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Charlotte, Camilla and Caroline 

Am I grateful? You bet! Am I a happy father? Also your doing! 



Two roads diverged in a yellow wood, 
And sorry I could not travel both 
And be one traveler, long I stood 
And looked down one as far as I could 
To where it bent in the undergrowth; 

Then took the other, as just as fair, 
And having perhaps the better claim, 
Because it was grassy and wanted wear; 
Though as for that the passing there 
Had worn them really about the same, 

And both that morning equally lay 
In leaves no step had trodden black. 
Oh, I kept the first for another day! 
Yet knowing how way leads on to way, 
I doubted if I should ever come back. 

I shall be telling this with a sigh 
Somewhere ages and ages hence: 
Two roads diverged in a wood, and I — 
I took the one less traveled by, 
And that has made all the difference. 

Robert Frost: The Road Not Taken (1915) [121] 



Preface 

The present volume is the second of three volumes on the engineering princi
ples and techniques of software engineering. We refer to the Preface of Vol. 1, 
as well as to Chap. 1 of that same volume, for a proper preface and over
all introduction to all volumes in this series. We assume that the reader has 
studied Vol. 1. 

Overview 

The present volume focuses on principles and techniques for specifying lan
guages and systems. It uses the abstraction and modelling principles, tech
niques and tools covered in Vol. 1, and it supplements those principles, tech
niques and tools with additional ones. In particular the present volume em
phasises the following four aspects: 

• advanced specification facets: 
• hierarchies and composition 
• denotations and computations 
• configurations: contexts and states 
• time, space and space/time 
• modularisation and 
• automata and machines 
linguistics: 
• pragmatics 
• semantics 
• syntax and 
• semiotics 
concurrency and temporality: 
• Petri nets 
• message sequence charts and live sequence charts 
• statecharts and 

Chap. 2 
Chap. 3 
Chap. 4 
Chap. 5 

Chap. 10 
Chap. 11 

Chap. 6 
Chap. 7 
Chap. 8 
Chap. 9 

Chap. 12 
Chap. 13 
Chap. 14 



VIII 

• quantitative models of time Chap. 15 
• interpreter and compiler definitions: 

• applicative programming languages Chap. 16 
• imperative programming languages Chap. 17 
• modular programming languages and Chap. 18 
• parallel programming languages Chap. 19 

"UML"-ising Formal Techniques 

Some notable features should be emphasised here. The concurrency aspect, 
Chaps. 12-14, also illustrates diagrammatic specifications, as does Sect. 10.3 
(UML class diagrams). Together this material illustrates that popular features 
of the Unified Modeling Language (UML [59,237,382,440]) can simply and 
elegantly be included, i.e., used, with RSL. Christian Krog Madsen is the main 
author of Chaps. 12-14. 

The RAISE Specification Language: RSL 

As in Vol. 1, we use RSL extensively in the present volume. Hence we in
sert, in Chap. 1, an RSL Primer — and otherwise refer to the RAISE URL: 
h t t p : / / w w w . i i s t . u n u . e d u / r a i s e / . 
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I X 

Brief Guide to Volume 2 

This volume has several chapters. The chapters are grouped into parts. Fig
ure 2 abstracts a precedence relation between chapters. It is one that approx
imates suggested sequences of studying this volume. 

• Chapter 1 is considered a prerequisite for the study of any chapter. 
• We group some parts into the dash-circled groups A — E. 
• Group A consists of Chaps. 2-5 that can be studied in any order. 
• Group B consists of Chaps. 6-9 that should be studied in order 6, 7, 8 and 9. 
• Group C consists of Chaps. 10-11 that can be studied in any order. 
• Group D consists of Chaps. 12-15 that can be studied in almost any order. Chap. 14 

does contain an example which requires having studied Chap. 13 first. 
• Group E consists of Chaps. 16-19 that should be studied in order 16, 17 and 18. 

Chap. 19 can be studied in-between, before, or after. Preferably after. 
• Groups A — E can be studied in any order. But it might be useful to have studied 

Chap. 5 before Chap. 15, and Chap. 10 before Chap. 18, and to have studied Group B 
before Group E. 

• It is no harm to study Chap. 20. 
• Appendix A contains an overview of our naming convention. 

Within most chapters many sections can be skipped. Typically those with 
larger examples or towards the end of the chapters. 

In this way a teacher or a reader can compose a number of suitable courses 
and studies. Some such are suggested in Fig. 1. 

Advanced Languages Concurrent Systems 
Abstraction & Modelling 

Chaps. 1-5, 10, 11 Chaps. 1, 6-9, 16-18 Chaps. 1, 12-15, 19 

Fig. 1. Alternative courses based solely on Vol. 2 

|w-^>e> Y&i&t-

Dines Bj0rner 
Technical University of Denmark, 2005-2006 
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OPENING 





1 

Introduction 

• The prerequisi te for studying this chapter is that you have read and 
understood Vol. 1 of this series of textbooks on software engineering. 

• The aims are to motivate why the present volume is written, to motivate 
why you should read it by outlining what it contains and how it delivers 
its material, to explain the notion of formal methods "lite", and to briefly 
recall the main specification language of these volumes, RSL. 

• The objective is to set you firmly on the way to study this volume. 
• The t r ea tmen t is discursive, informal and systematic. 

1.1 Introduction 

Volume 2 continues where Vol. 1 left off. Having laid the foundations for 
discrete mathematics, Vol. 1, Chaps. 2-9, abstraction and modelling, Vol. 1, 
Chaps. 10-18, and specification programming, Vol. 1, Chaps. 19-21, which we 
consider the minimum for the pursuit of professional software engineering, we 
need now to expand, considerably, the scope of areas to which we can apply 
our abstraction, modelling and specification skills. 

This chapter has two main sections: First we outline the justification for 
and contents of this volume as well as how the material in this volume is pre
sented. Then we give an ever-so-short primer on RSL: the syntactic constructs, 
very briefly their "meaning" and their pragmatics, that is, which "main" uses 
with respect to abstraction and modelling they serve to fulfill. The primer 
can, of course, be skipped. 

1.1.1 Why This Volume? 

It is one thing to learn and be reasonably fluent in abstraction and modelling 
as covered in Vol. 1 of this series. It is another thing to really master the prin
ciples, techniques and tools. With the present volume our goal is to educate 
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you to the level of a professional software engineer in: (i) specifying compli
cated computing systems and languages, (ii) being aware of major semiotics 
principles (pragmatics, semantics and syntax), (iii) being well acquainted to 
means of handling concurrency, i.e., parallel systems, and real-time, and (iv) 
formally conceiving reasonably sophisticated systems and languages. 

1.1.2 W h y M a s t e r T h e s e Pr inc ip le s , Techniques and Tools? 

Why master these principles, techniques and tools? Because it is necessary. 
Because, to be a professional in one's chosen field of expertise, one must know 
also the formal techniques — just as engineers of other disciplines also know 
their mathematics . Just as fluid mechanics engineers handle, with ease, their 
Navier-Stokes Equations [83,496], so software engineers must handle denota-
tional and computational semantics. Just as radio communications engineers 
handle, with ease, Maxwell Equations [245,502], so software engineers must 
handle Petri nets [238,400,419-421], message sequence charts [227-229], live 
sequence charts [89,195,268], statecharts [174,175,185,193,197], the duration 
calculus [557,559], temporal logics [105,320,321,372,403], etc. We will cover 
this and much more in this volume. 

The above explanation of the "why" is an explanation tha t is merely a 
claim. It relies on "Proof by authori ty"! Well, here is the longer, more ra
tional argument: Before we can design software, we must understand its re
quirements. Before we can construct requirements, we must understand the 
application domain, the area of, say human, activity for which software is 
desired. To express domain understanding, requirements and software designs 
we must use language. To claim any understanding of these three areas the 
language used must be precise, and must be used such as to avoid ambigu
ities, and must allow for formal reasoning, i.e., proofs. This entails formal 
languages. To cope with the span from domains, via requirements, to designs 
the languages must provide for abstraction, and refinement: from abstract to 
concrete expressibility. The principles, techniques and tools of these volumes 
provide a state-of-the-art (and perhaps beyond) set of such methods. 

The complexities of the computing systems tha t will be developed in the 
future are such tha t we cannot expect to succeed in developing such comput
ing systems without using formal techniques and tools, such as covered and 
propagated in these volumes. 

1.1.3 W h a t D o e s Th i s V o l u m e "Contain"? 

Volume 1 covered basic abstraction and modelling principles, techniques and 
tools. The major tool was tha t of the RAISE Specification Language (RSL). 
The major new, additional tools of this volume will be those of the Petr i 
nets: condition event nets, the place transition nets, and the coloured Petri 
nets [238,400,419-421]; the sequence charts (SCs): the message SCs (MSCs) 
[227-229] and the live SCs (LSCs) [89,195,268]; the s tatecharts [174,175, 
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185,193,197]; the interval temporal logic (ITL) and the duration calculus 
(DC) [557,559]. 

The major principles and techniques of abstraction and modelling cov
ered earlier were: property- (sorts, observers, generators, axioms) and/versus 
model-oriented abstraction in general, and the model-oriented techniques of 
set, Cartesian, list, map and function, including type abstractions; and func
tional, imperative and concurrent (parallel) specification programming tech
niques in particular. 

The new, additional principles and techniques of abstraction and modelling 
in this volume fall along five axes: 

1. An advanced abstraction and modelling axis, covering hierarchical and 
compositional modelling and models, denotational and computational se
mantics, configurations: contexts and state, and time and space concepts. 
This axis further extends the techniques of Vol. 1. The time concepts will 
be further treated along axis (4). 

2. A semiotics axis, covering pragmatics, semantics and syntax. This axis 
treats, along more systematic lines, what was shown more or less indirectly 
in Vol. 1 and previous chapters of Vol. 2 (notably Chap. 3). Axis (5) will 
complete our treatment of linguistics. 

3. A structuring axis, briefly covering RSL's scheme, class and object con
cepts, as well as UML's class diagram concepts. This "short" axis, for the 
first time in these volumes, brings other notational tools into our evolv
ing toolbox. This "extension" or enlargement of the variety of notational 
tools brings these volumes close to covering fundamental ideas of UML. 
The next axis, (4), completes this expansion. 

4. A concurrency axis, covering qualitative aspects of timing: the Petri nets 
[238,400,419-421], the sequence charts, SCs, message SCs (MSCs [227-
229]) and live SCs (LSCs [89,195,268]), the statecharts [174,175,185,193, 
197], and quantitative aspects of timing in terms of the interval temporal 
logic (ITL) [105,320,321,372,403], and the duration calculus (DC) [557, 
559]. These specification concepts, available in some form in UML, will 
complete these volumes' treatment of, as we call it, "UML-ising" Formal 
Techniques. 

5. A language development axis, covering crucial steps of the development of 
concrete interpreters and compilers for functional (i.e., applicative), im
perative (i.e., "classical"), modular, and parallel programming languages. 
This axis completes our treatment of programming language linguistics 
matters. The chapters in axis (5) will cover important technical concepts 
of run-time structures for interpreted and compiled programs, compiling 
algorithms, and attribute grammars. 

1.1.4 How Does This Volume "Deliver"? 

The previous section outlined, in a sense, a didactics of one main aspect of 
software engineering. 
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So this didactic view of software engineering as a field of activity whose 
individual "tasks" can be "relegated" to one, or some simple combination, of 
the topics within one or, say, two axes, as listed above offers one way in which 
this volume "delivers". That is, the reader will be presented with these topics, 
more or less in isolation, one-by-one, but the practicing software engineer 
(and the reader as chapter exercise solver) is expected to merge principles 
and techniques of previous topics and tools when solving problems. 

Another way in which this volume delivers is in the manner in which 
each individual (axis) topic is presented. Each topic is presented by means of 
many examples. Their "story" is narrated and the problem is given a formal 
specification. Where needed, as for the qualitative and quantitative aspects of 
concurrency,1 a description is given of (i) their notational apparatus, (ii) the 
pragmatics behind them, (hi) their syntax and (iv) their informal semantics. 
Method principles and techniques are then enunciated. A heavy emphasis is 
placed on examples. References are made to more theoretical treatments of, 
in particular, the concurrency topics. 

A third way in which this volume delivers is by presenting a "near-full" 
spectrum of principles, techniques and tools, as witnessed, for example, by the 
combination of using the RSL tool with those of UML's class diagrams, the Petri 
Nets, the (Message and Live) Sequence Charts, the Statecharts, the Interval 
Temporal Logic and the Duration Calculus. 

This can also be seen in the span of abstraction topics: hierarchy and com
position, denotation and computation, configurations (including contexts and 
states), temporality (in various guises) and spatiality, and both qualitative and 
quantitative aspects of concurrency. Volume 3 covers further abstraction prin
ciples and techniques. Finally this is also witnessed by the span of application 
topics: real-time, embedded and safety critical systems, infrastructure com
ponents (railways, production, banking, etc.), and programming languages: 
functional, imperative, modular, and parallel. Volume 3 covers further appli
cation topics. 

1.2 Formal Techniques "Lite" 

Although we shall broach the subject on several occasions throughout this 
volume, when we cover formal techniques we shall exclusively cover formal 
specification, not formal proofs of properties of specifications. 

That may surprise the reader. After all, a major justification of formal 
techniques, i.e., formal specifications, is that they allow formal verification. 
So why do we not cover formal verification? First, we use, and propagate 

The qualitative aspects of concurrency are expressible when using the Petri 
Nets, the Message and Live Sequence Charts and the Statecharts. The quantitative 
aspects of concurrency are expressible when using the Interval Temporal Logic and 
the Duration Calculus. 
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the use of, formal techniques in the "lite"2 manner. That is, we take formal 
specification rather seriously. And hence we focus on principles and techniques 
for constructing effective specifications, i.e., pleasing, elegant, expressive and 
revealing specifications. We find (and have over more than 30 years found) 
that systems developed in this manner come very, very close to being perfect! 

Second, we find that principles and techniques for theorem proving or proof 
assistance or model checking, even today (2005) are very much "bound" to 
the specific notational system (i.e., specification language), and to its proof 
system of rules and tools. And we also find that there is much less a common 
consensus on whether proofs should be done in one way or in another way. 

For a good introduction to a number of leading approaches to software 
verification we refer to the following papers: 

1. J. U. Skakkebaak, A. P. Ravn, H. Rischel, and Zhou Chaochen. Speci
fication of embedded, real-time systems. Proceedings of 1992 Euromicro 
Workshop on Real-Time Systems, pages 116-121. IEEE Computer Society 
Press, 1992. 

2. Zhou Chaochen, M. R. Hansen, A. P. Ravn, and H. Rischel. Duration 
specifications for shared processors. Proceedings Symp. on Formal Tech
niques in Real-Time and Fault-Tolerant Systems, Nijmegen 6-10 Jan. 
1992, LNCS, 1992. 

3. A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and verifying 
requirements of real-time systems. IEEE Trans. Software Engineering, 
19:41-55, 1992. 

4. C. W. George. A theory of distributing train rescheduling. In FME'96: 
Industrial Benefits and Advances in Formal Methods, proceedings, LNCS 
1051, 

5. C. W. George. Proving safety of authentication protocols: a minimal ap
proach, in International Conference on Software: Theory and Practice 
(ICS 2000), 2000. 

6. A. Haxthausen and X. Yong. Linking DC together with TRSL. Proceed
ings of 2nd International Conference on Integrated Formal Methods (IFM 
2000), Schloss Dagstuhl, Germany, November 2000, number 1945 in Lec
ture Notes in Computer Science, pages 25-44. Springer-Verlag, 2000. 

7. A. Haxthausen and J. Peleska, Formal development and verification of a 
distributed railway control system, IEEE Transaction on Software Engi
neering, 26(8), 687-701, 2000. 

8. M. P. Lindegaard, P. Viuf and A. Haxthausen, Modelling railway inter
locking systems, Eds.: E. Schnieder and U. Becker, Proceedings of the 
9th IFAC Symposium on Control in Transportation Systems 2000, June 
13-15, 2000, Braunschweig, Germany, 211-217, 2000. 

9. A. E. Haxthausen and J. Peleska, A domain specific language for railway 
control systems, Sixth Biennial World Conference on Integrated Design 

2 "Lite" is an "Americanism", and, as many such, is a nice one that indicates 
that we take certain things seriously, but not necessarily all that "seriously". 
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and Process Technology, (IDPT 2002), Pasadena, California, Society for 
Design and Process Science, P. O. Box 1299, Grand View, Texas 76050-
1299, USA, June 23-28, 2002. 

10. A. Haxthausen and T. Gjaldbaek, Modelling and verification of interlock
ing systems for railway lines, 10th IFAC Symposium on Control in Trans
portation Systems, Tokyo, Japan, August 4-6, 2003. 

One runs a danger by adhering too much to the above "liteness" principle 
(perhaps it is one of lazy convenience?). That danger is as follows: Formulat
ing which property is to be verified, of a specification, or, respectively, which 
correctness criterion is to be verified "between" a pair of specifications, and 
carrying through the proofs often helps us focus on slightly different abstrac
tions than if we did not consider lemmas, propositions and theorems to be 
verified, or verification itself. And sometimes these proof-oriented abstrac
tions turn out to be very beautiful, very much "to the point" and also "just", 
specification-wise! 

So what do we do? Well, we cannot cover everything, therefore we must 
choose. These volumes have made the above choice. So, instead, we either refer 
the reader to other seminal textbooks on correctness proving [20,97,151,205, 
206,363,429], even though these other textbooks pursue altogether different 
specification approaches, or to two books that pursue lines of correctness 
development very much along the lines, otherwise, of this book: Cliff Jones' 
book [247], which uses VDM, and the RAISE Method book [131]. 

1.3 A n RSL P r i m e r 

This is an ultrashort introduction to the RAISE Specification Language, RSL. 

1.3.1 Types 

We refer the reader to Vol. 1, Chaps. 5 and 18. 
The reader is kindly asked to study first the decomposition of this section 

into its subparts and sub-subparts. 

Type Expressions 

RSL has a number of built-in types. There are the Booleans, integers, natural 
numbers, reals, characters, and texts. From these one can form type expres
sions: finite sets, infinite sets, Cartesian products, lists, maps, etc. 

Let A, B and C be any type names or type expressions, then: 

. Basic Types . 

type 
[1] Bool 
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[ 2 ] Int 
[3] Nat 
[4] Real 
[5] Char 
[6] Text 

Type Expressions 

[7] A-set 
[8] A-infset 
[9] A x B x ... x C 
[10] A* 
[11] A" 
[12] A ^ B 
[13] A ->• B 
[14] A 4 B 
[15] (A) 
[16] A | B | ... | C 
[17] mk_id(sel_a:A,...,sel_b:B) 
[18] sel_a:A ... sel_b:B 

The following are generic type expressions: 

1. The Boolean type of truth values false and true. 
2. The integer type on integers ..., -2 , - 1 , 0, 1, 2, ... . 
3. The natural number type of positive integer values 0, 1, 2, ... 
4. The real number type of real values, i.e., values whose numerals can be 

written as an integer, followed by a period ("."), followed by a natural 
number (the fraction). 

5. The character type of character values "a", "b", ... 
6. The text type of character string values aa , aaa , ..., abc , ... 
7. The set type of finite set values. 
8. The set type of infinite set values. 
9. The Cartesian type of Cartesian values. 

10. The list type of finite list values. 
11. The list type of infinite list values. 
12. The map type of finite map values. 
13. The function type of total function values. 
14. The function type of partial function values. 
15. In (A) A is constrained to be: 

• either a Cartesian B x C x ... x D, in which case it is identical to type 
expression kind 9, 
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• or not to be the name of a built-in type (cf., 1-6) or of a type, in 
which case the parentheses serve as simple delimiters, e.g., (A ^ B), 
or (A*)-set, or (A-set)list, or (A|B) ^ (C|D|(E ^ F)), etc. 

16. The postulated disjoint union of types A, B, . . . , and C. 
17. The record type of mk_id-named record values mk_id(av bv), where av, 

. . . , bv, are values of respective types. The distinct identifiers sel_a, etc., 
designate selector functions. 

18. The record type of unnamed record values (av bv), where av, . . . , bv, 
are values of respective types. The distinct identifiers sel_a, etc., designate 
selector functions. 

Type Definitions 

Concrete Types 

Types can be concrete in which case the structure of the type is specified by 
type expressions: 

. Type Definition . 

type 
A = Type_expr 

Some schematic type definitions are: 

. Variety of Type Definitions 

[1] Type_name = Type_expr /* without | s or subtypes */ 
[2] Type_name = Type_expr_l | Type_expr_2 | ... | Type_expr_n 
[3] Type_name = = 

mk_id_l(s_al:Type_name_al,...,s_ai:Type_name_ai) | 
... | _ 
mk_id_n(s_zl:Type_name_zl,...,s_zk:Type_name_zk) 

[4] Type_name :: sel_a:Type_name_a ... sel_z:Type_name_z 
[5] Type_name = {| v:Type_name' • V(v) |} 

where a form of [2-3] is provided by combining the types: 

. Record Types 

Type_name = A | B | ... | Z 
A = = mk_id_l(s_al:A_l,.. . ,s_ai:A_i) 
B = = mk_id_2(s_bl:B_l, . . . ,s_bj:BJ) 

Z = = mk_id_n(s_zl:Z_l,...,s_zk:Z_k) 
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Subtypes 

In RSL, each type represents a set of values. Such a set can be delimited by 
means of predicates. The set of values b which have type B and which satisfy 
the predicate V, constitute the subtype A: 

Subtypes 

type 
A = {| b:B • V(b) |} 

Sorts — Abstract Types 

Types can be (abstract) sorts in which case their structure is not specified: 

. Sorts 

type 
A, B, ..., C 

1.3.2 The RSL Predicate Calculus 

We refer the reader to Vol. 1, Chap. 9. 

Propositional Expressions 

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean 
values. Then: 

Propositional Expressions 

false, true 
a, b, ..., c 
~a, aAb, aVb, a=>b, a=b, a^b 

are propositional expressions having Boolean values. ~, A, V, =>, = and ^ are 
Boolean connectives (i.e., operators). They are read: not, and, or, if then (or 
implies), equal and not equal. 



12 1 Introduction 

Simple Predicate Expressions 

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean 
values, let x, y, ..., z (or term expressions) designate non-Boolean values and 
let i, j k designate number values, then: 

. Simple Predicate Expressions . 

false, true 
a, b, ..., c 
~a, aAb, aVb, a=>b, a=b, a^b 
x=y, x^y, 
i<j, i<j, i>j, i>j, ••• 

are simple predicate expressions. 

Quantified Expressions 

Let X, Y C be type names or type expressions, and let V(x), Q(y) and 
1Z(z) designate predicate expressions in which x,y and z are free. Then: 

. Quantified Expressions . 

V x:X • V{x) 
3 y:Y . Q(y) 
3 ! z:Z • TZ(z) 

are quantified expressions — also being predicate expressions. They are "read" 
as: For all x (values in type X) the predicate V{x) holds; there exists (at least) 
one y (value in type Y) such that the predicate Q(y) holds; and there exists 
a unique z (value in type Z) such that the predicate 1Z(z) holds. 

1.3.3 Concrete RSL Types 

We refer the reader to Vol. 1, Chaps. 13-16. 

Set Enumerations 

We refer the reader to Vol. 1, Chap. 13, Sect. 13.2. 
Let the below a's denote values of type A, then the below designate simple 

set enumerations: 

. Set Enumerations . 

{{}, {a}, {ai,a2,...,am}, ...} € A-set 
{{}, {a}, {ai,a2,...,am}, ..., {ai,a2,...}} £ A-infset 
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The expression, last line below, to the right of the =, expresses set comprehen
sion. The expression "builds" the set of values satisfying the given predicate. 
It is highly abstract in the sense that it does not do so by following a concrete 
algorithm. 

. Set Comprehension 

type 
A, B 
P = A ->• Bool 
Q = A ^ B 

value 
comprehend: A-infset x P x Q - > B-infset 
comprehend(s,V,Q) = { Q(a) | a:A • a £ s A V(a) } 

Cartesian Enumerations 

We refer the reader to Vol. 1, Chap. 14, Sect. 14.2. 
Let e range over values of Cartesian types involving A, B, ..., C (allow

ing indexing for solving ambiguity), then the below expressions are simple 
Cartesian enumerations: 

. Cartesian Enumerations . 

type 
A, B, ..., C 
A x B x ... x C 

value 
... (el,e2,...,en) ... 

List Enumerations 

We refer the reader to Vol. 1, Chap. 15, Sect. 15.2. 
Let a range over values of type A (allowing indexing for solving ambiguity), 

then the below expressions are simple list enumerations: 

. List Enumerations . 

{(), (a), ..., (al,a2,..,am), ...} e A* 
{(), (a), ..., (al,a2,...,am), ..., (al,a2,...,am,... ), ...} e A" 

( ei .. ej ) 
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The last line above assumes e, and ej to be integer-valued expressions. It then 
expresses the set of integers from the value of ê  to and including the value of 
ej. If the latter is smaller than the former, then the list is empty. 

The last line below expresses list comprehension. 

. List Comprehension . 

type 
A, B, P = A ->• Bool, Q = A 4 B 

value 
comprehend: A" x P x Q 4 B u 

comprehend (1st, V,Q) = 
( Q(lst(i)) | i in (L.len 1st) • 7>(lst(i)) ) 

M a p Enumerations 

We refer the reader to Vol. 1, Chap. 16, Sect. 16.2. 
Let a and b range over values of type A and B, respectively (allowing 

indexing for solving ambiguity), then the below expressions are simple map 
enumerations: 

. Map Enumerations . 

type 
A, B 
M = A ^ B 

value 
a,al,a2,...,a3:A, b,bl,b2,...,b3:B 

[], [ai-^b], ..., [ali-^bl,a2i-^b2,...,a3i-)-b3] V e M 

The last line below expresses map comprehension: 

. Map Comprehension _ 

type 
A, B, C, D 
M = A ^ B 
F = A 4 C 
G = B 4 D 
P = A ->• Bool 

value 
comprehend: M x F x G x P -> (C ^ D) 
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comprehend(m,.F,t/,'P) = 
[ J7(a) H> (?(m(a)) | a:A • a € dom m A V{&) 

Set Operations 

We refer the reader to Vol. 1, Chap. 13, Sect. 13.2. 

value 
e 
£ 
u 
u 
n 
n 

A x A-infset ->• Bool 
A x A-infset ->• Bool 
A-infset x A-infset —> A-infset 
(A-infset)-infset —> A-infset 
A-infset x A-infset —> A-infset 
(A-infset)-infset —> A-infset 

\: A-infset x A-infset —> A-infset 
C 
C 

= 
^ 

A-infset x A-infset —>• Bool 
A-infset x A-infset —>• Bool 
A-infset x A-infset —>• Bool 
A-infset x A-infset —>• Bool 

card: A-infset —> Nat 

examples 
a £ {a,b,c} 
a £ {}, a £ {b,c} 
{a,b,c} U {a,b,d,e} 
U{{a},{a,b},{a,d}} 
{a,b,c} fl {c,d,e} = 
n{{a},{a,b},{a,d}} 
{a,b,c} \ {c,d} = {< 
{a,b} C {a,b,c} 
{a,b,c} C {a,b,c} 
{a,b,c} = {a,b,c} 
{a,b,c} ^ {a,b} 
card {} = 0, card 

= {a,b, 
= {a,b 
{c} 
= {a} 
i,b} 

{a,b,c} 

^pt Fyamplpq 

c,d,e} 
d} 

= 3 
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€: The membership operator expresses that an element is a member of a 
set. 
^: The nonmembership operator expresses that an element is not a member 
of a set. 
U: The infix union operator. When applied to two sets, the operator gives 
the set whose members are in either or both of the two operand sets, 
fl: The infix intersection operator. When applied to two sets, the operator 
gives the set whose members are in both of the two operand sets. 
\ : The set complement (or set subtraction) operator. When applied to 
two sets, the operator gives the set whose members are those of the left 
operand set which are not in the right operand set. 
C: The proper subset operator expresses that all members of the left 
operand set are also in the right operand set. 
C: The proper subset operator expresses that all members of the left 
operand set are also in the right operand set, and that the two sets are 
not identical. 
= : The equal operator expresses that the two operand sets are identical. 
7̂ : The nonequal operator expresses that the two operand sets are not 
identical. 

• card: The cardinality operator gives the number of elements in a finite 
set. 

The operations can be defined as follows (= is the definition symbol): 

v a l u e 
s' U s" 
s' n s" 
s' \ s" 
s' C s" 
s' C s" 
s' = s" 
s' # s" 
c a r d s 

i f s 

= { a | a:A • a e s' V a £ 
= { a a:A • a € s' A a £ 
= { a a:A • a £ s' A a g-

= V a:A • a e s' => a e s" 
= s' C s" A 3 a:A • a £ s' 
= V a:A • a e s' = a e s" 
= s' n s" # {} 
= 
= {} t h e n 0 e lse 

le t a:A • a £ s in 1 + c a r d (s 
p r e 

c a r d s 
s / * is a finite set * / 

s"} 
s"} 
3"} 

A a ^ 
= sCs ' 

\{a}) 

= c h a o s / * tests for infinity of s 

s' 
A s'Cs 

e n d e n d 

*/ 
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Cartesian Operations 

We refer the reader to Vol. 1, Chap. 14, Sect. 14.2. 

type 
A, B, C 
gO: GO = A x B x C 
gl: Gl = ( A x B x C ) 
g2: G2 = ( A x B ) x C 
g3: G3 = A x ( B x C ) 

value 
va:A, vb:B, vc:C, vd:D 
(va,vb,vc):G0, 

(va,vb,vc):Gl 
((va,vb),vc):G2 
(va3,(vb3,vc3)):G3 

decomposition expressions 
let (al,bl,cl) = gO, 

(al',bl',cl') = gl in .. end 
let ((a2,b2),c2) = g2 in .. end 
let (a3,(b3,c3)) = g3 in .. end 

List Operations 

We refer the reader to Vol. 1, Chap. 15, Sect. 15.2. 

List Operations 

value 
hd: A" 4 A 
tl: A" 4 A" 
len: A" 4 Nat 
inds: A" ->• Nat-infset 
elems: A" —> A-infset 
.(.): A" x Nat 4 A 
~: A* x Aw 4 A" 
=: A" x Au -> Bool 
^: A" x Au -> Bool 

List Examples 

examples 
hd(al,a2,...,am)=al 
tl(al,a2,...,am) = (a2,...,am) 
len(al,a2,...,am)=m 
inds(al,a2,...,am)={l,2,...,m} 
elems(al,a2,...,am) = {al,a2,...,am} 
(al,a2,...,am)(i)=ai 
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(a,b,c)~(a,b,d) = (a,b,c,a,b,d) 
(a,b,c) = (a,b,c) 
(a,b,c) 7̂  (a,b,d) 

• hd: Head gives the first element in a nonempty list. 
• tl: Tail gives the remaining list of a nonempty list when Head is removed. 
• len: Length gives the number of elements in a finite list. 
• inds: Indices gives the set of indices from 1 to the length of a nonempty 

list. For empty lists, this set is the empty set as well. 
• elems: Elements gives the possibly infinite set of all distinct elements in 

a list. 
• £(i): Indexing with a natural number, i larger than 0, into a list £ having a 

number of elements larger than or equal to i, gives the ith element of the 
list. 

• ~: Concatenates two operand lists into one. The elements of the left 
operand list are followed by the elements of the right. The order with 
respect to each list is maintained. 

• =: The equal operator expresses that the two operand lists are identical. 
• T :̂ The nonequal operator expresses that the two operand lists are not 

identical. 

The operations can also be defined as follows: 

. List Operation Definitions . 

value 
is_fmite_list: A" ->• Bool 

len q = 
case is_finite_rist(q) of 

true —> if q = () then 0 else 1 + len tl q end, 
false —> chaos end 

inds q = 
case is_finite_list(q) of 

true —> { i | i:Nat • 1 < i < len q }, 
false ->• { i | i:Nat • î O } end 

elems q = { q(i) | i:Nat • i € inds q } 

q(i) = 
if i= l 

then 

then let a:A,q :Q • q=(a)^q in a end 
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else chaos end 
else q(i— 1) end 

fq ~ iq = 
( if 1 < i < len fq then fq(i) else iq(i — len fq) end 
| i:Nat • if len iq^chaos then i < len fq+len end ) 

pre is_fmite_list(fq) 

• / • // 
iq = iq = 

inds iq = inds iq A V i:Nat • i £ inds iq => iq (i) = iq (i) 

iq ^ iq = ~( iq = iq ) 

Map Operations 

We refer the reader to Vol. 1, Chap. 16, Sect. 16.2. 
. Map Operations 

value 
m(a): M - > A 4 B , m(a) = b 

dom: M —>• A-infset [domain of map] 
dom [ali->-bl,a2i->-b2,...,ani->-bn] = {al,a2,...,an} 

rng: M —>• B-infset [range of map] 
rng [alH>bl,a2H>b2,...,anH>bn] = {bl,b2,...,bn} 

f: M x M —>• M [override extension] 
[ a ^ b , a ' ^ b ' , a " ^ b " ] f [ a ' ^b" , a "^b ' ] = [ a ^ b , a ' ^ b " , a " ^ b ' ] 

U: M x M -> M [merge U] 
[ a ^ b , a ' ^ b ' , a " ^ b " ] U [a/'V+b"'] = [ a^b , a ' ^b ' , a "^b" , a ' " ^b ' " ] 

\: M x A-infset —>• M [restriction by] 
[ a ^ b , a ' ^ b ' , a " ^ b " ] \ { a } = [aV+b',a"h+b"] 

/: M x A-infset —>• M [restriction to] 
[a^b ,a '^b ' , a"^b"] /{a ' , a"} = [aV+b',a"h+b"] 

= , ^ : M x M ->• Bool 
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: (A jfr B) x (B T,f C) ->• (A ^ C) [composition] 
[a^b,aV^b'] ° [bh-H:,bW,b'W] = [ a ^ c , a W ] 

• m(a): Application gives the element that a maps to in the map m. 
• dom: Domain/Definition Set gives the set of values which maps to in a 

map. 
• rng: Range/Image Set gives the set of values which are mapped to in a 

map. 
• f: Override/Extend. When applied to two operand maps, it gives the map 

which is like an override of the left operand map by all or some "pairings" 
of the right operand map. 

• U: Merge. When applied to two operand maps, it gives a merge of these 
maps. 

• \ : Restriction. When applied to two operand maps, it gives the map which 
is a restriction of the left operand map to the elements that are not in the 
right operand set. 

• / : Restriction. When applied to two operand maps, it gives the map which 
is a restriction of the left operand map to the elements of the right operand 
set. 

• =: The equal operator expresses that the two operand maps are identical. 
• 7̂ : The nonequal operator expresses that the two operand maps are not 

identical. 
• °: Composition. When applied to two operand maps, it gives the map from 

definition set elements of the left operand map, mi, to the range elements 
of the right operand map, 7712, such that if a is in the definition set of mi 
and maps into b, and if b is in the definition set of 7712 and maps into c, 
then a, in the composition, maps into c. 

The map operations can also be defined as follows: 

. Map Operation Redefinitions . 

value 
rng m = { m(a) | a:A • a £ dom m } 

ml f m2 = 
[ an>b I a:A,b:B • 

a £ dom ml \ dom m2 A b=ml(a) V a € dom m2 A b=m2(a) ] 

ml U m2 = [ ai-)-b | a:A,b:B • 
a £ dom ml A b=ml(a) V a £ dom m2 A b=m2(a) ] 

m \ s = [ ai->-m(a) | a:A • a £ dom m \ s ] 
m / s = [ ai->-m(a) | a:A • a £ dom m n s ] 
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ml = m2 = 
dom ml = dom m2 A V a:A • a £ dom ml =>• ml(a) = m2(a) 

ml 7̂  m2 = ~(ml = m2) 

[ ai->-c | a:A,c:C • a € dom m A c = n(m(a)) ] 
pre rng m C dom n 

1.3.4 A-Calculus+Functions 

We refer the reader to Vol. 1, Chaps. 6, 7 and 11. 

The A-Calculus Syntax 

We refer the reader to Vol. 1, Chap. 7, Sect. 7.2. 

. A-Calculus Syntax . 

type /* A BNF Syntax: */ 
(L) ::= (V) | (F) | (A) | ( (A) ) 
(V) ::= /* variables, i.e. identifiers */ 
(F) ::= A(V> • (L) 
(A) ::= ( (L>(L> ) 

value /* Examples */ 
(L): e, f, a, ... 
(V): x, ... 
(F): A x . e, ... 
(A): fa, (fa),f(a), (f)(a), ... 

Sections 8.4-8.5 cover the notion of BNF grammars in detail. 

Free and Bound Variables 

We refer the reader to Vol. 1, Chap. 7, Sect. 7.3. 

Free and Bound Variables 
Let x,y be variable names and e, f be A-expressions. 

• (V): Variable x is free in x. 
• (F): x is free in Xy «e if x ^ y and x is free in e. 
• (A): x is free in /(e) if it is free in either / or e (i.e., also in both). 
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Substitution 

We refer the reader to Vol. 1, Chap. 7, Sect. 7.4. In RSL, the following rules 
for substitution apply: 

. Substitution 

• subst([N/x]x) = N; 
• subst([N/x]a) = a, 

for all variables a^ x; 
• subst([N/x](P Q)) = (subst([N/x]P) subst([N/x]Q)); 
• subst([N/x](Ax«P)) = A y P ; 
• subst([N/x](A yP ) ) = Xy subst([N/x]P), 

if x^y and y is not free in N or x is not free in P; 
• subst([N/x](AyP)) = Az«subst([N/z]subst([z/y]P)), 

if y^x and y is free in N and x is free in P 
(where z is not free in (N P)). 

a-Renaming and /3-Reduction 

We refer the reader to Vol. 1, Chap. 7, Sect. 7.4. 

. a and /3 Conversions 

• a-renaming: Ax«M 
If x, y are distinct variables then replacing x by y in Ax«M results in 
Aysubst([y/x]M). We can rename the formal parameter of a A-function 
expression provided that no free variables of its body M thereby become 
bound. 

• /3-reduction: (Ax«M)(N) 
All free occurrences of x in M are replaced by the expression N provided 
that no free variables of N thereby become bound in the result. (Ax«M)(N) 
= subst([N/x]M) 

Function Signatures 

We refer the reader to Vol. 1, Chaps. 6 and 11. For sorts we may want to 
postulate some functions: 

. Sorts and Function Signatures . 

type 
A, B, C 

value 
obs_B: A -> B, 
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obs_C: A ->• C, 
gen_A: BxC ->• A 

Function Definitions 

We refer the reader to Vol. 1, Chap. 11, Sects. 2-6. Functions can be defined 
explicitly: 

Explicit Function Definitions 

value 
f : A x B x C - * D 
f(a,b,c) = Value_Expr 

g: B-infset x (D ^ C-set) -4- A* 
g(bs,dm) = Value_Expr 
pre "P(bs,dm) 

comment: a, b, c, bs and dm are parameters of appropriate types 

or implicitly: 

. Implicit Function Definitions 

value 
f : A x B x C ^ D 
f(a,b,c) as d 
post Pi(a,b,c,d) 

g: B-infset x (D ^ C-set) -4- A* 
g(bs,dm) as al 
pre P2(bs,dm) 
post P3(bs,dm,al) 

comment: a, b, c, bs and dm are parameters of appropriate types 

The symbol 4 indicates that the function is partial and thus not defined for 
all arguments. Partial functions should be assisted by preconditions stating 
the criteria for arguments to be meaningful to the function. 
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1.3.5 Other Applicative Expressions 

Let Expressions 

We refer the reader to Vol. 1, Chap. 19, Sect. 19.2. 
Simple (i.e., nonrecursive) let expressions: 

. Let Expressions . 

let a = £d in £&(a) end 

is an "expanded" form of: 

(Aa.£t(a))(£d) 

Recursive let expressions are written as: 

. Recursive let Expressions . 

let f = Aa:A • E(f) in B(f,a) end 

is "the same" as: 

let f = YF in B(f,a) end 

where: 

F = Ag«Aa«(E(g)) and YF = F(YF) 

Predicative let expressions: 

Predicative let Expressions . 

let a:A • V{a) in B(a) end 

express the selection of a value a of type A which satisfies a predicate V(a) 
for evaluation in the body B(a). 

Patterns and wild cards can be used: 

. Patterns . 

let {a} U s = set in ... end 
let {a,_} U s = set in ... end 

let (a,b,...,c) = cart in ... end 
let (a, ,...,c) = cart in ... end 
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let 
let 

let 
let 

(a)' 
(a,_ 

"£ = 
_,b> 

[an>b] 
[an>b,_ 

= list 
~l = 

U m 

Ju 

in . 
list 

. end 
in ... end 

= map in ... 
m = map in 

end 
... end 

Condi t iona l s 

We refer the reader to Vol. 1, Chap. 19, Sect. 19.5. 
Various kinds of conditional expressions are offered by RSL: 

Conditionals 

if b_expr t h e n c_expr e l se a_expr e n d 

if b_expr t h e n c_expr e n d = / * same as: */ 
if b_expr t h e n c_expr e lse skip e n d 

if b _ e x p r _ l t h e n c _ e x p r _ l 
elsif b _ e x p r _ 2 t h e n c_expr_2 
elsif b _ e x p r _ 3 t h e n c_expr_3 

elsif b _ e x p r _ n t h e n c_expr_n e n d 

case expr of 
cho ice_pa t t e rn_ l —>• e x p r _ l , 
choice_pat tern_2 —>• expr_2, 

cho ice_pa t t e rn_n_or_wi ld_card —>• expr_n 
e n d 

O p e r a t o r / O p e r a n d E x p r e s s i o n s 

We refer the reader to Vol. 1, Chap. 19. 

Operator/Operand Expressions 

(Expr) ::= 
(Prefix_Op) (Expr) 

| (Expr) (Infix_Op) (Expr) 
J (Expr) (Suffix_Op) 
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(Preflx_Op) ::= 
— | ~ | U | PI | card | l en | inds | e l e m s | hd | t l | d o m | rng 

(Infix_Op) ::= 
= | # | = | + | - | * l t | / | < | < | > | > | A | V | = > 
| G | ^ | u | n | \ | c | c | D | D n t | ° 

(Suffix_Op) ::= ! 

1.3.6 I m p e r a t i v e C o n s t r u c t s 

We refer the reader to Vol. 1, Chap. 20. 
Often, following the RAISE method, software development starts with 

highly abstract-applicative constructs which, through stages of refinements, 
are turned into concrete and imperative constructs. Imperative constructs are 
thus inevitable in RSL. 

Variables and A s s i g n m e n t 

We refer the reader to Vol. 1, Chap. 20, Sects. 20.2.1-20.2.2. 

. Variables and Assignment . 

0. variable v:Type := expression 
1. v := expr 

S t a t e m e n t S e q u e n c e s and skip 

We refer the reader to Vol. 1, Chap. 20, Sects. 20.2.5 and 20.2.4. 
Sequencing is expressed using the ';' operator, skip is the empty statement 

having no value or side-effect. 

. Statement Sequences and skip 

2. skip 
3. s tm_ l ; s tm_2 ; . . . ; s tm_n 
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I m p e r a t i v e Condi t iona l s 

We refer the reader to Vol. 1, Chap. 20, Sects. 20.2.6 and 20.2.8. 

. Imperative Conditionals 

4. if expr t h e n s t m _ c e lse s t m _ a e n d 
5. case e of: p_l—>S_l(p_l),. . . ,p_n—>-S_n(p_n) e n d 

I terat ive Condi t iona l s 

We refer the reader to Vol. 1, Chap. 20, Sect. 20.2.7. 

. Iterative Conditionals 

6. whi l e expr do stm e n d 
7. do stmt unt i l expr e n d 

I terat ive S e q u e n c i n g 

We refer the reader to Vol. 1, Chap. 20, Sect. 20.2.9. 

. Iterative Sequencing 

8. for b in l is t_expr • P(b) do S(b) e n d 

1.3.7 P r o c e s s C o n s t r u c t s 

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4. 

P r o c e s s C h a n n e l s 

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.1. 
Let A and B stand for two types of (channel) messages and i:Kldx for 

channel array indexes, then: 

. Process Channels . 

channel c:A 
channel { k[i]:B • i:KIdx } 

declare a channel, c, and a set (an array) of channels, k[i], capable of commu
nicating values of the designated types (A and B). 
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Process Composition 

We refer the reader to Vol. 1, Chap. 21, Sects. 21.4.4-21.4.7. 
Let P and Q stand for names of process functions, i.e., of functions which 

express willingness to engage in input and/or output events, thereby commu
nicating over declared channels. 

Let P() and Q(i) stand for process expressions, then: 

P() II Q(i) 
P() D Q(i) 
po n Q(i) 
P() W QO 

Prnrpqq Cnmpnqitinn 

Parallel composition 
Nondeterministic external choice (either/or) 
Nondeterministic internal choice (either/or) 
Interlock parallel composition 

express the parallel (||) of two processes, or the nondeterministic choice be
tween two processes: either external ([]) or internal (|~|). The interlock ( jj- ) 
composition expresses that the two processes are forced to communicate only 
with one another, until one of them terminates. 

Input/Output Events 

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.2. 
Let c, k[i] and e designate channels of type A and B, then: 

Input/Output Events 

c ?, k[i] ? Input 
c ! e, k[i] ! e Output 

expresses the willingness of a process to engage in an event that "reads" an 
input, and respectively "writes" an output. 

Process Definitions 

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.3. 
The below signatures are just examples. They emphasise that process func

tions must somehow express, in their signature, via which channels they wish 
to engage in input and output events. 

Process Definitions 

value 
P: Unit —> in c out k[i] Unit 
Q: i:KIdx —>• out c in k[i] Unit 
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P() = ... c ? ... k[i] !e ... 
Q(i) = ... k[i] ? ... c ! e . . . 

The process function definitions (i.e., their bodies) express possible events. 

1.3.8 Simple RSL Specifications 

Often, we do not want to encapsulate small specifications in schemes, classes, 
and objects, as is often done in RSL. An RSL specification is simply a sequence 
of one or more types, values (including functions), variables, channels and 
axioms: 

. Simple RSL Specifications . 

type 

variable 

channel 

value 

axiom 

1.4 Bibliographical Notes 

The main references to RSL — other than Vol. 1 of this series — are [130,131]. 





Part II 

SPECIFICATION FACETS 

The prerequisites for studying this part are that you possess some fa
miliarity with abstraction and modelling, property- and model-oriented 
specifications (a la RSL), and applicative, imperative and parallel specifi
cation programming. 
The aims are to introduce along an axis of model structuring and contents 
the concepts of hierarchies and compositions (of development as well as 
of presentation of description documents), to introduce denotational and 
computational semantics and to introduce the concepts of configurations 
in terms of the concepts of contexts and states. 
The objective is to make the serious reader versatile in an important 
complement of abstraction and modelling principles and techniques. 
The treatment is systematic to formal — with Chaps. 2-4 readable in 
any order. 
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Introduction 

In earlier chapters of this volume and of Vol. 1 of this series we covered 
a number of abstraction and specification programming concepts: property-
and model-oriented abstractions, that is, algebraic abstractions, respectively 
set-theoretic abstractions (sets, Cartesians, lists, maps and functions). In later 
chapters we shall cover specification programming, that is, applicative, imper
ative and concurrent (i.e., parallel) specifications. In this part we shall first, 
however, apply the property- and model-oriented abstraction and the specifi
cation programming principles and techniques to tackle additional abstraction 
and modelling principles and techniques. 

Categories of Abstraction and Modelling 

Our decomposition, so far, into property- and model-oriented specification 
programming, and modularisation abstraction principles and techniques, rep
resents a deliberate choice. We shall in subsequent chapters introduce further 
abstraction principles and techniques. We can say that the sum total of these 
methodological concerns represents a categorisation, which we shall later jus
tify. Suffice it, for now, to motivate it: One motivational impetus is that of 
separation of concerns. We believe that the various categories represent more 
or less orthogonal concerns. Another motivational impetus is that of pedagog
ics. We are "carving", as it were, the seemingly complex "web" of principles 
and techniques into manageable pieces. A final impetus is that of didactics. 
It is, of course, related to the issue of 'separation of concerns'. The various 
categories represent different theories. 

Structure of Part II 

There seem to be several axes of description and presentation. Let us briefly 
review three of these axes. One axis is of separable, but orthogonal means of 
developing and/or expressing abstractions, that is, hierarchically versus com-
positionally, denotationally versus operationally, conhgurationally, in terms 
of contexts and states, and temporally and spatially. We will cover the above 
in this part. Another axis is of structuring the development and presenta
tion into modules such as, for example, offered in RSL: possibly parameterised 
schemes, consisting of possibly nested classes, and instantiating schemes and 
classes into objects. We shall cover modularisation in Chap. 9. 

Discussion 

In Vol. 1 of this series we paraphrased and treated in some detail the main 
abstraction and modelling approaches to both property- and model-oriented 
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specifications. Chap. 12 of Vol. 1, in particular, surveyed these abstraction 
and modelling approaches. In these volumes we strive to bring to the readers 
what we consider the main principles, techniques and tools for methodological 
software development. In the present part we shall further identify numerous 
principles and techniques. Most of these, as were some of the previous, are 
presented for the first time in textbook form. Please take time to study them 
carefully. Please think about them as you proceed into your daily software 
development. Many have found them useful before you. These techniques all 
attest to the intellectual vibrancy of our field: so rich in strongly interrelated 
concepts, so full of opportunities for intellectual challenges and enrichment. 
Indeed, it is fun to develop software. 





2 

Hierarchies and Compositions 

• The prerequisi te for studying this chapter is that you have studied and 
understood, to a reasonable extent and depth, Vol. 1 of this series of text
books on software engineering. 

• The aims are to introduce the development principles of hierarchical and 
compositional specification developments, as well as the hierarchical and 
compositional presentation of such specifications. 

• The objective is to make you able to choose an appropriate develop
ment as well as an appropriate presentation strategy: hierarchical and/or 
compositional. 

• The t r ea tmen t is from systematic to semi-formal. 

Hierarchy: Any system of persons or things in a graded order. 
A series of successive terms of descending rank. 

Composition: Relative disposition of parts. 

The Random House American Everyday Dictionary. 1949-1961 [485] 

2.1 The Issues 

The main issues of this chapter are those of non-atomic parts: the relation of 
parts to wholes, whether viewed first as a whole, hierarchically, or first viewed 
from basic parts, compositionally. 

The above was itself a hierarchical (i.e., a met a-) view. Now to a composi
tional meta-view of the problem being addressed: The derived issues are those 
of [dejcompositionality, that is, the operations of composing and decompos
ing wholes from, respectively into, parts; and of expressing relations between 
parts and wholes. 
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2.1.1 Informal Illustrations 

Scientists, engineers, managers and many others like to present complex ideas 
diagrammatically. A category of such graphic presentations is in the form of 
trees, which have roots and subtrees. 

Example 2.1 Hierarchical Presentation: Trees: 

1. A tree has a labelled root and a possibly empty set of uniquely labeled 
sub-trees. 

2. Subtrees are trees. 
3. Roots are further unexplained quantities. 
4. Root and subtree labels are further undefined. 

In programming languages we speak of values. 

Example 2.2 Compositional Presentation: Values: 

1. There are record field identifiers and there are natural number vector 
indices starting from index 1. 

2. There are simple, scalar values: Booleans, integers, and characters. 
3. Scalar and compound values can be composed into compound values: 

(a) Flexible vector values, which consist of an indefinite collection of con
secutively indexed values of the same type 

(b) Record values, which consist of a finite collection of field identified 
values 

4. Scalar and compound values are values. 

2.1.2 Formal Illustrations 

Example 2.3 Compositional Model of Trees: We refer to Example 2.1: 

type 
[0] N, L 
[ 1 ] Tree = N x (L ^ Tree) 

Here line [0] corresponds to items 3-4 of Example 2.1, and line [1] corresponds 
to items 1-2. Thus they are in reverse order to one another: compositional -H-
hierarchical! • 

Example 2.4 Hierarchical Model of Values: We refer to Example 2.2. The 
correspondence between lines of Example 2.2 and of the formulas below is: 
Line [1] corresponds to item 4 above; line [2] corresponds to item 3 above; line 
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[3] corresponds to item 3(b) above; line [4] corresponds to item 3(a) above; 
line [5] corresponds to item 2 above; and line [6] corresponds to item 1 above. 

type 
[1 
[2 
[3 
[4 
[5 
[6 

VAL = = com(c:CmpVAL) | sca(s:ScaVAL) 
CmpVAL = = rec(nRecVAL) | vec(v:VecVAL) 
RecVAL = Fid -^ VAL 
VecVAL = VAL* 
ScaVAL = = bv(b:Bool) | iv(i:Int) | cv(c:Char) 
Fid 

Line [6] contains only a specification relevant to records. Line [6] does not 
contain a specification part corresponding to the mention of natural number 
indices in Example 2.3. That "mentioning" is implied in the use of the RSL 
list type in formula line [4]. • 

Thus the two definitions are, line-wise, basically in reverse order of one an
other. That is, compositional O (where -O- means versus) hierarchical! 

