e),b))((5,ln) functions

620 16 SAL: Simple Applicative Language

which handle blocks, hence stacking of DSA's: stg := c s tg U[ptn-»dsa] —
where dsa = mk_DSA(ccp,cep,c ra,c ur,()).

• Pck designates the "pack" instruction. It is motivated by the use of the
mk_CLOS and mk_FCT (injector) functions of the 0 _ s e a r c h (. . .) and
0 (m k _ L a m (. . .)) , respectively the C(mk_Lam(. . .)) and C(mk_Rec(. . .))
interpreter function definitions.

• Unp designates the "unpack" instruction. It is motivated by the use of
the mk_CLOS and mk_FCT (projector) functions of the 0(mk_App(f,a)) ,
respectively the C(mk_App(f,a)), interpreter functions.

• Out designates the "output" (print) instruction. It is motivated by the
r e t u r n clause of the C(mk_Pro(e)) interpreter function.

16 .7 .5 M a c h i n e S e m a n t i c s

Our semantics of ASM is (thus) expressed imperatively.

I n t e r p r e t i n g C o d e

A main function, Ic, applies to code, i.e., sequences of instructions. Ic invokes
cue Ml, which is given all of the code, and is provided with a cue as to which
instruction of code to interpret. For lc(code) the cue is 1. For cue Ml each
instruction interpretation yields, besides a state change, the index, the cue, of
the next instruction to be interpreted.

v a l u e
Ic: Code ->• U n i t
Ic(code) = cue_Iil(code)(l)

cue_Iil: Code ->• N a t ->• U n i t
cue_Iil(code)(i) =

if i > l e n code
t h e n s k i p
e lse

le t j = Ii(code(i))(i) in
le t cue = if j = i + l t h e n j e lse idx(code)(j) e n d
cue_Iil (code) (cue) e n d e n d

e n d

F i n d L a b e l I n d e x

A "link and load" time function converts symbolic labels to natural number
list indices:

16.7 ASM: An Assembler Language 621

value
idx: Code ->• Lbl ->• Nat
idx(code)(l) =

let cue:Nat • cue £ inds code A code(cue)=mkLbl(l)
in cue end

The Store Immedia te and Store Ins t ruct ions

type
Sim = = mkSim(a:Adr,v:SiVal)
SiVal = Int | Bool | ...
Sto = = mkSto(a:Adr,r:Rno,n:Nat)

value
Ii: Ins ->• Nat ->• Na t Uni t

Ii(mkSim((b,d),v))(i) =
let loc = A(b,d) in stg := cstg f [loc H->- v] end ; i + 1

Ii(mkSto((b,d),r,n))(i) =
let loc = A(b,d) in
for j = 0 to n—1 do stg := c stg f [loc+j >->• (c reg)(r+j)] end end ;
i + 1

The Load Immedia te and Load Ins t ruct ions

type
Lim = = mkLim(r:Rno,v:LiVal)
LiVal = Int | Bool | LBL | ...
Lod = = mkLod(r:Rno,n:Nat,a:Adr)

value
Ii: Ins ->• Nat ->• Na t Uni t

Ii(mkLim(r,v))(i) =
reg := c_reg f [r H> v]; i + 1

Ii(mkLod(r,n,(b,r)))(i) =
let loc = A(b,d) in
for j = 0 to n—1 do reg := creg f [r+j <—>• (c stg)(loc+j)] end end ;
i+ 1

622 16 SAL: Simple Applicative Language

T h e A p p l y Func t ion Ins truc t ions

For the apply functions we get down to the "nitty-gritty" details of the rep
resentation of bits in machine words. We abstract , obviously, leaving it to the
reader to decipher the below:

t y p e
BITS = (true | false)"'

value
alltrue = (t rue | i in (l..w))
allfalse = (false | i in (l..w))

Val2Bits: VAL ->• BITS
bits: B o o l -> BITS, bits(b) = (b | i in (l . .w))

t y p e
mFct = = mkmFct(r :Rno,uo:mOp)

value
Ii: Ins ->• N a t ->• N a t U n i t
Ii(mkmFct(r,o))(i) =

case o of
minus —>• c reg f [r H^ — (creg)(r)] ,
not —• c reg f [r i-» Not((creg)(r))],

e n d

Not: BITS ->• BITS
Not(w) = (~w(i) | i in (l . .w))

t y p e
dFct = = mkdFct(r :Rno,bo:dOp,ra:(RNO|Adr))

value
Ii: Ins ->• N a t ->• N a t U n i t
Ii(mkdFct(r,o,ra))(i) =

let vail = (creg)(r) ,
val2 = case ra of

mkAdr(b,d) ->• (cs tg)(A(b,d)) ,
mkRno(rn) —>• (creg)(rn)

e n d in
reg := (creg) f [r i->-
case bo of

add —> val l+val2 , sub —>• vail—val2, mpy —>• vall*val2,
div —>• Div(vall,val2), and —>• And(vall,val2), or —>• Or(vall,val2),
xor —> Xor(vall,val2), lo —> bi ts(val l<val2) , leq —>• bi ts(val l<val2) ,

16.7 ASM: An Assembler Language 623

eq —>• bi ts(val l>val2) , neq —>• bi ts(val l^val2) , geq —• bi ts(val l>val2) ,
hi —• bi ts(val l>val2) , ... e n d] e n d ;

i + 1

value
Div: Int x Int —• Int
Div(ij) as q

pre i > 0 A j > 0
pos t 3 m,r:NAT • i = m*j+r

And: BITS x BITS -> BITS
And(wl,w2) = (wl(i) A w2(i) | i in (l..w))

Or: BITS x BITS -> BITS
0 r (wl ,w2) = (wl(i) V w2(i) | i in (l..w))

Xor: BITS x BITS -> BITS
Xor(wl,w2) = (wl(i) xor w2(i) | i in (l..w))

T h e U n c o n d i t i o n a l J u m p Ins truc t ion

t y p e
J m p = = mkJmp(tar :Tar)
Tar = LBL | RNO

value
Ii: Ins ->• N a t ->• Lbl U n i t
I i(mkJmp(target))(i) =

case target of

mkLbl(lbl) -> lbl,
mkRno(rno) —> (creg)(rno)

e n d

T h e C o n d i t i o n a l J u m p Ins truc t ion

t y p e
Cjp = = mkCjp(r:Rno,c:Cmp,tar:Tar)
Cmp = = t ru th | falsity | zero | not_fct | ...
Tar = = LBL | RNO

value
Ii: Ins -)• N a t -)• N a t U n i t
Ii(mkCjp(rno,cond,target)) (i) =

let 1 = case target of mkLbl(l) —> 1, mkRno(rno) —>• reg(rno) e n d in

624 16 SAL: Simple Applicative Language

if case cond of
truth —>• (creg)(rno)=alltrue,
falsity —>• ~((creg)(rno))=allfalse,
zero —> (creg)(rno)=0,
not_fct —• ~is_fct((creg)(rno)),
... end

then 1 else i+1 end end

value
is_fct: VAL -^ Bool
is_fct(val) = case val of mkFct(r,o,ra) —> true, —>• false end

The Register Move and Adjust Instructions

type
Mov = = mkMov(fr:Rno,tr:Rno)
Adj = = mkAdj(r:Rno,i:Intg)

value
Ii: Ins ->• Nat ->• Nat Unit
Ii(mkMov(fr,tr))(i) = reg:=cregf[tri-^(creg)(fr)] ; i+1
Ii(mkAdj(r,i))(i) = reg:=cregf[ri-^(creg)(r)+i] ; i+1

The Pack and Unpack Instructions

type
Pck = = mkPck(frl:Rno,fr2:Rno,tr:Rno)
Unp = = mkUnp(fr:Rno,trl:Rno,tr2:Rno)

value
Ii: Ins -)• Nat -)• Nat Unit

Ii(mkPck(r,l,a))(i) =
reg := creg f [r i-̂ mkFCT((creg)(l),(creg)(a))] ; i + 1
pre 3 lbl:Lbl • (creg)(l)=lbl A 3 loc:LOC • (creg)(a)=loc

Ii(mkUnp(l,a,r))(i) =
reg := creg f [li->-lbl(reg(r)),ai-^loc((creg)(r))] ; i + 1
pre 3 la:Lbl,lo:LOC • (creg)(r)=mkFCT(la,lo)

16.8 A Compiling Algorithm 625

The Output Instruction

type
Out = = mkOut(sou:Sou)
Sou = = RNO | mkTxt(t:Text)
Sto = = stop

value
Ii: Ins ->• Nat ->• Nat Unit

Ii(mkOut(sou))(i) =
out:=cout^case sou of mkRno(r)—»((creg)(r)),mkTxt(txt) —»(txt) end;
i + 1

The Finish Instruction

Ii: Ins ->• Nat ->• Nat Unit
Ii(nnish)(i) = stop ; 0

16.7.6 Review of ASM

We have suggested a machine language, i.e., a computer architecture. The data
structures and the instruction repertoire of this computer were argued to "fit"
the imperative and other constructs of the previous section's macro-expanded
expressions. Thus it is claimed that this machine language will prove to be
an effective target language into which to compile source language programs.
This, therefore, is our next task: to show so.

16.8 A Compiling Algori thm

In Section 16.7 we developed the architecture of a machine, ASM, a computer,
based on the macro-expansion semantics of Section 16.6. In the present section
we shall demonstrate how one, informally, yet systematically and formally
documented, can derive a compiling algorithm from SAL expressions to ASM
code. By a compiling algorithm we understand a prescription that specifies
which machine code to generate from any (SAL) expression (or, as we shall
later indicate, from any imperative language program phrase). A compiling
algorithm is thus a requirements prescription.

We shall make use of the dictionary and lexicographic level number con
structs diet and In as before. An extra argument, stk, is passed to any com
piling function. It represents the current stack index to the target machine
realisation of the TLs of the DSAs.

626 16 SAL: Simple Applicative Language

Since storage can, in general, not be reclaimed when a block body value
has been computed (i.e., when a block expression has been evaluated), and
since, in this version, we have decided to stick with the merge of the control
information of the activations (cp, ep, ra) and the local variable (vr), with
temporaries (tl:TL), we set aside, for the "linearly addressed" storage, the
maximum amount of storage cells needed in any expression evaluation, and
let tha t be an overcautious realisation, at this stage, of the TL components of
DSAs.

To tha t end a crude compiler function, depth, is defined, depth computes
the number of temporaries, d, needed to compute any expression value, but
takes into account tha t embedded Let and .Recursive function definition blocks
lead to new activations for which separate stacks, TL, are set aside. We say
tha t depth is crude since optimising versions are relatively easy to formulate,
but would, in this example, lead to excessive numbers of formula lines. The
disjoint DSAs of the macro-expansion semantics definition are now mapped
onto a linear ("cell") storage. Each "new" DSA realisation consists of 4+d
storage cells and the temporary stack, tha t is, cp, ep, ra, vr and tl:TL.

16 .8 .1 Syntac t i c T y p e s

See Sect. 16.2.2 for a formal definition of syntactic types.

16.8 .2 C o m p i l e - T i m e T y p e s and S t a t e

t y p e
LN = N a t
DICT = Id ^ LN
RSL / * macro-expanded text */
Lbl

variable
lbls:Lbl-set := {}

16 .8 .3 C o m p i l e - T i m e D y n a m i c Func t ion

As before, we need to generate labels "on the fly":

value
get_Lbl: U n i t ->• Lbl
get_Lbl() =

let lbhLbl • lbl £ clbls in
Ibis := {lbl} U clbls;
lbl e n d

16.8 A Compiling Algorithm 627

16 .8 .4 C o m p i l e - T i m e S t a t i c F u n c t i o n

depth was explained in the introduction above.

v a l u e
depth: Expr —>• N a t
depth(e) =

ca se e of
m k _ C s t (_) -> 1,
mk_Var (_) —>• 1,
mk_Pre (_ ,e ') —>• depth(e ') ,
mk_Inf(le,_,re) —>• max{depth(le) ,depth(re)} + l ,
mk_If(b,c,a) —• max{dep th (b) ,dep th (c) ,dep th (a)}+ l ,
m k _ L a m (_ ,) —>• 1,
m k _ L e t (_ , d , _) —>• depth(d) ,
m k _ R e c (_ , _ , _) ->• 1,
mk_App(f ,a) —• max{dep th (f) , dep th (a)}+ l

e n d
m a x : N a t - s e t —>• N a t
max(ns) = le t n : N a t • n € ns A ~ 3 j : N a t • j £ ns A j > i i n n e n d

p r e n s ^ { }

16 .8 .5 R u n - T i m e C o n s t a n t V a l u e s

The label lerror is global: Whenever evaluation fails, a jump is made to this
label (an error message is output , and further evaluation stops). We shall
refer to the constant identifiers cp, ep, ra, vr, pm, u, j , top, t, br repeatedly.
Identifiers vr, pm, u and j designate "the same thing": the placeholder for
local variables, function parameters , temporary values, and the for loop step-
counter value introduced below. Identifiers top and t designate "the same
thing": The placeholder for the first (i.e., bot tom) stack value.

v a r i a b l e
lerror:Lbl := get_Lbl()

v a l u e
cp :Na t = 0,
ep :Na t = 1,
r a : N a t = 2,
vr ,pm,u, j :Nat = 3,
t o p , t : N a t = 4,
b r : N a t = 5

The cp, ep, ra, vr (u) values index the first four registers as well as the first four
cells of any DSA realisation. Register indices top and br designate the current
evaluation stack top register, respectively the branch (forward) register.

628 16 SAL: Simple Applicative Language

These constants (cp, ep, ra, vr, pm, u, j.top, t and br) will be used in this
section and in Sects. 16.9 and 16.10 in corresponding compilation algorithms
(pages 638-640 and 648-651).

16.8.6 Compilation Functions

In the development below we show first the macro-expansion function defini
tions, and then the compiling specifications, SAL construct by construct.

[0] Program Compilation

Program Compilation

Previous step:

C: Pro ^ RSL Unit
C(mk_Pro(e)) = C(e)([],0); ur := hd
s_stk((c_ stg) (c_ cp)) ;return c ur

Previous step:

CA: Pro ->• Unit Code
CA(mk_Pro(e)) =

* let lexit = get_Lbl(), de = depth(e) in
(mkLim(cp,0), mkLim(ep,0), mkLim(top,t+de))

~CA(e)([],0,tr
(mkLod(u,l,mkAdr(p,t)), mkOut(u), mkJmp(lexit),

lerror, mkOut("error"), lexit, finish)
* end

[1] Constant Expression Compilation

Constant Expression Compilation

Previous step:

C: E ->• (DICTxLN) -> RSL Unit
C(mk_Cst(k))((5,ln) = (ur := k; push(ur))

Previous step:

CA: E ->• DICT x LN x STK -> Code Unit
CA(mk_Cst(k))(_,_,stk) = (mkLim(u,k),mkSim(mkAdr(cp,stk),k))

16.8 A Compiling Algorithm 629

2] Variable E x p r e s s i o n C o m p i l a t i o n

Variable Expression Compilation: Previous step:

Previous Step:

C(mk_Var(v))(c5,ln) = C_search(c5(id))

C_search: N a t —> U n i t
C_search(n) =

for i = l to n do ep := s_ep((cs tg) (cep)) end;
ur := s_va((cs tg) (cep)) ;
push(ur);
ep := c_cp

For such statements, <S(i), which do not change the step counter value j , it
is immaterial whether we count up or down. The R.SL for loop can also be
expressed using the second and last clause below.

assert:

/ * for certain kinds of <S(i) * /

for j in (l. .n) do <S(j) e n d

for j = 1 to n do <S(j) e n d

for j in (n . . l) do <S(j) e n d

for j = n by —1 t o 1 do <S(j) e n d

variable j :Nat := n;
whi l e c j ^ 0 do <S(j); j := c j — 1 e n d

variable j :Nat := 1;
whi l e c j ^ n + 1 do <S(j); j := c j + 1 e n d

So, when at lexicographic level n, searching the stack of DSAs for the value
of the variable defined at level In, we count "backwards", from In-n to 0.

Variable Expression Compilation: Present step:

Present Step:

CA(mk_Var(v))((5,ln,stk)

630 16 SAL: Simple Applicative Language

* let n = S(y),
* Hoop = get_Lbl() ,
* lload = get_Lbl() in
(mkLim(j,ln—n),

Hoop,
mkCjpQ,zero,lload),
mkLod(ep, l ,mkAdr(ep,ep)) ,
m k A d j (j , - l) ,
mkJmp(lloop),
lload,
mkLod(u, l ,mkAdr(ep,vr)),
mkSto(mkAdr(cp,s tk) ,u , l) ,
mkMov(ep,cp))

* e n d

[3] Pref ix E x p r e s s i o n C o m p i l a t i o n

. Prefix Expression Compilation

Previous step:

C(mk_Pre(o,e))((5,ln) =
C(e)(<5,ln);
ur := M(o) (cur) ;
push(ur)

Previous step:

CA(mk_Pre(o,e))((5,ln,stk) =
CA(e)((5,ln,stk) ~
(mkmFct(u,o) ,

mkSto(mkAdr(cp,stk) ,u, l))

[4] Infix E x p r e s s i o n C o m p i l a t i o n

. Infix Expression Compilation

Previous step:

C(mk_Inf(le,o,re))((5,ln) =
C(le)((5,ln); C(re)((5,ln); pop(ur); pop(wr);
ur := M(o) (cu r , cwr) ;

16.8 A Compiling Algorithm 631

push(ur)

Previous step:

CA(mk_Inf(le,o,re))((5,ln,stk) =
CA(re)((5,ln,stk) ~ CA(le)(c5,ln,stk+l) ~
(mkLod(u , l ,mkAdr(cp , s tk+l)) ,

mkdFct(u,o,mkAdr(cp,stk)) ,
mkSto(mkAdr(cp,stk) ,u, l))

[5] C o n d i t i o n a l E x p r e s s i o n C o m p i l a t i o n

Conditional Expression Compilation

Previous step:

C(mk_If(b,c,a))((5,ln) =
* let l_al t = get_Lbl() , l_out = get_Lbl() in
C(b)(<$,ln);
pop(ur);
if ~ £ ur

t h e n g o t o 1 alt
else skip e n d

C(c)((5,ln); g o t o l_out;
label l_alt : C(a)(c5,ln);
label l_out :
* e n d

Present step:

CA(mk_If(b,c,a))((5,ln,stk) =
* let lalt = get_Lbl() , lout = get_Lbl() in
CA(b)((5,ln,stk) ~
(mkLod(u, l ,mkAdr(cp,s tk)) ,

mkCjp(u,falsity,lalt)) ~
CA(c)((5,ln,stk) ~
(mkJmp(lout) ,

lalt) ~
CA(a)((5,ln,stk) ~
(lout)
* e n d

632 16 SAL: Simple Applicative Language

[6] L a m b d a - E x p r e s s i o n C o m p i l a t i o n

. Lambda-Expression Compilation

Previous step:

C(mk_Lam(v,e))((5,ln) =
* let lbypass = get_Lbl() , lfct = get_Lbl() in
g o t o lbypass;
label lfct: B(e)(c5 f [v i -^ ln+ l] , ln+ l) ;

g o t o e r a ;
label lbypass: ur := mk_FCT(l fc t , ccp) ; push(ur)
* e n d

Present step:

CA(mk_Lam(v,e))((5,ln,stk) =
* let lbypass = get_Lbl() , lfct = get_Lbl() in
(mkJmp(lbypass) , lfct) ~
CA(e)((5 f [v H-> l n + l] , l n + l , s t k) ~
(mkJmp(ra) ,

lbypass,
mkLim(u,lfct), mkPck(u,u,p) , mkSto(mkAdr(cp,s tk) ,u, l))

* e n d

[7] S i m p l e Let E x p r e s s i o n C o m p i l a t i o n

. Simple Let Expression Compilation

Previous step:

C(mk_Let(v,d,b))((5,ln) =
C(d)((5,ln); pop(ur);
B (b) ((5 t [v ^ l n + l] , l n + l)

Previous step:

CA(mk_Let(v,d,b))((5,ln,stk) =
CA(d)((5,ln,stk) ~
(mkLod(u, l ,mkAdr(cp,stk))) "
CB(b)((5 f [v H-> l n + l] , l n + l , s t k)

16.8 A Compiling Algorithm 633

[*] Block Expression

. Block Expressions .

Previous step:

B: E -> (DICT x LN) -> RSL Unit
B(b)((5,ln) =

let ptr:Ptr • ptr ^ dom c stg in
stg := cstg U [ptr i->- mk_DSA(ccp,cep,cra,cur,())];
cp,ep := ptr;
C(b)(<$,ln);
pop(ur);
ep:=s_ep((cstg)(ccp));
ra:=s_ra((cstg)(ccp));
cp:=s_cp((cstg)(ccp));
[stg := cstg \ {ptr};]
push(ur)
end

Present step:

CB(b)((5,ln,stk) =
* let dbl = depth(b) in
(mkSto(mkAdr(top,cp),cp,t),

mkMov(cp,top),
mkMov(ep,top),
mkAdj(top,t+dbl)) ~

CA(b)((5,ln+l,stk) ^
(mkLod(u,l,mkAdr(cp,t)),

mkLod(p,t—l,mkAdr(cp,cp)),
mkSto(mkAdr(cp,stk),u,l))

* end

[8] Recursive Function/Let Expression Compilation

. Recursive Function/Let Expression Compilation

Previous step:

C(mk_Rec(f,mk_Lam(v,e),b))((5,ln) =
* let lfct = get_Lbl(), lbypass = get_Lbl() in
goto lbypass;
label lfct:

634 16 SAL: Simple Applicative Language

B(e)((5 f [fH->ln+l,vi->-ln+2],ln+2);
goto era;

label lbypass:
let ptr:Ptr • ptr ^ dom cstg in
ur := mk_FCT(lfct,ptr);
stg := cstg U [ptr i-» mk_DSA(ccp,cep,cra,cur,())];
cp,ep := ptr;
C(b)((5t [fr+ln+l],ln+l);
pop(ur);
ep:=s_ep((cstg)(ccp));
ra:=s_ra((cstg)(ccp));
cp:=s_cp((cstg)(ccp));
[stg := cstg \ {ptr};]
push(ur)

end * end

Present step:

CA(mk_Rec(f,mk_Lam(v,e),b))(c5,rn,stk) =
* let lfct = get_Lblb(), lbypass = get_Lbl(), db = depth(b) in
(mkJmp(lbypass), lfct) ~
CB(d)((5 f [f >->• ln+l,v H-> ln+2],ln+2,stk)
(mkJmp(ra),

lbypass,
mkLim(u,lfct),
mkSto(mkAdr(top,cp),cp,t—1),
mkPck(u,u,top),
mkSto(mkAdr(top,u),u,l),
mkMov(cp,top),
mkMov(ep,top),
mkAdj(top,t+db)) ~

CA(b)((5 f [f •-»• ln+l],ln+l,stk) ~
(mkLod(u,l,mkAdr(cp,t)),

mkLod(cp,t—l,mkAdr(cp,cp)),
mkSto(mkAdr(cp,stk),u,l)) * end

[9] Function Application Expression Compilation

. Function Application Expression Compilation

Previous step:

C(mk_App(f,a))((5,ln) =

16.8 A Compiling Algorithm 635

* let lret = get_Lbl() in
C(a)((5,ln); C(f)(<J,ln);
case £ u r of

mk_FCT(lfc t ,p t r) ->•
{ep:=ptr ,
br:=lfct,
ra :=lret ,
(pop(ur);pop(ur))};
g o t o cb r ;

label lret:,
_ —>• chaos

e n d
* e n d

Present step:

CA(mk_App(f,a))(c5,ln,stk) =
* let lret = get_lbl() in
CA(a)(c5,m,stk) ~ CA(f)(c5,ln,stk+l) ~
(mkLod(u , l ,mkAdr(cp , s tk+l)) ,

mkCjp(u,non_function,lerror),
mkUnp(br,ep,u) ,
mkLim(ra,lret) ,
mkLod(pm,l ,mkAdr(cp,s tk)) ,
mkJmp(br) ,
lret)

* e n d

16 .8 .7 R e v i e w of C o m p i l i n g A l g o r i t h m

Lest one should miss sight of it, it may be important to remind the reader
of what we have done. We shall do it in the following fashion. The compiling
function, CA, is just another functional program. It applies, at the root, to a
complete SAL program represented in abstract form. And it applies, recur
sively, to subparts of tha t SAL program, and to sub-subparts, etc. The result
of "performing" CA on a complete SAL program is an ASM program, i.e.,
ASM code. Tha t code can then be submitted to an ASM computer, i.e., an
an ASM interpreter.

The above kind of review is "repeated" for the next two kinds of compiling
algorithms. Those compiling algorithms are, however, expressed in terms of
what is known as a t t r ibute semantics. The reviews are found in Sects. 16.9.7
and 16.10.7.

636 16 SAL: Simple Applicative Language

16.9 An Attribute Grammar Semantics

By an attribute grammar semantics of a source language we understand (i)
a set of usually concrete, BNF, grammar syntax rules defining the source lan
guage's character string representations; (ii) an association of what we shall
call attributes, named and typed variables, to each syntactic category; and
(iii) to each rule, i.e., to each pairing of a left-hand side nonterminal with a
right-hand side alternative, i.e., a finite sequence of zero, one or more non
terminals (and terminals), a set of actions: one per attribute associated with
either the left- or the right-hand side nonterminal. The actions are statement
sequences. Their role is to assign values to the attributes.

In Sect. 7.7.2 we gave a brief introduction to attribute grammar semantics,
so we shall now assume the concept reasonably well known [45,128,262,270,
272,304,328,532,541].

Let us, anyway, refresh our memory. The meaning of an attribute grammar
semantics is as follows: Consider a source text and its corresponding (cum "an
notated") parse tree. To each tree node allocate a variable for each attribute
associated with that node's syntactic category. Then compute the values of
these according to the action sets. Two extreme cases arise: The value of an
attribute is a function solely of the attribute values of the attributed vari
ables of the immediate descendant, or of the immediate ascendant nodes. In
the former case we say that the attribute variable assigned to is synthesised,
while in the latter case we say it is inherited.

We first choose the same basic run-time realisation as propagated till now.
For the sake of notational variety, and perhaps also your increased reading
ability, we express the compiled target code in "free form". Hence the meaning
is intended to be identical, down to the individual computation sequences.
Thus the reader will observe a close resemblance between the example now
given and that of the previous section. In fact, their main difference is one of
style.

To compute depth, see Sect. 16.8.4, we observe that it is computed from the
leaves of the parse tree "up", i.e., it is a synthesized attribute. Following the
depth function definition we therefore ascribe a depth attribute of type natural
number to each of the syntactic categories and follow the specification given in
the depth function definition to determine the specific assignment right-hand
sides. We refer to each attribute grammar rule for details.

stack (stk), level number (In) and dictionary (diet) attributes are all "passed
down" from the parse tree root, and are thus inherited. Finally the code
attribute is synthesized. It "stores" the so-far generated code text strings. We
have not shown a formal BNF grammar for those strings, but leave that as an
exercise for the reader.

16.9 An Attribute Grammar Semantics 637

16.9 .1 A b s t r a c t Syntac t i c T y p e s

The concrete grammar presented in Sect. 16.9.2 is based on the abstract syntax
of Sect. 16.2.2.

16.9 .2 S A L BNF G r a m m a r , 1

The concrete grammar chosen, at this stage, for SAL is LR(1) . Tha t is: proper
SAL text strings need to look ahead, left-to-right, only one token (a keyword,
a "k"onstant, an "id"entifier, a parenthesis, etc.), to determine the phrase
structure.

Pro :
Exp :

Lam :
Blk :

:= Exp
:= k |
:= id
:= 0 Exp |
:= (Exp 0 Exp) |
:= if Exp then Exp else Exp end |
:= let Id = Exp in Exp end |
:= Lam |
:= rec Id = Lam in Blk end |
:= apply Exp (Exp)
:= fun (Id) = Blk end
:= Exp

B N F Grammar 16.1. A first one for SAL

We omit giving syntax for constants (k) and identifiers (id), and for monadic
(©) and dyadic (0) operators.

16 .9 .3 N o d e A t t r i b u t e s

Syntax category

Pro
Exp, Lam

Blk

Attribute

code
code
In (level number)
diet (dictionary)
stk (stack index)
d (depth)

code
In (level number)
diet (dictionary)

Type

Code
Code
Nat
Id jft Nat
Nat
Nat

Code
Nat
Id jft Nat

Kind

synthesised
inherited
inherited
inherited
inherited
synthesised
inherited
inherited
inherited

638 16 SAL: Simple Applicative Language

16.9.4 Constants

As before, we need a single, hence global, program point to where jumps can
be made in case of erroneous computation situations:

global lerror = get_Lbl()

In the compilation algorithms below we refer to some of the constants cp, ep,
ra, vr, pm, u, j , top, t and br. Their natural number values were denned is
Sect. 16.8.5.

16.9.5 Some Typographical Distinctions

In the compilation sections which now follow we have adopted some conven
tions concerning the use of roman and italic texts. Roman text designates
auxiliary quantities whose values are to be evaluated in the code attribute
computation process. Italic text designates code text to be generated. Since
the code to be generated is text we surround it by double quotes as follows:
"code".

16.9.6 Compilation Functions

[0] Program Compilation

The final code text to be generated for an entire SAL program emerges from
the codep attribute variable at the program root.

We refer to Compiling Algorithm 16.1.

[1] Constant Expression Compilation

We refer to Compiling Algorithm 16.2.

[2] Variable Expression Compilation

We refer to Compiling Algorithm 16.3.

[3] Prefix Expression Compilation

We refer to Compiling Algorithm 16.4.
Here © is used both to designate (denote) the source language monadic oper
ator as well as the target language's same! Just for convenience!

[4] Infix Expression Compilation

We refer to Compiling Algorithm 16.5.
Here 0 is used as was 0 above, for prefix expressions.

16.9 An Attribute Grammar Semantics 639

Previous step: Present step:

CA: Pro ->• U n i t Code
CA(mk_Pro(e)) =

* let lexit = get_Lbl() ,
* de = depth (e) in
(mkLim(cp,0),
mkLim(ep,0),
mkLim(top, t+de))

~CA(e)([],0,tr
(mkLod(u, l ,mkAdr(p , t)) ,

mkOut(u) , mkJmp(lexi t) ,
lerror, mkOut("error"),
lexit, finish)

* e n d

Prop

local lexit
codep

lne

dicte

stke

:= Expe

= mk_lbl() in
a

R[cp] := 0 ;
R[ep] := 0 ;
R[top] := t + cde ;
" ~ c codee ^ "
R[u]:=

cS[cR[cp]+t] ;
Out := cR[u] ;
goto lexit ;
lerror ;
output := "error" ;
lexit:

7

• = 0 ;

: = [] ;
:= t ;

Compiling Algorithm 16.1. Program compilation

Previous step:

CA: E ->• DICTxLNxSTK
->• Code Unit

CA(mk_Cst(k))(_,_,stk) =
(mkLim(u,k),

mkSim(mkAdr(cp,stk),k))

Present step:

Expe ::= k

de := 1;
codee := "

S[cR[cp] + cstke] := k ;
R[u] := k ;

Compiling Algorithm 16.2. Constant expression compilation

[5] C o n d i t i o n a l E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.6.

640 16 SAL: Simple Applicative Language

Previous step:

CA(mk_Var(v))(c5,m,stk) =
* let n = S(y),
* lloop = get_Lbl() ,
* Uoad = get_Lbl() in
(mkLim(j,ln—n),

lloop,
mkCjp(j,zero,Uoad),
mkLod(ep, l ,mkAdr(ep,ep)) ,
m k A d j (j , - l) ,
mkJmp (lloop),
Uoad,
mkLod(u, l ,mkAdr(ep,vr)),
mkSto(mkAdr(cp,s tk) ,u , l) ,
mkMov(ep,cp))

* e n d

Present step:

Expe ::= id

local
lloop = get_Lbl() in
Uoad = get_Lbl() in

de := 1 ;
codee := "

R[j]:=c lne-c dicte (id);
lloop:
ifcR[j]=0
then goto Uoad:
R[ep]:=c S[c R[ep]]+ep;

R[i] :=£.R[i]-i;
goto lloop ;
Uoad:
R[u]:=c S[c R[ep]]+vr;
S[c R[cp]+c stke]:=c R[u];
R[ep]:=c R[cp];

Compiling Algorithm 16.3. Variable expression compilation

[6] L a m b d a - E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.7.

[7] S i m p l e Let E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.8.

[*] B lock E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.9.

[8] R e c u r s i v e F u n c t i o n / L e t E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.10.

[9] Func t ion A p p l i c a t i o n E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.11.

16.9 An Attribute Grammar Semantics 641

Previous step:

CA(mk_Pre(o,e))(c5,ln,stk) =
CA(e)(c5,ln,stk) ~
(mkmFct(u,o) ,

mkSto(mkAdr(cp,s tk) ,u, l))

Present step:

Expe ::= 0 Expa

de := cd a ;
lna := clne;

stka := cstke;
dicta := cdicte;

codee := ccodea "
a

R[u]:=Q cR[u];
S[cR[cp]+cstke]:-
11.

1

=cR[u];

Compiling Algorithm 16.4. Prefix expression compilation

Previous step:

CA(mk_Inf(le,o,re))(c5,ln,stk) =
CA(re)(c5,m,stk) ~
CA(le)((5,ln,stk+l) ~
(mkLod(u , l ,mkAdr(cp , s tk+l))

mkc!Fct(u,o,mkAdr(cp,stk)),
mkSto(mkAdr(cp,stk) ,u, l))

Present step:

Expe

de
ln;,lnr

stk r

Stk;
diet;
dict r

codee

:= (Exp; 0 Expr)

= m a x (c d ; , c d r) ;
= c ln e ;
= stke ;
= stke + 1 ;

= dicte ;
= dicte ;
= ccode r "

ccode; ~

R[u]:=c S[c R[cp]+c stke j ;
R[u]:=cR[u]

0 c S[c R[cp]+c stke j ;
S[c R[cp]+c s tk e] :=c R[u];
11.

1

Compiling Algorithm 16.5. Infix expression compilation

16.9 .7 R e v i e w of A t t r i b u t e S e m a n t i c s , 1

The below review should be compared to the review given, in Sect. 16.8.7, of
the compiling algorithm of Sect. 16.8.

Lest one should miss sight of it, it may be important to remind the reader
of what we have done. We shall do it in the following fashion. Assume a SAL

642 16 SAL: Simple Applicative Language

Previous step: Present step:

CA(mk_If(b,c,a))(c5,m,stk) =
* let lalt = get_Lbl(),
* lout = get_Lbl() in
CA(b)(c5,m,stk) ~
(mkLod(u,l,mkAdr(cp,stk)),

mkCjp(u,falsity,lalt)) ~
CA(c)(c5,ln,stk) ~
(mkJmp(lout),

lalt) ~
CA(a)(c5,ln,stk) ~
(lout)
* end

Expe :

local
lalt

lout
de

ln6

lnc

lna

stk6

stkc

stka

dictj
dictc

dicta

codee

:= if Exp6

t hen Expc

else Expa end

= get_Lbl()
= get_Lbl() in
= max(cdt,,cdc ,cda) + 1 ;
= clne ;
= clne ;
= clne ;
= cstke ;
= cstke ;
= cstke ;
= cdicte ;
= cdicte ;
= cdicte ;
= ccodef, "

R[u]:=cS[cR[cp]+cstke];
if ~c R[u] then goto lalt ;
" " ccodec " "
goto lout ;
lalt:
" " c codea ~ "
tout:

i

Compiling Algorithm 16.6. Conditional expression compilation

program. Assume that it has been properly parsed, and that the parse tree,
with all its nodes, is somehow represented as a data structure in storage.
What the attribute semantics given in this section prescribes is the follow
ing: To each node, the root and all the internal nodes, are associated the
prescribed variables. Thus a variable declaration mentioned one time in the
above definition, for a given syntactic category, is repeated for all nodes of
that prescribed category. And all the parse tree nodes are further decorated
with all the assignment texts of attributes semantics rules [0-9] for each given
syntax rule. That is, they are repeated for each occurrence of subparse tree
corresponding to that rule. Now, when all that has been done, an execution
takes place. All the assignments are now to be effected. Some can be done

16.10 Another Attribute Grammar Semantics 643

Previous step: Present step:

CA(mk_Lam(v,e))((5,ln,stk) =
* let Ibypass = get_Lbl(),
* lfct = get_Lbl() in
(mkJmp(Ibypass),

lfct) ~
CA(e)((5 f [v ^ ln+l],ln+l,stk)
(mkJmp(ra),

Ibypass,
mkLim(u,lfct),
mkPck(u,u,p),
mkSto(mkAdr(cp,stk),u,l))

* end

Expe :

de
In;

Stk;
diet;

code;

Lame :

local
Ifct

Ibypass
de

\nb

dictft
codee

:= Lam;

= d,
= lne

= Stke
= dicte
= codee

:= fun (id) = Blkft end

= get_Lbl() in
= get_l_bl() in
= 1 ;
= clne + 1 ;
= cdicte f [id i—>• clne + 1] ;
= "goto Ibypass;

lfctT
"^ccodeft " "
goto c R[ra];
Ibypass:
R[u]:=lfct;
R[u]:=

mkFct(c R[u],c R[cp]);
S[c R[cp]+c stke]:=c R[u];

1

Compiling Algorithm 16.7. Lambda-Expression compilation

right away: the inherited assignments at those nodes just "below", i.e., imme
diately next to, the root, the synthesised at those nodes that are just "above",
i.e., immediately next to, a leaf. Once those assignments have been done ad
ditional assignments to synthesised and inherited attributed variables can be
made, and so on. When no more assignments can be made, the root node code
text variable contains the resulting ASM-like program, and that program, i.e.,
code, can now be executed.

The above kind of review is repeated for the next kind of attribute seman
tics. That review is found in Sect. 16.10.7.

16.10 Another Attribute Grammar Semantics

The BNF grammar of Sect. 16.9.2 is both 'bottom-up' and 'top-down' analyz-
able. That did not matter very much in Section 16.9, since attribute variable

644 16 SAL: Simple Applicative Language

Previous step:

CA(mk Let(v,d,b))((5,ln,stk) =
CA(d)(c5,m,stk)

^(mkLod(u, l ,mkAdr(cp,s tk)))
^ C B (b) ((5 t [v ^ l n + l] , l n + l , s t k)

Present step:

Expe ::= le t v = Exp^ in Exp;, e n d

de := cd 6 ;
lnd := cln e ;
Irif, := c ln e + 1;

stk,j := cs tk e ;

dictd := cdict e ;
dictj := cdic t e f [vi -^cln e +l] ;

codee := c c o d e , ^

R[u]:=c S[c R[cp]+c stke j ;
" ^ccode^ "

Compiling Algorithm 16.8. Simple let expression compilation

value computations, that is, the computation based on attribute action clus
ter interpretations, still required the presence of the entire parse tree before
any code text could be generated. In the present section we present an at
tribute grammar semantics specification of another compiling algorithm. The
new compiling algorithm is based solely on a top-down parse of SAL expres
sions. That new algorithm is capable of generating code text simultaneously
with parsing. Again we shall not argue how we choose a solution. Such ar
guments are left to proper, specialised texts on attribute grammar seman
tics [94,260,531].

Instead, we ask you to recall the twin stack abstract machine of Sec
tion 16.6. In the implementation of the DSA stack we shall let DSAs fit exactly
four t positions: cp, ep, ra and vr. Temporaries are now to be allocated to a
global, contiguous stack, STK. Since SAL is simply applicative, it permits,
e.g., no GOTOs. This poses no problems as concerns correct indices into
STK positions, i.e., the stack top. The STK is realised in the storage "below"
the activation stack. Think of the target machine addressing being "wrapped
around" the address zero to a maximum available storage address — and you
get a scheme that was at least quite common in the early days of computing.

To cope with known code text to be "delay generated" a global attribute,
also called code, is introduced. It is treated like a stack. Pushing onto the stack
corresponds to concatenation; pop to removing the head, the top element
code, from the stack, and top to yielding that code. Pushing occurs for all
code texts known when recognising the initial prefix string, as one does in
top-down parsing, of a composite expression, to wit: ©, 0 , (, if, let, rec,

16.10 Another Attribute Grammar Semantics 645

Previous step:

CB(b)(5,ln,stk) =
* let dbl = depth(b) in
(mkSto(mkAdr(top,cp),cp,t),

mkMov(cp,top),
mkMov(ep,top),
mkAdj(top,t+dbl) } ~

CA(b)(5,ln+l,stk) ~
(mkLod(u,l,mkAdr(cp,t)),

mkLod(p,t—l,mkAdr(cp,cp)),
mkSto(mkAdr(cp,stk),u,l) }

* end

Present step:

Blk6 ::= Expe

lne := clrif, + 1 ;
dicte := dictf, ;
stke := t ;

codet, := "
S[c R[top]+cp]:=c R[cp];
S[c R[top]+ep]:=c R[ep];
S[R[top]+ra]:=c R[ra];
S[R[top]+vr]:=cR[u];
R[cp]:=c R[top];
R[ep]:=c R[cp];
R[top]:=

cR[top]+(t+cde);

~ c c o d e e ^ "
R[ep]:=c S[c R[cp]+ep];
R[ra]:=c S[c R[cp]+ra];
R[u]:=cS[cR[cp]+t];
R[cp]:=c S[c R[cp]+cp];
S[c R[cp]+c s tk e) :=c R[u];

1

Compiling Algorithm 16.9. Block expression compilation

fun and apply. Popping of one part occurs when any expression has been
completely analysed: k, id,) and e n d .

16 .10 .1 A b s t r a c t Syntac t i c T y p e s

The concrete grammar presented in Sect. 16.9.2 is (still) based on the abstract
syntax of Sect. 16.2.2.

16.10 .2 S A L BNF G r a m m a r , 2

To be able to have the full advantage of top-down parsing, we introduce the
slight complication of representing infix (operand operator operand) expres
sions in prefix Polish form: operator(operand,operand). Other than this one
complication the grammars look identical. We refer to Fig. 16.2.

We omit giving syntax for constants (k) and identifiers (id), and for
monadic (©) and dyadic (0) operators.

646 16 SAL: Simple Applicative Language

Previous step:

The formulas in this and the next com
piling algorithm have been provided
with let (de)compositions and otherwise
typed in a smaller font so as to make the
formulas fit within the paper margins.