2.2 Initial Methodological Consequences 

2.2.1 Some Definitions 

The definition of trees (Example 2.1) started with recursively composing trees 
from roots and the defined concept. It then went on to define the "lesser", i.e., 
the component subsidiary notions. The recursive descent from the root of a 
tree towards its leaves, or — vice versa — the recursive ascent from leaves to
wards the root, are powerful concepts, both in processing (presenting, reading, 
understanding or mechanically interpreting) and in constructing (developing) 
treelike structures. Among such structures we may have the kinds of systems 
that we wish to describe and the descriptions themselves. 

We say that a tree represents a hierarchy. We may describe the hierarchy 
by explaining the roots, the branches of a(ny) subtree and the leaves. We 
may thus liken or "equate" a system (a domain, a set of requirements or a 
software design) by a tree. We may choose to develop the tree structure from 
the root towards the leaves (also, colloquially, "in the vernacular", known as 
"top-down"), or we may choose to develop the tree structure from the leaves 
towards the root (colloquially known as "bottom-up"1). By "developing the 
tree" we here mean: constructing a description of the system. 

1 Obviously those who coined the terms "top-down" and "bottom-up" first, had 
a two-dimensional, "vertical", picture in mind; and second, drew or imagined trees 
with roots "uppermost" and branches "lowermost"! 
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Hierarchical A b s t r a c t i o n 

Character i sa t ion . By a hierarchical abstraction we mean a description (or 
a development) which initially emphasises the overall structure of the phe
nomenon or concept ("thing", system, language) being described (or devel
oped) as decomposable into parts and which then proceeds to emphasise the 
further decomposition of parts into subsidiary such, etc., descending towards 
a final emphasis on the atomic parts of the phenomenon or concept. • 

"Top-down" 

We colloquially refer to a development or a presentation which primarily em
phasises hierarchical abstraction as a "top-down affair". 

C o m p o s i t i o n a l A b s t r a c t i o n 

Character i sa t ion . By a compositional abstraction we mean a description 
(or a development) which initially emphasises (i.e., presents or develops) the 
atomic parts of the phenomenon or concept being described (or developed) and 
which then proceeds to emphasise the composition of concepts from atomic 
par ts , etc., ascending towards a final emphasis on the whole phenomenon or 
concept as composed from parts . • 

"Bottom-up" 

We call a development or a presentation which primarily emphasises compo
sitional abstraction a "bottom-up affair". 

2.2.2 Pr inc ip le s and Techniques 

Pr inc ip le s . A presentation of a description of a phenomenon or concept may 
be either hierarchical or compositional. • 

Pr inc ip le s . A development of a description of a phenomenon or concept may 
be either hierarchical or compositional. • 

Pr inc ip le s . Development and Presentation: Development of a description 
of a phenomenon or concept may be performed in one way, and it may be 
presented in the "reverse" way. • 

Pr inc ip le s . Hierarchical development can take place only if the developers 
already have a good grasp of the development universe of discourse: Over
all concepts to be decomposed must already be basically understood before 
decomposition can take place. • 
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Principles. Compositional development takes place if the developers do not 
already grasp the development universe of discourse: From "smaller", i.e., less 
composite, but well-understood parts, one composes "larger", now "more" 
composite, and, by now, well-understood parts. • 

Techniques. Hierarchy Development: Having chosen, or by necessity been 
forced to conduct, hierarchical development the developer selects the phenom
ena and concepts to be decomposed, decomposes them into suitable composi
tions, determines the constituent phenomena or concepts, and hence models, 
and records these: developing types of entities, signatures (and possibly also 
definitions) of functions (including predicates and behaviours), and determin
ing whether process (i.e., behavioural) models are relevant, including channels 
and events. Then the developer decides whether to present the development 
hierarchically or compositionally. • 

Techniques. Composition Development: Having chosen, or by necessity been 
forced to conduct compositional development, the developer selects the basic 
phenomena and concepts of concern and composes them into possible suitable 
compositions, determines their new "the whole is more than the parts" phe
nomena or concepts and hence models, and records these: developing types 
of entities, signatures (and possibly also definitions) of functions (including 
predicates and behaviours), and determining whether process models are rel
evant, including channels and events. Then the developer decides whether to 
present the development hierarchically or compositionally. • 

Some observations or disclaimers are in order: 

• We are not claiming that one can "ideally" abstract (develop and/or 
present descriptions of) phenomena and concepts (i.e., specifications) 
purely hierarchically or purely compositionally. 

• But we are claiming that it may be a good idea that the developer con
sciously consider the issue of to what "degree" shall a hierarchical, respec
tively a compositional, development or presentation approach be contem
plated. 

• A specification may be basically compositionally developed, but hierarchi
cally presented. 

Why are we claiming that hierarchical and compositional abstraction indeed 
represent abstraction? The answer is that in either we abstract certain con
cerns. In hierarchical abstraction we postpone consideration of certain details 
("smaller" parts) till a subsequent decomposition of the "larger" parts. And 
in compositional abstraction we abstract from how we later are to compose 
the "lesser" parts. 
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2.3 The Main Example 

In the next four examples (Examples 2.5-2.9) we show what may be considered 
both an example development as well as an example presentation. The subject 
of our concern, i.e., our domain, is railway nets. In keeping with our principle of 
describing domains (prescribing requirements and specifying software designs) 
both informally and formally, and in preferably doing so in that order, the 
next four examples constitute two pairs: An informal and a formal description 
of the "syntax", i.e., the "statics", of rail nets, respectively an informal and a 
formal description of some of the "semantics", i.e., of some of the "dynamics", 
of rail nets. 

2.3.1 A Hierarchical, Narrative Presentation 

Before we embark on the example let us bring in an abstract picture of a 
railway net. See Fig. 2.1. 
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Fig. 2.1. A "model" railway net 

Example 2.5 Rail Nets I — A Hierarchical Presentation, Narrative: Fig
ure 2.1 suggests a railway net with lines and stations. Lines contain linear 
rail units while stations additionally may contain crossover and switch (i.e., 
point) units. 

We shall attempt to give a precise narrative description of such nets. 
We introduce the phenomenological concepts of railway nets, lines, stations, 
tracks, (rail) units, and connectors. (See end of example for explanation of 
the term phenomenological concept.) 

1. A railway net consists of one or more lines and two or more stations. 
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2. A railway net consists of rail units. 
3. A line is a linear sequence of one or more linear rail units. 
4. The rail units of a line must be rail units of the railway net of the line. 
5. A station is a set of one or more rail units. 
6. The rail units of a station must be rail units of the railway net of the 

station. 
7. No two distinct lines and/or stations of a railway net share rail units. 
8. A station consists of one or more tracks. 
9. A track is a linear sequence of one or more linear rail units. 

10. No two distinct tracks share rail units. 
11. The rail units of a track must be rail units of the station (of that track). 
12. A rail unit is either a linear rail unit, or is a switch rail unit, or is a simple 

crossover rail unit, or is a switchable crossover rail unit, etc. 
13. A rail unit has one or more connectors. 
14. A linear rail unit has two distinct connectors. A switch (a point) rail 

unit has three distinct connectors. Crossover rail units have four distinct 
connectors (whether simple or switchable), etc. 

15. For every connector of a net there are at least one and at most two rail 
units which have that connector in common. 

16. Every line of a railway net is connected to exactly two distinct stations of 
that railway net. 

17. A linear sequence of (linear) rail units is an acyclic sequence of linear units 
such that neighbouring units share connectors. 

By a phenomenological concept we mean a concept that directly abstracts 
a phenomenon. A phenomenon is something that one can point to, i.e., is a 
value. The immediate abstraction (i.e., the phenomenological concept) is the 
type of all the intended values being described. • 

Figure 2.2 suggests the four different kinds of rail units as mentioned above. 

Fig. 2.2. Example rail units: details 
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Figure 2.3 shows simple line drawing abstractions of the four different kinds 
of rail units used in Fig. 2.1 and individually detailed in Fig. 2.2. 
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Fig. 2 .3. Example rail units: icons 

Notice how, in the above narrative description, we have used such technical 
terms as consists of, is a, share, acyclic, sequence and neighbouring. These 
terms are not defined, they are assumed understood. Tha t is, there is another 
task at hand: to properly define an ontology (of "systems", "parts" , "composi
tion", "decomposition", "consists of", "is a", "share", "acyclic", "sequence", 
and "neighbouring"). In any case, the formalisation of the above "embod
ies" , in the semantics of the formula texts, a formalisation, albeit maybe a 
convoluted one, of these latter terms, as well as, of course, the railway net 
terms. 

Statement 15, i.e., axiom 15, really is a very strong one. It amounts to 
presenting the whole syntax for any topology, i.e., any "layout" of any railway 
net in one single phrase! 

2.3.2 A Hierarchical , Formal P r e s e n t a t i o n 

E x a m p l e 2.6 Rail Nets II — A Hierarchical Presentation, Formalisation: 

type 
N, 

value 
1. 
1. 
2. 
3. 
5. 
8. 
12. 
12. 
12. 
12. 
13. 
17. 

L, S, Tr, IT, C 

obs_Ls: N —j- L-set 
obs_Ss: N -> S-set 
obs_Us: N -» U-set 
obs_Us: L -» U-set 
obs_Us: S -> U-set 
obs_Trs: S -» Tr-set 
is_Linear: U —> Bool 
is_Switch: U -» Bool 
is_Simple_Crossover: U —> Bool 
is_Switchable_Crossover: U -> Bool 
obs_Cs: U -» C-set 
lhi_seq: U-set —> Bool 
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lin_seq(us) = 
V u:U • u G us => is_Linear(u) A 
3 q:U* • len q = card us A elems q = us A 

V i:Nat • {i,i+l} C inds q => 3 c:C • 
obs_Cs(q(i)) n obs_Cs(q(i+l)) = {c} A 

len q > 1 => obs_Cs(q(i)) fl obs_Cs(q(Ien q)) = {} 

Some formal axioms are now given, but not all! 

axiom 

1. V n:N • card obs_Ls(n) > 1 A card obs_Ss(n) > 2 

3. V n:N, 1:L • 1 € obs_Ls(n) => lin_seq(l) 

4. V n:N, 1:L • 1 G obs_Ls(n) => obs_Us(l) C obs_Us(n) 

5. V n:N, s:S • s G obs_Ss(n) => card obs_Us(s) > 1 

6. V n:N, s:S • s G obs_Ls(n) => obs_Us(s) C obs_Us(n) 

7. V n:N,l,l':L.{l,l'}Cobs_Ls(n)AMl'=»obs_Us(l)n obs_Us(l') = {} 

7. V n:N,l:L,s:S«l G obs_Ls(n)As G obs_Ss(n)^obs_Us(l)fl obs_Us(s) = {} 

7. V n:N,s,s':S»{s,s'}Cobs_Ss(n)As/s'=>obs_Us(s)n obs_Us(s')={} 

8. V s:S • card obs_Trs(s) > 1 

9. V n:N, s:S, t:T • s 6 obs_Ss(n) A t 6 obs_Trs(s) => lin_seq(t) 

10. V n:N, s:S, t,t';T • 
s G obs_Ss(n) A {t,t'} C obs_Trs(s) A t / t ' 

=> obs_Us(t) n obs_Us(t') = {} 

15. V n:N • V c:C • 
c G U { obs_Cs(u) | u:U • u G obs_Us(n) } 

=> 1 < card{ u | u:U • u G obs_Us(n) A c G obs_Cs(u) } < 2 

16. V n:N,l:L • 1 G obs_Ls(n) => 
3 s,s':S • {s,s'} C obs_Ss(n) A s^s' => 

let sus = obs_Us(s), sus' = obs_Us(s'), lus = obs_Us(l) in 
3 u,u',u",u'":U • u G sus A u' G sus' A {u",u'"} C lus => 

let scs = obs_Cs(u), scs' = obs_Cs(u'), 
lcs = obs_Cs(u"), lcs' = obs_Cs(u'") in 

3 ! c,c':C • c / c' A scs fl lcs = {c} A scs' fl lcs' = {c'} 
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end end 

The reader is encouraged to follow, axiom by axiom of this example the same 
numbered statements of Example 2.5. • 

Notice how the relatively simple informal wording of statement 16 almost 
"explodes" into a not very simple axiom (16). That axiom has to express a lot: 
"connected to", "exactly two" and "distinct". It is, however, the "connected 
to" part of the phrase that causes the problem. Remember our note, above, 
about a need for a "system" ontology and its formalisation. Since we did not 
formalise the term "connected to" we have to do it implicitly, through the 
RSL formula of axiom 16. Had we introduced a formal predicate connect, then 
axiom 16 might look like the axiom shown in Example 2.7. 

Example 2.7 Rail Nets II, Revisited: 

value 
connect: N x L x S x S - * - Bool 
connect(n,l,s,s') = 

let sus = obs_Us(s), sus' = obs_Us(s'), lus = obs_Us(l) in 
3 u:U • u € sus, u':U • u' £ sus', u",u'":U • |u",u'"} C lus • 
let scs = obs_Cs(u), scs' = obs_Gs(u'), 

lcs = obs_Cs(u"), lcs' = obs_Cs(u'") in 
3 ! c,c':C • c 7̂  c' A scs n lcs = {c} A scs' n lcs' = {c'} 
end end 
pre 1 € obs_Ls(n) A {s,s'} C obs_Ss(n) A s^s' 

axiom 
16. V n:N,l:L • 1 £ obs_Ls(n) => 

3 s,s':S * {s,s'} C obs_Ss(n) A s^s' =^ connect(n,l,s,s') 

But we might wish a much stronger connect predicate, one that "connects" not 
only lines with distinct stations in a net, but, say reinforced concrete beams 
with floors in a building, etc. This is really what an ontology should do: 
abstract from the details of what connects what with what in which context. 

Notice that the above statements say nothing about whether a railway net 
is connected, that is, whether a railway net "falls" into two or more "disjoint", 
i.e., "smaller" railway nets. Such a situation, as is hinted at in the previous 
sentence, would be the case for the railway net of, say a railway company, 
where the railway net is "spread out" over several islands not connected by 
railway bridges. There is a lot more the above does not "reveal" — and some 
of that will now be revealed! 

Trains "run" on railway nets, along lines and through stations. To properly 
guide train traffic we need to introduce a number of concepts. That is, the new 
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"things" are more like concepts than phenomena. Rail units, lines, stations 
and tracks could be phenomenologically sensed by the human sensory appa
ratus. As could connectors. Even though we may abstract them into physical 
"things" of no volume, i.e., like points in space. These new concepts, to be 
revealed below, must be defined. Hence, if they are to be of relevance to, that 
is, related to, railways, the most basic of these concepts must be definable in 
terms of the basic phenomena described above. 

2.3.3 A Compositional, Narrative Presentation 

To appreciate the concepts being introduced in the next example, let us con
sider Figs. 2.4-2.5. Those figures suggest that rail units can be in either of a 
number of states. 

C C C C C C 

Open: C to C Open: C to C Bidirectionally Open 

Fig. 2.4. States of linear rail units 
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Fig. 2.5. States of simple switch rail units 

The arrows are intended to show the direction in which a train may move 
through the units. 

Example 2.8 Rail Nets III — A Compositional Presentation, Narrative: We 
introdi;ce defined concepts such as paths throi;gh rail units, states of rail units, 
rail unit state spaces, routes through a railway network, open and closed 
routes, trains on the railway net, and train movement on the railway net. 

18. A path, p : P, is a pair of distinct connectors, (c, c'), 
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19. and of some unit.2 

20. A state, a : S, of a unit is the set of all open paths of that unit (at the 
time observed).3 

21. A unit may, over its operational life, attain any of a (possibly small) 
number of different states w : Q. 

22. A route is a sequence of pairs of units and paths such that the path of a 
unit/path pair is a possible path of some state of the unit, and such that 
"neighbouring" connectors are identical. 

23. An open route is a route such that all its paths are open. 
24. A train is modelled as a route. 
25. Train movement is modelled as a discrete function (i.e., a map) from time 

to routes such that for any two adjacent times the two corresponding 
routes differ by at most one of the following: 
(a) a unit path pair has been deleted (removed) from one end of the route; 
(b) a unit path pair has been deleted (removed) from the other end of the 

route; 
(c) a unit path pair has been added (joined) from one end of the route; 
(d) a unit path pair has been added (joined) from the other end of the 

route; 
(e) a unit path pair has been added (joined) from one end of the route, 

and another unit path pair has been deleted (removed) from the other 
end of the route; 

(f) a unit path pair has been added (joined) from the other of the route, 
and another unit path pair has been deleted (removed) from the one 
end of the route; 

(g) or there has been no change with respect to the roi;te (yet the train 
may have moved); 

26. and such that the new route is a well-formed route. 

We shall arbitrarily think of one end as the "left end", and the other end 
as the "right end" — where "left", in a model where elements of a list are 
indexed from 1 to its length, means the index 1 position, and 'right' means 
the last index position of the list. 

• 

The two parts, Examples 2.5-2.7 and Examples 2.8-2.9, further illustrate the 
application of a principle: 

Principles. From Phenomena to Concepts: Since we wish to construct the
ories of domains and requirements, since domains initially and usually are 
manifested through physical phenomena, and since requirements — or just 
the theories in general — are conceptualisations of such phenomena, there is 

2 A path, (c,c), of a unit designates that a train may move across the unit in 
the direction from c to c . We say that the unit is open in the direction of the path. 

3The state may be empty: The unit is closed. 
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a principle to be applied, namely that of "converting" (classes of manifest) 
phenomena into (similar) concepts. • 

Techniques. From Phenomena to Concepts: The "conversion" alluded to in 
the above principle can be effected as follows: First "lift" any one phenomenon 
to a class of like phenomena. When, as here, the phenomena are entities, we 
can model such classes as suitably constrained abstract types, i.e., sorts. Now 
define, usually in the form of concrete types, and usually from the most atomic 
kinds of types. • 

2.3.4 A Compositional, Formal Presentation 

Figure 2.6 suggests the full variety of train movements with respect to the 
"leaving" and/or "capturing" of rail units. 
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Fig. 2.6. A discretised "picture" of possible train movements wrt. rail unit 

Example 2.9 Rail Nets IV — A Compositional Presentation, Formalisation: 
The formalisation of the above narrative now follows: 

type 
18. P = {| (c,c'):(CxC) • c ^ e ' |} 
20. S = P-set 
21. f} = £ -set 
22. R ={ | r:(UxP)* . wf_R(r) |} 
24. Trn = R 
25. Mov = {| m:(T ^ T r n ) • wf_Mov(m) |} 
value 
20. obs_i:: U -> S 
21. obs f}\ U -> Q 
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axiom 
V u:U • let oj = obs_J?(u), a = obs_iJ(u) in a G u> A 

19. let es = obs_Cs(u) in V (c,c'):P • (c,c7) £ U w ^ {c,c'} C obs_Cs(u) 
end end 

22. wf_R: (UxP)* -» Bool 
wf_R(r) = 

len r > 0 A V i:Nat • i G inds r let (u,(c,c')) = r(i) in 
(c,c') G 1J obs_J?(u) A i+1 G inds r => 

let (_,(c",_)) = i"(i+l) in c' = c" end end 

23. open_R: R -J- Bool 
open_R(r) = V (u,p):UxP • (u,p) G elems r A p G obs_I7(u) 

25. wf_Mov: Mov ->• Bool 
wf_Mov(m) = card dorn m > 2 A 

V t,t':T • t,t' G dom m A t < t A adjacent(t,t') => 
let (r,r') = (m(t),m(t')), (u,p):UxP • p G (J obs_J?(u) in 

25(a. (l_d(r,r',(u,p)) V 25(b. r_d(r,r',(u,p)) V 
25(c. l_a(r,r',(u,p)) V 25(d. r_a(r,r',(u,p)) V 
25(e. l_d_r_a(r,r',(u,p)) V 25(f. r_d_l_a(r,r',(u,p)) V 
25(g. r=r') A wf_R(r') 

end 

The last line's route well-formedness ensures that the type of Move is main
tained. 

value 
adjacent: T x T - > Bool 
adjacent(t,t') = ~ 3 t":T • t" G dora m A t < t" < t ' 

l_d,r_d,l_a,r_a,l_d_r_a,r_d_l_a: R x R x P - > Bool 

l_d(r,r ,(u,p)) = r = tl r pre len r > l 
r_d(r,r',(u,p)) = r' = fst(r) pre len r > l 
l_a(r,r',(u,p)) = r' = <(u,p))~r 
r_a(r,r',(u,p)) = r' = r"((u,p)) 
l_d_r_a(r,r',(u,p)) = r' = tl r~((u,p)) 
r_d_l_a(r,r',(u,p)) = r' = {(u,p))~fst(r) 

fst: R -4 R' 
fst(r) = { r(i) | i in (l..len r—1) ) 

If r as argument to fst is of length 1 then the result is not a well-formed route, 
but is in (UxP)*. . 
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Notice that we have not specified, in either Example 2.8 or in Example 2.9, 
that moves must involve only open routes. 

2.4 Discussion 

Models may be developed hierarchically, i.e., from "larger" phenomena or con
cepts by decomposing these into constituent, "smaller, contained" phenomena 
or concepts. Furthermore models may be presented or communicated hierar
chically. Models may be developed compositionally, i.e., from "smaller" phe
nomena or concepts by composing these into composed, "larger" phenomena 
or concepts. Similarly models may be presented or communicated composi
tionally. Any combination of the two may be used: compositional development, 
hierarchical documentation, etc. 

Principles. Choosing Compositional Development and/or Presentation: Usu
ally compositional development (respectively presentation) is chosen when the 
phenomenon or concept being modelled is unfamiliar to the developer (re
spectively to the reader). And usually hierarchical development (respectively 
presentation) is chosen when the phenomenon or concept being modelled is 
familiar to the developer (respectively to the reader). • 

2.5 Bibliographical Notes: Stanislaw Leshniewski 

The main issues of this chapter were those of non-atomic parts: the relation of 
parts to wholes, whether viewed first as a whole, hierarchically; or first viewed 
from basic parts, compositionally. 

The Polish mathematical logician Stanislaw Leshniewski studied, amongst 
other things, the subject of mereology. Mereology is the theory of part-hood 
relations: of the relations of part to whole and the relations of part to part 
within a whole. As a formal theory of part-hood relations, however, mereol
ogy made its way into modern philosophy mainly through the work of Franz 
Brentano and of his pupils, especially through Husserl's third Logical Inves
tigation (1901). The latter may rightly be considered the first attempt at a 
rigorous formulation of the theory, though in a format that makes it difficult to 
disentangle the analysis of mereological concepts from those of other ontolog-
ically relevant notions (such as the relation of ontological dependence). It was 
not until Leshniewski's Foundations of a General Theory of Manifolds (1916, 
in Polish) that the pure theory of part-relations as we know it today was given 
an exact formulation. And because Leshniewski's work was largely inaccessi
ble to non-speakers of Polish, it was only with the publication of Leonard and 
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Goodman's The Calculus of Individuals (1940) [294] that this theory became 
a chapter of central interest for modern ontologists and meta-physicists.4 

We refer to [313,348,481,482,495] for some coverage of the works of Sta-
nislaw Leshniewski. 

2.6 Exercises 

Exercise 2.1 Document Development, Narration and Formalisation. This 
exercise is about written, possibly electronic, documents. Presently it em
phasises their syntactic structure. 

Select one document type among the following: mathematics, or physics, 
or biochemistry, or some other natural sciences textbook. Now (develop and) 
present narrative descriptions and accompanying formalisations of the syntac
tical structure of your selected type of book. Remember that textbook chap
ters, sections, figures and formulas are usually consecutively numbered, and 
can be referenced anywhere. Present your developments separately in both of 
two ways: hierarchically and compositionally, first one, then the other. Which 
presentation do you prefer? 

Exercise 2.2 Part Assemblies. This exercise is about how certain kinds of 
(for example, civil engineering, mechanical engineering and woodcrafting) ar
tifacts are put together: A house from floors/ceilings, walls, roofs, windows, 
doors, etc., and these again from beams, plates, planks, frames, glass, etc. A 
steel bridge or tower is assembled from steel beams, screw/nut assemblies, etc. 
A chair is assembled from legs, seat, back and arm rests, etc. 

Some analysis of the above should show that one can identify spatially dis
tinct and non-overlapping atomic parts, and that all other parts are assembled 
from these without changing the parts being put together. Glue and nails (or 
screws), as in the case of building or woodcraft constructions are thus claimed 
not to "change" the parts they "connect" (the nail or screw holes [the latter 
as for mechanical assemblies] can be claimed to have been properties of the 
parts being assembled). 

Now, describe, in general (i.e., generic) terms, the syntax of assemblies. 
Take into account that in-going parts have spatial extents and result in parts, 
likewise with spatial extents, and thus that parts cannot be assembled if some
how their in-going spatial extents and the orientation of their being put to
gether conflict (in trying to force "spatial overlaps"). You have to figure out 
what we may mean by this yourself. 

As in Exercise 2.1, (develop and) present your model in both of two ways, 
separately: hierarchically and compositionally. Which presentation do you pre
fer? 

4The above paragraph is based on J.J. O'Connor and E.F. Robertson's In
ternet essay on Stanislaw Leshniewski: http://www-gap.dcs.st-and.ac.uk/~history/-
Mathematicians/Leshniewski.html 
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Exercise 2.3 City Road Nets—Streets and Intersections. Narrative: A city 
road net consists of street segments and intersections. A segment provides a 
connection between one or two intersections. That is, there may be cul-de-sacs 
("inside" the city) or (not further described) roads leading out of the city. 
Intersections may connect three or more street segments (those with arity: 3 
or more). Sequences of one or more (intersection-connected — but acyclic) 
street segments have unique names. That is, street segments have exactly one 
name with several having the same name. Street segments are either one-way 
or two-way traffic streets. It is always possible to get from any street segment 
to any other street segment. Such a possible sequence of street segments is 
called a route. (Thus a route is a more general concept than a street, which 
is a route all of whose segments have the same name.) 

Questions: Define the abstract types of road nets, street segments and 
intersections. Give the signature of functions that observe street segments 
and intersections, and their properties, from respectively nets, street segments 
and intersections. Also define the concrete types of routes. Define functions 
which generate all routes between any pair of streets such that all segments 
allow traffic in the direction of the route: from first segment to last. Express 
necessary and sufficient axioms that properly constrain road nets. 

References: This exercise continues in Exercise 4.1 in Chap. 4 and in Ex
ercise 5.3 in Chap. 5. 

Exercise 2.4 Air Traffic Route Nets: Air Lanes and Airports. Narrative: An 
air traffic route net consists of airports and air lanes. Each air lane connects 
exactly two airports. There may be several air lanes between any two airports. 
Air lanes are either one-way or two-way. The air traffic route net is such that 
it is possible to find a sequence of air lanes, i.e., a route, between any two 
airports in the net and such that each adjacent pair of air lanes allows traffic 
in the direction from the "from airport" of the first air lane to the "to airport" 
of the second air lane. 

Air lanes have length. Airports accommodate one or more aircraft. An 
airport is characterised by the maximum number (i.e., capacity) of aircraft 
that may be parked on the airport tarmac. 

Questions: Define the abstract type of air traffic route nets, airports, and 
air lanes. Define observer functions that observe airports and air lanes from 
the net, airport capacity and air lane length. Axiomatise suitable air traffic 
route nets. 

References: This exercise continues in Exercise 4.1 in Chap. 4 and in Ex
ercise 5.4 in Chap. 5. 

Exercise 2.5 Shipping Nets: Lanes and Harbours. Narrative: A shipping 
transport net consists of shipping lanes and harbours. A shipping lane con
nects exactly two harbours. Shipping lanes have length and are all to be 
considered two-way sailable. (We ignore such phenomena as canals.) Two or 
more shipping lanes may, over long stretches, share geographical positions 
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(but nevertheless be distinguishable). A harbour consists of uniquely identi
fied mooring buoys and quay berths (the former at sea, the latter at public 
cargo working areas and container terminals). In addition, a harbour may pro
vide holding areas where ships that cannot be berthed or moored because of 
a full harbour may wait. It is always possible from any holding area, mooring 
buoy or berth of any harbour to come to any holding area, mooring buoy or 
berth of any (other or the same) harbour. A sea voyage is characterised by 
a sequence of alternating shipping lane sailings and harbour visits, starting 
and ending with harbour visits. Each harbour visit is characterisable by zero 
or more holdings, moorings or berths with at least one of these. Ships are 
implicitly introduced: A holding area may hold up to a maximum capacity 
of ships; a buoy or a quay berth may hold at most one ship. A shipping lane 
may, for all practical purposes, hold any number of ships. 

Questions: Define the abstract types of shipping transport nets, shipping 
lanes and harbours. Define observer functions that observe shipping lanes, 
respectively harbours of a net, and any other needed observations. Define 
suitable axioms or invariant functions over net and/or harbours expressing 
appropriate constraints. 

References: This exercise continues in Exercise 4.1 in Chap. 4 and in Ex
ercise 5.5 in Chap. 5. 

Exercise 2.6 Robots. This exercise takes Exercise 2.2 for granted. That is, 
we shall not, in the present exercise, be bothered by the 'part assembly' issues 
of that former exercise. Our problem is, in a sense, orthogonal and additional 
to the part assembly problem. It is about the structure of robots: How their 
base, their links, their grippers and the joints that connect links into arms — 
how all that — ends up being a robot. 

Consult a suitable book on robotics, any of [337,374,392,445,447,550]. 
Try understand the notions of robot base, joints links, and grippers. A robot 
base is that part of the robot from which one or more links ("first") emanate. 
Either the base is stationary, or it is mounted on a movable platform with 
respect to which it is fixed. A link is a rigid body, a single whole. A joint 
is the connection between two or more links. A gripper (a robot hand) is a 
"last" link, from which no further links emanate, i.e., to which, by a joint, no 
further link is connected. 

An arm is a chain of links, from the base to a gripper. A joint permits the 
orientation and position of the two links it connects to change. A joint may 
either be a rotating (revolute) joint or a linear (prismatic) joint. A rotating 
joint defines an axis around which the two connected links may revolve. A 
linear joint allows one link to slide with respect to the other link. A link, 
being rigid, maintains a fixed relationship (length and twist) between its two 
joints. A link has a length, which is the perpendicular distance between the 
two axes supported by the link, i.e., of its two joints. A link twist is the 
angle between the projections of the two axes on a plane perpendicular to 
the abstract link: the length line. Two adjacent links define a joint with a 
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common axis. The link offset is the distance along this common axis from one 
link to the other. Offsets can be measured as the distance between the two 
perpendiculars of the two links, one with respect to the predecessor link, the 
other with respect to the successor link. A prismatic joint allows link offsets 
to change. A joint angle describes the rotation, at any moment, about the 
common axis of a first link with respect to a second link. A revolute joint 
allows the joint angle to change. A joint variable is either a joint angle or a 
link offset. The link parameters are therefore the fixed link length and twist, 
and the one variable: Either the joint angle or the link offset. 

Links are usually ordered. A 'straight' robot, with just one arm, has the 
links totally ordered, from base to gripper. A 'closed' robot, i.e., a robot where 
three or more links form a cycle (when links are considered undirected), has 
its links ordered by imposing a direction on the links, "away" from the base, 
"towards" gripper(s). In a closed robot links can only be partially ordered. 
Given any link we can speak of the next (a unique next) link, which may 
be a gripper. Normally a link has one or more, but, of course, a small, finite 
number of predecessors. Links emanating from the base have no predecessor 
link. A robot geometry can now be completely described by giving, for each 
link, the link parameters, and how these links are ordered with respect to one 
another. 

Now describe, informally and formally, the way in which robots are put 
together, i.e., the geometry of the robot. 

As for previous exercises, possibly (develop and) present your model in 
both of two ways, and separately: hierarchically and compositionally. Which 
presentation do you prefer? 





3 

Denotations and Computations 

• The prerequis i te for studying this chapter is tha t you have studied and 
understood, to a reasonable extent and depth, Vol. 1 of this series of text
books on software engineering. 

• The a ims are to introduce the model concepts of denotational and com
putational semantics, to informally relate how one might "transform" a 
denotational semantics model into a computational semantics model, and 
to (thus) introduce some classical concepts of computing science. 

• The ob jec t ive is to enable you to choose an appropriate model type (of 
the two presented in this chapter): either denotational or computational. 

• The t r e a t m e n t ranges from systematic and semi-formal to formal. 

One of the real highlights of software engineering is denotational semantics. For the 
software engineer to think "denotationally", i.e., of "things" expressed in words as 
denoting mathematical functions, can often in actual practice prove very beneficial. 

3.1 Introduction 

Conventionally, many programmers perceive of their programs as executing:1 

The program first does this, then it does that! In this chapter we shall take a 
more "refined" view of programs than tha t espoused in the previous sentence. 
And we shall claim, and later chapters shall illustrate the point, tha t not just 
computer programs but also actual world phenomena and concepts can be 
viewed, as we shall here present it, denotationally. 

More properly, programs as prescriptions for computations. Programs do not 
do anything. They are mere syntactic markers on a screen or on paper, as in a book. 
If we speak of programs as doing this or that, then we are anthropomorphising 
programs, that is, we are giving them human qualities. 
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3.1 .1 C o m p u t a t i o n s and D e n o t a t i o n s 

Saying: "The program first does this, then it does that!" — besides being an 
unfortunate anthropomorphisation — reflects an operational view: The com
putat ional abstraction. Since the 1960s, tha t is, from almost the very start 
of software engineering, the denotational view has gained currency. Typically 
an imperative program, viz., a J ava program [8,15,146,301,465,513] or an 
E i f f e l program [344,345], denotes a mathematical function from initial pro
gram states and program inputs to final program states and program outputs . 
We shall now cover "bare-bone" essentials of denotational and computational 
semantics. 

3.1 .2 S y n t a x and S e m a n t i c s 

Syntax is what we write down and say. Semantics is what we mean by what 
is written or said. Pragmatics is why we wrote or said it. Formal syntactic 
structures may be given formal semantic meaning. Such meaning definitions 
may either be denotational, or computational, or other! Thus semantics may 
be formally definable, whereas we seem not to be able to capture pragmatics 
formally. In this chapter we shall contrast two extreme semantics styles. Chap
ters 16-19 will provide a smoother, stepwise-related spectrum of intermediate 
semantics, including specifying compiling algorithms. 

3 .1 .3 Character i sa t ions 

Character i sa t ion . By a denotational semantics, M, of a language or a sys
tem we shall understand a semantics which to each atomic syntactic construct, 
sa, (of the language or system) associates a simple mathematical function, 
M{sa) = <f>Sa, and which to each composite syntactic construct sc : (ci, C2, 
. . . , c„) associates a mathematical function, M(ca, oi, • • •, c„) = ip, which 
result from the semantics, M(ci), of the syntactic components by simple func
tion composition T: M{c\, c2 , . . . , c„) =T{M{c\), M(c2), ..., M{cn)). • 

We shall in this chapter explain the denotational concept while giving exam
ples and providing abstraction and modelling techniques. 

Character i sa t ion . By a computational semantics of a language or a system 
we shall understand a semantics which to each atomic syntactic construct 
(of the language or system) associates a state transition, and which to each 
composite syntactic construct associates a sequence of state transitions. • 

We shall likewise in this chapter explain the computational concept while 
giving examples and providing abstraction and modelling techniques. 
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3.2 Denotational Semantics 

One of the major schools of semantics specifications is that of denotational 
semantics. In this section we shall introduce the essentials of the engineering 
construction of a denotational semantics. Denotational semantics is classi
cally used in defining the semantics of applicative as well as imperative and 
procedure-oriented programming languages. But denotational semantics can 
be used for other application areas: the "languages" of banking transactions, 
database management system command languages, rules and regulations in 
railway systems, etc. In defining the semantics of, for example, a program of 
a programming language the denotational principle states: 

Principles. Denotational Semantics: Associate with every identifier (user-
chosen or built-in literal or operator name) of the given (syntactic) text, a 
denotation, usually a function; then express the semantics of composite pro
gram constructs as a function of the semantics of its constituents. • 

3.2.1 A Simple Example: Numerals 

We start with a very simple example. 

Example 3.1 Denotational Semantics of Numerals: Numerals are names of 
numbers. Thus numerals represent syntactic values. And numbers represent, 
i.e., are, semantic values. Syntactically numerals are composite structures: 
either as a single digit, or as a numeral paired with a ("trailing") digit. 

type 
Num = NilNum x Digit 
NilNum - - nil | mk_Num(n:Num) 
Digit = = zero|one|two[...|nine 

value 
M: Num ->• Nat, 
D: Digit -> Nat, 
C: Nat x Nat ->• Nat 

M(n) = case n of (nil,d) -» D(d), (mk_Num(n'),d) -> C(M(n'),D(d)) end 
D(d) = case d of zero —• 0, one —>• 1, two —> 2, ... , nine -> 9 end 
C(i,j) = 10*i + j 

Annotations. If a numeral num consists of just the digit d then its meaning, 
actually, its value, is the meaning (the value) D of that digit. If, instead, the 
numeral in addition has a proper numeral part, i.e., denotes a larger number, 
then the meaning (the value) of that proper numeral part must be multiplied 
by ten and added to the meaning (value) of the digit part. 
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Observat ion . The meaning of a simple numeral is the simple meaning of 
tha t simple case. The meaning of a composite numeral is a function (above it 
was the C function) of the meanings (values) of the parts of the composition. 
This observation is now formalized. 

3.2 .2 T h e D e n o t a t i o n a l Pr inc ip le 

There are two steps to the construction of a denotational semantics. No mat ter 
whether it is for some source language (whether a programming language, a 
database model, an operating system (command language), or other), or for 
some other notions (as we shall later see) — there are just two steps! 

P r i m i t i v e P h r a s e s : First the meanings, M{e), of the primitive, i.e., ele
mentary, constructs e of the source language are established; and these 
meanings are usually given as functions. 

C o m p o u n d P h r a s e s : Then the meanings of composite source language con
structs are expressed as functions, J7, of the meaning of the immediate 
constituent constructs, such tha t also the resulting meanings are func
tions. 

The former step is "truly" denotational: in it we establish the denotation of 
primitive symbols such as, for example, operators (add , or , :=, . . . ) , and of 
identifiers. 

The second step is more of an algebraic principle. It expresses a homo-
morphism (J7). Let "ci,C2, . . . , c„" designate a composite construct. The se
mantic (generic) function which ascribes meaning to any construct then reads: 

M(cuc2, • • • ,c„) = r(M(Cl),M(c2), • • • , M { c n ) ) 

In both cases denotational semantics usually ascribe functions as meanings. In 
so doing denotational semantics differ from, for example, algebraic semantics 
— which ascribe algebras, but which otherwise adhere to the homomorphic 
principle. We shall take a very liberal view and accept any semantics definition 
which satisfies the two parts of the denotational principle as enunciated above 
— without necessarily ascribing functions to all primitives (i.e., identifiers) — 
as a denotational definition. 

In the next two sections we bring in two large examples. One illustrates 
the denotational principle on simple expression evaluation. The other illus
t rates the principle on interpretation of imperative programs with labels and 
GOTOs. 

3 .2 .3 E x p r e s s i o n D e n o t a t i o n s 

First, we present a simple expression semantics example. The point of this 
next example is to exemplify tha t syntactic constructs denotationally stand 
for functions. The first point of denotations, being tha t their construction 
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implied the use of the homomorphism principle, has already been exemplified 
above. 

Example 3.2 Denotational Semantics of Simple Expressions: 
Our example source language consists, syntactically, of expressions. Ex

pressions are either constants, identifiers or pre- or infix operator/operand 
expressions. Constants are (for simplicity) integers. Identifiers are just that. 
Prefix expressions have two parts: a monadic operator and an expression. 
Infix expressions have three parts: a dyadic operator and two expressions. 
Monadic (dyadic) operators are "plus", "minus", "factorial", etc. (and "add", 
"subtract", "multiply", etc.): 

type 
Token 
Ex = = mk_intg(i:Int) 

| mk_iden(id:Token) 
I mk_prefix(o:Mo,e:Ex) 
| mk_infix(le:Ex,o:Do,re:Ex) 

Mo = = minus | fact 
Do = = add | sub | mpy | ... 

(The above equations display, or exhibit, almost negligible representational 
abstraction; little room is given in this example for doing abstraction!) 

We observe how expressions have been recursively defined — just as would 
be expected in a standard, concrete BNF grammar definition.2 

Only constants have been representationally abstracted: instead of speci
fying numerals, we (directly) specify the integer numbers denoted. 

Identifiers occurring in expressions are bound to integer values, in some
thing we shall call an environment: 

type 
p:ENV = Token ^ Int 

The primitives of the language are constants, identifiers and operators. Con
stants denote themselves. Identifiers denote integers, with their denotation 
being recorded in the environment. Operators denote certain arithmetic func
tions: 

value 
O: Mo ->• Int -> Int 
O: Do -> Int x Int -»• Int 

2By a BNF grammar we mean a Backus-Naur Form context-free syntax. The 
Glossary (Appendix B) of Vol. 1 defines these and related terms. We also refer to 
Sects. 8.4-8.5 of this volume. 
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0(o) = 
case o of: 

minus —>• A x:Int • —x, 
fact -» A x:Int • x!, 
add -> A x,y:Int • x+y, 
sub —> A x,y:Int • x—y, 
mpy —>• A x,y:Int • x*y, 

end 

In order that the semantic function can find the meaning (i.e., value) of an 
identifier it must refer to an environment which is therefore an argument to 
the semantic function. 

Without much ado, we present the semantic function which, since expres
sions were recursively defined, itself is recursively defined. 

value 
V: Ex -» ENV 4 Int 
V(e)p = 

case e of 
mk_intg(i) -> i, 
mk_iden(t) -» p(t), 
mk_prefix(o,e') -> 0(o)(V(eV)» 
mk_infix(le,o,re) -> 0(o)(V(le)/9,V(re)/?) 

end 

The functions M and T alluded to in the introduction can now be stated: M 
is Val-Expr when the syntactic construct is an expression, and is O when it 
is an operator. T is functional composition for the case of prefix expressions: 

F(0(m),V(e)p) = 0(m )( V{e)p) 

T is the composite of the "pairing" function with functional composition when 
the composite is an infix expression: 

F(V{l)p,0(d),V{r)p)=0(d )( V(l)p , V(r)p) 

function composition pairing 

That is, we view the prefixing of an expression with a monadic operator, re
spectively the infixing of two expressions with a dyadic operator as (syntactic) 
operators — not explicitly written. And we then assign the meaning: 

Xf.Xx..f{x) 
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to the (invisible) prefixing operator, and: 

\x.\f.\y.f(x,y) 
as the meaning of the (invisible) infixing operator. 

Instead of "juggling" around with the O function and with what to us are 
rather convolute formulas of V, we syntactically sugar Vr while factoring 0 
into the new V. 

value 
V(e)p = 

case e of 
mk_intg(i) —> i, 
mk_iden(t) —> p(t), 
mk_prefix(o,e') 

-» let v = V(e')p in 
case o of: minus —• —v, fact —> v! end end 

mk_infix(le,o,re) 
->• let rv — V(re)p, lv = V(le)p in 

case o of: 
add —• lv+rv, sub —> lv—rv, mpy —> lv*rc, ... 

end end 
end 

We are finally ready to summarize the type of the denotation of expressions, 
whether constants, identifiers or operator/operand expressions. That general 
type can be read directly from the type of the semantic function. The type 
of the meaning of an expression, [e]:[E], i.e., its semantic type, is that of a 
function from environments to integers: 

[Ex]:ENV 4 Int 

The function is partial in that expression identifiers not in the domain of the 
environment lead to undefinedness. For a constant, mk_intg(i), expression the 
function is the constant function which "maps" any environment, p, into i. 
For an identifier, mk_iden(t), expression, e, the function maps any environ
ment, p, into the integer, p(e), which that identifier is associated with in those 
environments. If the identifier is not in the environment, chaos is yielded. For 
the remaining expressions we refer the reader to the formulas from which we 
also read the meaning functions of the two previous sentences. 

An Extension 

For the sake of making the computational semantics example a bit more in
teresting than it would otherwise be with the present source language of ex
pressions, we extend this language. The extension amounts to the introduction 
of conditional expressions: 
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type 
Ex = = ... | mk_cond(b:Ex,c:Ex,a:Ex) 

value 
V(mk_cond(b,c,a))/> = 

let bv = V(b)p in 
if bv then V(c)p else V(a)p end end 

Thus T of a conditional expressions' semantics is that of "delaying" the eval
uation of either the consequence or the alternative expression till the value of 
the test expression has been obtained. More precisely: 

M(b,c,a) = F{M{b),M(c),M{a)) 
= Xp.(if M(b)p = 0 then M(c)p else M(a)p end) 

whereby T is expressible as: 

\p.\mi,.Xmc.\m,a. if mt,(p) = 0 then mc(p) else m,a(p)end 

where nif>, mc and ma are now the "meanings" of the "correspondingly" named 
syntactic objects 6, c and a. Observe how the delay is afforded by the "encap
sulation" of final evaluations of c and a. • 

Do not take offense that the meaning of the source language's "if . . . then 
. . . e l s e . . . end" expression is explained in terms of RSL's similarly look
ing if ... then ... else ... end clause. The latter has already been given 
an axiomatic semantics. Thus it can be applied since it is not applied self-
referentially, that is, to itself. 

The emphasis of the above definitions — which the reader is kindly asked 
to review — is on ascribing mathematical functions as meanings of syntactic 
quantities. From now on we shall often have occasion to think in that way: 
That syntactic things denote functions. Rather than thinking of the syntactic 
quantities operationally, by what they may prescribe in the way of computa
tions, we "lift" up to the denotational principle. 

3.2.4 GOTO Continuations 

In Example 3.2, the denotation of expressions with free variables were func
tions from environments to values — where the environments bound the free 
variables to values. In Example 3.3, we not only introduce an imperative lan
guage with assignable variables, but also labels and GOTO statements. 

The presence of assignable variables mean that we conveniently need a 
storage (STG). Storages bind locations to values. Since the language to be 
illustrated also features nested blocks with possible reintroduction of variable 
names we conveniently need environments (ENV) which bind variable names 
to locations. Because of labels and GOTOs we conveniently model labels in 
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terms of continuations (CON) — and these are seen as functions from storage 
transformations to storage transformations. 

In all we find tha t syntactic constructs of this kind of programming lan
guage denote functions from environments to functions from continuations to 
functions from storages to storage, tha t is continuations, indeed, higher-order 
denotations: 

t y p e 
ENV = Id ^ (LOC | CON) 
STG = LOC ^ VAL 
CON = STG 4 STG 

value 

[syntactic construct] : ENV ^ CON -3- CON 

There are several ways of developing denotational models. And there are syn
tactic quantities which, at first glance seem to defy being definable denota-
tionally. An example is GOTOs and labels. 

The continuation semantics definition style was first proposed by either 
F. Lockwood Morris in [366] (privately circulated notes) or by Christopher 
Strachey [490]. 

We shall illustrate the continuation style3 of semantics definitions on im
perative programs with labels and GOTOs. 

E x a m p l e 3.3 A Continuation Model of Labels and GOTOs: 
We assume tha t the reader is familiar with the classical concept of im

perative programming languages permitt ing statements to be labelled and to 
have statements tha t effect transfer of control from the GOTO program point 
to the GOTO target label's program point: 

lal: stmt_l ; 
la2: stmt_2 ; 
la3: stmt_3 ; 
la4: IF tst_exp THEN GOTO la2 ; 
la5: stmt_5 ; 

Tha t is, assume tha t interpretation of the above program text s tar ts at pro
gram point l a l and proceeds by interpreting statements s t m t _ l ; s t m t _ 2 ; 
s t m t _ 3 ; . Having reached program point l a 4 the interpreter decides tha t 
the value of the Boolean test expression t s t _ e x p is t r u e . If so the next 
s tatement t o be interpreted is tha t of s t m t _ 2 ; whereupon the interpreter 
continues, sequentially, from there on! 

3The notation used in expressing the continuations semantics is a tiny subset 
of RSL, one for which it makes sense to write the formulas. The full RSL would not 
do: Its semantics does not allow the kind of reflexive types, or recursively defined 
interpretation functions, that a continuation-style semantics often implies. 
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The Problem 

The problem with the semantic functions we presented earlier (in Vol. 1, 
Chap. 20, Sect. 20.6), and which we basically repeat below, is that those 
semantic functions (repeated below) only know how to interpret a linear se
quence of statements. From the beginning to the end — no exceptions. Once, 
and that's it: 

type 
Stmt, ... 
ENV, £ 

value 
I_s: Stmt 4 ENV 4 £ 4 £ 
I_sl: Stmt* 4 ENV 4 £ 4 £ 

l_sl(stl)0)(cr) = 
if stl = {) t h e n a else I_sl(tl stl)(p)(I_s(hd stl)(p)(a)) end 

We could operationalise the interpreter by giving it a cue, in the form of the 
index of the statement to be interpreted next, in the statement list: 

type 
Stmt = = mkCGo(e:Exp,la:Nat) 
Stmt_list = = mkStl(stl:Stmt*) 
Lbl, Exp, ... 
ENV, £ 
VAL = Bool | ... 

value 
I_s: Stmt 4 ENV 4 £ 4 £ 
I_sl: Stmt* 4 Na t 4 ENV 4 £ 4 £ 
V_e: Exp 4 ENV 4 £ 4 VAL 

I_sl(sl)(i)(p)(<x) = 
if i>len stl 

t h e n a 
else 

case sl(i) of 
mkCGo(exp,idx) —> 

ifV_e(exp)(p)(<7) 
then I_sl(sl)(idx)0)(o-) 
else I_sl{sl){i+l)(/?)(<r) end, 

_ - • I_sl(sl)(i+l)(p)(I_s(sl(i))G9)(<7)) 
end end 
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But — although it works for simple, straightforward statement lists — it does 
not look elegant, and it "violates" the denotational principles by being rather 
operational. And then the above formula must be modified if we were to allow 
statements to be blocks consisting of (thus embedded) statement lists — and 
then what if we allowed GOTOs to target a statement in some surrounding 
block's statement list? 

So we try an altogether different approach. That other approach, the 'con
tinuation' approach, does satisfy the denotational principle. It ascribes deno
tations to labels (i.e., program points) — they had no denotation above! And 
it works for arbitrary kinds of GOTOs. 

The idea of the continuation approach can be illuminated by considering 
the ordinary, non-GOTO, semantic function for statement lists: 

I_d(8tl)(p)(a) = 
if stl = {) t h e n a else 
I_sl(tl stl)(p)(I_s(hd stl)(p)(o-)) end 

In the above, the order of interpretation is, of course, right, but it "looks 
round-about or backwards". If a statement is a GOTO statement, whether con
ditional, as shown, or unconditional (not shown), then we end up in a situation 
where the last line above gets to look like: 

I_sl(tl stl)(p)(I_s(mkCGo(esp,idx))(p)(er)) 

And then what? In l_sl(tl stl)(/>)(...), what is (...) going to be such that no 
interpretation takes place of "the rest of the statement list" t l stl, but that, 
instead, computation is resumed "as from the program point designated by 
Ibl! 

By "twisting things a bit" we could list, left-to-right, the syntactic com
ponents in the order of their "normal" occurrence — such as we informally 
see it when typed on paper: 

type 
0 = E ^ E 

value 
I_s: Stmt -4 ENV -3- 0 4 17 4 S 

I_sl: Stmt* ^ ENV ^ 0 ^ E ^ E 
I_sl(stl)(,9)(60(<r) = 

if stl = {) t h e n 0(a) else 
I_s(hd stl)(p)(I_sl(tl stl)(p)(9)){<T) end 

Then perhaps it was easier to "avoid" l_sl(tl st\)(p)(6) by simply ignoring 
that part if hd stl was a successful GOTO! But then two identical questions 
are: What is this 6 : 0 that allows us to do so, and does it work? This is what 
we shall show next. 
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S y n t a c t i c T y p e s 

First, we narrate a description of the language of programs, statements, blocks, 
assignments, conditional GOTOs, labels, etc. We will do so, in a strict style, 
such that the text below corresponds, phrase-by-phrase, to the formalisation 
further on. 

A program is a block statement. A block statement consists of a set of 
variables declaration part, and a list of labelled statements part. A labelled 
statement consists of a label part and a statement part. Statements are either 
assignment, block, while loop or conditional GOTO statements. An assignment 
statement consists of a variable part and an expression part. A while loop 
statement has an expression part and an unlabelled statement list part. 

(If the programmer wishes to have labelled statements in the simple state
ment list part of a while loop, then the programmer should reduce the list to 
a singleton list whose only statement is a block, which then otherwise obeys 
the rules for GOTOs and labels.) 

A conditional GOTO statement consists of (what is known as) a test-
expression part and (what is known as a target) label part. Variables, ex
pressions and labels are further undefined quantities. No two labels of a list 
of labelled statements of any block statement are identical. That is, a list, (,, 
of labelled statements may contain (what will be known as embedded) block 
statements and these may contain labels that are identical to a label of some 
statement of what will be known as the surrounding block list, £. Similarly 
for variables: They may also be redeclared in embedded blocks. 

type 
Pgm = = mkPgm(b:Blk) 
Blk' = = mkBlk(svs:Var-set,ssl:LaS*) 
LaS = = mkLaS(l:Lbl,s:Stm) 
Stm = Blk | Asg | StL | While | CGo 
Asg = = mkAsg(v:Var,e:Exp) 
StL = = mkStL(sl:Stm*) 
Whi = = mkWhi(b:Exp,sl:StL) 
CGo = = mkCGo(e:Exp,l:Lbl) 
Var, Exp, Lbl 
Blk = {| blk:Blk' • wf_Blk(blk) |} 

value 
wf_Blk: Blk' - • Bool 
wf_Blk(_/) = 

V i,j:Nat • {Ljj-CindsM i^j =^ 
let mkLaS(li,_)=£(i), mkLas(lj,_)=^(j) in li^lj end 

assert : card{l(ls(i))|i:inds i}=lenf. 

Etcetera. 
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S e m a n t i c T y p e s 

Distinct variables denote distinct locations. Variable declarations give rise to 
the allocation of fresh locations, to the binding of the variables (i.e., variable 
names) to these locations in an environment p:ENV, and to the association of 
locations to values in a storage a : £: 

type 
LOC, VAL 
ENV = Var ^ LOC 
£ = LOC ^ VAL 

Distinct labels denote distinct state-to-state transformation functions, also 
known as continuations. A continuation, 8 : 0, is that state-to-state transfor
mation that would be effected by an execution as prescribed from that label 
(when in any one state) and to the program exit, i.e., to and including the 
last statement of a program — where we hope that if that statement is a 
conditional GOTO statement that it itself will eventually lead to a no-GOTO to 
the target label being effected. Variables of a block denote locations, so labels 
of a block denote continuations, and these bindings are both kept in the block 
environment: 

type 
LOC, VAL 
ENV = (Var -^ LOC) \J (Lbl -^ 9) 
£ = LOC -tf VAL 
9 = £ ^ £ 

The U is not "standard" RSL. It denotes a type operation that takes two map 
types A Y/f B and C j# D and yields the type of all maps from A elements into 
B elements, and from C elements into D elements. It so to speak "merges" the 
values of two kinds of maps into one map, for all maps. 

The Main Semantic Functions 

Programs 

We assume that evaluation of expressions is without "side effect", that is, does 
not change the state {a). Semantic function types are almost as usual, except 
that we have now "inserted" a continuation argument: 

value 
V: Exp 4 ENV 4 E 4 VAL 
I: Pgm 4 £ 
I: Stm 4 ENV 4 9 4 £ 4 £ 
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I(mkPgm(blk)) = 
I(Uk)([])(X0:O'Xa:E'a)([}) 

To interpret a program, l(mkPgm(blk))(/9)(cr), is to interpret the block that it is 
in a continuation, which, to keep the above explanation of what continuations 
are, stands for the state-to-state transformation denoted by "the rest of the 
program" after the block (that it is). Since there is no more program text 
for the interpreter to obey, that state-to-state transformation function is the 
identity function on states: X9:0'Xa:E*(T. The interpretation of a program 
is assumed to take place in the context of an empty environment, [], and 
hence in the context of an empty state, []. One could as well have chosen to 
initially assume some "link and load" nonempty environment and storage that 
would bind free identifiers of the program text to locations or continuations 
that represented, say, database values, respectively operating system program 
points. 

Blocks 

Below is a proper definition of the interpretation of a block. It is usual 
continuation-style specification. But it may be somewhat convoluted to un
derstand it by just reading it now. Therefore, skip to the annotation following, 
and then refer back to the formula below. Further into the below annotation 
is then a schematic of what really goes in in the Spff clause below, the most 
"novel" kind of specification: 

value 
I(mkBlk(vs,lsl))(p)((9)0) = 

[1] let ls:LOC-set • 
[2] card ls=card vs A Is D d o m cr—{} in 
[3] let Sp:ENV • dom 6p=vs A rng dp=h, 
[4] l e t p ' = p\ 5p\8p0, 
[5] Sp9 = [ l(lsl(i)) ^ 
[6] let $' = if i=len lsl 
[7] then 8 else p'(s(lsl(i+l))) end 
[8] in I(s(lsl(i)))(/?')(6)') end 
[9] | i in (l..len sis) ] in 
[10] let 5a:S • d o m 5a = Is in 
[ll](p'(s(lsl(l))))(<7Ufc) 

end end end end 

Let us now explain what is going on here. Our explanation will be given as 
if the I function describes an interpreter rather than, as we originally saw it, 
assigning semantics (i.e., higher-order functional meanings) to syntactic texts. 

To interpret a block, l(mkBlk(vs,isl))(/>)(6>)(<x), shall be first understood as 
follows: (i) p is the environment of the "surroundings" of the block, one that 
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establishes the bindings of variables and labels in effect when, i.e., before, 
entering the block interpretation, (ii) 9 is the continuation: the state-to-state 
transformation to be effected after having interpreted the block (see the note 
following), (iii) a is the state of the program execution at entry to block 
interpretation. Thus two arguments, the configuration (p,a), designate one 
on entry to the block, whereas the continuation designates one of "the rest of 
the program", if any, after the block. 

Note. It is this roundabout after that it takes a little time to get used to. 
But we remind the reader: A label denotes the state-to-state transformation 
to be effected as from the program point of the label and to the very end of 
the program in which it is embedded. 

Block interpretation "proceeds", i.e., the definition of its "body" is obeyed 
as follows: Upon entry, as part of what we would call, during block prologue, 
we must establish allocation of fresh, distinct locations, one for each declared 
variable, i.e., we must establish an increment environment, 6p, for those vari
able bindings. We must also establish denotations for all the labels of that 
block's statement labels. 

To properly, and perhaps intuitively more easily understand, let us show 
schematically what is going on in the 5p8 clause ([5-9]): 

Sp0 = 
[ Mi H- 0i, 

lbl2 ^ 02, 

lbl„_i H> 8n-i, 
1W„ ^ 0n ] 

where 
lbb = l(lsl(i)) A 
fli=I(8(l8l(i)))(/))((?(+i)fori<nA 
8n = I(s(lsl(n)))(/?)(0) 

where 1 < i < len lsl 

That is, the label of the rth statement denotes the continuation which is ob
tained from finding the meaning of the rest of the program, as a continuation, 
that is, without "applying" the "current" state. This is achieved by interpret
ing the ith. statement in the same environment as that in which all the block 
statements are interpreted, and the continuation denoted by the next label. 
For the last label, that "next" continuation is, of course, that which is in effect 
"after" block interpretation. 

Once the block prologue has also set up a proper storage extension, 6a, 
in which we do not care what values the local allocations are boi;nd to, we, 
in a sense, "obey" the first statement of the block statement list by finding 
the continuation of its label, and by applying this continuation to the current 
state. And that's it. All of it! 
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A P r o f o u n d P r o b l e m 

But there is a problem: The above cannot be defined in RSL at all! RSL does 
not allow the kind of recursive construction of higher-order functionals as is 
implied by the construction of Sp9. The semantics of RSL would not yield the 
desired fix points. 

So what do we do? We fake it! For the example, as just given, we say tha t 
it is not defined in RSL, but in exactly the sublanguage of RSL tha t you see 
actually used. Almost; one also has to "linearise" the allocation of storage so as 
to leave out any nondeterminism. As it is now we specify any nondeterministic 
choice of locations and bindings. We will not go into details here but refer to 
s tandard textbooks on semantics [93,158,432,448,499,533]. 

Further R e m a r k s o n E x a m p l e 3.3 

There are some comments to a t tach to the block definition given above. If 
you "lift" the above block interpretation function by abstracting away from 
storage states a : S, then we can simplify the above semantic function for 
blocks and focus on the essence: 

value 
I(mkBlk(vs,M))(p)((9) = 

let p' = p\ 
{ l(M(i)) H-

le t 0' = if i = l e n lsl t h e n 9 e l se p ' (s( ls l( i+l))) e n d i n 
l (s( ls l ( i ) ) )0 ' ) (# ' ) e n d | i i n {l . . len sis) ] in 

p'(s(lsl(l))) 
e n d 

We shall leave it with the above for the reader to ponder. We urge the reader 
to seek further understanding on the topic of semantic continuations from 
the s tandard textbooks which, in addition to examples like those basically 
presented here, also carefully explain the mathematics needed to properly 
denote and define such continuations [93,158,432,448,499,533]. 

T h e R e m a i n i n g S e m a n t i c Funct ions 

Assignments 

To interpret an assignment statement is to apply the continuation (as from 
"after" tha t s tatement) to an upda te state. The s ta te upda te is tha t of re
defining the binding of the location of the assignment variable to the value of 
the expression of the assignment s tatement found in the current environment 
and current state. 
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value 
I(mkAsgn(v,e)) (/>)(#) (<r) = 9{a f [p(v) H- V(e)(p)(a)]) 

Statement Lists 

To interpret a statement list is now to interpret the first statement of the list 
in the context of the continuation for "the rest" of the program from "after" 
the first statement. We find that continuation by interpreting the remaining 
part of the statement list in the context of the continuation for the rest of 
the program "after" the statement list. If the statement list is empty the 
argument continuation is applied to the current state. That is, the state-to-
state transformation for the "rest" of the program "after" the statement list 
is applied to the current state to thus yield the final state. 

I(mkStL(stl))(/9)((9)((j) = 
if stl={) then 6(a) else I(hd stl)(/>)(I(mkStL(tl stl))(p)(0))(a) end 

Conditional GOTOs 

To interpret a conditional GOTO is to evaluate its Boolean-valued expression. If 
it is true then the continuation for the label is yielded — which is that of the 
"rest" of the program from that label "onwards". If it is false the continuation 
"as from after" the GOTO statement is yielded. In any case, either of these 
continuations is applied to the current state, yielding the final state. 

I(mkCGo(e,l))(/£>)(0)(o-) = (if V(e)(p)(<r) then p(l) else 0 end){a) 

While Loops 

To interpret a while loop is to yield a continuation and apply it to the current 
state. The continuation to be yielded is either that of the "rest" of the pro
gram ("after" the while loop statement) if the Boolean expression evaluates 
to false; or it is that which is yielded after interpreting the composition of the 
while loop statement list with the entire while loop statement if the Boolean 
expression evaluates to t rue . This corresponds to the equivalence first listed 
below: 

axiom 
V e:Exp,stl:Stm* • 

I(mkWhi(e,stl)) = 
if V(e) t h e n I(mkStL(str{mkWhi(e,stl)») else I({» end 

value 
I(mkWM(e,stl))(/>)(0)(ff) = 

(ifV(e)(/9)((T) 
thenI(mkWhi(e,stl))(/3)(I(stl)(p)((9)) 
else 8 end)(<r) 
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The axiom determines the formulation of the semantic function. • 

D i s c u s s i o n 

It is time to conclude. Above we have mostly explained the semantics function 
definitions using an operational approach. But it should not be forgotten 
tha t the function's main purpose is to ascribe higher-order denotations, i.e., 
functions as meanings to syntactic quantities. 

3.2 .5 D i s c u s s i o n of D e n o t a t i o n a l S e m a n t i c s 

We have presented two styles of denotational semantics definitions: the "di
rect" and the continuation styles. The former, in the realm of programming 
languages, suffices to achieve adherence to the denotational principle for pro
grams with "linear" flow of computation, while the latter is a good way of 
achieving adherence for programs with "nonlinear" flow on control. We as
sume tha t the reader understands the terms "flow of computation", "flow of 
control", "linear" and "nonlinear". 

But basically, the two flows refer to the same thing: "Execution" order. 
Linearity refers to whether the flow follows the syntactic phrase structure of 
the program text, or not (nonlinearity). In the above examples we have often 
read the semantic function definitions as those of interpreters. And we have 
stated, in their conclusions, tha t these semantic function definitions ascribe 
denotational meanings to syntactic constructs. They do so as follows: by suit
ably reading the definitions, moving the semantic arguments away from the 
argument list position "across" the = definition (actually equivalence) sym
bol, thereby "lifting" the semantic function definition body to become bodies 
which define functions over these semantic arguments to other semantic val
ues. 

But there is a third way of reading these semantic function definitions. We 
will t reat tha t third way in more, and necessary, detail in Sections 7.6 and 
16.6. But for now let is just "lift the veil". When a semantic formula defines: 

M(syn) = t e x t _ 2 ... M(f(syn)) ... t ex t_2 

then we can indeed claim tha t a (third) meaning of the definition of M is 
like tha t of a compiler: If one is given the syntactic text: syn, in some source 
language, then M defines it compiled into the syntactic RSL text text_2 ... 
M(f(syn)) ... text_2. The embedded "call" of M(d(syn)) leads to further "trans
lation", i.e., compilation, into additional RSL texts. We shall later return to 
this, as we shall call it, macro-expansion view. 

Denotational semantics will become a cornerstone in our abstraction of many 
facets, of languages and of systems. 
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Princ ip le s . Denotational Semantics: The principle of denotational seman
tics is basically as follows: In trying to find suitable abstractions for syn
tactic constructs consider ascribing mathematical functions as the meaning 
of these syntactic constructs, and consider expressing, tha t is, constructing, 
the denotations homomorphically: Tha t is, the denotation of simple syntactic 
constructs, i.e., atomic par ts , are assigned simple functions; and composite 
constructs have their semantics be a homomorphic function of the denotation 
of the parts . • 

Techniques . Direct and Continuation Semantics: The denotational seman
tics of systems or languages with "relative" static and "relative" dynamic 
semantic concepts are classically modelled in terms of environments, storages 
and possibly continuations. By relative statics we mean names tha t are bound 
to constant values over large program fragments, or within specific subsystems, 
i.e., statically. By relative dynamics we mean names whose binding changes 
within considered subsystems, or are prescribed to so change within smaller 
program fragments, i.e., dynamically. In summary, remaining modelling tech
niques are implied by respective semantic function signatures: 

t y p e 
[ Syntactic Value Types ] 

Id, Lbl, Stmt, Expr 
[ Semantic Value Types ] 

VAL, LOC 
ENV = (Id jjt (VAL|LOC)) |J (Lbl ^ CON) 
STG = LOC jjt VAL 

CON = STG 4 STG 
value 
[ 1 ] eval_pure_Expr : Expr 4 ENV 4 VAL 

[2] eval_ord_Expr : Expr 4 ENV 4 STG 4 VAL 

[3] e lab_impure_Expr : Expr 4 ENV 4 STG 4 STG 4 VAL 

[4] in t_Stmt : Stmt 4 ENV 4 STG 4 STG 

[5] in t_Stmt : Stmt 4 ENV 4 CON 4 CON 

The semantic functions tha t ascribe denotation to "pure" expressions, i.e., ex
pressions with no assignable variable identifiers, usually are called [evaluation 
functions. They ascribe the denotational type shown in line [1] above. 

The semantic functions tha t ascribe denotation to "ordinary" expressions, 
i.e., expressions with assignable variable identifiers but whose evaluation can
not cause any storage change, are also called [evaluation functions. They 
ascribe the denotational type shown in line [2] above. 

The semantic functions tha t ascribe denotation to "impure" expressions, 
i.e., expressions with not only assignable variable identifiers but also with 
such embedded constructs whose elaboration may cause storage changes, are 
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usually called elaboration functions. They ascribe the denotational type shown 
in line [3] above. 

The semantics functions tha t ascribe denotation to statements are usually 
called interpretation functions. They ascribe the denotational types shown in 
lines [4-5] above. • 

3.3 Computational Semantics 

3.3 .1 T h e Issues 

Denotational semantics definitions are abstract , but are relatively easy to 
grasp. Denotational meanings are functions. Hence denotational semantics 
definitions cannot usually be the direct basis for executions, as conventional 
computers and programming languages cannot handle such higher-order val
ues, but must be refined into more concrete prescriptions. Computat ional 
semantics definitions "unravel" recursive function definitions into iterative 
(loop) prescriptions, and recursive (syntactic) da ta structures into linear (list-
oriented) da ta structures. In doing so recursion is "converted" into stacks and 
iteration. Computat ional meanings are sequential compositions of simple state 
changes. Computational semantics definitions are concrete, but relatively dif
ficult to grasp. 

3.3 .2 T w o E x a m p l e s 

We follow up on the two denotational semantics examples of Sect. 3.2 (Exam
ples 3.2 and 3.3). In Example 3.4 — first put forward by Peter Landin [284] 
around 1964 — we exemplify a mechanical interpreter for the expression lan
guage of Example 3.2. The example belongs to the folklore of computing 
science. 

3 .3 .3 E x p r e s s i o n C o m p u t a t i o n s 

The example now given is a forerunner of what became known as the SECD 
interpreter: the Storage, Environment, Control and Dump machine. In the com
putat ional semantics for expressions we shall not illustrate the dump par t . 
Tha t part will be prominent in the computational semantics for the impera
tive language with labels and GOTOs exemplified in Example 3.5. 

E x a m p l e 3 .4 Mechanical Evaluation of Expressions: 
The basic idea of this example is tha t of realising the recursion of V by 

means of stacks, tha t is, of recursion removal. Many realisations of the recur
sion of V are possible. We will, rather arbitrarily, select one. 
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Before proceeding into a description of which stacks to create and how 
they are used we note that our stacks are not to be used for sorting out 
precedence of operators. Since we work only on abstract syntactic objects, all 
such precedence has already been resolved and is "hidden" in the (invisibly) 
parenthesized subexpressions. 

Thus we remove recursion in the function definition of V by introducing 
one or more stacks. At the same time, we change our definitional style from ap
plicative to imperative. This is not an intrinsic consequence of choosing stacks, 
but a pragmatic one. In doing so we can, at the same time, simply change the 
recursive function definitions into iterative. The imperative/iterative nature 
of the resulting definition further gives it an air of being "mechanical". 

A Computational State 

One stack is the value stack. It is motivated by the "stacking" of temporaries. 
Here we make explicit the implicit stacking of intermediate or temporary 
results, as expressed in the denotational semantics definition through its re
cursive invocation of semantic elaboration functions. 

Another stack is a control, or operator/operand expression stack. It is 
motivated by recursion over syntactical expression objects. Here we make 
explicit the recursion in terms of stacks. The two kinds of recursion intertwine. 

Thus we make two decisions: first to state the model imperatively, in terms 
of some globally declared variables. Then to express the computational seman
tics in terms of two stack variables and a constant environment. 

type 
ite 
MDEi = Mo|Do|Ex|ite 
SE = MDEi* 

variable 
opestk:SE := {) 
valstk:Int* := {) 

value 
env:ENV 

Note that env will be referred to below, as a global constant. 
Why we made these two, and not other, among quite a few other possible, 

decisions will not be explained much further! In our computational semantics, 
as imperatively stated, we must necessarily choose an elaboration order for 
operand expressions of infix expressions. This order was left "unspecified" by 
V. 
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Motivating the Control Stack 

The idea of the operator/operand stack is now that the topmost element is 
either an expression to be evaluated, or an operator to be applied to either 
the operator/operand or to the value stack. 

If the top of the operator/operand stack is an expression then it is either 
elementary or composite. If it is elementary, i.e., a constant or an identifier 
then the associated value is pushed onto the value stack, while the expression 
is being popped off the operator/operand stack. If it is composite, i.e., a 
prefix, infix or conditional expression, then those expressions are decomposed, 
with the decomposition replacing it on the operator/operand stack. Hence the 
control stack will consist of a sequence of operators and their operands, in what 
turns out to be some variant of a postfix or reverse Polish notation: 

1: A prefix expression is replaced by two elements on this stack: the monadic 
operator and the (sub)expression (on top). 

2: An infix expression is replaced by three elements: the dyadic operator and 
the two (sub)expressions (in some order, on top). 

3: A conditional expression is replaced by four elements, in order from top 
towards bottom: the test expression, a metaoperator i t e (for if then 
else), and the consequence and alternative expressions — the latter two 
in arbitrary, but fixed, order. The idea of the i t e operator will be ex
plained in item 6 below. 

4: If the top of the operator/operand stack is a monadic operator, then the 
denoted operation is applied to the top of the value stack. (Thus if the op
erator is minus the top of the value stack is replaced by its complemented 
(negative) value.) It follows from the operator/operand stack manipula
tions that the value stack top is the value of the expression to which the 
monadic operator was once prefixed. 

5: If the top of the operator/operand stack is a dyadic operator, then the 
denoted operation is applied, in an appropriate way, to the two topmost 
values of the value stack — with the result replacing these values. 

6: Finally, if the operator/operand stack top element is i t e then it means 
that the value of the test expression of the conditional expression, whose 
manipulation gave rise to this i t e operator, is on the top of the value 
stack. If it, the latter, is 0 then we compute only the consequence expres
sion, otherwise we compute only the alternative expression. These are the 
next two elements on the operator/operand stack. The appropriate one is 
thrown away together with the value stack top. 

The Elaboration Functions 

Computation proceeds based, as always, on the top element of the opera
tor/operand stack. And computation proceeds as long as there are elements 
on the operator/operand stack. When it becomes empty the computed value 
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is the top value of the value stack. The function informally described in this 
paragraph is called Compute. It is defined formally below. 

Let us call the function which transforms the system state dependent on 
the top of the operator/operand stack for Transform, then: 

value 
Compute: Ex —> read,wri te opestk,valstk Int 
Compute (e) = 

opestak :— (e); 
while opestak ^ {} do Transform() end; 
hd valstk 

To facilitate the statement of Transform, we define four auxiliary stack func
tions: 

PopO: Unit -t read,wri te opestk MDEi 
PopO() = let oe = hd opestak in opestk := t l opestk; oe end 

PopV: Unit —> read,wri te valstk Int 
PopV() = let v = hd valstk in valstk := t l valstk; v end 

PushO: SE -4- read,wri te opestk Uni t 
PushO(oel) = opestk := oel ~ opestk 

PushV: Int ^> read,wri te valstk Unit 
PushV(v) = valstk := (v) ~ valstk 

Now to the main function. 

value 
Transform: Uni t —> Uni t 
Transform () = 

let oe = PopOQ in 
case oe of: 

mk_intg(i) —> PushV(i), 
mk_iden(t) -> PushV(env(t)), 
mk_prefix(o,e) —> PushO((e,o)), 
mk_infix(le,o,re) -> PushO((re,le,o)), 
mk_cond(be,ce,ae) —> PushO((be,ite,ce,ae)), 
minus -> PushV(-PopV()), 
. . . - > • . . . , 

add -»• PushV((PopV()+PopV())), 
. . . - ) • . . . , 

ite ->• let bv = PopV(), ce = PopO(), ae = PopO(); 
PushO({if bv=0 then ce else ae end)) end, 

end end 
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Recall that env was a globally defined constant. 

Discussion 

The recursive definitions of the semantics functions of Examples 3.1 and 3.2 
have been replaced by a combination of two stacks, push and pop opera
tions on both of these stacks and iteration. The control stack resembles the 
compile-time translation of structured, for example, infix, expressions to re
verse Polish notation. The value stack resembles the run-time interpretation 
of code for intermediary values of subexpressions. Thus we may say that the 
computational semantics gives hints as how to develop an interpreter, or even 
a compiler, from a denotational semantics definition. We shall take this topic 
up in Chap. 16. 

3.3.4 Computational Semantics of GOTO Programs 

In Example 3.5, first put forward by John Reynolds [427,428], we exemplify 
a mechanical interpreter for the jump language of Example 3.3. This example 
also belongs to the folklore of computing science. 

Example 3.5 Mechanical Evaluation of a Statement Language: 

The Syntax 

We start by presenting a syntax for an almost conventional imperative and 
block structured language. The "twist" in this language is that we allow ex
pressions to be labels, that variables may store label denotations, and that 
GOTOs can refer to label variables. 

type 
Var, Lbl 
Block = = mkBlocktdefns.-CVar-^Type^el.-Cmd*) 
Type = = label | ... 
Cmd = = mkCmd(p:PPt,s:Stmt) 
PPt = = Lbl | nil 
Stmt = Asgn | GOTO | Block | ... 
Asgn —— mk Asgn (v: Var ,e:Expr) 
GOTO = VGOTO| LGOTO 
VGOTO == mkVGOTO(v:Var) 
LGOTO ==mkLGOTO(l:Lbl) 

Expr = = mkLbl(Lbl) | mkVar(Var) [ ... 
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Some Semantic Observations 

Observation 1 

The "newcomer" is label variables, and hence label values. The question there
fore is: What is the denotation, in a computational semantics model, of a 
label? We now argue our answer to this question. To see, in a language like 
that of this examplem that labels cannot just denote themselves we perform 
the following experiment. We let a program "schematically" look like: 

1. begin 
2. del lv type label ; 
3. 1 : statement-A ; 
4. lv := 1 ; ... ; GOTO lv ; ... 
5. begin 
6. 1 : statement-B ; ... 
7. lv := 1 ; ... 
8. GOTO lv ; ... 
9. end ; ... 
10. end 

The GOTO in (4) is (clearly) intended to transfer flow of control to that 
statement whose label, "1", was most recently assigned to "lv", and likewise 
for the GOTO in (7). Assume, in (4), that "lv's" content at the point of 
GOTO is the "1" of (3), then transfer is to (3). Assume, in (8), that "lv's" 
content is the "1" of (3), then transfer is to (3). Assume, instead, in (8) that 
(7) was most recently executed, then transfer should be to (6). The question 
is therefore this: How to distinguish between the "1" of the outer and inner 
blocks (now that it is allowed to have redefinition of "l's")? 

Observation 2 

There is, however, another problem: Assignment of local labels of two disjoint 
blocks to a common, global variable may raise problems: 

1. begin 
2. del lv type label ; 
3. begin 
4. 1_1: stmt ; ... ; lv := 1_1 ; ... 
5. end ; 
6. 
7. begin 
8. 1_2: stmt ; ... ; lv := 1_2 ; ... ; GOTO lv ; ... 
9. end ; ... 
10. end 
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If at the point of executing the GOTO in (6) "lv's" value is not that (possibly 
conditionally) assigned "earlier" in (6), but that resulting from and bound in 
line (4), then an attempt is seemingly being made to jump into block (3-5) 
— something which was otherwise deemed illegal statically. 

Semantic Types 

As before, we formulate the semantics around an SECD structure: storage, 
environment, control and dump. The state of the computational model thus 
consists of four components: (i) a storage, as usual; (ii) an environment, which 
is as usual, only we keep it in a global variable; (iii) a control, which contains 
the statements of the block currently being executed; and (iv) a dump. 

The dump records the state of computation at the point of entry to a 
block exclusive of that block. That is, the dump contains a triple: (ii) the 
environment of the block embracing the block being entered (i.e., env or p of 
earlier models), (iii) the list of commands, i.e., control, following the block 
being entered (i.e., a concretisation of 1 sl(sl)(i)(p)(cr) (cf. Example 3.3) for 
some i where sl(i-l) is the block being entered); and (iv) the dump at the point 
of entering a block. 

Leaving a block means restoring the ("top") dump element to the respecti
ve global environment, control and dump variables. 

A label value is a dump. 
"Going to" a labelled statement means taking the label value and letting 

its component replace the current environment, control and dump values. 

type 
STG = LOG T,f VAL 
ENV = (Var ^ LOG) (J (Lbl ^ DMP) 
DMP = ENV x CTL x Dmp 
Dmp = = DMP | null 
CTL = Cmd* 

variable 
Stg:STG := [], 
Env:ENV := [], 
CthCTL := {), 
Dmp:DMP .— null; 

Interpreter Functions 

We assume a program, p, to be a block (or a command list). We define a func
tion, Iterate, which "executes" a statement at a time, and otherwise iterates 
until control is empty (()), and dump is likewise (null): 
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value 
Iterate: Block —»• wri te Ctl read Dmp Uni t 
Iterate(b) = Ctl:=b; while (Ctl/<)ADmp^null) do Transform() end 

Transform: Uni t —> wri te Stg,Env,Ctl,Dmp Unit 
Transform () = 

i fCt l^O 
then 

let mkCmd(,s) = hd Ctl in Ctl := t l Ctl ; 
Compute_Stmt(s) end 

else 
let (env,ctl,dmp) = Dmp in 
(Env:=env || Ctl:=ctl || Dmp := dmp) end 

end 

Compute_Block (i.e., Compute_Stmt for Blocks) prepares a new environment, 
dumps the old environment, control and dump on the dump, and initialises 
the control to the block command list. 

value 
Compute_Stmt: Stmt —i wri te Stg,Ctl,Env,Dmp Uni t 
Compute_Stmt(mkBlock(vars,cl)) = 

let dp = [vH-»AUoc()|v:Var*v G dom vars] 
f [l(->-makeDump((5/o,(l,cl))|l:Lbl«mkCmd(l,)G e lemscl] in 

Dmp := (Env,Ctl,Dmp) ; 
(Env := dp [| Ctl := cl) 
end 

Alloc allocates storage space for declared variables. 

Alloc: Uni t ->• wri te Stg LOG 
Alloc() = 

let loc:LOC • Iocs' dom Stg in 
Stg := Stg U [loo-»undefined] ; 
loc end 

makeDump prepares a dump for each label of a block command list. 

makeDump: ENV x (PPt x Cmd*) read Dmp DMP 
makeDump(/?,(lbl,cmdl)) = 

let cl = (cmdl(i)|i in (j,len cmdl)'j € inds cmdlAlbl=p(cmdl(i))) 
in (p,cl,Dmp) end 

Compute_Assign looks up the assignment left-hand variable, evaluates the 
right-hand expression, and updates storage. 
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value 
Compute_Stmt(mkAssign(var,lbl_or_expr)) = 
let loc = look_up(var)(Env,Dmp), 

val = Compute_Expr(lbl_or_expr) in 
Stg := Stg f [loc t-> val] 
end 

look_up first searches the local environment, then, if needed, successively 
dumps "surrounding" environments. 

value 
look_up: (Lbl|Var) -» Env x Dmp -> read Dmp Unit (DMP|LOC) 
look_up(lv)(p,<5) = 

if lv € dom Env 
then env(lv) 
else 

let (env,,dmp) = Dmp in 
look_up(lv)(env,dmp) end 

end 

Compute_Expr evaluates an expression. That expression may either be a vari
able, a label or something else. 

value 
Compute_Expr: Expr —y read Env,Dmp Unit VAL 
Compute_Expr(e) = 

case e of 
mkLbl(l) -> look_up(l)(Env,Dmp), 
mkVar(v) —>• 

let loc = look_up(v)(Env,Dmp) in 
Stg(loc) end 

end 

Compute_GOTO computes the label valued expression of its argument, throws 
the current dump away (entirely, yes!), and distributes the components of the 
retrieved dump over the control, environment and dump variables. 

value 
Compute_Stmt(mkGOTO(var_or_lbl)) = 

let le = 
case var_or_lbl of 

mkVGOTO(var) -> mkVar(var), 
mkLGOTO(lbl) -s> mkLbl(lbl) 

end in 
let (env,ctl,dmp) = Compute_Expr(le) in 
( Env := env |[ Ctl := ctl || Dmp := dmp ) 
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e n d e n d 

We remind the reader tha t the above constitutes one of the major models of 
computing science. • 

3 .3 .5 C o m p u t a t i o n a l S e m a n t i c s of C o r o u t i n e P r o g r a m s 

Example 3.5 forms the background for this small section — mostly taken 
up by a "pseudo-example". Tha t pseudo-example illustrates an important 
programming technique, tha t of coroutines. The pseudo-example challenges 
the reader to formalise the syntax and semantics of the illustrated coroutine 
language. Tha t syntax and semantics, obviously, is expected to follow very 
much the solution given in Example 3.5. 

E x a m p l e 3.6 Coroutines: By a coroutine we mean a program block tha t can 
be called, i.e., whose interpretation can be "commenced" as from a first decla
ration. We also mean one whose interpretation can be "temporarily" suspended, 
and whose interpretation can be resumed as from any designated (internal) 
program point. Finally, we mean one whose interpretation can be "ended" by 
normal interpretation of an ordinary last s ta tement of tha t coroutine block. 

Let us consider the " C o r o u t i n e " Program Text I below4. 
"Coroutine" P r o g r a m Text I 

begin s t a r t 
va r i ab l e s : l v a , l v b , v l , v 2 , . . . , v n ; + 
11: s t l ; + 

+ 
+ 
+ 
+ 
+ 
+ 
I 

I 
I 
+ 
+ 
+ 
+ 
+ 
+ -

12: st2 ; 
13: begin 
variables 
131: st31 
132: lva 
133: GOTO 
134: st34 
135: GOTO 
end 

14: st4 ; 
15: begin 
variables 
151: stll 
152: lvb 
153: GOTO 
154: st14 
end 

16: st6 
end 

; 
= 134 
14 ; 
; 
lvb 

; 
= 154 
lva ; 

-> + 
+ 
I 
I 
I 
I 
I 
I 
I 
+ 
+ 
+ 

out 

4Disregard for the moment the +s, the I s, the - s and the >s of the right-hand 
side of text. 
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According to the computational semantics of the language of this example, the 
following execution sequence — mentioning only the labels of statements actu
ally computed, omitting the assumed block prologue allocation of variables — 
is possible: 11 , 12, 13, 131, 132, 133, 14, 15, 151, 152, 153, 134, 
135, 154, 16! We attempt to illustrate this sequence by the trace shown 
by the +'s, the I's and the ->'s of the right-hand side of the "Coroutine" 
Program Text. The +'s designate statements (etc.) being interpreted. The 
I's designate "transfer of control" to a next statement (etc.) being then in
terpreted. The ->'s likewise, i.e., as for the | 's. Naturally, the dynamics of 
execution is "diagrammed" by the program trace "winding its way down and 
up and down again". 

That is, the blocks labeled 13 and 15 can be considered coroutines. 
Of course, instead of the possibly haphazard, i.e., error prone, assignment 

of labels to variables, one can design a language whose syntactic forms more 
appropriately indicate call, suspend, resume and terminate. 

A proposal is given in the Coroutine Program Text I I next: 

Corout ine P r o g r a m Text II 

begin 

variables: vl>v2,...,vn 

COROUTINE ca: 

begin 

variables: ... ; 

lal 
la3 
la4 
la5 

st31 ; 

CALL cb ; 

st34 ; 

RESUME cb 

end ca ; 

COROUTINE cb: 

begin 

variables: ... ; 

lbl 
lb3 
lb4 
lb5 

stll ; 

RESUME ca ; 

stl4 ; 

TERMINATE 

end cb ; 

11 
12 
13 
16 

end 

stl ; 

st2 ; 

CALL ca ; 

st6 

start 

+ 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
+ 
+ 
+ -> 

-> + 

+ 
+ 
+ 
+ 

1 
1 
1 
+ 
+ 

+ 
+ 
+ -> 

-> + 

+ 

1 
1 
1 
1 
1 
1 
+ 
+ 
+ 

1 
1 
1 
+ 

out 

We leave it to the reader to decipher the latest Coroutine Text (II), to com
pare the two Coroutine Texts (I II), and to design a proper imperative, 
"toy" coroutine programming language. 
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3.3 .6 D i s c u s s i o n 

It is t ime to conclude. Above we presented a computational semantics for 
a slight variation of the GOTO language otherwise denotationally defined in 
Example 3.3. The variation has been tha t of allowing assignable variables to 
be assigned "the value of a label", and to let GOTO statements identify the 
target label as the value contained in such label variables. 

Two kinds of comments are in order: one on the modelling of labels, and 
one of "the power" of the current variant of GOTO languages. 

O n t h e M e c h a n i s a t i o n of C o n t i n u a t i o n s 

Labels denote continuations. So it was in the denotation semantics modelling 
of GOTOs. Labels denoted dumps: records of environments, controls (i.e., pro
gram fragments) and dumps. So it was in the computation semantics mod
elling of GOTOs. In other words: dumps offer one form of implementation of 
continuations. 

The latter gives us the hint tha t labels, in such GOTO languages as here 
illustrated (with label variables etc.), be implemented in terms of references 
to environments, program points and references to dumps. 

In Chaps. 16-18, we shall base developments towards compilers for func
tional, imperative and modular languages upon this insight. 

O n t h e "Power" of GOTOs v ia Label Variables 

GOTOs are usually considered harmful. It was the late (and illustrious) com
puter scientist Edsger Wybe Dijkstra [101] who pointed out undesirable possi
bilities when using GOTOs in programming. But used judiciously, and perhaps 
only after steps of refinement where earlier stages did not use GOTOs, such may 
be useful. As also pointed out, eloquently, by Donald E. Knuth [274]. 

But, as shown in Example 3.5 and hinted at in Example 3.6. GOTOs can 
be made very useful. In any case, our hardware computers "feature" them, 
extensively! 

O n C o m p u t a t i o n a l S e m a n t i c s 

We observe tha t the above example definitions do not satisfy the denotational 
principle. This is because we have decomposed ("compiled") composite ex
pressions (resp. statements) into, in this case, postfix-like sequences of imme
diate expression and operator components (etc.). Instead we should get a 
rather operational "feeling" for how one might mechanically pursue an eval
uation of expressions (resp. interpretation of statements) — resulting, after 
some iterations rather than recursions, in their value (resp. side-effect). 
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3.4 Review: Denotations and Computat ions 

In denotational semantics meaning is abstracted as functions. In computa
tional semantics meaning is concretised as computations. Denotational se
mantics functions express homomorphisms. Computational semantics func
tions express sequences of state changes. Recursions, say in denotational def
initions, are, in computational definitions expressed in terms of stacks and it
erations. Denotational semantics over recursively defined syntactic structures 
are expressed in terms of recursively descending functions which functionally 
compose meanings from embedded parts. 

Computational semantics typically encodes (i.e., translates) recursive struc
tures into linear data structures as a result of either pre- or post-order traver
s a l of the original, recursively defined (treelike) structures. The recursive to 
linear, i.e., syntax-to-syntax, translation is expressed in terms of stacks as is 
the linear syntax to semantics computation. 

Principles. The principle of denotations versus computations is one of ab
straction: If you seek an abstract, yet model-oriented abstraction "try" to 
formulate a denotational semantics. If you seek to explain, albeit abstractly, 
how a computation over some program text can occur, then "go for" a com
putational semantics. • 

3.5 Some Pioneers of Semantics 

There are many pioneers of semantics. Besides mathematicians, there are a 
number who, in the era of computing, i.e., from the mid-1950s onwards, have 
contributed significantly to providing a theoretical and a practical basis for 
expressing the semantics of programming languages. Two will be mentioned 
in this section: John McCarthy and Peter Landin. Others, really, should be 
mentioned in other end-of-chapter biographies. Some of these are: people from 
the IBM Vienna Laboratory group of the 1960s and early 1970s (Hans Bekic, 
Peter Lucas and Kurt Walk [30,31,33-37,248,305-312,565]), and from the 
Oxford University Computing Laboratory, also of the 1960s and early to mid-
1970s: Dana Scott and Christopher Strachey [157,355,452^63,489-491]. 

3.5.1 John McCarthy 

John McCarthy's work in relation to semantics is of decisive importance. He 
has also contributed significantly to the area of artificial intelligence (AI). 
Here we shall just concentrate on a few years of McCarthy's work in relation 
to programming language semantics. In particular to references [329-331,333, 
334] which we show, and briefly comment on, below as items 1-5. 
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1. John McCarthy. Recursive Functions of Symbolic Expressions and Their 
Computation by Machines, Part I. Communications of the ACM, 3(4):184— 
195, 1960. 

This was the original paper on LISP. Part II, which never appeared, was to 
have had some LISP programs for algebraic computation. 

2. John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, 
and Michael I. Levin. LISP 1. 5 Programmer's Manual. The MIT Press, 
Cambridge, Mass., 1962. 

The LISP 1.5 list-oriented programming language is defined in terms of a set 
of recursive equations. The style of the definition, the LISP 1.5 interpreter, 
can be read as being operational (i.e., computational). 

3. John McCarthy. Towards a Mathematical Science of Computation. In 
CM. Popplewell, editor, IF IP World Congress Proceedings, pages 21-28, 
1962. 

4. John McCarthy. A Basis for a Mathematical Theory of Computation. In 
Computer Programming and Formal Systems. North-Holland Publ. Co., 
Amsterdam, 1963. 

These two papers figure among the great classics of computer science. The 
latter extends the results of the former paper. The first paper was presented in 
1961 at the Western Joint Computer Conference and in 1962 at a symposium 
sponsored by IBM in Blaricum, Netherlands. Among other things, it includes 
a systematic theory of conditional expressions, a treatment of their recursive 
use and the method of recursion induction for proving properties of recursively 
denned functions. 

The latter paper introduced the term abstract syntax — and maybe the 
first occurrence of the idea — as it also, briefly, covered the notion of seman
tics. 

5. John McCarthy and James Painter. Correctness of a Compiler for Arith
metic Expressions, in J.T. Schwartz. Mathematical Aspects of Computer 
Science, Proc. of Symp. in Appl. Math. American Mathematical Society, 
Rhode Island, USA, 1967, pages 33-41, 1966 [451]. 

This paper seems to have contained the first proof of correctness of a compiler. 
Abstract syntax and Lisp-style recursive definitions kept the paper short. 

We quote from the introduction: 

This paper contains a proof of the correctness of a simple compiling 
algorithm for compiling arithmetic expressions into machine language. 
The definition of correctness, the formalism used to express the de
scription of source language, object language and compiler, and the 
methods of proof are all intended to serve as prototypes for the more 
complicated task of proving the correctness of usable compilers. The 
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expressions dealt with in this paper are formed from constants and 
variables. The only operation allowed is a binary + although no change 
in method would be required to include any other binary operations. 
The computer language into which these expressions are compiled is 
a single address computer with an accumulator, called ac, and four 
instructions: li (load immediate), load, sto (store) and add. Note that 
there are no jump instructions. Needless to say, this is a severe restric
tion on the generality of our results which we shall overcome in future 
work. The compiler produces code that computes the value of the 
expression being compiled and leaves this value in the accumulator. 
Again because we are using abstract syntax there is no commitment 
to a precise form for the object code. 

3.5.2 Peter Landin 

Most papers in computer science describe 
how their author learned what someone else already knew. 

Peter Landin 

Peter Landin's scholarly career started at the end of the 1950s. He was much 
influenced by McCarthy and started to study LISP when the most common 
language was FORTRAN. LISP was very different from the other contem
porary languages because it was based on a functional calculus rather than 
being procedural in nature. 

References [284-291] are listed below. 

• [284] Peter J. Landin. The Mechanical Evaluation of Expressions. Com
puter Journal, 6(4):308-320, 1964. 

We quote, from the abstract of Olivier Danvy's [90]: 

Landin's SECD machine was the first abstract machine for the A-
calculus viewed as a programming language. Both theoretically as a 
model of computation and practically as an idealized implementation, 
it has set the tone for the subsequent development of abstract ma
chines for functional programming languages. 

Olivier Danvy's abstract continues: 

However, and even though variants of the SECD machine have been 
presented, derived, and invented, the precise rationale for its archi
tecture and modus operandi has remained elusive. In this article, we 
deconstruct the SECD machine into a A-interpreter, i.e., an evaluation 
function, and we reconstruct A-interpreters into a variety of SECD-
like machines. The deconstruction and reconstructions are transfor
mational: they are based on equational reasoning and on a combina
tion of simple program transformations — mainly closure conversion, 
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transformation into continuation-passing style, and defunctionaliza-
tion. The evaluation function underlying the SECD machine provides 
a precise rationale for its architecture: it is an environment-based eval-
apply evaluator with a callee-save strategy for the environment, a 
data stack of intermediate results, and a control delimiter. Each of 
the components of the SECD machine (stack, environment, control, 
and dump) is therefore rationalized and so are its transitions. The de-
construction and reconstruction method also applies to other abstract 
machines and other evaluation functions. It makes it possible to sys
tematically extract the denotational content of an abstract machine 
in the form of a compositional evaluation function, and the (small-
step) operational content of an evaluation function in the form of an 
abstract machine. 

• [285] Peter J. Landin. A Correspondence Between Algol 60 and Church's 
Lambda-notation (in 2 parts). Communications of the ACM, 8(2-3):89-
101 and 158-165, Feb.-March 1965. 

These two papers were very influential in demonstrating the importance (i) of 
the A-calculus in practice, (ii) as a tool to understand programming language 
semantics, and (hi) of the functional programming paradigm. 

The next two papers: 

• [288] Peter J. Landin. Getting Rid of Labels. Technical Report, Univac 
Systems Programming Research Group, N.Y., 1965. 

• [286] Peter J. Landin. A Generalization of Jumps and Labels. Technical 
Report, Univac Systems Programming Research Group, N.Y., 1965. 

although — at the time not widely spread — did indeed have some rather 
substantial influence. They clearly show Landin's canny ability to deal with 
complicated "phenomena" in elegant ways. Landin handles control by way of 
a special form of closure, giving a statically scoped form of control, namely in 
terms of the J operator. 

Later authors have analysed these papers: [430,433,500,501]. In [292] 
Landin reviews his work of the 1960s and draws lines into the years after. 

Further reports and papers were: 

• [287] Peter J. Landin. An Analysis of Assignment in Programming Lan
guages. Technical Report, Univac Systems Programming Research Group, 
N.Y., 1965. 

• [289] Peter J. Landin. A Formal Description of Algol 60. In T.B. Steel. 
Formal Language Description Languages, IFIP TC-2 Work. Conf., Baden. 
North-Holland Publ. Co., Amsterdam, 1966, pages 266-294, 1966 [484]. 

• [290] Peter J. Landin. A Lambda Calculus Approach. In L. Fox, editor, 
Advances in Programming and Non-numeric Computations, pages 97-141. 
Pergamon Press, 1966. 
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The final paper in our listing: 

• [291] Peter J. Landin. The Next 700 Programming Languages. Commu
nications of the ACM, 9(3):157-166, 1966. 

introduced the concept of ISWIM: I See What I Mean. 
We quote from FOLDOC [118]: 

ISWIM is purely functional, a sugaring of lambda-calculus, and the 
ancestor of most modern applicative languages. An ISWIM program 
is a single expression qualified by 'where' clauses (auxiliary defini
tions including equations among variables), conditional expressions 
and function definitions. ISWIM was the first language to use lazy 
evaluation and introduced the offside rule for indentation. 

3.6 Exercises 

Exercise 3.1 Denotational Semantics: Case Expression Extension. We refer 
to Example 3.2. Extend that expression language with case expressions, say 
like: 

case expr of 
expr_lv —> expr_lc, 
expr_2v —> expr_2c, 

expr_nv —>• expr_nc 
end 

where evaluation of expr is compared for equality, in turn, with expressions 
expr_iv, from i=l to i=n. For the first i=j for which there is equality, the value 
of the whole case expression is the value of expression expr_jc. If no equality 
is yielded, then chaos is yielded! 

This exercise continues in Exercise 3.2. 

Exercise 3.2 Computational Semantics: Case Expression Extension. We re
fer to Example 3.4 and to Exercise 3.1. You are to reformulate the semantics of 
the case expression as a computational semantics — as per the ideas expressed 
in Example 3.4. 

Exercise 3.3 Denotational Semantics: A Simple Bank. Narrative: A much 
simplified bank is configured into a context p : R, which records client c : C 
account numbers k : K, and a state o : S, which records balances on accounts. 
That is, clients are named c : C, and so are accounts k : K. Two or more clients 
may share accounts. Clients may "hold" more than one account. All accounts 
have clients. 

The bank accepts the following transactions: create account, close account, 
deposit into an account, withdraw from an account, transfer monies between 
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accounts and deliver a statement (of a client's transactions since either the 
last time a statement transaction from that client was honoured, or since the 
opening of the identified account). These transactions amount to syntactic 
commands. They appropriately name client and account names as well as 
money amounts, as needed. 

The bank state also records the bank's own profit (interest income) and 
fee (income) accounts. The bank charges the customer a fixed fee, say d : $, 
for certain transactions (open, close, statement and transfer), a fixed daily 
interest, say i : / , on negative accounts, and offers a fixed, lower yield, y : Y, on 
positive accounts. Thus the transactions also need to record the day on which 
a transaction is issued. We assume all such day identifications to be natural 
numbers, as from day 0, the opening of the bank, till any other day after that. 
In other words, whenever a deposit, withdrawal, transfer or closing transaction 
takes place, the bank computes the interest or yield to be withdrawn from, 
respectively added to, the appropriate account(s): the clients' as well as the 
bank's. 

Questions: First formalise the abstract types (i.e., sorts) of client names 
and account identifiers. Then formalise the concrete types of banks (contexts 
and states). Then define, still in RSL, the semantic functions which assign 
denotational meaning to transactions and to transaction sequences (the latter 
likely to relate to different clients). 

References: This exercise continues into Exercise 3.4 immediately below. 

Exercise 3.4 Denotational Semantics: A Simple Banking Script Language. 
Reference: This exercise continues from Exercise 3.3. 

Narrative and problem: Now, from your definition of the semantics of trans
actions, devise a simple script language, that is, a simple exercise and condi
tional (if-then-else) statement and expression language in which the bank can 
itself define the semantics of transactions in the form of scripts. A script is just 
a sequence of simple exercise and conditional (if-then-else) statements. De
fine the syntactic and semantics types of this language as well as denotational 
functions that ascribe meanings to scripts. 

Hint: Scripts are like small programs. Variables of these programs are the 
finite set of two bank variables, context and accounts, the finite set of two 
bank constants, interest% and yield%, a finite set of (how many?) client name, 
account number, statement accumulation, and period computation (from date 
of last interest or yield computation, to current date) variables, etc. 

Exercise 3.5 Denotational (Continuation) Semantics: Language with Stor-
able Label Values. References: References are made to Examples 3.3 and 3.5. 
The imperative GOTO language, for which a denotational continuation seman
tics is sought, had its syntax defined in Example 3.5 (which is basically also 
the syntax of the language of Example 3.3). 

The Problem: The problem to be solved is now, instead of the computa
tional (cum operational) semantics of Example 3.5 to define a denotational 
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(cum mathematical) semantics using continuations like those shown in Exam
ple 3.3. Hint: Let continuations be storable values! 

Exercise 3.6 Denotational (Continuation) Semantics: A Proper Coroutine 
Programming Language. Reference: Reference is made to Example 3.6. 

The Problem: You are to come up with a denotational continuation seman
tics for a proper, imperative coroutine language. In this exercise you also are 
to first make precise a narrative description of the syntax and semantics of 
this language. The below text only gives a rough sketch of the language. That 
is, you are to "fill in the details"! 

Narrative: The imperative coroutine language, to be given a formal defini
tion is like a block structured imperative language as given in several examples 
so far in these volumes. Programs, besides (syntactically) being blocks that al
low the introduction of variables, also allow the definition of routines, routine 
r = "block" and c a l l r statements, where r is the name of a defined rou
tine. Routines are parameterless, but named procedures, which, syntactically 
speaking are otherwise like blocks, but where routine blocks allow two new 
kinds of statements: c a l l r, a routine (named r) , and resume r, where it is 
assumed that some routine r is currently suspended. Speaking operationally, 
when a routine is invoked (i.e., called) from within a routine then that rou
tine's activation is said to be suspended, and at that point. Resumption then 
reactivates the most recently suspended routine (named r) as from that point 
onwards. Routines are "exhausted", i.e., terminate, when there are no more 
statements to execute, i.e., when they "reach the end of their body of state
ments" . At that time an implicit "resumption" takes place: Transfer of execu
tion control occurs to the routine or the program — whichever invoked (i.e., 
called) the present routine activation. 

Comments: We leave it to you to guess the rest — and hence to first 
narrate a precise, informal description, before formally defining the syntactic 
and semantic types and the semantic functions. 
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Configurations: 
Contexts and States 

• The prerequisite for studying this chapter is that you have studied and 
understood, to a reasonable extent and depth, Vol. 1 of this series of text
books on software engineering. 

• The aims are to introduce the model (and configuration modelling) con
cepts of contexts and states, and to exemplify and discuss these configu
ration concepts from a variety of viewpoints. 

• The objective is to enable you to choose an appropriate balance between 
a "decomposition" of configurations into contexts and states. 

• The treatment is systematic and semi-formal — with an important state 
concept (automata and machine) being covered in Chap. 11. 

. On Notions of State . 
By the state of affairs we generally mean how the universe of discourse 
(which we are observing) is composed, and, for each of the atomic compo
nents, what their values are, at any time. 

• Thus we can take a look at that universe of discourse at a very detailed 
level: Considering all the values as they change, continuously over time. 
This is the classical control-theoretic view point [16,104,120]. There are 
now infinitely many states, and they typically form various continuities. 