CA(mk_Rec(f,£,b))(<5,ln,stk) =
* let mk_Lam(v,e) = £ in
* let In' = ln+1, In" = ln '+l ,
* d = [fi—>-ln ,vi—>-ln] in
* let Ifct = get_Lbl(),
* lbypass = get_Lbl(),
* db = depth(b) in

(mkJmp(lbypass),Ifct } "
CB(d)(5td,ln",stk)
(mkjmp(ra),

lbypass, mkLim(u,lfct),
mkSto(mkAdr(top,cp),cp,t —1),
mkPck(u,u,top),
mkSto(mkAdr(top,u),u,l),
mkMov(cp,top),
mkMov(ep,top),
mkAdj(top,t+db)) ~

CA(b)(5t[f^ln+l] , ln+l ,s tk) ~
(mkLod(u,l,mkAdr(cp,t)),

mkLod(cp,t—l,mkAdr(cp,cp)),
mkSto(mkAdr(cp,stk),u,l) }

* end end end

Present step:

Expe :
Lam :

local

Ifct
lbypass

de

lnrf

ln6

dictd

diet;,
codee

:= rec f = Lam in Blkf, end
:= fun (id) = Blkd end

= get_Lbl(),
= get_Lbl() in
= 1 ;
= cln e+2;
= c ln e +l ;
= cdicte

f[fi->-clne+l,idi->-clne+2];
= cdictef[fi->clne-|-l];
= " goto lbypass;

lfc~t~
" coded~

goto c R[ra];
lbypass:
R[u]:=lfct;
R[u]:=

mkFct(c R[u],c R[top]);
S[c R[top]+cp]:=c R[cpj;
S[cR[top]+ep]:=cR[ep];
S[cR[top]+ ra]:=cR[ra];
S[cR[top]+ vr]:=cR[u];
R[cp]:=cR[top];
R[ep]:=cR[top];
R[top]:=c R[top]+(t+c de);

" code;,^
R[ep]:=c S[c R[cp]+ep];
R[ra]:=c S[c R[cp]+ra];
R[u]:=cS[cR[cp]+t];
R[cp]:=c S[c R[cp]+cp];
S[c R[cp]+c stke]:=c R[u];";

Compiling Algorithm 16.10. Recursive function/let expression compilation

16 .10 .3 Globa l Variables

There will thus be two global variables: code, which is t reated like a stack,
and output, which is t reated as an out channel. Sometimes stacked code will
be output .

variable
code:Code

value

16.10 Another Attribute Grammar Semantics 647

Previous step:

CA(mk_App(f,a))(<5,ln,stk) =
* let lret = get lblQ in
CA(a)(<5,ln,stk)
~ CA(f)(<5,ln,stk+l) ~
(mkLod(u,l,mkAdr(cp,stk+l)),

mkCjp(u,non_function,lerror),
mkUnp(br,ep,u),
mkLim(ra,lret),
mkLod(pm,l,mkAdr(cp,stk)),
mkjmp(br),
lret)

* end

Present step:

Expe :

local lret
de

ln/,ln0

stka

Stk/
diet/,dict0

code

:= apply Exp/ (Expa)

= get_Lbl() in
= max{ cd/,c_da };
= clne;
= cstke;
= cs tk e +l ;
= cdicte;
= ccodea "

ccode/ "
"R[u]:=
c S[c R[cp]+c stke +1];

if ~ no_fct c R[u];
then goto lerror;
R[br]:=Lbl(cR[u]);
R[ep]:=Loc(cR[u]);
R[ra]:=lret;
R[pm]:=

c S[c R[cp]+c stke];
goto c R[br];
lret:";

Compiling Algorithm 16.11. Function application expression compilation

Pro
Exp

Lam
Blk

:= Exp
:= k |
: = i d
:= 0 Exp |
:= 0 (Exp , Exp) |
:= if Exp t h e n Exp else Exp end |
:= let Id = Exp in Exp end |
:= Lam |
:= rec Id = Lam in Blk end |
:= apply Exp (Exp)
:= fun (Id) = Blk end
:= Exp

B N F Grammar 16.2. Another one for SAL

push: Code* —>• U n i t , push(cl) = code := cl ~ ccode
top: U n i t —>• Code, top() = h d c c o d e
pop: U n i t —>• U n i t , pop() = code := t i c code

channel

648 16 SAL: Simple Applicative Language

output: Code*

16.10.4 Constants

There is only one run-time constant: the label of the instruction as from where
error situations are to be handled.

global lerror = get_Lbl()

In the compilation algorithms below we refer to some of the constants cp, ep,
ra, vr, pm, u, j , top, t and br. Their natural number values were denned is
Sect. 16.8.5.

16.10.5 Node Attributes

All attributes are now inherited.

Syntax category

Exp, Lam, Blk
Attribute
In (level number)
diet (dictionary)

Type
Nat
Id jjt N a t

Kind

inherited
inherited

16.10.6 Compilation Functions

[0] Program Compilation

We refer to Compiling Algorithm 16.12.

[1] Constant Expression Compilation

We refer to Compiling Algorithm 16.13.

[2] Variable Expression Compilation

We refer to Compiling Algorithm 16.14.

[3] Prefix Expression Compilation

We refer to Compiling Algorithm 16.15.

[4] Infix Expression Compilation

We refer to Compiling Algorithm 16.16.

16.10 Another Attribute Grammar Semantics 649

Previous step:

CA: Pro ->• U n i t Code
CA(mk_Pro(e)) =

* let lexit = get_Lbl() ,
* de = depth (e) in
(mkLim(cp,0),

mkLim(ep,0),
mkLim(top, t+de))

^ C A (e) ([] , 0 , t) ^
(mkLod(u, l ,mkAdr(p , t)) ,

mkOut(u) ,
mkJmp(lexit) ,
lerror,

mkOut("error"),
lexit, finish)

* e n d

Present step:

Pro ::=

local lexit =
lne :=

dicte :=
output !

push (

)

Expe

get_Lbl() in o
 .—

.
" R[cp] := 0 ;

R[ep] := 0 ;
R[top] := t ;
R[stk] := -1 ; ";

(" R[u] := cS[-l] ;
out := c R[u] ;
goto lexit ;
lerror:
out := "error" ;
lexit: finish : ")

Compiling Algorithm 16.12. Program compilation

Previous step:

CA: E ->• DICTxLNxSTK
->• Code Unit

CA(mk_Cst(k))(_,_,stk) =
(mkLim(u,k),

mkSim(mkAdr(cp,stk),k))

Present step:

Exp ::= k

output ! "S[cR[stk]]:=k;
R[u]:=k;

R[stk]:=cR[stk]+l;"

~ top();
pop () ;

Compiling Algorithm 16.13. Constant expression compilation

[5] C o n d i t i o n a l E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.17.

[6] L a m b d a - E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.18.

650 16 SAL: Simple Applicative Language

Previous step: Present step:

CA(mk_Var(v))(c5,m,stk) =
* let n = S(y),
* Hoop = get_Lbl() ,
* lload = get_Lbl() in
(mkLim(j,ln—n),

Hoop,
mkCjp(j,zero,lload),
mkLod(ep, l ,mkAdr(ep,ep)) ,
m k A d j (j , - l) ,
mkJmp(lloop),
lload,
mkLod(u, l ,mkAdr(ep,vr)),
mkSto(mkAdr(cp,s tk) ,u , l) ,
mkMov(ep,cp))

* e n d

Compiling Algorithm 16.14. Variable expression compilation

Previous step:

CA(mk_Pre(o,e))(c5,ln,stk) =
CA(e)((5,ln,stk)
^ (mkmFct(u,o),

mkSto(mkAdr(cp,stk),u,l))

Present step:

Expe ::= 0 Exp0

lna := clne ;
dicto := cdicte ;
push ((" R[u] := Q cR[u] ;

S[cR[cp]+cstke]:=cR[u];"));

Compiling Algorithm 16.15. Prefix expression compilation

[7] S i m p l e Let E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.19.

[•] B lock C o m p i l a t i o n

We refer to Compiling Algorithm 16.20.

Expe

local
iioop
lload

output

pop

:=id

= get_Lbl(),
= get_Lbl() in
! "

R[j]:=c\ne- (cdicte) (id);
Hoop:
ifcR[j]=0
then goto lload;
R[ep]:=c S[c R[ep]]+ep;
R[j]:=cR[j]-l;
goto Hoop;
lload:
R[u]:=c S[c R[ep]]+vr;
S[cR[stk]]:=cR[u];
R[stk]:=cR[cp];

~ topQ

0 ;

16.11 Discussion 651

Previous step: Present step:

Expe ::= (Exp; 0 Expr)

dict;,dictr := dicte ;
push ((" ") ~

("
R[u]:=cS[cR[stk]];
R[u]:=cR[u]

0cS[cR[stk]+l];

R[stk]:=cR[stk]+l;

S[cR[stk]]:=cR[u];

">

U

Compiling Algorithm 16.16. Infix expression compilation

[8] R e c u r s i v e F u n c t i o n / L e t E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.21.

[9] Func t ion A p p l i c a t i o n E x p r e s s i o n C o m p i l a t i o n

We refer to Compiling Algorithm 16.22.

16 .10 .7 R e v i e w of A t t r i b u t e S e m a n t i c s , 2

We refer the reader to the review of the a t t r ibute semantics of Sect. 16.9.7.
Tha t review can serve, inter alia, also as a review of the present a t t r ibute
semantics with the following exception: A special traversal of the tree is pre
scribed: from the root towards the leaves, and left-to-right. Tha t is, from
subtrees associated with early SAL program text "towards" subtrees asso
ciated with later SAL program texts. In the present a t t r ibute semantics all
a t t r ibuted variables are inherited and there is an auxiliary stack. In descend
ing down the parse tree of any SAL program, output of code is made at each
node. Some output includes code text popped from tha t stack. Some node ac
tions, during descent, push code "fragments" onto the stack. When rightmost,
i.e., "last" leaves have been traversed, then the output code can be executed.

16.11 Discussion

16.11 .1 Genera l

We have covered the, perhaps most crucial, stages of development of a compiler
for a functional programming language. From a most abstract , yet model-

CA(mk_Inf(le,o,re))((5,ln,stk) =
CA(re)((5,ln,stk)
~ CA(le)((5,ln,stk+l) ~
(mkLod(u , l ,mkAdr(cp ,s tk+l)) ,
mkdFct(u,o,mkAdr(cp,stk)) ,
mkSto(mkAdr(cp,stk) ,u, l))

652 16 SAL: Simple Applicative Language

Previous step:

CA(mk_If(b,c,a))(c5,m,stk) =
* le t l a l t=get_Lbl () ,
* lout=get Lbl() i n
CA(b)(c5,m,stk) ~
(mkLod(u, l ,mkAdr(cp,s tk)) ,

mkCjp(u,falsity,lalt)) ~
CA(c)(c5,ln,stk) ~
(mkJmp(lout) ,

lalt) ~
CA(a)(c5,ln,stk) ~
(lout)
* e n d

Present step:

Expe :

l oca l
lalt

lout
\nb

lnc

lna

dictj
dictc

dicta

push

:= if Exp;,
t h e n Expc e lse Expa e n d

= get_Lbl()
= get_Lbl() i n
= c ln e ;

= c ln e ;
= c ln e ;
= cdict e ;
= cdicte ;
= cdicte ;

(("
R[u] := cS[cR[stk]] ;

R[stk] :=cR[stk] + 1 ;
if ~ c R[u] then goto lalt :

"rc
goto lout ;
lalt:

lout:

")
) ;

Compiling Algorithm 16.17. Conditional expression compilation

oriented, denotational semantics, via steps of increasingly more operational,
cum computational semantics to a compiling algorithm specification for that
functional programming language. We presented three compiling algorithm
models: An abstract compiling algorithm specification, and two attributed
grammar compiling algorithm specifications.

The transition from the semantics specification to the compiling algorithm
specification represented the transition from domain description, to require
ments prescription. In this example that transition was just hinted at. In
Vol. 3, Chap. 28, Sect. 28.2, we present some of the principles and techniques
for that transition for realistic compiler development.

We find that most, if not all, textbooks on compiler development fail in
not presenting the kind of material here presented.

Those 'textbooks on compiler development', to us, "jump" right into the
middle of how proper compiler development can, or even ought, take place. To
us, by omitting a serious and substantial treatment of exactly how to develop

16.11 Discussion 653

Previous step:

CA(mk_Lam(v,e))((5,ln,stk) =
* let lbypass = get_Lbl(),
* lfct = get_Lbl() in
(mkJmp(lbypass),

lfct) ~
CA(e)((5t[v^ln+l],ln+l,stk)^
(mkJmp(ra),

lbypass,
mkLim(u,lfct),
mkPck(u,u,p),
mkSto(mkAdr(cp,stk),u,l))

* end

Present step:

Lame

local
Ifct

lbypass
\nb

dictf,
push

output

:= fun (id) = Blkj end

= get_Lbl()
= get_Lbl() in
= clne + 1 ;
= c dictef [idi-̂ -c lne+l];

(" (
goto c R[ra] ;
lbypass:
R[u]:=lfct;
R[u]:=

mkFct(cR[u],cR[cp]);
S[cR[stk]]:=cR[u];
R[stk]:=cR[stk]-l;

"));
! " goto lbypass ; lfct:" ;

Compiling Algorithm 16.18. Lambda-Expression compilation

the specification for a compiling algorithm, of exactly which target machine
code the compiler shall generate for each source language construct in the
program being compiled, those 'textbooks' skirt the most crucial issue, at
least to us.

But now, here, in this chapter, You have gotten it. Now you can much
better exploit those other 'textbooks'. They are usually very good at covering
syntactic issues: lexical scanning, and error correcting parsing. And, from
textbook to textbook, some focus on code optimisation (albeit, as we claim,
without a proper treatment of which code to generate, and why), and some
focus on compiler dictionary techniques, and some on attribute grammars. All
depending on their authors' own specialty.

With the present chapter you can now much better exploit the better of
'those other textbooks'.

16.11.2 Principles, Techniques and Tools

We summarise:

Principles. Functional Programming Language Implementations: The devel
opment of interpreters and compilers for functional (and other) programming
languages rests on a number of principles: (i) That denotations semantics
specifications can be understood also as specifying translations from source

654 16 SAL: Simple Applicative Language

Previous step:

CA(mk_Let(v,d,b))((5,ln,stk) =
CA(d)((S,ln,stk)~
(mkLod(u,l,mkAdr(cp,stk)))^
CB(b)((5t[v^ln+l],ln+l,stk)

Present step:

Expe

ln,i
ln6

stkd

dictd

dictj,

push

:= let v =

:= cln e ;
:= c ln e + l
:= cs tk e ;
:= cdict e ;
:= cdict e <

f [VH-J-C 1

(("
R[u]:=i
R[stk]:=

(" ")
) ;

Exprf in Expf, e n d

cdicte

ne+l];

iS[cR[stk]];
=cR[stk]+l;

Compiling Algorithm 16.19. Simple let expression compilation

language constructs to specification (here RSL) constructs; (ii) tha t functional
values constructed from, say, environments and source language constructs,
can be redefined as closures of pairs of these; and (hi) tha t the specification
language formulations can, eventually, be expressed in a variant tha t is close
to machine language constructs. •

Techniques . Functional Programming Language Implementation: The tech
niques, as also outlined in this chapter, involve (i) stepwise transformation
of denotational specifications via first-order functional and first-order imper
ative constructions, to macro-expansion semantics; these intertwined with (ii)
stepwise transformation of higher-order functional types into first-order da ta
structures, eventually into simple pairs of stack pointers and program point
labels; and these again intertwined with (iii) stepwise transformation of re
cursive run-time computational structures to stack-based such — in addition
to several other techniques. •

Tools . Functional Programming Language Implementation: As for other
kinds of programming languages, tools applicable to the development of in
terpreters and compilers for functional languages are covered in the following
textbooks: Lex (lexical scanners) and Yacc ("Yet Another Compiler Com
piler") [211,297], Attribute Grammars & Their Applications, [94], and the
Cornell Synthesizer Generator (of interpreters and compilers), [424-426]. All
books are essentially based on the a t t r ibute grammar idea of Donald E.
Knuth [128,262,270,272,304,328,376,532,541].

16.12 Review and Bibliographical Notes 655

Previous step:

CB(b)(c5,ln,stk) =
* let dbl = depth(b) in
(mkSto(mkAdr(top,cp),cp,t),

mkMov(cp,top),
mkMov(ep,top),
mkAdj(top,t+dbl)) ~

CA(b)(c5,hi+l,stk) ~
(mkLod(u,l,mkAdr(cp,t)),

mkLod(p,t—l,mkAdr(cp,cp)),
mkSto(mkAdr(cp,stk),u,l))

* end

Present step:

Blk6 ::= Expe

lne := clrif, + 1 ;
dicte := dictf, ;

output ! "S[cR[top]+cp]:=cR[cp];
S[c R[top]+ep]:=c R[ep];
S[R[top]+ra]:=c R[ra];
S[R[top]+vr]:=cR[u];
R[cp]:=c R[top];
R[ep]:=c R[top];
R[top]:=cR[top]+t; ";

push (("R[ep]:=cS[cR[cp]+ep];
R[ra]:=c S[c R[cp]+ra];
R[u]:=cS[cR[cp]+t];
R[cp]:=c S[c R[cp]+cp];
S[cR[stk]]:=cR[u];
R[stk]:=cR[stk]+l;")

) ;

Compiling Algorithm 16.20. Block compilation

We also refer to the useful URL: h t t p : / / d i n o s a u r . c o m p i l e r t o o l s . n e t /
which informs on syntax handling tools (viz.: LEX, YACC, and related or sim
ilar tools).

16.12 Review and Bibliographical Notes

This chapter presents a major set of principles and techniques for compiler de
velopment: From denotational descriptions (Sect. 16.3), via increasingly more
concrete, computational descriptions (Sects. 16.4-16.5), including a macro-
expansion description (Sect. 16.6), and via a formalisation of a target machine,
to two forms of compiling algorithms (Sects. 16.8-16.10).

The present chapter covered principles and techniques for describing what
a compiler, for a functional programming language, should generate of ma
chine code. The first functional programming language was John McCarthy's
LISP [333].

Current functional programming languages include Miranda [505], Haskell
[503], and, notably SML [168,359]. We remind the reader that the terms
'applicative programming' and 'functional programming', in this book, are
treated synonymously.

656 16 SAL: Simple Applicative Language

Previous step:

The formulas in this and the next com

piling algorithm have been provided
with let (de)compositions and otherwise
typed in a smaller font so as to make the
formulas fit within the paper margins.

CA(mk_Rec(f,£,b))(<5,ln,stk) =
* let mk_Lam(v,e) = £
* In' = ln+1, ln"=ln '+l ,
* S = [fi—>-ln ,VH->ln] i n
* let lfct = get_Lblb(),
* lbypass = get_Lbl(),
* db = depth(b) in
(mkJmp(lbypass),lfct } "
CB(d)(5t<5',m",stk)
(mkjmp(ra),
lbypass,
mkLim(u,lfct),
mkSto(mkAdr(top,cp),cp,t —1),
mkPck(u,u,top),
mkSto(mkAdr(top,u),u,l),
mkMov(cp,top),
mkMov(ep,top),
mkAdj(top,t+db)) ~

CA(b)(5t[f^ln'], ln+l,stk) ~
(mkLod(u,l,mkAdr(cp,t)),
mkLod(cp,t—l,mkAdr(cp,cp)),
mkSto(mkAdr(cp,stk),u,l) }

* end end

Present step:

Expe

Lam
local

Ifct
lbypass

ln<;
ln6

dictd

diet;,

output

push

:= rec f = Lam in

Blkft end
:= fun (id) = Blk,; end

= get_Lbl(),
= get_l_bl() in
:= clne + 2 ;
:= clne + 1 ;
:= cdicte f[fi->c ln e+l,

idi—>-jc lne+2];
:= cdictef[fi->c lne + l];
! " goto lbypass ;

lfcl^;
((" gotocR[ra] ;

lbypass:
R[u] := lfct ;
R[u] :=

mkFct (cR[u],cR[top]);
S[cR[top]+cp]:=cR[cpj;
S[c R[top]+ep]:=cR[ep];
S[cR[top]+ra]:=cR[ra];
S[c R[top]+vr]:=cR[u];
R[cp] := cR[top];
R[ep] := cR[top] ;
R[top] := cR[top] + t ;

")~C
R[ep]:=cS[cR[cp]+ep];
R[ra]:=cS[cR[cp]+ra];
R[u]:=cS[cR[cp]+t];
R[cp]:=cS[cR[cp]+cp];
S[cR[stk]]:=cR[u];
R[stk]:=cR[stk]+l;")

) ;

Compiling Algorithm 16.21. Recursive function/let expression compilation

Classical texts of compiler writing are: Randell and Russells's [414], Gries's
[150], and Aho and Ullman's [6]. To us Randell and Russells's [414] and then
Gries's [150] are acceptable: Focus on the run-time structures of compiled
programs. Aho and Ullman's [6], also seminal, focuses more on lexical scanning
and parsing — the authors having made substantial contributions to automata
and formal language theory. Appel's [14] is, to us, not acceptable: Fails, in

16.12 Review and Bibliographical Notes 657

Previous step:

CA(mk_App(f,a))(<5,ln,stk) =
* let Iret = get lblQ in
CA(a)(<5,ln,stk) ~
CA(f)(<5,ln,stk+l) ~
(mkLod(u,l,mkAdr(cp,stk+l)),

mkCjp(u,non_function,lerror),
mkUnp(br,ep,u),
mkLim(ra,lret),
mkLod(pm,l,mkAdr(cp,stk)),
mkjmp(br),

Iret)
* end

Present step:

Expe

local Iret
ln/,ln0

dict/,dict0

push

:= apply Exp/ (Exp0)

= get_Lbl() in
:= clne ;
:= cdicte ;

(< " ") ~
< "
R[u]:=cS[cR[stk] - 1];
if ~ non function c R[u]

then goto lerror;
R[br]:=Lbf(cR[u]);
R[ep]:=Loc(c R[u]);
R[ra]:=lret;
R[pm]:=cS[cR[stk]];
R[stk]:=cR[stk]-2;
goto c R[br];
Iret:

")
) ;

Compiling Algorithm 16.22. Function application expression compilation

our opinion, to properly explain semantic issues — yet [14] has some rather
worthwhile features: Techniques for program flow analysis being one of them.

In our approach, of the present and the next chapters, we focus on seman
tics, and hence also on run-time structures of compiled programs.

All of the above textbooks fail to cover what we have referred to as the
FUNARG property of some programming languages [368,529].

Landin introduced the SECD machine concept [284,286,288]. Reynolds
[428] provided beautiful insight into interpreters for higher-order functional
programming languages, i.e., languages in which functions are "first-class cit
izens", i.e., can have functions as ordinary values.

The IBM Vienna (Austria) Laboratory's work, in the 1960s and early
1970s, on providing semantics for a rather unwieldy programming language,
i.e., PL/1 [110,111], and of relating this to effective implementations — notably
that of Bekic, Jones, Lucas and Walk [32,33,305,312] — serves as a foundation
for our treatment of the present chapter.

The "great, seminal epic" on denotational semantics and congruent, i.e.,
"correct" interpreter (and hence compiler) implementations is Milne and Stra-
chey's [350].

Attribute semantics was introduced by Knuth, propagated by Wirth, and
otherwise studied by many others [45,128,262,270,272,304,328,532,541].

658 16 SAL: Simple Applicative Language

Tools for handling at t r ibute semantics were developed by Kastens, Hutt ,
Zimmermann, Wilhelm, Deransart and Jourdan [94,260,531].

Wand [518, 520] investigates the transition from denotational semantics
descriptions of programming languages to suitable computer architectures,
i.e., machines "into" which effective compilations, and "on which" effective
executions, can take place.

The compiler textbook by Wilhelm can be recommended [531].

16.13 Exercises

Exerc i se 16.1 Case Expression. Postulate a simple case expression:

case expr_0 of
cons t an t_ l —>• e x p r _ l ,
constant_2 —>• expr_2,
... ->• ...,
others —> expr_n,

e n d

Base expressions, expr_0, evaluate to either integer values, or Boolean values;
constant_i designate corresponding values; expr_i are ordinary expressions;
and the literal o thers serve to designate a "catch all other values constant!"

Now, give a syntax for this kind of case expression, assume well-formedness,
and define extensions to the four semantics of respective sections: 16.3 (deno
tat ional) , 16.4 (first-order applicative), 16.5 (abstract imperative stack), and
16.6 (macro-expansion) — where these extensions define the semantics of the
above kind of case expressions.

Exerc i se 16.2 Macro-expansion Example. Let two typical SAL programs be:

le trec f = An.if n = 0 t h e n 1 e lse n*f(n—1) e n d in f(5) e n d
le trec f = An.case n of 0 —> 1, o thers —>• n*f(n—1) e n d in f(5) e n d

Now you are to recast the above two expressions into the abstract syntax
values of SAL, given in Sect. 16.2.2, and to macro-expand both as per the
definition given in Sect. 16.6 (for the first of the above expressions), and tha t
you have given for the simple case expression in Exercise 16.1 for the second
of the above expressions.

Exerc i se 16.3 ASM': Assembler Machine. Does the macro-expansion of case
expression tha t you have given in Exercise 16.2 give cause for additional ma
chine language instructions? If so, suggest such (one or more) and extend the
machine language presented in Sect. 16.7 accordingly.

Exerc i se 16.4 Code Generation Example. For the two examples of Exer
cise 16.2 show their compilation into ASM (of Sect. 16.7), respectively ASM' (of
Exercise 16.3, if relevant).

17

SIL: Simple Imperative Language

• The prerequisi te for studying this chapter is that you are well familiar
with the imperative modelling styles of RSL.

• The aims are to show the applicability of the compiler development prin
ciples and techniques of Chap. 16, and to do so for a simple imperative
language, but only in a phasewise transition from a denotational semantics
to a macro-expansion semantics.

• The objective is to enable you — we claim — to far better understand,
and hence far more safely implement, compilers for procedural languages.

• The t r ea tmen t is systematic and from informal to formal.

The
then
lang
very

computer
do that" -

jages, e.g.

is an
— as

imperative machine,
if they were imperial

, For t ran [13],
essence of how

essential.
imperative

one m ay claim. Its
commands. Natura

were imperative
programs can be

languages, h
represented

code specifies: "Do this,
ly the first programming
ence,
insic

to understand the
e" the computer is

17.1 The Background

In the semantics of the simple applicative language, SAL, in Chap. 16, we got
many seemingly tricky details reasonably straight: dynamic allocation and
linking of block (and procedure) activations, and text (i.e., macro) expansion
with insertion of labels and jumps to these. The same ideas can now be applied
to SIL, the simple imperative language of the present chapter. We will apply
them again, in Chap. 17, to a modular language1, SMIL, whose run-time
activation stack resembles a cactus stack!

In the semantics of SAL, in Chap. 16, we additionally showed how to trans
form a macro-expansion semantics, based on the design of a computer (cum

By a modular language we mean one which offers modules of a kind similar to
the scheme concept of RSL, cf. Chap. 10.

660 17 SIL: Simple Imperative Language

machine) language, into a compiling algorithm. Chapter 16 further showed
the transformation of the compiling algorithm into either of two at t r ibute
grammar semantics. We shall not show the steps to compiling algorithms and
at t r ibute grammars in this chapter. The same principles and techniques as
applied in Chap. 16 apply to the language developments of this chapter and
Chap. 18.

In this chapter we now illustrate the development of a pair of semantics: a
denotational semantics and, in one "straight" step of development, a macro-
expansion semantics for a simple imperative language, SIL. The step from
denotational to macro-expansion semantics can be made since we have al
ready illustrated the essential facets, namely tha t of implementing the block
(including procedure) concept in terms of an activation stack.

17.2 Syntactic Types

The simple applicative language, SAL, of the previous chapter embodies all
interesting aspects of expressions: constants, simple (unassignable) variables,
prefix and infix expressions, conditional expressions, blocks, simple and recur
sive function definitions and function applications. Therefore in the exposition
of SIL, we concentrate on the imperative features: declared and assignable
variables, assignment statements, iterations (while loops) and calls of proce
dures as statements. Now also blocks will be considered statements. A block
consists of zero, one or more (typeless) variable declarations; zero, one or
more statement and parameterless procedure definitions (which are them
selves blocks); and a statement list. A while loop has a conditional expression
and otherwise consists of a statement list.

17.2 .1 C o n c r e t e , S c h e m a t i c S y n t a x

We first show schematic examples of the various syntactic constructs: Fig. 17.1.

17.2 .2 A b s t r a c t S y n t a x

Then we show the usual kind of RSL abstract syntax.

t y p e
P, V, E
Stm = = Blk | Asg | Whi | Call | StmL
Blk = mk_Blk(vs:V-set ,pros:(P ^ Blk),s:Stm)
StmL = mkSL(sl:Stm*)
Asgn = mk_Asg(v:V,e:E)
Whi = mk_Whi(e:E,s:Stm)
Call = mk_Cal l (p:P)

17.3 Imperative Denotational Semantics 661

We do not define expressions, e:E, but could, for example, assume those of
SAL.

17.3 Imperative Denotational Semantics

We present the denotational semantics in the traditional style. First we present
the semantic types, then the (usually auxiliary) functions (i.e., functions which
are defined over values of semantics types only) and, finally, the semantic
functions.

17.3 .1 S e m a n t i c T y p e s

Assignable variables, v:V, designate locations, l:LOC, of storage, stg:STG.
And storage maps locations to values, vahVAL. We do not further specify any
value, location, and therefore not any storage structuring — as was done in
Sect. 8.7.1 (specifically subsection "Values and Value Types") onwards. An
imperative metasta te variable, 'stg' , contains the storage.

An applicative argument to all semantic functions is the environment, p,
which binds visible (i.e., "in scope") variable identifiers to locations and visible
(i.e., "in scope") procedure identifiers to their denotations, In other words, it
binds functions from, in this simplifying case, no arguments, i.e., (), to partial,
state-to-state changing functions, i.e., U n i t —>• U n i t .

variable
s t g : S T G : = [] ;

t y p e

STATEMENT CATEGORIES

Block

Assignment

While loop

Call

EXAMPLES

begin
variables v,v',...,v";
procedures

p = block,
p' = block',

p" = block";
s; s'; ...; s"

end
v := e
while e

do s; s'; ...; s"
end

call pQ

CONSTRUCTOR

mk_Blk

mk_Asgn

mk_Whi

mk_Call

Fig. 17.1. Syntactic constructs of SIL

662 17 SIL: Simple Imperative Language

LOC, VAL

p:ENV = (V Tjt LOC) U (P ^ FCT)
STG = LOC ^ VAL

F C T = () - > • U n i t 4 U n i t

The U operator is, strictly speaking, not an RSL type constructor. But it could
be, informally, so defined:

(A ^ B) U (C ^ D) = { | m - m : (A ^ B) V m : (C ^ D) |}

When a procedure is called, its value, fct:FCT, is applied to an empty ar
gument, (), and implicitly to the imperative metasta te . This effects a state
change, which in an imperative RSL definition is expressed as a U n i t to U n i t
function.

17.3 .2 Auxi l iary S e m a n t i c Funct ions

Upon block entry, locations are allocated, one distinct location, per declared
variable.

value
Alloc: U n i t ->• LOC U n i t
Alloc() =

let loc:LOC • loc ^ d o m c stg in
stg := c s t g U [loc Ĥ - undefined];
re turn loc e n d

17 .3 .3 S e m a n t i c Funct ions

Since we express the semantic meaning function, M, in terms of operations
upon an imperative metasta te we have tha t the signature of M includes U n i t
to U n i t functionality.

P r o c e d u r e D e n o t a t i o n s

Procedure values, i.e., procedure denotations, are constructed from their defin
ing block, b:B, and environment, p:ENV, as the function, A, of no arguments,
(), which when applied to such 'no arguments ' behaves as does the interpre
tation, M, of the procedure block in the defining environment.

value
Den(b)p = A().M(b)p

17.4 Macro-expansion Semantics 663

Statement and Expression Function

value
M: Stm ->• ENV ->• Unit ->• Unit
M: Exp -> ENV -> Unit VAL

M(mk_Blk(vs,pm,s))p =
let mp = p f [v 4 Alloc()|v:V • v € vs] in
let np = mp j [p H> Den(pm(p))np | p:P«p € dom pm] in
M(s)np;
stg := cstg \ {np(v) | v:V • v £ vs} end end

M(mkSL(sl))p = for i= l to len si do M(sl(i))p end

M(mk_Asg(v,e))p = stg := cstg U [p(v) >-)• M(e)p]

M(mk_Whi(e,s))p =
let b = M(e)p in
i fb

then (M(s)p; M(mk_Whi(e,s))p)
else skip

end end

M(mk_Call(p))p = (p(p))()

Note how the meaning of the while loop mirrors the following source (i.e.,
SIL) text to source text transformation — had SIL had a conditional, i.e., an
if then else statement:

while e do si end

if e then (si; while e do si end) else skip end

In other words, one of the two conditional statement forms suffices.

17.4 Macro-expansion Semantics

We also present the macro-expansion semantics in the usual style. First, we
present the syntactic types, then the compile-time semantics types, then the
run-time semantic types, followed by abstraction functions (that relate run
time semantics values to semantic values of the denotational semantics) and
finally the semantic functions, i.e., the macros.

664 17 SIL: Simple Imperative Language

17.4.1 Syntactic Types

See Section 17.2 for a discussion of syntactic types.

17.4.2 Compile-Time Semantic Types

The RSL specification language is ad hoc extended to include labels and gotos.
Labels are further unanalysed atomic entities. No two labels of any RSL Text
are alike. At compile-time labels are "drawn" (get_Lbl) from a potentially
infinite set of labels, Lbl. A compile-time (i.e., a meta-) variable contains
those labels already inserted into expanded metatext.

type
Lbl
<p = {Is} jjf Lbl-set

variable
ls:Lbl-set := {}

value
get_Lbl: Unit ->• Lbl
get_Lbl() =

let lbl:Lbl • lbl £ els in
Is := {lbl} U els;
return lbl end

17.4.3 Run-Time Semantic Types

"Snapshot" of a Run-Time State

Figure 17.2 shows a "snapshot" of a run-time state:

1
cp |

ep |

ra |

—1
1 .
1 •

1 .
1 S

jj)

va | IS

Storage

Fig. 17.2. "Snapshot" of a SIL run-time state

17.4 Macro-expansion Semantics 665

Figure 17.2 is reminiscent of Fig. 16.2. The four rectangles in a left column of
the figure designate four registers. The big "almost" rectangle with the many
(2 + . . . +1) five-component rectangles, labelled ACTm, ACTn, and ACTi, in
side it denotes a storage whose space (cells, bytes, etc.) can be allocated, i.e.,
"claimed". Each of these 2 + . . . + 1 five-component (ACT) rectangles desig
nates a record whose fourth and fifth fields, the ones shown to the right on
the figure and labelled pm and vs, designate procedure map (pm), respec
tively variable allocation space (vs). The pm field of the top ACTn "contains"
two procedure name-labelled procedure closures (pairs of program point la
bels and environment stack activation pointers). The vs field of the top ACTn
"contains" two variable bindings: from variable names to variable values. The
other fields, cp, ep and ra (calling pointer (dynamic chain), static pointer
(environment chain), and return address) values, are fixed space record com
ponents. The arrows symbolise environment stack activation pointers. Thus
the cp register links to the top rectangle: Given cp we can access the contents
of tha t top rectangle. The two-pronged, partly solid, part ly dashed, arrow
leading out from the ep register designates tha t the contents of tha t regis
ter successively "traverse" the ep chain. Notice tha t the traversal follows the
(link, i.e., pointer) contents of the record ep fields. Thus it links directly from
the top, DSAn, to a "lower", ACTi, and onwards (. . .) .

S e m a n t i c T y p e s

t y p e
P t r
mSTG = P t r ^ ACT
ACT = = mk_ACT(s_ep:EP,s_cp:CP,s_ra :RA,s_pm:PM,s_vs :VS, . . .)
CP, E P = = mk_nil() | P T
RA = = mk_null() | LB
P T :: P t r
LB :: Lbl
P M = P ^ CLOS
CLOS = = mk_CLOS(lb:Lbl ,pt :Ptr)
VS = V jjt VAL

17.4 .4 R u n - T i m e S t a t e D e c l a r a t i o n and Ini t ia l i sat ion

The run-time state resembles the state of a target machine — on which com
piled SIL programs are executed. Such a machine has a storage, stg, an eval
uation stack, stk, two environment pointer registers (cp, ep), a return address
register (ra) and value register (va).

value
pt r :P t r

666 17 SIL: Simple Imperative Language

variable
stg:STG
cp:CP :=
ep:EP :=
ra:RA :=
va:VAL :
stk:VAL*

:= [ptri—>mk_
ptr;
ptr;
mk_null();

= undefined;

: = ()

ACT(mk _nil() mk_ _nil() mk_ _null()

17.4.5 Abstraction Functions

It is always a good idea, before proceeding too deeply into macro function
definitions, to try express how one can abstract from the concrete run-time
state the denotation semantics storage, environment and functions. Below we
sketch such an attempt.

value
abs_STG: Unit ->• dSTG
abs_STG() = merge{

[let mk_ACT(_,_,_,_,vm) = (cstg)(pt) in
makeLOC(pt,v)i->-vm(v) end|v:V«v £ dom vm]|pt £ dom(cstg)}

makeLOC: Ptr x V ->• LOC

abs_ENV: P ->• Unit ENV
abs_ENV(ep) =

if c_ep = mk_nil() then [] else
let mk_ACT(_,ep',_,pm,vm) = (cstg)(ep) in
let p = abs_ENV(ep') in
p f [P !->• abs_FCT(pm(p)) | p:P • p £ dom pm]

t [v i—> makeLOC(ep,v) | v:V • v £ dom vm]
end end end

abs_FCT: CLOS -> Unit ->• FCT
abs_FCT(mk_CLOS(lb,ep)) = ...

/* from lb to construct source text: Blk */
/* from ep to construct ENV: abs_ENV(ep) */

We remind the reader that the above sketches at most constitute rather in
formal reasoning. But perhaps this is enough in a compiler engineering envi
ronment, where the compiler writers have otherwise gone through a proper
semantics course, for example, one based on any of [93,158,432,448,499,533].

17.4.6 Macros

value

17.4 Macro-expansion Semantics 667

C: Stm ->• Unit -> RSL
C(mk_Blk(vs,pm,s)) =

* let lmap = [p 4 get_Lbl() | p:P • p £ dom pm], lout = get_Lbl() in
let pt:Ptr • p g- dom cstg in
let act = mk_ACT(ccp,cep,cra,

[p i->- mk_CLOS(lmap(p),pt) | p:P • p € dom pm],
[v i->- undefined | v:V • v £ vs]) in

stg := cstg U [pt i->- act]; cp := pt;
C(s);
ep := s_ep((cstg)(ccp));
ra := s_ra((cstg)(ccp));
cp := s_cp((cstg)(ccp));
stg := cstg \ {pt}
goto lout;
(labellmap(p): M(pm(p)); goto era; | p:P • p € dom pn)
label lout:
end end * end

The metalinguistic pointed brackets, (. . .) , surrounding the text of the second-
to-last line express the compile-time distributed expansion of as many triplets

label lmap(p): M(pm(p)); goto era;

as there are procedures in the procedure map.
Above we assumed that SIL does not have the FUNARG property.
The "Chain" function links back through the environment chain of pointers

until an activation is found in which the Chain argument, name, is found,
either as a variable name or as a procedure name.

Chain: P|V -> Unit
Chain(name) =

let mk_ACT(_,ep,_,pm,vm) = (cstg)(cep) in
if name € dom pm U dom vm then skip else
(ep := e; Chain(name)) end end

The next three macros define the text to be generated for simple statements:

value
C(mk_SL(sl)) = (C(sl(i)); | 1 < i < len si)

C(mk_Asg(v,e)) =
C(e); Chain(v);
let mk_ACT(cp,ep,pm,vm) = (cstg)(cep) in
let act = mk_ACT(cp,ep,pm,vm f [v i-» cva])
stg := cstg f [cep H->- act] end end;
ep := ccp

668 17 SIL: Simple Imperative Language

C(mk_Whi(e,sl)) =
* let Hoop = get_Lbl() in let lout = get_Lbl() in
label Hoop: C(e);
if ~hd c stk then goto lout else skip end;
(C(sl(i)); | 1 < i < len si)
goto Hoop; label lout: * end end

C(mk_Call(p)) =
Chain(p);
let mk_ACT(_,_,_,pm,) = (cstg)(cep) in
let mk_CLOS(lfct,eptr) = pm(p) in
* let lout = get_Lbl() in
ra := lout; ep := eptr;
gotolfct;
label lout: * end
end end

17.5 Discussion

17.5.1 General

We have briefly outlined a macro-expansion semantics based on a conventional
denotational semantics of a simple imperative language, SIL. Only four kinds
of statements were exemplified: blocks, assignments, while loops and subrou
tine invocation. The interesting statements are, of course, the block and the
procedure (i.e., subroutine) invocation statements. The rest are "fillers". They
are included to make the simple imperative language reasonably representa
tive.

We observe that the basic principles of activation stacks, and of static and
dynamic chains, are the same as for the simple applicative language, SAL, of
Chap. 16. And that, of course, is the whole idea. We leave as exercises the
inclusion of more statements in SIL, and of expressions and their evaluation.

17.5.2 Principles, Techniques and Tools

We summarise:

Principles. Imperative Programming Language Implementations: The de
velopment of interpreters and compilers for imperial (and other) program
ming languages rests on basically the same principles as were outlined in
Sect. 16.11.2 on a principle of functional programming language implementa
tion. •

17.7 Exercises 669

Techniques. Imperative Programming Language Implementation: The tech
niques, as also outlined in this chapter, again, are very much the same as were
outlined in Sect. 16.11.2 on techniques of functional programming language
implementation. •

Tools. Imperative Programming Language Implementation: Again we refer
to Sect. 16.11.2 on functional programming language implementation tools. •

17.6 Bibliographical Notes

Two seminal books, long since out of print, on compiler construction must be
mentioned:

[414]: B. Randell, L. Russell: ALGOL 60 Implementation, The Translation
and Use of ALGOL 60 Programs on a Computer (Academic Press, A.P.I.C.
Studies in Data Processing, Vol.5., New York and London, 1964); and

[150]: D. Gries: Compiler Construction for Digital Computers (John Wiley
and Sons, New York, 1971).