• Or we can "summarise" certain value ranges as being significant. That 
is, we can impose one or another equivalence relation and thus "divide" 
the typically infinite space of values (for each observable) component 
into a finite number of "adjacent" ranges (intervals). Each interval now 
denotes a state (of a given component, i.e., a sub-state of the system 
of components). And permissible combinations of components and their 
respective ranges designate a state. Again, if there are a finite number of 
components and, for each, a finite number of relevant value ranges (to be 
observed), then we have, essentially, a finite state system — albeit that 
there may be many, many states. 
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Or the universe of discourse presents itself as a discrete system, tha t is, 
as a composition of components, each of which "takes on" a value from 
a finite, discrete set of values. 
So the notion of state is the same, only we may treat it differently from 
one universe of discourse to another universe of discourse! 
In this chapter we shall take the last view: Tha t the system to be con
sidered, i.e., the universe of discourse, is already — or has already been 
abstracted into — a system of discrete states. 

Tha t is, in the present chapter we shall take a state to designate some
thing stable. 
In all cases, states represent summaries of past behaviour. 

4.1 Introduct ion 

We shall, in this section, t reat notions of contexts and states1 , as we have 
come to be familiar with them in computing. As a whole, i.e., viewed as a 
pair, we shall refer to these as configurations. We do so by first t reat ing these 
notions as we claim they occur in "the real world"! 

But first, we present some examples from computing. In computing, envi
ronments are associations of names (identifiers) with their values (including 
denotations). And in computing, states are aggregates of named values of 
assignable and control variables when a model is imperatively expressed, or 
of a (usually named) structure of applicatively 'passed' and ' returned' values 
(of immutable2 variables) when a model is functionally expressed. 

E x a m p l e 4 .1 Applicative and Imperative States: 

value variable 
fact: Nat -> Nat r :Nat := 1; 
fact(n) = value 

if n=0 fact: Nat —> read r write r Nat 
then 1 fact(n) = 
else n*fact(n—1) end for i in (l..n) do r := r*i end; r 

In the applicative definition, above left, the state of the described computa
tion is represented part ly by the decreasing formal parameter (i.e., argument) 
value, n, part ly by the accumulating expression value n*fact(n—1). In the 

1Usually what we here call 'context' is, in connection with programming language 
semantics, called 'environment'. Similarly what we here call 'state' is, in connection 
with programming language semantics, called 'storage'. 

immutable: Not capable of or susceptible to change. 
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imperative definition, above right, the s tate of the described computation is 
represented by the value of assignable variable r and the value of the control 
variable counter i. • 

Contexts summarise which name/value associations are in effect. States sum
marise past computations. Actions effect state changes and take place in a con
text. States and actions "go together". Contexts are bindings of user-defined 
identifiers and their denotations. Contexts and bindings "go together". States 
reflect the dynamics of program execution. Contexts reflect the statics of pro
gram planning. User-defined identifiers (i.e., names) have a scope and a span. 
The scope determine where an identifier can be used. The span of a user-
defined identifier determine a largest computational interval3 encompassing 
those of the scope of tha t identifier. 

Contexts and states thus are relevant for programming. In this chapter we 
shall see tha t contexts and states are relevant for understanding domains and 
for expressing requirements as well. 

E x a m p l e 4.2 Context and Bindings: For the applicative case (cf. Exam
ple 4.1 left par t ) each recursive invocation of fact binds n to a new value 
in the environment. For the imperative case (cf. Example 4.1 right par t ) the 
context, i.e., the environment associates program variable or control identifiers 
to their storage locations, respectively values (viz.: r,i). 

For both cases: The scope is tha t of the block, i.e., the function defini
tion, excluding contained blocks (and function invocations)4 . The span is the 
(allocation) computat ion interval of the variable. • 

With computing, the concepts of environments and their bindings, and of 
states (storages) and actions (statements, i.e., operations on states), have 
become central notions. 

In the world of computing a state is a summary of a computation and 
is represented by the value of a number of variables. In tha t same world an 
action is something tha t changes the value of some variables, i.e., the state. 

3Usually the literature uses the term 'lifetime' where we use the term 'compu
tational interval'. The distinction may be subtle: The fact that computation takes 
time usually has no influence on the values, the results, being computed. That is, it 
does not, or should not have any bearing on the computation and hence its result. 
Therefore, to speak about lifetime when the notion of time is not material may be 
a bit misleading. At this stage we prefer to be more precise and say 'computation 
interval' with the meaning: A span of computations, stretching from a first action 
to a last action. 

The block and the function definition (function name, formal parameter list and 
body) concepts are basically the same and are motivated by the pragmatic desire 
to group names and their meaning into "localities", into contexts — thus enabling 
us, the developers and readers of these texts, to focus our attention on small pieces 
of specification and program texts. 
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A context is something tha t prescribes which names (identifiers) are relevant, 
and with which values (denotations), at a certain step of a computation. 

In the world of applications — say one in which we need not necessarily 
speak of computing — a state (viz.: "a state of affairs") is also represented by 
the values of a number of components of tha t "actual" world. An action is still 
tha t "something" which changes the values of these components. A context, 
finally, is tha t which focuses on which — of many — components are worth 
our attention. 

There are two dualities "buried" here [(i-ii)]. There is the obvious one tha t 
relates the two worlds just sketched. Tha t is, (i) the duality of what goes on 
"inside the computer" vis-a-vis what goes on "out there, in an 'actual ' world"; 
(ii) and the duality of states and computations: of states as summaries of past 
computations. Tha t is, we can capture "whole" or "part" computations in 
states, as values — and vice versa. Tha t is the duality. In this section we shall 
explore both dualities. 

We have a few words to say about the latter duality: 

• The number zero can be thought of as a function. Whenever applied, it 
returns the value zero: 

z = Ax.O 

We could claim tha t this function is data: the value 0. 
• Any natural number, n, can now be thought of as an appropriate compo

sition of successor functions: 

s = Xx.x + 1, s's's' • • •' s 
v ' 

n — 1 

We could claim tha t this function stands for a computation: one tha t 
computes n. 

Other illustrations will be made in due time. 
The example shows tha t the decision of what is "put into a state" versus 

"what is put into a computation" (over such a state) is a pragmatic one. Tha t 
is, there are no absolutes here. 

Computat ions occur in "time"5-space: Actions take "time" to execute, 
and actors require resources tha t occupy physical space. Computat ional states 
can therefore be associated with a dynamic, i.e., temporal notion of change 
of the values of the computing resources. These latter are the actors tha t 
are implied by the program texts which prescribe computations. In contrast, 
computational contexts (environments) are usually associated with a static, 

5When we put double quotes around terms we are trying to communicate some
thing "half" meant, "half" intimated. Above, we really do not mean 'time', but 
rather computation sequence or interval: one after the previous! It is not that any 
one of them "takes time to execute"; they may well do. But the exact time of whether 
one execution time is longer than another is immaterial. 
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i.e., a syntactic notion of program prescriptional texts. Colloquially speaking, 
we can say that states change "more frequently" than contexts, the former in 
response to single statements, the latter in response to blocks of statements. 
That is, the syntactic notion of a block (of program text) is, and has been, 
introduced — from the very early days of computing, the late 1950s — in 
order to "bundle" into contexts the naming and use of such resources as 
identifiers denoting values or variable locations. Thus the notion of a context is 
a practical or pragmatic notion. The notion of state is more often forced upon 
us by necessities, by the semantics of an "actual world" and of computing. 

The delineations attempted above are indeed attempts: The characterisa
tions are approximate. Since the computational concepts are man-made, and 
since computing, as of 2005, is "hardly" 50 years old, the concepts — as we 
discuss them in this introductory part of this chapter — cannot be made fully 
concise. 

Later in this chapter we shall impose our own, stricter characterisations, 
but the reader should be prepared to accept other, albeit not that different, 
characterisations of the state and context notions. Also, the reader may have 
observed that we seem to "waver" between using the term 'context' and the 
term 'environment'. The latter, as we shall use it in these volumes, has been 
in use since around 1960, and then rather specifically in connection with the 
explanation of programming language semantics. We have additionally intro
duced the term 'context' in these volumes in order not to fall into a simple 
trap of reducing every "actual world" phenomenon to that of a programming 
(or, more widely, to that of a specification) language concept. 

4.2 The Issues 

We summarise, in a terser, enumerative form, the concepts mentioned in the 
introductory part of this section. The following concepts are important for 
our understanding, i.e., represent an essence of the combined notions of states 
and actions (hence actors), contexts and bindings (hence binders): 

• We shall use the term state in two senses. One is syntactic; the other is 
semantic. 
• By a state we syntactically mean the structuring of a number of com

ponents (i.e., variables) into "the state" — that which we choose to 
consider (versus that which is left out or not considered). 

• By a state we semantically mean the value of these components (i.e., 
variables). 

The decision as to which components to put into the state is usually the 
result of a longer analysis. Volume 3, Chap. 10 will (additionally) consider 
a number of these analysis principles. 

• Computation: a sequence of state changes afforded by an execution as pre
scribed by a sequence of statements. 
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• Sequential process: A term which we use alternatively to designate a com
putation, i.e., a sequence of actions (in the real world). 

• Event: an atomic phenomenon. An event is something which either spon
taneously or deliberately "happens": an overflow upon addition inside a 
computer, the reaching of the end of a road; the breakdown of a motor, 
the synchronisation and communication between two (or more) processes 
(a [broadcast] rendezvous), etc. Events usually cause consequential (some
times remedial) actions to happen, or to be required to happen. 

• Action: a term which we use alternatively to designate an atomic step of 
computation, often the effect of (viz. "triggered" by) an event. 

• Actor: that which carries out an action, the computer (in the world of com
puting) or some agent (in the "actual world"). Actors of some "imagined, 
i.e., perceived real world" are resources like machines, people, "Mother 
Nature", etc. Again, in Vol. 3, Chap. 10, we shall systematically cover 
some so-called dynamic domain characteristics of an actual world and the 
actions and actors of this dynamics. 

• Statement: a statement is a piece of text which prescribes an action to be 
carried out by some actor. 

• Context: statements usually contain identifiers which refer to entities 
("things", phenomena, concepts, components) — from a class of such. 
A context identifies which of several alternative, but specific phenomena 
is being referred to. 

• Binding: a binding associates identifiers (names) with their designated phe
nomena. A binding establishes (i.e., 'is') an identification. 

• Allocation: actors represent resources, a vehicle (train, airplane), a com
puter, a storage location. In order for an action to take place an actor 
must be allocated to it. Allocations thus serve as placeholders of actors. 

• Freeing: when an actor is no longer required it may be freed, made available 
to carry out other actions. 

• Binder: a binder is a piece of text which prescribes a binding to be "in 
force" over some span of activity. 

4.3 "Real-World" Contexts and States 

We continue to put double quotes around the term "actual (or real) world". 
The reason is, of course, that we will never "really know" what that world is: 
We perceive it; several people can agree on a number of observations made 
about it; but they must also agree that their perception is an abstraction. That 
is, their perception has focused on certain properties while "suppressing" other 
properties. From now on we shall be less discursive about our subject, and 
more definitive. We shall impose certain views, while hoping that these views 
are generally applicable and broadly acceptable. 



4.3 "Real-World" Contexts and States 99 

4.3.1 A Physical System: Context and State 

We will illustrate some issues of physical system context and state modelling 
using just one example (Example 4.3). Later we shall illustrate similar mod
elling issues for a man-made system. 

Example 4.3 A Liquid Container System (I): Context and State (1): This 
example will be continued, as Example 4.5.6 It is important for the reader 
to distinguish between what the examples are about and what the examples 
attempt to illustrate wrt. methodological principles and techniques. The lat
ter are currently, in these volumes, the important aspect. The former are, 
although not entirely accidental, only "carriers": The specific formulas (in
cluding axioms and calculations) are just "school" examples. 

The liquid container system (Fig. 4.1) consists of a container (a tank), an 
intake pipe with a valve, an outtake pipe also with a valve, an overflow pipe 
(without a valve), and some liquid fluid. The cross-sectional area of the tank 
is fixed and is area A. The intake and overflow pipes are both placed with 
their lower level at height hi over the container bottom. The outtake valve is 
placed with its lower level at height lo over the tank bottom. The valves can 
either be in a fully open or in a fully closed position.7 When open, an intake 
valve will supply the container with s (s: supply) units of volume measure of 
liquid per unit of time. When open, an outtake valve will withdraw w (w: 
withdraw) units of volume measure of liquid per unit of time from the tank. 
The overflow pipe withdraw capacity, o (o: overflow), "matches" or exceeds 
(o>s) the intake pipe supply capacity. A capacity meter senses the current 
height of liquid fluid in the container. 

In modelling this system we choose the following context and state: context: 
the tank measures area A, maximum height H, the in- and outflow capacities 
s, o, and w, and the in- and outtake pipe positions hi and lo. State: the current 
height h ("implements" the capacity measure meter), and the two controllable 
valves, each with their open, closed status. Comments: We need not model all 
the other facets of the liquid fluid container system — the liquid content, the 
amount of change of liquid content as valves open and close, etc. — as their 
values are governed by laws of nature. • 

4.3.2 Configurations of Contexts and States 

The borderline between when to consider something as part of a context, 
and when to consider it part of a state is "soft", i.e., is one of pragmatics. We 
shall introduce the term 'configuration' to stand for the model component that 
combines the context and the state components (of a physical or a man-made 
phenomenon, or, inter alia, of a man-made intellectual concept). 

6The liquid container system example will be further continued in Example 11.1. 
7For the purposes of this example it is not necessary to consider intermediate 

opening and closing valve positions. 
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Usually configurations will be the only semantic arguments to the function 
definitions that otherwise specify model behaviour. 

4.3.3 Nonphysical System: Context and State 

The next example illustrates notions of context and states of man-made sys
tems. The idea is to show that the same pragmatic abstraction delineations 
(context and state) apply. 

Example 4.4 A Bank System Context and State: 

The Context 

We focus in this example on the demand/deposit aspects of an ordinary bank. 
The bank has clients k:K. Clients have one or more numbered accounts c:C. 
Accounts, a:A, may be shared between two or more clients. Each account 
is established and "governed" by an initial contract, t.L ('L' for legal).The 
account contract specifies a number of parameters: the yield, by rate (i.e., 
percentage), y:Y, due the client on positive deposits; the interest, by rate 
(i.e., percentage), i:l, due the bank on negative deposits less than a normal 
credit limit, n:l\l; the period (frequency), f:F, between (of) interest and yield 
calculations; the number of days, d:D, between bank statements sent to the 
client; and personal client information, p:P (name, address, phone number, 
etc.). 
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The State 

Above we focused on the "syntactic" notion of a client/account contract and 
what it prescribed. We now focus on the "semantic" notion of the client ac
count. The client account a:A contains the following information: the balance, 
b:B (of monies in the account, whether debit or credit, i.e., whether positive or 
negative), a list of time-stamped transactions "against" the account: estab
lishment, deposits, withdrawals, transfers, interest/yield calculation, whether 
the account is frozen (due to its exceeding the credit limit), or (again) freed 
(due to restoration of balance within credit limits), issue of statement, and 
closing of account. Each transaction records the transaction type, and if de
posit, withdrawal or transfer and the amount involved, as well as possibly 
some other information. 

A Model 

We consider contract information a contextual part of the bank configuration, 
while the account part is considered a state part of the bank configuration. 
We may then model the bank as follows: 

type 
K, C, Y, I, N, D, P, B, T 
[ Bank: Configuration ] 
Bank = T x S 
[ r-. Context ] 
r = (K ^ C-set) x (C ^ L) 
L = = mkL(y:Y,i:I,n:N,f:F,d:D,p:P) 
[ S: State ] 
£ = C ^ A 
A = {free|frozen} x B x (T x Trans)* 
Trans = Est|Dep|Wth|Xfr|Int|Yie|Frz|Fre|Stm|Sha|Clo 
Dep = = deposit(m:Nat) 
Wth —— withdraw(m:Nat) 
Xfr = = toxfer(to:C,m:Nat) | fmxfer(fm:C,m:Nat) 
Sha =— share(new:C,old:C) 

Bank is here the configuration.8 r is the context. S is the state. • 

4.3.4 Discussion, I 

The banking system so far outlined is primarily a dynamic, programmable 
system: Most transactions, when obeyed, change the (account) state a:S. A 

8But, the bank configuration could, in more realistic situations, include many 
other components not related directly to the client/account "business". 
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few (to wit: establish, share) change the context j-.r. Establishment occurs 
exactly once in the lifetime of an account. Initially contracts, from which the 
j-.r configuration component is built, are thought of as specifying only one 
client. Hence the share transaction, which "joins" new clients to an account, 
could as well be thought of as an action: one changing the state, rather than 
the context. We have arbitrarily chosen to model it as a context changing 
"action"! All this to show that the borderline between context and state is 
"soft": It is a matter of choice. 

4.3.5 Discussion, II 

Notice that, although time enters into the banking model, we did not model 
time flow explicitly. Here, in the man-made system model, it is considered 
"outside" the model. We claim that the concepts of context and state enter, 
in complementary ways, into both physical systems and man-made systems. 
Before proceeding with more detailed analysis of the configuration (cum con
text ffi state) ideas, let us recall that these concepts are pragmatic. 

4.4 First Summary: Contexts and States 

4.4.1 General 

The (system and language semantics) configuration concepts of contexts and 
states intertwine. Decisions on what to include in the context and what to 
include in the state (i) influence one another, (ii) depend on our ability to 
state laws that relate values of context and state components and (hi) is 
otherwise an art! 

Characterisation. By the context of a system, or of the evaluation of a pro
gram, or of a specification in some programming, respectively some specifica
tion language, we usually understand an aggregation, a structuring, of those 
components whose values remain fixed. That is, we understand those compo
nents whose values can be considered constant over some "sizable" ("macro") 
time interval, or over the sequence of many events or actions (operations), or 
over the evaluation of a sizable textual, so-called block part of a program or 
of a specification. • 

So a context is modelled by an abstract or concrete type and has a value. It is 
usually syntactically determined: "one half" of the context, the identifiers (the 
names) being associated, is fully determined statically by some prescription 
text. The decision as to what to relegate to the context influences what to 
"put in" the state, and vice versa. 
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Character i sa t ion . By the state of a system or of the evaluation of a pro
gram or of a specification in some programming, respectively some specifica
tion language, we usually understand an aggregation, a structuring, of those 
components whose values change (i) over time, or (ii) over the sequence of one 
or more events, or (iii) as the result of actions (operations), or (iv) over the 
evaluation of any textual part of a program or a specification — no mat ter 
how close in time, and how many such events and actions there are. • 

So a state is modelled by an abstract or concrete type and has values. It is 
usually semantically determined; it depends on the "course", the behaviour 
of computation. The full force of abstraction plays an important role in the 
design of the context and the state of a system model. 

Character i sa t ion . By a configuration we mean a pair of contexts and states 
appropriate for a consistent and complete elaboration of a system or a syn
tactic text. • 

M o d e l Versus Speci f icat ion S t a t e s 

Let us remind ourselves tha t we construct specifications to model some phe
nomenon — including the modelling of a notion of state of tha t phenomenon 
while at the same time using a specific specification language such tha t an 
evaluation of a specification in tha t language gives rise to a state. The former 
is the model state; the latter is the specification state. The two are (thus) 
not the same. But, in a good specification, they relate. We shall keep this in 
mind in the following and point out which are the model states, which are the 
specification states, and their relationships. 

4.4.2 D e v e l o p m e n t Pr inc ip le s and Techniques 

Pr inc ip le s . Context and State: In any programming or specification lan
guage, and in any system, determine early in the domain analysis phase 
whether separable concepts can be "equated" with context and state notions. 
If so, follow the modelling techniques outlined below. • 

T e c h n i q u e s . Context Design: In analysing a system, or in analysing a (spec
ification or programming) language, determine which names or which identi
fiers are being used, i.e., stand for statically knowable entities. Tha t is, de
termine which names remain "constant" during the lifetime of the system, 
respectively during the elaboration of well-delineated parts of the specifica
tion or program text. Earmark those name designations to be part of the 
context. • 

T e c h n i q u e s . Sta te Design: In analysing a system, or in analysing a (speci
fication or programming) language, determine which names or identifiers are 
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being used, i.e., stand for dynamically changing entities. That is, determine 
which names "vary" in value or even number (quality, respectively quantity) 
throughout the lifetime of the system, respectively during the elaboration 
(i.e., computation interval) of even well-delineated parts of the specification 
or program text. Earmark those name designations to be part of the state. • 

4.5 Programming Language Configurations 

In Vol. 1, Chap. 20, we gave examples of three formal definitions of a block 
structured, but otherwise simple imperative programming language. In those 
definitions environments, binding variable identifiers to locations, served the 
role of contexts, and storages, binding locations to values, served the role of 
states. We modelled the semantics of this one language in three ways: We first 
modelled both contexts and states applicatively, then we modelled contexts 
applicatively and states imperatively and finally we modelled both contexts 
and states imperatively. All three examples illustrated the concept of contexts 
and states. All we shall do presently, in this section on configurations is to 
remind the reader that we have already covered the subject somewhat exten
sively. The reader is thus encouraged to go back to study Vol. 1, Chap. 20. 

4.6 Concurrent Process Configurations 

By a concurrent process model we mean a model which expresses multiple con
current behaviours. This is in contrast to a sequential model, which expresses 
a single behaviour. Recall that models of sequentiality can be expressed in the 
applicative or in the imperative style, or in combinations thereof. The same 
goes for concurrent models. 

4.6.1 The Example 

It may be a bit far-fetched to claim, as we now do, that we can model the 
concepts of context and state by means of processes. So, let us turn it around 
and say instead: How would the concepts of context and state be expressed in 
a process-oriented model? We will illustrate this style of modelling through 
Example 4.5 which is a continuation of Example 4.3. 

Example 4.5 A Liquid Container System, II: Context and State: We con
tinue Example 4.3. The present example will find another formulation in Ex
ample 11.9. 

The present example consists of three parts: a domain analysis, a require
ments and a software design. Some preliminary comments on these parts are: 
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The domain analysis is somewhat extensive; the requirements is somewhat 
"loose", being short; and the design is formalised. 

The purpose of this extended example is to show the interplay between 
the context and the state concepts. We shall, in this second step of the devel
opment of the liquid tank system, take the view that the system is a dynamic 
reactive system (cf. Volume 3, Chap. 10). 

Domain Analysis: Text 

Figure 4.5[A]-[D], mentioned in this section, have been put at the end of this 
section for technical reasons. 

When studying a domain we usually domain-analyse its behaviour before 
narrating (and formalising) possible requirements. We shall therefore in this 
section devote quite some space to a systems analysis. 

To get an idea about how the liquid container system might behave when 
subjected to arbitrary open and closed positions of valves, please consider 
Fig. 4.5[A]. 

In Figs. 4.5[A]-[B] we assume that the contextually determined s and w 
relate as s = 2*w. Setting the valve openings as shown then, illustratively, 
results in the state behaviour as shown. Between times to and t% and times tg 
and £10 the overflow valve is in use. Between times t5 and t$ the outflow valve 
is unnecessarily open: The tank has already been emptied. As from time tu 
and onward (that is, beyond time tri) the container content remains constant. 

To get an idea about how the liquid container system might behave when 
subjected to controlled open and closed positions of valves, please consider 
Fig. 4.5[B]. 

Figure 4.5[B] reflects an experiment set up so that valves will not be un
necessarily open. That is, there will not be overflows: no open inflow valve 
with full tank, and no empty tank with open outflow valve. To get an idea 
about how the liquid tank system state might behave for different relations 
between the contextually determined inflow (s) and outflow (w) capacities, 
please consider Fig. 4.5[C]. 

We briefly comment on Fig. 4.5[C]. If we open both valves for s=w in an 
initial state with an empty tank, then the tank will remain empty (this case 
is not shown). Cases 4 and 5 show the effect of "similar controls" for different 
relations between s and w. 

To get an idea about how to control the settings of the intake and outtake 
valves in order to "fit" the actual filling (or emptying) of the liquid container 
system to a given, desired curve, let us consider Fig. 4.5[D]. 

In Fig. 4.5[D] we assume that there is a smallest time interval between 
(OPEN/CLOSED) valve settings. Let this interval be designated A Then we 
see that, for some desired curves, shown with dashed, slanted lines, there are 
two (or more) ways of achieving the curve. The particular cases shown illus
trate, in experiments 1 and 3, that a curve can be approximated by repeated 
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OPEN/CLOSED settings, while in experiments 2 a curve can, probably in sta
tistically "rare" cases, be achieved by a more "constant", though time-limited, 
simultaneous setting of the two valves. 

A Word of Warning 

The reader should, by now, be aware that we are stepping onto "dangerous" 
ground if we believe we can just simply argue our way into the software en
gineer deciding on the control algorithm for the valve opening and closing to 
achieve arbitrary curves. This is not computer or computing science "stuff"; 
this is a control theory and control engineering subject. So we shall leave 
it with that — and bring in the example only to show: (i) the need, in most 
software development cases, for joint collaboration with other engineering pro
fessionals, and (ii) how that collaboration is faced with both control theoretic 
problems and software development problems. Determining proper A's, for 
example, is a deep problem of control theory in the realm of sampling theory. 

Domain Analysis: Figures 

Comments on the Semantics of Fig. 4.5[A] 

The upper part of Fig. 4.5[A] shows the simple ON/OFF values of the indicated 
two valves and as a function of time. A shaded area means ON; no shading 
means OFF. The lower part of Fig. 4.5 shows the liquid height of the container 
as a function of time. When the intake valve is ON, the outtake valve is OFF, 
and the height is less than the maximal height, then the contents are rising, 
and so on. 

Comments on the Semantics of Fig. 4.5[B] 

Note in Fig. 4.5[B] that when both valves are open and the height is less than 
maximal, then either the height is rising slower than when the outtake valve 
is closed, for s<w, or is falling, for w>s. 

Comments on the Semantics of Fig. 4.5[C] 

The "semantics" of Fig. 4.5[C] is the same as for Figs. 4.5[A] and 4.5[B], 

Comments on the Semantics of Fig. 4.5[D] 

The upper part of Fig. 4.5[D] has same semantics as for the related previous 
figures. The lower half only indicates some properties that are dealt with in 
the text. 
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[A] Time trace of monitored system behaviour, s=2*w 

t1 t2 t3 t4 t5 t6 t7 

[B] Time trace of controlled system behaviour, s=2*w 
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[D] Time trace of curve-fitting controlled system behaviours 

Fig. 4.2. The liquid container system traces 
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Requirements 

We are now ready to specify possible requirements to a liquid tank control 
system: given a desired filling curve, and an initial setting of valves and an 
initial height of liquid in the container, to control valve settings so as to achieve 
a reasonable fit of actual filling state (i.e., height) to desired curve. The above 
formulation is "loose" in the sense that questions could be raised as to the pre
cise meaning of a number of its terms and phrases. We will leave this (albeit 
serious, objectionable) aspect of the requirements to be resolved by techniques 
that are systematically covered in Vol. 3, Chaps. 17-24 (Requirements Engi
neering). Instead, we assume that the form of the desired curve is presented 
to the (required) control system such that it can compare the dynamic state 
behaviour to the static prescription (i.e., the desired curve), and from this 
comparison draw its conclusions as to which valve settings to change or leave 
unchanged at the end of each time interval. 

A Software Design 

We see the overall liquid tank system monitoring and control software 
process as consisting of foi;r component processes: the system process, two 
valve processes and the height-metering process (Fig. 4.3).9 

These processes are connected by input/output channels, as shown in Fig
ure 4.3. The valve processes contain both sensors and actuators. Only the 
height metering process is autonomous: It contains just a sensor. 

We suggest a formalisation: 

type 
Supply, Withdraw, Height 
Curve_Script 
Valve = = open | closed 

channel 
rh:Height, riv,rov,wiv,wov:Valve 

variable 
cr:S 

9Figure 4.3 shows as four rounded corner boxes four processes. Tracing the box 
outline in the direction of their arrows designates a process behaviour. Thus the pro
cesses are here all seen as cyclic. Imagine a token passing around the box outline. At 
any point it designates a process point. The four fat dots designate process starting 
points. The arrows that connect two processes designate channels, and the directions 
indicated by the arrows designate which process outputs and which process inputs 
(arrowhead) a message. When two processes have reached the program points where 
one channel intersects respective box outlines, then a rendezvous between the two 
processes can take place: They are synchronised and can communicate a value. The 
A designates a A time unit delay. Bracketed numerals ([0], [1], [2], [3] and [4]) are 
program point labels and refer to program points in the formal text. 
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Fig. 4 .3 . A liquid container system: a process model 

value 
s:Supply, w:Withdraw, H:Height 

system: ValvexValvexCurve_Scriptx Time -+ Unit 
system(ioc,ooc,cs,it) = i_valve(ioc) ||o_valve(ooc)||control(cs,it) || height () 

i_valve: Valve —> read iv out iv Unit 
i_valve(ioc) = [0] variable vi:Valve := ioc; 

while true do [3] rivlvi; [4] vi := wiv? end 
o_valve: Valve -> read iv out iv Unit 
o_valve(ooc) = [0] variable vi:Valve := ooc; 

while true do [3] rovlvo; [4] vo := wov? end 

control: Curve_Script x Time —>• read a write a Unit 
control(cs,it) = [0] variable tv.Time := it; 

while true do 
wait zi; 
let (i,o) = calc((s,w,H),cs,(tv,[l]rh?,[2]riv?,[2]rov?)) in 
[3] (wiv!i||wov!o) end; tv := tv + A 

end 

calc: (Supply x Withdraw x Height) 
x Curve_Script 

x (Time x Height x Valve x Valve) 
—̂  read a write a Valve x Valve 

We comment on the software design model: We use an imperative version of 
the RSL process concept as introduced in Vol. 1, Chap. 21. Time is rather 
crudely modelled as a variable of the system process. The valve settings are 
modelled as variables of respective valve processes. Valve sensors are modelled 
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as the reading (riv?,rov? [1,2]) of valve settings. Valve actuators are modelled as 
the writing (wiv!,wov! [3]) of valve settings. The height sensor is modelled as a 
further unexplained reading (rh? [1]) from the autonomous height process. The 
regular sensing and actuation at A time intervals is modelled by a wait A time 
period extension to RSL [132,204] (Sect. 15.4). We assume that computation 
time around the system loop is modelled reasonably accurately by the A time 
period. 

We do not further specify the calc algorithm by means of which new valve 
settings are computed other than specifying that it is calculated on the basis of 
the following values: the three contextual values (i-ii) supply and withdraw 
capacities (s,w), and (iii) the maximum height (H). (iv) The desired curve 
script (cs): The three contextual values (i-iii) are intended to be stable, i.e., 
to remain unchanged over a long time, or over many different uses of the same 
or different curve scripts. The curve script is intended to be relatively stable, 
i.e., to remain unchanged over some time, or over many different uses (of that 
same script). Thus a curve script is a relative context quantity, as are the 
four state values: (v) current time (tv), (vi) current height (rh?) and (vii viii) 
the current valve settings (riv?,rov?). calc accumulates, in a global variable, 
a : JC, the past history of the ci;rve fitting so as to find an optimal tactic for 
setting the switches. 

The software design model just presented is idealistic. It assumes per
fectly functioning channel communications, sensors and actuators. Although 
the calc state (a) could remember the previous valve settings we have included 
their sensing anyway — in preparation, it is here suggested, for a sensor/ac
tuator (etc.) system that may fail. • 

4.6.2 Summary 

We have seen a first example of the process modelling of a system. We shall 
often have occasion to illustrate such system process models. We have mod
elled what appears to be physically separably identifiable and more or less 
independently operating components as processes: One process per compo
nent. The phenomena shared between two or more such components have 
been modelled by channels. We have defined some of these processes, but 
only given signature to others (here just the height process). The physical 
world of dynamic system sensors and actuators — and their sensing and ac
tuation — have, in the design specification presented here, been abstracted 
as state variables that are read, respectively written. Because of the process 
decomposition, these readings and writings occur as the result of channel 
events: pairs of output/inputs (!/?). 

One can combine process modelling with either the applicative or the 
imperative style model. Here we have used the applicative context and the 
imperative state style. 
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Characterisation. By a process context we understand a concept of context 
which has been modelled either as a global constant (thus trivially accessi
ble from a process function definition), or as a process function definition 
argument that is passed unchanged to possibly recursive invocations of the 
designated process. • 

Characterisation. By a process state we understand a concept of state 
which has been modelled either as a global variable (thus trivially accessible 
and update-able from a process function definition), or as a process function 
definition argument that is usually (i) passed to possibly recursive invocations 
of the designated process with changed values, or (ii) is a local, imperative 
process definition variable. • 

Techniques. Process Context: Two possibilities offer themselves: If use of 
(access to) process context values can be restricted to a single, or a few func
tion invocations — within a single, or a few process function definitions — and 
hence their respective function definition (s), then the model context can be 
[exceptionally, and as shown in Example 4.5] modelled as global values. Oth
erwise the process context values should be modelled as arguments passed to 
relevant functions: initially as formal parameters of an initial system invoca
tions, and otherwise unchanged to subsequent functions. • 

Principles often have the fate of never being strict. The above is an example. 

Techniques. Process State: Three possibilities offer themselves: If use of (i.e., 
access to/reading of, or update of/writing to) process state values can be 
restricted to a single process function (definition), then the model context 
can either be modelled by (a) global or by (b) local variables. Otherwise, (c) 
the process state values should be modelled as arguments passed to relevant 
functions: initially as formal parameters of an initial system invocations, and 
otherwise, possibly [and usually] changed, to subsequent functions. • 

4.7 Second Summary: Contexts and States 

We have, as mentioned earlier in this chapter and in three examples of Vol. 1, 
Chap. 20, shown three styles of modelling contexts and states.10 Usually, in 
particular when abstracting domains, we start a sequence of developments 
with applicative style models, then we proceed to change state models from 
the applicative to the imperative style. Sometimes, when introducing process-
oriented models, a stage and stepwise development is advised, one which goes 

10We remind the reader: In modelling block-structured, procedural programming 
languages, we can model contexts applicatively or imperatively, and we can model 
storages (i.e., states) applicatively or imperatively. It seemed to not be a good idea 
to model contexts imperatively, but states applicatively! 
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from an applicative (nonprocess) to an applicative process model, and only 
from there to a process model with imperative states. It does not seem to 
be a reasonable style to model contexts imperatively and states applicatively. 
The process style seems a most relevant first step of requirements or software 
design abstraction when the system being modelled is dynamic reactive, as 
shown in Example 4.5. 

4.8 Information States and Behaviour States 

So far we have presented two views of states: states as information summaries, 
and states as behaviour summaries. 

S t a t e s as In format ion or D a t a S u m m a r i e s : In the real world we 
have at any time gathered some information and we have discarded some 
of tha t information. Tha t is, we have an information state. In analogy: In a 
computation we have a state of the variables, tha t is, a da ta state. 

S t a t e s as B e h a v i o u r or P r o c e s s S u m m a r i e s : In the real world the 
usually complex phenomena are at any t ime at some point in their concurrent 
and stepwise behaviour. Tha t point represents a state in analogy to the state 
of the computation process: The program point at which execution control 
presently resides. 

In this section we wish to show tha t the two views are not tha t different, 
just two sides of the same coin. 

4.8.1 P r o g r a m Flowcharts as S t a t e M a c h i n e D a t a 

Every program flowchart can instead be represented as a finite state machine 
(Fig. 4.4). Diamond-shaped boxes with Greek letter labels designate predi-

Fig. 4.4. "Equivalent" flowchart and finite state machine 

cate decisions. A left exit from the diamond-shaped box can be, but is not, 
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annotated with tha t label; whereas a right exit can be, but is likewise also 
not, labeled with its negation. Rectangular boxes with Roman letter labels 
designate actions. We can associate a state (labelled sl-s5) with the first in 
arrow to a sequence of one or more decision boxes. Initial and final states are 
then associated with the initial and final start ing actions. Finite state machine 
transitions are now the pairs of sequences of decision box (left or right exit) 
annotations and action labels. 

4.8.2 F lowcharts = M a c h i n e s 

The predicates a,/3,...,ui evaluate either to t rue (1) or false (0). Gener
ally all have to be evaluated in each state, but some values are ignored (.) 
[i.e., are "don't care" values]. In Fig. 4.4 this is shown by the seven symbol-
long ('0', or '. ', or '1') character sequences next to each action label. These 
(a, /3, 7, (5, e, </>, £) "Boolean" vectors (including dotted "don't care" designa
tions) are listed as if there were ten different symbols. But tha t is only con
ceptually so. The vector (1 ) is, for example, contained in any of the vectors 

(.0...0.), (....1..), ( 0.), (..10..0) and ( 1.). The idea of predicate vector 
(a, /3,7,5, e, </>, £) values is best expressed, we believe, by using this seemingly 
ambiguous shorthand. 

Should an action box contain just a simple, i.e., a direct, recursive "invo
cation of flowchart", then a stack is added to the finite state machine repre
sentation, the current state pushed onto tha t stack (etc.), and a new "image" 
of the finite state machine started in the initial state. Reaching a final state 
of such a recursive flowchart then results in popping any stacked states and 
resuming as from such a state in a thus recovered finite state control. 

The "moral" is: Every program flowchart can be represented as a possibly 
stack-oriented state machine. 

4.8 .3 Flowchart M a c h i n e s 

Thus the consequence is: Any program can be converted (transformed) into 
a normalised program of program schematic form. Tha t of our conceptual 
example becomes: 

variable s := sO; 
let fsm = ... in 
a: actions_a; 
whi le s ^ s5 do 

let input = Eval(a,/3,7,(5,e,</>,£) in 
let (s',act) = fsm(s,input) i n 
case act of 

b —>• act ions_b, 
c —>• act ions_c, 
d —>• act ions_d, 
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e —>• act ions_e, 
f —> actions_f 

e n d ; 
s : = s ' 

e n d e n d e n d e n d 

Here a, b, c, . . . , f stand for encoded action labels, and actions_a, actions_b, 
actions_c, . . . , actions_f for corresponding actions. The Eval function ex
presses tha t the decision box predicates are evaluated and lead to one of 
the input vectors of (a, /3,7,5, e, </>, £) "Boolean" values. They are not "quite" 
Boolean in tha t we additionally allow "don't care" (dot [.]) values. The state 
machine of Fig. 4.4 (right) can be presented in tabular form: 

A F i n i t e S t a t e M a c h i n e 
4. states 

inputs —>• 

si 
s2 
s3 
s4 

..11... 

(sl.a) 

1 

(s2,b) 

01 

(s3,c) 

00 

(s4,d) 

.0...0. 

(s4,d) 

. . . .1 . . 

(s5,e) 

0. 

(s5,f) 

1. 

(s5,f) 

..10..0 

(s5,e) 

The input column dots (.) denote {0|1} (either 0 or 1). Thus we really are 
dealing with a 27 character input alphabet shown in compressed form. Blank 
entries of the table are never encountered, and are thus left unspecified. 

4.8 .4 Observat ions 

The conceptual program, i.e., the program schema above is also a flowchart, 
and corresponds to a one-state flowchart machine (Fig. 4.5). 
This machine "mirrors" the way hardware (i.e., computers) has micropro
grammed the control flow and instruction interpretation of compiled pro
grams. Thus the conversion of an arbitrary flowchart program to normalised 
program schema form is really tha t of translat ing the arbitrary flowchart pro
gram to a microprogram for a software machine. 

4.8.5 Con c lu s ion 

Computat ions based on flowcharts, i.e., on ordinary program text, as delivered 
by a programmer, operate with two state notions: a state of the ordinary 
program variables (the data) , and the state of execution (the locus of control 
— the program pointer). Computat ions based on flowchart machines operate 
with two state notions: the da ta state, as before, and the computation state 
— which is now made into a control da ta state encompassing the finite state 
machine da ta (fsm) and the state control variable s. It is thus we see tha t 
the two state notions meet in the limit: The information (data) state and the 
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Fig. 4.5. A normalised [micro-] program flowchart machine 

behaviour (computation, control) state are one and the same! We can "trade" 
one for the other. 

Flowchart machines provide a normalised representation wherein every ar
bitrary program (via its flowchart) can be converted into a flowchart machine 
program. Thus a flowchart machine program is a specialised program that is 
"molded" over one "template". 

The transformation of ordinary programs to machines is "folklore" [172]. 
The specific transformation, as indicated here, from regular flowcharts to ma
chines is treated in [42]. The transformation from recursive flowcharts is in
dicated in both [42] and [43]. Chapter 11 treats the important engineering 
subject of state machines in some detail. 

4.9 Final Summary: Contexts and States 

The specification concepts of configurations, contexts and states are devel
opment concepts. As such they are meta-concepts. They are brought into 
consideration when abstractly modelling phenomena and actual concepts of 
the universe of discourse under investigation. Contexts model more or less 
static, i.e., syntactic — structural — attributes or properties. States model 
more or less dynamic, i.e., temporal — varying — attributes. 

It is important, however, to observe that we are normally confronted with 
a "smooth" spectrum from more or less static to more or less dynamic at
tributes: For ordinary (non-GOTO) imperative programming languages with 
nested block structures, we have a relatively simple notion of contexts (i.e., 
ENVironments) and states (i.e., SToraGes): 

value 
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M: Syntax ^ ENV ^ STG ^ STG 

For imperative programming languages with nested block structures and 
GOTOs we have a slightly more composite notion of contexts (i.e., ENViron-
ments), CONtinuations, and states (i.e., SToraGes): 

value 
M: Syntax ^ ENV -3 CON H> STG ^ STG 

For systems11 we can have an even finer graduation: 

value 
M: Command ^ W ^ r ^ O ^ S ^ S 

Here we may think of W defining a type of values of some constant syntacti
cal structuring attributes, T defining a type of values of some, for example, 
seasonally regulated tabular attributes, 0 defining a type of values of some 
continuation-like attributes, and S as defining some type of values of dynamic 
state attributes. 

Principles. Configurations — Contexts and States: In analysing any phe
nomenon, any concept, examine to which extent static and dynamic attributes 
determine overall behaviour. Then partition these phenomena and concepts 
into an appropriate spectrum from contextual to state attributes. • 

Techniques. Configurations — Contexts and States: If the principle of con
figurations, contexts and states applies, then model the appropriate types in 
the spectrum and reflect these in the type of all relevant functions. • 

4.10 Exercises 

Exercise 4.1 Traffic Nets: Configurations, Contexts and States. References: 
We refer to earlier exercises: 

• Exercise 2.3: Road Net: Streets and Intersections 
• Exercise 2.4: Air Traffic Route Net 
• Exercise 2.5: Shipping Nets: Lanes and Harbours 

as well as to exercises in the next chapter: 

• Exercise 5.3: Road Traffic 
• Exercise 5.4: Air Traffic 
• Exercise 5.5: Sea and Harbour Traffic 

11We shall, in Sect. 9.5, more systematically discuss the notion of languages and 
systems. 
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Comment: To answer the present exercise you have to first have read the 
problem formulations of Exercises 2.3-2.5. 

The Problem: For each of those exercises (i.e., 2.3-2.5) please identify con
figurations, contexts and states. If need be, try to restructure your type for-
malisations so as to, as clearly as possible, separate contexts from states. 

Exercise 4.2 Supermarkets (I). You are asked to narrate and formalise a 
concept, such as you see it, of a supermarket, with shelves, price-tagged mer
chandise on shelves, a backup store from where near-empty or empty shelves 
can be replenished, consumers being in the supermarket, selecting merchan
dise from shelves and checking these out at a check counter. Assume each shelf 
to be typed with the merchandise it displays or is supposed to display. 

What of the above, i.e., which entities of your model, constitute a (daily) 
context, and which constitutes the current state? 

This exercise is continued in Exercise 5.1. 

Exercise 4.3 Manufacturing (I). The Problem: The production "floor" of a 
metal-working and machine assembly factory (a manufacturing plant) consists 
of a fixed number of machines, mi,777-2, • • •, wM (lathes, drills, saws, cutters, 
etc.), a fixed number of trucks, t\, £2, • • •, tT (that collect machine parts from 
a supply store, or from machine out-queues, and bring them to the in-queues 
of other machines or to a product store), and the two stores. Any machine 
consists of one in-queue, one out-queue and the machine tool (possibly robotic) 
itself. 

A daily production plan, PP, describes a number of separate production 
scenarios: one for each product to be produced that day. For simplicity we 
assume sequential productions: One or more parts are brought from the supply 
store by an available truck to a specific machine, m*, and processed by its tool. 
Then the result, which is to be considered one partial or completed, product, 
Pi, is brought to a next machine, mfc<, or to the product store. In the latter 
case that ends the production scenario. To that next machine, mw, may also 
be brought other supply parts and/or partial products, Pit,Pi2., • •. ,Pim, to be 
processed together with pi, etcetera. 

The Question: Now formalise the above: the shop floor (machines and 
trucks), the stores and the production plan. Your model of a machine should 
include what is in its in- and out-queues, and whether a set of one or more 
parts is being processed, i.e., is "in" the tool. Similarly, your model of a truck 
should model where it is: in a store, at a machine, between the supply store 
and a machine, between two machines, or between a machine and the prod
uct store, and which parts it carries. Finally, your model of a production 
plan should, besides the production scenarios, also model which of the im
plied productions have yet to start, which have been completed, and, for the 
productions "in between", where they have come to in the production process. 

What of the above, i.e., which entities of your model, constitutes a (daily) 
context, and which constitutes the current state? 

This exercise is continued in Exercise 5.2. 





Part III 

A CRUCIAL DOMAIN AND 
COMPUTING FACET 

In this short part, which comprises one chapter, 

• we investigate a simple view of the concepts of t ime , space and t i m e / s 
pace; 

• we bring in some axiomatisations of these concepts; and 
• we present some principles and techniques according to and using which 

we model phenomena of the t ime or space or space / t ime attribute. 
• The simple view emphasises quantitative aspects of time. 

In Part VI we will bring in separate, additional chapters on not only qualitative 
aspects of time: 

• P e t r i Nets, Chap. 12, 
• Message and Live Sequence Charts, Chap. 13, 
• S ta t echa r t s , Chap. 14, 

but also in Chap. 15 on quantitative aspects of time: 

• Interval Temporal Logic (ITL), 

• Duration Calculus (DC) and 
• Timed RSL (TRSL). 





5 

Time, Space and Space/Time 

• The prerequisites for studying this chapter are that you are thoroughly 
familiar with the abstraction and modelling principles and techniques cov
ered so far, but that you have realised that issues of timing and space, and 
their combination, require special attention. 

• The aims are to cover abstraction and modelling principles and techniques 
for some temporal or spatial phenomena, and for some combinations of 
these, while seeking some deeper understanding of time in particular. 

• The objective is to make you reasonably competent in modelling time 
and space. 

• The treatment is discursive, systematic, and formal, while at times ad
ditionally bordering on epistemological concerns. 

Time and space are fundamental concepts. They enter into many aspects of domain 
and requirements models and into software design. Time has, since antiquity, been an 
almost philosophical problem. Space seemed, from the days of Euclid on, somehow 
easier to grasp — until Nikolai Lobachevsky introduced the notion of non-Euclidean 
geometries. Understanding space/time, as from Einstein, became rather more of an 
"exotic" undertaking. 

In this chapter we shall take a look at these notions: Time, space, and 
space/time. Our coverage — here and in Chaps. 12-15 — restricts itself to the 
ways in which these notions, based on our experience, enter into our modelling 
processes and into our models. 

In the present chapter we shall also introduce the notions of discrete and 
continuous (dense) time, and (dense) space. We will also examine events as 
changes in or occurrences of time, space or space/time, or — by analogy — 
events as changes in or occurrences of non-physical "measures". Finally we 
will look at behaviour as discrete or continuous traces (sequences) of physical 
(time, space, space/time) or nonphysical events. 

Later chapters will then cover additional specification principles and tech
niques for special cases of temporal and concurrent phenomena. 
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5.1 Time 

(i) a moving image of eternity; 
(ii) the number of the movement 

in respect of the before and the after; 
(hi) the life of the soul in movement as it passes 

from one stage of act or experience to another; 
(iv) a present of things past: memory, 

a present of things present: sight, 
and a present of things future: expectations. 

(i) Plato, (ii) Aristotle, (Hi) Plotinus, (iv) Augustine; [17]. 

5.1.1 T i m e — T h e Bas i c s 

Three of the above quotes refer to temporal notions, hence are circular, and 
hence are useless to our discussion of time. But they put our mind in the 
right direction — and poetically so. Still, we need to more precisely "encircle" 
concepts of time. "Time is the dimension of change, a fact which distinguishes 
it from the three dimensions of space" [216]. In Vol. 3, Chap. 10 we summarise 
time as a dynamic, active, autonomous domain. For the present chapter we 
wish to consider t ime from various other viewpoints. 

Character i sa t ion . For our mundane purposes we shall take a simplistic view 
of time as a totally (i.e., linearly) ordered dense point set. • 

T i m e - V a r y i n g Ent i t i e s = D y n a m i c Ent i t i e s 

Entities are of types and have values. The entities now considered do not have 
time as values. By a time-varying entity we mean an entity whose value may 
change with time. 

E x a m p l e 5.1 Informal Examples of Time-Varying Entities: The weather 
changes all the time, by itself, autonomously. A railway train t imetable 
changes only when railway planners explicitly update it. (Such timetables 
are inert.) The s ta te of a computer changes for every computer clock cycle, 
programmable*. • 

We shall take a closer look at some specific cases of time-varying entities. 

E x a m p l e 5.2 Rail Unit States: We remind the reader of our — by now — 
long sequence of examples tha t model one or another facet of railway systems. 
We saw earlier tha t a unit could be in either one of possibly several states: 
a 6 u). Sta te changes occur over t ime. Thus we can "lift" our view of units 
from being units to being functions from time to (those previous kinds of) 
units: 
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type 
T, U, C 
UF = T -> U 
E = (C x C)-set 
Q = E-set 

value 
obs_Cs: U -> C-set 
obs_I7: U -> Z1 

obs_/2: U -> /2 
reset_I7: U H> U 

The above formalisation is one way of expressing things. Here is another way, 
which is a narrative: There is a set of time values of type T. There is a set of 
unit values of type U. There is a set of unit connector values of type C. A unit 
state (a : 17) is a set of paths, i.e., a set of pairs of connectors "through" a 
unit. Over a lifetime a unit can be in any one of possibly several states u>: fi. 
From a unit we can observe its connectors, its state and its possible state 
space. The reset_Z' function "closes" a rail unit. That is, leaves it in a state 
with no paths open, but of the same state space: 

value 
V: ( A 4 B ) - > D-infset, K: (A 4 B) 4 B-infset 

axiom 
V u:U • obs_I7(reset_£'(u)) = {} A obs_/2(u) = obs_/?(reset_£(u)) A ... 
V uf:UF,u,u':U • {u,u'}C72.uf => reset_Z'(u)=reset_X'(u') 

assert: obs_i?(u)=obs_i?(u') 
V uf:UF,u,u':U • {u,u'} C ^ufAobs_I7(u)^obs_i;(u') 

=> 3 t,t':T • {t,t'} C Puf => uf(t)=u A uf(t')=u' A t ^ t ' 

The axioms express that the rail units of a unit function are indeed the "same" 
units. For any unit, its reset state is the empty set of paths. A reset unit has 
the same state space as that unit in any of its allowable states. Hence the 
closed, i.e., the empty state is always a member of the state space. For every 
timed unit, all its range units are the same, i.e., have the same state space, 
and if two of them are in different states then they are range units sampled 
at different times. V and 1Z are not proper RSL functions: They yield the 
definition set, respectively the range, of any function. • 

While time changes may change certain entity attributes others may remain 
the same. Example 5.3 illustrates this and indicates possible relations between 
time and space. 

Example 5.3 Dynamic Rail Nets: From a rail net we can observe all its 
units. With any rail unit we can observe its spatial location: Assume, as a 
possibly refutable assertion, that no two units "occupy" overlapping "planes" 
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of X, Y coordinates, unless their Z coordinates differ by a suitable amount . 1 

For "neighbouring" units their "planes" of A', Y coordinates share a common 
"line". Between any two observations of a net, over t ime, the units with the 
same A", Y, Z coordinates have the same state space. 

t y p e 
X, Y, Z 
DN = T -> N 

value 
obs_XYZs: U -> ( X x Y x Z ) - s e t 
obs_XYs: U -> ( X x Y ) - s e t 
obs_Zs: U -> Z-set 
suitable: Z x Z - > B o o l 

a x i o m 
V dn:DN,t :T • t G P d n • 

V u,u':U • {u,u '}Cobs_Us(dn(t)) 
=> u = u ' V obs_XYs(u) n obs_XYs(u') = {} V 

obs_XYs(u) n obs_XYs(u ') / {} => 
V z,z':Z • z e obs_Zs(u) A z' G obs_Zs(u ') =^ suitable(z,z') A 

V t ' :T • t # ' => 
V u,u':U • u G obs_Us(dn( t ) ) A u ' G obs_Us(dn(t ' ) ) 

=> obs_XYs(u) = obs_XYs(u ') => ohs_0(u) = obs_/2(u ') 

This example also illustrates crucial issues of t ime/space . • 

T i m e and D y n a m i c i t y 

In Vol. 3, Chap. 10 we focus on what we shall call static and dynamic at
tributes of entities. Example 5.3 illustrated one such kind of entity possessing, 
depending on the viewpoint (i.e., depending on the span of the scope), static 
and dynamic at t r ibutes . Time, as viewed in this section, is what gives rise to 
dynamicity: Dynamics is a temporal notion. 