Both were very careful in presenting and motivating the compiling algorithm
choices wrt. run-time stacks — in both cases for the Algol 60 programming
language [24].

17.7 Exercises

Exercise 17.1 Macro-expansion Example. Exemplify a very small SIL pro
gram. That is, please come up with one yourself, (i) Show it as a concrete text;
(ii) then as an abstract syntax value as per the syntax given in Sect. 17.2.2;
and finally (iii) macro expand this program as per the macro-expansion se
mantics of Sect. 17.4.

Exercise 17.2 Assembler Language. Recall ASM, the assembler machine
language of Sect. 16.7. It was "geared", i.e., fitted to cope with SAL. Now,
based, for example, on your solution to Exercise 17.1, (i) does ASM have a
sufficient instruction repertoire to cope with translations of SIL programs into
ASM code? If so, argue that. If not, first argue why, and (ii) then suggest ap
propriate new, simple instructions along the line of ASM, Sect. 16.7 (i.e., add
to the syntax of ASM, Sect. 16.7.4). Finally, (iii) extend the machine state
of Sect. 16.7.2 (you may have to add new semantic types, cf. Sect. 16.7.1), if
needed, and extend the semantics definition (as given in Sect. 16.7.5).

Exercise 17.3 SIL': Expressions. Extend SIL into SIL' by detailing a (small)
variety of expression forms (as per SAL, as given in Sect. 16.2). Then extend
the syntax and denotational semantics definitions given in this chapter. Define
also the corresponding macro-expansion semantics.

670 17 SIL: Simple Imperative Language

Exercise 17.4 SIL": Additional Statements. Extend SIL' into SIL", by
adding new statements, for example, conditional (e.g., if .. then .. else .. fi
and case .. of .. end), skip (i.e., do nothing) and iterative, say loop .. until
.. end, statements. Then extend the syntax and denotational semantics defi
nitions given in this chapter. Define also the corresponding macro-expansion
semantics.

Exercise 17.5 SIL'": Function Procedures. Allow as part of block definitions
those of function procedures, i.e., procedures which can be invoked in expres
sion forms and which result in values. That is:

function f(a_l,a_2,...,a_n) = £(ai,a2,...,a„)
... f(e_l,e_2,...,e_n) ...

Define SIL'" as an extension to SIL" by adding the function procedure defi
nition clause and the function invocation expression. Then extend the syntax
and denotational semantics definitions given in this chapter. Define also the
corresponding macro-expansion semantics.

18

SMIL: Simple Modular, Imperative Language

• The prerequisi te for studying this chapter is that you are familiar with
the modularity concepts as introduced in Chap. 10.

• The aims are to show the applicability of the compiler development prin
ciples and techniques of Chaps. 16-17, and to do so for a simple modular,
imperative language, but only in a phase-wise transition from a denota-
tional semantics to a macro-expansion semantics.

• The objective is to enable you — we claim — to far better understand,
and hence far more safely implement, compilers for object-oriented lan
guages.

• The t r ea tmen t is systematic and from informal to formal.

Object-oriented languages are usually modular. Simula-67 [41], Modula (2
and 3) [171,377,536], Oberon [418,537-540], E i f f e l [344,345], C++ [492]
and Java [8,15,146,301,465,513] are modular languages. The RAISE spec
ification language, RSL, can be claimed to be object-oriented [130]. Modules
are like abstract data types. In principle they can form a lattice of multiple
inheritance-defined types, syntactically speaking. Semantically speaking, or
more colloquially, operationally speaking, modules can be thought of as usu
ally dormant coroutines having own states. That is, modules denote a kind of
objects. In this section we shall define an interesting, nontrivial modular and
imperative language, SMIL.

18.1 Syntactic Types

SMIL programs consist of one main and an unordered collection of uniquely
named submodules. All modules contain definition parts. Main modules, in
addition, contain a statement list. Definition parts consist of unordered collec
tions of variable and/or possibly recursive procedure definitions. Definitions
are either local, imported or exported.

672 18 SMIL: Simple Modular, Imperative Language

Variable definitions consist in this (untyped) language of just variable iden
tifiers. Local and exported procedure definitions consist of unique procedure
identifiers, parameter lists and bodies. Imported procedure definitions consist
of just procedure identifiers. In what follows, we concentrate on modelling
the modularity of the example language. We therefore leave unspecified state
ments, procedure parameter lists and procedure bodies.

Since (as we shall later see) we need to allocate all variables "globally",
i.e., also local ones, with possibly identically named local variables in distinct
modules, we need to make all variable identifiers distinct. The nondistinctness
is, of course, a static feature offered by the modular language, but it has no
consequence for the dynamic semantics. So we choose to use the following
syntactic types, where all submodules are uniquely named, and all imported
variables are associated with their module of origin:

t y p e
M, Stmt, Proc
Mn = {main} | M
Prgr :: Main x (M ^ Sub)
Main :: Defs x Stmt*
Sub = Defs
Defs :: Vars x Procs
Vars = = mk_Vars(xvs:V-set , ivs:(Mn ^ V-set) , lvs:V-set)
Procs = = mk_Procs(xps:Prom,ips:(Mn 7 j fP-set) , lps:Prom)
Prom = P jff Proc

xvs [xps] identify exported variables [procedures]; ivs [ips] identify, by mod
ule name, imported variables [procedures]. A static semantics, which we do
not show, ensures tha t there are indeed such named modules in which these
imported variables [procedures] are declared; lvs [lps] declare local variables
[respectively procedures].

18.2 A Denotational Semantics

18 .2 .1 S e m a n t i c T y p e s

Variable identifiers designate locations, and procedure identifiers designate
functions. Designations are semantic type entities and are recorded in envi
ronments. Storages are likewise semantic entities.

t y p e

ENV = (V TTI LOC) U (P ^ FCT)
STG = LOC ^ VAL
F C T = VAL* -> U n i t x VAL

18.2 A Denotational Semantics 673

Here, we have foreseen and denned a global state for the semantic functions.
That is, we model storage using an imperative formulation. Accordingly, side
effects of procedures are modelled as transformations on the global state of
the model. The choice of an imperative modelling technique is, however, only
dictated by convenience, not by necessity.

The total environment, p, has two parts: one, an incoming, structured in
two levels and records all variable denotations, and another, an incoming and
resulting, is structured in one level and records all exported denotations only:

TENV = MENV U ENV
MENV = Mn ̂ LENV
LENV = V jrt LOC

18.2.2 Auxiliary Functions

Static Functions

'Export' is a compile-time function:

value
Export: Defs ->• (V|P)-set
Export (mk_Defs (mk_ Vars (xvs,_,_) ,mk_Procs (xmp,_,_))) =

xvs U dom xpm

Temporal Functions

As before, we need to allocate (and free) variable locations:

value
Alloc: Unit ->• Unit x LOC
Alloc() =

let loc:LOC • loc ^ dom stg in
stg := stg U [loc Ĥ- undefined];
loc end

18.2.3 Semantic Functions

The statement list of the main module is to be interpreted in an environment,
mmp, which, besides its own local and exported variables and procedures
also must record the designations of imported variables and procedures. To
construct their designation the total environment, p, of all exported such is
initially required. The contributions, mp and smsp, to the total p come from
the exports of the main, respectively all the submodules.

674 18 SMIL: Simple Modular, Imperative Language

First we compute variable locations, then procedure denotations. The rea
son for this "split" is the following. In computing locations we simultaneously
allocate new such, i.e., perform side effects. In computing procedure denota
tions we need to know the denotations of all other procedures which can po
tentially be mutually recursively invoked. But no new allocations are effected.
Both computations are recursively defined, but only the latter is genuinely
recursive in tha t it recursively uses the environment which it constructs. It
turns out tha t if we combined the variable location computation into the set
of recursive definitions, then the totally undefined environment would be their
minimal fix point solution — due to the side effect aspects.

S e m a n t i c Func t ion T y p e s

value
I_prgr: Prgr —>• U n i t
I_sl: Stmt ->• ENV -> U n i t
C_Ldp: Defs -> U n i t x LENV
C_Lsms: (M ^ Sub) -> U n i t x (M ^ LENV)
C _ m m : Defs x Sub-set ->• TENV -> ENV x ENV
C_sms: (M ^ Sub) -> TENV -> ENV
C_dp : Mn -> TENV ->• ENV
Proc_Den: Proc ->• ENV ->• F C T

We start , here, by stating the type of all needed functions. This is a good
way to structure or organize definition work: First the "interesting" types
(the semantic types) are settled upon; next the type (i.e., signature) of the
functions needed to create and manipulate them are settled upon and, finally,
the bodies of the functions are "filled in".

S e m a n t i c Func t ion Def in i t ions

value
I_prg(mk_Prgr(mk_Main(dp,s l) , sms)) =

let mlp = C_Ldp(dp) ,
sip = C_Lsms(sms) in

let (mmp,dmmp) = C_mm(dp,sms)p,
smsp = C_sms(sms)p,
p = [main i-» mlp] U sip U smsp in

I_sl(sl)(mmp) e n d e n d

C_Ldp (mk_Defs (mk_ Vars (xvs ,_,lvs),_)) =
[v i-)- Alloc() | v:V • v £ xvs U lvs]

C_Lsms(sms) = [m i->- C_Ldp(sms(m)) | m:M • m £ d o m sms]

18.3 A Macro-expansion Semantics 675

C_mm(dp,sms)p =
let mk_Defs(mk_Vars(xvs, ,) ,mk_Procs(xpm, ,)) = dp in
let mmp = C_dp(dp,main)p in
(mmp,mmp U

U { C _ d p (s m s (m) , m) p / Export(sms(m))
| m:M«m £ d o m sms})

e n d e n d

C_sms(sms)p =
if sms = [] t h e n [] e lse let m:M • m £ d o m sms in
C_dp(sms(m))p U Csms(sms \ {m})p e n d e n d

C_dp(mk_Defs(mk_Vars(xvs, ivs ,) ,mk_Procs(xpm,ips, lpm)) ,m)p =
let pm = xpm U 1pm in
let np = p(m)

U [vH^-p(v)|m:Mn,v:V • m £ d o m ivsAv £ ivs(m)]
U [pH^-Proc_Den(pm(p))(np) | p:P • p £ d o m pm]
U [p ^ p (p) | p:P • p £ ips] in np e n d e n d

18.3 A Macro-expansion Semantics

We now develop the denotational semantics of Sect. 18.2 into a macro-
substitution semantics. We decide on realizing the combined (ENV.STG) com
plex in terms of a complex of so-called activations: one for the main module,
and one for each of the submodules. All these activations are allocated simul
taneously.

Each activation is uniquely designated by a pointer. Each activation con
tains allocations for all exported and local variables, and closures for all pro
cedures, whether exported, imported or local.

18.3 .1 R u n - T i m e S e m a n t i c T y p e s

t y p e
E N V _ S T G = P t r ^ ACTV
ACTV = = mk_ACTV(ssta:Pt,sdy:Pt,sra:Lbl,senv:sENV,sstg:sSTG,. . .)

sENV = (V jjt P t r) U (P jjt CLOS)
sSTG = V jjt VAL
CLOS :: P t r x Lbl

The idea of the macro-expansion stage is (also) to expand the procedure body
text into RSL (metalanguage) text "in-line" with the macro-expanded text
which, through calls, refers to those procedures.

676 18 SMIL: Simple Modular, Imperative Language

Suffice it here to summarize tha t invocations of procedures in a deno-
tational definition are effected by finding the procedure designation in the
environment, and then applying this function to an evaluated argument list.
In the macro-expanded, operational semantics version we have compiled all
the source-language program text into metalanguage text; and procedure calls
are effected by jumping to an appropriate metatext point, i.e., a label (in Lbl).
The denotational procedure designation embodies the defining environment.
Now the operational procedure closure contains, besides a label, a pointer
to the appropriate activation. Procedure invocations occur in the calling en
vironment, i.e., lead to an activation stacked on top of the calling activation
and chained to it by a dynamic pointer. Since procedures may possibly be
passed as parameters to other procedures (i.e., to their invocation), or since
procedure bodies may contain nested procedure definitions where inner ones
may refer to outer ones, we also need to chain back to defining environments,
i.e., we need, finally, in our activations, a static pointer (chain). All this pointer
chaining is nothing new. We first introduced it in the operational semantics
of SAL, then SIL!

For each of the functions of Sect. 18.2 we have to redefine a correspond
ing set of macro-expansion functions. We now outline our design decisions.
Our point is to illustrate a technique of going from abstract , denotational,
to less abstract , more concrete operational definitions, and of how to relate
them in an a t tempt to convince the reader of the possible correctness of the
realization. In the following we refer to the denotational semantics (DS) for
mulae of Sect. 18.2.3 as (DS . . .) and to those of this subsection as (MS . . .)
(mechanical, or macro-expansion semantics).

We leave it to the reader to further study our solution below.
In constructing the macro-expansion semantics the following auxiliary

name suffix conventions are applied: macro-expansion (compile-time) suffix
c and (metatext interpretation run-time) suffix r.

18 .3 .2 C o m p i l e / R u n - T i m e S e m a n t i c T y p e s

t y p e
Lbl, P t r
P T = = mk_ni l | P t r
LB = = mk_nul l | Lbl
VA = = mk_void | VAL
LblM = M ^ PLM
PLM = P ^ Lbl
P t r M = M ^ P t r
VarM = V ^ P t r

value

undefined:VAL

18.3 A Macro-expansion Semantics 677

import

local defns

procedures

export

import

s1;s1;...;sn

sub ml

variables

export

import

local defns

procedures

export

import

variables
export vi,vj
import mt;ut; mj:vja,vjb;... mk:vkp,vkq

local defns vl,v2,...,vi,...,vj,...vk

sub m2

variables

export

local defns

procedures

export

import

sub mn

variables

export

import

local defns

procedures

export

import

procedures
export pq.pr
import ma:pa; mb:pbx,pby;... mc:pci,pck

local defns vl,v2,...,vi,...,vj,...vk

Fig. 18.1. A cactus stack run-time state for modular programs

18.3.3 Compile-Time Semantic Types

variable
ls:Lbl-set := {}

value
get_Lbl: Unit ->• Unit Lbl
get_Lbl() = let lbl:Lbl • lbl £ els in Is := els U {lbl}; r e t u r n lbl end

GLdp: Dp ->• Uni t x PLM
GLdp (mk_Defs (_,mk_Procs (xpm,_,lpm))) =

[p H-» get_Lbl() | p:P • p € dom(xpm U 1pm)]

GLsmm: (M ^ Sub) -> Unit LblM
GLsmm(smm) E [I I H) GLdp(smm(n)) | n:M • n € dom smm]

18.3.4 Semantic Functions

value
M_prgr: Prgr —>• Unit
M_prgr(rnk_Prgr(rnk_Main(rnrn,sl),srnrn))

* let plm = G_Ldp(mm) in

678 18 SMIL: Simple Modular, Imperative Language

* let nplm' = G_Lsmm(smm) in
* let lout = get_Lbl() in
let (xvm,mp) = M_Ldp(mm) in
let (sxvm,snpm) = M_Lsmm(smm) in
let vpm = sxvm U xvm,

npm = snpm U [main i-> mp] in
let nplm = nplm U [main i—>• mp] in
I_ns(mm,nplm,main) (mp,vpm);
(I_ns(smm(n) ,nplm,n)(npm(n) ,vpm); | n:Mn • n £ d o m smm)
cp := mp; ep := mp;
Msl(sl);
g o t o lout;
E _ P (mm,nplm (main));
(E_P(smm(n),nplm(n)); | n:M • n £ dom smm)
label lout: end end end end * end end end

M_Ldp : Defs -> U n i t x (VarM x Pt r)
M _ L d p (mk_Defs (mk_ Vars (xvs ,_,lvs),_)) =

let p t r :P t r • ptr ^ d o m c s t g in
let actv = mk_ACTV(mk_ni l ,mk_ni l ,mk_nul l ,

[v i->- ptr | v £ xvs U lvs],
[v i->- undefined | v £ xvs U lvs],...) in

stg := c s t g U [ptr i-» actv];
re turn ([x i->- ptr | x:V • s £ xvs],ptr)
e n d e n d

M_Lsms: (M ^ Sub) -> U n i t x (VarM x Pt r)
MLsms(smm) =

ca se smm of:

[] " • ([] . []) , - - •
let n:M • n £ d o m smm in
let (xvm,ptr) = M_Ldp(smm(n)) in
let (rxvm,rnpm) = M_Lsms(smm \ {n}) in
re turn (xvm U rxvm,rmp U [ni-> ptr])
e n d e n d e n d e n d

I_ns : Defs x LblM x Mn -> (Ptr x VarM) -> U n i t
I_ns (mk_Defs (mk_ Vars (_, ivs,_),

mk_Procs(xpm,ips, lpm)) ,nplm,n)(mpm,vpm) =
let mk_ACTV(sta,dyn,ra,env,stg, . . .) = (cs tg)(mpm(n)) in
let env' = env

U [V H > vpm(v) | v:V • v £ ivs]
U [p 4 mk_CLOS(mpm(n) , (nplm(n)) (p))

| p:P • p £ d o m (x m p U lpm)]
U [p 4 mk_CLOS(mpm(n ') , (nplm(n ')) (p))

18.4 Discussion 679

| p:P,n':M • p € ips A n' € d o m nplm A p € nplm(n')] in
stg := c s t g U [(mpm(n)) i-» mk_ACTV(sta,syn,ra,env' ,stg, . . .)]

e n d e n d

M_sl: Stm* ->• U n i t
M_sl(sl) = (M_c(sl(i)) | 1 < i < l en si)

E _ P : Defs ->• PLM -> U n i t
E_P(mk_Defs (_ ,mk_Procs (xpm,_ , lpm))) (p lm) =

(label plm(p):
M_proc((xmp U lpm) (p));
go toc ; ra ; | p:P • p € d o m (x m p U lpm))

18.4 Discussion

18.4 .1 Genera l

We remind the reader tha t the presentation given in this chapter, as well as
the presentations given in Chaps. 16-17, assumes a deterministic subset of
RSL, one for which the recursive definitions of environment (p) have minimal
fix point solutions. Otherwise the definitions do not make any sense. We refer
to s tandard textbooks [93,158,432,448,499,533] on denotational semantics
for the full story.

18.4 .2 Pr inc ip le s , Techniques and Tools

We summarise:

Princ ip le s . Modular Programming Language Implementations: The devel
opment of interpreters and compilers for modular (and other) program
ming languages rests on basically the same principles as were outlined in
Sect. 16.11.2 on principles of functional programming language implementa
tion. •

Techniques . Modular Programming Language Implementations: The tech
niques, as also outlined in this chapter, again, are very much the same as were
outlined in Sect. 16.11.2 on techniques of functional programming language
implementation. •

Tools . Modular Programming Language Implementations: Again we refer to
Sect. 16.11.2 on 'functional programming language implementation tools. •

680 18 SMIL: Simple Modular, Imperative Language

18.5 Bibliographical Notes

Modular languages are usually object-oriented (0 0) . Simula-67 [41], Modula
(2 and 3) [171,377,536], Oberon [418,537-540], C++ [492], E i f fe l [344,345],
Java [8,15,146,301,465,513], and C# [207,346,347,401] are such OO languages.

18.6 Exercises

Exercise 18.1 Syntactic Types for OO Languages. Select one of the OO
programming languages: Modula (2 and 3) [171,377,536] or Oberon [418,537-
540] or E i f f e l [344,345] or C++ [492] or Java [8,15,146,301,465,513] or C#
[207,346,347,401] and develop type definitions and syntactic well-formedness
for programs in the chosen OO language.

Exercise 18.2 SMIL' Expressions. As for Exercise 17.3 extend SMIL with
suitable expressions and define both a denotational and a macro-expansion
semantics.

Exercise 18.3 Additional SMIL" Statements. As for Exercise 17.4 extend
SMIL with suitable statements and define both a denotational and a macro-
expansion semantics.

Exercise 18.4 SMIL'" Function Procedures. As for Exercise 17.5 extend
SMIL with suitable function procedures and further expressions, and define
both a denotational and a macro-expansion semantics.

19

SPIL: Simple Parallel, Imperative Language

• The prerequisite for studying this chapter is that you are well famil
iar with RSL's CSP (Communicating Sequential Processes) language con
structs, such as covered in Vol. 1, Chap. 21.

• The aims are to introduce a special style of defining functions, to use this
style in giving an "interleave" semantics to a CSP-like language, and to
thus illustrate the flexibility of the RSL specification language.

• The objective is to ensure that the reader becomes a versatile professional
software engineer.

• The treatment ranges from intuitive via semiformal to almost formal.

This section is structured as follows. First we state, in Sect. 19.1, the problem
to be solved — while motivating why we wish to solve that problem. Then we
outline, in Sect. 19.2, the syntax of programs in the chosen language. This
is not always the best way to start when designing a new language. Usually
it is better to start with decisions on what the basic concepts of the language
should denote. In the Simple Parallel Imperative Language, SPIL, they —
most abstractly — could be claimed to denote traces of input/output events.
For illustrative purposes, that is, in order to bring in an example of a state
transition system, we have here chosen a structural operational semantics-like
definition. Some of the design, therefore, of the semantic types is arrived at,
in Sect. 19.3, after an analysis of some of the more conventional process con
cepts. The rest of the design of the semantic types is finalised in Sect. 19.4,
after an analysis of some of the special, technical process concepts. Finally, in
Sect. 19.6 we present the detailed semantic functions.

19.1 The Problem

We face the problem of delineating a suitable variant of the syntax of an
imperative version of a CSP-like [119,212,213,436] language — such as it, for
example, is present in the RAISE Specification Language, RSL, [130,131], and

682 19 SPIL: Simple Parallel, Imperative Language

to give this language a semantics. In particular we must show principles and
techniques for the design of a structural operational semantics [252,402].

We have chosen an imperative version of a CSP-like language for educa
tional reasons. It is close to occam [225,327], and its imperativeness is close to C
[263], Modula (2 and 3) [171,377,536], Oberon [418,537-540], E i f f e l [344,345]
or C++ [492], Java [8,15,146,301,465,513], and C# [207,346,347,401]. Hence,
due to its resemblance to CSP, it is relatively easy to learn, and interesting
parallel programs can thus quickly be established.

19.2 Syntax

We assume general familiarity with the concepts of CSP [119,212,213,436].

19.2.1 Informal Syntax

Process Expressions

With that familiarity — see Vol. 1, Chap. 21 — we shall just present an
informal, schema-like syntax and shall only comment on the system definition.

process (command) expressions
pe : st

I i °
| call pn(arl)
I Pq_l II PQ_2 || ••• || pq_P
I pq_ i II pq_ 2 n ••• n pq_i
I (io_l -> pq_l) D (i«_2 -> pq_2) 0 - 0 (i«_n -> pq_n)
I sy

io (input/output) commands
io : c_i ? v

I c_j ! e

process (command) expression sequence
pq : P e_i; P e_2; •••; pe_q

Process expressions are either statements, or channel input/output com
mands, or are process invocation commands, or are structured, i.e., are paral
lel, ||, nondeterministic internal choice, [], or input/output guarded nondeter-
ministic external choice, Q, commands, or are system commands. Input/out
put commands name a channel and specify a variable or an expression, re
spectively. Structured process commands contain lists of process commands.

19.2 Syntax 683

Expressions and Statements

expressions
e: k | v | id | ...

expression (argument) lists
arl : e_l, e_2, ..., e_m

statements
st : v := e

| case e of:
val_l I—>• do pq_ l end
val_2 I—>• do pq_2 end

val_n I—>• do pq_n end
end

| while e do pq end
| do pq until e end

Expressions are simple expressions, either constants, or variable names or for
mal identifiers (of procedure definitions), or are further unspecified. Process
invocation argument lists are lists of simple expressions. Statements are either
assignment statements, or are cases (i.e., multiway switch) conditional state
ments, or are repetitive (iterative) loop statements, either while or repeat.

System Processes

sy: system
variables: v_ l , v_2, ..., v_w;
channels: c_l, c_2, ..., c_s;
process definitions:

pn_l(fpl_l): pq_l ;
pn_2(fpl_2): pq_2;

pn_q(fpl_q): pq_q;
initial process invocations:

call pn_i(arl_i)
|| call pn_j(arl_j)

|| call pn_k(arl_k)
end

fpl : id 1, id 2, ..., id_m

A program specification is a system specification. A system specification de
clares variables, introduces channels and defines processes. A system specifi-

684 19 SPIL: Simple Parallel, Imperative Language

cation ends with specifying the (call) invocation of a subset of the defined
processes.

19.2.2 Formal Syntax

pe
Cn, Vn, Pn, Id, VAL
P = S | 10 | C | Q
S = = asg(lhs:Vn,rhs:E)

| cas(b:E,switch(VAL^P*))
whi(b:E,seq:P*)
rep(seq:P*,b:E)

E = = ...
| cst(vahVAL)

fp(id:Id)
| var(v:Vn)

10 = = input(i:Cn)

output(o:Cn,e:E)
C = = call(pn:Pn,al:E*)
Q = = pal(ps:P*-set)

ind(ps:P*-set)
xnd(ps:(IOPl-set))
sys(s:Sys)

Sys = Vn-set
x Cn-set
x (Pn ^ PD)
x C-set

PD = Id* x P*
I0P1 = 10 x P*

Channel, variable and process names as well as process definition (formal
parameter) identifiers are further unspecified atomic quantities. We do not
specify what values are.

We have arbitrarily chosen to model the system body of process invoca
tions as a map from distinct process definition names to process definitions.
This pragmatic choice disallows the same process to be invoked more than
once in a system body. One can easily remodel this part of the definition into
one allowing such parallel invocations of identical processes. For our purpose,
which is that of illustrating how we give an operational semantics to a process
language, the present choice avoids complications that are not germane to the
main purpose.

19.3 Process Concepts and Semantic Types

It is quite customary to hear the following being said by practicing program
mers and even computer programming lecturers: "and here the program calls
a procedure", and other such anthropomorphisms. Programs do not do any
thing! They are innate texts. They prescribe that a suitable machine performs
a number of actions.

In this section, as well as throughout this technical note, we shall try
avoid, as best we can, the above kind of anthropomorphisms. But we do not
guarantee this! It has become an almost acceptable, yet unfortunate habit.
It is acceptable when we are aware of the problem. Unfortunate, since this
erroneous use of language may hide some deeper lack of understanding, and
may reveal a lack of proper abstraction. It is desirable, we firmly believe,

19.3 Process Concepts and Semantic Types 685

that we in general make clear distinctions between syntactics, semantics and
pragmatics matters.

19.3.1 Syntactic Notions

Textual

By a process definition we understand a syntactic construct (a syntactic struc
ture), pd:PD. By a process name we understand a syntactic construct, pn:Pn,
which names a process definition. By a process expression we mean the same as
a process command, namely a syntactic construct, p:P. Statements are either
simple (i.e., atomic) or composite (or structured) — as are process commands.
The assignment statement is a simple statement. The case, while and until
statements are structured statements. The sequential (;), parallel, (||) internal
nondeterministic choice (|~|), guarded external nondeterministic choice ([]),
the global, "outermost" and the inner, embedded system process commands
are structured process commands. That is, a parallel program is a system
process command, called the outermost global system process command. Any
system process command properly contained in a process command, i.e., a
system process command other than the global command, is said to be em
bedded, or inner.

By prologue we understand either the formal parameter list of a procedure
definition, or the variable and channel declarations and the process definitions
of a system process command. By body we understand either the remaining
part of respective process constructs: the list of process commands of a pro
cedure definition, the parallel (the call) invocation expression of a system
command and the set of alternative process command lists of a parallel or of
a nondeterministic command — whether internal or external choice.

Contextual: Scope and Binding

The notion of scope is a static notion to be obeyed by processes. A scope
defines which variable names, channel names, formal parameter identifiers
and process definition names may be referred to. That is, a scope statically
delineates a program text, "from this line of program text to this line of
program text, except those embedded lines" (where inner system commands
redefine scope).

System commands define the binding of these names and identifiers to
their syntactic meaning: variable names to the fact that they are variables,
channel names to the fact that they are channels, formal parameter identifiers
to the fact that they are formal parameters and process names to their process
definitions. The binding is effective in the scope of the names and identifiers.

Contained, local system commands may redefine some or all of these names
and/or may introduce new names. Redefinition allows a channel name in one
scope to be a variable name in another scope. Those names and identifiers not
redefined are inherited and thus are ported to the inner scope — for as long as
further local system expressions do not redefine (syntactic) scope meanings.

686 19 SPIL: Simple Parallel, Imperative Language

Contextual: Hiding and Modularisation

A process definition body, i.e., its sequence of process commands, is allowed
to be just one command, and tha t command could be a system command.
In this way the programmer is free to choose a set of local variables, local
channels and local process definitions for each process definition (and none, if
so decided, for the global system).

In any case, system commands allow the declaration of variables private
to the processes invoked by the system command — as well as the intro
duction of channels and definition of processes. Entities (variables, channels
and processes) which are declared, introduced, respectively defined in a sys
tem command, are said to be hidden from the outside. They are not part of
the surrounding scope, are not visible outside the system command. (System
commands are like ordinary blocks in ordinary programming languages.)

Process definitions can be said to define modules, i.e., object classes. This
may be especially clear when their body consists of exactly one process com
mand which is a system command. These process definition modules can be
invoked any number of times: in parallel, albeit, requiring, for technical rea
sons, just a tiny variation in actual argument lists, so as to make the process
(the call) invocations distinct.

So our language has several of the capabilities. The properties of a mod
ular, or object-oriented programming language. Tha t is, system command
process definitions constitute modules and their (the call) invocation con
stitutes objects. Ou tpu t / inpu t synchronisation and communication between
processes, i.e., objects, can be used to implement methods. Since we have not
imposed any type discipline on our language we cannot talk about inheritance,
let alone multiple inheritance, but the possibility of introducing such a type
concept is straightforward.

19.3 .2 M a c h i n e s and Interpreters

Programs specify processes. Machines carry out processes: They provide re
sources to follow the prescriptions of a program. Amongst resources we men
tion storage for program variables, "stacks" of environments to handle process-
related scope mat ters . A machine which carries out the prescriptions of a pro
gram does so according to a prescription of the semantics of the programming
language of tha t program. Such a prescription, when operational, is here called
an interpreter for the programming language.

19 .3 .3 S e m a n t i c N o t i o n s and T y p e s

A c t i o n s

By a process action we understand a smallest, indivisible atomic, step of a
machine when following the prescription of a process command. Examples of
process actions are: following the prescription of an assignment statement, or
a pair of inpu t /ou tpu t commands, or a call command.

19.3 Process Concepts and Semantic Types 687

Processes

By a process we understand a semantic construct: that which is prescribed (to
be, and now being) executed by a machine — a possibly infinite sequence of
process actions. By a process invocation we understand a semantic construct,
the process action that obeys the prescription of a process call command.
Examples of (usually) nonatomic processes are those that result from a ma
chine following the prescriptions of structured (i.e., composite) statements,
and those that result from a machine following the prescriptions of structured
(i.e., composite) process commands.

Objects

In general an object is here considered to be the (the call) invocation of a
process definition. Its object-orientedness becomes all the more clear when
one considers those of process definitions whose bodies are single system com
mands. It will, in general, prescribe its own variables — i.e., the object state.
If the system processes do not refer to any variables declared in embracing
system commands, then we see that object-orientedness is more transparent.

Environments p :ENV — /

The semantic type of environments is a "classical" type that has been con
ventionally used since the early 1960s. Environments are the semantic coun
terpart to syntactic scopes (and syntactic scope bindings). A system process
establishes an environment: It inherits any surrounding environment, which is
empty (nil, void) in the case of the global system process, and overrides (f) this
with the operational semantic meaning of the names (re) defined by the system
process (Sects. 19.5.1 and 19.6.13). A process definition when invoked also es
tablishes an environment: It inherits the environment of the scope in which
the process is defined, and overrides f this with the binding of formal param
eter identifiers to actual argument values, position by position (Sects. 19.4.4
and 19.6.9).

Storages a : S

The semantic type of storages is a "classical" type that has been conventionally
used since the early 1960s. Each system process may contain processes that
operate only on the system-declared variables. Different systems will then each
have their own set of variables, i.e., their own storage.

In the semantic model of this chapter we model the system storage concept
in terms of a single, global metastorage, a : S.

type
a:S = LOC ^ VAL

Since we do not detail a type concept, we shall say nothing about locations
and values.

688 19 SPIL: Simple Parallel, Imperative Language

19.4 Process-Oriented Semantic Types

In addition to the conventional semantic types of environments and storages
the operational semantics definition of this technical note makes use of addi
tional semantic types: the type of unique process identifiers (not to be con
fused with process names1) ; the extension of the conventional environment to
record bindings of (sets of) channels to the (singleton set of) process identifier
created during prologue execution of system process in which they were in
troduced; and a heap for recording process continuations. In addition we also
make use of process states, 7 : T, which record the state of a process tha t is
subject to (eligible for) interpretation actions; the totality, i.e., the set, ip : &,
of all "currently eligible" process states, referred to as the process state con
figuration; and the composition of all three: process state configuration, heap
and storage into the program state, UJ : i?, which the JVext-state ("one-step"
transition) function possibly transforms.

19.4 .1 U n i q u e P r o c e s s Identif iers TT : U

With every process we associate a unique process identifier, 7r : 77.

t y p e 77

When a set of parallel processes, pqs, of process TT are started, whatever se
quence of zero, one or more processes, pi, follows after this set (pqs), it cannot
begin executing before the started processes have all terminated.

Operationally we handle this as follows. Each started process, p q i , pq2,
. . . , pq g , is given a globally unique identification, TT{, for i = 1 to n, and its
own list of process commands, pqi, is affixed a stop(7Tj) process (command).
The "continuation" process structure

6 : ({7Ti,7r2,... ,irq},((pl,irho),irs))

is put on a heap (£ of "to be executed" processes) — where 7rs is the set of
all process identifiers mentioned above, tha t is, initially ITS. Once any of the
processes pq from pqs terminates, then its process marker, stop(7Tj), causes
the removal of 7Tj from the unique continuation structure. Emptiness of the set
{TTI, 7T2,..., TTq} means tha t all of the parallel processes pqs have terminated. It
is then t ime to restore pi and to convert the heap "continuation" 9. Conversion
is explained below.

Similarly for process (the call) invocation. And, each set of channels al
located upon entry to a system process is marked in the heap by a likewise
unique process identifier: (TT, { C I , C 2 , . . . , c^}). See Sects. 19.5.1, 19.6.7, 19.6.9
and 19.6.13 for allocation to the heap, and Sect. 19.6.8 for updates to, inch
conversions of the heap.

We summarise:
1A process definition has one name, but, depending on its number of possibly

recursive (the call) invocations, may have many process identifications.

19.4 Process-Oriented Semantic Types 689

• With every syntactically denned contiguous sequence of process actions
we associate a unique process identifier.

• That is:
• A process definition body gives rise to a unique process identifier.
• Each process command list of a set of process command lists of a

parallel process command gives rise to a unique process identifier.
• A system process command gives rise to a unique process identifier.

• Each channel is associated with the unique process identifier of the system
process in which it is defined.

19.4.2 The Heap £ : S

Processes may (via the call) invoke processes defined in environments differ
ent from the one current at the place of invocation. A sequence of process
commands may, properly within it, contain parallel process commands:

pe_l ; (pe_21 || pe_22 || ... || pe_2n); pe_3

Execution as prescribed by process expression pe_3 does not commence before
all of pe_2i, for all i from 1 to n, have properly terminated.

A heap is an abstract data structure to which arbitrary substructures can
be allocated and from which they can be removed (freed). Furthermore, one
can update these substructures.

We introduce a heap state component, £ : S. The data structures allocated
to the heap stand for process continuations: pairs of a sequence of process
commands and the environment in which they are to be interpreted. Such pairs
designate the program text after a process (the call) invocation, respectively
after a parallel process command.

type
£:E = (77-set ^ (©(terminated)) U (77 i->- Cn-set) /* the heap */
0:0 = (p* x ENV) x Pi-set

The heap, rather arbitrarily, is also used to keep the bindings of sets of system
local channel names to unique process identifiers. See Sects. 19.4.1 and 19.4.3.

The heap also conveniently records all process identifiers ever allocated,
whether still in use (associated with a still visible channel, or a process that
is still running) or out of service (because the channel is no longer visible or
the process has terminated or finished).

. Model Assertions .

(i) The sets of ITS allocated to the heap on behalf of process continuations,
8, are all disjoint, and (ii) the singleton sets, likewise of 7rs allocated to the
heap on behalf of channels, are likewise disjoint from any process continua
tion 7rs, and (hi) the sets [known as process history identifiers] of 7rs' paired
with pairs of process continuation and environments (i.e., process closures)

690 19 SPIL: Simple Parallel, Imperative Language

include the 7rs of its map inverse, a n d (iv) the union set of all the chan
nel binding singleton 7r sets ({ir}) and the union set of all process history
identifier sets 7rs', at any point in the interpretation of a parallel program,
identify the set of all so far allocated channels and processes.2We define, in
Sect. 19.5.4, a function, Bound, which retrieves all these 7r's from the heap.

We summarise:

• A heap is a global state component.
• It records all channels ever allocated by their unique process identifier.
• It also records all process continuations, tha t is, the rest of a process

definition body's process command list after a ca l l command or a parallel
process command — as a process closure:
* together with a defining environment,
• and the set of process identifiers of the called process (a singleton set)

or the parallel command's parallel processes process command.
• If a process has, or a set of parallel processes have all, t e r m i n a t e d then

it is, resp. they are, marked so in the heap.

19 .4 .3 I n p u t / O u t p u t C h a n n e l B i n d i n g s

t y p e
QS = = stop(7r:77)
QI = = in(c7r:(c:Cn,pi:77),v:Vn)
QO = = out(c7r:(c:Cn,pi:77),e:E)
QIO = QI | QO
QIOP1 = QIO x Psl
Psl = {| pi | pl:(P|QS)* •

V i:Nat«i £ i n d s pi \ { len pi}
=>• pl(i)g QIO A pl (len p l)e QIO |}

Syntactically input and output process commands name channels. Since sys
tem process definitions may redefine channels an environment (p) is estab
lished tha t binds, amongst others, channel names to the pair of these channel
names and the unique process identifier of the composite parallel process in
which they occur.

We summarise:

• Input and output commands may be encoded: QIO.
• An encoded guarded command list, QIOP1, has its guard being an encoded

input or output command and its last command being a s t o p marker.

2 Some of these channels and processes may have been abandoned, respectively
terminated. A channel is abandoned when it is no longer in the scope of a running
process.

19.4 Process-Oriented Semantic Types 691

19.4 .4 E n v i r o n m e n t s p : E N V

Variables are bound to their locations. Formal parameter identifiers of an in
voked procedure (definition) are bound to the actual argument values. Process
names are bound to their closure, a pair of the process definition and the envi
ronment in which it was defined. S is the global storage; it binds locations to
values. We only allow simple values: process and channel "denotations" (also a
form of closures) are not allowed to be values. But one could think of another
parallel, imperative language of so-called mobile processes [119,358,446] where
such values are allowed. Each continuation, 9, process structure also contains
the environment current at the instance the set, pqs, of parallel processes was
first encountered.

t y p e
p: ENV = (Vn ^ LOC)

U (C ^ 77)
U (Id jft VAL)
U (Pn ^ CLOS)

CLOS = PD x ENV

We summarise:

• Environments provide for binding of
• variables to locations,
• channels to process identifiers,
• formal parameter identifiers to argument values and
• process definition names to process closures.

19.4 .5 S t a t e C o m p o s i t i o n \P, r, S, S, fi

The operational semantics is expressed as a (Next) s tate transition function,
tha t structural operational semantics, but is written in a variant of
RSL. The crucial issue is: Wha t is the state of a process?

To keep track of all the varying number of specified processes at widely dif
ferent levels of definition, some deeply embedded in surrounding ("outer") pro
cess commands, others less deeply we introduce a state component, ip, which
is a set of individual process states 7. The state 7 is like a continuation (8).
The difference is tha t a state 7 may have translated some of its leading input / -
output process commands of its program text components, phSeqP, from the
purely syntactical representational form (including an ordinary inpu t /ou tpu t
process command, 10) to some internal, the QIO, forms (Sect. 19.6.6). Also,
a state 7 may have translated some of its leading nondeterministic external
choice process commands in a certain way, for instance, from the I0P1 form
to the QI0P1 form, and from there to the NonPs forms (Sect. 19.6.11).

692 19 SPIL: Simple Parallel, Imperative Language

type
IOsPl = SeqPl | NonPs
SeqPl' = P "
p ' = QIO | P | Stop
Stop = = stop(pi:77)
SeqPl = {| pi | pl:SeqPl' •

V x:Nat • x e inds pi \ {1} ^> pl(x)£ QIO
V x:Nat • x € inds pi \ {len pi} =>• V 7r:77 • pl(x) ^ stop(7r) |}

NonPs = ((IO|QIO) x P*)-set x SeqPl
T-T = IOsPl x ENV
ip:\p = r-set
n = (V x S x Z) \ {finish}

The Global Sta te

We summarise:

• The global state consists of three state components:
1. a storage, a : S
2. a heap, £ : E
3. a set of candidates for next actions, ip : W

• Each next action candidate, 7 : r, consists of two parts:
1. a possibly encoded textual part:

• either a simple process command list
• or a set of pairs of a guard and a command list, which stands for a

nondeterministic external choice command
2. and an environment.

A 7 pair (iospl,p)

• is either of the form (pl,p), where p! is a list of encoded process expressions
(in SeqPl),

• or of the form (((ioqios.pl'),pi"),p) where pi', pi" are lists of process expres
sions (in respectively P* and SeqPl) and ioqios is a set of pairs (ioqioj.plj)
(in NonPs) where plj is a list of process expressions and ioqioj is a set
of pairs of possibly encoded input/output clauses and lists of ordinary
(un-encoded) process expressions.

. Model Assertions .
No two elements of ip derive from the same process, i.e., all their encoded
7r's are distinct.

19.5 Initial and Auxiliary Semantic Functions 693

19.5 Initial and Auxiliary Semantic Functions

19.5 .1 Start Func t ion

value
Start: Sy -> U n i t
Start(sys(vs,cs,pdm,ps)) =

let (ip,ir,Trs,a) = System(vs,cs,pdm,ps)([])([])([]) in
NextCont(z/>,[{7r} i->- cs,7rs i->- (finish)],tr)
e n d
assert card ip = card ps = card 7rs

A card d o m a = card vs
A card d o m p

= card d o m vs + card cs + card d o m pdm

19.5 .2 S y s t e m Funct ion

The System function prepares a set, ip, of process continuations: pairs of
program texts (lists of process commands) and environments; a set, ip's, of
unique process identifiers, one for each process (the call) invocation (found in
ps); and (updates) the storage, a. The environment, p, tha t is also (update)
constructed by System is used in (is put into) the process closures of ip. All
channel names are bound, in p, to a unique process identifier. It really doesn't
mat ter which, as long as all channel names of a system receive the same
identifier and tha t identifier is never bound to other systems' channel names.

System(vs,cs,pdm,ps)(p) (£)(cr) =
let (p V) = BindAndAlloc(vs)(p)(cr),

7r:77,7rs:77-set • card 7rs = card ps A Free({7r}U 7rs,£) in
let p" = p' U [c i-)- 7r | c:Cn • c e cs] U

[pn i->- (pdm(pn),p") | pn:Pn • pn € d o m pdm] in
let ip = Distribute(7rs,ps,p) in
(?/>,7r,7rs,(T') e n d e n d e n d
assert card ip = card ps

Observe tha t the definition of p" is recursive. This recursion allows defined
processes to invoke one another or themselves recursively. If such recursion,
for some pragmatic reason or other, is not required, then the process definition
closure need not be given the same environment to which it contributes (p1

suffices). RSL [130,131], strictly speaking, does not permit us to express, in
general, such recursive definitions. In the case of the semantics of this chapter,
one can, however, show tha t there is indeed a suitable solution to the recursive
definition of p".

694 19 SPIL: Simple Parallel, Imperative Language

19 .5 .3 B i n d and A l l o c a t e Funct ions

The BindAndAlloc function is a "classical" variable binding and storage al
location function: To each variable a distinct location is found in storage and
a binding provided in the environment.

BindAndAlloc: Vn-se t -> ENV -> £ ->• £ x ENV
BindAndAlloc(vs)(p)0) =

i f v s = {}
t h e n (p,a)

else let v:Vn • v € vs, loc:LOC • loc ^ d o m a in
let p' = p] [v H-̂ loc],

a' = a U [loc H-> chaos] in
BindAndAlloc(vs \ {v})(p')(cr') e n d e n d

e n d

19 .5 .4 Free and B o u n d Funct ions

The Free function checks tha t a set of process identifiers have never been
allocated to the heap.

Free: 77-set x S —> B o o l
Free(7rs,0 = Bound(£) n ITS' = {}

Bound: S —>• 77-set
Bound(^) =

let 7rs' = { 7r | TT:II • 7T € d o m ^ },

7rs" = U { 7TS | 7rs:77-set • (,7rs") € rng £ } in
7rs' U 7rs" e n d
assert d o m £ C 7rs' U 7rs"

Free, Bound express whether a set of unique process identifiers are free, i.e.,
not used, not Bound, in the heap. Bound computes all process identifiers ever
(i.e., so far) bound to channels (ITS'), respectively processes (TTS").

. Model Assertions .

(i) If a 7r is in the definition set, i.e., the d o m a i n of the heap map, then it
designates a set of channel names, and (ii) if a set {TTI,TT2, • • •, TT„} is in the
domain of the heap map then it designates a pair of a process closure and
a set, 7rs of process identifiers such tha t {TTI,TT2, • • •, TT„} C TTS.

19.5 .5 D i s t r i b u t e Func t ion

The Distribute function creates a set of process continuations, 7. These are
pairs of process command sequences ending in a stop(7r) clause. The Next-
state transition function will inspect the head of these command lists of the

19.6 Semantic Functions 695

continuation in ip. The stop(7r) clause, when encountered, shall contribute to
the eventual removal from the heap, £, of the process closure allocated there
when certain process commands were first encountered. In the case of the
initial system initialisation the clause f i n i s h is being retrieved — signifying
that the whole program has terminated (Sects. 19.5.6 and 19.6.14).

Distribute: 77-set x P-set x ENV -> f
Distributees,pqs,p) =

if 7rs={} /* assert: */ pqs={}
then let 7r:77 • 7r £ 7rs, pq:P* • pq € pqs in

{(pq^(stop(7r)),p)} U Distributees \ {7r},pqs \ |pq},p) end
else {}

end
pre card 7rs = card pqs

The Distribute and the BindAndAUoc functions, as a technicality, are ex
pressed using recursive descent on finite sets.

19.5.6 Transition Loop

NextCont: Q ->• Unit
NextCont(V>,£,o-) =

let Lij = Next(^,^,tr) in
if Lij = finish then skip else NextCont(ui) end end

The NextCont function has the Unit type since it may never terminate! We
often define processes to willfully never terminate.
. Model Assertion .
If the interpreter encounters f i n i s h then the global system program has
terminated.

19.6 Semantic Functions

19.6.1 The JVext-State Transition Function

The iVext-state transition function inspects an ui state and delivers, always,
an ui state.

Next: tt ->• fl
Next(ip,£,cr) = ... /* defined case by case */ ...

Thus, in RSL, we write a structural operational semantics, i.e., a transition sys
tem definition of "mechanical", step-by-step executions of parallel programs.

The idea is that the combined, i.e., the total state, ip, of all processes is
investigated by inspecting an arbitrary component, 7, (of interest) "each time
round the Next loop" (where NextCont defines that loop):

696 19 SPIL: Simple Parallel, Imperative Language

Next({((cmd)^pl ,p)} U ip,£,a) = ...
Next({(((nd,pq),pl),p)} U ^,a) = ...
a s s e r t 3 7r:77 • pl(len pi) = stop(7r)

There are, as shown, two forms potentially subject to inspection. Here pi
stands for encoded process expression lists (always ending with a stop(7r)
command); pq stands for ordinary unencoded process expression lists; cmd
stands for a single, possibly encoded process expression; and nd for a set of
possibly encoded inpu t /ou tpu t ("guard") commands.

The reader is directed towards the special, not strictly "RSL kosher(!)",
use of formal parameter expressions as indicated above. The union of one (or,
as for the inpu t /ou tpu t rendezvous, two) process states, a, with a "remain
ing" process state configuration, ip, expresses a suitable nondeterminism by
the program interpreter: namely tha t process "progress" is arbitrary. Which
of the many processes makes "next" steps depends on so many other circum
stances than those explicit from the program text: the availability of machine
resources, the degree to which "real" concurrency can be provided for in the
actually executing programs, etc.

19.6 .2 T h e A s s i g n m e n t S t a t e m e n t

Such a component, amongst many others, but one which is ready for execution,
could be the "atomic" assignment statement:

Nex t ({ ((asgn(v ,e) r P l , p)} U ^,a) =
let loc = p(v), val = Eval_Expr(e) (p)(cr) in
let a' = a f [loc i->- val] i n
({(pl,p)} U ip,£,<r') e n d e n d
pre v £ d o m p A loc £ d o m a A pi ^ ()

We see tha t the assignment statement is executed and disappears from the W
component.

We also get the meaning of an assignment: tha t of evaluating its "right-
hand side" expression and binding its value to the location of the "left-hand
side" variable.
. Language Assertion

If evaluation of the expression terminates then the assignment statement
will terminate. (It is here assumed tha t the variable is known.)

19 .6 .3 T h e case S t a t e m e n t

Now to the structured statements. First, the case switch:

19.6 Semantic Functions 697

Next({((cas(e,sw))~pl,p)} U ip,^,a) =
let val = Eval_Expr(e) (p)(cr) in
if val € d o m sw

t h e n let pq = sw(val) in ({(pq~pl,p)} U ?p,£,,cr) e n d
e lse chaos

e n d e n d
pre pi ^ ()

It generalises the two-way if t h e n e lse e n d switch. The Next transition is
from the structured cases switch, if applicable, by replacing tha t statement
by the selected list of process commands.

The essential aspect of the case s tatement has been specified: the selection,
if possible, of a continuation amongst a set of alternative such. If no case-list
"guard" matches the case-expression value then chaos ensues: what happens
next is left undefined!
. Language Assertion

If evaluation of the expression terminates and if interpretation of the selected
case branch terminates then the case statement will terminate.

19.6 .4 T h e while L o o p

A transition involving the whi l e loop:

Nex t ({ ((whi (e ,pq) r P l , p)} U ^,a) =
let val = Eval_Expr(e) (p)(cr) in
if val

t h e n ({(pq~(whi(e,pq))~pl,/9)} U ip£,a)
else ({(pl,p)} U y,£,<r)

e n d e n d
pre pi ^ ()

also results in either removing it altogether from the \P s tate component, or
in prefix-appending its body to the process command list whose first element
was tha t whi l e loop. This essentially expresses the meaning of a whi l e loop
through its rewriting!
. Language Assertion

If the evaluation of the while expression when first encountered terminates,
and if every subsequent interpretation of the while body of process expres
sions terminates, then the while clause terminates.

19.6 .5 T h e repeat until L o o p

Similarly for the repeat unt i l loop:

698 19 SPIL: Simple Parallel, Imperative Language

Next({((rep(pq,e))^pl,p)} U ip,£,a) =
({(pq~(whi(e,pq))~pl,p)} U ip£,a)

pre pi ^ ()

which likewise leads to a rewrite, i.e., a reshuffling of an appropriate state W
component.

. Language Assertion

A language semantics assertion similar to tha t for the while loop can be
formulated.

19.6 .6 S i m p l e I n p u t / O u t p u t P r o c e s s e s

Transitions involving the simple, atomic process synchronisation and commu
nication commands, either input or o u t p u t , result in their replacement by
almost similar in, respectively out , commands. The replacements encode the
proper, unique process identifier to which the command name is bound in
the environment. The issue here is tha t one and the same channel name may
have been declared in two different contexts which might bind these names to
different process identifiers — hence they are not designating the same, but
instead different channels.

Next({((input(c,v))~pl,p)} U ip,£,a) =
({« in ((c ,p (c)) ,v) r P l , p)} U ip&a)
pre pi ^ () A v £ d o m p A p(v) £ d o m a

A c € d o m p A c £ d o m £

Next({((output(c,e))~pl,p)} U V,*>) =
({((out ((c ,p(c)) ,e) r P l ,p)} U y,£,<r)
pre pi ^ () A c £ d o m p A c £ d o m £

If we are i n a 1 ? state where there is a "match", tha t is, one process wishes to
input on a channel and another wishes to output on tha t channel, then the
communication may take place. The value of the expression is communicated
by being assigned to the receiving process's variable v.

Next({((in((c,7r),v))^pl,p),((out((c,7r),e))^pl',p')} U 4>,t,a) =
let loc = p(v), val = Eval_Expr(e)(p')(tr) in
({ (p l ,p) , (p lV)} U y,£,<r t [loc H- val]) e n d
pre pi ^ () A v £ d o m p

A p(v) £ d o m a A c £ d o m p
A 7T £ d o m £ A c £ £(7r)

This last transition rather neatly expresses why one refers to the inpu t /ou tpu t
process commands as defining a rendezvous of two processes: their handshake
synchronisation and communication (of a value from one process to a location

19.6 Semantic Functions 699

of the local storage of another process). The output clause expression is not
evaluated till the rendezvous actually takes place.

. Model Assertion .
The two process states represent different processes: A process cannot syn
chronise and communicate with itself.

19.6 .7 T h e Paral le l P r o c e s s C o m m a n d , ||

N e x t ({ ((p a r (p q s) r P l , p) } U xj,£,a) =
let 7rs:77-set • card 7rs = card pqs A Free(7rs,£) in
let ip' = Dis t r ibu tees ,pqs ,p) ,

£' = £ U [7TS ^ ((pl,p),7rs)] in
(ip1 U ip,£',a) e n d e n d
pre pi ?M) A ...

The Distribute function yields a process continuation, 7, for each of the par
allel process expressions in pqs, and assigns it to the set, the W component, of
all such process continuations. The rest of the process expression, pi, after the
parallel process expression (essentially after pqs) is temporarily allocated to
the heap. This models the semantics of the parallel process expression: Only
after all of the parallel processes, now in ip', have terminated, will the process
expression pi be honoured.

19.6 .8 T h e stop P r o c e s s Technical i ty

When the interpreter encounters a stop(7r) clause then the heap is inspected.
If the process identified by the n was the last of a set of one or more parallel
processes or was tha t of a process (call) invocation, then the invoking process
continuation is restored and the original set of processes (represented by their
identifiers) is marked as having t e r m i n a t e d .

Next({((stop(7r)),p)} U xj,£,a) =
let 7rs:77-set • 7rs £ d o m £ A 7r £ 7rs in
let ((pq,/9'),7rs') = £(TTS) in

let £' = if7rs={7r}
t h e n £({71"}) U [ITS' H-» t e r m i n a t e d]
e lse £\7rs U [7rs\{7r} \-> ((pq,p'),7rs')] e n d in

if TTS={TT} t h e n ({(pq,p')} U ^,£',tr) e lse (ip,^',a) e n d
e n d e n d e n d
assert 7rs C 7rs'

It is emphasized tha t the use of the stop(7r) clause is a technicality. Other
means, other encodings could have been defined. In an operational semantics
there usually are several such rather detailed and somewhat ad hoc technical
choices.

700 19 SPIL: Simple Parallel, Imperative Language

19.6 .9 T h e P r o c e s s call C o m m a n d

Invoking a denned process is t reated like start ing a single parallel process.
This is so since a denned process may have been defined in a scope, i.e., with
an environment (p'), different from tha t of the invoking process (p).

Next({((call(pn,el))^pl,p)} U ip,£,a) =
let ((idl,pq),//) = p(pn) in
let p" = p ' t[idl(i)H^Eval_Expr(el(i))(p)(cr) | i :Natn £ inds el] in
let -rr-.n • Free({7r},0 i n
({(pq^(stop(7r)),p")} U y,£ U [W ^ ((pl,p),{7r})],a)
e n d e n d e n d
pre pi 7̂ () A pn € d o m p A l en el = l en idl A ...

Actual arguments are bound to formal parameters, resulting in p".

19 .6 .10 Internal N o n d e t e r m i n i s t i c P r o c e s s e s , [~|

The definition of the internal nondeterministic process command is simple.
The let clause expresses the internal nondeterministic choice: An arbitrary
process expression, pq, from amongst pqs is chosen.

Nex t ({ ((i nd (pqs) r P l , p)} U V,£,<T) =

let pq:P* • pq € pqs in ({(pq^pl,p)} U ?/>,£,c) e n d
pre pi ^ (> A ...

19.6 .11 E x t e r n a l N o n d e t e r m i n i s t i c P r o c e s s e s , []

The Next transition on external nondeterministic process command processes
has to prepare for the eventuality tha t any number of the external nondeter
ministic alternative process potentialities is or will be ready to either input or
output from ("completely") other processes. So all alternative process com
mands must, somehow, have their first, an input or an output command,
be prepared, as were "ordinary" inpu t /ou tpu t commands, by finding the ap
propriate channel bindings. This is done by the MakelO function. Then we
prepare a set of potential alternative process potentialities, one of which will
eventually be selected and all the others discarded.

Nex t ({ ((xnd (gs) r P l , p)} U ^,<T) =
let g = { MakeIOpq(io)(p) | io:IOPl • io £ gs } in
({((g,pl),p)} U y,£,<r) e n d

MakelO: IOP1 -> ENV -> QIOP1
MakelO ((io,pq))(p) =

case io of:

19.6 Semantic Functions 701

input(c,v) ->• (in((c,p(c)),v),pq),
output(c,e) —• (out((c,p(c)),e),pq)

e n d

assert v £ d o m p A 3 7r:77 • 7r £ d o m (A c £ £(7r)

19.6 .12 N o n d e t e r m i n i s t i c I n p u t / O u t p u t P r o c e s s e s

There are now three possibilities of synchronisation and communication in
volving external nondeterministic process alternatives:

• A potential external nondeterministic process alternative (of one process,
7T) is enabled to input from another potential external nondeterministic
process alternative (of another process, TT'), which is enabled for output .

Next({(({(in((c,7r),v),pq)} U iopqps,pl),p),

((({(out((c,7r),e),pq')} U i o p q p s ') , p l V) } U ip&a) =
let loc = p(v), val = Eval_Expr(e) (p')(cr) in
({ (pq~pl ,p) , (pq '~p lV)} U ^,C,cr t [loc ^ val]) e n d
pre 7T € d o m (A c £ £(-7r) A v € d o m p A loc £ d o m a A

p ^ A p l ^ O A P 1 ' # 0
assert {(pq^pl,p),(pq'^pl ' ,p ')} n i' = {}

• A potential external nondeterministic process alternative (of one process,
7T) is enabled to input from another (not nondeterministic) process (TT1),
which is enabled for output .

Next({(({(in((c,i),v),pq)} U iopqps,pl),p),

« o u t ((c , i) , e)) ~ P r y) } U il,£,o) =
let loc = p(v), val = Eval_Expr(e) (p')(cr) in
({(pq^pl,p),(pq'^pl ' ,P ')} U ^,C,cr t [loc ^ val]) e n d
pre / * similar to above */
assert / * similar to above */

• And vice versa wrt. input and output .

Next({(({(out((c,i) ,e),pq)} U iopqps,pl),p),
« i n ((c , i) , v) r p l , / /) } U ^,a) =

let val = Eval_Expr(e)(p)(tr) , loc = p'(v) in

({ (pq^p l ,p) , (p l ' y)} U $£,a t [loc ^ val]) e n d
pre / * similar to above */
assert / * similar to above */

Again we see the rendezvous of two distinct (hence parallel) processes over a
channel, a "handshake" synchronising and communicating, as mentioned in
Sect. 19.6.6.

702 19 SPIL: Simple Parallel, Imperative Language

19 .6 .13 T h e E m b e d d e d S y s t e m P r o c e s s C o m m a n d

The embedded system process is very much like the global system process
(Sect. 19.5.1).

Next({((sys(vs,cs,pdm,ps))^pl,p)} U ?/>,£,tr) =
let (ip',Tr,irs,cr') = System(vs,cs,pdm,ps)(p)(£)(cr) in
(?/>' U </>,£ U [{?r} H> CS,7TS H> ((j)l,p),tp')],a') e n d

pre pi ^ (> A ...
assert ip' fl ^={}A{TT}UTTS fl Bound(£) = {}Acard ^ ' = c a r d psA...

The auxiliary function System was defined in Section 19.5.1.

19 .6 .14 A finish P r o c e s s Technical i ty

If when inspecting a process continuation in the \P component the interpreter
finds a f i n i s h clause, then we can assert tha t the program is terminating.

Next({((finish),p)} U tp,^,a) = finish
assert: £ = [] A ip = {}

. Model Assertion .
When a f i n i s h clause is encountered then the process state configuration
is just a singleton set. Tha t is, ip is empty. And the heap type will consist
only of the process identifiers of (all) processes ever activated (but now
terminated) and those of all channels ever instantiated.

19.7 Discussion

19.7 .1 Genera l

We have defined the syntax of a nontrivial CSP-like language. And we have
given an operational, i.e., a computational style semantics of this language.
To do so we contrived a rather complicated notion of configuration. The main
idea of this chapter was to introduce the reader to this kind of structural
operational semantics. We find it a useful exercise to understand this seman
tics. The semantics definition style of this chapter offers one way of defining
concurrent systems and languages. Although unwieldy, it may serve well in
smaller applications than the one shown here.

Use of the structural operational semantics definition techniques of Plotkin
[402] is advised since it lends itself more to a proof-oriented specification. We
refer to current textbooks on semantics covering the operational semantics
definition style [93,158,432,448,499,533].

19.8 Bibliographical Notes 703

19.7.2 Principles, Techniques and Tools

We summarise:

Principles. Parallel Programming Language Definitions: Concurrent pro
grams are best characterised, it appears, by their transitions: from program
point to program point, usually from points of interactions between threads
of programs, i.e., processes, or between the concurrent program and its en
vironment. As a result, it is advisable to model concurrent programs, and
hence parallel programming languages, by the kind of structural operational
semantics exemplified in this chapter. •

Techniques. Parallel Programming Language Definitions: A first decision
that has to be made wrt. the definition of the semantics of a parallel program
ming language is that of the "atomicity" language constructs: The "coarsest
atomicity" is that of assembling all internal actions between synchronisation
and/or communication points of a process into one atomic step. The "finest
atomicity" is that of considering the smallest possible evaluation step of also
the declarations, expressions and statements between synchronisation and/or
communication points as "atomic steps". From the decision of what consti
tutes an atomic step follows decisions wrt. configurations. •

Tools. Parallel Programming Language Definitions: Since structural oper
ational semantics can often be written in the form of algebraic semantics
rewrite rules [63,340], tools like interpreters for such algebraic semantic speci
fication languages as Caf eOBJ [123], Casl [40,371], and, especially, Maude [81],
are interesting for checking out consistency and (relative) completeness of a
structural operational semantics. •

19.8 Bibliographical Notes

The language of this chapter is a variant of CSP: Communicating Sequential
Processes. In [213] the semantics of CSP is given in terms of a number of
laws, i.e., axioms that determine properties of CSP programs. In [436] the
semantics of CSP is given in a variety of ways: operationally, a la Plotkin
[402], denotationally, where the semantic types are traces (of behaviours),
and algebraically, i.e., in terms of laws. Kahn's approach to language design
and language definition is also appealing [252].

In [119] we give a hybrid way of defining a semantics for a variant of CSP.
A proper theoretical foundation for this approach has yet to be given. The
language defined in [119] allows for the dynamic creation of processes, and for
certain forms of process "mobility". By a mobile process we shall understand
a process which can be communicated via channels — and thus which resides
on a variety of processors. The 7r-calculus [358,446] provides an exciting theory
for studying process mobility.

704 19 SPIL: Simple Parallel, Imperative Language

19.9 Exercises

E x e r c i s e 19 .1 Multiple Client/Single Server Connectors. There is given a
very simple parallel programming language, C„SiL, whose only programs are
of the following multiple client/single server kind:3

t y p e Cldx, M, T, E, r c = C l d x ^ r
v a l u e jc'-Tc, o"£>
c h a n n e l {cs[c]:M|c:Cldx}
v a l u e

system: U n i t —>• U n i t
client: cCldx —> r —> w r i t e , r e a d cs[c] U n i t

server: S —> r e a d , w r i t e {cs[c]|c:Cldx} U n i t

system() = ||{client(c)(7o(c))|c:Cldx} || server(cr)

client(c)(7) =

le t m = some_c_value(7) i n
cs[c]!m; / * request service */
le t m' = cs[c]? in / * service delivered */
client(c)(next_c_state(m')(7)) e n d e n d

server(cr) =
|]{let m = cs[c]? in / * receive service request */

l e t m' = some_s_value(c,m)(cr) in / * perform service */
cs[c]!m'; / * deliver service result */
server(next_s_state(i,m')(tr)) e n d e n d | c:Cldx}

Assume the "some" and "next" functions. Programs c „ s i p in C„SiL are con
nectors between multiple clients and a single server communicating over sim
ply multiplexed channels.

19.1.1 Formalise a syntax for C„SiL programs. Assume the "some" and "next"
functions.

19.1.2 Define a predicate which expresses tha t C„SiL programs are well
formed.

19.1.3 Define appropriate semantic types of run-time contexts and states and
a set of next state functions tha t specify an elaboration of C„SiL programs
in the style of this chapter.

C„SiL programs differ only in the abstract "some" and "next" functions for
which you can postulate two sets of semantic elaboration functions Val_fcts
and Int fcts.

3CnSiL programs are here expressed in a syntax similar to RSL. But CnSiL pro
grams are not to be considered RSL programs.

19.9 Exercises 705

Exercise 19.2 Multiple Client /Multiple Server Connectors. There is given a
very simple parallel programming language, CmS„L, whose only programs are
of the following multiplexed client/server kind:

type M, r, E, Cldx, Sldx, r c = C l d x ^ r , Ss=S\dxT^S
value jc'-Tc, vs'-^s
channel {cs[c,s]:M|c:Cldx,s:Sldx}
value

system: U n i t —>• U n i t
client: cCldx —> r —> read,wr i te {cs[c,s]|s:Sldx} U n i t
server: s:Sldx —» S —» wr i te , read {cs[c,s]|c:Cldx} U n i t

system() = (||{client(c)(7o(c))|c:Cldx}) || (||{server(s)(crs(s))|s:Sldx})

client(c)(7) =
let m = some_c_value(7) i n
0{cs[c,s]!m; / * send service request * /

let m' = cs[c,s]? i n / * receive service result * /
client(c)(next_c_state(s,m')(7)) end | s:Sldx}

end

server(s)(cr) =
0 { le t m = cs[c,s]? i n / * receive service request * /

let m' = some_s_value(c,m)(cr) i n / * perform service * /
cs[c,s]!m'; / * deliver service result * /
server(s)(next_c_state(c,m')(7)) end end | cCldx}

Assume the "some" and "next" functions. Thus programs c m s n p m CmSnL
are very simple connectors between multiple clients and multiple servers com
municating over doubly multiplexed channels. Thus we assume that all servers
can perform all the desired functions for any of the multiple clients.

19.2.1 Formalise a syntax for CmS„L programs. Assume the "some" and
"next" functions.

19.2.2 Define a predicate which expresses that
cm snP programs m CmSnL are

well formed.
19.2.3 Define appropriate semantic types of run-time contexts and states and

a set of next state functions that specify an elaboration of CmS„L programs
in the style of this chapter.

CmS„L programs differ only in the abstract "some" and "next" functions for
which you can postulate two sets of semantic elaboration functions Val_fcts
and lnt_fcts.

Exercise 19.3 Mobile Processes. There is given a "funny little, unstruc
tured" parallel programming language, M77L, with the following constructs:

706 19 SPIL: Simple Parallel, Imperative Language

1. process type 77
2. process definition p() = body ;
3. process variable process_var[0..]:TJ
4. process_var[i] := start p() ;
5. send value_expression to process process_var[j] ;
6. receive ordinary_var from process process_var[k] ;

i j,k are natural number-valued expressions, p stands for a variety of process
names: p, pi, ..., pn, q, process_var likewise for a variety of process vari
able names. The idea of this language is that a program consists of a single
definition of a process identification type (item 1.), of a number of process defi
nitions (item 2.), and a process variable declaration (item 3.). Process variable
declarations designate flexible vectors of an indefinite number of atomic type
77-valued variables. (For simplicity you need only one such process variable
declaration.) The process definition bodies consist of a sequence of ordinary
variable declarations and of a statement sequence. Statements are either the
usual complement of ordinary assignment, while-loop, if-then-else and other
such statements — containing a usual complement of expressions. Statements
are, additionally, selected from the three statements shown in items 4.-6. A
program consists of one, an initialising process statement, for example pro-
cess_var[0] := start p() (item 4.). Finally the idea is that every process —
once started — is assigned a unique process identifier being also the value of
the start p() expression. Execution of a start clause (item 4.) in a process
leads to the start up of a new process of the designated kind, the allocation
of a fresh, that is, unique process identification to this process and the assign
ment of that identification to the designated process variable cell. Execution
of a send clause (item 5.) first leads to the evaluation of the value expression,
resulting in a value, v, then to the offering of output v to the process identi
fied by the designated process variable cell. Execution of the send clause only
completes once the identified process has accepted v. Execution of a receive
clause (item 6.), by some process, ir, proceeds as follows. Process ir, in a sense,
by attempting to elaborate the receive clause, declares itself willing to receive
any value from any (other) process. If no process is offering a value for process
7r then execution of the receive clause waits until such a value is offered, if
ever.

19.3.1 Narrate and formalise a syntax for M77L programs. Assume a category
of ordinary statements.

19.3.2 Narrate and define a predicate which express that m7rp programs in
M77L are well formed.

19.3.3 Narrate and define appropriate semantic types of run-time contexts
and states and a set of next state functions that specify an interpretation
of M77L programs in the style of this chapter.

State all appropriate assumptions.
(M77L is a simplified version of the language presented in [119].)

Part VIII

CLOSING

20

Closing

• The prerequisi te for studying this chapter is that you have now ended
the study of this, the second, volume in our series of three volumes on
software engineering.

• The aims are to present a conclusion that covers Vols. 1 and 2 of these
textbooks on software engineering, and to present a preliminary answer to
What's Next?

• The objective is to properly conclude Vol. 2, and to properly link Vols. 1
and 2 to Vol. 3.

• The t r ea tmen t is discursive.

20.1 A Summary

Volume 1 of this series of textbooks on software engineering focused on three
aspects: (i) on the basic discrete mathematics used in most model-oriented
formal specification languages, (ii) on the basic principles and techniques of
abstraction and formal modelling, and (hi) on propagating, hand-in-hand with
material on abstraction and modelling, the RAISE Specification Language, RSL.

The present volume has focused on four aspects: (iv) further principles and
techniques of abstraction and formal modelling (specification facets: hierar
chies and compositions, denotations and computations, and a crucial concept,
which then is treated in various other guises in several chapters of this volume,
that of time, space and time/space), (v) linguistics (pragmatics, semantics,
syntax, and their summary in semiotics), (vi) diagrammatic and temporal
specification techniques (modularity, automata and machines, Petri nets, mes
sage and live sequence charts, statecharts, and temporal logics [quantitative
models of time]), and (vii) language definitions (of applicative [i.e., functional],
imperative, modular and parallel programming languages) and how to develop
prescriptions for what and how compilers should translate.

710 20 Closing

20.2 Conclusion: Volumes 1 and 2

The division of topics covered by Vols. 1 and 2 was determined on pragmatic
grounds: between what could be considered basic principles and techniques
and what could be considered more advanced principles and techniques. With
the basic ones the software engineer can specify simple abstract software de
signs. With the advanced principles and techniques the software engineer can
specify requirements and domains.

So, in one sense, we are, at the completion of Vol. 2, at road's end! We
have presented, and expectedly you have learned, a necessary and, with the
formal specification languages known today, sufficient set of tools. We have
also presented principles and techniques for the abstract, formal modelling of
such phenomena as are encountered when embarking upon software develop
ment, and such concepts as are "put inside" computers, i.e., when concluding
software development.

The hedge above, "with the formal specification languages known today",
forewarns the reader that the immediate and the longer term futures will
offer new specification paradigms and new specification languages. Some of
these will be cleaner and more elegant than what we have today. Most others
will not. Yet other proposals will offer means to abstractly model facets of
phenomena and, notably, concepts for which we today seem not to have proper
tools. We are thinking, as an example, of modelling (autonomous) agents
which communicate messages of knowledge and belief of, and in, one another's
knowledge (i.e., state), or of promise and commitment, and so on.

So be prepared to look around. With the ballast provided by Vols. 1 and 2
it should not be difficult for the practicing software engineer to keep abreast.

20.3 Preview of Volume 3

And, in another sense, at the completion of Vol. 2, we are at another road's
start!

Common to both Vols. 1 and 2 is that these two volumes focus on for
mal modelling and formal specification. Nothing substantial was said about
informal, i.e., natural and professional language informal specification.

The crucial points of Vol. 3 are summarised by these questions

1. How does one start?
2. How does one make formal models readable by everyone concerned?
3. How does one decompose overall software development into manageable

and believable parts?

We shall try address these three issues below.

1. 'Start' is meant in at least two ways.

20.3 Preview of Volume 3 711

(a) One starts, ideally, with the development of a model of the domain,
then goes on to model the requirements, and finally one designs (and
hence implements, i.e., "codes") the software.

(b) And, one starts by rough sketching, i.e., by informally describing
(prescribing, specifying) phenomena and concepts (of the domain,
the requirements, the software). One then proceeds to analyse these
sketches, forming concepts, and establishing terminologies (of the do
main, of the requirements, and of the software — three different sets
of terms), and proceeds further to precisely narrate, i.e., again infor
mally describe (prescribe, specify) the domain, the requirements, the
software — the latter possibly hand-in-hand with their formalisation.

(c) Finally, one really starts by identifying phenomena and concepts, by
analysing these into entities, functions, events and behaviours.

2. Item 1 contained the answer to the second question above: How does one
make formal models readable by everyone concerned? One does so by
carefully constructing informal descriptions (prescriptions, specifications)
of the formal models.

3. Items 1 and 2 also contained the answer to the third question above:
How does one decompose overall software development into manageable
and believable parts? One does so by phasing the development into three
well- and predefined phases, and each of these into well- and predefined
stages, and these stages into steps. The latter are well-defined, but not
predefined: arising, as they do, out of the specifics of the problem at hand.

Some comments may be in order:

3. Item 3 above, then, basically, announced a main purpose of Vol. 3: to bring
in material that covers in "excruciating" details, the principles, techniques
and tools of three phases of software development: domain model develop
ment, requirements model development, and software design, and within
these a great number of mandatory stages, and optional and mandatory
steps.

2. Item 2 above implies that Vol. 3, after an introductory chapter on the
domain/requirements/design triptych, restarts with six chapters on sub
jects that "cut across", i.e., are common to, the three parts on domain
engineering, requirements engineering, and computing systems (i.e., no
tably software) design. This preamble covers documentation principles
and techniques (documents), methods and methodology, models and mod
elling, descriptions (theory and practice), on defining and on definitions,
and Michael Jackson's description principles. (The last two uses of the
term descriptions also comprise prescriptions and specifications.)

1. Statement 1(c) implies Vol. 3's Part III: Descriptions: Theory and Practice
with its Chaps. 5, 6 and 7: Phenomena and Concepts, On Defining and
On Definitions, and Jackson's Description Principles. Here are shown —
from very basic principles — how one really "starts"!

712 20 Closing

Welcome to Vol. 3. Have as much fun reading it as we had in writing it!

20.4 "UML"-ising Formal Techniques

The present volume deviates from Vols. 1 and 3 in having three chapters and
a crucial part of yet another chapter authored by former students of mine.
Thereby this volume is able to show how many important formal specification
techniques can be, as we term it, "UML"-ised. Rather than trying to formalise
UML, we have taken the original notational subsystems, variants of which are
claimed to have been incorporated into UML, under other names, and then we
show how (yet other) variants can be used in conjunction with model-oriented
formal specifications — as here, expressed in RSL.

We find it futile to try formalise UML, for several reasons.

• First, because UML initially did not build on sound foundations. When UML
first came out it did not reflect 20-30 years of painstaking advances in
programming methodology. Where it seemingly did, for example, inclu
sion of entity set relations (ER), it was not, as is ER, based on simple, yet
sufficient foundations. Petri nets, in some shape or other, appear in UML,
but it was not clear which variants of Petri nets, or whether the seman
tics of Petri nets was being followed. Similar to message sequence charts
and statecharts — "by any other name they did not smell as sweet" in
UML, and that is somehow rather unfortunate — because whatever UML
was trying to achieve, Broadness of application, convenience of notation,
and multiplicity of views,1 was, we believe, somewhat compromised. The
diagrammatic notations of the ER's class diagrams, of Petri nets, of mes
sage and live sequence charts and of statecharts are important. Not all
software engineers "think" or "read-consume" textually. Some are aided,
significantly, by reasoning over diagrams.

• Second, because UML lacks abstraction, it has no reasoning "power" (no
logic, i.e., no proof system), and it has no way of relating two different
class diagrams — is one an implementation of the other? That is, it has
no notion of refinement or transformation, and has no precise language for
expressing the nondiagrammatic parts of a specification (save those of the
object constraint language, OCL).

• Third, UML is a moving, unpredictable target: It makes little sense to follow
on the heels of, or to try influence language design decisions made by
the Object Management Group, OMG, which has been charged with that
responsibility.

We are quite confident that the "UML"-ised formal combinations of RSL with
class diagrams, Petri nets, message or live sequence charts, and with state-
charts that you find in the present volume are, relatively speaking, far more

This positive phrase is due to Chris George.

20.4 "UML"-ising Formal Techniques 713

precise and cover as much ground as one can possibly expect. Where UML's
class diagrams may have a few more twists (i.e., associations, etc.) to them,
we find that, for example, RSL can easily express these for every specific in
stance. (But we find it increasingly cumbersome to formalise several of these
associations, etc.)

Part IX

APPENDIXES

A

Naming Convention

Throughout the three volumes of this book we reasonably consistently use the
following naming conventions.

1. Names: Names serve to identify. In order to discuss matters one must
identify phenomena and concepts, that is, give them names.
(a) Categories of specification concepts: Specifications always con

ceptualise. Even when we name phenomena, these names represent
not the phenomena but concrete concepts thereof.
In specifications (descriptions and prescriptions) we make use of the
following specification concepts:
• types and values of types,
• functions,
• variables,
• channels,
• schemes,
• objects and
• parameters of types, values, functions and classes.

(b) Choice of identifiers: The specifier is free to choose how to spell
names. But generally it seems to be a good idea to deploy a consistent
and known naming scheme. In the following sections we bring in the
convention that has been employed in these volumes.

(c) Mnemonics: We try to use such abbreviations of full names that are
easy to remember yet do not fill up text and formula lines. Thus Stmt
stands for the syntactic type of statements and stmt for a particular
value of that type.

(d) Identifiers: Names are expressed in terms of identifiers. Identifiers are
finite, usually short sequences of one or more alphanumeric characters.
Sometimes we use infix underscore, , to help compose names into
memorisable identifiers. By an alphanumeric character we mean either
one of the 26 Roman letters, or some Greek letter, or a digit. Some
times a succession of definitions of similarly typed value identifications

718 A Naming Convention

has the first be an ordinary identifier, say id, as described above, while
subsequent identifications are primed versions of the identifier, that
is, id', id", id'", etcetera.

2. Type names: There are basically three kinds of types:
• syntactic types,
• semantic types and
• pragmatic types.
All our type names start with a capital letter.
(a) Syntactic types: Letters of syntactic type names, except the ini

tial letter, are usually spelled in lowercase. Sometimes syntactic type
names are composed from two or rarely three sub-names, each starting
with a capital letter: GotoStmt.

(b) Semantic types: Letters of semantic type names are usually all
spelled in uppercase.

(c) P ragmat i c types: We usually treat pragmatic types, i.e., types of
practical convenience, as syntax types.

3. Value names: We spell all letters of all identifiers of values in lowercase.
And we usually try define such names that are lowercase, usually abbre
viated versions of the names of the type of these values. Thus if the type
name is PartNumTbl then a value name of that type might well be pnt.

If a value identifier names a set of element values of type B then we
usually use the identifier bs. If it names a list of elements then b£ (or bl)
is used. If it names map values (from type B to C) then bmc may be used.
And so on.

4. Special semantic type and value names: We consider the names of
three kinds of semantic types and their corresponding values:

• contexts or environments,
• states and
• configurations of contexts (or environments) and states.
(a) Context or environment names: For contexts we normally use

the value and type name abbreviations: ctx:CTX or decorated versions
thereof. For environments we normally use the value and type name
abbreviations: p:ENV or decorated versions thereof.

(b) Sta te names: For states we normally use the value and type name
abbreviations: a:S or decorated versions thereof.

(c) Configuration names: For configurations we normally use the value
and type name abbreviations: jm.r or 6:0 or decorated versions thereof.

5. Function names: Function names range over a widest possible variety
of identifiers. Special categories of functions are listed below.

6. Auxiliary function names: Auxiliary functions are introduced in or
der to express main function definitions as succinctly as possible. Some
auxiliary function categories, but far from all, are mentioned next.

A Naming Convention 719

(a) Observer functions: Observer functions, obs_B, apply to entities of
type sorts, say of type A, and yield attributes or subentities of type B
of these. Observer functions are postulated. They cannot be defined.

(b) Is functions: Is functions, is_A, apply to entities of type sorts and
yield truth values: true if the entity is of type A, false otherwise. Is
functions are postulated. They cannot be defined.

(c) Well-formedness functions: Well-formedness functions usually have
their function names composed from a wf_ prefix. Well-formedness
functions apply to values of concrete types to define those values which
belong to a desired, i.e., well-formed, subtype. See also the next item:
invariant functions.

(d) Invariant functions: Invariant functions usually have their function
names composed from an inv_ prefix. Invariant functions apply to
values of concrete types to define those values which belong to a de
sired, i.e., invariant, subtype. The distinction between well-formed and
invariant functions is pragmatic: By well-formedness we express a de
sired property of a usually composite value. By invariance we express
that functions yielding values are expected to yield such which satisfy
the invariance criterion.

(e) Abstraction functions: Abstraction functions usually have their
function names composed from an abs_ prefix. Abstraction functions
apply to values of some concrete type and yield values of a claimed
more abstract, yet concrete type.

(f) Retrieve functions: Retrieve functions usually have their function
names composed from a retr_ prefix. Retrieve functions apply to val
ues of some concrete type, Aj+i, and yield values of a claimed more
abstract, yet concrete type, Aj — where type A,+i is said to be an
implementation, a data reification, of Aj.

(g) Injection functions: Injection functions usually have their function
names composed from an inj prefix. Injection functions apply to val
ues of some type, Aj, and yield values of a claimed more concrete type,
Aj+i. Aj+i is said to be an implementation, a data reification, of A,.

7. Semantic function names: There are basically four kinds of semantic
functions.
• Evaluation functions apply to expressions and configurations (environ

ments and states) and yield values.
• Interpretation functions apply to statements and configurations (envi

ronments and states) and yield state changes.
• Elaboration functions apply to clauses (sometimes just expressions)

and configurations (environments and states) and yield values and
state changes.

• A fourth category of semantic functions apply to declarations and con
figurations (environments and states) and yield environment and state
changes.

720 A Naming Convention

• Meaning functions comprise the above: evaluation, interpretation and
elaboration functions.

• Compilation functions which apply to syntactic source language con
structs and compilation configurations (environments and states) and
yield syntactic target language constructs.

With the first three and the last two categories above we normally use the
following varieties of semantic function names.
(a) Evaluation function names: Either we name these functions by

just the identifier V (or V), or by that identifier and some suffix, ac
cording to the syntactic category, say Expr (V_Expr), or we name these
functions by just identifier eval (or val) — again possibly composed
with some appropriate suffix (val_Expr).

(b) Interpretation function names: Either we name these functions
by just the identifier / (or I), or by that identifier and some suffix,
according to the syntactic category, say Stmt (l_Stmt), or we name
these functions by just identifier int — again possibly composed with
some appropriate suffix (int_Stmt).

(c) Elaboration function names: Either we name these functions by
just the identifier / (or £), or by that identifier and some suffix, ac
cording to the syntactic category, say Clause (E_Clause), or we name
these functions by just identifier elab — again possibly composed with
some appropriate suffix (elab_Clause).