5.1.2 T i m e — Genera l I ssues 

In the next sections we shall focus on various models of time, and we shall 
conclude with a simple view of the operations we shall assume when claiming 
tha t an abstract type models time. These sections are far from complete. 
They are necessary, but, as a general t reatment of notions of t ime, they are 

That is, the height difference for two rail routes, one crossing the other by means 
of a bridge or tunnel. 
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not sufficient. We refer the interested reader to special monographs: [112,338, 
405-411,434,508]. 

When you study and apply theories of, for example, real-time, safety-
critical, embedded systems, then you will need a deeper seriousness about 
time than tha t presented here! A more serious t reatment of t ime is presented 
in Chap. 15. 

5.1.3 "A-Series" and "B-Series" M o d e l s of T i m e 

Colloquially, in ordinary, everyday parlance, we think of time as a dense series 
of time points. We often illustrate time by a usually horizontal line with an 
arrow pointing towards the right. Sometimes tha t line arrowhead is labeled 
with either a t or the word time, or some such name. J .M.E. McTaggart 
(1908, [112,338,434]) discussed theories of time around two notions: 

• " A - s e r i e s " : has terms like "past", "present" and "future". 
• " B - s e r i e s " : has terms like "precede", "simultaneous" and "follow". 

McTaggart argued tha t the B-series presupposes the A-series: If t precedes t' 
then there must be a "thing" t" at which t is past and t' is present. He argued 
tha t the A-series is incoherent: Wha t was once 'future', becomes 'present' and 
then 'past ' ; and thus events 'will be events', 'are events' and 'were events', 
tha t is, will have all three properties. 

5.1.4 A C o n t i n u u m T h e o r y of T i m e 

The following is taken from Johan van Benthem [508]: Let P be a point 
structure (for example, a set). Think of time as a continuum; the following 
axioms characterise ordering (< , = , >) relations between (i.e., aspects of) 
time points. The axioms listed below are not thought of as an axiom system, 
tha t is, as a set of independent axioms all claimed to hold for the time concept, 
which we are encircling. Instead van Benthem offers the individual axioms as 
possible "blocks" from which we can then "build" our own time system — 
one tha t suits the application at hand, while also fitting our intuition. 

Time is transitive: If p<p' and p'<p" then p<p". Time may not loop, tha t 
is, is not reflexive: p •$£ p. Linear t ime can be defined: Either one time comes 
before, or is equal to, or comes after another time. Time can be left-linear, 
i.e., linear "to the left" of a given time. One could designate a time axis as 
beginning at some time, tha t is, having no predecessor times. And one can 
designate a t ime axis as ending at some time, tha t is, having no successor 
times. General, past and future successors (predecessors, respectively succes
sors in daily talk) can be defined. Time can be dense: Given any two times 
one can always find a t ime between them. Discrete t ime can be defined. 

a x i o m 
[ TRANS: Transitivity ] V p,p' ,p":P • p < p ' < p " =>- p < p " 
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[ IRREF: Irreflexitivity ] V p:P • p {. p 

[ LIN: Linearity ] V p,p' :P • ( p = p ' V p < p ' V p>p ' ) 

[ L—LIN: Left Linearity ] 

V p,p' ,p":P • (p '<p A p"<p) =>• ( p ' < p " V p ' = p " V p"<p ' ) 

[ BEG: Beginning ] 3 p:P • ~ 3 p ' :P • p ' < p 

[ END: Ending ] 3 p:P • ~ 3 p ' :P • p < p ' 

[ SUCC: Successor ] 
[ PAST: Predecessors ] V p:P,3 p ' :P • p ' < p 
[ F U T U R E : Successor ] V p:P,3 p ' :P • p < p ' 

[ DENS: Dense ] V p,p' :P (p<p ' => 3 p":P • p < p " < p ' ) 

[ DENS: Converse Dense ] = [ TRANS: Transitivity ] 
V p,p' :P (3 p":P • p < p " < p ' =>• p<p ' ) 

[ DISC: Discrete ] 
V p,p' :P • ( p<p ' => 3 p":P • ( p < p " A ~ 3 p '":P • (p<p" '<p" ) ) ) A 
V p,p' :P • ( p<p ' => 3 p":P • ( p " < p ' A ~ 3 p '":P • (p"<p ' "<p ' ) ) ) 

A strict partial order, SPO, is a point structure satisfying TRANS and IRREF . 
TRANS, I R R E F and SUCC imply infinite models. TRANS and SUCC may 
have finite, "looping t ime" models. 

5.1.5 T e m p o r a l E v e n t s 

We shall t ry elaborate a rather broad concept of events. Unfortunately, it is 
too broad to be useful. From tha t , too general, concept we can then, as it suits 
us, "narrow things down" to a more useful concept. First, in this section we 
introduce t ime events. In Sect. 5.2.4 we introduce a similarly broad concept 
of spatial events. Usually the concept of event is closely tied to the concept 
of t ime, but this will not be the only case here. The fact tha t t ime changes 
is considered a 'time change event'. The fact tha t t ime, while continuously 
changing, i.e., "progressing", reaches an a priori (perhaps, to some observers, 
arbitrarily) given time is considered a ' t ime passing event'. The fact tha t t ime, 
while continuously changing, i.e., "progressing", reaches an a priori (again, 
perhaps, to some observers, arbitrary) distance from a given time is considered 
a ' t ime elapse event'. One can thus consider any change in t ime an event, as 
well as define any number of ' t ime £' events. 
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5.1.6 T e m p o r a l B e h a v i o u r 

Usually behaviour is understood to be a temporal notion: Something changes, 
progresses over time. Therefore, to single out a concept ' temporal behaviour' 
may be considered somewhat of an "overkill", i.e., we are juxtaposing two 
names for the same idea: ' temporal ' and 'behaviour' . We shall do it anyway in 
our a t tempt to bring some unconventional thinking to bear on the classical, 
but rather abstract concepts of time, of space and of space/t ime. So, the 
behaviour of t ime is tha t it "flows"; tha t one can consider either continuous 
time or discrete time, as we shall see further on. 

5.1.7 R e p r e s e n t a t i o n of T i m e 

We colloquially say: The time is now five pas t eight pm. — omitting the date. 
We shall generally think of a model of absolute t ime tha t includes "all there 
is to say": 

t y p e 
T, Date, Year, Month, Day, Hour, Minute, Second, ... 

value 
obs_Date : T ->• Date 
obs_Year: T —>• Year 
obs_Month: T -> Month 
obs_Day: T ->• Day 
obs_Hour: T —>• Hour 
obs_Minute: T ->• Minute 
obs_Second: T —• Second 

So we assume a t ime notion, T, such tha t from any such time we can ob
serve the date, the year, the month, the day (in the month) , the hour, the 
minute, the second, etc., of tha t time! But we do not, as of yet, prescribe a 
representation of such a time notion. 

But we shall also operate with a relative time, or t ime interval, ti:TI, 
concept: one for which we, at present, do not specify a representation, but 
one for which we say tha t there are some operations tha t involve times and 
time intervals. Subtracting one t ime from another yields a time interval. One 
can add a time interval to a time to get a time. One can divide two time 
intervals and get an integer fraction, i.e., a rounded natural number. For any 
two times there exists a t ime interval designating their difference. And for any 
time and any time interval there exists a t ime which is their sum. Observe tha t 
the arithmetic operators are overloaded: Here they do not apply to numbers 
or reals, but to times and time intervals. 

t y p e 
TI 

value 
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elapsed_time: T x T -> TI 
- : T x T ->• TI 
+ : TxTI ->• T 
/: TIxTI 4 Nat 

axiom 
V t,t':T • t '>t => 3 tc5:TI • t6 = t ' - t 
V t:T,tc5:TI • 3 t':T • t '>t => t+t6 = t ' 

Now a T/ year does not mean an absolute, specific year, but the number of 
years that have passed between two absolute (T) times. 

Example 5.4 Timetable: Typically an airline or a train (seasonal) timetable 
lists "times" modulo a week and grouped by days of the week, as from one 
absolute time to some other absolute time, the interval designating the season: 

type 
aT, P, Nm, mT 
E)ay_of_week = = monday | tuesday | Wednesday 

| thursday | friday | Saturday | Sunday 
TT = aT 

x (Nm ^ (Day_of_week-set x (P -^ (mT x mT)))) 
x aT 

where the first and the last aT's are absolute times, but the second and third 
times, mT, are the modulo times: 

obs_Hour: mT —> Hour 
obs_Minute: mT —• Minute 

In words: TT lists, left-to-right: the date (aT) of the beginning of the season; 
for every name, nm:IMm, of a transport vehicle (train or flight or . . . ) , the 
nonempty set of the days of the week it operates, and, for every name of 
a stop, p:P (station or airport), the arrival and departure hour and minute 
times; and, finally, the date, aT, of the ending of the season. • 

The notion of timetable illustrated above can be said to represent a discrete 
time notion, but, as we shall see later, denotes a continuous time behaviour. 

5.1.8 Operat ions "on" T ime 

So we can compare times: 

type 
T 

value 
<, <, =, A >, >= T x T => Bool 
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And we can add or subtract t ime intervals, time periods from absolute times, 
and subtract one absolute time from another in order to find the elapsed time, 
a t ime period: 

t y p e 
TI 

value 
+ , - : T x T I - ) T 
- : T x T -> TI 

5.2 Space 

Space: an eternal, infinite, isomorphic continuum 
(like air, only thinner) 

Sir Isaac Newton 

5.2.1 Space — T h e Bas i c s 

Character i sa t ion . Physically manifest entities occupy point set spaces. Dif
ferent entities occupy disjoint point set spaces. We model, initially, point set 
spaces as locations. No location is an empty point set space, but empty point 
set spaces do exist! If two locations are different then they do not "overlap". 
If two locations are the same, i.e., are equal, then their intersection is "that 
same location". • 

t y p e 
L 

value 
{ } = , { } ^ : L -> B o o l 
= ,^: L x L ->• B o o l 
U,n: L x L -> L 

a x i o m 

i±v = {}=(ne A t=v = ene'=i 

Note the prefix is (not) equal to empty point set space. 

5.2.2 Locat ion-Vary ing Ent i t i e s 

Physically manifest entities, E, may move in time, T. At no time can two ("dif
ferent") such entities converge "infmitesimally close" to the same location, L. 
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type 
E, T, L 
S' = T -> (E j * L) 
S = {| s:S' • CONTlNUOUS(s) |} 

value 
CONTINUOUS: S -> Bool 

axiom 
Vs:S • Vt,t ':T • 

{t,t'}cX>s =>- V e,e':E • {e,e'}Cdom s(t) A e^e' => (s(t))(e)^(s(t))(e') 

CONTINUOUS is not a definable RSL function. It is a metamathematical 
'functional' designating whether its argument is a continuous function or not. 
For the particular system of time-located entities, continuity implies that at 
any two infinitesimally close time points an entity located at both times has 
moved at most infinitesimally, i.e., the two locations are infinitesimally close. 
At any two time points an entity located at both times is located at all time 
points between these two time points. 

Example 5.5 Documents, Originals and Copies: Let us consider some con
cepts of documents. The concept of document itself is taken for granted. Each 
document can be uniquely identified. Some documents are originals. We do 
not say anything more than just: 'Some documents are originals'. Each orig
inal is made from some information at some time and at some location. No 
two documents, when disregarding their unique identification, are equal.2A 
document can be a ('direct') copy of some other document. From the unique 
identifier of a copy one can observe the unique identifier of the document from 
which the copy was made. From a copy one can observe the document from 
which it was copied. The "observed document" is itself not a document. From 
the unique identifier of a document one can observe the time and location of 
when and where the document was made or copied. No two documents can 
be made, or copied, at the same time and location. 

type 
I, T, L, D, U, A 

value 
obs_U: (D|zl) -> U 
obs_T: (D[zA|U) -+ T 
obs_L: (D\A\U) -+ L 
is_Orig: (D\A) -> Bool 
is_Copy: (D\A)-> Bool 

2This seemingly cryptic statements says: If I speak of two documents, then I 
mean two different documents. And then I mean that they are different, not by 
nature of having different unique names, but by being locatable in different physical 
locations. They may be stapled together, but they cannot physically "intersect" (i.e., 
"overlap"). 
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make_D: I x T x L ^ D 
copy_D: D x T x L 4 D 
obs_zi: D 4 i , equiv: D x A —> Bool 

axiom 
V i:I,t:Ti':L,d:D • 

is_Orig(make_D(i,t/)) A 
~is_Copy(make_D(i,t,f)) A 
~is_Orig(obs_il(copy_D(d,t/))) A 
is_Copy(obs_zA(copy_D(d,t,(.))) A 
~is_Orig(copy_D(d,t,£)) A 
is_Copy(copy_D(d,t,£)) A 
is_Orig(obs_zi(make_D(i,t/))) A 
~is_Copy(obs_zA(make_D(i,t/))) 

V u,u':U • u=u' = obs_T(u)=obs_T(u') A obs_L(u)=obs_L(u') 
Vd,d':D • d=d' = obs_U(d)=obs_U(d') A obs_J(d)=obs_J(d ' ) , 
V S,S':A '5=S' = obs_U(<S)=obs_U(<$'), 
V i:I,t:T,£L,d:D • 

obs_T(make_D(i,t,£))=tAobs_L(make_D(i,t,£))=£A 
obs_T(copy_D(d,t,£))=tAobs_L(eopy_D(d,t,l>)MA 
obs_T(obs_U(make_D(i,t,^))=tAobs_L(obs_U(make_D(i,t/)))=M 
obs_T(obs_U(copy_D(d,t,£)))=tAobs_L(obs_U(copy_D(d,t/)))=M 
obs_T(obs_zi(make_D(i,t,i ,)))=tAobs_L(obs_zi(make_D(i,t,£)))=M 
obs_T(obs_z\(copy_D(d,t/)))=tAobs_L(obs_zi(copy_D(d,t/)))=^ 

V d:B,S:A • 
~is_Orig(d) A is_Copy(d) A 
~is_Orig(J) A is_Copy(d") A 
is_Orig(d) = is_Orig(obs_zA(d)) A 
is_Copy(d) = is_Copy(obs_zi(d)) A 
equiv(d,obs_-d(d)) A 
V d':D • d^d' => ~equiv(d,obs_^(d')) 

value 
copy_D(d,t,l) as d' pre: obs_T(d) < t 

We leave it to the reader to ponder over the above example! • 

5.2.3 Locations and Dynamicity 

Locations, as point sets, are here considered fixed, static quantities. That 
is, locations as a concept, are here considered independent of ("orthogonal" 
with respect to) time. Thus we work, if not otherwise mentioned, in a rather 
simpleminded Newtonian world, not in an Einsteinian world! Thus time and 
space are here, in this book, considered unrelated. 
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5.2.4 Space — General Issues 

Point, Curve, Surface and Volume 

We take, for granted, the concepts of: (i) point; (ii) curve (line); (iii) surface; 
(iv) volume; (v) points on (or off) a line, on (or away from) a surface, or inside 
(or outside) a volume; (vi) curves on a surface, including curves "crossing" 
("intersecting") a surface, curves "touching tangentially" a surface, etc.; (vii) 
surface(s) of a volume; and (viii) 'cuts' through a volume defining "new" 
volumes and surfaces; etc. We shall anyway take a semiformal look at this 
space (spatial) notion. Consider Fig. 5.1. 

Fig. 5.1. Spatial concepts of axis, point, curve, surface, volume and coincidence 

X, Y, X are an abstract concept of axes forming a notion of a rectilinear, 
orthogonal coordinate system. (These notions are here left further unexplained 
— i.e., we assume them known!) 

Points are basic, further unexplained "atomic" notions, with which we 
shall, as a model, associate x,y,x coordinates in the X,Y,X coordinate sys
tem. A curve is a dense infinite set of points such that, with every "point 
on the curve", there is a notion of "left neighbours" and "right neighbours" 
("taking limits"). A continuous curve has "neighbouring" points that "coin
cide in the limit"! A surface defines a special, dense, infinite set of (surface) 
points such that there is a notion of an infinite set of "neighbourhood" (sur
face) points. A volume (a definite spatial body, an entity) defines a special, 
dense, infinite set of points (within the body [entity]) such that there is a 
notion of an infinite set of "neighbourhood" (volume) points. The density of 
point sets can be defined. 
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Spat ia l "Events" 

We can associate different notions of spatial events: If two points — otherwise 
considered different — coincide, i.e., have the same x,y,z coordinates, then 
tha t is called a "point/point coincidental event". If a point, p, and a curve, 
c, coincide, tha t is: there is a point p' on the curve and tha t "point coincides 
with" p, then tha t is called a "point/curve coincidental event". If a curve 
progresses, "continues" beyond a point, then tha t is called a 'curve continua
tion event'. If a curve changes direction, i.e., the tangent at a point and the 
curve after tha t point "deviate", then tha t is called a 'curve change event'. 
A "crossing" curve is a curve such tha t what might otherwise be considered 
two different points on the curve 'point /point coincides'. If a curve, c, and 
a surface, s, coincide at a point p (which lies both on the curve and on the 
surface), tha t is, there is a point p' on the curve tha t 'point coincides with' 
s, then tha t is called a "curve/space coincidental event". (A curve may have 
many curve/space "coincidental" events.) And so on for intersecting surfaces 
and volumes. Many more or less "artificial" event categories can easily be 
imagined. 

We have brought in the above list of more or less "contrived" event classi
fications to alert the reader to the fact, or at least the possibility, tha t events 
can be associated with physical "changes". Before we allowed the following 
three kinds of time events: continuation of time, i.e., "next t ime"; or the reach
ing of a time point; or the the fact tha t a certain interval has elapsed. Now 
we seem to add other events, called "spatial events": continuation of curves 
(the "next points on a curve"), continuation of surfaces (the "immediately 
neighbouring points on a surface"), continuation of volumes (the "immedi
ately neighbouring points of a volume"), "sharing" of points, etc. We must 
always be prepared to entertain tha t some notion is being designated an event 
(or a category of events). 

Spat ia l "Behaviours" 

If we consider the world from the position of a point, then a curve designates 
a behaviour: a trace — a sequence — of points, and an infinite one "to boot"! 
If we consider the world from the position of a curve, then a surface may 
designate a behaviour: a trace — a sequence — of curves, also infinite. If we 
consider the world from the position of a surface, then a finite (i.e., a closed) 
volume may designate a behaviour: a finite trace — a sequence — of one or 
more surfaces. 

Again we have introduced a seeming "arbitrariness" — a "lofty generality" 
— in our implicit definition of behaviour. This is done deliberately, in order to 
introduce you later to some "narrower" definitions of a concept of 'behaviour' . 
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R e p r e s e n t a t i o n of Spat ia l B o d i e s 

We leave it to classical mathematics and engineering to deal with appropriate 
representations of spatial bodies (i.e., entities). Thus we assume two sorts of 
spaces: spherical and Cartesian, one sort of spatial bodies, and some observer 
functions: 

t y p e 
Space, Body 
X,Y,Z,R = R e a l 
Cartes = X x Y x Y 
Spherical = R x Lo x La 
Lo '=Rat , Lo = {| lo:Lo' • 0<lo<360 |} 
La '=Ra t , La = {j la:La' • 0< l a<90 |} 

value 
obs_extent : Body —>• Space —>• Cartes 
obs_location: Body —> Space —> Spherical 

where extent could be the smallest Cartesian volume tha t contains the body, 
and where the location is its spherical position is some planetary system such 
as Ear th (Fig. 5.2). 

Combination of 
Spherical location 
and Cartesian extent 

Fig. 5.2. An example spherical/Cartesian spatial system 

O p e r a t i o n s o n Space 

Given a spatial body one can identify its location, extent and volume; and one 
can identify its surface area, convexities, concavities, etc. Given a spatial body 
one can subdivide it into a finite set of two or more of bodies (i.e., entities — 
of which it is composed by "glueing"). Given two (or more) bodies one can 
find their possible intersection (i.e., overlap), surfaces they may share, and so 
on. 
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5.3 Space/Time 

In this section we formalise some aspects of the above notion of space (in 
particular of entities [i.e., bodies]) together with a notion of time. 

We now combine space and time. First we show an example. 

5.3.1 A Guiding Example 

Example 5.6 Traffic: Let P designate a ("continuum") set of positions (say 
of vehicles), T designate a ("continuum") set of times, and i\lm designate a 
("discrete") set of names (of the vehicles). Then, by continuous traffic, we 
understand a continuous function from time to functions (i.e., maps) from 
names to positions. By "sampled" traffic, we understand a discretised function 
(i.e., a map) from time to functions (i.e., maps) from names to positions. 

type 
P, T, Nm 
c.TF = T 4 (Nm -^ P) 
dTF = T ^ (Nm rf P) 

value 
wf_TF: (cTF|dTF) -> Bool 

P designates positions of named transport vehicles (flights or trains) Nm. cTF 
stands for continuous traffic, dTF stands for discrete traffic. (dtf:dTF relates 
to ctfxTF iff at least for every time t in the definition set of dtf t is also 
in the definition set of ctf and "maps" onto identical maps from names of 
vehicles to (same) positions.) We say that dtf:dTF represents a "sampling", a 
'discretisation' of ctfxTF. • 

5.3.2 Representation of Space/Time 

The example illustrated a space/time phenomenon. Very typically we model 
such phenomena in either or both of the two ways shown above. In general, 

type 
A 
cTP = T 4 A 
dTP = T rt A 

where A is any notion to which you may attach a concept of space. We usually 
choose partiality ( 4 ) since we "only" assume the function ctf (in cTF) to be 
total in a nontrivial (i.e., in other than a single point) interval: 

ctTP = iT -> A 
iT = {| t:T • begint < t < endt |} 

where the subtype comprehension predicate is informal jargon for: . . . and 
time lies in some closed interval from a definite begin to a definite end time. 
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5.3.3 Blizard's Theory of Time-Space 

We shall present an axiom system (Wayne D. Blizard, 1980, [57]) which relates 
abstracted entities to spatial points and time. Let A,B,... stand for entities, 
p,q,... for spatial points; and t, r for times. 0 designates a first, a begin time. 
Let t' stand for the discrete time successor of time t. Let N(p, q) express that 
p and q are spatial neighbours. Let = be an overloaded equality operator 
applicable, pairwise to entities, spatial locations and times, respectively. Al

p 

expresses that entity A is at location p at time t. We omit (obvious) typings of 
A, B, P, Q, and T. The suffix prime, ', designates the time successor function. 
Thus t' designates the next time after t. 

(II) 
(III) 
(IV) 

(Vi) 
(V ii) 
(V Hi) 

(VI i) 
(VI ii) 
(VI Hi) 
(VI iv) 

(VII) 
(VIII) A% 

(A], A A\) Dp = q 
(A], A B*) D A = B 
(A\} AAtp)Dt = t' 

Vp,q 
Vp,q 

Vp3g, r 
Vt 
Vt 
Vt 

Vt,T 

N(p, q)^P^q 
N(p,q) = N(q,p) 
N(p, q) A N(p, r) A q ^ r 
t^t' 
t ' ^ 0 
t ^ 0 D 3T : t = T' 

T' =t' Dr = t 
4 A A{ D N(p, q) 

A B < A i V ( p , g ) D ~ ( 4 ' AB*') 

Irreflexivity 
Symmetry 

No isolated pts. 

(II-IV,VII, VIII): The axioms are universally 'closed', that is, we have 
omitted the usual \/A, B,p, q, ts. 
(I): For every entity, A, and every time, t, there is a location, p, at which 
A is located at time t. 
(II): An entity cannot be in two locations at the same time. 
(Ill): Two distinct entities cannot be at the same location at the same 
time. 
(IV): Entities always move: An entity cannot be at the same location at 
different times. This is more like a conjecture, and could be questioned. 
(V): These three axioms define N. 
(V i): Same as Mp :~ N(p,p). "Being a neighbour of", is the same as "being 
distinct from". 
(V ii): If p is a neighbour of q, then q is a neighbour of p. 
(V hi): Every location has at least two distinct neighbours. 
(VI): The next four axioms determine the time successor function '. 
(VI i): A time is always distinct from its successor: Time cannot rest. There 
are no time fix points. 
(VI ii): Any time successor is distinct from the begin time. Time 0 has no 
predecessor. 
(VI hi): Every nonbegin time has an immediate predecessor. 
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• (VI iv): The time successor function ' is a one-to-one (i.e., a bijection) 
function. 

• (VII): The continuous path axiom: If entity A is at location p at time t, 
and it is at location q in the immediate next time t', then p and q are 
neighbours. 

• (VIII): No "switching": If entities A and B occupy neighbouring locations 
at time t the it is not possible for A and B to have switched locations at 
the next time t'. 

Discussion of the Blizard Model of Space/Time 

Except for axiom (IV) the system applies to systems of entities that "some
times" rest, i.e., do not move. These entities are spatial and occupy at least a 
point in space. If some entities "occupy more" space volume than others, then 
we may suitably "repair" the notion of the point space P (etc.), however, this 
is not shown here. 

5.4 Discussion 

We have, in this chapter, discussed some notions of time and space, and of 
their combination. In later chapters (Chaps. 12-15) we shall cover additional 
notions of time: qualitative as well as quantitative. And in Vol. 3, Chap. 10 
we shall further cover time notions. 

5.5 Bibliographical Notes 

McTaggart's work is covered by [112,338,434], and Blizard's theory is found 
in [57]. The book by van Benthem is seminal: [508]. 

The considerations of time in this chapter find their final exposition in 
these volumes in Chap. 15. That chapter is focused solely on temporal logics, 
that is, logics that are capable of dealing with time events and durations. 
The, perhaps, most important contributor cum originator of temporal logics 
appears to be Arthur N. Prior. His work is covered by [218,406-411]. 

5.6 Exercises 

Exercise 5.1 Supermarkets (II). Reference is made to Exercise 4.2. Please 
read that exercise carefully. We assume here that you have also provided a 
solution to the questions asked. 

Consider "the day of a supermarket" to be a suitably discretised function 
from supermarkets to supermarkets. Assume that the cash registers start their 
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day empty (no cash is changed). And assume that no deliveries are made 
during open hours, i.e., the day, to the backup store. 

Now write a well-formedness function over the "the day of a supermarket". 

Exercise 5.2 Manufacturing (II). Reference is made to Exercise 4.3. Please 
read that exercise carefully. We assume here that you have also provided a 
solution to the questions asked. 

Now describe production, formally, as a discrete function from time (units) 
to states of stores, trucks and machines. 

We assume that during daytime no deliveries are made to the supply store 
nor are any products sent away from the product store. 

Formalise a well-formedness function which expresses the well-formedness 
of a production, i.e., the timewise progression from configurations to configu
rations. 

Exercise 5.3 Road Traffic. The present exercise follows those of Exercise 2.3 
and Exercise 4.1. You are well advised to first study those exercises and to 
attempt their solution. 

Now consider road traffic as consisting of only one kind of vehicle, say four 
wheel automobiles (i.e., cars). A car is either parked, or it is standing still in 
traffic, or it is moving about in traffic. For a car to be in traffic means that 
it is not parked. We shall henceforth not consider parked cars! For a car to 
be in traffic (furthermore) means that it can move. A car will move if it can. 
For a car to move means that it is changing position along a street or in an 
intersection. A car can move if its next position is not occupied by another car. 
The next position of a car is a location, along a street or in an intersection, 
infinitesimally close to its present position. 

Now assume an indefinite number of cars in traffic. Also consider that the 
road net has a number of entry and exit points at which cars may enter, or 
may leave the road net. These entry and exit points are like the roads "leading 
into or out of the city" as mentioned in Exercise 2.3. If a parked car ceases 
to be parked and starts moving, then it enters traffic. If a moving car ceases 
to be in traffic by parking, then it leaves traffic. At any moment only a finite 
number of cars may enter traffic, and at any moment only a finite number of 
cars may leave traffic. 

1. Provide a definition of what a car position (i.e., car location on a street 
(segment) or in an intersection) is. 

2. Provide a type definition of the concept of car, i.e., road traffic. Assume 
a time interval, from time igtart to time i e n ( j , over which road traffic is 
defined. 

3. Impose suitable constraints on road traffic. 
4. Define a function which applies to any road traffic and which yields the 

first time, after tstart> a^ which a car accident occurs, i.e., when two cars 
collide, i.e., when their locations "overlap". 
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5. Define a function which applies to any road traffic and a time (point) and 
which yields the possibly empty map from cars — which are driving in 
the wrong direction of a one way street — and their positions along those 
street segments. 

Exercise 5.4 Air Traffic. The present exercise follows those of Exercise 2.4 
and Exercise 4.1. You are well advised to first study those exercises and to 
their solution. 

Now consider air traffic as consisting of moving aircraft. That is, aircrafts 
on the ground are not moving! An aircraft can only start from an airport. 
It then enters air traffic by entering an air lane connected to that airport. 
Normally an aircraft then moves continuously along a route (i.e., within a 
sequence of air lanes), and normally an aircraft leaves air traffic when, or by, 
landing in an airport, i.e., by leaving an air lane connected to that airport. 
Abnormally an aircraft, or two, may leave air traffic by exploding in the air, 
for example, by collision. 

1. Provide a definition of what an aircraft position, in the air, is. 
2. Provide a type definition of the concept of air traffic. Assume a time 

interval, from time t start to time t e n c[ , over which air traffic is defined. 
3. Impose suitable constraints on air traffic. 
4. Define a function which applies to any air traffic and which yields the first 

time, after tstart> at which an aircraft collision occurs, i.e., when their 
locations "overlap". 

5. Define another function which applies to any air traffic and which yields 
the first time, after tstart> a* which a single aircraft explosion occurs, i.e., 
when the aircraft "suddenly" disappears from air traffic. 

Exercise 5.5 Ocean Traffic. The present exercise follows those of Exercise 2.5 
and Exercise 4.1. You are well advised to first study those exercises and to 
attempt their solution. 

Now consider ocean traffic as consisting of moving ships. Ships sail from 
harbours to harbours. (Let us disregard ship movements within a harbour, 
from buoys to quays and/or container terminals, etc.) Please read the above 
exercise formulations, i.e., Exercises 5.3-5.4. From those make up your own 
informal description of the problem, and then formalise answers to those de
scriptions. 

Exercise 5.6 Documents: Masters, Copies, Versions. We refer to Exercise 2.1. 
Narrative, I: First we consider an extension. Documents, whether masters 

(i.e., originals) or copies, may be edited. Again it is observable whether a 
document is an edited version, v, as are also, in that case, the time and location 
of edit. Further, what has been changed by the editing can be observed. Let d 
be a document (i.e., in D), then we can postulate two functions, the edit and 
the undo functions: One takes d into v and one takes v back into d. 

1. Now reformulate the formulas of Example 2.1. 
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Narrative, II: Then we consider a concretisation of documents. The documents, 
and hence master, copy and version (edited) documents are, in this exercise, to 
be considered structured. Assume, or suggest, some structure. Hint: It could, 
for example be (i) the structure of a book: chapters, sections, subsections, 
paragraphs with lines or formulas with lines. Or (ii) instead of using chapter, 
section and subsection terms one could use a fixed, finite number of names 
such as admininistrative, anamneses3, tests, analyses, diagnostics, treatments, 
observations, and reconsiderations, with each of these having paragraphs with 
lines, or diagrams, or photos, or X-Rays, or ECGs, or MRSs, or CTRs, or 
other — as, in case (ii), would be typical of PMRs (patient medical records). 

2. Now suggest a further reformulation, i.e., a refinement, of your previous 
formulas — including "narrowing" down, i.e., making a bit more concrete, 
the edit and the undo functions. 
Hint: it could, e.g., be observable where in a document an edit has taken 
place. 

Exercise 5.7 Document System. We refer to Exercises 2.1 and 5.6. 
Now assume a collection of documents and their behaviour over time. 

1. Formalize a function type, cTLDs, from time to sets of spatially located 
documents. 

Then assume the Blizard axiom system (Sect. 5.3.3), except its axiom (IV): 

2. Reformulate the Wayne Blizard axioms in proper RSL. 
3. Further define functions which apply to cTLDs (as well as other appropri

ate arguments) and which 
(a) inserts a master document (into some ctldsxTLDs), 
(b) copies a document, 
(c) edits a document, 
(d) moves a document from one location to a "close-by" location, and 
(e) removes (e.g., "shreds") a document. 

4. Argue, informally, that your function definitions maintain the invariant 
as defined by the (axiom (IV) exempted) Blizard axiom system. 

5. Give an interpretation to the Blizard axiom (I). 
6. Then formulate a discretised model of cTLDs, i.e., dTLDs. 
7. Relate dTLDs to cTLDs. That is, express criteria for when a discretisation 

is a reasonable one. 

Hints: (a) Assume a predicate close which applies to pairs of times or pairs of 
locations (in space) and yields truth when the pair of time points, respectively 
the pair of locations, are sufficiently close to one another, (b) Assume also 
a mathematical, i.e., a non-RSL, function V (and, if need be, another such 
function TV) which applies to arbitrary functions and yields their definition 

information that must be remembered 



5.6 Exercises 141 

sets (respectively their image, i.e., range, sets). Finally, recall the notion of A-
functions (Vol. 1, Chap. 7). Let / be a function from time, T, to something, say 
Aj^B. If from some time point, tp, onwards we wish to express the function 
/ ' which is like / except tha t as from tp the function / ' maps an a, not into 
what was mapped in / but into b, then we express tha t as follows: 

t y p e 
T, A, B 
F = T -»• (A ^ B) 

value 
change: F x T x A x B - > - F 
change(f,t_p,a,b) = A t :T • if t < t _ p t h e n f(t) e lse f(t) f [ai-^b] e n d 

Exerc i se 5.8 Topological Space. We wish to model such spatial concepts as 
next to (close to, adjacent), overlapping (intersecting), within, separate from, 
etc. Thus you are to model a concept of space: 

• Assumptions: 
• There is a basic, further unexplained notion of spatial point. 
• A spatial location is a possibly finite, non-empty set of points. 
• Any spatial line, surface, or volume is a (most likely) infinite set of 

points. 
• There is a notion of distance. 
• Therefore for any two points one can observe their possibly zero dis

tance. 
• There is a notion of circle, and a notion of sphere, hence notions of 

radius, diameter, segment of a circle and the angle it "spans". 
• Questions: 

1. Define a notion of a straight line. 
2. Define a notion of a 'polyline', tha t is, a sequence of connected, but not 

"intersecting" straight lines (segments) such tha t these line segments 
are all in a plane. 

3. Define a notion of a polygon, tha t is, a polyline whose straight line 
(segments) do not intersect, and where the "first point" of a "first" 
line segment coincides with the "last point" of a "last" line segment. 

4. Assume tha t given a polygon one can observe the area tha t it spans. 
5. Now define a notion of spherical polygon: a figure analogous to a plane 

polygon tha t is formed on a sphere by arcs of great circles. 





Part IV 

LINGUISTICS 

In this part we further develop, in four distinct chapters: 

• the non-formalisable concepts of pragmatics: of use, of what we intend, of 
what social effect we wish to occur; 

• the formalisable concepts of varieties of semantics: of what we mean ac
cording to varieties of viewpoints; 

• the formalisable concepts of abstract and concrete syntax: of what we say 
and write; and 

• the concept of semiotics: as "consisting" of the concepts of syntax, seman
tics and pragmatics. 

But, contrary to popular tradition, we treat these three subjects in the order: 

• first pragmatics: Chap. 6, 
• then semantics: Chap. 7, 
• then syntax: Chap. 8, and 
• finally — summing up — semiotics: Chap. 9. 

The four chapters can, however, be read in the reverse order — whereas the 
problems posed in the chapters should be tackled in the reverse order from 
Chap. 9 to Chap. 6. 
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On Exercises of Pa r t IV 

Most exercises of this part ask for solutions that contain both a property-
oriented solution and a model-oriented solution — and along the lines of this 
part. Amongst the exercises of this part, and hence proposed below, there 
is a set which "slowly", i.e., stepwise, "unfolds", that is, designs a specific 
(first) programming language. We refer to Exercise 6.3 for the pragmatics, 
i.e., the motivation for, and justification and use of this language. Subsequent 
exercises then pose questions whose solutions eventually lead up to a design 
of this language. We thus pose these questions in the recommended order of: 

• pragmatics: Exercises 6.3-6.5; 
• semantic types and auxiliary semantic functions: Exercises 7.3-7.7; 
• syntactic types and auxiliary syntactic functions, including well-formedness 

predicates: Exercises 8.7-8.8; and 
• semantic (meaning) functions: Exercise 9.2. 

Exercises 9.3-9.5 then asks for the "stepwise" development of the first lan
guage design (itemised above) via intermediate steps of increasingly more 
"versatile" languages to the language that we claim we are after! 
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Pragmatics 

• The prerequisite for studying this chapter is that you are somewhat 
familiar with issues of syntax and semantics. 

• The aim is to introduce the informal concept of pragmatics. 
• The objective is to help make sure that you do not confuse the non-

formalisable issues of pragmatics with the possibly formalisable issues of 
semantics, and to help make sure that you clearly remember to state mod
elling design decisions whether these were motivated by syntactic, semantic 
or pragmatic concerns. 

• The treatment is discursive and informal. 

6.1 Introduction 

Characterisation. (I) Pragmatics is the study and practice of the factors 
that govern our choice of language in social interaction and the effects of our 
choice on others [84]. 

By pragmatics we thus understand issues of why we use a special construct, 
of why we constrain such a construct and of why we endow it with certain 
properties, and so on. • 

Our "dogma" is this: We can formalise syntax and we can formalise semantics, 
but we cannot formalise pragmatics. 

Our "dogma" is also this: Pragmatics is what we really are "aiming at", 
the real reason behind the use of a certain syntactical uttering, that is, the real 
reason for the use of a specific semantic metaphor. Pragmatics is what "links" 
(formal) uses of language to actions, to what is happening in a real world. 
Pragmatics thus has as its subject issues of choice of syntax and semantics. 
Thus it is metalinguistic wrt. these — and hence cannot possibly be expressed 
at the same level as these, and hence not — i.e., not without introducing rather 
complete confusion — in the same specification language. 
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Characterisation. (II) Pragmatics is the study of language in context, and 
the context-dependence of various aspects of linguistics interpretation. • 

First, one and the same sentence can express different meanings or proposi
tions from context to context, either because of ambiguity or due to indexical-
ity,1 or both. Examples of ambiguities are: visiting doctors can be tedious, or 
the mouse tore up the street. An indexical sentence can change in truth-value 
from context to context owing to the presence of an element whose reference, 
i.e., whose value changes. An example is: it's time for that meeting now. 

We leave the metalinguistics of pragmatics here, but invite the reader to 
think about the epistemological issues involved. 

6.2 Everyday Pragmatics 

Everyday pragmatics may dictate more or less convolute, more or less trans
parent or opaque uses of syntax and semantics. Lack of precision leads to 
misunderstandings. Scope for different interpretations invariably implies that 
there will indeed be many — sometimes opposing, irreconcilable — interpre
tations. 

When moving from everyday situations to software development we must 
tighten our grip, our mastery of the pragmatics to avoid opaqueness and 
misunderstandings. 

6.3 "Formal" Pragmatics 

By "formal" pragmatics we mean the kind of pragmatics considerations that 
we must consider when developing software, that is, when describing domains, 
prescribing requirements or specifying software designs. 

Example 6.1 Some Application Software Package Pragmatics: Various clas
sical examples of the pragmatics underlying different software packages are: 

Budget Planning and Accounting Software: This software is ac
quired by customers in order to help them budget within means, keep track 
of committed and actual expenses, and thus be able to assess the financial 
situation during a budget period. 

Order Processing and Tracing Software: This software is acquired by 
customers in order to improve the response to and tracing of the production 
and delivery status of orders, and thus to improve their company's competitive 
status. 

Merriam-Webster defines indexicality: varying in reference with the individ
ual speaker (the indexical words I, here, now), associated with or identifying an 
individual speaker [483]. 
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Software for Automobile Painting Robots: This software is acquired 
by customers with the triple aim of faster overall painting of series of cars, pos
sibly in different colours, to decrease worker accidents, and to secure uniform 
and high quality paint jobs. 

The italic phrase parts are examples of pragmatics. • 

When we design an end-user application program our design decisions are not 
themselves formalised, or perhaps not even formalisable. But their result is: 
the decision is recorded in the form of formal syntax and formal semantics. 

When we design a programming language we choose to include certain 
value types and exclude others. 

Example 6.2 Programming Language Data Types and Expressions: LISP 
[333] emphasises list structures and thus the manipulation of symbolic, typi
cally logical, structures. 

FORTRAN [13] emphasises arrays of floating point values, i.e., scientific and 
technical computations over one, two, three or more dimensional models of 
physical or engineering structures. 

COBOL [11] emphasises records and business processing, i.e., the admin
istrative handling of data, in particular text strings and formatted number 
values. • 

Example 6.3 Variable Access: We refer the reader to material given in 
Chap. 4: When, as implied by Examples 8.17, 8.19 and 7.5, we choose among 
any of the three environment and storage models (Example 7.5), then the 
choice was based on pragmatic considerations: "Either is as good as any 
other", in theory, but not, perhaps, in practice. And pragmatics is about 
practice, not theory. • 

6.4 Discussion 

6.4.1 General 

We have postulated that pragmatics is not formalisable, and that it is the most 
important aspect behind our designs. In fact, these are indeed postulates. They 
are statements made by us, and these statements are of philosophical nature. 
They hinge upon, they imply issues of, and they reflect issues of philosophies 
and theories of science and engineering. 

It follows that there can be no formal resume of issues of pragmatics — at 
least not based on the shallow treatment of this important subject as given 
here. We do, however, refer to an important mathematical investigation into 
this matter, made in: 
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• N. Nikitchenko: Towards Foundations of a General Theory of Transport 
Domains. Research Report 88, UNU/IIST, P.O.Box 3058, Macau (1996) 
[379]. 

But pragmatics, as a concept, is much broader than treated here. Our presen
tation has been rather utilitarian: We have singled out and focused only on 
the most trivial aspects of pragmatics. More general issues of pragmatics lie 
beyond what these volumes needs to cover. Some of those issues play a role 
in the concept of agents. Here the so-called speech acts performed between 
agents relate strongly to pragmatics. But further than this "teaser" we shall 
not go! 

6.4.2 Principles and Techniques 

Principles. A first principle of pragmatics is to "discover" what the prag
matics of a development problem is, that is, which parts cannot be formally 
explained, but must be documented. • 

Principles. A second, derived principle of pragmatics states: When docu
menting a software development it is mandatory that we (i) start (i.e., prefix), 
(ii) annotate throughout (i.e., "infix"), and (iii) end (i.e., suffix) our informal 
and formal development documentation with necessarily informal expositions 
of the pragmatics underlying the documented development choices. • 

In Vol. 3, Chap. 2 of this series, we introduce the notions of informative, de-
scriptional and analytical documents (or document parts). The role of the 
informative parts is to be a placeholder for, i.e., to spur the careful documen
tation of, pragmatic concerns: those which really motivate software develop
ment. 

Techniques. When "exposing" the pragmatics, or rather, when believing 
that a design decision is based on some pragmatics, it is important to analyse 
the pragmatics exposition for possible "pitfalls": It might be that the desired 
semantics is ambiguous or indexical. • 

6.5 Bibliographical Note 

Pragmatics relates strongly to philosophy of language and theory of signs. 
A wealth of books and journals cover the area. We refer only to a recent 
monograph by Mey: [342]. Pragmatics also relates to speech act theory. We 
refer here to two seminal works and a recent collection of papers [18,464,504]. 
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6.6 Exercises 

Exercise 6.1 The Pragmatics of Implicit Goals. Background: Most cus
tomers, i.e., buyers, of software, on one hand, express very specific function
alities that they expect the acquired (i.e., the developed) software to offer. 
On the other hand, they expect that use of such software will bring about 
changes in their life, or in the "life" of the company using the software. Ex
amples are: (i) Use of the accounting software will make it easier for me to 
keep track of my expenses and help ensure that I stay within budget, (ii) The 
software, when deployed, will help ensure our company's competitive edge 
wrt. our competitors, (iii) The software, when properly used, will help cut 
down on work-related accidents. 

Question: Can you list three further such implicit goals? And can you 
discuss whether these listings, (i—iii) above and your additional three, are of 
pragmatic nature, and why they might not be formalisable? 

Exercise 6.2 User-Friendliness and Pragmatics. Try to find, from the lit
erature, characterisations of the concept of user-friendly software (systems). 
Discuss which aspects of those characterisations are of pragmatic nature. 

The next exercises (Exercises 6.3-6.5) form a preamble for the subsequent 
design of STIL: a simply typed imperative language. 

Future exercises relate to the design of STIL and are as follows: 

• Exercise 7.3: a structured type concept 
• Exercise 7.4: a structured value concept: types 
• Exercise 7.5: a structured value concept: auxiliary functions 
• Exercise 7.6: a structured location concept 
• Exercise 7.7: a structured storage concept 
• Exercise 8.7: syntax of STIL 
• Exercise 8.8: syntactic well-formedness of STIL 
• Exercise 9.2: semantic meaning functions for STIL 

From STIL is designed three more, evolving languages: NaTaTIL, DiTIL and 
DaUTIL: 

• Exercise 9.3: NaTaTIL: a named types and typed imperative language, 
• Exercise 9.4: DiTIL: dimension typed imperative language, 
• Exercise 9.5: DaUTIL: dimension and unit typed imperative language. 

Exercise 6.3 Type and Value System (Preamble for STIL). Background: 
Normally programs, of a programming language, prescribe operations on data, 
i.e., on values. These values are such as Booleans, integers (i.e., "whole" num
bers), floating point numbers, characters and structures — such as vectors and 
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records — over these. Typically the programming language comes equipped 
(i.e., "built-in") with such basic operations as addition, subtraction, multipli
cation, and division (over numbers); conjunction, disjunction, and implication 
(over Booleans); and equality and non- or inequality (over pairs of numbers, 
or pairs of Booleans, or pairs of characters). And usually these operations 
do not extend, as built-in operations, to structures of data. The programmer 
has to write algorithms if such generalisations are needed. The operations 
on values are expressed by writing operator/operand expressions. But in all 
this there "lurks" the possibility that the programmer makes the mistakes of 
expressing the addition of two Booleans, of expressing the conjunction (the 
"and") between a Boolean and a number, etc. 

Question: Explain, in words, how you would design a language of expres
sions which could be constrained in such a way as to prevent, at run-time, the 
addition of, for example, two Boolean values. 

Exercise 6.4 Scalar and Structured Values (Preamble for STIL). Back
ground: To variables one can express the assignation of values. To structured 
variables, such as vectors (of atomic type elements) or records (of atomic, i.e. 
scalar type field elements), one can prescribe the assignation either of scalar 
values to individual elements, respectively fields, or one could think of pre
scribing the assignation of "whole" vector, respectively "whole" record values 
to these variables. By a whole vector value we mean a value which stands for 
a vector value, i.e., which contains several, successive, vector element values, 
and similarly for whole record values. 

Question: Discuss the pros and cons, the advantages and/or disadvantages 
of allowing only scalar values as being expressions, versus allowing also struc
tured values to be expressions. 

Exercise 6.5 "Flat" vs. Structured Locations (Preamble for STIL). Back
ground: In certain programming languages, ALGOL 60 to wit, references 
passed say to procedure calls, could only be to scalar values. That is, if a 
reference was needed to elements of an array, they may have to be passed, 
array element by array element! In other programming languages, for ex
ample ALGOL 68 (or even PL/I), references could be passed to procedure 
invocation, of arbitrary "slices" of an array: a column, a row, or a submatrix 
(several but not all, but ordered, row elements of several, but not all, but 
ordered, column elements) of a matrix. (And similarly for arrays of arbitrary 
higher dimension.) 

Question: Examine current programming languages with respect to their 
offering reference values, i.e., values that are references to (pointers to, loca
tions of) structured values. Include such languages as SML [168,359], C [263], 
C++ [492], C# [207,346,347,401] and Java [8,15,146,301,465,513] in your 
analysis. 

Discuss the pragmatic reasons for thus allowing only flat or for allowing 
structured location values, i.e., values which refer to arbitrary, well-formed 
substructure of structured values. 
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Semantics 

• The prerequisites for studying this chapter are that you are well-versed 
in Vol. l's abstraction principles and techniques, and in Vol. 2, Chap. 3's 
treatment of denotational and computational semantics. 

• The aim is to present a wider variety of kinds of semantics models than 
so far afforded. 

• The objective is to bring the reader further along the road to choose 
pleasing and appropriate semantics modelling types — as well as to en
courage the reader to more seriously study more specialised textbooks on 
mathematical semantics. 

• The treatment is systematic and semiformal. 

This chapter presents a variety of forms of semantics: denotational, macroexpansion, 
computational, attribute grammar, and, somewhat more lightly, axiomatic semantics. 
The chapter provides only a brief overview. Chapter 3 covered two of these main 
approaches to semantics: denotational and computation semantics. Chapters 16-19 
cover several of these forms of semantics. 

7.1 Introduction 

Characterisation. Semantics is the study and knowledge (including speci
fication) of meaning in language [84]. 

By formal semantics we understand a semantics, M, such that we can 
reason about properties of what the syntax describes. 

type 
Syntax, Semantics 

value 
M: Syntax —>• Semantics 
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The challenge of formal semantics is to describe precisely the syntactic and 
the semantics types as well as the meaning function which maps elements of 
the former into elements of the latter. • 

By syntax (as referred to above) we understand a set of abstract types 
(i.e., sorts) or concrete types of syntactic constructs (statements, expressions, 
clauses, commands, etc.). By semantics (as referred to above) we also under
stand a set of abstract (i.e., sorts) or concrete types of meanings. 

If, for example, the syntax is of a notational system, i.e., a language (speci
fication, programming or otherwise), then the meaning of the sentential forms, 
when denotationally expressed, are usually functions over certain types. 

The structure of these types may have been given a syntax, and the mean
ing of these types are now that of the meaning of the language of description, 
not the language being described. 

7.2 Concrete Semantics 

Characterisation. By concrete semantics we understand an "everyday de
scription" of meaning which is "heavily mixed up" with motivational, i.e., 
pragmatic, utilitarian and other "utterings", possibly including requirements 
to computing support for the "thing" that the syntax and semantics is 
"about". • 

7.3 "Abstract" Semantics 

There are several forms of abstract semantics. They are not entirely distinct, 
that is, there are overlaps: 

• denotational semantics 
• macro-expansion semantics 
• operational semantics 
• attribute grammar semantics 
• axiomatic semantics 
• algebraic semantics 

The variety given here is not always mathematically (i.e., metasemantically) 
justifiable. Sometimes it is historically determined (i.e., pragmatically given). 

7.4 Preliminary Semantics Concepts 

Before we more systematically cover some of the above-listed semantic forms 
we need to cover some common notions. 
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7.4.1 Syntactic and Semantic Types 

By a semantics elaborator or an interpreter or an evaluator, we understand 
the main functions which apply to syntactic values and yield semantic values. 

Character isa t ion. By a syntactic type we understand a set of (concrete or 
abstract) syntactic values. So, sooner or later, the specifier has to write down 
— has to construct, has to decide upon — an abstract, and later a concrete, 
syntax (respectively grammar) for the system or language in question: 

type Syn 

By Syn we shall in the following understand the syntactic types of interest. • 

This chapter, however, is about what constitutes semantic types and on how 
to decide upon them. 

Character isa t ion. By a semantic type we understand a set of (concrete or 
abstract) semantics values: meanings of syntactic values. So, sooner or later, 
the specifier has to write down — has to construct or to decide upon — 
abstract, and later concrete, semantic types for the system or language in 
question: 

type Sem, Val 

By Sem we shall in the following understand the semantic types of interest. 
By Val we shall mean some semantic type, colloquially thought of as values 
of expressions. • 

In preparation for the next sections, we remind the reader of the notions of 
configurations, contexts and states, as introduced in Chap. 4. 

7.4.2 Contexts 

We refer to Sect. 4.4.1 for systematic coverage and a characterisation of the 
concept of context. 

Character isa t ion. By the context of a system, or of the evaluation of a 
program, or of a specification in some programming, respectively some spec
ification language, we usually understand an aggregation, a structuring, of 
those components whose values remain fixed, i.e., can be considered constant 
over some "sizable" ("macro") time interval, or over the sequence of many 
events or actions (operations), or over the evaluation of a sizable textual, 
so-called block part, of a program or of a specification. • 
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7.4.3 S t a t e s 

We refer to Sect. 4.4.1 for systematic coverage and a characterisation of the 
concept of state. 

Character i sa t ion . By the s ta te of a system, or of the evaluation of a pro
gram, or of a specification in some programming, respectively some specifica
tion language, we usually understand an aggregation, a structuring, of those 
components whose values changeover time, or over the sequence of one or 
more events, or as the result of actions (operations), or over the evaluation 
of any textual part of a program or a specification — no mat ter how close in 
time or how many such events and actions there are. • 

7 .4.4 Conf igurat ions 

We refer to Sect. 4.4.1 for systematic coverage and a characterisation of the 
concept of context. 

Character i sa t ion . By a configuration we mean a pair of contexts and states 
tha t are appropriate for a consistent and complete elaboration of a system or 
a syntactic text. • 

7.4.5 In terpre ta t ion , Eva luat ion and E labora t ion 

For pragmatic reasons it is convenient to make the following distinctions. 

Character i sa t ion . By interpretation we, more narrowly, understand a pro
cess, a mathematical or a mechanical computation, which yields state results. 
So, sooner or later, the specifier has to write down — has to construct, has to 
decide upon — whether the semantics of the system or language in question 
calls for interpreter functions to be defined: 

value I: Syn —>• Context —> State —> State 

Thus we shall typically interpret s tatements. • 

This chapter presents a number of principles and techniques for deciding upon 
the issue of interpreter functions and for their definition. We say tha t the 
meaning of the syntactic construct, usually what we would call a statement, 
solely represents a side-effect (on the state) . 

Character i sa t ion . By evaluation we, more narrowly, understand a process, 
a mathematical or a mechanical computation, which does not yield state, but 
some other semantic value results. So, sooner or later, the specifier has to write 
down — has to construct, has to decide upon — whether the semantics of the 
system or language in question calls for evaluator functions to be defined: 
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value V: Syn —• Context —> State —> Val 

Thus we shall typically evaluate pure, no side-effect expressions. • 

This chapter presents a number of principles and techniques for deciding upon 
the issue of evaluator functions and for their definition. We say that the 
meaning of the syntactic construct, usually what we would call an expression, 
expresses no side-effect (on the state). 

Characterisation. By elaboration we, more narrowly, understand a process, 
a mathematical or a mechanical computation, which yields both state and 
some other semantic value results. So, sooner or later, the specifier has to 
write down — has to construct, has to decide upon — whether the semantics 
of the system or language in question calls for elaborator functions to be 
defined: 

value E: Syn ->• Context ->• State ->• State x Val 

Thus we shall typically elaborate side-effect expressions or value-yielding 
statements. • 

This chapter presents a number of principles and techniques for deciding upon 
the issue of elaborator functions and for their definition. We say that the 
meaning of the syntactic construct, usually what we would call a clause (or 
state-changing expression), expresses both a side-effect (on the state) and a 
value result. 

Summary: Collectively we refer to I, V, E as M (for Meaning). Let S 
stand for the state type. The three kinds of semantic functions can now be 
summarised: 

• Interpretation: / : Syn —>• Context —>• S —>• S 
• Evaluation: V : Syn ->• Context ->• S ->• VAL 
• Elaboration: E : Syn ->• Context -t S ->• S x VAL 

7.5 Denotational Semantics 

In Sect. 3.2 we covered the concept of denotational semantics, and we did so 
reasonably thoroughly. Suffice it here, therefore, to summarise. 

Characterisation. By denotational semantics we understand a semantics 
which to syntactic constructs associate mathematical functions and whose 
formulation (i.e., composition) satisfies the homomorphism principle. • 

Next, we illustrate simple and composite generic examples of the denotational 
principle. 
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7.5.1 S i m p l e Case 

The meaning of a simple syntactic construct is a simple, explicitly presented 
mathematical function. 

t y p e Syn_a, A, B, Sem = A ->• B 
value M: Syn_a —> Sem 

7.5.2 C o m p o s i t e Case 

The meaning, M, of a composite construct is a (i.e., the homomorphic) func
tion, F, of the meaning, M, of each of the immediate components of the 
composite construct. 

t y p e 
Syn_ac = = atomic(a:Syn_a) | composite(c:Syn_c) 
Syn_c = Syn_ac x Syn_ac x ... x Syn_ac 

value 
F: Sem x Sem x ... x Sem —• Sem 
M: Syn_ac ->• Sem 
M(sy) = 

case sy of 
atomic(sy') ->• M(sy'), 
composite(syl,sy2,...,syn) ->• F(M(syl),M(sy2), . . . ,M(syn)) 

e n d 

Sometimes: 

value 
F(sel,se2,...,sen) = (M(sn))(. . .(M(s2)(M(sl))). . .) 

The above expresses the composition of functions. 
A denotational semantics thus typically assigns to a program of a pro

gramming language a function from input arguments and (begin or s t a r t ) 
states to output results and (end or stop) states. These inputs and beg in 
states can be thought of as those presented during elaboration of the program, 
respectively those in which the elaboration s t a r t s . 

t y p e 
Program, Input, Output , State, ... 

value 
M: Program —>• Input —> State —> State x Output 
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7.6 Macro-expansion Semantics 

We classify macro-expansion semantics as an operational, tha t is, a computa
tional semantics. 

In Sect. 3.3 we covered the notion of computational semantics — a form 
of operational semantics. Here we shall cover another form of operational 
semantics: namely tha t of considering a semantics definition as prescribing 
some sort of rewriting. In Sect. 7.7 we review the computational semantics of 
Sect. 3.3. 

7.6.1 R e w r i t i n g 

We need to informally define some notions of rewriting a specification into an
other specification. In a specification we have a number of function definitions, 
typically of the form: 

value 
f: A x B x ... x C -> D x E x ... x F 
f(a,b,...,c) = £(a,b,...,c,f,g,...,h) 
g: X - • Y, ... 
h: P -> Q 

Given a particular invocation of/ , say f(ea, e^, . . . , e c ) , we can now rewrite tha t 
"call" into something like: S(ea,eb,...,ec,f,g,...,h). Here we must take into 
consideration the notions of free and bound variables, collision and confusion, 
substitution, a-renaming and /^-reduction, for such subsidiary invocations as 
might be expressed by the / s , gs, . . . , and hs in the function / definition 
body S(a,b, ...,c, f,g, ...,h). In other words, the invocation f(ea, e^, . . . ,ec) is 
rewritten into S(ea, e^,..., ec , / , g,..., h), and again into . . . , and so forth. 

As the following short "symbol manipulation development" shows: 

1. let f(x) = (... f ...) in f(a) e n d 
2. let f = A g.Ax.(... g ...)(f) in f(a) e n d 
3. let f = F(f) in f(a) e n d w h e r e F = A g.Ax.(... g ...) 
4. let f = Y F in f(a) e n d 
5. Law: Y F = F(YF) 

one can eliminate named references to a recursively defined function by replac
ing the function name by its fix point. The operator Y is an example of such 
a fix point-taking operator. Any function f which satisfies the equation f=F(f) 
is said to be a fix point of F. Y "produces" one such fix point. There are many 
such fix points, but we refer the reader to more foundational language seman
tics texts for a proper t reatment of this. Any of [93,158,432,448,499,533] will 
do. We treated the notion of fix points in Vol. 1, Chap. 7, Sect. 7.8. 
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7.6.2 M a c r o - e x p a n s i o n 

Character i sa t ion . By a macro-expansion semantics we understand a se
mantics definition in which the meaning of some possibly recursively defined 
syntactical structure is expressed in terms of a possibly fix point-oriented 
rewriting of the semantic functions into expressions of the specification lan
guage void of any reference to semantic function definitions. 

t y p e 
Program, ..., R S L _ T e x t 

value 
M: Program -> R S L _ T e x t 

Thus a macro-expansion semantics is like a compiling from syntactic values 
into RSL text. • 

Macro-expansion semantics is about substitution of "equals for equals", tex-
twise. Let there be three semantic function definitions: 

f(a) = (^(a)...g(g/(a))...^(a)) 
g(b) = (&(b)...h(ftfl(b))...0m(b)) 
h(c) = n(c) 

Here the curly capital letter "labelled" expressions, J-~i(a), J-~j(a), Gf(a), Ge(a), 
Gm(a), T-Lg{b) and T~L{c), stand for arbitrary expressions with possible free 
variables a, b and c, respectively, and in which there are no references to any 
defined semantic functions like / , g and h. 

The function invocation: 

f(e) 

macro-expands, ~>, stepwise: 

^ ( e ) . . . g ( a / ( e ) ) . . . ^ ( e ) 
^Fi(e)...(ge(gf(e))..Mng(Gf(e)))...gm(gf(e)))...Fj(e) 
^Fi(e)...(ge(gf(e))...HWg(gf(e)))...gm(gf(e)))...Fj(e) 

We refer to the macro-expansion semantics example, Example 7.2. 
It is the ability to read any function definition as a macro-expansion defini

tion tha t eventually allows us to "convert" programming language semantics 
definitions into compiling algorithm specifications, tha t is, definitions which 
specify which target language text a compiler should generate for any given 
source language text. For now we can read our semantics definitions as com
piling from source languages to RSL text. 

7.6.3 Induct ive R e w r i t i n g s 

Two kinds of semantic function recursion are possible: Static and dynamic 
inductive semantics. 
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Static Inductive Semantics 

Static inductive semantics derives from the recursive structure of the definition 
of the syntactic construct. Although a syntax description usually employs re
cursion to define the syntactic structures these latter are usually finite. There
fore the semantic function recursion will usually terminate due to finiteness 
of the argument. The recursive descent will finally "reach" atomic elements. 

Example 7.1 Maximal Depth: Although hardly an example of a typical 
semantics, let us express the maximal depth of finite trees: 

type 
Root, Branch, Leaf 
Tree —— tree (root: Root subtrees(Branch »# SubTree)) 
SubTree = = leaf(lf:Leaf) | Tree 

value 
MaxDepth: Tree -» Nat 
MaxDepth(tree(r,sts)) = max md(tree(r,sts)) 
md:Tree —J- Nat-set 
md(tree(r,sts)) = 

{ n | n:Nat,st: SubTree • st £ rng sts A 
n = case st of: leaf( ) —> 1, _ -f l+MaxDepth(st) end } 

where max takes the largest number of a set of natural numbers. • 

Dynamic Inductive Semantics 

The dynamic inductive semantics derives from the repeated computations 
designated by the syntactic constructs. Thus it does not refer to a possible 
recursive definition of a syntactic construct whose semantics is being defined, 
but to a recursive invocation of the semantic function. 

Example 7.2 While Loop: A macro-expansion semantics of a while loop is 
a reasonable example at this stage: 

type 
Expression, Variable 
Statement = Assign | While | Compound | ... 
Assign = = mkAssign(v:Variable,e:Expression) 
While =— mkWhile(e:Expression,s:Statement) 
Compound = = mkComp(sl:Statement,s2:Statement) 

ENV = Variable ^ Location 
S = Location -^ Value 
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The above defines a "classical" fragment of an imperative language, syntac
tically with variables, assignments, while loops, compound statements and 
expressions; and semantically with environments, i.e., contexts (ENV) that 
bind scoped variables to their storage locations, and storages, i.e., states (£) 
that bind locations to values. 

The following definition, although also "appearing" as a denotational se
mantics, is to be read as a macro-expansion semantics — this will be explained 
shortly: 

value 
M: (Expression|Statement) -» ENV -» £ -» RSL_text 
M(mkAssign(v,e))(p)((r) = a f [ p(v) H* M(e)(p)(a) ] 

M(mkWhile(e,s))(p)(cr) = 
if M(e)(p)(a) then M(mkComp(s,mkWhile(e,s)))(p)(<r) else skip end 

M(mkComp(sl,s2))(p)(o-) = 
let a' = M(sl){p)(a) in M(s2)(p)(a') end 

The macro-expansion semantics for the while statement thus amounts to the 
following identity: 

while e do s end = if e then (s;while e do s end) else skip end 

And so on. The above macro-expansion semantics definition of M leads, after 
a few substitutions, to the following intermediate text: 

ifM{e)(p){a) 
then 

let a' = M(s) (p)(tj) in 
ifM(e)(p)(a') 

then 
let a" = M(s)(/?)(</) in 
ifM(e)0>)(<r") 

then let a'" = M(s)(p)0") in ... end 
else skip end end 

else skip end end 
else skip end 

where the ellipses, . . . , stand for an infinite unfolding of the 
M(mkWhile(e,s))(p)(<r) body. 

If we also expand M as applied to the eventual assignment statements and 
to the finite expressions, then we end up with an infinite RSL text without any 
reference to, i.e., invocation of, M. 

We can avoid that infinite expansion if we allow ourselves to instead either 
write the identities illustrated above and right below, or if we instead insert 
the fix point operator Y. That is, either: 
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while e do s end = if e then (s;while e do s end) else skip end 

or: 

YAw.Ae.As.if e then (s;w(e,s)) else skip end 

The line above is an expression and can be inserted anywhere a while loop 
would otherwise appear. 

7.6.4 Fix Point Evaluation 

The fix point operator Y, as mentioned earlier (Sect. 7.6.1, and in Vol. 1, 
Chap. 7, Sect. 7.8), satisfies: 

YF = F(YF) 
/* example */ 
F: Aw.Ae.As.if e then (s;w(e,s)) else skip end 

Y(Aw.Ae.As.if e then (s;w(e,s)) else skip end) 

(Aw.Ae.As.if e then (s;w(e,s)) else skip end) 
(Y(Aw.Ae.As.if e then (s;w(e,s)) else skip end)) 

Ae.As.if e 
then (s;(Y(Aw.Ae.As.if e then (s;w(e,s)) else skip end))(e,s)) 
else skip end 

And so on, ad infinitum! • 

7.7 Operational and Computational Semantics 

In Sect. 3.3 we covered the concept of computational (i.e., operational) se
mantics, and done so reasonably thoroughly. Suffice it here, therefore, to 
summarise, but also to bring some additional variations on the theme of com
putational, cum operational semantics. 

Characterisation. By operational or, which we will take as the same, com
putational semantics, we understand a meaning that is expressed in terms 
of the computation, that is, the "workings" of a possibly recursive machine 
which elaborates the meaning. • 

The operational semantics is thus often expressed in terms of a sequence of 
steps of transitions from one machine state to another. The machine state is 
itself oftentimes rather concretely presented. 
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An operational semantics thus typically assigns to a program of a pro
gramming language a sequence (a trace) of state-to-state transitions — where 
the state also contains the input and the output "media" on which input 
arguments and result values are placed. 

t y p e 
Program, Input, Output , ... 
State = Input x S x Output 

value 
M: Program ->• S ta te" 

These inputs and begin states can be thought of as those presented during 
elaboration of the program, respectively those in which the elaboration starts . 

7.7.1 Stack S e m a n t i c s 

We already covered the notion of stack semantics in Example 3.4 (Sect. 3.3.3). 

Character i sa t ion . By operational stack semantics we understand an oper
ational semantics of a recursively defined syntax which is expressed without 
referring to a machine tha t can "recurse", i.e., a machine tha t is not allowed to 
recursively invoke the interpreter function. Recursion is resolved by suitable 
push and pop operations on one or more stacks. • 

7.7.2 A t t r i b u t e G r a m m a r S e m a n t i c s 

Character i sa t ion . By an attribute grammar semantics we understand an 
operational semantics description which is expressed in terms of a state con
sisting of a (usually large) number of semantic category variables, one set for 
each syntactic category, and one instantiation of each such set for each syntac
tic category (i.e., nonterminal) labelled node in a parse tree of the language 
defined by the syntax. • 

More specifically, an a t t r ibute grammar can be expressed as a set of annotated 
syntactic concrete type (i.e., rule) definitions. 

Each syntactic rule has (i) a left-hand side (lhs) syntactic category (non
terminal) name (CJ), (ii) a right-hand side possibly empty (n = 0) list of 
syntactic category (i.e., nonterminal) names (c^ , C j 2 , . . . ,Cjn) and syntactic 
constants (i.e., literals, omitted below), 

< C i > ::= <Ch> ... < C i 2 > <Gin> 

and (iii) an unordered set of simple ( / ) assignments to a set of semantic 
category typed variables: 
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(iv) The variables are associated with the lhs or the rhs cs: a,b,...,c = 
0 , l , . . . , n . 

We give two very simple examples. They both concern the evaluation of 
floating point numerals into real numbers. Thus we must establish a syntax 
for the numerals, a notion of parse trees and an abstract specification of the 
problem. From this we "derive" the sets of attributed variables and the sets 
of assignment statements to be associated with nodes of such trees. 

Example 7.3 Synthesised Evaluation: 

type 
D = = mi|en|to|tr|fi|fe|se|sy|ot|ni 
P = = p 
R = N x P x F 
N = = s(d:D) | c(n:N,d:D) 
F = = s(d:D) | c(d:D,f:F) 

value 
fp: R -*• Real 
no: N -> Nat 
fr: F -> Real 
ci: D -> Nat 
fp(n„f) = no(n) + fr(f) 
no(n) = case n of s(d)-»ci(d), c(n',d)->10*no(n')+ci(d) end 
fr(f) = case f of s(d)-»ci(d)/10, c(d,f)->(ci(d)+fr(f))/10 end 
ci(d) = case d of nu—M),en—•l,to—»2,...,ni—>-9 end 

variable 
vN type Nat, vF type Real, vD type Nat 

A corresponding synthesised attribute grammar: 

<D> 
<D> 

<D> 
<R> 
<N> 
<N>r 
<F> 
<F>r 

:= 0 
:= 1 

:= 9 
:= <N> 
:= <D> 
:= <N>s 
:= <D> 
:= <D> 

. <F> 

<D> 

<F>s 

vD 
vD 

vD 
vR 
vN 
vNr 
vF 
vFr 

= ci(0) 
= ci(l) 

= ci(9) 
= vN + vF 
= vD 
= 10*vNs + vD 
= vD/10 
= (vFs + vD)/10 

The above attribute grammar "works", i.e., specifies evaluation, from the leaf 
nodes up, assignments are made at leaf nodes, and value computation proceeds 
from the leaf nodes towards the root node. 
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The next attribute grammar — shown after a conventional definition — 
"works", i.e., specifies evaluation, two ways: from the root node down, and 
from leaf nodes up. Assignments made at leaf nodes and value computation 
based on these proceed from the leaf nodes towards the root node. But as
signments made at the root node propagate towards the leaves — where they 
merge with "opposite direction" evaluations. 

Example 7.4 Synthesised and Inherited Evaluation: 

type 
D = = nu|en|to|tr[fi|fe|se|sy|ot|ni 
R = N x N 
N = = s(d:D) | e(n:N,d:D) 

value 
fp: R -> Real, val: N -» Int -> Nat 
fp(n,f) = val(n)(0) + val(f)(-l) 
val(n)(e) = 

case n of 
s(d) -> ci(d)*(10te), 
c(n',d) -» val(n')(if e>0 then e+1 else e - 1 end) + ci(d)*(10te) 

end 

/ argument values "propagate" from the root towards leaves. 

<D> ::= d 

d=Q,l,...,9 
<R> ::= <N>n . <N>f 

<N> ::= <D> 

<M>r ::= <M>s <D> 

vD := ci(d) 

vR 

eNn 
vN 
vNr 
eHs 

= vNn + vNf, 
= +1, eNf := -1 
= vD*(10**eN) 
= vNs + vD 
= eNr + if eNr>0 

then -1 else +1 end 

Some characterisations and comments are in order: 

• Synthesised attributes: An assignment rule associated with a node Co, 
and of the form: 

vu =/K-c 
,Vtk ), a,...,ui some of 1,. 

that is, where a root attribute, i.e., a variable of type t{ is given a value 
that is a function / of the value of variables associated with immediate 
successor nodes va,...,vu, defines vti to be a synthesised attribute: That 
is, its value is computed "bottom up": from subtree attributes to the root 
attributes. 
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• Inherited attributes: An assignment rule associated with a node cp (for 
ft in 1 , . . . , n), and of the form: 

that is, where a subtree attribute, i.e., a variable of type t{ is given a value 
that is a function f of the value of a root attribute v*. , defines v+- to be an 
inherited attribute. Its value is computed "top up": from root attributes 
towards subtree attributes. 

• Composite attributes: An assignment rule associated with a node c^ 
(for P in 1 , . . . , n), and of the form: 

VUC
 :=f(vtjca,---,vtkcui), ce,...,u some of 0 , . . . , n 

that is, where a subtree attribute, i.e., a variable of type t{ is given a value 
that is a function f of the value of both root attributes v*. and imme-
diate successor nodes va,... ,vu, defines vt{ to be a composite attribute. 
Its value is computed "top down and bottom up": "across" subtree at
tributes towards subtree attributes. The notion of composite attributes 
is, strictly speaking, not necessary since one can express the same by a 
suitable introduction of additional attributes and both synthesised and 
inherited assignments. 

• Circular attributes: The totality of parse tree node attribute assign
ments may, erroneously, define circular assignments, that is, assignments 
to an attribute which mutually depend on one another through the "path" 
of other asssignments. We let Fig. 7.1 informally define what we mean by 
path, etc. 

• Theory: The last anomaly points to the need for a proper theory of at
tribute grammars. Such a theory exists; see [128,262,270,272,304,328,376, 
532,541]. 

A Symbolic Attributed Parse Tree Example 

Figure 7.1 shows a symbolic example of a fragment of a parse tree. 
The parse tree is designated by the straight lines connecting the five fat 

bullets (•). The rectangular boxes designate assignment statements. We have 
shown three at each node but mean to indicate an arbitrary number of these, 
hence the "two+... +one" rectangles. The ellipses, . . . , between the "two" and 
the "one" indicate this "could be any finite number (even zero, one, two or 
just three)"! It is symbolic since we do not make the box assignments exactly 
precise. Dashed arrows designate sources of input values for the computation 
of target attribute values. The text at the bottom of the figure lists which 
variables are synthesised, inherited, composite and circular. 
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»1 
| | v 2 

cA A ^ -̂ ^ | v3 

^ . >; . . ! » I'14 

c C * " ' ! I'15 

»9 ! " . - ! - -

Synthesised attributes: v3, v6,... Inherited attributes: v8, v13,... 

Composite attributes: v7, v11, . . . Circular attributes: {V3,v4,v13,v14,v15},... 

Fig. 7 .1 . A symbolic attributed parse tree example 

7.8 Proof Rule Semantics 

Character isa t ion. By an axiomatic or a proof rule semantics we understand 
a set of proof rules, one for each language clause. • 

We shall not exemplify the notion of proof rule semantics at this place in these 
volumes. Instead we will conclude the string of examples of storage models by 
presenting one where assignment is expressed as an axiom. See Example 7.5. 

The example presupposes material presented in subsequent chapters. 

Example 7.5 Axiomatic Specification of Storage: Assignment to Variables: 
In Examples 8.17 and 8.19 we will illustrate (three) syntactical models of 

variable name, value, location and storage structures. In the present example 
we illustrate a model of assignment in the storage model of Example 8.17 of 
either scalar or composite values to similar locations. 

The structured storage value and location model we wish to build shall 
satisfy: The contents of the Vth component of a (record or vector) structured 
location is the i 'th component of the structured (corresponding record, re
spectively vector) value for that storage location. 

type 
VAL = ScaVAL | ComVAL 
ScaVAL = = NumVAL(i:Int) | TruVAL(b:Bool) 
ComVAL = = SeqVAL(xl:Int*) | RecVAL(rv:(Nm ^ VAL)) 
L 
LOC = ScaLOC | ComLOC 
ScaLOC = = NumLOC(i:L) | TruLOC(b:L) 
ComLOC = = SeqLOC(xl:LOC*) | RecLOC(rv:(Nm ^ L O C ) ) 
ENV = V ^ LOC 
STG = LOC T# VAL 
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It proves useful to define a number of auxiliary predicates and observer func
tions: SubLOCs: All (possibly nested) sublocations of a location. 

value 
SubLOCs: LOC -> LOC-set 
SubLOCs(l) = 

(case 1 of 
RecLOC(rm) ->• rng rm U U {SubLOCs(l')|l':LOC«l' G rng rm} 
SeqLOC(sl) -> eleras si U U {SubLOCs(l')|l':L001' e eleras rm} 
_ --)• {} end) U {1} 

IndLOCs: independence of locations, that is, there are two common subloca
tions: 

IndLOCs: LOC x LOC ->• Bool 
IndLOCs(l,l') = SubLOCs(l) n SubLOCs(l') = {} 

is Dense: A vector index set is dense: 

isDense: Int-set —>• Bool 
isDense(xs) = xs = {rninxs .. rnaxxs} 

Well-formedness of locations and values was already defined — except that 
we "glossed" over the independence of locations! We show only the wf_LOC 
case: 

wf_LOC: LOC -> Bool 
wf_LOC(l) = 

case 1 of 
RecLOC(rm) -> V l':LOC«l' € rng rm =>- wf_LOC(l'), 
SeqLOC(sl) 

->• (isDense(inds si) 
A V l',l":LOC-l',l"isin eleras si =* 

wf_LOC(l') A ( l ' / l " =* IndLOCs(l',l")) A 
x_type(l')=x_type(l")) 

-> true end 

Well-formedness of storage: 

wf_STG: STG - • Bool 
wf_STG(stg) = 

V l:LOC«l € dom stg =4> 
wf_LOC(l) A wf_VAL(stg(l)) 
A c_type(l) = c_type(stg(l)) 
A V l ' :L0Ol' € dom stg A 1~-1' => IndLOCs(U') 

Unfolding a well-formed structured storage into a storage also of all subloca
tions can be defined: 
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Unfold: STG -> STG 
Unfold(stg) = 

stgU 
merge { Unfold([b-»v]) | 3 l':LOC • 

1' G d o m stg =^ 1 £ ScaLOC A 
case l' of 

RecLOC(rm) ->• 
3 n:Nm«nm € dora rm =>• (l=l'(n)) A (v=(stg(l'))(n)), 

SeqLOC(sl) ->• 
3 i:Int«i e eleras si => (l=l'(i)) A (v=(stg(l'))(i)) end } 

merge: STG-set 4 STG 
merge (stgs) = 

[ IH-̂ V I l:L0C,v:VAL.3 stg:STG«stg € stgs A stg(l)=v ] 
pre : V s,s':STG«s,s' € stgs=^dom s' D dom s={} 

Finally, we are ready to bring in the three major storage functions. Please 
recall that a location passed to storage can be any sublocation: 

Allocate "fresh", unused, independent storage: 

Allocate: Kind -> STG -»• STG x LOG 
Allocate(k)(s) = 

let 1-.L0C • 1£ dora Unfold(s)Awf_LOC(l)Ax_type(l)=m 
in s U [ 1 H> Undef(k) ] end 

We leave Undef undefined: It yields an arbitrary initial value of the right kind. 
Take Contents of storage location: 

Contents: LOG ->• STG 4 VAL 
Contents(l)(s) = (Unfold(s))(l) 

pre 1 € dom Unfold(s) 

Assign value to location in storage: 

Assign: LOG x VAL -> STG H> STG 
Assign(l,v)(s) as s' 

p re wf_LOC(l)Awf_VAL(v) A 
1 € dom Unfold(s) A x_type(l)=x_type(v) 

post wf_STG(s')A 
let us=Unfold(s), us'=Unfold(s') in 
dom us = dom us' A es'(l)=v A 
V l ' :L0Ol' £ dom us => (IndLOCs(lJ') => us(l')=us'(l')) end 
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7.9 Discussion 

7.9.1 Genera l 

Syntactical structures beg (i.e., "cry out for") a semantic explanation. Seman
tics is what we mean in a phenomenological sense. Semantics is expressed in 
terms of three things: the syntactical "things" to be explained, the seman
tical structures in terms of which to explain it, and the functions (or rela
tions) mapping the former into the latter. Whereas syntax deals with inert 
structures, text strings or mathematical compounds, semantics is expressed in 
terms of functions or relations between such, tha t is, mappings from syntac
tical structures to semantics structures. The choice of technique for, or style 
of, semantical explication is based on pragmatic considerations. 

7.9.2 Pr inc ip le s , Techniques and Tools 

We summarise: 

Princ ip le s . No syntax without a semantics, tha t is, semantics first, then 
syntactics. • 

Pr inc ip le s . Fit the form of semantics to the problem at hand. • 

Such forms are listed next: 

Techniques . There are many forms and techniques involved when developing 
semantics: techniques related to denotational semantics, techniques related to 
computational semantics, techniques related to axiomatic semantics, etc. • 

Tools . There are many tools with which to express, i.e., to define syntax. RSL 
is restricted to not handling reflexive, i.e., recursively defined functional types, 
but is otherwise very useful. When faced with reflexive functional types then 
use an appropriate subset of RSL, one tha t syntactically is similar to the deno
tational semantics specification languages used in either of the books referred 
to in Sect. 7.10. Attr ibute grammars, as will also be illustrated in Sects. 16.9-
16.10, are useful as a means for expressing steps toward automatable syntax 
checkers and code generators. When dealing with concurrency, e.g., parallel 
programming languages, you may have to use the "surrogate" structural op
erational semantics style of RSL introduced in Chap. 19. For other semantics 
situations use simple sorts and axioms. • 
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7.11 Exercises 

Exerc i se 7.1 Macro-expanding a X-Calculus Semantics. We refer to Vol.1, 
Sect. 20.2, where we presented and explained A-expressions for a number of 
imperative language constructs: 
. A-Expressions for Imperative Language Constructs . 

1. Declarations: variable v:Type := expression 

t y p e 
LOC, VAL 
p:ENV = V yrt LOC 
CT:STG = LOC Tjt VAL 

value 

1: RSL_Text 4 ENV 4 STATE 4 STATE 

I[ variable v := e; tx t ](p)(cr) = 
let loc:LOC • loc ^ d o m c , 

v a l = V(e)(p)(<7) in 
let a' = a U [ loc H->- val ] i n 
2 [ t x t ] ( p f [v i-> loc])(cr') 
e n d e n d 

2. Assignments: v := expr 

J [ v := e](p)(<r) = a f [ p(v) ^ V(e)(a) ] 
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3. The skip s tatement: 

I [ s k i p ] = \a:S • a 

4. Statement sequences: s tm_l ;s tm_2; . . . ; s tm_n 

2[s_l;s_2](p)(<7) = I ( s _ 2 ) ( I ( s _ l ) ( a ) ) 

5. Conditional statement: if expr t h e n stm_c e lse stm_a e n d 

I [ i f e t h e n c_s e lse a_s end](p)( t r ) = 
let b = V[e](p)(cr) in 
if b t h e n X[c_s](p)(cr) e lse X[&_s](p)(a) 
e n d e n d 

6. Variable expressions: v 

V[v](p)(<7)=<7(p(l)) 

Give a A-calculus semantics to the following "program": 

variable v := e; v := e ; if v t h e n skip e lse v := e end; v := e 

Exerc i se 7.2 Macro-expanding a Tree-Depth Computation. We refer to Ex
ample 7.1. Given a tree: 

r : tree(r,[bi-)-^,b'i-^tree(r',[ /Si-)-tree( io,[])]),b"i-^tree(r",[])]) 

use the definitions of Example 7.1 to macro-expand MaxDepth(r). 

We continue the line of exercises which is centred around the design of a family 
of programming languages start ing with STIL. 

The STIL, NaTaTIL, DiTIL, and DUaLTIL series of language design ex
ercises are: Exercises 6.3-6.5, 7.3-7.7, 8.7-8.8, 9.2-9.4, and 9.5. 

Exerc i se 7.3 A Structured Type Concept (STIL). You are to formalise the 
below narrative: 

1. A type is either a scalar type, or is a compound type. 
2. A scalar type is either an integer, or is a Boolean, or is a real, or is a 

character. 
3. A compound type is either a vector type or is a record type. 
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4. A vector type consists of vector lower and upper index bounds and a 
vector element type. 

5. Vector lower and upper index bounds are pairs of integer numerals such 
that the first is smaller than the second. 

6. A record type is a set of pairs where each pair consists of a record field 
identifier and a type — such that all record field identifiers of a record 
type are distinct. 

7. A record field identifier is a simple identifier. 

Exercise 7.4 A Structured Value Concept: Types (STIL). Isomorphic with 
the above type concept, you are to express, informally, as a narrative, and to 
formalise a value concept, i.e., to narrate and formalise value types. 

Exercise 7.5 A Structured Value Concept: Auxiliary Functions (STIL). 
Some constraints are to be imposed on the structured values of Exercise 7.4: 

1. A vector value must consist of at least two elements. 
2. The element values of a vector value must all be of the same type. 
3. The indexes of a vector value must form a dense set of integers: If i and 

j are indexes of a vector value, then for all integers k properly between i 
and j , k is also an index of the vector value. 

4. A record value must consist of at least two fields, that is, each with their 
(distinct) field identifier. 

Narrate and formalise the functions necessary to express the above. 

Exercise 7.6 A Structured Location Concept (STIL). Isomorphic with the 
structured value concept of Exercise 7.5 you are to narrate and formalise a 
concept of structured locations and the auxiliary and well-formedness func
tions that go with the type definitions. 

Exercise 7.7 A Structured Storage Concept (STIL). We now wish to design 
and document, i.e., narrate and formalise, a storage concept which allows for 
locations to be mapped into values of the same type, including, and this is the 
interesting bit, for structured locations to be mapped into structured values 
of the same type. Please do so! That is, narrate and formalise. Please consider 
the following issues: allocation of fresh, unused locations; assignment of values, 
also to sublocations; reading of values, also from sublocations; and freeing only 
of allocated locations. 
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Syntax 

• The prerequisite for studying this chapter is that you are familiar with 
Vol. l's abstract specification principles and techniques and the RSL type 
concept. 

• The aims are to review the concept of grammars, notably BNF grammars, 
and their relation to the concept of abstract syntax, as found in, for ex
ample, RSL, to review and further cover the concept of abstract syntax, 
both as axiomatically specifiable, and as specifiable using, for example, the 
RSL abstract type concept, and to exemplify uses of the RSL concrete type 
concept in defining both syntactic and semantic structures, i.e., types. 

• The objective is to ensure that you become a real software engineering 
professional, able to choose pleasing and appropriate type abstractions. 

• The treatment is semiformal and systematic. 

. Conventional View on Syntax . 

Syntax, is, in a sense, what we see (and hear). Syntax looks "smart" or 
it looks "ugly". A person's attention is captured by syntax. One often judges 
a technological gadget by its appearance, but one seldom asks: "What really 
is behind the syntax?" 

General View on Syntax 

Syntax is more than "appearance". It is also structure: structure of 
meaning, structure of configurations, contexts, states and values — such as 
we have treated these concepts in previous chapters. 
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8.1 The Issues 

8.1.1 Form and Content : S y n t a x and S e m a n t i c s 

Often, in ordinary, everyday talk, one speaks of form and content. By form is 
then meant: "What one sees". And by content one then means: "The signifi
cance, the meaning, of tha t which one sees". 

Throughout these volumes we shall use types and type definitions to for
malise form and we shall use function definitions and /or axioms to formalise 
content. 

Usually syntax is taken to be a concept associated with sentential forms: 
"the syntax of a programming language", or "the grammar of English" [241-
244]. The following delineation, as we usually find 'syntax' characterised, 
reflects this one-sidedness: 

Character i sa t ion . By syntax we understand (i) the ways in which words are 
arranged (cf. Greek: syntaxis: arrangement) to show meaning (cf. semantics) 
within and between sentences, and (ii) rules for forming syntactically correct 
sentences [84]. • 

Syntax is important . We need to communicate, between people, often via 
machines, and (thus also) between people and machines. We need to ensure 
tha t communication is effective, elegant and pleasing, and tha t what is written 
and said also covers what is meant — and, preferably, just that ! 

Character i sa t ion . (I) By a formal syntax we understand a syntax such 
tha t we can also analyse sentential structures wrt. their possibly ambiguous 
composition. • 

But not only sentential structures have syntax. Meaning structures, i.e., se
mantical values also have syntax. Hence we expand on the above definition: 

Character i sa t ion . (II) By a formal syntax we understand (i) on one hand, 
the ways in which (i.l) either words are, or (i.2) information (i.e., data) is, 
arranged in order to show (i.l) meaning within and between sentences, (i.2) 
respectively relations between information parts , (ii) By formal syntax we, on 
the other hand, also understand rules for analysing syntactically correct (ii. 1) 
sentences, respectively (ii.2) information (i.e., data) structures. • 

By the above distinction between (i) and (ii) we mean to express the following: 
(i) Any particular sentence (any one particular "piece" of information) has its 
own, specific, i.e., instantiated syntax. And (ii) there are, in general, rules for 
most likely infinite sets of 'particular sentences'. By the above distinction be
tween (i-ii.l) and (i-ii.2) we mean to express the following: (i-ii.l) There is the 
syntax of sentences, usually ut tered or written (hence syntactic) "things", and 
(i-ii.2) there are the syntax of information structures (i.e., semantic "things"). 
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8.1.2 Structure and Contents of This Chapter 

The present chapter is structured — and covers material — as follows. First, 
in Sect. 8.2 we delineate the two main occurrences of syntax: of grammati
cal sentence structures and of semantical information and data structures. In 
Sect. 8.3 we give the first presentation of abstract syntax, in the sense of John 
McCarthy's paper from 1962 [330]. In Sect. 8.5, we review the important area 
of conventional grammars and their dual role as generators of sentential struc
tures, and as bases for constructing recognisers that parse sentential structures 
into parse trees. In Sect. 8.4 we review conventional BNF grammars and parse 
trees and their possible representation. The thread of this section is taken up 
from a previous section, i.e., Sect. 8.5. In Sect. 8.7 we revert to the concept 
of abstract syntaxes, but now as "embodied" in RSL. Finally, in Sect. 8.8 we 
indicate how abstract data types might be implemented in ordinary program
ming languages' rather more constrained concrete structures, notably using 
their conventional record types. 

8.2 Sentential Versus Semantical Structures 

. Syntax for Defining Syntax 

Rules of syntax can be and are used to describe classes of sentential struc
tures as well as classes of meaning structures. We shall use the RSL type 
facility, both as concerns abstract types, i.e., property-oriented sorts, and as 
concerns concrete types, i.e., model-oriented type definitions, to state rules 
of syntax. 

8.2.1 General 

The syntax is sentential, i.e., of text-oriented structures, if we speak of the 
syntax of a language, including a specification or a programming language. 
The syntax is of semantic structures if we speak of a system of denotational 
or computational types. 

Syntax of Sentential Structures 

Characterisation. By sentential structures we mean sequences of characters 
such as you are reading right now, and such as those of formulas, expressions 
and statements of specification and programming languages. • 

But the sentential structures could also be those of certain utterings, certain 
simple and composite terms of a domain-specific professional language such 
as the language of bank clerks, of air traffic controllers or of train dispatchers, 
etc. 
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S y n t a x of Semant i ca l S truc tures 

Character i sa t ion . By semantical structures we mean atomic and composite 
configuration, context and state structures as well as the values tha t relate to 
(i.e., are parts of) these structures. • 

The semantical structures are thus those of the da ta structures of RSL [130] 
and J ava [8,15,146,301,465,513] and other specification or programming 
languages, or of other mathematical systems: algebras, logics, etc. Semantical 
structures are also those of "real world" phenomena: the (context and state) 
structures of a financial service institution, or of air traffic or of a railway, etc. 

8.2.2 E x a m p l e s of Sentent ia l S truc tures 

Syntax is about form, not content, "appearance", not meaning. One can ex
press the number seven in many different ways: 

7, seven, vii, mum, 00111,13 

Tha t is, we can express it as an Arabic-like numeral, as a name spelled out 
in letters, as a Roman numeral, as a sequence of seven "strokes", as a binary 
numeral or as a radix four numeral. 

There may be many syntactic instances signifying the "same thing" (as 
here the number seven), but one may say tha t there is exactly one (instance 
of the) number (that we name) seven! 

E x a m p l e 8.1 A Syntax for Sequences of Real Numerals: A BHF-like1 syntax, 
albeit in RSL, for real numerals, and for suitably bracketed sequences of real 
numerals is given next: 

t y p e 
RealNum = Sign x ISeq x Point x FSeq 
Sign = = nosign | minus [ plus 
Point = = point 
ISeq = = nil() | mkI(s:ISeq,d:Digit) 
FSeq = = nilQ | mkF(d:Digit,s:FSeq) 
Digit = = zero | one | two | three | four | five | six [ seven | eight | nine 

SeqRealNum = Left x RealNum x SRN x Right 
Left = = left, Right = = right 
SRN = = void() | mkS(co:Co,rn:RealNum,sq:SRN) 
Co = = comma 

By a BNF grammar we mean a Backus-Naur Form context-free syntax. The 
Glossary (Appendix B of Vol. 1) defines these and related terms. 
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A real numeral, one that we would normally write, for example: 

12.40, 

would, according to the above syntax, be represented by: 

((nosign, 
mkl(mkl(nil(),one),two)), 
point, 
mkF(one,mkF(two,nil()))) 

A sequence of real numerals, one that we would normally write, for example: 

< + 1 . 2 , - 3 . 4 > 

would, according to the above syntax, be represented by: 

(left, 
((plus,mkl(nil(),one)),point,mkF(two,nil())), 
mkS(comma, 
((mi nus,mkl(nil(), three)), point, mkF(four,ni I ())),void()), 
right) 

Example 8.2 A Syntax for Sequences of Reals: The meaning of a real nu
meral is a real number, and the meaning of a syntactic juxtaposition of real 
numerals is here taken to be a mathematical sequence of the meanings of real 
numerals: 

type 
RN = Real 
SR = RN* 

Note the distinction: syntactic juxtapositions versus semantic sequences. • 

Modelling Simple Sentential Structures 

On one hand, we have simple sentential structures such as identifiers and lit
erals (such as numerals, truth value designators, etc.). On the other hand, we 
have their atomic meanings, viz.: denotations of identifiers, numbers, truth 
values, etc. The former may be elaborately structured, such as were real nu
merals; the latter were just atomic, semantic types. 

Principles. When modelling names of values that are atomic, instead of 
modelling the syntax (i.e., the type) of these names, we suggest to represent 
such syntax directly by the type names of that which they denote. • 
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T e c h n i q u e s . Thus, to spell the above principle out in clear, but fully generic 
examples, we have tha t : 

• the syntax, i.e., the type for natural number numerals is N a t ; 
• the syntax, i.e., the type for integer number numerals is Int; 
• the syntax, i.e., the type for t ru th value literals is Boo l ; and 
• the syntax, i.e., the type for identifiers is some sort name, say Id, Nm, or 

other. 

This simplifies mat ters . • 

There will still be a need for modelling literals in the form of enumerated 
types. 

E x a m p l e 8.3 Syntax of Definite Sets of Literals: We show some simple, 
rather obvious examples: 

t y p e 
Dice = = one | two | three | four | five | six 
WeekDay = = monday | tuesday | Wednesday | thursday | friday 
Season = = winter | spring | summer | fall 
ValveSetting = = on | off 
JobSta tus = = not_scheduled | waiting | running | suspended 

8.2 .3 E x a m p l e s of Semant i ca l S truc tures 

We give the syntax of three kinds of example of semantical structures: pro
gramming language da ta structures (and their types), operating system re
source "state", and the state of a securities exchange, i.e., a stock exchange. 

The reasons why we show these three examples are, they all illustrate 
concepts of semantical structures, they are widely different, i.e., come from 
"entirely" different domains, and they therefore suggest the width and depth 
of the concept of "semantical syntaxes". 

E x a m p l e 8.4 Variant Record Structures of a Programming Language: Let 
us assume the following kind of da ta structures of some (possibly hypothet
ical) programming language: integers, Booleans, characters, simple records, 
simple vectors and variant records. All but the last kind of da ta s tructure are 
called simple da ta structures. A simple record is a finite set of two or more 
uniquely named simple fields. A field name is a further unexplained quantity. 
A simple field is a simple da t a structure. A simple vector is a finite sequence 
of simple da t a structures. A variant record da t a s tructure is a finite set of 
two or more uniquely named variant or simple fields. A field is either a sim
ple da ta structure, or is a conditional field. A conditional field is a pair: The 
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first element of the pair is a simple enumerated value from a "small" set of 
such enumeration values. Let us refer to this enumeration set as {a, 6, .. . ,c}. 
The second element is a simple data structure of a kind indicated by the first 
element enumeration value. If, for example, that first element is a, then the 
second element is a simple data structure of one kind. If, instead that first 
element is b, then the second element is a simple data structure of another 
kind, etcetera. 

To formalise the above, we distinguish between kind of data structure and 
value of data structure. By 'kind' we mean the same, basically, as type. First, 
we define the types of data structures: 

type 
Fn, Enum 
Nat2 = {| i:Nat • i>2 |} 
DST = SiDST | VaRT 
SiDST = IntT | BoolT | CharT | SiRT | SiVT 
IntT = = integer 
BoolT = = boolean 
ChaT = = character 
SiRT = = mkSiRT(rt:(Fnwf SiDST)) 
SiVT = = mkSiVT(hi:Natl,tp:SiDST) 
VaRT = = mkVaRT(vt:(Enum ^ (Fn ^ SiDST))) 

Then we define the values of data structures: 

type 
DSV = SiDSV | VaRV 
SiDSV = IntV | BoolV | CharV | SiRV | SiVV 
IntV = = mkIntV(i:Int) 
BoolV = = mkBoolV(b:Bool) 
CharV = = mkCharV(c:Char) 
SiRV = = mkSiRV(rv:(Fn ^ SiDSV)) 
SiVV = = mkSiVV(hi:Natl,vv:SiDSV*) 
VaRV = = mkVaRV(e:Enum,rv:(Fn7rf. SiDSV)) 

Type checking is now simple. Let a pair of a type and a value be postulated 
to match one another: 

value 
type_check: DST x DSV -> Bool 
type_check(t,v) = 

case (t,v) of 
(integer,mkIntV(i)) —> true, 
(boolean,mkBoolV(b)) —>• true, 
(character,mkCharV(c)) —> true, 
(mkSiRT(rt),mkSiRV(rv)) -> 
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dom rt = dom rv A 
V f:Fn»f 6 dom rt =£• type_check(rt(f),rv(f)), 

(mkSiVT(hi,vt),mkSiVV(hi',vv)) -> 
hi <hi A len vv < hi A 
V v:SiDSV«v £ elems vv • type_check(vt,vv), 

(mkVaRT(vt),mkVaRV(e,rv)) ->• 
e G dom vt A type_check(vt(e),rv). 

_ —>• false 
end 

Example 8.5 Directory Structures of an Operating System: Let an operating-
system keep track of user resources: user directories (and their files), standard 
operating system facilities (compilers, database management systems, etc.), 
machine resources (storage by category, input/output units, etc.), and so on. 
Let, for each of the suitable categories of user, operating system and machine 
resources, there be a suitably, i.e., hierarchically (i.e., tree) structured subdi
rectory. Let the overall machine state "within" which the operating system 
operates be referred to as a. 

Here is a proposal: 

S = SR x STG x ... 
Uid, Cid, Mid 
SR = UR x OR x MR 
UR = Uid T& U_DIR 
OR = Cid ^ 0_RES 
MR = Mid -nf M_RES 
U_DIR = (Fn T# FILE) x (Dn -^ U_DIR) 
FILE = Text | Exec | ... 
Exec = S 4 S 
0_RES = (Fn rrt FILE) x (Dn ^ 0_RES) 
M_RES = ... 

We leave it to the reader to decipher the above! • 

Example 8.6 Context and State Structures of a Stock Exchange: Let a 
securities instrument exchange, i.e., a stock exchange, at any one time, say 
during trading hours, be said to be in a state that reflects buy and sell of
fers. A buy (or a sell) offer refers to (i) the name of the buyer (seller), (ii) 
the name of a securities instrument (a stock, e.g., IBM), (iii) the quantity 
(i.e., the number of stocks) to be bought (respectively sold), (iv) the highest 
(respectively lowest) price beyond which it cannot be bought (sold), (v) the 
allowable lowest (highest) price beyond which it can (still) be sold (bought), 
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(vi) the time period, in terms of a pair of times (minute, hour, day, month, 
year), i.e., a time interval, during which the offer is (expected to be) valid. 
Let the stock exchange state also reflect the actually transacted buy and sell 
offers (i.e., of some past), as well as those buy and sell offers that might have 
been withdrawn from being offered. 

type 
Sn, Nm, Hour, Min, Day, Month, Year 
SEC = OFFERS x ACTED x WTHDRWN 
OFFERS = BuyOffers x SellOffers 
BuyOffers,SellOffers = Sn ^ OFR 
OFR = Nm -» (Intvl ^ (Quant x Low x High)) 
Intvl = TimeDate x TimeDate 
TimeDate = Hour x Min x Day x Month x Year 
Quant = Nat 
Low, High = Price 
Price = Nat 
ACTED = N m ^ (Sn ^ (TimeDate-^ Quant x Price x (Low x High))) 
WTHDRWN = TimeDate ^ (BuyOffers x SellOffers) 

We leave it to the reader to decipher the above and to ponder about possible 
well-formedness constraints. Also, the above reflects just one of a possible 
variety of formalisations. Which to choose depends on which kind of operations 
one wishes to perform on a stock exchange: place a buy offer, place a sell offer, 
effect a buy/sell transaction, withdraw an offer, etc. • 

8.3 The First Abstract Syntax, John McCarthy 

In the present section we focus on abstract, implementation-unbiased syntaxes 
for sentential structures. The first abstract syntax proposal was put forward 
by John McCarthy in [330] where an analytic abstract syntax was given for 
arithmetic expressions — given in BNF in Example 8.8 — the latter in what 
McCarthy calls a synthetic manner. In an analytic abstract syntax we pos
tulate, as sorts, a class of terms as a subset of all the "things" that can be 
analysed. And we associate a number of observer functions with these. We 
covered an axiomatisation of McCarthy's notion of Analytic and Synthetic 
Syntax in Vol. 1, Chap. 9, Sect. 9.6.5. 

Example 8.7 Property-Oriented Abstract Syntax of Expressions: First we 
treat the notion of analytic grammar, then that of synthetic grammar. 
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8.3.1 Analytic Grammars: Observers and Selectors 

For a "small" language of arithmetic expressions we focus just on constants, 
variables, and infix sum and product terms: 

type 
A, Term 

value 
is_term: A —y Bool 
is_const: Term -> Bool 
is_var: Term —> Bool 
is_sum: Term —>• Bool 
is_prod: Term —> Bool 
s_addend: Term —y Term 
s_augend: Term —> Term 
s_mplier: Term —> Term 
s_mpcand: Term —> Term 

axiom 
V t:Term • 

(is_const(t) A ~ (is_var(t) V is_sum(t) V is_prod(t))) A 
(is_var(t) A ~ (is_const(t) V is_sum(t) V is_prod(t))) A 
(is_sum(t) A ~ (is_const(t) V is_var(t) V is_prod(t))) A 
(is_prod(t) A ~ (isc_const(t) V isv_ar(t) V is_sum(t))), 

V t:A • is_term(t) = 
(is_var(t) V is_const(t) V is_sum(t) V is_prod(t)) A 
(is_sum(t) = is_term(s_addend(t)) A is_term(s_augend(t))) A 
(is_prod(t) = is_term(s_mplier(t)) A is_term(s_mpcand(t))) 

A is a universe of "things": some are terms, some are not! The terms are re
stricted, in this example, to constants, variables, two argument sums and two 
argument products. How a sum is represented one way or another is imma
terial to the above. Thus one could think of the following external, written 
representations: 

a + b, +ab, (PLUS .4 B), 7° x l l 6 . 

8.3.2 Synthetic Grammars: Generators 

A synthetic abstract syntax introduces generators of sort values, i.e., as here, 
of terms: 

value 
mk_sum: Term x Term —>• Term 
mk_prod: Term x Term —> Term 

axiom 
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V u,v:Term • 
is_sum(mk_sum(u,v)) A is_prod(mk_prod(u,v)) A 
s_addend(mk_sum(u,v)) = u A s_augend(mk_sum(u,v)) = v A 
s_mplier(mk_prod(u,v)) = u A s_apcand(mk_prod(u,v)) = v A 
is_sum(t) => mk_sum(s_addend(t),s_augend(t)) = t A 
is_prod(t) => mk_prod(s_mplier(t),s_mpcand(t)) = t 

McCarthy's notion of abstract syntax, both the analytic and the synthetic 
aspects, are found in most abstraction languages, thus are also in RSL. 

8.4 BNF Grammars Pb Concrete Syntax 

In the present section we focus on concrete, implementation-biased syntaxes 
for sentential structures. Example 8.1 illustrated a BNF grammar-like usage of 
the RSL type definition facility. BNF stands for Backus—Naur Form — first 
widely publicised by the Algol 60 Report [24]. 