(d) Meaning function names: Are either of the three kinds of names
introduced above: evaluation, interpretation or elaboration function
names — but sometimes we just "spell" the meaning function name
as M (or M, M, or even M).

(e) Compilation function names: These names we usually spell with
an initial, capitalised C (or C, C, or even C), sometimes followed by a
suffix which usually designates (abbreviates) the name of the syntactic
category (i.e., the name of the type) of its arguments.

8. Variable names: Variable names usually follow the naming convention of
value names, see item 3 — possibly with the exception that the character
v is (or characters var are) prefixed by the base stem of the value identifier.

9. Channel names: Channel names usually are composed from two or three
parts, optionally the character c, for channel, and two abbreviations, say c
and s, of the names, say client and server, of the definitions of the processes
between which the channels communicate.

10. Scheme names: Scheme names are usually spelled in all capitals.
11. Object names: Object names are usually spelled like are the schemes

from which the objects are instantiated.
12. Parameter names: Parameter names are usually spelled like are the

values of the types designated.

B

Indexes

• The prerequisite for studying this chapter is that you need look up where
a term has been defined or is used.

• The aim is to illustrate the breadth and depth, the variety and multitude
of terms used in these volumes.

• The objective is to satisfy your needs.
• The treatment is systematic.

Volume 1 Appendix B contains an extensive glossary.

• Symbols Index 722

Some abbreviations are found here.
• Concepts Index 725

Some abbreviations are also found here.
• Characterisations and Definitions Index 744

Characterised and defined terms here are usually spelled with cap
ital letters.

• Authors Index 746
Authors whose works have influenced the contents of this volume
are listed here. Citations are usually to books by these authors.

722 B Indexes

B. l Symbols Index

S y m b o l , Greek: Mark, token, ticket, watchword, outward sign, covenant.

S y m b o l , M e a n i n g : Something tha t stands for, represents, or denotes
something else; a material object representing, or taken to represent,

something immaterial or abstract (1590);
a written character or mark used to represent something; a letter, figure,

or sign conventionally standing for some object, process, etc. (1620)

The SHORTER OXFORD ENGLISH DICTIONARY
On Historical Principles [303]

An a t tempt has been made to structure the symbols index. You may have to
look in more than one place to find a cross-reference to the first appearances
of the symbol, literal or abbreviation tha t you are looking for,

• Time/Space 722 • Statecharts 723
• Modular RSL 722 • Temporal Logics 723
• Petri Nets 722 • Duration Calculus 723
• Message Sequence Charts 723 • Timed RSL: TRSL 723
• Live Sequence Charts 723 • Abbreviations 724

Volume 1 has an extensive symbols index covering RSL. We refer to tha t index.

B . l . l T i m e / S p a c e

= equality (time, space), 129
> greater than or equal (time), 129
> greater than (time), 129
fl common space, 129
{}= empty space predicate, 129
{ } ^ non-empty space predicate, 129
< less than or equal (time), 129
< less than (time), 129
^ nonequality (time, space), 129
U union (space), 129

CONTINUOUS continuity of func
tions, 130

Al
p entity A at location p at t ime t,

136

B . l . 2 M o d u l a r R S L

class as in c lass ... end, 248

class class definition literal, 253-257
e n d as in c lass . . . end, 248
e x t e n d ... w i t h class extension, 259-

260
hide scheme hiding, 260-262
in as in h ide ... in class ... end, 261,

262
objec t object declaration literal, 253,

257
s c h e m e scheme definition literal,

257-265

B . 1 . 3 Petr i N e t s

O state, 316
0 transition, 316
—>• arrow, links transitions to states

and states to transitions,
316

• Petri net token, 317

B.l Symbols Index 723

B . 1 . 4 M e s s a g e S e q u e n c e Chart s

° instance, 376

| instance time axis, 376
•(— message exchange, 377
—>• message exchange, 377
x timer reset, 378
I connects BMSCs, 383
j connects BMSCs, 383
O node, 384
o connector, 384
V start node, 384
A end node, 384

B . l . 5 Live S e q u e n c e Chart s

—> asynchronous message, 403
—>• synchronous message, 403
• empty premise, 417

B . l . 6 S ta techar t s

(E,N).P prefix operation, 497
[E]cr(P) signal operation, 499
A event alphabet, 499
• unobservable event, 499
(0, 0) unobservable event, 499
|| parallel composition, 499
\ restriction, 499
a clock event, 499
P>a Q enabling operation, 500
P>Q disabling operation, 500

B . l . 7 T e m p o r a l Logics

Time duration time, 522
ITime, duration time interval, 523

• always, over states, 520
[•, •] t ime interval b to e : [b,e], 523
[</>] (f> holds in time length \<f\, 523
O sometime, 523, 527
• always, 524, 527
Or sometime, right neighbourhood,

524

• r always, right neighbourhood, 524
Oi sometime, left neighbourhood, 525
• ^ always, left neighbourhood, 525
^ chop (;), 526

B . l . 8 D u r a t i o n Calcu lus

Time t ime, 530
ff falsity, 538
t t t ru th , 538

; chop, 529, 537, 538
|~ duration delimiter, left, 529
] duration delimiter, right, 529
|~,] duration delimiters, 529
• always, 529, 535, 537
i duration of / tt, 529, 537
0 sometime, 535
/ P s tate duration, 537, 538
\P~\ almost everywhere P, 537
f| point duration, 537
->• follows, 537
1 s tate transition: ON-s>OFF, 550
t s tate transition: O F F - ^ O N , 550
(t+S+t,t] DC: upward closed interval,

550
[t — 8-t,t) DC: downward closed in

terval, 550
T state assertion holds, 551
_L state assertion does not hold, 551
/• raising, holds at point, 551
y raising transition, 551
\ falling, holds at point, 551
"Y falling transition, 551

B . 1 . 9 T i m e d R S L : T R S L

wait wait clause, 556

! process output , 556, 559
? process input, 556, 559
j} interlock process composition, 556,

559
|| parallel process composition, 556,

559

724 B Indexes

Q TRSL: nondeterministic external
choice, 559

[] TRSL: nondeterministic internal
choice, 559

B.1.10 Abbreviations

BNF: Backus-Naur Form, 183-186
BMSC: Basic MSC, 376, 378

CEN: Condition Event Petri Net,
316-323

CFG: context-free grammar, 186
CFL: context-free language, 187
CPN: Coloured Petri Net, 333-342

DC: Duration Calculus, 525-564

HMSC: High-level MSC, 383-391

ITL: Interval Temporal Logic, 520-
525

OCL: Object Constraint Language,
280

0 0 : Object-oriented, 281

PN: Petri Net, 315-373
PTPN: Place Transition Petri Net,

323-333

SOAP, 471
SPL: Statechart Process Language,

497-500

TL: Temporal Logic, 515, 518-525
TLA+: temporal logic of actions, 566
TRSL: Timed RSL, 515

UDDI, web service, 471
UML: Unified Modeling Language,

VIII, 243, 249, 252, 271, 375,
465, 466, 473, 474, 507, 509,
708-709

WSDL, web services definition lan
guage, 471

XML, extensible markup language,
190-197, 206-207, 238

B.2 Concepts Index 725

B.2 Concepts Index

Conceive: To grasp with the mind.

Conception: The act of conceiving, apprehension, imagination.

Concept: The product of the faculty of conception,
an idea of a class of objects, a general notion.

The SHORTER OXFORD ENGLISH DICTIONARY
On Historical Principles [303]

The terms: a concept, an idea, a notion, an apprehension and an imagination
are treated as similar terms. The concept index also lists common abbrevia
tions.

abstract
data type, 250
state machine semantics, 589
syntax, 181-183, 197-201

XML Schema, 206
for RSL type definitions, 205

syntax, analytic, 181
syntax, synthetic, 181

abstraction
Statechart, 479
compositional, 35, 38
context, 94-116
denotational, 57
function, 590
hierarchical, 35, 38
state, 94-116

acceptance of input, 298
acceptor automaton, 292

input, 285, 297
action, 98

Statechart, 476
and state are dual, 95
BMSC, 376
event, BMSC, 383
input, 499
name, BMSC, 383
output, 499
same as statement, 96
set, initial output, 500
transition, 499

transitions, term deduction sys
tem, 500

activate Petri net transition, 323
activated event, Petri net, 317
active state, Statechart, 476
actor, 98
address

recipient, BMSC, 383
sender, BMSC, 383

airline timetable, 127-129
algebra

initial, semantics, 250
process, LSC, 375
quotient, 416

algebraic
process semantics, 499
semantics, LSC, 375
specification language, 250

algorithm of compiling, 625-636
allocation, 98, 675

heap, 690, 691, 696, 697, 701
storage, 664, 696
unique process identifier, 691

alphabet
automaton input, 285
input, 287

alternative HMSC, 384
always O, ITL, 524
analyser syntax, 303
analytic abstract syntax, 181
AND

726 B Indexes

decomposition, Statechart, 476
state, Statechart, 477

anomalies, 219
arc Petri net, 333
arrow

message exchange, BMSC, 377
Petri net, 316
transition, Statechart, 476
weight, Petri net, 323

A-series, time, 125
assertion, state, DC, 536
association

composite, UML, 274
multiplicity, UML, 274
UML, 274

asynchronous message, LSC, 403
atomic expression, duration calculus,

536
attribute

grammar semantics, 162-165,
636-652

inherited, 165
synthesised, 164

automata, 285-311
deterministic, finite state, 297
pushdown stack, 307-311

automaton, 285-311
acception, 297
acceptor, 292
alphabet, 285
deterministic, 287, 295
discrete state, 285
finite state, 190
infinite state, 289
input, 298
input acceptance, 298
input rejection, 298
minimal, 296
nondeterministic, 287, 295
push-down stack, 190
recogniser, 292
recognition, 297
state, 285
state transition, 285, 298

auxiliary semantic functions, 695-697

axiomatic semantics, 166-168
axiomatised ontology, 238

Backus-Naur Form, BNF, 183-186
behaviour

equivalence, 416, 500
mandatory, LSC, 402
optional, LSC, 402
state, 112
temporal, 127

binder, 98
binding, 98, 599, 687, 689, 691, 696,

698, 702
and context, 95
element, Petri net, 334
Petri net, 334

bisimilar processes, 502
bisimulation

equivalence, 416
strong, 418-419

bisimulation, strong, 500
block

prologue, 69
type instance, BMSC, 383

BMSC
• , instance, 376
<-, message exchange, 377
|, time axis, 376
—>, message exchange, 377
action, 376

event, 383
name, 383

address, 383
arrow, message exchange, 377
Basic Message Sequence Chart,

376-383
body

instance, 383
note, 383

condition, 376, 378
event, 383

coregion, 376, 379
event, 383

event, 376
instance, 376

B.2 Concepts Index 727

decomposition, 380
kind, 383
kind, name, 383
name, 383

instance type, 383
block, 383
process, 383
service, 383
system, 383

matching message, 376
message

event, 383
exchange, 377
input, 376
input event, 383
output, 376
output event, 383

name, 383
process

creation, 379
creation event, 383
event, 383
handling, 376
termination, 379
termination event, 383

recipient address, 383
sender address, 383
time axis, 376
timeout, 378
timer, 376, 378

event, 383
event, reset, 383
event, timeout, 383
reset, 378
set, 378, 383

timer duration, 383
BNF

Backus-Naur Form, 183-186
grammar, 183, 303

footnote 1, 176
body, 687

instance, BMSC, 383
note, BMSC, 383

Boolean state model, duration calcu
lus, 529

box
class diagram, UML, 273
dashed, existential LSCs, 402
fully drawn, universal LSCs, 402

Broker Design Pattern, 474
B-series, time, 125
buffer

parallel, Petri net, 319
Petri net, 318
sequential Petri net, 319

C++, 150, 673, 682, 684
C#, 150, 281, 682, 684
C, 150
calculus

duration, DC, 521
of durations, 568

call
procedure, 473
remote procedure (RPC), 473

capacity of place, Petri net, 323
causality Statechart, 499
CFG

context-free grammar, 186
nonterminal, 186
production, 186
terminals, 186

CFL, context-free language, 187
channel

communication, 223
connector, 223
terminal, port, 223

chop ;, "~~ ITL, 526
class

RSL
class concept, 257
classes, 253-270
classes, motivation, 253-257

ontology, 238
UML, 273

diagram, 271-280
diagram box, 273
diagram line, 273

clause, 155
client-server, HMSC, 384

728 B Indexes

clock
transition, 499
transitions, term deduction sys

tem, 500
closing XML tag, 193
closure, 583

of a context-free derivation, 187
process, 697
process definition, 693, 695

cold
location, LSC, 407
message, LSC, 403

colour
Petri net, 333
set, Petri net, 333

coloured Petri net, 315, 333-342
compile-time, 580

translation, 78
compiler view of semantic functions,

72
compiling algorithm, 625-636
component

as scheme, 223
as type, 223
function, 223

verb, 223
noun, 222
of system, 219
process, 223
property

adjective, 223
adverb, 223

composite association, UML, 274
compositional abstraction, 35, 38
compositionality Statechart, 499
comprehension, of language, 216
computation, 97

in space/time, 96
interval = "life-time", 95
state, 75, 112

computational
linguistics, 216
semantics, 74-86, 580, 590

computing
context, 94

environment, 94
name/value associations, 94

state, 94
storage, 94

conceptual program, 114
concrete

semantics, 152
syntax,183-186

concurrency, 313
qualitative, 313
quantitative, 313

condition
Statechart, 476
BMSC, 376, 378
event, BMSC, 383
Petri net, 316, 323

condition event
Petri net, 315-323

configuration, 69, 94, 103, 154
= context + state, 99
abstraction, 94-116
syntax, 173

connection
(shared) variable read/write, 223
channel communication, 223
of system, 219

connector
o, HMSC, 384
(shared) variable access, 223
channel, 223
of system, 219

contact-free Petri net, 317
context, 98, 102, 153

abstraction, 94-116
and bindings, 95
as pragmatic notion, 97
as relevant bindings, 96
computing, 94
environment, 95, 97
static, 97
syntax, 173

context-free
derivation, 187
derivation closure, 187
grammar, CFG, 186

B.2 Concepts Index 729

language, CFL, 187
substitution, 187

continuation, 67, 690, 691, 693, 699,
701, 704

process, 690, 695, 697
continuous time, 127, 129
control

flow, 475
stack, 76
state, 114

controller, finite state machine, 300
coregion

BMSC, 376, 379
event, BMSC, 383

correctness reasoning, 583
CSP program, 687, 688
CTP

communicating transaction pro
cesses, VIII, 443-453

dining philosophers, 450-453,
474

data
abstract, type, 250
state, 112

DC, 4, 5
atomic expression, 536
Duration Calculus, 517, 527-566
duration formula, 537
state assertion, 536
state duration, 530
state expression, 536

deadlock, interlock, 559
decomposition

AND, Statechart, 476
hierarchical, Statechart, 479
XOR, Statechart, 476

deduction
system, action transitions, 500
system, clock transitions, 500

default state, Statechart, 477
definition module

export, 673
import, 673
local, 673

denotation, procedure, 664
denotational

abstraction, 57
principle, 57, 58
semantics, 57-74, 155-156, 576-

581, 663-665, 674-677
for languages, 219
for systems, 232

denoted value, 577
derivation

closure, 187
context-free, 187
grammar, 300

description
domain, 549
logic, 238
logic, ontology language, 238-239

descriptions, 217
design, software, 549
designated value, 577
destination state, Statechart, 477
deterministic

automata, finite state, 297
automaton, 287, 295

development step, 249
device, 285-311

pushdown stack, 307-311
software, 250

diagram
class diagram, UML, 271, 272-

280
sequence/collaboration, UML,

271, 272
state, 286, 476
statechart diagram, UML, 271,

272
use case diagram, UML, 271

dining philosophers
coloured Petri net, 336
CTP program, 450-453, 474
Petri net, condition event net,

320
disabling operator, 499
discrete

state

730 B Indexes

automaton, 285
machine, 285

time, 127, 129
DO-WHILE, LSC, 405
domain

description, 549
requirements, 549

duration
calculi, DC, 521
calculus, DC, 517
DC: state, 530
formula, DC, 537
term, duration calculus, 537
timer, BMSC, 383

duration calculus, 527-566, 568
Boolean state model, 529
duration term, 537
state assertion, 529

dynamic
environment chain, 580
state, 96

Ei f fe l , 56, 281, 673, 682, 684
elaboration, 155

function, semantics, 153
of "impure" expressions, 73

embedded, 687, 693, 704
system, footnote 4, 300

enable Petri net transition, 323
enabled event, Petri net, 317
enabling operator, 500
end

node, HMSC, 384
node: A, HMSC, 384

entity-relationship, ER, 251
environment, 663, 689

and storage, 200
computing, 94

name/value associations, 94
context, 95, 97
module

incoming, 675
incoming and resulting, 675

static, 97
equivalence

behavioural, 416
bisimulation, 416

equivalence behaviour, 500
ER, entity-relationship, 251
evaluated value, 577
evaluation, 154

function, semantics, 153
no side-effect, 67
of "ordinary" expressions, 73
of "pure" expressions, 73
run-time, 78

event, 98
Statechart, 476
action, BMSC, 383
BMSC, 376
condition, BMSC, 383
coregion, BMSC, 383
first-class, LSC, 404
internal, 499
message, BMSC, 383
negate, statechart, 476, 477
occurrence, Petri Net, 317
Petri net, 316, 323
process

creation, BMSC, 383
termination, BMSC, 383

process, BMSC, 383
temporal, 126
timer

reset, BMSC, 383
set, BMSC, 383
timeout, BMSC, 383

timer, BMSC, 383
unobservable, 499

existential LSCs, 402
export, 675

module definition, 673
expression

XML, 193
"impure" elaboration, 73
"ordinary" evaluation, 73
"pure" evaluation, 73
evaluation, side-effect, 67
regular, 189, 293
state, DC, 536

B.2 Concepts Index 731

state-changing, 155

file system formalisation, 224-226
final state, 292, 297
finite state

automaton, 190
machine, 190
machine transducer, 305

first-class event, LSC, 404
first-order semantics, 582-589
fix point, 576, 603
flow

of control, Statechart, 475
work, system, 342-356

flowchart, 112
machine, 114
recursive, 113
state, 113

formal syntax, 174
formula, duration, DC, 537
freeing, 98
frontier of parse tree, 188
fulfilled condition, Petri net, 317
FUNARG, 576, 588, 599, 613, 614,

669
function

lifting, 70
of component, 223
of part, 223
semantic, 697-704

auxiliary, 695-697
functional requirements, 549

generalisation, UML, 276
generator structure, 186
global

CSP system, 689
metastorage, 689
storage, 693
system, 687, 688, 695
unique process identifier, 690

grammar
BNF, 303
CFG nonterminal, 186
CFG production, 186

CFG terminal, 186
context-free, CFG, 186
derivation, 300
regular, 300
rule, 300

guard, Petri net, 333

hard
real-time, 517, 518
temporality, 517, 518

heap, 691
allocation, 690, 691, 696, 697, 701
free, 691
update, 691

hiding, 260-262, 688
hierarchical

abstraction, 35, 38
decomposition, Statechart, 479
state, 476

higraph, Statechart, 476
history-dependent statechart, 480
HMSC

O, node, 384
o connector, 384
4-, connects BMSCs, 383
t , connects BMSCs, 383
alternative, 384
client-server, 384
high-level message sequence

chart, 383-391
loop, iteration, 384
node, 383

end, 384
start, 383

homomorphic principle, 58
homomorphism, 58
hot

location, LSC, 407
message, LSC, 403

identification: see 'naming conven
tion', 719-722

identifier
scope, 95
span, 95

IF-THEN-ELSE, LSC, 405

732 B Indexes

imperative
language, 661
stack semantics, 589-598

import module definition, 673
"impure" expression elaboration, 73
incarnation, 576, 590, 603
indexical sentence, 146, 148
inductive definition, 157-161, 200
infinite state automaton, 289
information state, 112
inheritance, multiple, 688
inherited attribute, 165
initial

algebra, 250
output action set, 500
state, 292, 297
state, Statechart, 477

inner, 687
input

?: from channel, 556
acceptance, 298
action, 499
alphabet, 287
message event, BMSC, 383
rejection, 298
to automaton, 298

instance
BMSC, 376
body, BMSC, 383
decomposition, BMSC, 380
Petri net, 334
type, 383

block, 383
process, 383
service, 383
system, 383

instantiation of scheme, 265
interlock

deadlock, 559
operator | | , 559
process composition | | , 556

internal event, 499
Internet, 190, 238
interpretation, 154

function, semantics, 153

of statements, 74
interpreter, 688
interval, 523

subinterval, 523
temporal logic, 568
temporal logic, ITL, 521

interval logic, 523
invariant, 592
invocation, 678

remote method (RMI), 473
iteration, loop, HMSC, 384
ITL

• , always, 524
•^, always, left neighbourhood,

525
• r , always, right neighbourhood,

524
O, sometime, 523
<>£, sometime, left neighbour

hood, 525
O r , sometime, right neighbour

hood, 524
ITime, time interval, 523
Time time, 522
;, ', chop, 526
Interval Temporal Logic, 517,

522-527, 568

Java, 56, 150, 176, 281, 673, 682, 684
Jini, Java, 474

ERI, extensible remote invoca
tion, 474

kind, instance, BMSC, 383

labelled transition system, 416-417,
499-502

language, 214
algebraic specification, 250
and system, 217-233
comprehension, 216
concepts, 215
context-free, CFL, 187
intellectual concept, 217
meta, 219

B.2 Concepts Index 733

ontology, description logic, 238-
239

professional, 218-219
recogniser, 190
regular, 190, 293, 300
semantics, 219
vs. system, 217

languages
domain-specific, 218
professional, 218
subsets of natural languages, 218

left neighbourhood
ne always, ITL, 525
<>t sometime, ITL, 525

lexicographic, 576, 601-603
youngest incarnation, 590

"life-time" = computation interval,
95

lifted function, 70
line class diagram, 273
linear temporal logic, LTL, 521
linguistics, 216

computational, 216
natural language, 216

link, UML, 275
live sequence charts, 375, 402-443
liveness of MSCs, 402
local

channel, 688, 691
CSP system, 687
module definition, 673
process definition, 688
storage, 701
system, 704
variable, 688

location, 407
cold, LSC, 407
hot, LSC, 407
storage, 663

logic
description, 238
description, ontology language,

238-239
interval temporal, 521, 568
linear temporal, 521

of intervals, 523
temporal, 517-569
temporal, of actions, 568
temporal, TL, 521

loop iteration, HMSC, 384
LSC

—>: asynchronous message, 403
—>•: synchronous message, 403
algebraic semantics, 375
asynchronous message, 403
cold location, 407
cold message, 403
condition, first-class event, 404
dashed box, existential, 402
DO-WHILE, 405
existential, 402
first-class event, condition, 404
fully drawn box, universal, 402
hot location, 407
hot message, 403
IF-THEN-ELSE, 405
live sequence charts, VIII, 4, 5,

375, 402-443
main chart, 403
prechart, 403
process algebra, 375
subchart, 404
synchronous message, 403
universal, 402
WHILE, 405

LTL, Linear Temporal Logic, 517

machine, 285-311, 688
alphabet, 285
discrete state, 285
finite state, 190
finite state, transducer, 305
flowchart, 114
Mealy, 311
Moore, 311
push-down stack, 190
state, 285, 476
state transition, 285

machines, 285-311
pushdown stack, 307-311

734 B Indexes

macro-expansion, 72, 580
semantics, 157-161, 598-616,

665-670, 677-681
macrostep Statechart, 499
macrosubstitution, 583, 590
Mailiifternl, Austrian computer, 599
main chart, LSC, 403
mandatory behaviour, LSC, 402
marking, Petri net, 317
matching message

BMSC, 376
maximal progress assumption, State-

chart, 499,557
Mealy machine, 311
mechanical, 85

semantics, 75
system, 219

mechanical semantics, 590
mereology, 49
message

asynchronous, LSC, 403
cold, LSC, 403
event, BMSC, 383
exchange, BMSC, 377
hot, LSC, 403
input, BMSC, 376

event, 383
output, BMSC, 376

event, 383
sequence chart

basic, 376-383
high-level, 383-391

sequence charts, 375-401
synchronous, LSC, 403

metalanguage, 219
microstep, internal transition, State-

chart, 499
minimal automaton, 296
mobile process, 705
Modula2, Modula3, 673, 682, 684
modular, 688

language, 661
modularisation, 252
module, 673

definition

export, 673
import, 673
local, 673

environment
incoming, 675
incoming and resulting, 675

main, 673
sub, 673

Moore machine, 311
morpheme, 215
morphology, 215
MSC

liveness, 402
message sequence charts, VIII, 4,

5, 375-401
multiplicity association, UML, 274
multiset (footnote), 333

name
action, BMSC, 383
BMSC, 383
instance kind, BMSC, 383
instance, BMSC, 383
scope, 95
span, 95

naming convention, 719-722
below entries are sorted accord

ing to their logical presenta
tion, 719

names
general, item 1, 719
categories of specification con

cepts, item 1(a), 719
choice of identifiers, item 1(b),

719
mnemonics, item 1(c), 719
identifiers, item 1(d), 719

type names
general, item 2, 720
syntactic types, item 2(a), 720
semantic types, item 2(b), 720
pragmatic types, item 2(c),

720
value names, item 3, 720

B.2 Concepts Index 735

special semantic type and value
names

general, item 4, 720
context or environment names,

item 4(a), 720
state names, item 4(b), 720
configuration names, item

4(c), 720
function names, item 5, 720
auxiliary function names

general, item 6, 720
observer functions, item 6(a),

721
is functions, item 6(b), 721
well-formedness functions,

item 6(c), 721
invariant functions, item 6(d),

721
abstraction functions, item

6(e), 721
retrieve functions, item 6(f),

721
injection functions, item 6(g),

721
semantic function names

general, item 7, 721
evaluation function names,

item 7(a), 722
interpretation function names,

item 7(b), 722
elaboration function names,

item 7(c), 722
meaning function names, item

7(d), 722
compilation function names,

item 7(e), 722
variable names, item 8, 722
channel names, item 9, 722
scheme names, item 10, 722
object names, item 11, 722
parameter names, item 12, 722

natural language linguistics, 216
negate event, Statechart, 477
negative event, Statechart, 476
next

next-state transition operator,
697-698

state transition function, 287
node

O, HMSC, 384
end, HMSC, 384
HMSC, 383
start, HMSC, 383

nondeterminism, 295
nondeterministic

automaton, 287, 295
parallel buffer, Petri net, 319

nonterminal, CFG, 186
normalised program, 113
note, body, BMSC, 383
noun

component, 222
part, 222
system, 222

Oberon, 673, 682, 684
object, 673, 689

RSL object concept, 257
constraint language, OCL, 280
method, 688
oriented, OO, 281, 282
orientedness, 688, 689

occur, Petri net, 334
OCL, Object Constraint Language,

280
ontology, 42-44, 238

language, description logic, 238-
239

OO, Object-oriented, 281
opening XML tag, 193
operational

macro-expansion semantics, 157-
161

semantics, 161-162, 582-616
semantics, structural, 416-417,

500-502
stack semantics, 162, 589-598

operator
disabling, 499
enabling, 500

736 B Indexes

prefix, 499
signal, 499

optional behaviour, LSC, 402
order, lexicographic, 590
"ordinary" expression evaluation, 73
origin state, Statechart, 477
outer, 687, 693
output

!: to channel, 556
action, 499
initial action set, 500
message event, BMSC, 383

over-defined, 254

page, Petri net, 334
paradoxes, 219
parallel

||: process composition, 556
buffer, Petri net, 319

parse
tree, 188

frontier, 188
tree, complete, 188

parser, 303
finite state machine, 300

part
as type, 223
function, 223

verb, 223
noun, 222
of system, 219
process, 223
property

adjective, 223
adverb, 223

subpart, 219
whole relation, 50

Petri net, VIII, 4, 5
activated event, 317
arc, 333
arrow weight, 323
binding, 334
binding element, 334
colour, 333
colour set, 333

coloured, 315, 333-342
condition, 323
condition event, 315-323
contact-free, 317
diagram languages, 315-373
dining philosophers

coloured, 336
condition event net, 320

enabled event, 317
event, 323

occurrence, 317
fulfilled condition, 317
guard, 333
instance, 334
marking, 317
occur, 334
page, 334
place, 323

capacity, 323
transition, 323-333

postcondition, 317
precondition, 317
producer-consumer

buffer, 318
parallel buffer, 319
sequential buffer, 319

token, 317
transition, 323
unfulfilled condition, 317
value, 333
variable, 334

phenomenological concept, exam
ple 2.5, 41

phenomenology, 217
phonetics, 215
physical system, 219
place

capacity, Petri net, 323
Petri net, 323
transition Petri net, 323-333

Polish
notation, 78
postfix notation, 76

postcondition, Petri net, 317
postfix notation, 76

B.2 Concepts Index 737

pragmatics, 143, 145-148, 216
as part of semiotics, 214
configuration = context + state,

99
of modularisation, 244
syntax & semantics, 217

prechart, LSC, 403
precondition Petri net, 317
prefix operator, statechart, 499
prefixing, 255
prescription requirements, 549
procedure

call, 473
denotation, 663, 664

process, 689
action, 688
algebra, LSC, 375
algebraic semantics, 499
atomic = action, 688
bisimilar processes, 502
command, 687
composite command, 687
continuation, 690
creation, BMSC, 379

event, 383
definition, 687
event, BMSC, 383
expression, 687
handling, BMSC, 376
invocation, 689, 691
mobile, 705
name, 687
nonatomic, 689
of component, 223
of part, 223
simple command, 687
state, 112, 690
termination, BMSC, 379

event, 383
terminology, 686-694

dynamic, 688-694
semantic, 688-694
static, 687
syntactic, 687

type instance, BMSC, 383

variable, 499
producer-consumer

buffer, Petri net, 318
parallel buffer, Petri net, 319
sequential buffer, Petri net, 319

production, CFG, 186
professional language, 218-219
program, 687, 691, 693, 695, 697, 704

parallel, 685
schema, 113, 114
state, 690

prologue, 687
block, 69

property, ontology, 238
PTPN, Place Transition Petri Net,

323-333
"pure" expression evaluation, 73
pushdown

stack automata, 190, 307-311
stack device, 307-311
stack machines, 190, 307-311

qualitative
aspects of time, 555
concurrency, 313
temporality, 313

quantitative
aspects of time, 555, 556
concurrency, 313
temporality, 313

quotient, algebra, 416

reactive system, Statechart, 475
read automaton (machine) input, 285
"real world", state, 94
real-time

hard, 517, 518
soft, 517

recipient address, BMSC, 383
recognise automaton input, 297
recogniser

automaton, 292
of a language, 190

recogniser structure, 186
recursion

738 B Indexes

removal, 74
tail, 589
tail, footnote 6, 589
transformation, 589

recursive
descent, 159
flowchart, 113

referential transparency, 582, fn 3: 582
refinement, 249

Statechart, 479
regular

expression, 189, 293
language, 190, 293, 300

rejection of input, 298
relation, entity-relationship, ER, 251
remote

method invocation (RMI), 473
procedure call (RPC), 473

rendezvous, 698, 700, 703
representation of time, 127-129
requirements

domain, 549
functional, 549
prescription, 549
safety-criticality, 549

reset timer, BMSC, 378
restriction set, 499
retrieve function, 583, 590
reverse Polish notation, 76, 78
right neighbourhood

• r , always, ITL, 524
O r , sometime, ITL, 524

RMI, remote method invocation, 473
RPC, remote procedure call, 473
RSL, 176

type
definition, 205
definition of XML schema trans

lator, 207
expression, 205

rule, grammar, 300
run-time, 590

evaluation, 78

safety

critical requirements, 549
criticality, footnote 4, 300

scenario, 511
schema

XML, 195
program, 113

schematic program, 114
scheme

RSL scheme concept, 257-265
RSL scheme parameterisation,

263-265
component, 223
extension, 259-260
instantiation, 265
simple, 257

scope, 687-689, 702
identifier, 95
name, 95

semantic
auxiliary functions, 695-697
functions, 697-704

compiler view, 72
for languages, 219
for systems, 232

value, 577
semantics, 143, 151-169, 216

abstract state machine, 589
algebra, initial, 250
algebraic process, 499
algebraic, LSC, 375
as part of semiotics, 214
attribute grammar, 162-165,

636-652
axiomatic, 166-168
computational, 74-86, 589, 590
concrete, 152
denotational, 57-74, 155-156,

576-581, 663-665, 674-677
for languages, 219
for systems, 232

evaluator, 153
first-order, 582-589
interpreter, 153
macro-expansion, 598-616, 665-

670, 677-681

B.2 Concepts Index 739

mechanical, 590
of modules, 244
operational, 161-162, 582-616
stack, 589-598
syntax & pragmatics, 217
type, 153

semiotics, 143, 214, 215
attribute grammar semantics,

162-165
axiomatic semantics, 166-168
pragmatics, 145-148
semantics, 151-169

concrete, 152
denotational, 155-156
first-order, 582-589
operational, 161-162, 582-616

syntax, 173-204
sender address, BMSC, 383
sentence

indexical, 146
indexicality, 146, 148
regular language, 300

sentential structure, 214
separation of concerns, 32
sequence chart

basic message, 376-383
high-level, message, 383-391

sequence charts
live, 375, 402-443
message, 375-401

sequence/collaboration diagram,
UML, 271, 272

sequential
buffer, Petri net, 319
process, 98

service
type instance, BMSC, 383

set timer, BMSC, 378
side-effect, 154

expression evaluation, 67
signal operator, 499
Simula 67, 673, 682
simulation, 583
SML, 150, 573, 657
soft

real-time, 517
temporality, 517

software
design, 549
device, 250

sometime, O, ITL, 523
space, 129-134
space/time, 135-137
span

identifier, 95
name, 95

spatial, part whole relation, 50
specification language, algebraic, 250
spelling identifiers: see 'naming con

vention', 719-722
stable state, 94
stack, 583

control, 76
device, 307-311
pushdown automata, 307-311
pushdown machines, 307-311
recursion implementation, 589
recursion removal, 74
semantics, 162, 589-598

start
node, HMSC, 383
node: V, HMSC, 384

state, 103, 154
"real world", 94
Statechart, 476
abstraction, 94-116
active, Statechart, 476
and action are dual, 95
AND, Statechart, 477
applicative, 94
as aggregated value of "actual

world" components, 96
as aggregated values, 94
as dynamic, temporal, 96
as semantic notion, 97
as summary of computation, 95
assertion, DC, 529, 536
automaton, 285

discrete, 285
behaviour, 112

740 B Indexes

behaviour summary, 112
changing expression, 155
computation, 75, 112
computing, 94
control, 114
data, 112
DC: duration, 530
default, Statechart, 477
destination, Statechart, 477
diagram, 286, 476
expression, DC, 536
final, 292, 297
flowchart, 113
hierarchical, 476
imperative, 94
information, 112
information summary, 112
initial, 292, 297
initial, Statechart, 477
machine, 285, 476

discrete, 285
finite controller, 300
finite parser, 300

model, Boolean, duration calcu
lus, 529

origin, Statechart, 477
Petri net, 316
process, 112
semantics, as value, 97
set, 287
side-effect, 154
stable, 94
syntax, 173

as aggregation, 97
transformation

grand, 589
small, 589

transition, 285, 298, 550
diagram, 286

transition function, 287
XOR, Statechart, 477

Statechart, VIII, 4, 5, 475-516
abstraction, 479
action, 476
AND

decomposition, 476
state, 477

arrow, transition, 476
causality, 499
compositionality, 499
condition, 476
control flow, 475
decomposition

AND, 476
hierarchical, 479
XOR, 476

default state, 477
destination state, 477
diagram, UML, 272
event, 476

negate, 477
flow of control, 475
hierarchical decomposition, 479
higraph, 476
history-dependent, transition,

480
initial state, 477
macrostep, 499
maximal progress assumption,

499
microstep, 499
negate event, 477
negative, 476
origin state, 477
reactive system, 475
refinement, 479
state, 476

AND, 477
default, 477
destination, 477
origin, 477
sub, 476
XOR, 477

substate, 476
synchrony hypothesis, 499
transition, 476
transition arrow, 476
transition, history-dependent,

480
trigger, 476

XOR
decomposition, 476
state, 477

statechart
diagram, UML, 271

statement, 98
composite, 687
interpretation, 74
simple, 687
state changer, 96
structured, 687

static
context, 97
environment, 97
environment chain, 580

step of development, 249
stepwise refinement, 249
storage, 663, 689

allocation, 664, 696
computing, 94
location, 663
value, 663

strong bisimulation, 418-419, 500
structural operational semantics,

416-417, 500-502
structure, 217

generator, 186
recogniser, 186

subchart, LSC, 404
subinterval, 523
subpart

of part, 219
of system, 219

substate, Statechart, 476
substitution, 576

context-free, 187
synchronisation and communication,

688, 700, 703
synchronous message, LSC, 403
synchrony hypothesis, Statechart, 499
syntactic type, 153
syntactically correct, 174
syntax, 143, 173-204, 216, 684-686

abstract, 181-183, 197-201
analyser, 303

B.2 Concepts Index 741

as part of semiotics, 214
concrete, BNF, 183-186
formal, 174, 686
informal, 684-686
of configurations, 173
of contexts, 173
of modules, 244
of states, 173
of values, 173
semantical structures, 173
semantics & pragmatics, 217
sentential structures, 173

syntaxis, 174
synthesised attribute, 164
synthetic abstract syntax, 181
system, 219-233

air pump
formalisation, 230
language, 223

and language, 217-233
as type, 223
component, 219
concept, discussion, 232-233
connection, 219
connector, 219
embedded, footnote 4, 300
examples, 220
intellectual, 222-232

concept, 217
labelled transition, 499
linguistic, 222-232
mechanical, 219
noun, 222
part, 219
physical, 219-221

phenomenon, 217
property

adjective, 223
adverb, 223

reactive, Statechart, 475
safety critical, footnote 4, 300
semantics, 232
subpart, 219
terminal, 219
type instance, BMSC, 383

742 B Indexes

vs. language, 217

tag, XML, 192, 193
tail recursion, footnote 6, 589
temporal

behaviour, 127
event, 126
logic, 517-569

interval, 521, 568
linear, 521
of actions, 568
TL, 521

state, 96
temporality, 313

qualitative, 313
quantitative, 313

term
deduction system

action transitions, 500
clock transitions, 500

duration, duration calculus, 537
terminal

(shared) variable, 223
CFG,186
channel (port), 223
of system, 219

time
A-series, 125
axis, BMSC, 376
B-series, 125
continuous, 127, 129
continuum theory, 125-126
discrete, 127, 129
representation, 127-129
space/time, 135-137

time/space, computations in, 96
timeline, LSC, 407
timeout, BMSC, 378
timer

BMSC, 376, 378
duration, BMSC, 383
event, BMSC, 383

reset, 383
set, 383
timeout, 383

timetable, 127-129
airline, 127-129
train, 127-129

TL, Temporal Logic, 517, 520-527
TLA+, temporal logic of actions, 568
token, Petri net, 317
train timetable, 127-129
transducer, finite state, 305
transformation

grand state, 589
small state, 589

transition
Statechart, 476
action, 499
arrow, Statechart, 476
between states, 550
clock, 499
history-dependent, statechart,

480
labelled, system, 499
next state function, 287
Petri net, 316, 323
state, 285, 298

translation, compile-time, 78
translator, RSL type definitions to XML

schemas, 207
transparency, 582

referential, fn 3: 582
trigger, Statechart, 476
TRSL, Timed RSL, 517
type

abstract data, 250
definition, XML Schema, 206
instance, 383

block, 383
process, 383
service, 383
system, 383

of component, 223
of part, 223
of system, 223
semantic, 689-694
semantics, 153
syntactic, 153, 684-686

B.2 Concepts Index 743

UML, VIII, 243, 249, 252, 271, 375,
468, 470, 475, 476, 509, 511,
714-715

association, 274
composite, 274
multiplicity, 274

box, class diagram, 273
class, 273

diagram, box, 273
composite association, 274
diagram

class, 271-280
sequence/collaboration, 271,

272
statechart, 271, 272
use case, 271

generalisation, 276
link, 275
multiplicity association, 274
Unified Modeling Language, 271
use case, 271

diagram, 271
under-defined, 254
unfulfilled condition, Petri net, 317
universal LSCs, 402
unobservable event, 499
use case, 511

diagram, UML, 271
use of identifiers: see 'naming conven

tion', 719-722

valuation
of "ordinary" expressions, 73
of "pure" expressions, 73

value
being denoted, 577
being designated, 577
evaluated, 577
Petri net, 333
semantic, 577
storage, 663
syntax, 173

variable
connector (shared) access, 223
Petri net, 334

process, 499
verb

component function, 223
part function, 223

weight, arrow, Petri net, 323
WHILE, LSC, 405
whole-part relation, 50
work flow system, 342-356

XML, 206-207, 238
closing tag, 193
expression, 193
extensible markup language,

190-197
opening tag, 193
schema, 195

abstract syntax, 206
tag, 192, 193
translator from RSL type defini

tions to XML schemas, 207
XOR

decomposition, Statechart, 476
state, Statechart, 477

744 B Indexes

B.3 Characteriations and Definitions Index

Definition: The setting of bounds, limitation.
The action of determining a question at issue, of defining.

A precise statement of the essential nature of a thing.
A declaration of the signification of a word or phrase.

The SHORTER OXFORD ENGLISH DICTIONARY
On Historical Principles [303]

We shall list both characterisations and definitions. The latter are usually
more formally expressed than the former.