Section 8.5 will formalise the notions introduced in the present section. 

Characterisation. By a BNF grammar we mean a context-free grammar — 
for which there are special prescriptions for designating nonterminals, and for 
designating sets of productions having the same left-hand side nonterminal 
symbol. Such a set is "condensed" into one rule, a BNF rule, whose left-hand 
side is the common nonterminal, and whose right-hand side is a list of alter
natives separated by the alternative metasymbol: |. • 

For natural languages we do not have precise means of specifying the exact 
set of their (syntactically) "correct" sentences, i.e., derivations. But for pro
gramming and for specification languages we do have means. In fact, a formal 
language is a language which has a precise way of delineating all and only 
its correct, i.e., allowable sentences. We use the term grammar to mean a 
concrete syntax whose structuring is intended to resemble the structuring of 
concrete representations. 

8.4.1 BNF Grammars 

Usually, the set of sentential (i.e., character string) forms that make up pro
grams and specifications (logical formulas, mathematical expressions — such 
as in differential and integral calculi, etc.) are specified by a BNF (or a BNF-like) 
grammar. An example BNF grammar of simple arithmetic expressions is given 
in Example 8.8. 
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Example 8.8 BNF Grammar of Simple Arithmetic Expressions: We present 
a "classical" BNF grammar: 

<E>: 
<C> 
(V) 
<P): 
(I) , 
(A) 
(L): 
(D) 
(0) 

:= (C> | (V) | <P> | 
:= (D) 1 (D)(C) 
:= (A) | <A)<V) 
:= - (E) 
= <E> <0> <E) 

:= a | b | ... | z | A 
: = 0 | 1 | ... | 9 
:= + | - | * | / 

(I) 1 ((E)) 

B | ... | 1 

It is assumed that you are familiar with the form (i.e., syntax) of BNF gram
mars and their meaning. But just in case: Nonterminals ({id )) denote sets of 
strings of terminals (i.e., the symbols not surrounded by pointed brackets). 
A terminal denotes the singleton set of strings consisting just of itself. Juxta
position of terminals and nonterminals means concatenation of strings from 
respective denotations. 

The concatenation of strings is thus the main operator. • 

8.4.2 BNF-H>RSL Parse Trees Relat ions 

We refer to Sect. 8.5.2, where we first treated the notion of parse trees. A 
syntax, whether — for example — given in the form of concrete (or even 
abstract) type definitions in RSL, or as a BNF grammar, defines a set of parse 
trees. Conventionally the language of BNF grammars corresponds to a subset 
of concrete type definitions of RSL: 

• Terminals in BNF correspond to values of type Char or Text in RSL. 
• Nonterminals in BNF correspond to type names in RSL. 
• A BNF rule: (Nt) : := Lhs corresponds to an RSL type equation Nt = Lhs. 
• A set of BNF rules of the same right-hand side (Nt) but different left-hand 

sides: Lhs\, Lhs?, ..., Lhsn, corresponds to an RSL type equation Nt = 
Lhsi | Lhs2 | . . . | Lhs„. 

• A BNF right-hand side expression of the Cartesian form (Nti) (IVt2) • • • (Ntn) 
corresponds to the RSL type expression Nti x Nt2 x . . . x Nt„. 

Right-hand BNF sides with terminals usually have these terminals "abstracted 
away" (and "into" an appropriately chosen type name). Recursive sets of BNF 
rules either end up as recursive RSL type definitions or as RSL set, list or map 
type expressions. 

Thus one BNF rule may end up in either of two RSL forms: 

BNF: (N) ::= (A) (B) ... (C) 
RSL: N = A x B x . . . x C 
RSL: N = = mkN(a:A,b:B,...,c:C) 
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The parse tree notion, as seen from the BNF grammar point of view, is based 
on the Cartesian form rules, where (usually) n = 2 or more. The three rules 
defined just above leads to the parse trees shown in the upper part (and 
"across") in Figure 8.1.2 . 

<N> ri mkN 

<A> <B> 

Fig. 8.1. One BNF parse tree + data structure (left), two RSL "parse" trees (right) 

The RSL ("parse tree") forms are just illustrative, and are used sometimes 
for purely pragmatic, didactic or pedagogic reasons. One can devise a whole 
system of RSL parse trees for RSL values other than Cartesians. Tha t is, for 
sets, lists, maps and functions. We shall, however, refrain! 

The BNF parse tree notion is, however, "real" in tha t texts composed as 
per a BNF grammar can, and often must, be represented inside the computer 
in the form of some da ta structure. It is therefore convenient to call this da ta 

2The three figures in the upper half of Fig. 8.1 depict what we will refer to as 
trees. As such they have roots and subtrees: leaves and proper trees. Roots and/or 
subtrees may be labelled. The slanted lines are said to designate branches and to 
"point to" subtrees. If a subtree label (is given and) is a terminal, then the subtree 
is said to be a leaf. Otherwise it is said to be a proper tree. If a branch is labeled 
then the label is said to designate a selector. If the root is labeled then that label 
is said to designate a constructor (cf. RSL terminology). If the tree is said to be a 
parse tree of a BNF grammar then the left-to-right ordering of subtrees reflects the 
same ordering of a terminal text obtained by a traversal of the tree traversing (i.e., 
visiting) left subtrees before right subtrees and then noting down only the leaves. 
The lower left boxes and arrow diagram are said to designate a data structure. It 
consists of records (the boxes) having pointer-valued fields (the arrows). The arrows 
that emanate from a part within the rectangular box and which are incident upon a 
rectangular box are pointers stored in pointer-valued fields of the records and which 
permit a linking (a traversal) to other records. The right pointing dangling arrows 
are said to designate, to link to, sub-subtrees not otherwise mentioned. 
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structure a parse tree. A possible form of such a parse tree is hinted at in 
Fig. 8.1's lower left corner. 

8.5 Structure Generators and Recognisers 

We must raise an important point about BNF grammars. For a certain class of 
BNF grammars one can, automatically, from the grammar, construct a finite 
state recogniser, i.e., a simple algorithm, which given a string of characters 
can decide, i.e., recognise, whether that string is in the language designated 
by the grammar, and, if so, can decide how that string was generated by that 
grammar. For another class of BNF grammars one can, automatically, from 
the grammar, construct a pushdown stack recogniser, i.e., an algorithm with 
a finite number of states and a stack, which given a string of characters can 
decide, i.e., recognise, whether that string is in the language designated by 
the grammar, and, if so, can decide how that string was generated by that 
grammar. 

8.5.1 Context-Free Grammars and Languages 

In this section we formalise what was informally covered in Sect. 8.4. 

Definition. By a context-free grammar, CFG, we understand the following: a 
finite set, N, of what we shall call nonterminal symbols, i.e., names of syntactic 
categories; a finite set, T, of terminal symbols; a distinguished member, no of 
N, the start symbol; and a finite set of productions of the form rij —>• r, i.e.: 

n,i ->• r, nt £ N, r e (N | T)* 

That is, each production (sometimes we call them rules) has a left-hand side 
nonterminal and a right-hand side sequence of zero, one or more nontermi
nals and terminals. For every nonterminal in the right-hand side of some 
production there is at least one (possibly) other production which has that 
nonterminal as its left-hand side. • 

Example 8.9 A CFG Grammar: We show a rather construed example: 

G = (N,T,P,R) 
N = {P,Q,R} 
T = {a,b,c,d} 
R = {P-mQc, Q-^bQ, Q->(R), R^dR, R ^ } 

The last production, R—¥, also maps R into an empty string. • 

So the above defined and exemplified syntax of syntax! But what does it 
mean? That is, what is the meaning of a CFG? To this we turn next: 



8.5 Structure Generators and Recognisers 187 

Definition. By a context-free substitution we understand the replacement of 
a nonterminal, n (in any string, sns', of terminals and nonterminals), with a 
string, r, of terminals and non-terminals, resulting in a string srs1, and such 
that there exists a context-free grammar, G, for which n —>• r is a production. 
We write the substitution as: sns' —»G srs1, said to be a substitution wrt. to 
grammar G. • 

Definition. By a context-free derivation, we understand a sequence, s\, S2, 
. . . , s9, of strings, Sj, of terminal and nonterminals symbols such that there 
is a context-free grammar, G, for which, for all 1 < i < q — 1, we have that 
Sj+i represents a context-free substitution wrt. Sj, i.e.: 

Sj - » G S j + i 

and wrt. some production of that context-free grammar. We write the deriva
tion as: 

s i ->G s 2 - » G • • • ->G V 

And we abbreviate such a derivation by: 

the closure of a derivation. • 

Definition. By a context-free language, CFL, we understand a possibly infi
nite set, IQ, of finite length strings, s, of terminal symbols, such that there is 
a context-free grammar G : (N,T,n, R) for which, for any (terminal) string, 
s, in £G, we have that n —>•* s, i.e.: 

£G = {s | s : T* • n —»G s} 

The above reads: The set of all those strings, s, which are terminal strings, 
and such that there is a derivation from the start symbol, n, to the string s. • 

Example 8.10 A CFG Derivation: Based on Example 8.9: 

P -J- aQc H> abQc H> ab(R)c -> ab(dR)c -J- ab(ddR)c H> ab(dd)c 

The example is just that: an "abstract" example. • 

Example 8.11 A CFG Language: Prom the example derivation of Exam
ple 8.10 we see that ab(dd)c is a sentence of CFL. Others are: 

a()c, aQc, abQc, a(d)c, ab(d)c, abb(d)c, a(dd)c, ab(dd)c, abb(dd)c, 

etcetera. 
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8.5.2 Parse Trees 

Definition. We define the notion of a production tree. Let there be given a 
CFG production £ —> r, and let r be the symbol string cc'c" ... c'", where 
each of the symbols c,c', c", . . . , and c'", is either a nonterminal or a terminal 
symbol — any mixture — of some grammar G. Then (£, (c, c', c " , . . . , c'")) is 
said to be a production tree. We can show production trees diagrammatically 
(Fig. 8.2). 

Production Tree: (c,(c',c" c'")) 

Fig. 8.2. A production tree 

Definition. We define the notion of a parse tree. Let G : (N, T, n, R) be a 
context-free grammar. Let rij be any nonterminal in N, and tj be any terminal 
in T, then rij and tj are parse trees with roots rij and nothing else, respectively 
of root tj (equal to leaf tj) and nothing else. Let rij —> c^c^ .. .Cim., where Cjfe 

(for all i\ < k < imi) is either a nonterminal or a terminal, be a production 
in R, where imi > 0, then n ^ c ^ , Cj2 , . . . ,Cjm.) is a parse tree with root rij. 
Given the parse tree rii(ci1 ,C j 2 , . . . , Cjm.), let ^ and p,. be parse trees with 
root symbol Cj or Cj., whether Cj and Cj. is a nonterminal or a terminal, then 
(rij, (f t^Pia, . . . ,p«m.)), is a parse tree. See Fig. 8.3 for an example parse tree. 

If all "innermost" symbols Cj, are terminals, then the parse tree is a 

complete parse tree. • 

Recall that an empty production, rij —>, gives rise to the parse tree rij(). To 
avoid confusion, one might wish to write this production as: rij —>• e. 

Definition. We define the notion of a frontier of a parse tree. Let pi : 
(p>i, (pi1, Pi2,..., Pim.)) be a parse tree. A frontier of a parse tree is a "read
ing" of the innermost symbols of pi, as follows: If pi is of the form (m, ()) then 
the frontier of pi, <f>(pi) is the null string (often written e (so as to be able to 
"see" it!)). If pij of production pi is of the form t, where t is a terminal or a 
nonterminal symbol, then the frontier ofp^., (^(pij) is t. If pij of production pi 
is of the form ptj : (nij, (pijx, p» - 2 , . . . , pijmi)), then the frontier of ptj, </>(pj.) 
is (t>(pin)(t>(pi]2)...(f>(pijmt). 

The frontier of (the original parse tree) pi, 4>{pi) is thus: 
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A->aB...C 
B->bD 
C->E 
E -> xYz 
D -> cFe 
F->pQ 

Fig. 8.3. A parse tree 

(f>(Pil)<t>(Pi2)---(f>(Pimi), 

where the juxtaposition of the >̂(pj •) 's amounts to the concatenation of strings 
of nonterminal and terminal symbols. • 

Example 8.12 The Frontier of a Parse Tree: We refer to Fig. 8.3. The frontier 
of that parse tree is abcFe...E. • 

8.5.3 Regular Expressions and Languages 

Definition. By a regular expression, r, we understand an expression over an 
alphabet, A, of terminal symbols, and over the operators •,* , |, (,), such that: 

Basis clause: If a, b,..., c are in A, then a, b,..., and c are regular ex
pressions. 

Inductive clause: If r and r' axe regular expressions, then r • r1 ,r* ,r \ r' 
and (r) are regular expressions. 

Extremal clause: Only such expressions which can be formed from a 
finite number of applications of the basis and the inductive clauses are regular 
expressions. • 

Example 8.13 Regular Expressions: Let an alphabet, A, of terminal symbols 
be that of o, b, c. A specific regular expression is o, another is o-o, etc. Another 
specific regular expression is: 

a* • ((a • b)* \ (b • c)*) 

And so forth. • 

Given a regular expression we can always, from it, extract the alphabet, A, 
of terminal symbols. 

The meaning of a regular expression, since a regular expression is "but a 
piece of syntax", is a regular language: 
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Definition. By a regular language we understand a possibly infinite set, £r, 
of finite sequences of symbols such that there is a regular expression r for 
which the following relation between sentences in £r and r can be established: 
If r is a, where a £ A, then a is in fr. If r is r' • r", then for all s' in fr/ and 
s" in fr« we have that s's" is in tr. If r is r'*, then for all s' in £r< we have 
that e, s', s's', s's'...s', etc., is in tr. Here e is the null string of no symbols. If 
r is r' | r", then for all s' in lr* and s" in £r» we have that s' and s" are in 
£r. If r is (r'), then for all s' in fr- we have that s' is in tr. • 

Example 8.14 A Regular Language: Let a regular expression be: 

o*- ( (o -6) ' | (6 -c )*) 

Some sentences of the corresponding regular language are: 

e ,a ,oo ,aa . . .a, 

o&, a6a6, a6a6. . . a&, 6c, 6c6c, fecfec... 6c 

aa6, aabab, aabab.. .ab, abc, abcbc, abcbc ...be 

aaabab,aaabab,aaabab...ab,aabc,aabebe,aabebe.. .be... 

8.5.4 Language Recognisers 

In Sects. 11.3-11.5 we shall touch upon the relationship between regular lan
guages, respectively context-free grammars, on one hand, and "devices", on 
the other hand. We mean devices which, when provided with input in the form 
of sentences of some postulated regular or context-free language, can decide, 
i.e., recognise, whether the sentence is indeed a member of that language, and 
then provide one or more parse trees for that sentence. These "devices" are 
referred to as finite state automata, finite state machines and pushdown stack 
automata (resp. machines). It is indeed this ability to precisely specify which 
sentences are allowed, that is, can be generated, and to automatically con
struct a recogniser that makes regular expressions and context-free grammars 
interesting. 

8.6 XML: Extensible Markup Language 

Extensible Markup Language (XML) is a language for adorning linear texts 
with markers in a way that allows for easy parsing of the text into possibly 
meaningful units. XML is, as of 2006, a preferred such language for regulating 
the transfer of data over the Internet. 
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8.6.1 A n E x a m p l e 

To relate to the topic of XML consider the following RSL type definition of 
programs in some small imperative programming language: 

t y p e 
Progr = = mkProg(b:Block) 
Blk = = mkBlk(vs:Var_Decls,ps:Proc_Defns,sl:Stmtlist) 
Var_Decls = = nil_dcl | mkVDcls(v:Var,i:Expr,vs:Var_Decls) 
Pro_Defs = = ni l_proc | mkPDefs(pn:Pn,pl:Parlst,b:Blok,ps:Pro_Defs) 
Parlst = = ni l_parl | mkParL(fp:Id,pl:Parlist) 
Stmtlist = = ni l_s tmt | mkStmtL(s:Stmt,sl:Stmtlist) 
Stmt = Block | Asgn | IfTE 
Asgn = = mkAsgn(vr:Var,ex:Expr) 
IfTE = = mkIfTE(be:Expr,cs:Stmt,as:Stmt) 
Expr = Var | Prefix | Infix 
Var = = mkV(vn:Vn) 
Prefix = = mkPre(po:POp,e:Expr) 
Infix = = mkInf(le:Expr,io:IOp,re:Expr) 
P O p = = minus | not | ... 
IOp = = add | subtract | multiply | divide | ... 

Now consider the following concrete example program in the above language: 

program 
begin 

variables 
v :=e , v' :=e' ; 

procedures 

pl(fpll,fpl2,...,fpln) = blkl , 

p2(fp21,fp22,...,fp2n) = blk2 ; 
v := e " ; 

if be then cs else as fi ; 
begin 

variables 

procedures ... 

end 
end 

Abstractly the above program is a value in Progr which can be written as: 

value 
p: Progr 

a x i o m 
p = mkProg( 

mkBlk( 
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mkVDcls(v,e, 
mkVDcls(v',e' ,nil_dcl)) 

mkPDefs(p,pl,blk, 
mkPDefs(p',pl ' ,blk' ,nil_proc)) 

nikStmtL(mkAsgn(v,e ), 
mkStmtL(mkIfTE(be,cs,as), 

mkStmtL(mkBlk(vs,ps,sl) 
))))) 

Here we have refrained from detailing "inner" clauses like: v, e, v , e , p, pi, 
blk, p', pi', blk', e", be, cs, as, vs, ps and si. We are confident tha t the reader 
can complete the picture! 

Now if we "balanced" (i.e., replaced) any opening parenthesis mkX('s with 
)unmkX's, then we get the following: 

value 
xml_p:Progr 

a x i o m 
x m l _ p = mkProg( 

mkBlk( 
mkVDcls(v,e, 
mkVDcls(v' ,e ' ,nil_dcl)unmkVDcls)unmkVDcls 

mkPDefs(p,pl,blk, 
mkPDefs(p' ,pl ' ,blk' ,nil_proc)unmkPDefs)unmkPDefs 

mkStmtL(mkAsgn(v,e )unmkAsgn, 
mkStmtL(mkIfTE(be,cs,as)unmkIfTE, 

mkStmtL(mkBlk(vs,ps,sl)unmkBlk 
)unmkStmtL)unmkStmtL)unmkStmtL)unmkBlk)unmkProg 

8.6.2 D i s c u s s i o n 

The above shows the essence of XML. The essence of XML is tha t any da ta — 
and here the da ta are the tokens of variables, operators, literals (for proce
dure , block, = , : = , if, t h e n , e lse , e n d , etcetera), and the da ta are also the 
structure of the sentences into which they have been put — can be described 
as shown above. The mkX( and )unmkX "brackets" are like XML tags. 

8.6 .3 His tor ica l B a c k g r o u n d 

The tagging concept thus derives from the abstract syntax notion of McCarthy 
(1962 [330]) tha t we presented in Sect. 8.3. 

McCarthy in a 1982 Stanford University report titled Common Business 
Communication Language [332] proposed — 20 years after his first publication 
on abstract syntax — a language for interbusiness intercomputer communica
tion based on the ideas of an abstract syntax's is_A, s_A and mk_A functions 
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(Sect. 8.3). Most of the ideas in that paper have been reinvented in connection 
with electronic commerce, specifically in connection with XML. 

8.6.4 The Current XML "Craze" 

XML is (2006) a so-called "hot topic". It is strange that it had to take such a 
long time, 40 years, to reach this unscientific state of euphoria. Anyway, XML 
is nevertheless and obviously a good idea. XML, as should be obvious, can be 
used for describing not just sentential forms, but any kind of data structure. 
This will be made more clear in the next section (Sect. 8.6.5). And hence XML 
can be used when "moving" data from one computing platform to another, 
i.e., for the transfer of arbitrary files. 

8.6.5 XML Expressions 

Characterisation. An XML expression is a string over terminal symbols and 
over properly balanced opening and closing XML tags. • 

Characterisation. An XML tag is either an opening XML tag, which is written 
as <name>, where name is some identifier, or is a closing XML tag which is 
written as </name>, where name is some identifier. • 

Example 8.15 From RSL Values to XML Expressions: Let there be given the 
following RSL type definitions (of something otherwise irrelevant): 

type 
A, B, C, D, E 
F = G | H | J | K 
G :: A-set 
H :: B x C x D 
J ::E* 
K :: A ^ B 

Typical values of type F are: 

value 
a,a ,...,a : A 
b,b':B, c:C, d:D, 
e,e':E 
g: mkG({a,a',a"}) : G 
h: mkH(b,c,d) : H 
j : mkJ({e,e',e',e)) : J 
k: mkK([at-*b,a'i->bIa"i->b']) : K 

Let sets be represented by lists, and let maps be represented by lists of pairs: 
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G' :: A* 
AB :: A x B 
K' :: AB* 

Corresponding RSL values are: 

value 
g': mkG'({a,a',a"}) : G' 
k': mkK'({mkAB{a,b},mkAB{a',b),mkAB(a"!b'))) : K' 

In proper XML the g;, h, j and k' values could be represented as follows: 

RSL: 
g': mkG'«a,a',a"}) 

XML: 
<G'> 

<A> a < /A> 
<A> a' < / A > 
<A> a" < / A > 

< /G '> 

RSL: 
j : mkj{{e!e

/,e',e» 
XML: 

< J > 
<E> e < / E > 
<E> e" < / E > 
<E> e' < / E > 
<E> e < / E > 

< / J > 

RSL: 
k': mkK'({(a,b),(a',b),(a",b'))) 

XML: 
<K'> 

<AB> 
<A> a < / A > 
<B> b < / B > 

</AB> 
<AB> 

<A> a' < / A > 
<B> b < / B > 

</AB> 
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<AIJ> 
< A > a" < / A > 
< » > 1/ < / » > 

< / . \ I J > 

</K'> 

8.6.6 XML S c h e m a s 

C h a r a c t e r i s a t i o n . An XML schema is a syntax which describes a language of 
strings over terminal symbols and over properly balanced opening and closing 
XML tags. • 

E x a m p l e 8.16 An XML Schema: An XML schema corresponding to the XML 
expressions of Example 8.15 is: 

t y p e = " s o r t A " / > 
t y p e — " s o r t B " / > 
t y p e = " s o r t C " / > 
t y p e = " s o r t D " / > 
t y p e = " s o r t E " / > 

<xs : simpleType n a m e = " s o r t A " > ... < / x s : s impleType> 
<xs : simpleType n a m e = " s o r t B " > ... < / x s : s impleType> 
<xs: simpleType n a m e = " s o r t C " > ... < / x s : s impleType> 
<xs : simpleType n a m e = " s o r t D " > ... < / x s : s impleType> 
<xs : simpleType n a m e = " s o r t E " > ... < / x s : s impleType> 

<xs:sch 

<xs: 
<xs: 
<xs: 
<xs: 
<xs: 

ema> 

element name= 
element name= 
element name= 
element name= 
element name= 

"A" 
"B" 

"c" 
"D" 
"E" 

<xs : element n a m e = " F " t y p e = " F t " / > 
<xs : complextype n a m e = " F t " > 

<xs : choice> 
<xs: element n a m e = " G ' " t y p e = " G t " / > 
<xs: element n a m e - " H " t y p e = " H t " / > 
<xs: element n a m e = " j " t y p e = " j t " / > 
<xs: element n a m e = " K ' " t y p e = " K t " / > 

< / x s : choice> 
< / x s : complextype> 

<xs : element n a m e = " G ' " t y p e = " G t " / > 
<xs : complextype n a m e = " G t " > 



196 8 Syntax 

<xs: sequence maxOccurs="unbounded" minOccurs="o"> 
<xs: element name= A type= sortA / > 

</xs: sequence> 
</xs: complextype> 

<xs: element name="B*" type="Ht"/> 
<xs: complextype name="Ht"> 

<xs: sequence> 
<xs: element name="B" type="sortB"/> 
<xs: element name="C" type="sortC"/> 
<xs: element name=' 7D" type="sortD"/> 

</xs: sequence> 
</xs: complextype> 

<xs: element name="j" type="J t" /> 
<xs: complextype name="j"> 

<xs: sequence maxOccurs= unbounded minOccurs= 0 > 
<xs: element name="E" type="sortE"/> 

</xs: sequence> 
</xs: complextype> 

<xs: element name="AB" type="ABt"/> 
<xs: complextype name= "ABt"> 

<xs: sequence > 
<xs: element name= A type= sortA / > 
<xs: element name="B" type="sortB"/> 

</xs: sequence> 
</xs: complextype> 

<xs: element name="K'" type="Kt"/> 
<xs: complextype name="K'"> 

<xs: sequence maxOccurs="unbounded" minOccurs="0"> 
<xs: element name="AB" type="ABt"/> 

</xs: sequence> 
</xs: complextype> 

</xs:schema> 

We leave it to the reader to decipher the relationships between this and the 
previous example. • 
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8.6.7 References 

References are made to two books: [417] and [443]. [417] provides an easy-to-
read introduction to XML. [443] provides a more technical treatment of XML. 
Otherwise we encourage the reader to "surf" the Internet looking for educa
tional, instructional and training material on XML. References are finally made 
to a number a papers more or less relating to XML: [127,261,293,450,515]. 

8.7 Abstract Syntaxes 

In the present section we focus on abstract, implementation-unbiased syntaxes 
for semantical structures. 

Characterisation. By an abstract syntax we understand rules for mathe
matically characterising a structure in terms of its composition — whether 
property-oriented or model-oriented. • 

We speak of such mathematical, i.e. model-oriented, structures as sets, Carte
sians, lists, maps, etc. A popular abstract form is that envisaged by a treelike 
hierarchy. And we thus speak of such logical (cum algebraic), i.e., property-
oriented structures (that are characterised by their composition) — again — 
as "trees". Some examples may be useful. 

8.7.1 Abstract Syntax of a Storage Model 

Example 7.5 introduced an axiomatic specification of storage. That specifi
cation also illustrated uses of abstract syntax. Examples 8.17-8.19 illustrate 
further facets of abstract syntax and storage models. 

Example 8.17 Model-Oriented Formal Syntax of Storages: We decompose 
the example presentation of storage into three parts: the values stored and 
their type, the structure of storage locations, and, finally, the combined stor
age as consisting of locations and values. We alternate between informal and 
formal presentations. 

Values and Value Types 

We assume knowledge of integer and Boolean values. 

• Informal: 
• Values are either scalar or are composite. 
• There are two kinds of scalar values: integers and Booleans. 
• There are two kinds of composite values: vectors and records. 
• Vectors are definite length sequences of values of the same kind. 
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• Records are (here) finite (Cartesian) collections of named values (of 
possibly, i.e., usually, different kinds). 

• An integer is of kind number. 
• A Boolean is of kind truth value. 
• A vector is of kind sequence of a specific length and of the kind of its 

element values. 
• A record is of kind Cartesian of a definite number of fields with their 

unique names and the kind of their values. 
• Formal: 

type 
VAL = ScaVAL | ComVAL 
ScaVAL = NumVAL | TruVAL 
NumVAL :: Int 
TruVAL :: Bool 
ComVAL = VecVAL | RecVAL 
VecVAL :: VAL* 
RecVAL :: Nm ^ VAL 

Kind = = number | truth 
| mk_Seq(n:Nat,k:Kind) 
j mk_Car(r:(Nm -# Kind)) 

Locations and Location Types 

We continue the example just given. Before it was about values; now it is 
about their locations. 

• Informal: 

* Locations (of values, in some abstract notion of storage) are either 
scalar or composite. 

* Scalar locations are either of kind number locations or truth value 
locations, and are further unspecified. 

* Composite locations are either of kind vector locations or record loca
tions. 

* Vector locations associate vector element indexes (whose element values 
are contained in the overall vector locations) with locations (of the 
location kind of the contained element value). 

* Record locations associate field names of the record with locations (of 
the location kind of the contained field value). 

• Formal: 

t ype 
LOC = ScaLOC | ComLOC 
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ScaLOC = = numLOC | tmLOC 
ComLOC = = SeqLOC | CarLOC 
SeqLOC :: LOG* 
CarLOC :: Nm ^ LOC 

Storages 

We now combine the value and the location definitions: 

• Informal: 
* Storages are functions from locations (of one kind) to values (of the 

same kind). 
• Formal: 

type 
STG = LOC ^ VAL 

Type Constraints 

Implicit in the three model components of Example 8.17 are the type extrac
tion and type-checking functions shown now in Example 8.18. We refer to the 
functions defined in Example 8.18 as static semantics functions. 

Example 8.18 Model-Oriented Type Checking of Abstract Storage: 

value 
x_type: (VAL|LOC) 4 Kind 
x_type(valo) = 

case valo of 
mk_Num(_) —> number, 
mk_Tru(_) ->• truth, 
mk_VecVAL(vv) —> mk_Seq(len vv,x_type(hd vv)), 
mk_CarVAL(cv) -> 

mk_Car([n •#x_type(cv(n)) |n:Nm • n € dom cv]), 
numLOC —> number, 
truLOC -*• truth, 
mk_VecLOC(vl) —¥ mk_Seq(len vl,x_type(hd vl)), 
mk_CarVAL(cl) -> 

mk_Car([n •j#-x_type(cl(n)) |n:Nm • n € dom cl]) 
end 
pre: x_type(mk_VecVAL(vv)): V v,v':VAL • 

v,v' € elems vv A v^v' =^ x_type(v) = x_type(v'), 
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x_type(mk_VecLOC(vl)): etc. ... 

Example 7.5 "digs" a bit deeper and secures independence of locations — not 
satisfied by the above! 

We see how recursion in syntax definition conveniently, following the de-
notational principle, leads to recursion in function definition. 

c_type: (VAL[LOC) ->• Bool 
c_type(vls) = 

case vis of 
mk_VecVAL(vv) -> 

V v,v':VAL • v,v' £ elems vv A v^v' => 
x_type(v) — x_type(v') 

mk_Vec.LOC(vl) -> 
V l,l':LOC • 1,1' e elems vl A 1^1' => 

x_type(l) = x_type(l) 
—> true 

end 

The above c_type function ("almost") expresses the static semantics of 
the "language" of values and locations. Example 7.5 additionally shows well-
formedness of storages. • 

Independence of locations was introduced earlier in Example 7.5. 

8.7.2 Abstract Syntaxes of Other Storage Models 

Example 8.17 illustrated one syntactical model of storage. There are others. 
The one illustrated above models storages as found in such (past) program
ming languages as PL/1 [12,29,33,36,110,111,312] and ALGOL 68 [31,61,511]. 
In Example 8.19 (next) we illustrate not only the storage models of other 
programming languages (such as ALGOL 60 [24] and Ada [54,103,222,223]), 
but we link these models (semantically) to the notion of environments. The 
models are all based on Bekic and Walk's work [37]. 

Example 8.19 Models of Variables, Their Binding and Storage: 

Informal Exposition 

In imperative languages variables are declared of simple or composite type, 
and assignments to either of these (entire) variables may occur, as implied, 
but not shown (since that is a semantic notion) in Example 8.17, or assign
ments may occur only to scalar parts. At the same time, variables may be 
'passed by reference' to procedures — in whose bodies assignments may be 
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specified as above — with procedure parameters either allowing "entire", i.e., 
full variable locations, or only scalar locations. Some languages may allow 
assignments only to scalar parts of composite variables but the passing of 
composite locations (as argument but not necessarily storable values). So we 
have basically three situations: (1) declaration and passing (as procedure ar
guments) of and assignment to scalar as well as composite location variables; 
(2) declaration and passing (as procedure arguments) of composite (etc.) lo
cation variables, but assignment only to scalar locations; and (3) declaration 
of composite (etc.) location variables, but passing of and assignments only to 
scalar locations. To keep track of, i.e., distinguish between these alternatives, 
we introduce a notion of environment. Environments bind explicitly declared 
variable or procedure parameter (i.e., argument) identifiers to locations. Stor
ages then map either composite or (only) scalar locations to corresponding 
values. 

Formal Exposition 

type 
sV, kV 
gV = sV | kV 
c.V = kV x (Nat|Nm)* 
V = sV | cV 
ENV_1 = gV ^ LOG 
ENV_2 = gV -of LOC 
ENV_3 = cV yd ScaLOC 
STG_1 = LOC nf VAL 
STG_2 = ScaLOC -tf ScaVAL 
STG_3 = ScaLOC ^ ScaVAL 

Annotations: sV stands for further undefined scalar variable names. kV stands 
for names of ("entire") composite variables, also further undefined. gV thus 
stands for general variable names. cV stand for composite variable ground 
terms: the Nat and Nm lists designate indexes into compound variables — 
to either scalar or compound locations. ENV stands for environments. EIW_i 
and STG_i stand for respective models. Notice that EI\IV_1 and ENV_2 are 
similar, but that STG_1 and STG_2 are not! And so on. 

A model of assignment is a semantic model and hence is not illustrated 
here. • 

We showed such a model of assignment in Example 7.5. 
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8.8 Converting RSL Types to BNF 

. From Abstract RSL Types to Concrete BNF Types 

Implementation of abstract da ta structures in terms of ordinary program
ming languages' concrete da ta structures need be indicated. When the ab
stract da ta structures are specified in terms of sets, lists and maps, then we 
need to give the reader a hint at possible structure- or record-oriented con
crete da ta structures — the latter possibly with pointers. This is the aim, 
therefore, of this final section of this chapter on syntax. 

The present section "ties" in with Sect. 8.6 on XML. 

8.8.1 T h e P r o b l e m 

The problem is tha t of being able to represent, using just Cartesians, any 
of the abstract da ta structures of sets, lists and maps. Why use Cartesians? 
Simply because tha t kind of da ta structure is provided by all current program
ming languages. Most, if any, of these, do not support sets, lists and maps of 
"variable size" (the "variable size" concept was defined in Vol. 1, Sect. 13.6). 

8.8.2 A Poss ib l e S o l u t i o n 

We shall hint at a uniform set of solutions, basically along the same line 
for sets, lists and maps. Tha t uniform solution defines a variable size da ta 
structure in terms of a recursively nested structure of Cartesians. 

A variable size data structure, containing zero, one or more entities, such 
as sets, lists and maps either contains no entities, and then we represent it by 
a n i l element or it contains one or more such entities and then we represent it 
by a Cartesian of the "one" such entity together with the rest, i.e., the "more 
minus one". 

We now show generic type definitions of the "abstract" da ta structures 
of sets, lists and maps, followed by generic type definitions of the "concrete" 
da ta Cartesian structures. For each of the "pairs" of abstract and concrete 
da ta structures, we have to define functions converting between the abstract 
and the concrete da ta structures, i.e., injection functions (rather, relations), 
and vice versa, i.e., abstraction (or retrieval) functions. We also have to show 
tha t we can define concrete counterparts of the "built-in" operations on the 
abstract values. 

t y p e 
s A B = B-se t , £AB = B*, m A B C = B ^ C 

ASB = = nilBs | mk_As(b:kB,a :Ass) 
MB == nilBf| mk_A^(b:kB,a:A£B) 
A m B C = = nilBCm | mk_As(b:kB,c :KC,a :Am B C ) 



8.9 Discussion of Informal and Formal Syntax 203 

value 
conv_sAs_Ass: sA# —>• AS_B 
conv_^AB_AfB: tkB ->• AtB 

conv_mABc_AmBc: mAsc —>• AmBc 

conv_sAs_Ass(sa) = 
if sa={} 

then nilBs 
else 

let s U {b} = sa in 
mk_As(b,conv_sAB_As_B(s)) 

end end 

€: B x sAB ->• Bool 
U, n, \, /: sAB x sAB ->• sAB 

C, C, =: sAB x sAB ->• Bool 
card: SAB —> Nat 

is_in: B x AS_B —> Bool 
union, inter, remove, remain: ASB X ASB —> ASB 
subseteq, subset, equal: ASB X AS_B —> Bool 
cardinality: AS_B —>• Nat 

We leave it to the reader to complete the definition of the above, as well as 
stating the similar function signatures and definitions of the other data types. 
See Exercises 8.1-8.3. 

8.9 Discussion of Informal and Formal Syntax 

8.9.1 General 

The point about informal and formal syntax is (also) this: When using formal 
syntax we commit ourselves to precise meanings of what the syntax itself 
denotes. Whereas, when we use informal syntax, we have to accept that it 
may not be fully clear what the scope of that informal syntax is. 

That is, there is a formal syntax, and its "meaning" is all the abstract 
or concrete structures generated by that syntax: Sentences or phrase trees 
for concrete syntaxes, i.e., for BNF grammars, and abstract, mathematical 
structures for abstract (RSL or other abstract) syntaxes. What the meanings 
of these sentences or phrase trees or abstract, mathematical structures are, 
we have yet to say. 
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Abstract (formal) syntax can be used to define sentential structures, such 
as we may concretely or abstractly communicate them between people or 
between man and machine. Or abstract (formal) syntax can be used to define 
mathematical structures, say internal to machines. In current practice, BNF 
is used to define concrete sentential forms and a programming languages' 
type definition facilities are used to define data structures. In RSL we use one 
mechanism to define either (i.e., both). 

8.9.2 Principles, Techniques and Tools 

We summarise: 

Principles. Every structure that need be understood precisely need be given 
a precise syntax. • 

Principles. Not just sentential structures, i.e., text strings, need be given 
syntax, also concrete or conceptual information (including data) structures. • 

Principles. Syntax must also be given to what appears as diagrammatic in
formation from the software development field: GUIs, Flowcharts, UML Class 
Diagrams, Petri Nets, Message Sequence Charts, Live Sequence Charts, Stat-
echarts, as well as from other universes of discourse: Civil engineering draw
ings, geodetic and cadastral charts, land maps, etc., mechanical engineering 
drawings, electrical engineering drawings, etc. • 

Techniques. Depending on the problem at hand: If conceptual, trying to 
understand basic concepts, then abstraction is to be applied, if the problem 
is of final, implementational, nature, then concretisation is to be applied. 
Throughout express a suitable balance between expressiveness and captur
ing context-sensitive constraints. Thus choose also appropriate techniques for 
expressing well-formedness. • 

Tools. There are many tools with which to express, i.e., to define syntax: The 
type expression and type definition constructs of RSL, those of BNF, those of 
XML, and those of "truly" abstract syntax: Sorts and axioms. • 

8.10 Bibliographical Notes 

Classical textbooks on compiler development cover some, but really not many 
BNF design techniques, but do cover implementation techniques: Design and 
coding of lexical scanners and error correcting syntax parsers [6,21,297]. 

We also refer to the useful In te rne t Web page [295] which informs on 
syntax handling tools (viz.: LEX, YACC and related or similar tools). 
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8.11 Exercises 

Exercise 8.1 Cartesian Sets. We refer to Sect. 8.8.2. Please complete the 
definition of all the concrete versions of the €, U, fl, \ , / , C, C, = and card 
functions, i.e., of is in, union, inter, remove, subseteq, subset, equal, and cardi
nality functions. 

Exercise 8.2 Cartesian Lists. We refer to Sect. 8.8.2. Please state the func
tion signatures and the definitions of all the concrete versions of COD\I_^AB_MB 

and the basic list operations: hd, tl, ~, •(•), elems, inds, len and =, i.e., of 
head, tail, concatenate, index, elements, indices, length and equal. 

Exercise 8.3 Cartesian Maps. We refer to Sect. 8.8.2. Please state the 
function signatures and the definitions of all the "concrete" versions of 
conv_mAs(7_AmB(7 and the basic map operations: U, f, •(•), dom, rng and 
=, i.e., of union, override, apply, domain, range and equal. 

Exercise 8.4 RSL Type Expressions and Type Definitions. This exercise is 
part of a series of three related exercises that continues in Exercises 8.5-8.6. 
Please read all three exercise texts carefully, as the solution to the present 
exercise depends on the ability to express solutions to the next two exer
cises reasonably elegantly. The problem to be solved in the present exercise 
is to suggest a suitable concrete RSL syntax for RSL type definitions. Here is, 
for your help, our simplified version of RSL type definitions, one that seems 
suitable for this series of exercises. 

. Simplified RSL Type Expressions and Definitions . 

• An RSL type expression is: 
• either an atomic type literal (Bool, Int , N u m , Real , Char , Text) 
• or a unit type literal (Unit) 
• or a type name 
• or a finite set type expression, which we take, for simplification, to 

just be a type name suffixed with the type constructor name —set 
• or a Cartesian type expression, which we take, for simplification, to 

just be a finite sequence of two or more type names infixed with the 
type constructor name x 

• or a finite list type expression, which we take, for simplification, to 
just be a type name suffixed with the type constructor name * 

• or a RSL type expression is a finite map type expression, which we 
take, for simplification, to just be a pair of type names infixed with 
the type constructor name jrt 

• In this exposition of simplified RSL type expressions and type definitions 
there are four kinds of RSL type definition: 
1. A sort definition 

• which just consists of a type name; 
2. simple token alternatives 
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• which have left-hand side type names, 
• and a right hand-side of one or more token names; 

3. or a simple kind of type alternative: 
• which has a left-hand side type name, 
• and a right-hand side set of two or more type names; 

4. or a record type constructor kind 
• which has a left-hand side type name, 
• and a right-hand side type expression. 

• An RSL set of type definitions is now 
• a list of one or more type definitions 
• such that all sort and left-hand side names are distinct, 
• such that all token names are distinct, and distinct from type names, 
• and such that all uses of type names (in right-hand side type expres

sions) are defined, i.e., have a corresponding type definition of that 
left-hand side name. 

Example 

typ 
[11 
[21 
[3] 
[41 
[41 
[4] 

B 

A, 1 
D = 
E = 
P :: 
Q : 
R : 

B, C 
= alpha | 

= P | Q I 
A ^ B 
C-set 
Bool 

beta 
R 

gamma delta 

Define a suitable set of RSL type definitions for the above form of simplified 
RSL type expressions and definitions. 

Define suitable well-formedness functions. 

Exercise 8.5 Abstract Syntax and Well-formedness for XML Schemas. This 
exercise is part of a series of three related exercises, see Exercises 8.4 and 8.6. 
You are to find out, say from the Internet, how an XML schema is defined. We 
refer to [478]. Here is, in any case, our simplified version. 

. Simplified XML Schemas . 

• A simplified XML schema consists of a set of pairs of distinctly named 
rules. 

• Each pair has an element part and a simple or a complex type part. 
• Each element part names a distinct type. 
• A simple part identifies a further unexplained type. 
• A complex part is either a choice rule or a sequence rule. 
• A choice rule consists of a set of two or more element parts. 
• A sequence rule consists of a list of one or more element parts. 
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Given the above, or your own version, propose an RSL type definition for XML 
schemas. 

Define suitable well-formedness functions. 
Please comment as to what might be missing from the simplified XML 

schemas as sketched above and the "real" XML Schemas as reported at [478]. 

Exercise 8.6 Translation from Typed RSL Values to XML Values. This exer
cise is part of a series of three related exercises: Exercises 8.4-8.6. You are to 
suggest a function, conv_RSL_to_XML, which takes values of type RSL type 
definitions and yields values of type XML Schema. 

Exercise 8.7 Syntax of STIL. You are to present formal, concrete type defi
nitions for STIL: Simply Typed Imperative Language whose design is covered 
in Exercises 7.3-7.7, 8.7-8.8, and 9.2. We help you by stating the syntax 
informally. 

. The Syntax . 

1. Programs are blocks. 
2. Blocks consists of one or more variable declarations and a statement list. 
3. A variable declaration consists of the name of the variable being declared, 

its type and an initialising expression. 
(a) Variable names are simple identifiers. 
(b) Identifiers are further unexplained atomic quantities. 
(c) Types are expressed by means of a ground term type expression. 
(d) A ground term type expression is either the literal of a scalar type, 

or is a ground term compound type expression. 
(e) The literal of a scalar type is either an in teger literal, or is a 

Boolean literal, or is a r e a l literal, or is a charac ter literal. 
(f) A ground term compound type expression is either a ground term 

vector type expression or is a ground term record type expression. 
(g) A ground term vector type expression consists of a vector lower and 

upper index bounds expression and a ground term vector element 
type expression. 

(h) A vector lower and upper index bounds expression is either a pair of 
integer numerals such that the first is smaller than the second, or is 
an enumerated type expression, for example, vector low: 1 high: 
12 type type_expr. 

(i) A ground term record type expression is a set of pairs where each pair 
consists of a record field identifier and a ground term type expression 
— such that all record field identifiers of a ground term record type 
expression are distinct and such that no two ground term record 
type expressions of a program share any record field identifiers, for 
example, record: a integer, h boolean, c character end 

(j) A record field identifier is a simple identifier. 
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(k) Some variable declarations are marked as i n p u t / o u t p u t variables. 
4. A statement list consists of a sequence of one or more statements. 
5. A statement is either an assignment statement, or is a conditional, i.e., 

an i f - t h e n - e l s e - e n d statement, or is a while loop, i.e., a w h i l e - d o - e n d 
statement, or is a simple iteration, i.e., a f o r - i n - d o - e n d statement, or 
is a block, i.e., a b e g i n - e n d statement. 
(a) An assignment statement consists of a pair: A (left-hand side) vari

able reference and a (right-hand side) which is an expression, for 
example, var_ref := expression. 

(b) A conditional, i.e., an i f - t h e n - e l s e - e n d , statement consists of a 
test expression and two statement lists. Example: if test_expr then 
cons_stmt_lst else alt_stmt_lst end. 

(c) A while loop, i.e., a w h i l e - d o - e n d , statement consists of a test 
expression and a statement list, for example, while test_expr do 
stmt_lst end. 

(d) A simple iteration, i.e., a f o r - i n - d o - e n d , statement consists of a 
step identifier, a step range expression and a statement list, for ex
ample, for step_id in (lb..ub) do stmt_lst end. 

i. A step identifier is a simple identifier, 
ii. A step range expression is a pair of integer lower and upper 

bound numerals (i.e., constants), i.e., akin to a vector lower and 
upper index bounds. 

6. An expression is either a value, or is a variable reference expression, or 
is a prefix expression, or is an infix expression, or is a postfix expression, 
or is a conditional (mix-fix) expression, or is a vector expression, or is a 
record expression, or is a parenthesized expression. 

(a) A constant expression is either an integer numeral (12345), or is a 
real (or 'float') numeral (01234.56789), or is a Boolean literal ( t r u e , 
f a l s e ) , or is the mathematical constants: e (approx. 2.71828183...), 
or 7r (approx. 3.14159265...), or other. 

(b) A variable reference expression has two parts : A variable identifier 
and an optional index or field selector part . 

i. An index part has two subparts , first either an (integer-valued) 
expression or a step identifier, and then an optional index or 
field selector part . 

ii. A field selector part has two subparts , first a field identifier, and 
then an optional index or field selector par t . 

(c) A prefix expression consists of two parts : a prefix operator and an 
operand expression. 

i. A prefix operator is either of the following (literals): either a 
Boolean operator: -i (Boolean negation), or one of the arithmetic 
operators: + (plus), - (minus), f (ceil), 1 (floor), s i n (sine), cos 
(cosine), t a n (tangent), c o t a n (cotangent), s i n h y (hyperbolic 
sine), coshy (hyperbolic cosine), t a n h y (hyperbolic tangent) , 
co tanhy (hyperbolic cotangent), a r c s i n (arc sine), a r c c o s (arc 
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cosine), a rc tan (arc tangent), arccotan (arc cotangent), J~ 
(square root), logio (logarithm radix 10), log2 (logarithm radix 
2), and possibly others, 

ii. An operand expression is an expression. 
(d) An infix expression consists of three parts: a left operand expression, 

an infix operator and a right operand expression. 
i. Left and right operand expressions are expressions. 

ii. An infix operator is one of the following (literals): either a 
Boolean operator: A (and, Boolean conjunction), V (or, Boolean 
disjunction), D (implication, Boolean i f - then) , = (equal), ^ 
(not equal), or a character operator: = (equal), ^ (not equal), 
or an arithmetic operator: + (add), — (subtract), / (divide), 
x (multiply), = (equal), ^ (not equal), < (less than), ^ (not 
less than), > (larger than), ^ (not larger than), < (less than or 
equal), ^ (not less than or equal, i.e., larger than), > (greater 
than or equal), ^ (not greater than or equal, i.e., less than), 
modulo (the modulo function), gcd (the greatest common divi
sor function), * (exponent), or other. 

(e) A postfix expression consists of two parts: an operand expression, 
and a postfix operator. 

i. Operand expressions are expressions. 
ii. A postfix operator is one of the following (literals): ! (factorial), 

or other. 
(f) A conditional (mixfix) expression has three parts: a test expression, 

a consequence expression, and an alternative expression — all being 
expressions. 

7. A vector expression is a pair: a vector lower and upper index bounds, 
and a list of expressions (of the same type). 

8. A record expression is a set of field-identifier marked expressions such 
that no two expressions are marked with the same field identifier. 
(a) A field identifier-marked expression is a pair: a field identifier and 

an expression. 
9. A test expression is an expression. 

10. A parenthesised expression is an expression. 

Exercise 8.8 Syntactic Well-formedness of STIL. The Syntactic Well-form
edness Constraints: We first define, in an intertwined manner, the notion of the 
type of an expression, as well as the notion of type correctness of expressions. 

Syntactic Well-formedness 

1. The type of an expression which is a value is the type of that value. 
2. Let variable identifier v be defined, in a block b, to be of type t. 
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3. Then in any expression of b in which v occurs the expression v is of type 
t. 

4. Let v be a variable of type t vector whose elements have been denned to 
be of type te. Let i be a valid index into the defined vector type. Then 
v[i] is a variable reference expression and is of type te. 

5. Let v be a variable of type record t. Let / be a field identifier of record 
type t. Let the type expression associated with / in record type t he te. 
Then v.f is a variable reference expression and is of type te. 

6. Let vr be a variable reference of type t. 
7. Let f be a vector type with element type te and index range 

{ii,i2, • • •, in} (i-e., the set of consecutive integers from a lower bound i\Q 

to an upper bound i^), and let e be any integer valued expression whose 
value (which can only be determined at run-time) lies in the abovemen-
tioned index range, then vr[e] is a variable reference expression, and is 
of type te. 

8. If £ is a record type with field identifiers index set {/i, fa, • • •, / « } , and 
such tha t the type expression associated with field identifier fi (where 
i £ { 1 . . .n}) is te, then vr»fi is a variable reference expression, and is 
of type te. 

9. Let uie be a syntactically well-formed prefix expression. (That is: Let the 
type of e be t.) If t is Boo lean , then ui must be the operator -i. Otherwise 
t must be either i n t e g e r or r e a l . If the operator in the latter case is 
either one of the arithmetic operators: s i n , c o s , t a n , c o t a n , s i n h y , 
coshy , t a n h y , c o t a n h y , a r c s i n , a r c c o s , a r c t a n , a r c c o t a n , J~, 
logio or l o g 2 , then the type of the prefix expression is r e a l . If t is 
i n t e g e r and the operator is either one of + , —, then the type of the 
prefix expression is i n t e g e r . If t is r e a l and the operator is either one 
of + , —, then the type of the prefix expression is r e a l . If t is r e a l and 
the operator is either one of y, \., then the type of the prefix expression 
is i n t e g e r . These are the only allowed type and operator combinations. 

10. Let eicuer be a syntactically well-formed infix expression. Tha t is: Let 
the types of ei be ti, and of er be tr. Either ti,tr are both of type 
c h a r a c t e r and ui is either one of = , ^ . If so, type Boolean is the type 
of the infix expression. Or ti, tr are both of type Boolean in which case 
UJ must be one of the operators = , ^ , A, V, D. If so type Boolean is the 
type of the infix expression. Or ti,tr are of type i n t e g e r and /or r e a l . 
If so, the type of the infix expression is Boolean if the operator is one of 
= , ^ , < , ft, > , j£, < , ^ , > , ^ . If the infix operator is one of + , —, x then 
the type of the infix expression is i n t e g e r if both ti,tr are of type 
i n t e g e r , else, including if ui = / , the type of the infix expression is 
r e a l . 

11. Let euj be a syntactically well-formed postfix or suffix expression. Tha t 
is, let the type of e be t. We just assume w to be the factorial operator 
!. Then t must be of type i n t e g e r . The type of eui is also i n t e g e r . 
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12. Let e be a conditional expression: if et then ec e l s e ea end. The 
type of et must be Boolean, and the types of ec and ea must be the 
same, say t. Then the type of e is t. 

We define the notions of nesting, surrounding, scope and inheritance. 

1. Let b be a block: begin var_dcls; stmt_lst end. The scope of any variable 
identifier, any record field identifier and any enumerated set identifier 
declared in var_dcls is the statement list stmt_lst. 

2. If a block b' occurs in the statement list of another block b, then b' is 
said to be immediately nested within b, and b is said to be immediately 
surrounding b'. b' is in the scope of any identifier defined in b. Any 
identifier declared in b is inherited by b' — except if redeclared in b'. 