Abstract Syntax, 197
Always Modality, ITL, • , 524
Attribute Grammar Semantics, 162

Basic Message Sequence Chart, 381
BNF Grammar, 183
Boolean State, DC, 529

Characteristic Function, DC, 530
Chop Modality, TL and DC, ;, ~, 526
Class, 270
Classical Temporal Logic, 527
Coloured Petri Net, 336
Compositional Abstraction, 38
Computational Linguistics, 216
Computational Semantics, 56, 161
Concrete Semantics, 152
Condition Event Petri Net, 320
Configuration, 103, 154
Context, 102, 153
Context-Free Derivation, 187
Context-Free Grammar, 186, 310
Context-Free Language, 187, 310
Context-Free Substitution, 187

Denotational Semantics, 56, 155
Deterministic Finite State Automa

ton, 297
Deterministic State Automaton, 287
Deterministic State Machine, 290
Duration Calculus, 538
Duration Formula, DC, 537
Duration Term, DC, 537
Duration, DC, 537

Elaboration, 155
Evaluation, 154

Finite State Machine, 304
Formal Syntax (I), 174
Formal Syntax (II), 174
Frontier Parse Tree, 188

Hierarchical Abstraction, 38
High-Level Message Sequence Chart,

385

Interpretation, 154
Interval Length, TL, 523
Interval Temporal Logic, 527
Interval, TL, 523

Language Comprehension, 216
Linear Temporal Logic, 527
Linguistics, 216

Macro-expansion Semantics, 158
Message Sequence Chart, 385
Minimal State Finite Automaton, 296
Modularisation, 244
Module, 244
Morphology, 215

Natural Linguistics, 216
Nondeterministic State Automaton,

287

Object, 270

B.3 Characteriations and Definitions Index 745

Parse Tree, 188 XML Expressions, 193
Phenomenological Concept, Exam- XML Schema, 195

pie 2.5, 41 XML Tags, 193
Phonetics, 215
Place Transition Petri Net, 324
Point State Assertion, DC, T, _L, 551
Pragmatics, 145, 146, 216
Process Context, 110
Process State, 111
Production Tree, 188
Proof Rule Semantics, 166
Pushdown Stack Automaton, 310
Pushdown Stack Machine, 309

Regular Expression, 189, 293
Regular Language, 190, 294

Scheme, 270
Semantic Type, 153
Semantical Structures, 176
Semantics, 151, 216
Semiotics, 214, 215
Sentential Structures, 175
Sometime and Always

Left Neighbourhood Modalities,
ITL, Oi,a^ 525

Right Neighbourhood Modality,
ITL, O r ,D r , 524

Sometime Modality, ITL, O, 523
Space, 129
Specification, 244
Stack Semantics, 162
State, 103, 154
State Assertion, DC, 529, 536
State Assertion, DC, \ , /*, 551
State Assertion, DC, *y, y \ 551
State Duration, DC, 530
State Expression, DC, 536
State Transition, DC, J.,t, 550
Statechart, 481
Syntactic Type, 153
Syntax, 174, 216

Temporal Logic, 521
Time, 122

746 B Indexes

B.4 Authors Index

Author: The person who originates or gives existence to anything;
an inventor, constructor, or founder.

He who gives rise to an action, event, circumstance, or state of things.

One who sets forth written statements;
the writer or composer of a treatise or book.

The SHORTER OXFORD ENGLISH DICTIONARY
On Historical Principles [303]

The authors listed here (many with [references] to (usually) their main books)
are (co)authors of publications cited on the referenced page(s). Not all refer
enced publications have their authors listed here — but a very high proportion
have been listed here! There are 196 such authors listed here!

Abadi, Martin [1], 280
Aho, Alfred [6], 204, 294-296, 303,

580, 657
Allen, James [7], 215
Appel, Andrew [14], 580, 644, 657
Aristotle 384-322 BC [28], 122
Arnold, Ken [15], 56, 150, 176, 281,

673, 682, 684
Augustine of Hippo, 122

Back, Ralph-Johan [20], 8
Backhouse, Roland [21], 204
Backus, John W. [22-24], 183
Baeten, Jos CM., 409, 412
Bekic, Hans [32,33], 86, 598, 658
Birtwistle, G.M. [41], 673, 682
Bj0rner, Nikolaj S., 568
Blizard, Wayne D. [57], 136
Booch, Grady [59,237,440], VIII, 243,

249, 252, 271, 375, 468, 470,
475, 476, 509, 511

Broy, Manfred [62], 469
Burks, Arthur W., 311
Burns, Frank, 356
Burstall, Rod M., 250

Cardelli, Luca [1], 280
Carey, Matthew, 512
Carnap, Rudolf [73-76], 214, 234
Cleaveland, Walter Ranee, 499, 509

Clemmensen, Geert Bagge, 571
Cohen, Irun R., 470

Dahl, Ole-Johan [41], 282, 673, 682
Damm, Werner, 4, 5, 402, 468, 469
Danvy, Olivier, 88, 89
de Bakker, Jaco W. [92,93], 70, 157,

170, 215, 574, 588, 668, 681,
704

Deransart, Pierre [94], 644, 658
Dijkstra, Edsger Wybe [97-99,113], 8,

85, 320, 580
Dong Jin Song, 469
Dutertre, Bruno, 522, 568

Efroni, Sol, 470
Einstein, Albert, 121
Euclid, 121

Folkjaer, Preben, 683, 684, 693, 705,
708

Frost, Robert [121], VI
Funes, Ana, 281
Futatsugi Kokichi [123,125], 250, 705

Ganzinger, Harald, 636, 658
George, Chris W. [130,131], 7, 8, 110,

176, 281, 431, 433, 434, 673,
683, 695

Gjaldbffik, Torben, 8
Goguen, Joseph A., 250

B.4 Authors Index 747

Goldberg, Adele [141], 282
Gosling, James [15,146], 56, 150, 176,

281, 673, 682, 684
Gray, James [148], 471
Gries, David [113,150-152], 8, 580,

657
GroBe-Rhode, Martin [153], 281
Gunther, Carl [156,158], 70, 157, 170,

215, 574, 588, 668, 681, 704

Haff, Peter L. [130,159], 176, 571, 673,
683, 695

Hansen, Kirsten Mark, 7
Hansen, Michael Reichhardt [168,

557], 4, 5, 7, 150, 528, 568,
573, 657

Harel, David [173,181,195], 4, 5, 115,
402, 468-470, 475, 509, 511,
514

Harrison, Peter G. [114], 294-296, 303
Havelund, Klaus [130,131], 176, 673,

683, 695
Haxthausen, Anne Elisabeth [130,

131], 7, 8, 110, 176, 432,434,
673, 683, 695

Hehner, Eric C.R. [205,206], 8
Hejlsberg, Anders, 150, 281, 682, 684
Hennessy, Matthew [208], 499, 509
Hoare, Sir Tony [213,214,435,437],

528, 683, 684, 705
Holmslykke, Steffen, VIII, 271, 281
Hopcroft, John E. [6,217], 294-296,

303, 311
Hughes, Stephen [131], 8, 683, 695
Hung, Dang Van, 528

Jackson, Michael A. [231-236], 713
Jacobson, Ivar [59,237,440], VIII, 243,

249, 252, 271, 375, 468, 470,
475, 476, 509, 511

Jensen, Kurt [238], 4, 5, 316, 372, 432
Jones, Clifford Bryn [44,52,246,247],

8, 658
Jouannaud, Jean-Pierre, 250

Kahn, Gilles, 684, 705

Kam, Na'aman, 470
Kastens, Uwe [260], 644, 658
Kay, Alan, 282
Kennedy, Ken, 636, 658
Kernighan, Brian [263], 150
Kleene, Stephen C. [266], 311
Knuth, Donald E. [269,271,273], 85,

636, 655, 658
Koelmans, Albert, 356
Krog Madsen, Christian [316, 317],

VIII, 315-372, 375-470,
475-509

Kugler, Hillel, 469, 470

Lamport, Leslie [282], 568
Landin, Peter, 74, 86, 88, 90, 598
Langmaack, Hans [383], 580
Leshniewski, Stanislaw [470], 49, 50
Lindegaard, Morten Peter, 7
Lindholm, Tom [301], 56, 150, 176,

281, 673, 682, 684
Lobachevski, Nikolai, 121
Lorho, Bernard, 636, 658
Lucas, Peter, 86, 250, 598, 658
Liittgen, Gerald, 499, 509

Manna, Zohar [318,320,321,323], 568
Marelly, Rami, 470
Mayoh, Brian, 636, 658
McCarthy, John, 86, 88, 175,181, 183,

192, 573, 657
McCulloch, Warren S., 311
Mcintosh, Harold V., 311
McTaggart, John McTaggart Ellis,

125
Mealy, George H., 311
Meseguer, Jose, 250, 705
Meyer, Bertrand [343-345], 56, 281,

673, 682, 684
Milne, Robert [130,131,355], 8, 176,

588, 658, 673, 683, 695
Milner, Robin [356-359], 150, 573,

657, 693, 705
Minsky, Marvin [361], 250, 251, 311
Moen Hagalisletto, Anders, 373

748 B Indexes

Moore, Edward F., 311
Morgan, C. Carroll [363], 8
Morris, Charles W. [364,365], 214,

215, 234
Morris, F. Lockwood [366,367], 63
Moses, Joel [368], 576, 588, 657
Mosses, Peter D. [370], 170, 705
Moszkowski, Ben, 522, 568

Naur, Peter [24], 183
Nelson, Greg [377], 673, 682, 684
Newton, Sir Isaac, 129
Nielsen, Claux Bendix [130], 176, 673,

683, 695
Nikitchenko, Nikolai, 148
Nygaard, Kristen [41], 282, 673, 682

Oest, Ole N. [54], 571

Penicka, Martin [398], VIII, 328-333,
484-492

Pandya, Paritosh K., 528
Parnas, David Lorge [390], 282
Peirce, Charles Sanders [394-397],

214, 234
Peleska, Jan, 7
Peterson, James L. [399], 372
Petri, Carl Adam [400], 4, 5, 315, 372
Pitts, W.H., 311
Plato [163], 122
Plotinus, 122
Plotkin, Gordon D., 416, 417, 500,

684, 704, 705
Pnueli, Amir [320,321], 469, 470, 475,

476, 509, 568
Prehn, S0ren [130,131], 8, 176, 673,

683, 695
Prior, Arthur N. [407-411], 125, 137,

520,521

Rabin, Michael O., 311
Randell, Brian [414], 580, 657
Ravn, Anders Peter, 7, 528, 541, 546-

548
Reiser, Martin [418], 673, 682, 684

Reisig, Wolfgang [419-421], 4, 5, 316,
317, 320, 324, 372

Reynolds, John C. [429,431,432], 8,
70, 78, 157, 170, 215, 574,
588, 658, 668, 681, 704

Rischel, Hans [168], 7, 150, 528, 541,
546-548, 573, 657

Ritchie, Dennis [263], 150
Roscoe, A. William [436], 683, 684,

705
Roychoudhury, Abhik, 443, 470
Rumbaugh, James [59,237,440], VIII,

243, 249, 252, 271, 375, 468,
470, 475, 476, 509, 511

Russell, Lawford John [414], 580, 657

Salomaa, Arto [444], 294-296, 303
Sangiorgio, David [446], 693, 705
Schmidt, David A. [448,449], 70, 157,

170, 215, 574, 588, 668, 681,
704

Scott, Dana, 86, 311
Sestoft, Peter [250,465], 56, 150, 176,

281, 673, 682, 684
Sethi, Ravi [6], 204
Sharp, Robin I. [469], 471
Skakkebaek, Jens Ulrik, 7, 528, 541,

546-548
Storbank Pedersen, Jan [131], 8, 683,

695
Stoy, Joseph E. [486], 588
Strachey, Christopher [355,463,488-

490], 63, 86, 658
Stroustrup, Bjarne [492], 150, 673,

682, 684

Tennent, Robert D. [497,499], 70, 157,
170, 215, 574, 588, 668, 681,
704

Thatcher, James, 250
Thiagarajan, Pazhamaneri Subrama-

niam, 443, 469, 470
Thompson, Stephen, 573, 657
Tofte, Mads [359], 150, 573, 657
Turner, David A. [91], 657

Ullman, Jeffrey D. [6,217], 204, 294-
296, 303, 311, 580, 657

van Benthem, Johan [508], 125
Verhoef, Chris, 409, 412
Viuf, Peter, 7
von der Beeck, Michael, 499, 509
von Wright, Joachim, 8

Wagner, Eric, 250
Wagner, Kim Ritter [130], 176, 673,

683, 695
Walk, Kurt, 86, 598, 658
Walker, David [446], 693, 705
Wand, Mitchell [519], 658
Wang Hao, 311
Wang Ji, 528
Warren, Scott K., 636, 658
Wegner, Peter [528], 598
Weizenbaum, Joseph [529], 576, 588,

657
Wilhelm, Reinhard [531], 644, 658
Wilner, Wayne T., 636, 658
Winskel, Glenn [533], 70, 157, 170,

215, 574, 588, 668, 681, 704
Wirth, Niklaus [240, 534-536, 540],

636, 658, 673, 682, 684
Wright, Jesse B., 250

Xia Yong, 7
Xu Qiwen, 528

Yakovlev, Alexandre, 356
Yang Shaofa, VIII, 443-468
Yap, Roland Hock Chuan, 470
Yellin, Frank [146,301], 56, 150, 176,

281, 673, 682, 684

Zemanek, Heinz, 214, 234
Zhou Chaochen [557], 4, 5, 7, 528, 568
Zimmermann, Erich [260], 644, 658

References

1. M. Abadi, L. Cardelli: A Theory of Objects (Springer, NY, USA 1996)
2. J.-R. Abrial: The B Book: Assigning Programs to Meanings (Cambridge Uni

versity Press, Cambridge, UK 1996)
3. J.-R. Abrial, E. Borger, H. Langmaack, editors. Formal Methods for Industrial

Applications: Specifying and Programming the Steam Boiler Control. Springer,
Lecture Notes in Computer Science, Vol. LNCS 1165, 1997.

4. J.-R. Abrial, L. Mussat. Event B Reference Manual (Editor: Thierry Lecomte),
June 2001. Report of EU 1ST Project Matisse IST-1999-11435.

5. ACM (special issue of): Programming Languages and Pragmatics. Communi
cations of the ACM 9, 6 (1966)

6. A.V. Alio, R. Sethi, J.D. Ullman: Compilers: Principles, Techniques, and Tools
(Addison-Wesley, Mass., USA, January 1986)

7. J. Allen: Natural Language Understanding (Benjamin/Cummings, CA, USA
1987)

8. J. Alves-Foss (ed.): Formal Syntax and Semantics of Java (Springer, 1998)
9. S. Andersen, S. Holmslykke: Analysis: Integrating UML Class Diagrams, and

Message and Live Sequence Charts into the RAISE Specification Language.
MSc Thesis, Informatics and Mathematical Modelling, Technical University of
Denmark (2004)

10. S. Andersen, S. Holmslykke: Implementation: Integrating UML Class Dia
grams, and Message and Live Sequence Charts into the RAISE Specification
Language. MSc Thesis, Informatics and Mathematical Modelling, Technical
University of Denmark (2005)

11. ANSI X3.23-1974: The COBOL Programming Language. Technical Report,
American National Standards Institute, Standards on Computers and Infor
mation Processing (1974)

12. ANSI X3.53-1976: The PL/I Programming Language. Technical Report, Amer
ican National Standards Institute, Standards on Computers and Information
Processing (1976)

13. ANSI X3.9-1966: The FORTRAN Programming Language. Technical Report,
American National Standards Institute, Standards on Computers and Infor
mation Processing (1966)

14. A.W. Appel: Modern Compiler Implementation in Java (Cambridge University
Press, 1998)

752 References

15. K. Arnold, J. Gosling, D. Holmes: The Java Programming Language (Addison-
Wesley, USA 1996)

16. K. Astrom, B. Wittenmark: Adaptive Control (Addison-Wesley, 1989)
17. R. Audi: The Cambridge Dictionary of Philosophy (Cambridge University

Press, The Pitt Building, Trumpington Street, Cambridge CB2 I R P , UK 1995)
18. J. Austin: How to Do Things with Words (Harvard University Press, 1 Jan

1975)
19. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider: The

Description Logic Handbook: Theory, Implementation and Applications (Cam-
brige University Press, 2003)

20. R.-J. Back, J. von Wright: Refinement Calculus: A Systematic Introduction
(Springer, Heidelberg, Germany 1998)

21. R. Backhouse: Syntax of Programming Languages: Theory and Practice (Pren
tice Hall, 1979)

22. J.W. Backus: The Syntax and Semantics of the Proposed International Alge
braic Language of the Zurich ACM-GAMM Conference. In: ICIP Proceedings,
Paris 1959 (Butterworths, London, 1960) pp 125-132

23. J.W. Backus: Can Programming Be Liberated from the von Neumann Style?
A Functional Style and Its Algebra of Programs. Communications of the ACM
21, 8 (1978) pp 613-641

24. J.W. Backus, P. Naur: Revised Report on the Algorithmic Language ALGOL
60. Communications of the ACM 6, 1 (1963) pp 1-1

25. J .CM. Baeten, C. Verhoef: A congruence theorem for structured operational
semantics with predicates. In: Proceedings CONCUR 93, Hildesheim, Ger
many, vol 715 of Lecture Notes in Computer Science (Springer, 1993) pp 477-
492

26. J .CM. Baeten, C. Verhoef: Concrete Process Algebra. In: Handbook of Logic
in Computer Science, vol 4: Semantic Modelling, ed by S. Abramsky, D.M.
Gabbay, T.S.E. Maibaum (Oxford University Press, 1995)

27. J .CM. Baeten, W.P. Weijland: Process Algebra, no 18 of Cambridge Tracts in
Theoretical Computer Science (Cambridge University Press, 1990)

28. J. Barnes (ed.): The Complete Works of Aristotle; I and II (Princeton Univer
sity Press, USA 1984)

29. D. Beech: On the Definitional Method of Standard PL/I. In: Principles of
Programming Languages, SIGPLAN/SIGACT Symposium, ACM Conference
Record/Proceedings (ACM, NY, USA, 1973) pp 87-94

30. H. Bekic: Towards a Mathematical Theory of Processes. TR 25.125, IBM Lab
oratory, Vienna (1971)

31. H. Bekic: An Introduction to ALGOL 68. Annual Review in: 'Automatic Pro
gramming', Pergamon Press 7 (1973)

32. H. Bekic: Programming Languages and Their Definition. In: Lecture Notes in
Computer Science, Vol. 177, ed by C.B. Jones (Springer, 1984)

33. H. Bekic, D. Bj0rner, W. Henhapl, C.B. Jones, P. Lucas: A Formal Definition
of a PL/I Subset. Technical Report 25.139, Vienna, Austria (1974)

34. H. Bekic, P. Lucas, K. Walk et al.: Formal Definition of PL/I, ULD Version I.
Technical Report, IBM Laboratory, Vienna (1966)

35. H. Bekic, P. Lucas, K. Walk et al.: Formal Definition of PL/I, ULD Version II.
Technical Report, IBM Laboratory, Vienna (1968)

36. H. Bekic, P. Lucas, K. Walk et al. Formal Definition of PL/I, ULD Version
III. IBM Laboratory, Vienna, 1969.

References 753

37. H. Bekic, K. Walk: Formalization of Storage Properties. In: Symposium on
Semantics of Algorithmic Languages, vol LNM 188 (Springer, 1971)

38. H. Ben-Abdallah, S. Leue: Expressing And Analyzing Timing Constraints in
Message Sequence Chart Specifications. Technical Report 97-04, Electrical and
Computer Engineering, University of Waterloo, Canada (1997)

39. S. Bennett, S. McRobb, R. Farmer: Object-Oriented Systems Analysis And
Design Using UML, 2nd edn (McGraw-Hill, 2002)

40. M. Bidoit, P.D. Mosses (eds.): CASL User Manual (Springer, 2004)
41. G. Birtwistle, O.-J. Dahl, B. Myhrhaug, K. Nygaard: SIMULA begin (Stu-

dentlitteratur, Lund, Sweden, 1974)
42. D. Bj0rner: Flowchart-Machines. BIT 10, 4 (1970) pp 415-442
43. D. Bj0rner: Folded Syntax- and Recursive Flowchart-Machines. In: HICSS

(Hawaii Int'l. Conf. Sys. Sci.) (1970) pp 415-453
44. D. Bj0rner: Programming in the Meta-Language: A Tutorial. In: The Vienna

Development Method: The Meta-Language, [51], ed by D. Bj0rner, C.B. Jones
(Springer, 1978) pp 24-217

45. D. Bj0rner: The Systematic Development of Compiling Algorithm. In: Le Point
sur la Compilation, ed by M. Amirchahy, D. Neel (INRIA Publ. Paris, 1979)
pp 45-88

46. D. Bj0rner (ed.): Abstract Software Specifications, vol 86 of LNCS (Springer,
1980)

47. D. Bj0rner: Stepwise Transformation of Software Architectures. In: [52] (Pren
tice Hall, 1982) pp 353-378

48. D. Bj0rner, C.W. George, A.E. Haxthausen et al.: "UML"-ising Formal Tech
niques. In: INT 2004: Third International Workshop on Integration of Specifi
cation Techniques for Applications in Engineering, vol 3147 of Lecture Notes
in Computer Science (Springer, 2004, ETAPS, Barcelona, Spain) pp 423-450

49. D. Bj0rner, J. Goossenaerts, S. Prehn: Enterprise Modelling. Technical Report
17, UNU/IIST, Macau (1994)

50. D. Bj0rner, C.A.R. Hoare, H. Langmaack (eds.): VDM & Z — Formal Methods
in Software Development, Proc. of VDM-Europe Symposium '90, vol 428 of
Lecture Notes in Computer Science (Springer, 1990)

51. D. Bj0rner, C.B. Jones (eds.): The Vienna Development Method: The Meta-
Language, vol 61 of LNCS (Springer, 1978)

52. D. Bj0rner, C.B. Jones (eds.): Formal Specification and Software Development
(Prentice Hall, 1982)

53. D. Bj0rner, C.B. Jones, M. Mac an Airchinnigh, E. Neuhold, editors. VDM
- A Formal Method at Work. Proc. VDM-Europe Symposium 1987, Brussels,
Belgium, Springer, Lecture Notes in Computer Science, Vol. 252, 1987.

54. D. Bj0rner, O. Oest (eds.): Towards a Formal Description of Ada, vol 98 of
LNCS (Springer, 1980)

55. N. Bj0rner, A. Browne, M. Colon et al.: Verifying Temporal Properties of Re
active Systems: A STeP Tutorial. Formal Methods in System Design 16 (2000)
pp 227-270

56. N. Bj0rner, Z. Manna, H. Sipma et al.: The Stanford Temporal Prover. In:
Internet (Published: http://www-step.stanford.edu/, 1994-2005)

57. W.D. Blizard: A Formal Theory of Objects, Space and Time. The Journal of
Symbolic Logic 55, 1 (1990) pp 74-89

754 References

58. Y. Bontemps, P. Heymans, H. Kugler: Applying LSCs to the Specification of an
Air Traffic Control system. In: Proc. of the 2nd Int. Workshop on "Scenarios
and State Machines: Models, Algorithms and Tools" (SCESM'03), at the 25th
Int. Conf. on Soft. Eng. (ICSE'03), ed by S. Uchitel, F. Bordeleau (2003)

59. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language User
Guide (Addison-Wesley, 1998)

60. P. Borst, H. Akkermans, J.L. Top: Engineering Ontologies. Submitted to: Inter
national Journal of Human-Computer Studies (Special issue on Using Explicit
Ontologies in KBS Development) (1996)

61. P. Branquart, J. Lewi, M. Sintzoff, P. Wodon: The Composition of Semantics
in ALGOL 68. Communications of the ACM 14, 11 (1971) pp 697-708

62. M. Broy, K. St0len: Specification and Development of Interactive Systems —
Focus on Streams, Interfaces and Refinement (Springer, Heidelberg, Germany
2001)

63. R. Bruni, J. Meseguer: Generalized Rewrite Theories. In: Automata, Languages
and Programming. 30th International Colloquium, ICALP 2003, Eindhoven,
The Netherlands, June 30 - July 4, 2003. Proceedings, vol 2719 of Lecture
Notes in Computer Science, ed. by Jos CM. Baeten, J.K. Lenstra, J. Parrow
and G.J. Woeginger (Springer, 2003) pp 252-266

64. A. Bunker, G. Gopalakrishnan: Using Live Sequence Charts for Hardware Pro
tocol Specification and Compliance Verification. In: IEEE International High
Level Design Validation and Test Workshop (IEEE Computer Society Press,
2001)

65. A.W. Burks, H. Wang: The Logic of Automata — Part I. Journal of ACM 4,
2 (1957) pp 193-218

66. A.W. Burks, H. Wang: The Logic of Automata — Part II. Journal of ACM 4,
3 (1957) pp 279-297

67. F. Burns, A. Koelmans, A. Yakovlev: Analysing superscalar processor archi
tectures with Coloured Petri Nets. International Journal on Software Tools for
Technology Transfer 2, 2 (1998) pp 182-191

68. R. Burstall, J. Goguen: Putting Theories together to Make Specifications. In:
Proc. of (IJCAI) Int'l. Joint Conf. on AI (Boston, 1977)

69. R. Burstall, J. Goguen: The Semantics of CLEAR: A Specification Language.
[46] (1980) pp 292-332

70. R. Burstall, J. Goguen: Algebras, Theories and Freeness: An Introduction for
Computer Scientists. In: Proc. Marktoberdorf Summer School on Theoretical
Foundations of Programming Meth. (Springer, 1981)

71. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-
Oriented Software Architecture: A System Of Patterns (John Wiley, UK 1996)

72. M. Carey. Statecharts: Permutation City. Electronically, on the Web:
h t tp : / /www.permuta t ionc i ty .co .uk /a l i fe / s t a techar t s .h tml , 2004.

73. R. Carnap: The Logical Syntax of Language (Harcourt Brace and Co., N.Y.
1937)

74. R. Carnap: Introduction to Semantics (Harvard Univ. Press, Mass. 1942)
75. R. Carnap: Meaning and Necessity, A Study in Semantics and Modal Logic

(University of Chicago Press, 1947 (enlarged edition: 1956))
76. R. Carnap: The Logical Structure of the World and Pseudo-problems in Phi

losophy (R.A. George (tr.), London, UK 1967)

References 755

77. A. Cau, B. Moszkowski: AnaTempura: Runtime Verification & Anima
tion Toolkit. In: Internet (Published: www.cse.dmu.ac.uk/STRL/research/-
software/index.html^tempura, 18 October 2004)

78. P. Chan, D.V. Hung: Duration Calculus Specification of Scheduling for Tasks
with Shared Resources. Research Report 44, UNU/IIST, Macau (1995)

79. P.P. Chen: The Entity-Relationship Model — Toward a Unified View of Data.
ACM Trans. Database Syst 1, 1 (1976) pp 9-36

80. E.M. Clarke, O. Grumberg, D.A. Peled: Model Checking (The MIT Press, MA,
USA 2000)

81. M. Clavel, F. Duran, S. Eker et al.: The Maude 2.0 System. In: Rewriting Tech
niques and Applications (RTA 2003), no 2706 of Lecture Notes in Computer
Science, ed by Robert Nieuwenhuis (Springer, 2003) pp 76-87

82. G. Clemmensen, O. Oest: Formal Specification and Development of an Ada
Compiler - A VDM Case Study. In: Proc. 7th International Conf. on Software
Engineering, 26.-29. March 1984, Orlando, Florida (IEEE Press, 1984) pp
430-440

83. P. Constantin: Navier-Stokes Equations (University of Chicago Press, 1988)
84. D. Crystal: The Cambridge Encyclopedia of Language (Cambridge University

Press, 1987, 1988)
85. O.-J. Dahl: Object Orientation and Formal Techniques. In: see [50], vol 428

of Lecture Notes in Computer Science (Springer, Heidelberg, Germany, 1990)
pp 1-11

86. O.-J. Dahl, E.W. Dijkstra, C.A.R. Hoare: Structured Programming (Academic
Press, 1972)

87. O.-J. Dahl, C.A.R. Hoare: Hierarchical Program Structures. In: [86] (Academic
Press, 1972) pp 197-220

88. O.-J. Dahl, K. Nygaard: SIMULA - An ALGOL-Based Simulation Language.
Communications of the ACM 9, 9 (1966) pp 671-678

89. W. Damm, D. Harel: LSCs: Breathing Life into Message Sequence Charts.
Formal Methods in System Design 19 (2001) pp 45-80

90. O. Danvy: A Rational Deconstruction of Landin's SECD Machine. Research
RS 03-33, BRICS: Basic Research in Computer Science, Dept. of Comp. Sci.,
University of Arhus, Denmark (2003)

91. J. Darlington, P. Henderson, D. Turner: Functional Programming and Its Ap
plications (Cambridge Univ. Press, 1982)

92. J. de Bakker: Mathematical Theory of Programming Correctness (Prentice Hall,
1980)

93. J. de Bakker: Control Flow Semantics (The MIT Press, Mass., USA, 1995)
94. P. Deransart, M. Jourdan: Attribute Grammars and Their Applications, vol

461 of Lecture Notes in Computer Science (Springer, 1990)
95. N. Dershowitz, J.-P. Jouannaud: Rewrite Systems. In: Handbook of Theoretical

Computer Science, vol B: Formal Models and Semantics, ed by J. van Leeuwen
(Elsevier, 1990) pp 243-320

96. R. Diaconescu, K. Futatsugi, K. Ogata: CafeOBJ: Logical Foundations and
Methodology. Computing and Informatics 22, 1-2 (2003)

97. E. Dijkstra: A Discipline of Programming (Prentice Hall, 1976)
98. E. Dijkstra, W. Feijen: A Method of Programming (Addison-Wesley, 1988)
99. E. Dijkstra, C. Scholten: Predicate Calculus and Program Semantics (Springer:

Texts and Monographs in Computer Science, 1990)

756 References

100. E.W. Dijkstra: An ALGOL 60 Translator for the XI. Annual Review in: 'Au
tomatic Programming', Pergamon Press 3 (1962) pp 329-356

101. E.W. Dijkstra: Go To Statement Considered Harmful. Communications of the
ACM 11, 3 (1968) pp 147-148

102. E.W. Dijkstra: Hierarchical Ordering of Sequential Processes. Acta Informatica
1 (1971) pp 115-138

103. V. Donzeau-Gorge, G. Kahn, B. Lang: Formal Definition of the Ada Program
ming Language. Technical Report, INRIA (1980)

104. R. Dorf: Modern Control Systems (Addison-Wesley, 1967 (fifth ed. 1989))
105. B. Dutertre: Complete Proof System for First-Order Interval Temporal Logic.

In: Proceedings of the 10th Annual IEEE Symposium on Logic in Computer
Science (IEEE CS, 1995) pp 36-43

106. S. Efroni, D. Harel, I. Cohen: Towards Rigorous Comprehension of Biological
Complexity: Modeling, Execution and Visualization of Thymic T Cell Matura
tion. Genome Research 13 (2003) pp 2485-2497

107. S. Efroni, D. Harel, I. Cohen: Reactive Animation: Realistic Modeling of Com
plex Dynamic Systems. Computer 38, 1 (2005) pp 38-47

108. S. Efroni, D. Harel, I. Cohen: A Theory for Complex Systems: Reactive Ani
mation. In: Multidisciplinary Approaches to Theory in Medicine (R.C. Paton,
ed.) (Elsevier, 2005 (to appear))

109. E. Engeler: Symposium on Semantics of Algorithmic Languages, vol 188 of
Lecture Notes in Mathematics (Springer, 1971)

110. ECMA (European Computer Manufacturers Assoc): PL/I BASIS/I. EC-
MA/TC10 and ANSI X3J1 (1974)

111. ECMA (European Computer Manufacturers Assoc): PL/I. ECMA/TC10 and
ANSI X3.53-1976, (1976)

112. D.J. Farmer: Being in time: The nature of time in light of McTaggart's paradox
(University Press of America, Maryland 1990)

113. W. Feijen, A. van Gasteren, D. Gries, J. Misra, editors. Beauty is Our Business,
Texts and Monographs in Computer Science, NY, USA, 1990. Springer. A
Birthday Salute to Edsger W. Dijkstra.

114. A. Field, P. Harrison: Functional Programming (Addison-Wesley, 1988)
115. J. Fisher, D. Harel, E. Hubbard et al.: Combining State-based and Scenario-

based Approaches in Modeling Biological Systems. In: Proc. Computational
Methods in Systems Biology (CMSB'04), vol 3082 of (Lecture Notes in Bioin-
formatics) (Springer, 2004) pp 236-241

116. J. Fisher, N. Piterman, E. Hubbard, M. Stern, D. Harel: Computational In
sights into C. elegans Vulval Development. In: Proc. Natl. Acad. Sci., vol 102,
1 (2005) pp 1951-1956

117. W.J. Fokkink: The tyft/tyxt format reduces to tree rules. In: Proceedings
2nd International Symposium on Theoretical Aspects of Computer Science
(TACS'94), Sendai, Japan, vol 789 of Lecture Notes in Computer Science
(Springer, 1994) pp 440-453

118. FOLDOC: The free online dictionary of computing. Electronically, on the Web:
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?ISWIM, 2004

119. P. Folkjaer, D. Bj0rner: A Formal Model of a Generalised CSP-like Language.
In: Proc. IFIP'80, ed by S. Lavington (North-Holland, Amsterdam, 1980) pp
95-99

120. G. Franklin, J. Powell, M. Workman: Digital Control of Dynamic Systems
(Addison-Wesley, 1980 (second ed. 1990))

References 757

121. R. Frost: Mountain Interval (Henry Holt and Company, New York, USA 1920
(online edition: Bartleby, 1995-9. www.bartleby.com/119/1.html))

122. A. Funes, C.W. George: Formal Foundations in RSL for UML Class Diagrams.
Research Report 253, UNU/IIST, Macau (2002)

123. K. Futatsugi, R. Diaconescu: CafeOBJ Report. The Language, Proof Tech
niques and Methodologies for Object-Oriented Algebraic Specification (World
Scientific Publishing)

124. K. Futatsugi, J. Goguen, J.-P. Jouannaud, J. Meseguer: Principles of OBJ-2.
In: 12th Ann. Symp. on Principles of Programming (ACM, 1985) pp 52-66

125. K. Futatsugi, A. Nakagawa, T. Tamai, editors. CAFE: An Industrial-Strength
Algebraic Formal Method. Elsevier 2000. Proceedings from an April 1998 Sym
posium, Numazu, Japan.

126. A. Galton: Temporal Logic. In: The Stanford Encyclopedia of Philos
ophy (Published: http://plato.stanford.edu/archives/win2003/entries/logic-
temporal/, Winter 2003)

127. A.L. Gangarski, P.R. Henriques: Interactive information retrieval from XML
documents represented by attribute grammars. In: Proceedings of the 2003
ACM Symposium on Document Engineering, [512] (2003) pp 171-174

128. H. Ganzinger: Transforming Denotational Semantics into Practical Attribute
Grammars. In: [249] (1980) pp 1-69

129. H. Garcia-Molina, J.D. Ullman, J.D. Widom: Database System Implementation
(Pearson, June 11, 1999)

130. C.W. George, P. Haff, K. Havelund et al.: The RAISE Specification Language
(Prentice Hall, UK 1992)

131. C.W. George, A.E. Haxthausen, S. Hughes et al.: The RAISE Method (Prentice
Hall, UK 1995)

132. C.W. George, Y. Xia: An Operational Semantics for Timed RAISE. In: FM'99
— Formal Methods, ed by J.M. Wing, J. Woodcock, J. Davies (Springer, 1999)
pp 1008-1027

133. E. Gery, D. Harel, E. Palatshy: A Complete Lifecycle Model-Based Develop
ment System. In: Proc. 3rd Int. Conf. on Integrated Formal Methods (IFM
2002) (Springer, May 2002)

134. J. Goguen: Some Ideas in Algebraic Semantics. Technical Report, Naropa Inst.,
Boulder, Co., UCLA Dept. of Comp. Sci., CA, USA (1978)

135. J. Goguen: Some Design Principles and Theory for OBJ-0. In: Lecture Notes
in Computer Science, Vol. 75 (Springer, 1979) pp 425-471

136. J. Goguen, J. Meseguer: Order-Sorter Algebra I. Technical Report SRI-CSL-
89-10, SRI CSL Technical Report, Naropa Inst., Boulder, Co., UCLA Dept. of
Comp. Sci., (1989)

137. J. Goguen, K. Parsaye-Ghomi: Algebraic Denotational Semantics Using Pa
rameterized Abstract Modules. In: Lecture Notes in Computer Science, Vol.
107 (Springer, 1981) pp 292-309

138. J. Goguen, J. Thatcher, E. Wagner, J. Wright: Abstract Data Types as Initial
Algebras and Correctness of Data Representations. In: A CM Conf. on Com
puter Graphics (1975) pp 89-93

139. J. Goguen, J. Thatcher, E. Wagner, J. Wright: Initial Algebra Semantics and
Continuous Algebras. Journal of the ACM 24, 1 (1977) pp 68-95

140. J. Goguen, J. Thatcher, E. Wagner, J. Wright: An Initial Algebra Approach
to the Specification, Correctness and Implementation of Abstract Data Types.

758 References

In: Current Trends in Programming Methodology, ed by R. Yeh (Prentice Hall,
1978)

141. A. Goldberg, D. Robson: Smalltalk-80: the Language and Its Implementation
(Addison-Wesley, 1983)

142. I. Goldstein, D. Bobrow: Extending Object-Oriented Programming in
Smalltalk. In: Proceedings of the 1980 Lisp Conference (1980) pp 75-81

143. J. Goossenaerts: Generic Models for Manufacturing Industry. Technical Report
32, UNU/IIST, Macau (1994)

144. J. Goossenaerts, D. Bj0rner: An Information Technology Framework for
Lean/Agile Supply-based Industries in Developing Countries. Technical Re
port 30, UNU/IIST, Macau (1994)

145. J. Goossenaerts, D. Bj0rner: Interflow Systems for Manufacturing: Concepts
and a Construction. Technical Report 31, UNU/IIST, Macau (1994)

146. J. Gosling, F. Yellin: The Java Language Specification (ACM Press Books,
1996)

147. J. Gray: Notes on database operating systems. In: Operating Systems - An
Advanced Course, vol 60 of Lecture Notes in Computer Science, ed. by R.
Bayer et al. (Springer, 1978) pp 393-481

148. J. Gray, A. Reuter: Transaction Processing: Concepts and Techniques (Morgan
Kaufmann, 1993)

149. J.-C. Gregoire, G.J. Holzmann, D. Peled, editors. The SPIN Verification Sys
tem, volume 32 of DIM ACS series. American Mathematical Society, 1997, 203p.

150. D. Gries: Compiler Construction for Digital Computers (John Wiley, NY, 1971)
151. D. Gries: The Science of Programming (Springer, 1981)
152. D. Gries, F.B. Schneider: A Logical Approach to Discrete Math (Springer, 1993)
153. M. Grofie-Rhode: Semantic Integration of Heterogeneous Software Specifica

tions (Springer, Heidelberg and Berlin, Germany 2004)
154. J.F. Groote: Transistion Systems Specification with Negative Premises. Tech

nical Report, CWI, Amsterdam (1990)
155. J.F. Groote, F.W. Vaandrager: Structured Operational Semantics and Bisimu-

lation as a Congruence. Information & Computation 100, 2 (1992) pp 202-260
156. C. Gunther, J. Mitchell: Theoretical Aspects of Object-Oriented Programming

(MIT Press, Mass., USA, 1994)
157. C. Gunther, D. Scott: Semantic Domains. In: [509] — vol.B., ed by J. Leeuwen

(North-Holland, Amsterdam, 1990) pp 633-674
158. C. Gunther: Semantics of Programming Languages (MIT Press, Mass., USA,

1992)
159. P. Haff (ed.): The Formal Definition of CHILL (ITU (Intl. Telecomm. Union),

Geneva, Switzerland 1981)
160. P. Haff, A. Olsen: Use of VDM within CCITT. In: [53] (Springer, 1987) pp

324-330
161. A.M. Hagalisletto, I.C. Yu: Large Scale Construction of Railroad Models from

Specification. In: International Conference on Systems, Man and Cybernetics
(IEEE, October 10-13, 2004)

162. L.H. Hamel: Towards a Provably Correct Compiler for OBJ3. Technical Report
TR-1-94, Programming Research Group, Oxford University, UK (1994)

163. E. Hamilton, H. Cairns (eds.): The Collected Dialogues of Plato (Princeton
University Press, NJ 1961)

References 759

164. K.M. Hansen: Validation of a Railway Interlocking Model. In: FME'94: In
dustrial Benefit of Formal Methods, ed by M. Naftalin, B.T. Denvir (Springer,
1994) pp 582-601

165. K.M. Hansen: Linking Safety Analysis to Safety Requirements. PhD Thesis,
Department of Computer Science, Technical University of Denmark (1996)

166. M.R. Hansen, P. Paritosh, C.C. Zhou: Finite Divergence. Research Report 15,
UNU/IIST, Macau (1993)

167. M.R. Hansen, A.P. Ravn, H. Rischel, C.C. Zhou: Duration Specifications for
Shared Processors. School <fe Symposium: Formal Techniques in Real-Time and
Fault-Tolerant Systems, January 1992, Nijmegen, The Netherlands, Dept. of
Computer Science, Technical University of Denmark (1991)

168. M.R. Hansen, H. Rischel: Functional Programming in Standard ML (Addison-
Wesley, 1997)

169. M.R. Hansen, C.C. Zhou: Semantics and Completeness of Duration Calculus.
Technical Report ID/DTH MRH 6, ProCoS, ESPRIT BRA 3104, Dept. of
Computer Science, Technical University of Denmark (1991)

170. M.R. Hansen, C.C. Zhou, J. Staunstrup: A Real-Time Duration Semantics
for Circuits. Submitted to Workshop on Timing Issues in the Specification
and Synthesis of Digital Systems, March 1992, Princeton, NJ, USA, Dept. of
Computer Science, Technical University of Denmark (1991)

171. S. Harbinson: Modula 3 (Prentice Hall, NJ, USA 1992)
172. D. Harel: On a Folklore Theorem. Communications of the ACM (1978)
173. D. Harel: Algorithmics — The Spirit of Computing (Addison-Wesley, 1987)
174. D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming 8, 3 (1987) pp 231-274
175. D. Harel: On Visual Formalisms. Communications of the ACM 33, 5 (1988)
176. D. Harel: On the Behavior of Complex Object-Oriented Systems. In: Proc.

Conf. on Object-Oriented Modeling of Embedded Real-Time Systems (OMER
'99; Peter P. Hofmann and Andy Schurr, eds.) (Springer, 2002) pp 11-15

177. D. Harel: A Grand Challenge for Computing: Full Reactive Modeling of a Multi
cellular Animal. Bulletin of the EATCS, European Association for Theoretical
Computer Science 81 (2003) pp 226-235

178. D. Harel: From Play-In Scenarios to Code: Capturing and Analyzing Reactive
Behavior. In: Proc. NATO Advanced Study Institute on Models, Algebras and
Logic of Engineering Software (IOS Press, 2003) pp 317-350

179. D. Harel: A Grand Challenge for Computing: Full Reactive Modeling of a
Multi-cellular Animal. In: Current Trends in Theoretical Computer Science:
The Challenge of the New Century, Algorithms and Complexity, Vol I, (Eds.
G. Paun, G. Rozenberg and A. Salomaa) (World Scientific, Singapore, 2004)
pp 559-568

180. D. Harel: A Turing-Like Test for Biological Modeling. Nature Biotechnology
23 (2005) pp 495-496

181. D. Harel: The Science of Computing — Exploring the Nature and Power of
Algorithms (Addison-Wesley, April 1989)

182. D. Harel: From Play-In Scenarios To Code: An Achievable Dream. Computer
34, 1 (January 2001) pp 53-60

183. D. Harel: From Play-In Scenarios To Code: An Achievable Dream. In: Proc.
Fundamental Approaches to Software Engineering, FASE, vol 1783 (Tom
Maibaum, ed.) of Lecture Notes in Computer Science (Springer, March 2000)
pp 22-34

760 References

184. D. Harel, S. Efroni, I. Cohen: Reactive Animation. In: Proc. 1st Int. Symposium
on Formal Methods for Components and Objects (FMCO 2002), vol 2852 of
Lecture Notes in Computer Scienc (Springer, 2003) pp 136-153

185. D. Harel, E. Gery: Executable Object Modeling with Statecharts. IEEE Com
puter 30, 7 (1997) pp 31-42

186. D. Harel, H. Kugler: Synthesizing State-based Object Systems from LSC Spec
ifications. In: Proc. 5th Int. Conf. on Implementation and Application of Au
tomata, CIA A 2000, vol 2088 of Lecture Notes in Computer Science (Springer,
2001) pp 1-33

187. D. Harel, H. Kugler: Synthesizing State-based Object Systems from LSC Specifi
cations. International Journal of Foundations of Computer Science 13, 1 (2002)
pp 5-51

188. D. Harel, H. Kugler: Synthesizing State-based Object Systems from LSC Spec
ifications. Int. J. of Foundations of Computer Science 13, 1 (2002) pp 5-51

189. D. Harel, H. Kugler, R. Marelly: The Play-in/Play-out Approach and Tool:
Specifying and Executing Behavioral Requirements. In: Proc. Israeli Workshop
on Programming Languages & Development Environments (PLE'02) (July
2002)

190. D. Harel, H. Kugler, R. Marelly, A. Pnueli: Smart Play-Out of Behavioral
Requirements. In: Proc. J^th Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD 2002) (November 2002) pp 378-398

191. D. Harel, H. Kugler, A. Pnueli: Smart Play-Out Extended: Time and Forbid
den Elements. In: Proc. I^th Int. Conf. on Quality Software (QSIC'04) (IEEE
Computer Society Press, 2004) pp 2-10

192. D. Harel, H. Kugler, A. Pnueli: Synthesis Revisited: Generating Statechart
Models from Scenario-Based Requirements. In: Formal Methods in Software
and System Modeling (H.-J. Kreowski et al., eds.) (Springer, 2005) pp 309-324

193. D. Harel, H. Lachover, A. Naamad et al.: STATEMATE: A Working Environ
ment for the Development of Complex Reactive Systems. Software Engineering
16, 4 (1990) pp 403-414

194. D. Harel, R. Marelly: Playing with Time: On the Specification and Execution
of Time-Enriched LSCs. In: Proc. 10th IEEE/ACM Int. Symp. on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (ACM
Press, 2002)

195. D. Harel, R. Marelly: Come, Let's Play — Scenario-Based Programming Using
LSCs and the Play-Engine (Springer, 2003)

196. D. Harel, R. Marelly: Specifying and Executing Behavioral Requirements: The
Play In/Play-Out Approach. Software and System Modeling (SoSyM) 2 (2003)
pp 82-107

197. D. Harel, A. Naamad: The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology (TOSEM) 5, 4 (1996)
pp 293-333

198. D. Harel, M. Politi: Modelling Reactive Systems with Statecharts: The Stalem
ate Approach (McGraw-Hill, 1998)

199. D. Harel, P. Thiagarajan: Message Sequence Charts. In: UML for Real: Design
of Embedded Real-time Systems, ed by Luciano Lavagno and Grant Martin and
Bran Selic (Kluwer Academic, 2003)

200. M. Harrison: Introduction to Formal Language Theory (Addison-Wesley, MA,
USA 1978)

References 761

201. K. Havelund, R. Milne: The Semantics of RSL. Technical Report RAISE/-
DDC/KH/43/V2, CRI: Computer Resources International, Denmark (1989)

202. K. Havelund, K.R. Wagner: Kentrikos. Technical Report RAISE/DDC/KH/-
27/V5, Dansk Datamatik Center (1987)

203. A.E. Haxthausen: Some Approaches for Integration of Specification Tech
niques. In: Proceedings of INT'OO — Integration of Specification Techniques
with Applications in Engineering (Technical Report 2000/04, Technical Uni
versity of Berlin, 2000) pp 33-40

204. A.E. Haxthausen, Y. Xia: Linking DC together with TRSL. In: Proceedings
of 2nd International Conference on Integrated Formal Methods (IFM 2000),
Schloss Dagstuhl, Germany, November 2000, no 1945 of Lecture Notes in Com
puter Science (Springer, 2000) pp 25-44

205. E. Hehner: The Logic of Programming (Prentice Hall, 1984)
206. E. Hehner: A Practical Theory of Programming, 2nd edn (Springer, 1993)
207. A. Hejlsberg, S. Wiltamuth, P. Golde: The C# Programming Language

(Addison-Wesley, MA, USA)
208. M. Hennessy: Algebraic Theory of Processes (MIT Press, Mass., USA, 1988)
209. M. Hennessy, T. Regan: A process algebra for timed systems. Information and

Computation 117 (1995) pp 221-239
210. M.C. Henson, S. Reeves, J.P. Bowen: Z Logic and Its Consequences. Computing

and Informatics 22, 1-2 (2003)
211. H. Herold: lex und yacc. (Addison-Wesley, MA, USA 2003)
212. C.A.R. Hoare: Communicating Sequential Processes. Communications of the

ACM 21, 8 (1978)
213. C.A.R. Hoare: Communicating Sequential Processes (Prentice Hall, 1985)
214. C.A.R. Hoare, J.F. He: Unifying Theories of Programming (Prentice Hall,

1997)
215. G.J. Holzmann: The SPIN Model Checker, Primer and Reference Manual

(Addison-Wesley, Mass., 2003)
216. T. Honderich (ed.): The Oxford Companion to Philosophy (Oxford University

Press, UK 1995)
217. J. Hopcroft, J. Ullman: Introduction to Automata Theory, Languages and Com

putation (Addison-Wesley, 1979)
218. P. 0hrstr0m, P.F.V. Hasle: Temporal Logic, from Ancient Ideas to Artificial

Intelligence, vol 57 of Studies in Linguistics and Philosophy (Kluwer Academic,
The Netherlands 1995)

219. D.V. Hung, P.H. Giang: A Sampling Semantics of Duration Calculus. Research
Report 50, UNU/IIST, Macau (1995)

220. D.V. Hung, K.K. II: Verification via Digitized Model of Real-Time Systems.
Research Report 54, UNU/IIST, Macau (1996)

221. D.V. Hung, C.C. Zhou: Probabilistic Duration Calculus for Continuous Time.
Research Report 25, UNU/IIST, Macau (1994)

222. J. Ichbiah et al.: Preliminary Ada Reference Manual & Rationale for the Design
of the Ada Programming Language, Parts A and B. SIGPLAN 14, 6 (1979)

223. J. Ichbiah et al.: Requirements for Ada Programming Support Environments,
"Stoneman". Technical Report, US Department of Defense, Research and En
gineering (1980)

224. IEEE LAN and MAN Standards Committee: Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications (IEEE, 1999)

762 References

225. Inmos Ltd.: Specification of instruction set & Specification of floating point
unit instructions. In: Transputer Instruction Set - A compiler writer's guide
(Prentice Hall UK 1988) pp 127-161

226. International Telecommunication Union (ITU, 1995-2004). ITU, SDL and MSC
related Web pages:
• www.sdl-forum.org,
• www.sdl-forum.org/Events/SAM03.htm,
• www-i2.informatik.rwtli-aachen.de/Researcli/AG/MCS/MSC/index.html
• www.sdl-forum.org/Tools
and SDL conferences
• 11th International SDL Forum, Stuttgart, Germany, July 1-4, 2003. Pro

ceedings. Lecture Notes in Computer Science 2708 Springer 2003.
• 10th International SDL Forum Copenhagen, Denmark, June 27-29, 2001,

Proceedings. Lecture Notes in Computer Science 2078 Springer 2001.
• 9th International SDL Forum, Montreal, Quebec, Canada, 21-25 June,

1999, Proceedings. Elsevier 1999.
• 8th International SDL Forum, Evry, France, 23-29 September 1997, Pro

ceedings. Elsevier 1997.
• 7th International SDL Forum, 26-29 September 1995, Oslo, Norway. Else

vier Science 1995.
227. International Telecommunication Union (ITU-T). CCITT Recommendation

Z.120: Message Sequence Chart (MSC), 1992.
228. International Telecommunication Union (ITU-T). ITU-T Recommendation

Z.120: Message Sequence Chart (MSC), 1996.
229. International Telecommunication Union (ITU-T). ITU-T Recommendation

Z.120: Message Sequence Chart (MSC), 1999.
230. D. Jackson: Structuring Z Specifications with Views. ACM Transactions on

Software Engineering and Methodology 4, 4 (1995) pp 365-389
231. M.A. Jackson: Principles of Program Design (Academic Press, 1969)
232. M.A. Jackson: System Design (Prentice Hall, 1985)
233. M.A. Jackson: Software Requirements & Specifications: a lexicon of practice,

principles and prejudices (Addison-Wesley, UK 1995)
234. M.A. Jackson: Software Hakubutsushi: Sekai to Kikai no Kijutsu (Software

Requirements & Specifications: a lexicon of practice, principles and prejudices)
(Toppan, Japan 1997)

235. M.A. Jackson: Problem Frames — Analyzing and Structuring Software Devel
opment Problems (Addison-Wesley, UK 2001)

236. M.A. Jackson, G. Twaddle: Business Process Implementation — Building
Workflow Systems (Addison-Wesley, 1997)

237. I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Pro
cess (Addison-Wesley, 1999)

238. K. Jensen: Coloured Petri Nets, vol 1: Basic Concepts (234 pages + xii), Vol.
2: Analysis Methods (174 pages + x), Vol. 3: Practical Use (265 pages + xi)
of EATCS Monographs in Theoretical Computer Science (Springer, Heidelberg
1985, revised and corrected second version: 1997)

239. K. Jensen, F. Heitmann, M. Weber et al. (1995-2005) Miscellaneous Petri Net
Web pages:
• h t tp : / /www.daimi .au.dk/Petr iNets / : Coloured Petri Nets (Editor: Kurt

Jensen).

References 763

• h t tp: / /www.informat ik .hu-ber l in .de/ top/pnml/about .html: Petri Net
XML Markup Language (Editor: Frank Heitmann).

• h t t p : / / p e t r i - n e t . s o u r c e f o r g e . n e t / : Platform Independent Petri Net
Editor (Editor: Michael Weber).

• h t t p : / / p d v . c s . t u - b e r l i n . d e / ~ a z i / p e t r i . h t m l : What is a Petri Net?
(Editor: (Editor: Armin Zimmermann)).

• http://www.informatik.uni-hamburg.de/TGI/pnbib/: The Petri Nets
Bibliography (Editor: Heiko Rolke).

• ht tp:/ /www.informatik.uni-hamburg.de/TGI/pnbib/newsletter .html:
Petri Net Newsletter (Editors: Jorg Desel, Kurt Lautenbach, Gabriel
Juhas (executive editor), Karsten Schmidt, Peter Kemper, Peter H.
Starke, Ekkart Kindler (executive editor), Riidiger Valk).

240. K. Jensen, N. Wirth: Pascal User Manual and Report, vol 18 of LNCS
(Springer, 1976)

241. O. Jespersen: Essentials of English Grammar (University of Alabama Press,
1964)

242. O. Jespersen: Modern English Grammar on Historical Principles (London:
Allen & Unwin, Copenhagen: Einar Munksgaard, 1909-1949)

243. O. Jespersen: Essentials of English Grammar (Routledge, an imprint of Taylor
& Francis Books Ltd, 1933)

244. O. Jespersen: Essentials of English Grammar (HarperCollins, 1933)
245. Jin Au Kong: Maxwell Equations (EMW Publishing, June 2002)
246. C.B. Jones: Systematic Software Development Using VDM (Prentice Hall,

1986)
247. C.B. Jones: Systematic Software Development Using VDM, 2nd edn (Prentice

Hall, 1990)
248. C.B. Jones, P. Lucas: Proving Correctness of Implementation Techniques. In: A

Symposium on Algorithmic Languages, Vol. 188 of Lecture Notes in Computer
Science, ed by E. Engeler (Springer, 1971) pp 178-211

249. N.D. Jones: Flow Analysis of Lambda Expressions. In: International Collo
quium on Automata, Languages and Programming, European Association for
Theoretical Computer Science (Springer, 1980)

250. N.D. Jones, C. Gomard, P. Sestoft: Partial Evaluation and Automatic Program
Generation (Prentice Hall, 1993)

251. J.-P. Jouannaud: Rewrite Proofs and Computations. In: Proof and Compu
tation, vol 139 of Computer and Systems Sciences, ed by H. Schwichtenberg
(Springer, 1995)

252. G. Kahn: Natural Semantics. In: I^th Ann. Symposium on Theoretical Aspects
of Computer Science (STACS) (ACM, NY, USA, 1987) pp 22-39

253. N. Kam, I. Cohen, D. Harel: The Immune System as a Reactive System: Mod
eling T Cell Activation with Statecharts, Extended abstract. In: Proc. Visual
Languages and Formal Methods (VLFM'01), part of IEEE Symp. on Human-
Centric Computing (HCC'01) (IEEE Press, 2001) pp 15-22

254. N. Kam, I. Cohen, D. Harel: The Immune System as a Reactive System: Mod
eling T Cell Activation with Statecharts. Bulletin of Mathematical Biology (To
appear)

255. N. Kam, D. Harel, I. Cohen: Modeling Biological Reactivity: Statecharts vs.
Boolean Logic. In: 2nd Int. Conf. on Systems Biology (ICSB 2001) (2001) pp
301-310

764 References

256. N. Kam, D. Harel, I. Cohen: Modeling Biological Reactivity: Statecharts
vs. Boolean Logic. In: Proc. Working Conf. on Advanced Visual Interfaces
(AVI'02), Trento, Italy, May 2002 (2002) pp 345-353

257. N. Kam, D. Harel, H. Kugler et al.: Formal Modeling of C. elegans Devel
opment: A Scenario-Based Approach. In: Modeling in Molecular Biology (G.
Ciobanu and G. Rozenberg, eds.) (Springer, 2004) pp 151-173

258. N. Kam, D. Harel, H. Kugler et al.: Formal Modeling of C. elegans Develop
ment: A Scenario-Based Approach. In: Proc. 1st Int. Workshop on Computa
tional Methods in Systems Biology (ICMSB 2003), vol 2602 of Lecture Notes
in Computer Science (Springer, February 2003) pp 4-20

259. S. Kamin, J.-J. Levy: Two Generalizations of the Recursive Path Ordering. Un
published manuscript, Department of Computer Science, University of Illinois,
Urbana, IL (1980)

260. U. Kastens, B. Hutt, E. Zimmermann: GAG: A Practical Compiler Generator,
vol 141 of Lecture Notes in Computer Science (Springer, 1982)

261. M.H. Kay: XML five years on: a review of the achievements so far and the
challenges ahead. In: Proceedings of the 2003 ACM Symposium on Document
Engineering, [512] (2003) pp 29-31

262. K. Kennedy, S. Warren: Automatic Generation of Efficient Evaluators for At
tribute Grammars. In: Proc. ACM National Conference (1974) pp 32-49

263. B. Kernighan, D. Ritchie: C Programming Language, 2nd edn (Prentice Hall,
1989)

264. T. King: Formalising British Rail's Signalling Rules. In: FME'94: Industrial
Benefit of Formal Methods, ed by M. Naftalin, B.T. Denvir (Springer, 1994)
pp 45-54

265. S. Kleene: Representation of Events in Nerve Nets and Finite Automata. In:
see [468] (Princeton University Press, 1956) pp 3-42

266. S.C. Kleene: Introduction to Meta-Mathematics (Van Nostrand, New York and
Toronto, 1952)

267. J.W. Klop: Term Rewriting Systems. In: Handbook of Logic in Computer Sci
ence, vol 2: Background: Computational Structures, ed by S. Abramsky, D.
Gabbay, T. Maibaum (Oxford University Press, 1992) pp 1-116

268. J. Klose, H. Wittke: An Automata Based Interpretation of Live Sequence
Charts. In: TACAS 2001, ed by T. Margaria, W. Yi (Springer, 2001) pp 512-
527

269. D. Knuth: The Art of Computer Programming, Vol.1: Fundamental Algorithms
(Addison-Wesley, Mass., USA, 1968)

270. D. Knuth: Semantics of Context-Free Languages. Math. Sys. Theory 2 and 5
(1968. Corrigenda, 5, p. 95, 1971) pp 127-145 and 95-96 (errata)

271. D. Knuth: The Art of Computer Programming, Vol.2.: Seminumerical Algo
rithms (Addison-Wesley, Mass., USA, 1969)

272. D. Knuth: Examples of Formal Semantics. In: [109] (1971) pp 178-211
273. D. Knuth: The Art of Computer Programming, Vol.3: Searching & Sorting

(Addison-Wesley, Mass., USA, 1973)
274. D.E. Knuth: Structured Programming with goto Statements. Computing Sur

veys 6, 4 (1974) pp 261-301
275. L.M. Kristensen, S. Christensen, K. Jensen: The practitioner's guide to

Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer 2, 2 (1998) pp 98-132

References 765

276. T. Kristoffersen, A.M. Hagalisletto, H.A. Hansen: Simulating the Oslo subway
by hierarchic, coloured, object-oriented, timed Petri Nets with viewpoints. In:
14th Nordic Workshop on Programming Theory, NWPT 2002 (20-22 Novem
ber)

277. T. Kristoffersen, A. Moen, H.A. Hansen: Extracting High-Level Information
from Petri Nets: A Railroad Case. In: Proceedings of the Estonian Academy of
Sciences, vol 52 of Physics and Mathematics (December 2003)

278. I. Kriiger, R. Grosu, P. Scholz, M. Broy: From MSCs to Statecharts. In: Dis
tributed and Parallel Embedded Systems, ed by F.J. Rammig (Kluwer Aca
demic, 1999) pp 61-71

279. H. Kugler, D. Harel, A. Pnueli, Y. Lu, Y. Bontemps: Temporal Logic for
Scenario-Based Specifications. In: Proc. 11th Int. Conf. on Tools and Algo
rithms for the Construction and Analysis of Systems (TACAS'05) (Springer,
2005)

280. P.B. Ladkin, S. Leue: Analysis of Message Sequence Charts. Technical Report
IAM 92-013, Institute for Informatics and Applied Mathematics, University of
Berne, Switzerland (1992)

281. L. Lamport: The Temporal Logic of Actions. Transactions on Programming
Languages and Systems 16, 3 (1995) pp 872-923

282. L. Lamport: Specifying Systems (Addison-Wesley, Mass., USA 2002)
283. L. Lamport: TLA+ Tools. In: Internet (Published: research.microsoft.com/-

users/lamport/tla/tools.html, 2004)
284. P. Landin: The Mechanical Evaluation of Expressions. Computer Journal 6, 4

(1964) pp 308-320
285. P. Landin: A Correspondence Between ALGOL 60 and Church's Lambda-

Notation (in 2 parts). Communications of the ACM 8, 2-3 (1965) pp 89-101
and 158-165

286. P. Landin: A Generalization of Jumps and Labels. Technical Report, Univac
Sys. Prgr. Res. Grp., NY (1965)

287. P. Landin: An Analysis of Assignment in Programming Languages. Technical
Report, Univac Sys. Prgr. Res. Grp., NY (1965)

288. P. Landin: Getting Rid of Labels. Technical Report, Univac Sys. Prgr. Res.
Grp., NY (1965)

289. P. Landin: A Formal Description of ALGOL 60. In: [484] (1966) pp 266-294
290. P. Landin: A Lambda Calculus Approach. In: Advances in Programming and

Non-numeric Computations, ed by L. Fox (Pergamon, 1966) pp 97-141
291. P. Landin: The Next 700 Programming Languages. Communications of the

ACM 9, 3 (1966) pp 157-166
292. P. Landin. Histories of discoveries of continuations: Belles-lettres with equivo

cal tenses, 1997. In O. Danvy, editor, ACM SIGPLAN Workshop on Continu
ations, Number NS-96-13 in BRICS Notes Series, 1997.

293. P. Leinonen: Automating XML document structure transformations. In: Pro
ceedings of the 200S ACM Symposium on Document Engineering, [512] (2003)
pp 26-28

294. H. Leonard, N. Goodman: The Calculus of Individuals and Its Uses. Journal
of Symbolic Logic 5 (1940) pp 45-55

295. M.E. Lesk, E. Schmidt, S.C. Johnson et al. The LEX and YACC Page. Elec
tronically, on the Web: h t t p : / / d inosau r . compi l e r t oo l s . ne t / , 2003.

766 References

296. S. Leue: Methods and Semantics for Telecommunications Systems Engineer
ing. PhD Thesis, Philosophisch-naturwissenschaftlichen Fakultat, University of
Berne, Switzerland (1995)

297. J.R. Levine, T. Mason, D. Brown: Lex & Yacc (O'Reilly & Associates, October
1992)

298. L. Li, J. He: A Denotational Semantics of Timed RSL using Duration Calculus.
Research Report 168, UNU/IIST, Macau (1999)

299. L. Li, J. He: Towards a Denotational Semantics of Timed RSL using Duration
Calculus. Research Report 161, UNU/IIST, Macau (1999)

300. X. Li, J. Wang: Specifying Optimal Design of a Steam-boiler System. In:
Formal Methods for Industrial Applications: Specifying and Programming the
Steam Boiler Control (Springer, Lecture Notes in Computer Science, Vol.
LNCS 1165, Berlin Heidelberg, Germany 1997)

301. T. Lindholm, F. Yellin: The Java Virtual Machine Specification (ACM Press
Books, 1996)

302. B. Liskov, S. Zilles: Programming with Abstract Data Types. 'Very High Level
Languages', SIGPLAN 9, 4 (1974) pp 59-59

303. W. Little, H. Fowler, J. Coulson, C. Onions: The Shorter Oxford English Dic
tionary on Historical Principles (Clarendon Press, Oxford, UK, 1987)

304. B. Lorho, C. Pair: Algorithms for Checking Consistency of Attribute Gram
mars. In: Proving and Improving Programs (INRIA Publ., 1975)

305. P. Lucas: Two Constructive Realizations of the Block Concept and Their
Equivalence. Technical Report 25.085, IBM Laboratory, Vienna (1968)

306. P. Lucas: Formal Definition of Programming Languages and Systems. In: Proc.
IFIP'71 (Springer, 1971)

307. P. Lucas: On the Semantics of Programming Languages and Software Devices.
In: Formal Semantics of Programming Languages, ed by Rustin (Prentice Hall,
1972)

308. P. Lucas: On the Formalization of Programming Languages: Early History and
Main Approaches. In: [51], ed by D. Bj0rner, C.B. Jones (Springer, 1978)

309. P. Lucas: Formal Semantics of Programming Languages: VDL. IBM Journal
of Devt. and Res. 25, 5 (1981) pp 549-561

310. P. Lucas: Main Approaches to Formal Specification. In: [47] (Prentice Hall,
1982) pp 3-24

311. P. Lucas: Origins, Hopes, and Achievements. In: [53] (Springer, 1987) pp 1-18
312. P. Lucas, K. Walk: On the Formal Description of PL/I. Annual Review Auto

matic Programming Part 3 6, 3 (Elsevier Science 1969)
313. E. Luschei: The Logical Systems of Lesniewski (North Holland, Amsterdam,

The Netherlands 1962)
314. G. Liittgen, M. van der Beeck, R. Cleaveland: Statecharts via Process Algebra.

Technical Report ICASE Report No. 99-42, Institute for Computer Applica
tions in Science and Engineering, NASA Langley Research Center, Hampton,
Virginia, USA (1999)

315. C. Lutz. The Description Logics Web Page. Electronically, on the Web:
h t t p : / / d l . k r . o r g / , 2004. Dresden University of Technology, Department of
Computer Science, Institute for Theoretical Computer Science, Germany.

316. C.K. Madsen: Integration of Specification Techniques. MSc Thesis Report, In
stitute of Informatics and Mathematical Modelling, Technical University of
Denmark (2003)

References 767

317. C.K. Madsen: Study of Graphical and Temporal Specification Techniques.
Pre-MSc Thesis Report, Institute of Informatics and Mathematical Modelling,
Technical University of Denmark (2003)

318. Z. Manna: Mathematical Theory of Computation (McGraw-Hill, 1974)
319. Z. Manna, A. Anuchitanukul, N.S. Bj0rner et al.: STeP: The Stanford Temporal

Prover. Technical Report, STAN-CS-TR-94-1518, Computer Science Depart
ment, Stanford University, CA, USA (1994)

320. Z. Manna, A. Pnueli: The Temporal Logic of Reactive Systems: Specifications
(Addison-Wesley, 1991)

321. Z. Manna, A. Pnueli: The Temporal Logic of Reactive Systems: Safety
(Addison-Wesley, 1995)

322. Z. Manna, A. Pnueli: Temporal Verification of Reactive Systems: Progress. In:
Internet (Published: http://theory.stanford.edu/~zm/tvors3.html, 1996)

323. Z. Manna, R. Waldinger: The Logical Basis for Computer Programming,
Vols. 1-2 (Addison-Wesley, 1985-90)

324. X. Mao, Q. Xu, J. Wang: Towards a Proof Assistant for Interval Logics. Re
search Report 77, UNU/IIST, Macau (1996)

325. R. Marelly, D. Harel, H. Kugler: Multiple Instances and Symbolic Variables
in Executable Sequence Charts. In: Proc. 11th Ann. ACM Conf. on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA
2002) (ACM Press, November 2002) pp 83-100

326. S. Mauw, M.A. Reniers: An Algebraic Semantics of Basic Message Sequence
Charts. The Computer Journal 37, 4 (1994) pp 269-277

327. D. May: occam (Prentice Hall, UK 1982)
328. B. Mayoh: Attribute Grammars and Mathematical Semantics. SIAM J. of

Comp. 10 (1981) pp 503-518
329. J. McCarthy: Recursive Functions of Symbolic Expressions and Their Com

putation by Machines, Part I. Communications of the ACM 3, 4 (1960) pp
184-195

330. J. McCarthy: Towards a Mathematical Science of Computation. In: IFIP World
Congress Proceedings, ed by C. Popplewell (North-Holland, Amsterdam, 1962)
pp 21-28

331. J. McCarthy: A Basis for a Mathematical Theory of Computation. In: Com
puter Programming and Formal Systems (North-Holland, Amsterdam, 1963)

332. J. McCarthy. Common Business Communication Language. Electronically, on
the Web: http:/ /www-formal.stanford.edu/jmc/cbcl.html, 1982.

333. J. McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart, M.I. Levin: LISP 1.5
Programmer's Manual (MIT Press, Mass. 1962)

334. J. McCarthy, J. Painter: Correctness of a Compiler for Arithmetic Expressions.
In: [451] (1966) pp 33-41

335. W. McCulloch, W. Pitts: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5 (1943) pp 115-133

336. H.V. Mcintosh. Notes on Cellular Automata, Department of Microprocessor
Applications, Institute of Science, Autonomous University of Puebla, Mexico.
Published on the Internet, originally from 1987.

337. P. McKerrow: Introduction to Robotics (Addison-Wesley, 1990)
338. J.M.E. McTaggart: The Unreality of Time. Mind 18, 68 (October 1908) pp

457-84
339. S. Merz: On the Logic of TLA + . Computing and Informatics 22, 1-2 (2003)

768 References

340. J. Meseguer: Software Specification and Verification in Rewriting Logic. NATO
Advanced Study Institute (2003)

341. Meta Software Corporation. Design/CPN Reference Manual. Available at
http://www.daimi.au.dk/designCPN/man/Reference/Reference. All.pdf, 1993.

342. J. Mey: Pragmatics: An Introduction (Blackwell, 2001)
343. B. Meyer: Object-Oriented Software Construction (Prentice Hall, 1988)
344. B. Meyer: Eiffel: The Language, second revised edn (Prentice Hall, NJ, USA

1992)
345. B. Meyer: Object-Oriented Software Construction, second revised edn (Prentice

Hall, NJ, USA 1997)
346. Microsoft Corporation: MCAD/MCSD Self-paced Training Kit: Developing

Web Applications with Microsoft Visual Basic .NET and Microsoft Visual C#
.NET (Microsoft Corporation, Redmond, WA, USA 2002)

347. Microsoft Corporation: MCAD/MCSD Self-paced Training Kit: Developing
Windows-Based Applications with Microsoft Visual Basic .NET and Microsoft
Visual C# .NET (Microsoft Corporation, Redmond, WA, USA 2002)

348. D. Mieville, D. Vernant: Stanislaw Lesniewski aujourd'hui (Grenoble October
8-10, 1992)

349. R. Milne: The Formal Semantics of Computer Languages and Their Implemen
tation. PhD Thesis, Programming Research Group, PRG 13, Oxford Univ., UK
(1974)

350. R. Milne: Transforming Predicate Transformers. In: [378] (1978)
351. R. Milne: The Sequential Imperative Aspects of the RAISE Specification Lan

guage. Technical Report RAISE/STC/REM/2/V1, STC/STL, Harlow, UK
(1987)

352. R. Milne: The Concurrent Imperative Aspects of the RAISE Specification Lan
guage. Technical Report RAISE/STC/REM/- /V1, STC/STL, Harlow, UK
(1988)

353. R. Milne: The RSL Proof Rules. Technical Report LACOS/CRI/DOC/5, CRI
A/S, Birker0d, Denmark (1990)

354. R. Milne: The Semantic Foundations of the RAISE Specification Language.
Technical Report RAISE/STC/REM/11, CRI: Computer Resources Interna
tional, Denmark (1990)

355. R. Milne, C. Strachey: A Theory of Programming Language Semantics (Chap
man and Hall, London, Halsted Press/John Wiley, NY 1976)

356. R. Milner: Calculus of Communication Systems, vol 94 of Lecture Notes in
Computer Science (Springer, 1980)

357. R. Milner: Communication and Concurrency (Prentice Hall, 1989)
358. R. Milner: Communicating and Mobile Systems: The 7r-Calculus (Cambridge

University Press, 1999)
359. R. Milner, M. Tofte, R. Harper: The Definition of Standard ML (MIT Press,

Mass., USA and London, UK, 1990)
360. M. Minsky: Some Universal Elements for Finite Automata. In: Automata Stud

ies (Editors Claude E. Shannon and John McCarthy) [468], no 34 of Annals
of Mathematical Studies (Princeton University Press, NJ, 1956) pp 117-128

361. M. Minsky: Computation: Finite and Infinite Machines (Prentice Hall, NJ,
USA, 1967)

362. M. Minsky: A Framework for Representing Knowledge. Reprinted in The Psy
chology of Computer Vision, P. Winston (Ed.), McGraw-Hill, 1975. Technical
Report 306, MIT AI Laboratory, Mass., USA (1974)

References 769

363. C.C. Morgan: Programming from Specifications (Prentice Hall, UK 1990)
364. C. Morris: Foundations of the Theory of Signs. In: International Encyclopedia

of Unified Science (Univ. of Chicago Press, 1938)
365. C. Morris: Signs, Languages and Behaviour (G. Brazillier, NY, 1955)
366. L. Morris: The Next 700 Programming Language Descriptions. Unpubl. ms.,

Univ. of Essex, Comp. Ctr., UK (1970)
367. L. Morris: Advice on Structuring Compilers and Proving them Correct. In:

Principles of Programming Languages, SIGPLAN/SIGACT Symposium, ACM
Conference Record/Proceedings (1973) pp 144-152

368. J. Moses: The Function of FUNCTION in LISP. ACM SIGPLAN Notices
(1970) pp 13-27

369. T. Mossakowski, A.E. Haxthausen, D. Sanella, A. Tarlecki: CASL — The Com
mon Algebraic Specification Language: Semantics and Proof Theory. Comput
ing and Informatics 22, 1-2 (2003)

370. P.D. Mosses: Action Semantics (Cambridge University Press: Tracts in Theo
retical Computer Science, UK 1992)

371. P.D. Mosses (ed.) CoFI (The Common Framework Initiative): CASL Refer
ence Manual, vol 2960 of Lecture Notes in Computer Science (IFIP Series),
(Springer, 2004)

372. B.C. Moszkowski: Executing Temporal Logic Programs (Cambridge University
Press, UK 1986)

373. B.C. Moszkowski: A Complete Axiomatization of Interval Temporal Logic with
Infinite Time. In: LICS'00: 15th Annual IEEE Symposium on Logic in Com
puter Science (IEEE Press, CA, USA 2000) p 241

374. Y. Nakamura: Theory of Robotics (Addison-Wesley, 1990)
375. National Institute of Standards and Technology (NIST). International System

of Units. Electronically, on the Web: h t t p : / / p h y s i c s . n i s t . g o v / c u u / U n i t s / ,
2000. NIST Web address: http://www.nist.gov.

376. D. Neel, M. Amirchahy: Semantic Attributes and Improvement of Generated
Code. In: ACM Nat. Conf. (1974) pp 1-10

377. G. Nelson (ed.): Systems Programming in Modula 3 (Prentice Hall, NJ, USA
1991)

378. E.J. Neuhold (ed.): Formal Description of Programming Concepts (I) (North-
Holland, Amsterdam, Proc. of IFIP TC-2 Aug. 1977 Work. Conf., St. Andrews,
Canada, 1978)

379. N. Nikitchenko: Towards Foundations of a General Theory of Transport Do
mains, Research Report 88, UNU/IIST, P.O.Box 3058, Macau (1996).

380. T. Nipkow, L.C. Paulson, M. Wenzel: Isabelle/HOL, A Proof Assistant for
Higher-Order Logic, vol 2283 of LNCS (Springer, Heidelberg, Germany, 2002)

381. Object Management Group: The CORBA Home Page. Electronically, on the
Web: http:/ /www.corba.org/ , 1997-2005.

382. Object Management Group: OMG Unified Modeling Language Specification,
version 1.5 edn (OMG/UML, http://www.omg.org/uml 2003)

383. E.-R. Olderog, editor. Festschrift to Hans Langmaack, Lecture Notes in Com
puter Science. Springer, October 1999. The cover of this volume shows a
fictitious program. It illustrates the problem of 'The Most Recent Error': (let
p = Ax»(let h = A()»() in x(h()) end) in p(p) end) — the described imple
mentation of which was wrong in [100].

384. S. Owre, N. Shankar, J.M. Rushby, D.W.J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, CA, 1999.

770 References

385. S. Owre, N. Shankar, J.M. Rushby, D.W.J. Stringer-Calvert. PVS System,
Guide. Computer Science Laboratory, SRI International, CA, 1999.

386. P.K. Pandya: DCVALID: Duration Calculus Validator. In: Internet (Published:
www.tcs.tifr.res.in/~pandya/dcest.html, 2003)

387. D. Park: A Predicate Transformer for Weak Fair Iteration. In: 6th IBM Symp.
on Math. Found, of Comp. Sci. (1981)

388. D.L. Parnas: On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM 15, 12 (1972) pp 1053-1058

389. D.L. Parnas: A Technique for Software Module Specification with Examples.
Communications of the ACM 14, 5 (1972)

390. D.L. Parnas: Software Fundamentals: Collected Papers, Eds.: David M. Weiss
and Daniel M. Hoffmann (Addison-Wesley, 2001)

391. D.L. Parnas, P.C. Clements, D.M. Weiss: Enhancing reusability with infor
mation hiding. In: Tutorial: Software Reusability (Ed.: Peter Freeman) (IEEE
Press, 1986) pp 83-90

392. R. Paul: Robot Manipulators: Mathematics, Programming, and Control (MIT
Press, Mass. and London, UK, 1981)

393. L. Paulson: Logic and Computation: Interactive Proof with Cambridge LCF
(Cambridge University Press, 1987)

394. C.S. Peirce: Reasoning and the Logic of Things, Edited by Kenneth Laine Ket-
ner (Harvard University Press, 1993)

395. C.S. Peirce: Pragmatism as a Principle and Method of Right Thinking: The
1903 Harvard Lectures on Pragmatism (State Univ. of N.Y. Press, and Cornell
Univ. Press, 1997)

396. C.S. Peirce: Peirce on Signs: Writings on Semiotics (Univ. of North Carolina
Press, Editor: James Hoopes, 1991)

397. C.S. Peirce: Writings: A Chronological Edition (Indiana University Press, 15
Jan 1994)

398. M. Penicka: Theories of Transportation: Domain and Requirements. PhD The
sis, Faculty of Transportation, Czech Technical University, Prague, Czech Re
public (2005)

399. J.L. Peterson: Petri Net Theory and the Modeling of Systems (Prentice Hall,
NJ 1981)

400. C.A. Petri: Kommunikation mit Automaten (Bonn: Institut fur Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962)

401. C. Petzold: Programming Windows with C# (Core Reference) (Microsoft Cor
poration, Redmond, WA, USA 2001)

402. C D . Plotkin: A Structural Approach to Operational Semantics. Journal of
Logic and Algebraic Programming 60-61 (2004) pp 17-139

403. A. Pnueli: The Temporal Logic of Programs. In: Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science (IEEE CS, 1977) pp 46-57

404. A. Pnueli, M. Shalev: What is a step: on the semantics of Statecharts. In:
Theoretical Aspects of Computer Software (TACS'91), vol 526 of Lecture Notes
in Computer Science, ed by T. Ito, A.R. Meyer (Springer, 1991) pp 244-264

405. R.L. Poidevin, M. MacBeath (eds.): The Philosophy of Time (Oxford Univer
sity Press, UK 1993)

406. A. Prior. Changes in Events and Changes in Things, chapter in [405]. Oxford
University Press, UK 1993.

407. A.N. Prior: Logic and the Basis of Ethics (Clarendon Press, Oxford, UK 1949)

References 771

408. A.N. Prior: Formal Logic (Clarendon Press, Oxford, UK 1955)
409. A.N. Prior: Time and Modality (Oxford University Press, Oxford, UK 1957)
410. A.N. Prior: Past, Present and Future (Clarendon Press, Oxford, UK 1967)
411. A.N. Prior: Papers on Time and Tense (Clarendon Press, Oxford, UK 1968)
412. X. Qiwen: Semantics and Verification of the Extended Phase Transition Sys

tems in the Duration Calculus. Research Report 72, UNU/IIST, Macau (1996)
413. M.O. Rabin, D. Scott: Finite automata and their decision problems. IBM Jour

nal of Research and Development 3 (1959) pp 115-125
414. B. Randell, L. Russell: ALGOL 60 Implementation, The Translation and Use

of ALGOL 60 Programs on a Computer (Academic Press, 1964)
415. A. Ravn, H. Rischel, K. Hansen: Specifying and Verifying Requirements of

Real-Time Systems. IEEE Trans. Software Engineering 19 (1992) pp 41-55
416. A. Ravn, H. Rischel, E. S0rensen: Control Program for a Gas Burner: Require

ments, ProCoS Case Study 0. Technical Report, Dept. of Computer Science,
Technical University of Denmark (1989)

417. E.T. Ray: Learning XML, Guide to Creating Self-describing Data (O'Reilly,
UK, January 2001)

418. M. Reiser: The Oberon System, User Guide and Programmer's Manual
(Addison-Wesley, 1991)

419. W. Reisig: Petri Nets: An Introduction, vol 4 of EATCS Monographs in The
oretical Computer Science (Springer, 1985)

420. W. Reisig: A Primer in Petri Net Design (Springer, 1992)
421. W. Reisig: Elements of Distributed Algorithms: Modelling and Analysis with

Petri Nets (Springer, 1998)
422. M. Reniers: Static Semantics of Message Sequence Charts. In: Proceedings of

the 7th SDL Forum (1995)
423. M. Reniers: Syntax Requirements of Message Sequence Charts. In: Proceedings

of the 7th SDL Forum, ed by R. Braek, A. Sarma (1995)
424. T.W. Reps: Generating Language-Based Environments (MIT Press, Mass.,

USA 1984)
425. T.W. Reps, T. Teitelbaum: The Synthesizer Generator: A System for Con

structing Language-Based Editors (Springer, NY, USA 1988)
426. T.W. Reps, T. Teitelbaum: The Synthesizer Generator Reference Manual, 3rd

edn (Springer, NY, USA 1988)
427. J.C. Reynolds: GEDANKEN - A Simple Type-less Language based on the Prin

ciple of Completeness and the Reference Concept. Communications of the ACM
13, 5 (1970) pp 308-319

428. J.C. Reynolds: Definitional Interpreters for Higher-Order Programming Lan
guages. In: Proc. 25th ACM Nat'l. Conf. (1972) pp 717-740

429. J.C. Reynolds: The Craft of Programming (Prentice Hall, 1981)
430. J.C. Reynolds: The Discoveries of Continuations. LISP and Symbolic Compu

tation 6, 3-4 (1993) pp 233-247
431. J.C. Reynolds: Theories of Programming Languages (Cambridge University

Press, UK 1998)
432. J.C. Reynolds: The Semantics of Programming Languages (Cambridge Univer

sity Press, 1999)
433. J . C Riecke, H. Thielecke: Typed Exceptions and Continuations Cannot Macro-

Express Each Other. Lecture Notes in Computer Science 1644 (1999) p 635
434. G. Rochelle: Behind time: The incoherence of time and McTaggart's atemporal

replacement (Ashgate, Vt., USA 1998)

772 References

435. A.W. Roscoe (ed.): A Classical Mind: Essays in Honour of C.A.R. Hoare
(Prentice Hall, 1994)

436. A.W. Roscoe: Theory and Practice of Concurrency (Prentice Hall, 1997)
437. A.W. Roscoe, J.C.P. Woodcock (eds.): A Millennium Perspective on Informat

ics (Palgrave, 2001)
438. S. Roy, C.C. Zhou: Notes on Neigborhood Logic. Research Report 97,

UNU-IIST, Macau (1997)
439. A. Roychoudhury, P. Thiagarajan: Communicating Transaction Processes. In:

Proc. of the 3rd IEEE International Conference on Application of Concurrency
in System Design (ACSD'03) (IEEE Press, 2003)

440. J. Rumbaugh, I. Jacobson, G. Booch: The Unified Modeling Language Refer
ence Manual (Addison-Wesley, 1998)

441. R. Rustin: Formal Semantics of Programming Languages (Prentice Hall, 1972)
442. P. Ryan, S. Schneider, M. Goldsmith et al.: Modelling and Analysis of Security

Protocols (Addison-Wesley, December 2000)
443. K.B. Sail: XML Family of Specifications (Pearson, 2002)
444. A. Salomaa: Formal Languages (Academic Press, NY, USA 1973)
445. B.-Z. Sandler: Robotics: Designing the Mechanisms for Automated Machinery

(Prentice Hall, 1991)
446. D. Sangiorgio, D. Walker: The ir-Calculus (Cambridge University Press, 2001)
447. R. Schilling: Fundamentals of Robotics, Analysis and Control (Prentice Hall,

1990)
448. D.A. Schmidt: Denotational Semantics: a Methodology for Language Develop

ment (Allyn & Bacon, 1986)
449. D.A. Schmidt: The Structure of Typed Programming Languages (MIT Press,

1994)
450. S. Schott, M.L. Noga: Lazy XSL transformations. In: Proceedings of the 2003

ACM Symposium on Document Engineering, [512] (2003) pp 9-18
451. J. Schwartz: Mathematical Aspects of Computer Science, Proc. of Symp. in

Appl. Math. (American Mathematical Society, RI, USA, 1967)
452. D. Scott: Continuous Lattices. In: Toposes, Algebraic Geometry and Logic, ed

by F. Lawvere (Springer, Lecture Notes in Mathematics, Vol. 274 1972) pp
97-136

453. D. Scott: Data Types as Lattices. Unpublished Lecture Notes, Amsterdam
(1972)

454. D. Scott: Lattice Theory, Data Types and Semantics. In: Symp. Formal Se
mantics, ed by R. Rustin (Prentice Hall, 1972) pp 67-106

455. D. Scott: Mathematical Concepts in Programming Language Semantics. In:
Proc. AFIPS, Spring Joint Computer Conference, 40 (1972) pp 225-234

456. D. Scott: Lattice-Theoretic Models for Various Type Free Calculi. In: Proc. J^th
Int'l. Congr. for Logic Methodology and the Philosophy of Science, Bucharest
(North-Holland, Amsterdam, 1973) pp 157-187

457. D. Scott: Data Types as Lattices. SIAM Journal on Computer Science 5, 3
(1976) pp 522-587

458. D. Scott: Logic and Programming Languages. Communications of the ACM 20,
9 (1977) pp 634-641

459. D. Scott: Relating Theories of the Lambda Calculus. In: To H.B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, ed by J. Hindley
(Academic Press, 1980) pp 403-450

References 773

460. D. Scott: Lectures on a Mathematical Theory of Computation. Techn. Mono
graph 19, Programming Research Group (1981)

461. D. Scott: Domains for Denotational Semantics. In: International Colloquium on
Automata, Languages and Programming, European Association for Theoretical
Computer Science. M. Nielsen, E. Meineche Schmidt (eds.), LNCS Vol. 140
(Springer, 1982) pp 577-613

462. D. Scott: Some Ordered Sets in Computer Science. In: Ordered Sets, ed by I.
Rival (Reidel, 1982) pp 677-718

463. D. Scott, C. Strachey: Towards a Mathematical Semantics for Computer Lan
guages. In: Computers and Automata, vol 21 of Microwave Research Inst. Sym
posia, Polytechnic Inst, of Brooklyn, NY, USA (1971) pp 19-46

464. J.R. Searle: Expression and Meaning: Studies in the Theory of Speech Acts
(Cambridge University Press, 1985)

465. P. Sestoft: Java Precisely (MIT Press, 2002)
466. N. Shankar, S. Owre, J.M. Rushby. PVS Tutorial. Computer Science Labora

tory, SRI International, Menlo Park, CA, 1993.
467. N. Shankar, S. Owre, J.M. Rushby, D.W.J. Stringer-Calvert. PVS Prover

Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
Sept. 1999.

468. C.E. Shannon, J. McCarthy: Automata Studies, no 34 of Annals of Mathe
matical Studies, 2nd printing 1958 edn (Princeton University Press, NJ, USA
1956)

469. R. Sharp: Principles of Protocol Design (Prentice Hall, 1994)
470. P.M. Simons. Foundations of Logic and Linguistics: Problems and Their Solu

tions, chapter Lesniewski's Logic and Its Relation to Classical and Free Logics.
New York, 1985. Georg Dorn and P. Weingartner (eds.). Plenum Press, NY,
1985.

471. A. Simpson, J. Woodcock, J. Davies: The mechanical verification of solid state
interlocking geographic data. In: Proceedings of Formal Methods Pacific, ed by
L. Groves, S. Reeves (Springer, Wellington, New Zealand 1997) pp 223-242

472. Simula: Simula Research Laboratory. In: Internet (Published: http://www.-
simula.no/, 2004)

473. J.U. Skakkebaek: A Verification Assistant for a Real-Time Logic. PhD Thesis,
Department of Computer Science, Technical University of Denmark (1994)

474. J.U. Skakkebagk: Development of Provably Correct Systems. Dept. of Computer
Science, Technical University of Denmark (MSc. Thesis)

475. J.U. Skakkebagk, A.P. Ravn, H. Rischel, C.C. Zhou: Specification of Embedded,
Real-Time Systems. In: Proceedings of 1992 Euromicro Workshop on Real-
Time Systems (IEEE Computer Society Press, 1992) pp 116-121

476. Smalltalk: smalltalk.org Internet Home Page. In: Internet (Published:
http://www.smalltalk.org/, 2004)

477. E. S0rensen, N. Hansen, J. Nordahl: From CSP Models to Markov Models: A
Case Study. IEEE Trans. Software Engineering 19 (1993) pp 554-570

478. CM. Sperberg-McQueen, H. Thompson. XML Schema. Electronically, on the
Web: http://www.w3.org/XML/Schema, April 2000.

479. J.M. Spivey: Understanding Z: A Specification Language and Its Formal Se
mantics, vol 3 of Cambridge Tracts in Theoretical Computer Science (Cam
bridge University Press, 1988)

480. J.M. Spivey: The Z Notation: A Reference Manual, 2nd edn (Prentice Hall,
1992)

774 References

481. J.T.J. Srzednicki, Z. Stachniak (eds.): Lesniewski's Lecture Notes in Logic
(Dordrecht, 1988)

482. J.T.J. Srzednicki, Z. Stachniak: Lesniewski's Systems Protothetic (Dordrecht,
1998)

483. Merriam-Webster. Online Dictionary: http://www.m-w.com/home.htm, 2004.
Merriam-Webster, Inc., 47 Federal Street, P.O. Box 281, Springfield, MA
01102, USA

484. T.B. Steel (ed.): Formal Language Description Languages, IFIP TC-2 Work.
Conf., Baden (North-Holland, Amsterdam, 1966)

485. J. Stein (ed.): The Random House American Everyday Dictionary (Random
House, NY, USA 1949, 1961)

486. J. Stoy: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory (MIT Press, 1977)

487. J. Stoy: The Congruence of Two Programming Language Definitions. Theoret
ical Comp. Science 13 (1981) pp 151-174

488. C. Strachey: Fundamental Concepts in Programming Languages. Unpubl. Lec
ture Notes, NATO Summer School, Copenhagen, 1967, and Programming Re
search Group, Oxford Univ., UK (1968)

489. C. Strachey: The Varieties of Programming Languages. Techn. Monograph 10,
Programming Research Group, Oxford, UK (1973)

490. C. Strachey: Continuations: A Mathematical Semantics Which Can Deal with
Full Jumps. Techn. Monograph, Programming Research Group, Oxford, UK
(1974)

491. C. Strachey, D. Scott: Mathematical Semantics for Two Simple Languages.
Technical Report, Princeton Univ., NJ, USA (1970)

492. B. Stroustrup: C+ + Programming Language (Addison-Wesley, 1986)
493. J. Sun, J.S. Dong: Live Sequence Charts as Communicating Sequential Pro

cesses. Technical Report, School of Computing, Dept. of Computer Science,
National University of Singapore (2004)

494. Sun Microsystems. Java Jini. Electronically, on the Web:
http://www.sun.com/software/jini/, 1997-2005.

495. S.J. Surma, J.T. Srzednicki, D.I. Barnett, V.F. Rickey (eds.): Stanislaw
Lesniewski's: Collected Works (2 Vols.) (Dordrecht, Boston, New York 1988)

496. R. Temem: Navier-Stokes Equations (Oxford University Press, 2001)
497. R. Tennent: Principles of Programming Languages (Prentice Hall, 1981)
498. R. Tennent: The Semantics of Inference Control. In: International Colloquium

on Automata, Languages and Programming, European Association for Theo
retical Computer Science. M. Nielsen, E. Meineche Schmidt (eds.), LNCS Vol.
140 (Springer, 1982) pp 532-545

499. R. Tennent: The Semantics of Programming Languages (Prentice Hall, 1997)
500. H. Thielecke: Using a Continuation Twice and Its Implications for the Expres

sive Power of Call/CC. Higher-Order and Symbolic Computation 12, 1 (1999)
pp 47-73

501. H. Thielecke: On Exceptions Versus Continuations in the Presence of State.
Lecture Notes in Computer Science 1782 (2000) pp 397-411

502. E. Thomas: Maxwell's Equations and Their Applications (Adam Hilger, June
1985)

503. S. Thompson: Haskell: The Craft of Functional Programming, 2nd edn
(Addison-Wesley, 1999)

References 775

504. S. Tsohadtzidis : Foundations of Speech Act Theory, Philosophical and Linguis
tic Perspectives (Taylor & Francis, 1994)

505. D. Turner: Miranda: A Non-str ict Funct ional Language wi th Polymorphic
Types . In: Functional Programming Languages and Computer Architectures,
no 201 of Lecture Notes in Computer Science, ed by J. J o u a n n a u d (Springer,
Heidelberg, Germany, 1985)

506. UDDI . Oasis UDDI . Electronically, on the Web: h t t p : / / w w w . u d d i . o r g / , 2005.
507. J .D. Ullman, J. Widom: A First Course in Database Systems (Prentice Hall,

2001)
508. J. van Benthem: The Logic of Time, vol 156 of Synthese Library: Studies in

Epistemology, Logic, Methhodology, and Philosophy of Science (Editor: Jaakko
Hintika), 2nd edn (Kluwer Academic, The Nether lands 1991)

509. J. van Leeuwen (ed.): Handbook of Theoretical Computer Science, Volumes A
and B (Elsevier, 1990)

510. P. van Roy, S. Haridi: Concepts, Techniques and Models of Computer Program
ming (MIT Press, Mass., USA 2004)

511. A. van Wijngaarden: Report on the Algorithmic Language ALGOL 68. Ac ta
Informatica 5 (1975) pp 1-236

512. C. Vanoirbeek, editor. Proceedings of the 2003 ACM Symposium on Document
Engineering, New York, NY, USA (ACM Press, 2003)

513. B. Venners: Inside the Java 2.0 Virtual Machine (Enterprise Computing)
(McGraw-Hill, 1999)

514. C. Verhoef: A congruence theorem for structured operational semantics with
predicates and negative premises. Nordic Journa l of Comput ing 2, 2 (1995) pp
274-302

515. J.-Y. Vion-Dury: X P a t h on left and right sides of rules: toward compact XML
tree rewrit ing th rough node pa t t e rns . In: Proceedings of the 2003 ACM Sym
posium on Document Engineering, [512] (2003) pp 19-25

516. W 3 . Web Services Activity, SOAP. Electronically, on the Web:
h t t p : / / w w w . w 3 . o r g / 2 0 0 2 / w s / , h t t p : / / w w w . w 3 . o r g / 2 0 0 0 / x p / G r o u p / ,
h t t p : / / w w w . w 3 . o r g / 2 0 0 0 / x p / G r o u p / x m l p - r e c - i s s u e s . h t m l
h t t p : / / w w w . w 3 . o r g / 2 0 0 0 / x p / G r o u p / 2 / 0 3 / s o a p l . 2 i m p l e m e n t a t i o n . h t m l ,
h t t p : / / w w w . w 3 . o r g / 2 0 0 0 / x p / G r o u p / 4 / 0 8 / i m p l e m e n t a t i o n . h t m l , 2005.

517. W 3 . Web Services Definition Language. Electronically, on t he Web:
h t t p : / / w w w . w 3 . o r g / T R / w s d l , 2005.

518. M. Wand: Deriving Target Code as a Representa t ion of Cont inuat ion Semantics
and Different Advice on S t ruc tur ing Compilers and Proving t h e m Correct .
Techn. Repts . 94-95, Dept . of Comp. Sci., Indiana S ta te Univ., Bloomington
(1980)

519. M. Wand: Induction, Recursion and Programming (North-Holland Publ . Co.,
Ams te rdam, 1980)

520. M. Wand: Semantics-Directed Machine Archi tecture . In: Principles of Pro
gramming Languages, SIGPLAN/SIGACT Symposium, ACM Conference
Record/Proceedings (1982)

521. J. Wang, W. He: Formal Specification of Stabil i ty in Hybr id Control Systems.
Research Repor t 56, UNU/IIST, Macau (1995)

522. J. Wang, X.S. Li, C.C. Zhou: A Dura t ion Calculus Approach to Specifying the
Steam-boiler Problem. Technical Repor t 38, UNU/IIST, Macau (1995)

523. J. Wang, X.S. Li, C.C. Zhou: Specifying Opt ima l Design of t he Steam-boiler
System. Technical Repor t 39, UNU/IIST, Macau (1995)

776 References

524. J. Wang, X. Yu, C.C. Zhou: Hybrid Refinement. Research Report 20,
UNU/IIST, Macau (1994)

525. T. Wang, A. Roychoudhury, R.H.C. Yap, S.C. Choudhary: Symbolic Execu
tion of Behavioral Requirements. In: PADL: Practical Aspects of Declarative
Languages, vol 3057 of Lecture Notes in Computer Science (Springer, 2004)

526. J. Warmer, A. Kleppe: The Object Constraint Language: Precise Modeling with
UML (Addison-Wesley, 1998)

527. J. Warmer, A. Kleppe: The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd edn (Addison-Wesley, 2003)

528. P. Wegner: Programming Languages, Information Structures, and Machine Or
ganization (McGraw-Hill, 1968)

529. J. Weizenbaum: The FUNARG Problem Explained, unpubl. note, Proj. MAC,
MIT, Mass., USA (1968)

530. Wikipedia: Bisimulation. In: Internet (Published: http://www.answers.com/-
topic/bisimulation, 2005)

531. R. Wilhelm: Compiler Design (Addison-Wesley, 1995)
532. W. Wilner: Formal Semantics Definition Using Synthesized and Inherited At

tributes. In: [441] (1972)
533. G. Winskel: The Formal Semantics of Programming Languages (MIT Press,

Mass., USA, 1993)
534. N. Wirth: Systematic Programming (Prentice Hall, 1973)
535. N. Wirth: Algorithms + Data Structures = Programs (Prentice Hall, 1976)
536. N. Wirth: Programming in Modula-2 (Springer, Heidelberg, Germany, 1982)
537. N. Wirth: From Modula to Oberon. Software — Practice and Experience 18

(1988) pp 661-670
538. N. Wirth: The Programming Language Oberon. Software — Practice and Ex

perience 18 (1988) pp 671-690
539. N. Wirth, J. Gutknecht: The Oberon System. Software — Practice and Expe

rience 19, 9 (1989) pp 857-893
540. N. Wirth, J. Gutknecht: The Oberon Project (Addison-Wesley, 1992)
541. N. Wirth, H. Weber: EULER: A Generalization of ALGOL, and Its Formal

Definition. Communications of the ACM 9, 1-2 (1966) pp 13-23, 89-99
542. J.C.P. Woodcock: Using Standard Z (Prentice Hall, UK 1993)
543. J.C.P. Woodcock, J. Davies: Using Z: Specification, Proof and Refinement

(Prentice Hall, UK, 1996)
544. Xerox Learning Research Group: The Smalltalk-80 system. Byte 1981, 6 (1981)

pp 36-48
545. Y. Xinyao, W. Ji, C.C. Zhou, P.K. Pandya: Specification of an Adaptive Con

trol System. Research Report 19, UNU/IIST, Macau (1994)
546. XML. Then XML Home Page. Electronically, on the Web:

http://www.xml.com/, 2005.
547. S. Yang, D. Bj0rner: A Formal Specification of CTP: Communicating Trans

action Processes (see [439]). Technical Report, School of Computing, National
University of Singapore (2005)

548. W. Yang: Mealy Machines are a Better Model of Lexical Analyzers. Computer
Languages 22, 1 (1996) pp 27-38

549. K.C. Yeager: The MIPS R10000 Superscalar Microprocessor. IEEE Micro 40,
2 (1996) pp 28-40

550. T. Yoshikawa: Foundations of Robotics (MIT Press, 1990)

References 777

551. H. Yu, P.K. Pandya, Y. Sun: A Calculus of Sampled Data Systems. Research
Report 21, UNU/IIST, Macau (1994)

552. Z. Yuliua, C.C. Zhou: A Formal Proof of a Deadline Driven Scheduler. Research
Report 16, UNU/IIST, Macau (1994)

553. H. Zemanek: Semiotics and Programming Languages. In: [5] (1966) pp 139-143
554. C.C. Zhou: Duration Calculi: An Overview. Research Report 10, UNU/IIST,

Macau (1993)
555. C.C. Zhou, M.R. Hansen: Lecture Notes on Logical Foundations for the Dura

tion Calculus. Lecture Notes, 13, UNU/IIST, Macau (1993)
556. C.C. Zhou, M.R. Hansen: An Adequate First Interval Order Logic. Research

Report 91, UNU/IIST, Macau (1996)
557. C.C. Zhou, M.R. Hansen: Duration Calculus: A Formal Approach to Real-Time

Systems (Springer, 2004)
558. C.C. Zhou, M.R. Hansen, A.P. Ravn, H. Rischel: Duration Specifications for

Shared Processors. In: Proceedings Symp. on Formal Techniques in Real-Time
and Fault-Tolerant Systems, Nijmegen 6-10 Jan. 1992, Vol. 571 of Lecture
Notes in Computer Science, Springer (1992)

559. C.C. Zhou, C.A.R. Hoare, A.P. Ravn: A Calculus of Durations. Information
Proc. Letters 40, 5 (1992)

560. C.C. Zhou, D.V. Hung, X.S. Li: A Duration Calculus with Infinite Intervals.
Research Report 40, UNU/IIST, Macau (1995)

561. C.C. Zhou, X. Li: A Mean Value Duration Calculus. Research Report 5,
UNU/IIST, Macau (1993)

562. C.C. Zhou, A.P. Ravn, M.R. Hansen: An Extended Duration Calculus for Real-
Time Systems. Research Report 9, UNU/IIST, Macau (1993)

563. C.C. Zhou, J. Wang, A.P. Ravn: A Formal Description of Hybrid Systems.
Research Report 57, UNU/IIST, Macau (1995)

564. C.C. Zhou, H. Yu: A Duration Model for Railway Scheduling. Technical Report
24b, UNU/IIST, Macau (1994)

565. K. Zimmerman: Outline of a Formal Definition of FORTRAN. Technical Re
port LR.25.3.053, IBM Laboratory, Vienna (1969)

	SOFTWARE ENGINEERING 2: SPECIFICATION OF SYSTEMS AND LANGUAGES
	Springerlink
	Title Page
	Copyright Page
	Dedication
	Preface
	Overview
	"UML"-ising Formal Techniques
	The RAISE Specification Language: RSL
	Acknowledgments
	Brief Guide to Volume 2

	Contents
	Part I: Opening
	Chapter 1. Introduction
	1.1 Introduction
	1.1.1 Why This Volume?
	1.1.2 Why Master These Principles, Techniques and Tools?
	1.1.3 What Does This Volume "Contain"?
	1.1.4 How Does This Volume "Deliver"?

	1.2 Formal Techniques "Lite"
	1.3 An RSL Primer
	1.3.1 Types
	1.3.2 The RSL Predicate Calculus
	1.3.3 Concrete RSL Types
	1.3.4 λ-Calculus+Functions
	1.3.5 Other Applicative Expressions
	1.3.6 Imperative Constructs
	1.3.7 Process Constructs
	1.3.8 Simple RSL Specifications

	1.4 Bibliographical Notes

	Part II: Specification Facets
	Introduction
	Introduction
	Categories of Abstraction and Modelling
	Structure of Part II
	Discussion

	Chapter 2. Hierarchies and Compositions
	2.1 The Issues
	2.1.1 Informal Illustrations
	2.1.2 Formal Illustrations

	2.2 Initial Methodological Consequences
	2.2.1 Some Definitions
	2.2.2 Principles and Techniques

	2.3 The Main Example
	2.3.1 A Hierarchical, Narrative Presentation
	2.3.2 A Hierarchical, Formal Presentation
	2.3.3 A Compositional, Narrative Presentation
	2.3.4 A Compositional, Formal Presentation

	2.4 Discussion
	2.5 Bibliographical Notes: Stanislaw Leshniewski
	2.6 Exercises

	Chapter 3. Denotations and Computations
	3.1 Introduction
	3.1.1 Computations and Denotations
	3.1.2 Syntax and Semantics
	3.1.3 Characterisations

	3.2 Denotational Semantics
	3.2.1 A Simple Example: Numerals
	3.2.2 The Denotational Principle
	3.2.3 Expression Denotations
	3.2.4 GOTO Continuations
	3.2.5 Discussion of Denotational Semantics

	3.3 Computational Semantics
	3.3.1 The Issues
	3.3.2 Two Examples
	3.3.3 Expression Computations
	3.3.4 Computational Semantics of GOTO Programs
	3.3.5 Computational Semantics of Coroutine Programs
	3.3.6 Discussion

	3.4 Review: Denotations and Computations
	3.5 Some Pioneers of Semantics
	3.5.1 John McCarthy
	3.5.2 Peter Landin

	3.6 Exercises

	Chapter 4. Configurations: Contexts and States
	4.1 Introduction
	4.2 The Issues
	4.3 "Real-World" Contexts and States
	4.3.1 A Physical System: Context and State
	4.3.2 Configurations of Contexts and States
	4.3.3 Nonphysical System: Context and State
	4.3.4 Discussion, I
	4.3.5 Discussion, II

	4.4 First Summary: Contexts and States
	4.4.1 General
	4.4.2 Development Principles and Techniques

	4.5 Programming Language Configurations
	4.6 Concurrent Process Configurations
	4.6.1 The Example
	4.6.2 Summary

	4.7 Second Summary: Contexts and States
	4.8 Information States and Behaviour States
	4.8.1 Program Flowcharts as State Machine Data
	4.8.2 Flowcharts ≡ Machines
	4.8.3 Flowchart Machines
	4.8.4 Observations
	4.8.5 Conclusion

	4.9 Final Summary: Contexts and States
	4.10 Exercises

	Part III: A Crucial Domain and Computing Facet
	Chapter 5. Time, Space and Space/Time
	5.1 Time
	5.1.1 Time — The Basics
	5.1.2 Time — General Issues
	5.1.3 "A-Series" and "B-Series" Models of Time
	5.1.4 A Continuum Theory of Time
	5.1.5 Temporal Events
	5.1.6 Temporal Behaviour
	5.1.7 Representation of Time
	5.1.8 Operations "on" Time

	5.2 Space
	5.2.1 Space — The Basics
	5.2.2 Location-Varying Entities
	5.2.3 Locations and Dynamicity
	5.2.4 Space — General Issues

	5.3 Space/Time
	5.3.1 A Guiding Example
	5.3.2 Representation of Space/Time
	5.3.3 Blizard's Theory of Time-Space

	5.4 Discussion
	5.5 Bibliographical Notes
	5.6 Exercises

	Part IV: Linguistics
	Introduction
	On Exercises of Part IV

	Chapter 6. Pragmatics
	6.1 Introduction
	6.2 Everyday Pragmatics
	6.3 "Formal" Pragmatics
	6.4 Discussion
	6.4.1 General
	6.4.2 Principles and Techniques

	6.5 Bibliographical Note
	6.6 Exercises

	Chapter 7. Semantics
	7.1 Introduction
	7.2 Concrete Semantics
	7.3 "Abstract" Semantics
	7.4 Preliminary Semantics Concepts
	7.4.1 Syntactic and Semantic Types
	7.4.2 Contexts
	7.4.3 States
	7.4.4 Configurations
	7.4.5 Interpretation, Evaluation and Elaboration

	7.5 Denotational Semantics
	7.5.1 Simple Case
	7.5.2 Composite Case

	7.6 Macro-expansion Semantics
	7.6.1 Rewriting
	7.6.2 Macro-expansion
	7.6.3 Inductive Rewritings
	7.6.4 Fix Point Evaluation

	7.7 Operational and Computational Semantics
	7.7.1 Stack Semantics
	7.7.2 Attribute Grammar Semantics

	7.8 Proof Rule Semantics
	7.9 Discussion
	7.9.1 General
	7.9.2 Principles, Techniques and Tools

	7.10 Bibliographical Notes
	7.11 Exercises

	Chapter 8. Syntax
	8.1 The Issues
	8.1.1 Form and Content: Syntax and Semantics
	8.1.2 Structure and Contents of This Chapter

	8.2 Sentential Versus Semantical Structures
	8.2.1 General
	8.2.2 Examples of Sentential Structures
	8.2.3 Examples of Semantical Structures

	8.3 The First Abstract Syntax, John McCarthy
	8.3.1 Analytic Grammars: Observers and Selectors
	8.3.2 Synthetic Grammars: Generators

	8.4 BNF Grammars ≈ Concrete Syntax
	8.4.1 BNF Grammars
	8.4.2 BNF↔RSL Parse Trees Relations

	8.5 Structure Generators and Recognisers
	8.5.1 Context-Free Grammars and Languages
	8.5.2 Parse Trees
	8.5.3 Regular Expressions and Languages
	8.5.4 Language Recognisers

	8.6 XML: Extensible Markup Language
	8.6.1 An Example
	8.6.2 Discussion
	8.6.3 Historical Background
	8.6.4 The Current XML "Craze"
	8.6.5 XML Expressions
	8.6.6 XML Schemas
	8.6.7 References

	8.7 Abstract Syntaxes
	8.7.1 Abstract Syntax of a Storage Model
	8.7.2 Abstract Syntaxes of Other Storage Models

	8.8 Converting RSL Types to BNF
	8.8.1 The Problem
	8.8.2 A Possible Solution

	8.9 Discussion of Informal and Formal Syntax
	8.9.1 General
	8.9.2 Principles, Techniques and Tools

	8.10 Bibliographical Notes
	8.11 Exercises

	Chapter 9. Semiotics
	9.1 Semiotics = Syntax ⊕ Semantics ⊕ Pragmatics
	9.2 Semiotics
	9.3 Language Components
	9.4 Linguistics
	9.5 Languages and Systems
	9.5.1 Professional Languages
	9.5.2 Metalanguages
	9.5.3 Systems
	9.5.4 System Diagram Languages
	9.5.5 Discussion of System Concepts
	9.5.6 Systems as Languages

	9.6 Discussion
	9.6.1 General
	9.6.2 Principles, Techniques and Tools

	9.7 Charles Sanders Peirce
	9.8 Bibliographical Notes
	9.9 Exercises

	Part V: Further Specification Techniques
	Chapter 10. Modularisation
	10.1 Introduction
	10.1.1 Some Examples
	10.1.2 Preparatory Discussion
	10.1.3 Structure of Chapter

	10.2 RSL Classes, Objects and Schemes
	10.2.1 Introducing the RSL "class" Concept
	10.2.2 The RSL "class" Concept
	10.2.3 The RSL "object" Concept
	10.2.4 The RSL "scheme" Concept
	10.2.5 RSL "scheme" Parameterisation
	10.2.6 A "Large-Scale" Example
	10.2.7 Definitions: Class, Scheme and Object

	10.3 UML and RSL
	10.3.1 Overview of UML Diagrams
	10.3.2 Class Diagrams
	10.3.3 Class Diagrams
	10.3.4 Example: Railway Nets
	10.3.5 Comparison of UML and RSL OO Constructs
	10.3.6 References
	10.3.7 Class Diagram Limitations

	10.4 Discussion
	10.4.1 Modularity Issues
	10.4.2 Principles, Techniques and Tools

	10.5 Bibliographical Notes
	10.6 Exercises

	Chapter 11. Automata and Machines
	11.1 Discrete State Automata
	11.1.1 Intuition
	11.1.2 Motivation
	11.1.3 Pragmatics

	11.2 Discrete State Machines
	11.3 Finite State Automata
	11.3.1 Regular Expression Language Recognisers
	11.3.2 Regular Expressions
	11.3.3 Formal Languages and Automata
	11.3.4 Automaton Completion
	11.3.5 Nondeterministic Automata
	11.3.6 Minimal State Finite Automata
	11.3.7 Finite State Automata Formalisation, I
	11.3.8 Finite State Automata Realisation, I
	11.3.9 Finite State Automaton Formalisation, II
	11.3.10 Finite State Automata Realisation, II
	11.3.11 Finite State Automata — A Summary

	11.4 Finite State Machines
	11.4.1 Finite State Machine Controllers
	11.4.2 Finite State Machine Parsers
	11.4.3 Finite State Machine Formalisation
	11.4.4 Finite State Machine Realisation
	11.4.5 Finite State Machines — A Summary

	11.5 Pushdown Stack Devices
	11.5.1 Pushdown Stack Automata and Machines
	11.5.2 Formalisation of Pushdown Stack Machines
	11.5.3 Pushdown Stack Device Summary

	11.6 Bibliographical Notes: Automata and Machines
	11.7 Exercises

	Part VI: Concurrency and Temporality
	Chapter 12. Petri Nets
	12.1 The Issues
	12.2 Condition Event Nets (CENs)
	12.2.1 Description
	12.2.2 Small CEN Examples
	12.2.3 An RSL Model of Condition Event Nets

	12.3 Place Transition Nets (PTNs)
	12.3.1 Description
	12.3.2 Small PTN Examples
	12.3.3 An RSL Model of Place Transition Nets
	12.3.4 Railway Domain Petri Net Examples

	12.4 Coloured Petri Nets (CPNs)
	12.4.1 Description
	12.4.2 A CPN Example
	12.4.3 An RSL Model of Coloured Petri Nets
	12.4.4 Timed Coloured Petri Nets

	12.5 CEN Example: Work Flow System
	12.5.1 Project Planning
	12.5.2 Project Activities
	12.5.3 Project Generation

	12.6 CPN and RSL Examples: Superscalar Processor
	12.6.1 Description
	12.6.2 Coloured Petri Net Model
	12.6.3 RSL Model: Superscalar Processor

	12.7 Discussion
	12.8 Bibliographical Notes
	12.9 Exercises

	Chapter 13. Message and Live Sequence Charts
	13.1 Message Sequence Charts
	13.1.1 The Issues
	13.1.2 Basic MSCs (BMSCs)
	13.1.3 High-Level MSCs (HMSCs)
	13.1.4 An RSL Model of HMSC Syntax
	13.1.5 MSCs Are HMSCs
	13.1.6 Syntactic Well-formedness of MSCs
	13.1.7 An Example: IEEE 802.11 Wireless Network
	13.1.8 Semantics of Basic Message Sequence Charts
	13.1.9 Semantics of High-Level Message Sequence Charts

	13.2 Live Sequence Charts: Informal Presentation
	13.2.1 Live Sequence Chart Syntax
	13.2.2 A Live Sequence Chart Example, I

	13.3 Process Algebra
	13.3.1 The Process Algebra PA ε
	13.3.2 Semantics of PA ε
	13.3.3 The Process Algebra PAc ε
	13.3.4 Semantics for PAc ε

	13.4 Algebraic Semantics of Live Sequence Charts
	13.4.1 Textual Syntax of Live Sequence Charts
	13.4.2 Semantics of Live Sequence Charts
	13.4.3 The Live Sequence Chart Example, II

	13.5 Relating Message Charts to RSL
	13.5.1 Types of Integration
	13.5.2 An RSL Subset
	13.5.3 Relating Live Sequence Charts to RSL
	13.5.4 Checking Satisfaction
	13.5.5 Tool Support

	13.6 Communicating Transaction Processes (CTP)
	13.6.1 Intuition
	13.6.2 Narration of CTPs
	13.6.3 A Dining Philosophers Example
	13.6.4 Formalisation of CTPs

	13.7 Discussion
	13.7.1 General
	13.7.2 Principles, Techniques and Tools

	13.8 Bibliographical Notes
	13.9 Exercises

	Chapter 14. Statecharts
	14.1 Introduction
	14.2 A Narrative Description of Statecharts
	14.3 An RSL Model of the Syntax of Statecharts
	14.4 Examples
	14.4.1 Railway Line Automatic Blocking
	14.4.2 Railway Line Direction Agreement System
	14.4.3 Wireless Rain Gauge

	14.5 A Process Algebra for Statecharts
	14.5.1 SPL: The Statechart Process Language
	14.5.2 Semantics of SPL
	14.5.3 Equivalence for SPL Terms

	14.6 Semantics of Statecharts
	14.6.1 An SPL Semantics for Statecharts
	14.6.2 Statechart Example

	14.7 Relating Statecharts to RSL
	14.7.1 Syntactical Restrictions
	14.7.2 Satisfaction Relation
	14.7.3 Checking Satisfaction
	14.7.4 Tool Support

	14.8 Discussion
	14.8.1 General
	14.8.2 Principles, Techniques and Tools

	14.9 Bibliographical Notes
	14.10 Exercises

	Chapter 15. Quantitative Models of Time
	15.1 The Issues
	15.1.1 Soft Temporalities
	15.1.2 Hard Temporalities
	15.1.3 Soft and Hard Real-Time
	15.1.4 Examples — "Ye Olde Way"!
	15.1.5 Structure of This Chapter

	15.2 Temporal Logic
	15.2.1 The Issues
	15.2.2 A Philosophical Linguistics Background
	15.2.3 Interval Temporal Logic, ITL
	15.2.4 The Classic Temporal Operators: ◇, □

	15.3 The Duration Calculus
	15.3.1 Examples, Part I
	15.3.2 Some Basic Notions
	15.3.3 Examples, Part II
	15.3.4 The Syntax
	15.3.5 The Informal Semantics
	15.3.6 Examples, Part III
	15.3.7 Transitions and Events
	15.3.8 Discussion: From Domains to Designs

	15.4 TRSL: RSL with Timing
	15.4.1 TRSL Design Criteria
	15.4.2 The TRSL Language
	15.4.3 Another Gas Burner Example
	15.4.4 Discussion

	15.5 RSL with Timing and Durations
	15.5.1 Review of TRSL
	15.5.2 TRSL and Duration Calculus

	15.6 Discussion
	15.6.1 General
	15.6.2 Principles, Techniques and Tools

	15.7 Bibliographical Notes
	15.8 Exercises

	Part VII: Interpreter and Compiler Definitions
	Chapter 16. SAL: Simple Applicative Language
	16.1 A Caveat
	16.2 The SAL Syntax
	16.2.1 Informal Exposition of SAL Syntax
	16.2.2 Formal Exposition of SAL Syntax
	16.2.3 Comments

	16.3 A Denotational Semantics
	16.3.1 An Informal Semantics
	16.3.2 A Formal Semantics
	16.3.3 Review of SAL Semantics, 1
	16.3.4 Two Asides

	16.4 A First-Order Applicative Semantics
	16.4.1 Syntactic Types
	16.4.2 Semantic Types
	16.4.3 Abstraction Functions
	16.4.4 Auxiliary Functions
	16.4.5 Semantic Functions
	16.4.6 Review
	16.4.7 Review of SAL Semantics, 2

	16.5 An Abstract, Imperative Stack Semantics
	16.5.1 Design Decisions — Informal Motivation
	16.5.2 Semantic s Style Observations
	16.5.3 Syntactic Types
	16.5.4 Semantic Types
	16.5.5 Abstraction Functions
	16.5.6 Run-Time Functions
	16.5.7 Semantic Functions
	16.5.8 Review of SAL Semantics, 3

	16.6 A Macro-expansion Semantics
	16.6.1 Analysis of Stack Semantics
	16.6.2 Syntactic Types
	16.6.3 Compile-Time Types
	16.6.4 Run-Time Semantic Types
	16.6.5 Run-Time State
	16.6.6 Run-Time Stack Operations
	16.6.7 Run-Time Stack Search for Variable Values
	16.6.8 Macro-expansion Functions
	16.6.9 Review of SAL Semantics, 4

	16.7 ASM: An Assembler Language
	16.7.1 Semantic Types
	16.7.2 The Computer State
	16.7.3 The Address Concept
	16.7.4 Machine Instructions
	16.7.5 Machine Semantics
	16.7.6 Review of ASM

	16.8 A Compiling Algorithm
	16.8.1 Syntactic Types
	16.8.2 Compile-Time Types and State
	16.8.3 Compile-Time Dynamic Function
	16.8.4 Compile-Time Static Function
	16.8.5 Run-Time Constant Values
	16.8.6 Compilation Functions
	16.8.7 Review of Compiling Algorithm

	16.9 An Attribute Grammar Semantics
	16.9.1 Abstract Syntactic Types
	16.9.2 SAL BNF Grammar, 1
	16.9.3 Node Attributes
	16.9.4 Constants
	16.9.5 Some Typographical Distinctions
	16.9.6 Compilation Functions
	16.9.7 Review of Attribute Semantics, 1

	16.10 Another Attribute Grammar Semantics
	16.10.1 Abstract Syntactic Types
	16.10.2 SAL BNF Grammar, 2
	16.10.3 Global Variables
	16.10.4 Constants
	16.10.5 Node Attributes
	16.10.6 Compilation Functions
	16.10.7 Review of Attribute Semantics, 2

	16.11 Discussion
	16.11.1 General
	16.11.2 Principles, Techniques and Tools

	16.12 Review and Bibliographical Notes
	16.13 Exercises

	Chapter 17. SIL: Simple Imperative Language
	17.1 The Background
	17.2 Syntactic Types
	17.2.1 Concrete, Schematic Syntax
	17.2.2 Abstract Syntax

	17.3 Imperative Denotational Semantics
	17.3.1 Semantic Types
	17.3.2 Auxiliary Semantic Functions
	17.3.3 Semantic Functions

	17.4 Macro-expansion Semantics
	17.4.1 Syntactic Types
	17.4.2 Compile-Time Semantic Types
	17.4.3 Run-Time Semantic Types
	17.4.4 Run-Time State Declaration and Initialisation
	17.4.5 Abstraction Functions
	17.4.6 Macros

	17.5 Discussion
	17.5.1 General
	17.5.2 Principles, Techniques and Tools

	17.6 Bibliographical Notes
	17.7 Exercises

	Chapter 18. SMIL: Simple Modular, Imperative Language
	18.1 Syntactic Types
	18.2 A Denotational Semantics
	18.2.1 Semantic Types
	18.2.2 Auxiliary Functions
	18.2.3 Semantic Functions

	18.3 A Macro-expansion Semantics
	18.3.1 Run-Time Semantic Types
	18.3.2 Compile/Run-Time Semantic Types
	18.3.3 Compile-Time Semantic Types
	18.3.4 Semantic Functions

	18.4 Discussion
	18.4.1 General
	18.4.2 Principles, Techniques and Tools

	18.5 Bibliographical Notes
	18.6 Exercises

	Chapter 19. SPIL: Simple Parallel, Imperative Language
	19.1 The Problem
	19.2 Syntax
	19.2.1 Informal Syntax
	19.2.2 Formal Syntax

	19.3 Process Concepts and Semantic Types
	19.3.1 Syntactic Notions
	19.3.2 Machines and Interpreters
	19.3.3 Semantic Notions and Types

	19.4 Process-Oriented Semantic Types
	19.4.1 Unique Process Identifiers π: Π
	19.4.2 The Heap ξ : Ξ
	19.4.3 Input/Output Channel Bindings
	19.4.4 Environments ρ : ENV
	19.4.5 State Composition Ψ, Γ, Ξ, Σ, Ω

	19.5 Initial and Auxiliary Semantic Functions
	19.5.1 Start Function
	19.5.2 System Function
	19.5.3 Bind and Allocate Functions
	19.5.4 Free and Bound Functions
	19.5.5 Distribute Function
	19.5.6 Transition Loop

	19.6 Semantic Functions
	19.6.1 The Next-State Transition Function
	19.6.2 The Assignment Statement
	19.6.3 The case Statement
	19.6.4 The while Loop
	19.6.5 The repeat until Loop
	19.6.6 Simple Input/Output Processes
	19.6.7 The Parallel Process Command, ‖
	19.6.8 The stop Process Technicality
	19.6.9 The Process call Command
	19.6.10 Internal Nondeterministic Processes, ⨅
	19.6.11 Externa l Nondeterministic Processes, □
	19.6.12 Nondeterministic Input/Output Processes
	19.6.13 The Embedded System Process Command
	19.6.14 A finish Process Technicality

	19.7 Discussion
	19.7.1 General
	19.7.2 Principles, Techniques and Tools

	19.8 Bibliographical Notes
	19.9 Exercises

	Part VIII: Closing
	Chapter 20. Closing
	20.1 A Summary
	20.2 Conclusion: Volumes 1 and 2
	20.3 Preview of Volume 3
	20.4 "UML"-ising Formal Techniques

	Part IX: Appendixes
	Appendix A. Naming Convention
	Appendix B. Indexes
	B.1 Symbols Index
	B.1.1 Time/Space
	B.1.2 Modular RSL
	B.1.3 Petri Nets
	B.1.4 Message Sequence Charts
	B.1.5 Live Sequence Charts
	B.1.6 Statecharts
	B.1.7 Temporal Logics
	B.1.8 Duration Calculus
	B.1.9 Timed RSL: TRSL
	B.1.10 Abbreviations

	B.2 Concepts Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	B.3 Characterisations and Definitions Index
	B.4 Authors Index

	References