3. Continuing the previous item: If b"s statement list contains blocks b", 
then they are also nested within b, and b surrounds b" — but no longer 
"immediately". 

4. Let for step_id in (lb..ub) do stmt_lst end be any iteration statement. 
The scope of step_id is the statement list stmt_lst, including embedded 
(i.e., nested) blocks of stmt_lst. 

5. Let id be an identifier declared in the var_dcls of a block b with state
ment list stmt_lst. If id occurs in some statement of stmt_lst which is 
not a block, then id is said to occur directly in b. 

6. Continuing the item just above: If id occurs in some block statement b' of 
stmt_lst in which it is not redeclared, then id is said to occur indirectly, 
i.e., inherited, in b. 

7. Continuing the two items just above: And id's nearest surrounding dec
laration is & — in both cases. 

We finally list some of the remaining syntactic well-formedness constraints. 
Please formalise these. 

1. Programs: 
(a) Programs are well-formed if their blocks are well-formed. 

2. Declarations: 
(a) Let d be a declaration, for example, va r iab le v := value_expression 

type type_expr. 
(b) A declaration is well-formed if its type expression is well-formed and 

if its value expression is well-formed. 
3. Statements: 

(a) Let & be a block: begin var_dcls; stmt_lst end. No two identifiers, 
whether variable identifiers, or record field identifiers mentioned in 
var_dcls must be the same. That is, if they occur at different textual 
positions in the text of var_dcls then they must be distinct. 

(b) The declaration of a variable, say v, of type, say t, establishes a 
contribution to the static context of the block b in which it occurs, 
and may do so for any inner block b' in which v is not redeclared. 
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(c) We call such a static context, when we speak of type checking, a 
dictionary. The dictionary inherited from outer blocks and modified 
by current block declarations is called the current dictionary for all 
statements in the statement list of the block. 

(d) Any variable identifier of a statement must be declared either in the 
block of whose statement list s is part, or in some surrounding block. 
That is, must be found in the current dictionary. 

(e) The type of a variable identifier is that prescribed in the current 
dictionary. 

(f) Let for id in (lb..ub) do stmt_lst end be any iteration statement. 
i. The iteration "variable" id can only be used in variable reference 

expressions vr[id]... of stint_lst (and in its inner, i.e., nested, 
blocks). 

ii. Thus the occurrence of an iteration statement step "variable" id 
gives rise to a contribution to the current dictionary. 

iii. The new, the iteration statement ("current" or "local") dictio
nary associates id with the in teger type. 

iv. You are invited, please, to think of id designating an index into 
a vector value. 
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Semiotics 

• The prerequisites for studying this chapter are that you are familiar with 
the basic abstraction and modelling principles and techniques: property-
and model-oriented specifications, respectively representation and opera
tion abstractions in terms of sets, Cartesians, maps and functions. Under
standing of Chap. 3 is also an advantage. 

• The aims are to summarise and extend the concept of semiotics as consist
ing of the concepts of pragmatics, semantics and syntax, and to emphasise 
the utter importance of considering and of modelling the world semiot-
ically: (i) adhering to pragmatics, (ii) focusing on achieving pleasing se
mantic types and functions, and (iii) based on pleasing abstract syntaxes. 

• The objective is to free your mind so as to achieve a proper choice, 
emphasis and prioritisation of pragmatics, semantics and syntax in all 
phases of software development. 

• The treatment is from systematic to formal. 

9.1 Semiotics = Syntax © Semantics © Pragmatics 

The language we use, whether informal or formal, whether our mother tongue, 
or a professional, i.e., occupational language, determines much of our intellec
tual thinking, as well as our material action. Mastery is therefore expected 
wrt. linguistic notions of language: (i) syntax, as formalisable rules of form, 
i.e., of syntactical systems for expressing such rules, of abstract ways of ex
pressing this as well as concrete ways — where the latter corresponds to how 
we "utter" [or concretely model] sentences, respectively model conceptual [i.e., 
data] structures; (ii) semantics, as formalisable rules of meaning, i.e., of se
mantical systems for expressing meaning of sentences or of conceptual [data] 
structures; and (iii) pragmatics, as ("difficult to formalise") rules of use, i.e., 
of conventions as to why we utter certain things, why we "figure" or "picture" 
certain conceptual [data] structures. This mastery is needed, but the ability to 
express and to model "things", syntactically and semantically, while observing 
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proper use, including effective communication (as also determined by prag
matic concerns) may be considered an art! Much can, however, be learned, 
and much confusion can be avoided, if we properly understand basic notions 
of syntax, semantics and pragmatics. 

We have therefore investigated, and we shall further, in this chapter, treat 
various notions of syntax, various notions of semantics, and various notions of 
pragmatics, so that you can handle these concepts with ease. We have found 
— in the context of computing science and of software engineering — that 
the kind of understanding of these concepts (syntax, semantics, pragmatics) 
that we will put forward here, has been put to good use over the past 30 
years and will undoubtedly come to good use for many more years. After all: 
computing is a rather mechanistic world and the 'theory of semiotics' [73-
75,364,365,394-397,553] as here promulgated, the sum of syntax, semantics 
and pragmatics, is a relevant one, one that seems to fit much in this world of 
computing. But not all! 

Why is "this thing" about language, and therefore syntax, semantics and 
pragmatics, so important? It is important because almost all we do, in soft
ware engineering is describing (is prescribing, is specifying): is creating small, 
to medium, to indeed very large scale descriptions (etc.). So we communicate, 
first with one another, within and across stakeholder boundaries and commu
nities, then with the computer. Our final descriptions are actually the basis 
for computations, i.e., for executions by computers. If these programs have 
to be utterly precise, syntactically as well as semantically, is it therefore any 
wonder that the prior communications — those among and between the soft
ware developers and the other stakeholders — must also be utterly precise? 
A mistake in the use of language, an imprecision, an unintended looseness 
or ambiguity made in early stages of development, in, for example, a domain 
description, may only be, and, as evidence shows, is only discovered long after 
the installation and first use of the software. No wonder we need to be utterly 
precise all the time! 

9.2 Semiotics 

Characterisation. By semiotics of a language, or a system of sentential or 
other structures, we understand a "sum" of the: 

• pragmatics 
• semantics and 
• syntax 

of that language or system. • 

What we mean by "sum" is the subject of this chapter. We have listed the 
components of semiotics in the direct order of their "importance". When we, 
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being serious, utter something then there is a reason for doing so: the prag
matics. In what we utter there is a meaning: the semantics. How we utter 
it, depending on the language we use, is formed by grammatical rules: the 
syntax. 

Normally, treatment of pragmatics, semantics and syntax is in the re
verse order of their importance. The reason (metapragmatics as it were) for 
others doing so is partly historical, partly of convenience. First, the means 
for formalising syntax were discovered, then means for formalising semantics 
were discovered. Current technology seems not to provide a ready means for 
formalising pragmatics. Formal syntactical systems are simpler than formal 
semantical systems. 

This chapter, although it is rather large, does not substitute for a proper 
text on semantics. We refer to such textbooks as [93,158,432,448,499,533]. 
This chapter, however, treats the subject of programming language semantics 
from a point of view which we consider complementary to those views pre
sented in the above-referenced literature. The treatment of those books lays 
a firm mathematical foundation for the semantics specification languages and 
deals with such issues as congruence between two different semantic definitions 
of the same languages, that is, the correctness of one wrt. the other. 

9.3 Language Components 

The following decomposition of language concepts and their explication is 
taken from [7]. The syntax-semantics-pragmatics sub-structuring is believed 
to be due to Morris [73-75,364,365,553]. In fact, the term 'semiotics', as we 
use it, is really to be taken in its widest meaning [84]. 

Language concepts embody several constituent concepts. Some are impor
tant, others are not important to the subject of these volumes. 

Characterisation. Phonetics is the study of and knowledge about how 
words are realised as sounds. In automatic speech recognition systems pho
netics is a core issue. • 

Characterisation. Morphology is the study of and knowledge about how 
words are constructed from basic meaning units called morphemes. Again we 
shall not treat this subject further in these volumes. • 

Characterisation. Semiotics is the study of and knowledge about the struc
ture of all 'sign systems'. • 

Conventional natural language as spoken by people is but one such system.1 

1 Examples of sign systems are sound (audio), sight (visual), touch (tactile), smell 
and taste and in all contexts: dance, film, politics, eating and clothing [84]. 
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Characterisation. Syntax is the study of and knowledge about how words 
can be put together to form correct sentences and of how sentence words relate 
to one another. • 

This is, obviously, one of our central concerns: the correct syntactic use of 
specification, design and programming languages, and the design of effective 
such languages, and, as we shall see in Section 9.5, systems. 

Characterisation. Semantics is the study of and knowledge about the mean
ing of words, sentences, and structures of sentences. • 

Semantics is perhaps the most crucial issue treated in these volumes. 

Characterisation. Pragmatics is the study of and knowledge about the use 
of words, sentences and structures of sentences, and of how contexts affect the 
meanings of words, sentences, etc. • 

9.4 Linguistics 

A number of concepts need be characterised: 

Characterisation. Linguistics is the study of and knowledge about lan
guage. 

Characterisation. Natural linguistics is the study of and knowledge about 
national, ethnic, cultural ancient and/or extinct languages. • 

Characterisation. Computational linguistics is the study of and knowledge 
about natural language processing by machine. • 

We shall not be concerned about this aspect! 

Characterisation. Language Comprehension: In building computer sys
tems for the support of man-made systems we build models of terms and 
fragments of sentences of the languages spoken by stakeholders in these sys
tems. • 

Examples of man-made systems, i.e., domains, are: financial services, health 
care, transport, manufacturing, etc. Comprehension, effectively understanding 
what stakeholders of such domains utter, describe, etc., is of crucial concern. 

Since natural languages are inherently informal and since "human frailty 
is endemic", we shall never come to completely mechanise natural languages. 
We shall forever have the greatest difficulties in ensuring that whatever world 
knowledge has been communicated by words and sentences has not been detri
mentally misunderstood. The outlook may seem bleak. But we do know from 
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successful uses of computers, in fact, from adequately functioning human en
terprises and institutions, tha t "all is not lost". There is indeed a large body 
of knowledge, which, when adequately mastered, will help its users in achiev
ing significant support in their work towards high-quality computing systems. 
Mastery of a great number of language concepts, many covered in this and 
the next chapters, has shown to assist greatly. 

9.5 Languages and Systems 

The problem tackled in this section is the following: Sometimes we refer to 
a s tructure2 of composite phenomena as a system, sometimes as a language. 
Wha t is the distinction? Is there any? In this section we basically equate an 
intellectual concept of language with a formal, intellectual, physical world 
phenomenon of system. 

As we shall see, a language is a structure (i.e., a formal system) consisting 
of a syntax, a semantics and a pragmatics. Languages, in the conventional 
sense, are spoken and heard, and are written and read. They manifest them
selves in the form of sentences, or as we shall see it, as descriptions, i.e., 
designations, definitions and refutable assertions collected in specifications, 
designs and programs. 

A real world, physical system is, in this sense, perhaps not immediately 
conceivable as a language in the previous sense. A system, and since we em
phasised its real world, physical, i.e., phenomenological,3 nature, is perhaps 
more conventionally perceived by what can be seen through the eyes — when 
what is seen is not written texts — rather than heard through the ears or read 
as texts . We shall, however, in these volumes insist tha t the distinction be
tween a formal system and a real world, physical system is merely a fiction, is 
merely psychologically and pragmatically motivated. We shall claim tha t since 
we have to describe these real world, physical systems they become linguistic. 
Tha t since some, if not most, of these systems (viz.: railways, manufacturing, 
airports, fisheries industry, health care, etc.) contain sizable language com
ponents, they can also be understood as languages (or sets of languages), 
namely including those spoken by actors or stakeholders of these systems. 
And since we get to properly understand these real world, physical systems, 
through verbal and otherwise communicated (e.g., written) language-based 
discussion, they are languages. Some system components, such as a refraction 

2By a structure we mean an aggregation of any number (incl. 0) of "things", that 
is, phenomena or concepts, in such a way that we can model them mathematically, 
for example, in terms of some functions, typically over Cartesians of numbers, sets, 
lists, maps and functions (over these), or logically in terms of a set of axioms. The 
term 'structure' is therefore basically the mathematical, or the logical structure of 
these mathematical (incl. logic) entities. 

3By phenomenology is understood the study and knowledge about what can be 
perceived. 
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tower in a petrochemical plant, are describable, for example, in the form of 
the languages of differential equations and fuzzy control. Note the distinction 
between formal systems, on the one hand, and real systems or (real, human 
or formal, i.e., programming) languages, on the other hand. The former allow 
you to express models of the latter. 

9.5.1 Professional Languages 

We shall confine ourselves only to look at a small subset of languages: The 
languages of domain-specific Gelds, such as the those used by those people for 
whom we make software. These are, on one hand, the professional languages of, 
for example, the financial service industry (of banking people, of insurance 
people, of stock exchange staff and stock brokers and traders), of railway 
staff, of the air transport industry (of airport, airline and air traffic control 
staff) and, on the other hand, the professional language of software engineers: 
the specification, design and programming languages. We shall refer to the 
former group of languages as the application domain-specific languages and 
to the latter group as the software engineering languages. Together we refer 
to these languages as the professional languages. 

Thus, in these volumes, we are not concerned with languages in general, 
that is, those used in everyday communication. We are only concerned with 
those (albeit natural language) subsets that relate to subjects that might be 
the target of computing. 

The professional languages are characterised by a relatively precise use of 
terms. Certain verbs, nouns, adjectives and adverbs stand in relatively precise 
relations to the phenomena they designate — they are, so to speak, part of 
the jargon of the professional trade. 

Example 9.1 Professional Languages: Some examples of professional lan
guage utterings are: (i) to offer a block of stocks for sale, (ii) to dispatch a 
train according to the timetable from one station to a next (station) along a 
specific line, (iii) to plan a project as a set of actions that use certain resources 
at certain locations and according to a certain schedule, (iv) to abstractly 
model the domain of a certain application and to model the requirements to 
support certain operations in that domain. • 

Examples 9.1 (i—iii) are all application domain specific. Example 9.1(iv) is from 
software engineering. 

The point we are now making is therefore this: with the techniques of 
these volumes, perhaps culminating with the description principles outlined 
in Vol. 3, Chaps. 5-7, we will be able to construct precise informal as well as 
formal descriptions of what these terms mean. As we shall see in this chapter, 
the terms are syntax, they are used in pragmatically determined (i.e., context 
conditioned) situations, and they have a semantics. It is our job, as software 
engineers, to make sure that we understand as precisely as is possible how 
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these three aspects, pragmatics, semantics and syntax, relate to the profes
sional language terms. 

9.5.2 M e t a l a n g u a g e s 

We cannot describe a language in itself. Tha t would lead to paradoxes and 
anomalies. Thus the language used in describing another language is called the 
metalanguage of the former. These volumes bring forth many metalanguages: 
natural language, in general; and mathematics and logic in particular; RSL, 
in general; and CSP, the D u r a t i o n C a l c u l i (DC) languages (Chap. 15) and 
other formal languages in particular. 

We will, however, not present the full formal syntax and semantics of these 
languages — other than generally expressing tha t there is a (set of) type(s) of 
syntactic values, a set of types of semantic values and denotations, cf. Sect. 3.2, 
and a set of semantic functions (M) :4 

t y p e 
Syn, Sem 

DEN = Sem ^ Sem 
value 

M: Syn -> DEN 

where the semantic functions assign denotations to each syntactic value. The 
design of a language is therefore based on properties of the domain within 
which it is going to be used. Hence it is also based on the pragmatics of the 
domain, the design of its semantic types ("what it is all about" ) , the design 
of its syntactic forms, and the definition of semantic functions. We refer to 
internal reports for the precise mathematical semantics of RSL [201,202,351-
354]. 

9.5 .3 S y s t e m s 

We shall provide complementary answers to the question: "What is a sys
tem?" : As physical and as linguistic "devices"! 

A Phys i ca l S y s t e m V i e w 

In the first, the conventional, "mechanistic" view — which, in the present 
formulation is due to Pirn Borst, Hans Akkermans and Jan Top [60] — a 
system syntactically consists of a set of disjoint components, which are parts , 
where parts may have subparts which are par ts , and where components have 

We have simplified and summarised the syntactic, semantic and denotation 
types considerably. First hints were given in Sect. 3.2. The present chapter will 
amply illustrate highly structured syntactic, semantic and denotational types. 
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terminals, with some or all terminals of one component being connected to 
terminals of other components by means of connectors. A connection is a 
sequence of terminals with "in-between" connectors. 

A system semantically stands for the flow of "things" (energy, control, 
information, or other) across connections, with parts designating and host
ing actions which consume and/or produce "things", and with disconnected, 
"dangling" terminals designating interfaces to a surrounding world. 

Examples of Physical and Nonphysical Systems 

It is time for examples. 
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Fig. 9.1. An air pump, i.e., a physical mechanical system 

Example 9.2 System Illustrations: 
Figure 9.1 illustrates the above for the case of a physical air pump system. 
Figure 9.2 might illustrate a rocket on a launch vehicle with six essential 

components: four wheels, a 'flatbed' and the rocket, which is assumed "flexi
bly" connected to the flatbed. Wheels are likewise connected to the flatbed. 

Figure 9.3, which is not a physical system, illustrates the related set of 
documents and also the set of related activities that are relevant to the devel
opment of a typed, parallel programming language. These are the language 
design, including syntax and (static and dynamic) semantics, the require
ments (including their staged and stepwise development of semantics analysis 
requirements and requirements to generated code and to a runtime system for 
the support of multiple tasks), and the software design (a likewise staged and 
stepwise development of a multipass administrator and individual frontend 
and backend passes). Chapters 16-18 and Vol. 3, Chap. 27, Sect. 27.2 will 
illustrate what is behind a picture like that of Fig. 9.3. 
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6 ^ ^ 
Fig. 9.2. An "inverted" pendulum 
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Fig. 9.3. A development graph for Ada compilers 

Figure 9.4 illustrates a rail net system. 
Figure 9.5 illustrates a software architectee as a system of n -f 2 compo

nents (n clients (three shown, the rest indicated by ellipses ( . . . ) ) , a timetable-
based reservation database and a staff) with (data communication) connec
tions allowing the flow of control and information. 

Figure 9.6 illustrates a program system structure as a system of n -f 8 
components. This latter figure relates to the former. 

The last two figures are conceptual systems, not necessarily pfrysical sys
tems. The clients and the staff may be represented physically by terminals, but 
some of the client and staff software may reside, physically, i.e., storagewise, 
together with the timet able-based reservation database. • 
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Fig. 9.5. A conceptual airline timetable system 
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Fig. 9.6. The software components of an airline timetable system 

A Linguis t ic S y s t e m s V i e w 

In the second, the linguistics view, a system determines one or more lan
guages. For a given (professional) language, and referring to the "physical 
systems" view: The parts and components define certain nouns. Terminals 
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define values. An "inside" of parts (and components) defines certain verbs. 
Dependent on whatever descriptive text may accompany a system diagram, 
one may define additional nouns, verbs, adjectives, adverbs, etc. Often a part 
is thought of as being a "carrier" of a behaviour, and several parts as a set 
of parallel behaviours. What the nouns, verbs, adjectives, adverbs, etc., may 
designate may be as follows: The things "residing" inside the parts and com
ponents may determine RSL-like types, classes, schemes and objects. That is, 
they may designate semantic notions and their structuring: Disjoint parts may 
correspond to a Cartesian type, and contained parts may correspond to a set, 
list or map type. Components typically correspond to a class or scheme defi
nition. The parts and components may correspond to functions or processes. 
The terminals and connectors may determine any of a number of modelling 
choices: A set of two or more terminals connected together may correspond 
to a shared variable or object, in which case their connector corresponds to 
variable or object access from different functions (processes). Or a set of two 
or more terminals connected together may correspond to an input/output 
communication between two processes. 

Example System Languages 

Two examples of sentences of professional languages will be given. 

Example 9.3 An Air Pump System Language: We refer back to Fig. 9.1 
which illustrates an air pump system. The air pump consists of four com
ponents: a power supply, a pump, an air supply and an air load. The pump 
consists of six parts: a coil/magnet, a lever, a bellows arrangement, two valves 
(1 and 2) and an air reservoir. The air supplies are connected to respective 
valves by means of air pump to air supply fittings. The power supply is con
nected to the coil/magnet. The lever is connected to the coil/magnet and the 
bellows arrangement, which again is connected to the air reservoir — with 
the air reservoir again being connected to both valves. • 

For simplicity we focused here only on the assembly entities and their "topo
logical" layout. We could have gone on to explain the inner workings of the 
parts and the transfer of energy (etc.) between the parts and components. 

Example 9.4 A File System Language: 
A file system consists of four parts: A sentinel, a Sle directory, a set of 

disjoint page directories and a set of disjoint pages (Fig. 9.7). The sentinel 
and the file directory is kept in storage, while the page directories and pages 
are kept on disks. The file directory is a linked list of disjoint records with 
three fields: a next record link, a file name and a storage to disk page direc
tory address. A first record is designated by the sentinel. A page directory is 
an indexed table whose entries address distinct pages. Pages are contiguous 
sequences of bytes. 
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We see that storage and disk are chosen as components, the sentinel, the 
file directory and the respective collections of page directories, and pages 
are proper immediate, i.e., direct parts. We also see that records, any one page 
directory and any one page are direct parts of these latter, and that the fields of 
records and page directory table entries again are direct parts of the previous 
parts. The pointer, link and address fields are terminals, and the pointers 
(themselves, i.e., the pointer, link, address values) are the connections. • 

File Directory 
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Fig. 9.7. A simple file system 

Example 9.5 A File System Formalisation, I: We can formalise the system 
diagrams. We show first a simple, straightforward "solution" to the example 
of the software engineering of The File System'. 

Earlier and later examples have and will illustrate models of physical, 
man-made systems. 

type 
FS = STG x DSK 
STG = S x FD 
DSK = PDS x PGS 
S = = nill() | ptr(l:LOC) 
FD = LOG -nf REC 
REC :: S x Fn x Dn 
PDS = Dn jft TBL 
TBL = Entry* 
Entry = = entry(pi:PgInfo,pn:Pn) 
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PGS = Pn -# PAGE 

The file system (fs:FS) consists of a storage (stg:STG) and a disk (disk:DSK). 
The storage contains (and we show only that) a sentinel (s:S) and a file di
rectory (fd:FD). The disk (disk:DSK) consists of page directories (pds:PDS) 
and pages (pages:PGS). The sentinel is either nil, i.e., "contains" no storage 
location value, or contains a valid storage location value. The file directory 
(fd:FD) maps locations (LOC) to records (REC). A record has three fields: 
a (next) sentinel, a file name (fn:Fn) and a directory name (dn:Dn) which is 
like a disk address. The page directories map disk addresses (dn:Dn) to tables 
(tbl:TBL). A table is a list of entries (Entry), and an entry has two fields: 
a page information field (pi) and a page name (pn) field. The page names 
are treated like (other) disk addresses. The pages map a disk address to a 
page (page:PAGE). We omit expressing the usual constraints that ensure no 
"dangling" pointers: that sentinel storage location values are indeed proper 
storage locations of records, and that disk addresses point to appropriate page 
directories or pages. 

value 
fstrec: STG 4 REC 
fstrec(sid) = fd(l(s)) 

pre 3 loc:LOC • s=ptr(loc) A l(s) € dom fd 

nxtrec: S 4 STG 4 REC 
fstrec(s)(,fd) = fd(l(s)) 

pre 3 loc:LOC • s=ptr(loc) A l(s) £ dom fd 

pgdir: Dn H> DSK 4 TBL 
pgdir(dn)(pds,) = pds(dn) pre dn g dom pds 

pg: Dn x Na t 4 DSK 4 PAGE 
pg(dn,i)(pds,pages) = pages(pn((pds(dn))(i))) 

pre dn £ d o m pds A i 6 inds pds(dn) 
A pn((pds(dn))(i)) € dom pages 

The type definitions reflect the system part and component structure. The 
fstrec, nxtrec, pgdir and page function definitions reflect the system terminals 
and connectors. 

The types and functions are semantic models of syntactic software engi
neering professional language terms: storage, disk, file directory, file names, 
pointers (links, chains, addresses), page directories, page directory, table, in
dex, pages and page, covering a view of information (noun), and get first file 
directory entry, get next file directory entry, get page directory and get page, 
covering a view of operations (verbs). • 
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Example 9.6 A File System Formslisation, II: The previous model (Exam
ple 9.5) expressed an abstract view, concentrating on the storage, disk, file 
directory, page directories, page directory, pages, and page data structures and 
on (some of) the basic, you may say primitive, functions that involve these 
data structures (fstrec, nxtrec, pgdir, and pg). The next model looks at the 
same issues bi;t now "endowing and enriching" them with a process view. 

type 
MSG = = getpgdir(dn:Dn) | getpg(dn:Dn,i:Nat) 

channel 
s_d : MSG | TBL | PAGE 

value 
storage: STG -» out s_d in s_d Unit 
storage(stg) = 

(... ; s_d!getpgdir(d) -> s_d?tbl ; ... ; s_d!getpg(d,i) -> s_d?page ; 
... ; let stg' = ... in storage(stg') end) 

disk: DSK ->• out s_d in s_d Unit 
dsk(pds,pages) = 

s_d?getpgdir(dn) —»• s_d!pgdir(dn)(pds,) ; dsk(pds,pages) 
D s_d?getpg(dn,i) ->• s_d!pg(dn,i)(pds,pages) ; dsk(pds,pages) 
[] ... -> ... ; let disk = ... in dsk(disk) end 

A Flowchart Language 

The next example is quite extensive. It can be skipped in a first reading. 

Example 9.7 Flowcharts: 
The domain of flowcharts includes that of sequential programs, usually 

presented in the linear form of lines of possibly structured statements. Some 
statements may contain or be goto statements. Labelled statements are then 
the target of such gotos. But the reader of a sequential program has to "link 
up", as it were, the goto source and targets. Flowcharts show these "link-ups" 
explicitly. So we need to make precise the syntax of sequential programs and 
their visual counterparts: that of flowcharts. 

The domain of flowcharts also includes their animation. In the domain we 
do not concretise exactly how the animation may take place: It may be your 
tracing, with some finger or pencil, the flow of control, or your placing a small 
token (a pebble or a coin) successively along the flowchart elements, or other. 

It is the purpose of a subsequent requirements to make precise exactly how 
we see a computer system providing the visualisation and animation. But first 
we must get the basic notions right: sequential programs, flowcharts, and the 
intrinsics of visualisation and animation. 
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We describe, informally and formally, the syntax of simple, unstructured 
flowcharts. We then describe a variant of an abstract interpretation, i.e., se
mantics of such flowcharts, namely a form of flowchart animation. Finally we 
describe structured flowcharts. 

Informal Syntax of Simple Flowcharts 

We give an example description of the syntax of simple flowcharts that is 
terse, i.e., is short and describes only the very essentials. 

• A flowchart consists of a number of uniquely labelled boxes infixed by 
trees. 

• There are four kinds of boxes: 
• Circular "Begin" and circular "End" boxes, labelled with B's, respec

tively E's. Any one flowchart has exactly one B-box and one or more 
E-boxes. 

• Rectangular "Statement" boxes, (externally) labelled with some dis
tinct s, and internally filled out with some statement, S, — in a se
quential programming language that we shall otherwise not detail. Each 
statement box has exactly one input and one output. 

• Diamond-shaped "Predicate" boxes, (externally) labelled with some 
distinct p, and internally filled out with some predicate — in the oth
erwise not detailed sequential programming language. Each predicate 
box has exactly one input and two outputs: one affixed with true, the 
other with false. 

• There is one kind of tree. The root of the tree is indicated by an arrow. 
The one or more leaves of the tree are left further unspecified. Each tree 
infixes two or more boxes: The arrow is incident upon a box, i.e., provides 
"its input". The leaves "provide box outputs". 

• We say that a pair of boxes is connected if there is a tree one of whose 
leaves designates the first box of the pair and whose arrow designates the 
second box of the pair. 

• A path of a flowchart is a pair of labels of connected boxes of the flowchart. 
• A route of a flowchart is a sequence of labels such that an adjacent pair of 

the sequence is a path of the flow chart. 
• A trace of a flowchart is a route whose first label is that of a begin box 

and whose last label is that of an end box. 
• A cycle of a flowchart is a route whose first and last labels are the same. 
• A well-formed flowchart is a flowchart such that for every box there is a 

trace of the flowchart that contains the label of that box. 

That's all! 
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A Simple Flowchart 

Figure 9.8 shows a simple flowchart according to the above description. There 
are seven trees, of which five are simple lines and two are binary trees. 51,52, 
etc., stand for statements, and P1,P2 for predicates. 

The notion of box labels is introduced solely to handle a number of tech
nicalities such as for example well-formedness. 

The syntax description was informal, but supported with an illustrative 
picture. 

Fig. 9.8. A simple flowchart 

Formal Syntax of Simple Flowcharts 

We now give a formal syntax of simple flowcharts. 

type 
L, S ,P 
FC' = Box-set, FC = {| fc:FC' • wf_FC(fc) |} 
Box = = mk_B(lbl:L,l:L) 

I mk_S(from:L-set ,lbl:L,s:Stmt,to:L) 
| mk_P (from:L-set,lbl:L,p:Pred,tofalse:L,totrue:L) 
I mk_E(from:L-set,lbl:L) 

value 
wf_FC(fc) = 

let lbls:L-set = { lbl(b) | b:Box • b € fc } in 
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3 ! beg:Box, 3 e:L,l:L • 
beg € fc A beg=mk_B(e,l) A V b:Box • b 6 fc => 

case b of 
mk_B(,l) -> 1 € Ibis, 
mk_S(ls„,l) ^ Is U {1} C Ibis, 
mk_P(ls,,,fa,tr) -+ Is U {fa,tr} C Ibis, 
mk_E(ls,e) —> Is C Ibis end 

A ... /* well-formedness wrt. traces */ 
end 

Structured Flowcharts 

The notion of simple flowcharts corresponds to sequential programs with la
belled statements and conditional gotos. The flowchart of Figure 9.8 thus 
corresponds to the following sequential program: 

b: 
si: SI; 
s2: S2; 
p i : if PI then goto s2 end: 
s3: S3; 
p2: if P2 then goto p i end; 
s4: S4; 

e: 

Structured statements are introduced in order to avoid "wild" gotos. 
Therefore we now cover the notion of structured flowcharts. We do so by 

first introducing the notion of structured statements. Recall that statements of 
the flowcharts introduced above were designated by simple rectangular boxes. 
Now we wish to restrict flowcharts to only contain such compositions of boxes 
and trees such that any flowchart can be simply decomposed to a sequence of 
subflowcharts where each has exactly one input box and one output box — 
as we shall now see. 

A structured statement has either of the forms informally expressed below: 

skip 
| var := expr 
| s tmt_l ; stmt_2 ; ... ; stmt_n 
| if expr then stmt else stmt end 
| while expr do stmt end 

To each of the structured statements there corresponds the "extended" 
flowchart shown in Figure 9.9. The extension is that of providing shaded, 
respectively black, begin and end boxes. 

Composition of these extended flowcharts now proceeds as described: 
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• A structured flowchart is the composition of one or more extended 
flowcharts. 

• Composition (";") of two extended flowcharts is the juxtaposition of these 
extended flowcharts such that the (black) end box of one "cancels" the 
(grey) begin box of the other — whereby the single arrow into a black 
box (i.e., circle) coincides with the single arrow out from a grey box (i.e., 
circle). 

• Composition is associative: 

ci;(c2;c3) = (ci;c2);c3 = ci;c2;ci 

• When no more compositions are needed the remaining grey box becomes 
a begin box and the remaining black box becomes an end box. 

We leave it as an exercise to formalise structured flowcharts. 

T 
skip 

1 
• 

T 
var := expij 

1 
• 

]• 
stmtl 

\ 
stmt2 

stmtn 

\ 

false ^ - \ ^ t r u e false ^ J ^ t r u e 

P^l 

Fig. 9.9. Structured flowcharts 

System Diagrams Versus Formal Specifications 

Some comments may be in order. The terminals are now represented by the 
specific guarded and unguarded input or output RSL commands. The connec
tors are represented by the channels. The two components are represented 
by respective processes, and the various parts are represented by appropriate 
data structures. 

Example 9.8 An Air Pump System Fornmlisation: We refer to Fig. 9.1. We 
can consider each of the boxes, i.e., each of the parts, a process, each of the 
connections a channel. We could structure their formalisation into one scheme 
for each of the three kinds of components, with one class for each part, and 
then instantiating one power supply, one pump and two air supply objects. 
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We will first summarise a process and channel structuring. ps_p, p_as, 
p al stand for power supply to pump, pump to air supply, and pump to air 
load channels. These could be conceived of as externally observable. cm_l, l_b, 
b_r, r_v_l, r_v_2 stand for coil magnet to lever, lever to bellows, bellows to 
reservoir, and reservoir to the two valve channels. They could be conceived 
of as internally observable. air_pump is the overall system process. It is the 
parallel composition of four processes: power_supply, pump, air_supply and 
air_load. 

channel 
PS_P) P_aS! P_&1 
cm_l, l_b, b_r, r_v_l, r_v_2 

value 
air_pump: Unit —> Unit 
air_pump() = power_supply() ||pump()||air_supply()||air_load() 

power_supply: Unit —> in ... out ps_p Unit 
pump: Unit -> in ps_p out p_as_ l , p_as_2 Unit 
coil_magnet: Unit —>• in ps_p out cm_l Unit 
lever: Unit —> in sm_l out l_b Unit 
bellows: Unit —y in l_b out b_r Unit 

power_supply() = ... 

pump() = coil_magnet() ||lever() ||bellows()||reservoir() ||valves() 
coil_magnet() = ... 
lever() = ... 
bellows () = ... 

Before going on: You may think of these RSL/CSP-like process expressions as 
specifying a "simulator" for the air pump. It "is not the air piunp itself", only 
a model. As such the model cannot actually perform the air "pumping". There 
is no power supply, there is no lever, there is no bellows arrangement, etc. The 
individual processes "fake" that, but can be used as a basis for implementing 
a "demo", that is, a software package which when deployed may "animate" 
the functions of the air pump. 

value 
reservoir: Unit -> in b_r out r _ v _ l , r_v_2 Unit 
reservoirQ = ... 

valves: Unit -> in r _ v _ l , r_v_2 out p_as, p_al Unit 
valves() = valve_l()||valve_2() 

valve_l: Unit —> in r _v_ l out p_as Unit 
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valve_l() = ... 

valve_2: Unit —> in r_v_2 out p_al Unit 
valve_2() = ... 

air_supply: Unit —> in p_as Unit 
air_supply() = ... 

air_load: Unit —» in p_al Unit 
air_load() = ... 

9.5.4 System Diagram Languages 

We started with a systems view formulated in terms of conventional (to wit: 
mechanical) engineering diagrams. And we supplied "ourselves", being in soft
ware engineering, data structure diagrams. Thus there is a metalanguage of 
diagrams. We could not and cannot, not immediately that is, propose a se
mantics that would cover all such diagrams: mechanical as well as software 
engineering, civil engineering, etc. There is simply too big a "spread" in the 
denotations of boxes and arrows — as this chapter also shows. For both kinds 
of diagrams we instead provided specific semantics in terms of RSL specifi
cations that were said to be specific to the specific diagram. Had we had a 
universal diagram language and its semantics, and if that semantics could be 
parameterised to the specific engineering field or subfield, as the case may be, 
then — perhaps — we could see our specific formalisations as "compilations" 
from the specific instances of the diagrams to the specific formalisations — 
given suitable actual arguments to be substituted for the formal parameters. 

9.5.5 Discussion of System Concepts 

We observe and summarise the following: The physical system notions of 
parts, components, terminals and connectors can be related to both classical 
engineering system concepts and to software system concepts. There are two 
complementary views of systems: The physical view and the linguistic view. 
The structure and contents of systems relate — via the ways in which the 
structure and contents are described — somehow to the formalisation of the 
system. The 'somehow' — how to achieve a pleasing, concise and (validly) rel
evant relation — is an art. But this series, in Vol. 3, Chaps. 5-7, presents many 
principles, techniques and tools that help achieve such relations: from the in
formal to the formal. We can schematically formalise the above. The meanings 
(Me) of syntactic structures of linguistic systems are usually mathematical 



9.6 Discussion 233 

functions over semantic types. Whereas the meanings (M^) of syntactic struc
tures of physical systems are usually processes. The latter are, of course, also 
mathematical functions over semantic types, but their signatures differ: 

t y p e 
LingSyntax, PhysSyntax, SemType 
DEN^ = SemType -> SemType 
DEN^ = U n i t ->• in icl ... out oc l ... U n i t 

value 
Mf. LingSyntax ->• DEN^ 
Mf. PhysSyntax -> D E N 0 

A syntactic structure of a linguistic system is usually some text. A syntactic 
structure of a physical system is usually the physically manifest mechanical 
structure, but may be described by some diagram. 

9.5.6 S y s t e m s as Languages 

So we can claim tha t systems are languages. A system is "inhabited" by peo
ple, and, when "speaking" professionally about a system, they use terms tha t 
designate system phenomena. So we should kindly advise the reader not to 
make too much fuss about any difference: When an ISO standard deals with 
"systems", it is actually characterising a limited kind of par t /whole composi
tional and compositional, cohesive or not cohesive language properties. The 
conclusion tha t we draw from all this is expressed in the principle and the 
techniques given next. 

Princ ip le s . Physical Systems: Physical systems are t reated as linguistic sys
tems. • 

Techniques . Physical Systems: Models of physical systems therefore centres 
around the identification and modelling of semantic and syntactic types and 
of functions (including) processes over these. • 

9.6 Discussion 

It is t ime to summarise. 

9.6.1 Genera l 

The point of showing the many figures of this chapter was to show you exam
ples, primarily of informal syntax, and then, for some of the examples, and 
derived from those syntax examples, of related semantics. The diagrams were 
intended, by those who first drew them, to denote a whole class of artifacts. 
The meaning of the diagrams, the possibility of redrawing them with slight 
changes, and exactly which artifacts might "satisfy" respective diagrams was 
informally explained by those proposing the diagrams. 
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9.6.2 Principles, Techniques and Tools 

We enunciate only a principle. The techniques and tools of semiotics are as 
for respective parts: pragmatics, semantics and syntax. 

Principles. Seek the semiotics of whatever "structure" of phenomena and 
concepts that you come across: Look for and discover syntactical structures; 
ask for, find and explore semantical structures; and inquire, all the time, about 
the pragmatics. • 

9.7 Charles Sanders Peirce 

Of several founders of the field of semiotics, in particular the concept of signi
fication, we single out Charles Sanders Peirce. The quoted paragraph is based 
on material from the Free Online Dictionary [118]: 

Charles Sanders Peirce (1839-1914) studied philosophy and chemistry 
at Harvard. Peirce's place as a founder of American pragmatism was 
secured by a pair of highly original essays that apply logical and sci
entific principles to philosophical method. In The Fixation of Belief 
(1877) he described how human beings converge upon a true opinion, 
each of us removing the irritation of doubt by forming beliefs from 
which successful habits of action may be derived. This theory was ex
tended in How to Make Our Ideas Clear (1878) to the very meaning of 
concepts, which Peirce identified with the practical effects that would 
follow from our adoption of the concept. In his extensive logical stud
ies, Peirce developed a theory of signification that anticipated many 
features of modern semiotics, emphasizing the role of the interpreting 
subject. To the traditional logic of deduction and induction, Peirce 
added explicit acknowledgment of abduction as a preliminary stage in 
productive human inquiry. 

We recommend selected books on theories and philosophies of signs, pragmat
ics and semiotics: [394-397]. 

9.8 Bibliographical Notes 

Several scholars, in addition to Peirce, have contributed to semiotics. Among 
these we single out Carnap [73-75], and Morris [364,365]. Heinz Zemanek 
brought my attention to the works of Morris [553]. 
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9.9 Exercises 

Exercise 9.1 Structured Flowcharts. We refer to Example 9.7. Please com
plete that example by providing a syntax definition for structured flowcharts 
as described at the end of that example. 

Exercise 9.2 STIL: Semantic Meaning Functions. This exercise completes 
Exercises 6.3-6.5 (pragmatics); 7.3-7.7 (semantics); and 8.7-8.8 (syntax). 
Please formalise the semantic functions of STIL. 

Exercise 9.3 NaTaTIL: Named Types and Typed Imperative Language: 
This exercise is the second in a series of four exercises: (1) STIL: Exercises 6.3-
6.5, 7.3-7.7, 8.7-8.8 and 9.2, (2) the present exercise (NaTaTIL), (3) DiTIL: 
Exercise 9.4, and (4) DaUTIL: Exercise 9.5. 

Explication: NaTaTIL, as a programming language, represents a further 
development of the previous language STIL. The change in NaTaTIL with 
respect to STIL is only in the type "apparatus": Wherever in a STIL variable 
declaration a ground term type expression occurred a type name shall occur 
instead. And therefore we need the possibility of a new item in the block 
preamble. That is, where before only variable declarations occurred, now also 
a set of one or more type definitions shall occur: 

1. By a set of one or more type definitions we understand a set of uniquely 
identified, i.e., type-named, type expressions. 

2. By a type expression we mean either a scalar or a compound type expres
sion. 

3. A scalar type expression is the boolean type literal, or the in teger type 
literal, or the f l oa t type literal, or the charac ter type literal. 

4. A compound type expression is a vector type expression or a record type 
expression. 

5. A vector type expression consists of two parts: a (low integer to high 
integer numeral) index range part and a type name (for the vector element 
type). 

6. A record type expression consists of a set of uniquely field-named (selector-
named) type names. Two or more fields may have the same type name. 

7. No type name is allowed to be recursively defined. 

Questions: Please repeat all the developments of the previous exercise: That is 
modify the formalisations of the answers to Exercises 6.3-6.5, 7.3-7.7, 8.7-8.8 
and Exercise 9.2. 

Exercise 9.4 DiTIL: Dimension Typed Imperative Language. This exercise 
is the third in a series of four exercises: (1) STIL: Exercises 6.3-6.5, 7.3-7.7, 
8.7-8.8 and Exercise 9.2, (2) NaTaTIL: Exercise 9.3, (3) the present exercise 
(DiTIL), and (4) DaUTIL: Exercise 9.5. 

Explication: DiTIL, as a programming language, represents a further de
velopment of the previous language: NaTaTIL. The change in DiTIL with 
respect to NaTaTIL is as follows: 
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1. First we introduce a concept of dimension associated with scalar types. 
(a) By a dimension we mean either a base dimension or a derived dimen

sion. 
(b) By a base dimension we mean one of the following: (1) A n e u t r a l 

dimension, (2) a l e n g t h dimension, (3) a mass dimension, (4) a 
t i m e dimension, (5) a c u r r e n t dimension, (6) a thermodynamic 
t e m p e r a t u r e dimension, (7) an amount of s u b s t a n c e (8) and a 
luminous i n t e n s i t y dimension. 

(c) By a derived dimension we mean, for example, one of the following: 
(9) a t i m e i n t e r v a l dimension, (10) A v e l o c i t y dimension, (11) 
an a c c e l e r a t i o n dimension, (12) a r e s i s t a n c e dimension, (13) a 
v o l t a g e dimension, (14) an a r e a dimension, (15) a volume dimension. 

(d) These dimensions are either "measured" by integer or by floating point 
values. 

(e) There could be dimensions associated with Booleans, characters or 
text strings. We leave it to the reader to motivate such. 

2. Then we observe tha t one can: (16) add lengths and get a length, (17) 
subtract lengths (or times) and get a length interval (respectively time 
interval) — not a length (time), (18) multiply lengths and get an area, 
multiply an area with a length and get a volume, (19) divide a length by 
a time and get a velocity. 

The above causes us to suggest the following extensions to NaTaTIL: 

1. Type expressions for scalars are further annotated with a dimension, but 
tha t dimension could be a neutral dimension — for example, concretely 
designated by [I] — as when one divides a value of dimension length by a 
value of dimension length; 

2. and for every binary operator applicable to dimensioned (scalar) values 
we define what the resulting dimension will be (if applied to such values). 

The DiTIL language shall be such tha t for every expression — whose value 
is a scalar — it is simply decidable which dimension it has. No inference (or 
unification) is to be invoked. 

Let the phrase [dn] r s tand for a dimension type, like [Km] float. In general, 
we can characterise the relationship between scalar types, r , and dimensions, 
d, with respect to the infix (i.e., binary, dyadic) operations, as follows: 

a x i o m 
+ ,— V d:Dn,r:{integer,float} • [dn] r x [dn] r —>• [dn] r 
* V dn',dn":Dn,r:{integer,float} • dn' r x dn" r —> [dn 'dn"] r 
/ V dn:Dn,r:{integer,float} • dn r x dn r —> [I] r 
/ V dn',dn":Dn,r:{integer,float} • dn' r x dn" r —> [ dn ' / dn" ] r 
etc., for other binary operations 

For the unary operations: 
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a x i o m 
exp, In, sine, ... [I] —>• [I] 

Questions: Please "repeat", basically, the definitions called for in Exer
cises 6.3-6.5, 7.3-7.7, 8.7-8.8 and 9.2-9.3. Focus, however, on the formulas 
tha t are different. Tha t is: Do not "blindly repeat" everything. But show 
where the 'dimension' concept alters the previous definitions. 

E x e r c i s e 9.5 DUaLTIL: Dimension, Unit and Law Typed Imperative Lan
guage This exercise is the last in a series of four exercises: (1) STIL: Exer
cises 6.3-6.5, 7.3-7.7, 8.7-8.8 and Exercise 9.2, (2) NaTaTIL: Exercise 9.3, (3) 
DiTIL: Exercise 9.4, and (4) the present exercise (DaUTIL). 

Explication: DUaLTIL, as a programming language, represents a further 
development of the previous language DiTIL. 

The change in DUaLTIL with respect to DiTIL is as follows: with every 
scalar type name we associate additionally a physical unit. For the length 
dimension we may associate the units of millimeter, centimeter, decimeter, 
meter, kilometer, etc. For the mass dimension we may associate the units 
of milligram, gram, hectogram, pound, kilogram, ton, etc. For the thermo
dynamic temperature dimension we may associate the units of either degree 
Kelvin, degrees Celsius (SI:5 Celcius, centigrade), degrees Fahrenheit, or de
grees Reamur. For the current dimension we may associate the unit Ampere 
(SI: ampere) or the unit milli-Ampere (mA). For the 'amount of substance' di
mension we may associate the unit mole. For the luminous intensity dimension 
we may associate the unit candela. 

We thus introduce yet another block preamble component: To every listed 
dimension we list a set of units of tha t dimension and their scale factors. For 
example: 

• u n i t s : * vm2:m type float dim. length 
• un i t kilometer: km * vcmxm type float dim. length 
• un i t meter: m * Vmm:mm type float dim. length 
• un i t centimeter: cm ^ vhr:hr type integer dim. time 
* uni t millimeter: mm 
* uni t hour: h 
* un i t minute: min (not an SI unit) 
* un i t second: s 

* vmin:min type integer dim. time 
• vsec:sec type integer dim. time 

dimensions and sca l e s : 

• va r i ab le s : * dim. : length u n i t s : 
• vkml:km type float dim. length {lm=100cm=1000mm=0.001km} 
• vkm2:km type float dim. length * dim. : time u n i t s : 
• vml:m type float dim. length {lh=60min=3600s} 

The change is furthermore one of "adding" laws to our evolving language. The 
laws are of the following nature: If, for example, we decide to endow a variable 

5 SI stands for the international system of units [375]. 
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with the type v e l o c i t y , and we intend to assign to this variable only values 
that have arisen as the result of dividing a value of dimension length by a 
value of dimension t ime, then we ought say so: 

dimension 
velocity : length/time 
acceleration : velocity/time 

unit 
velocity : vel 
acceleration : ace 

variables 
vvel : vel 
vacc : ace 

So the dimension declaration is a place holder for expressing such laws. 
Questions: Revise, appropriately, all type definitions, well-formedness con

ditions, semantics and auxiliary function definitions when now formalising 
DUaLTIL. 

Exercise 9.6 Description Logic and Ontology Languages. Background: A 
number of researchers are, as of 2006, studying the largest decidable sub
sets of suitable mathematical logics for representing domain knowledge. One 
such "school" is called Description Logic [19,315]. One impetus to do so is the 
Internet, that is, because of the claim that "via the Internet" vast amounts of 
domain knowledge could be accessed if it was otherwise properly structured, 
using, for example, XML. If, in addition, that information was otherwise sub
ject to logical constraints (also expressible using XML-like markers), then much 
such information could be queried semantically. We covered some aspects of 
XML in Sect. 8.6 and in Exercises 8.5-8.6. 

A Description Logic: We give an example of a description logic (DL). 
The logic is concerned with expressing facts about classes and properties (of 
classes). To put it differently, to describe the structure of the entities, of a 
universe of discourse in terms of classes and properties. Classes are sets of 
resources, properties are relations over these. We can think of a "relation over 
these" as a set of pairs of resources, one from each of two classes, that might 
be the same. An ontology is now a set of axiomatic relationships between 
classes and properties. Thus we need expressions to designate classes. 

The following class-forming operators over classes are often proposed: 

Constructor 

I n t e r s e c t i o n O f 
UnionOf 
ComplementOf 
OneOf 

DL Syntax 

d n c2 n • • • cn 
d u c2 u • • • cn 

-^c 
{X!,X2,--- ,Xn} 

Example 

Human fl Male 
Doctor U Lawyer 

^Male 
{John, mary} 

The following class-forming predicate operators are often proposed: 
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Constructor 

ToClass 
HasClass 
HasValue 

DL Syntax 

VP.C 
3P.C 

3P.{x} 

Example 

VhasChild.Doctor 
3hasChild.Lawyer 
3citizenOf.{USA} 

Further class-yielding operators are often proposed: 

Constructor 

MinCardQ 
MaxCardQ 
CardQ 

DL Syntax 

>nP.C 
<nP.C 

= InP.C 

Example 
> 2hasChild.Doctor 
< lhasChild.Lawyer 
= lhasParent.Female 

The meaning of these operators are as follows: 

• Intersect ionOf: Standard distributed set intersection, n-ary operator 
for n > 2 

• UnionOf: Standard distributed set union, n-ary operator for n > 2 
• ComplementOf: Standard set complement, binary operator 
• OneOf: Standard set enumeration, n-ary operator for n > 0 
• ToClass: The class of all those resources which are property P related to 

resources of type (i.e., of class) C 
• HasClass: The class of all those resources which are property P related 

to at least one resource of type (i.e., of class) C 
• HasValue: Shorthand for HasClass and OneOf 

The next three operators are generalisations of the ToClass and HasClass 
operators. 

• MinCardQ: The class < nP.C is the class all of whose resources (instances) 
are related, via property P, to at least n different resources of class (type) 
C 

• MaxCardQ: The class > nP.C is the class all of whose resources (instances) 
are related, via property P, to at most n different resources of class (type) 
C 

• CardQ: The class = nP.C is the class all of whose resources (instances) 
are related, via property P, to exactly n different resources of class (type) 
C 

Assume two built-in class expressions: 

• Thing: The full class of all resources. 
• Nothing: The empty, void class of no resources. 

Questions: Define a suitable class and property definition and expression lan
guage, syntactically and semantically. That is, there must be facilities in the 
language for defining (i.e., naming) classes, for defining (i.e., naming) prop
erties, and for expressions over these named classes and properties and the 
above operators. 





Part V 

FURTHER SPECIFICATION TECHNIQUES 

We bring in two chapters on further specification techniques: 

• Chapter 10, Modularisation: The specification technique of structuring 
(typically large) specifications into modules. Modules are textual units, 
themselves not necessarily "small" in (textual) "size". Modules come in 
various 'guises': in RSL they are called schemes, classes, and objects. 
In programming and in other specification languages they have other or 
similar names, including module. UML's notion of Class Diagrams is a 
module notion. 

• Chapter 11, Automata and Machines: A classical discipline of com
puter science is that of Automata and Formal Languages [217]. The dis
covery, already in the 1940s, that the automata and machines discovered 
in connection with research studies of computability and in the engineer
ing development of the first computers — that discovery — led to a flurry 
of research. That research "discovered" the close connection between (for
mal) languages, on one hand, and automata and machines, on the other 
hand. Automata and machines often offer a convenient, graphical, way 
of formally specifying a phenomenon. We will show the "conversion" be
tween automata and machines, on one hand, and formal specifications or 
programs, on the other hand. 





10 

Modularisation 

• The prerequisite for studying this chapter is that you have read and 
written large, formal specifications, which have — so far — not been mod
ularised, i.e., expressed in terms of what will be known as schemes, classes, 
objects or modules. 

• The aims are to introduce the concepts of modules and modularisation, to 
introduce the R.SL mechanisms for expressing modules, and to introduce 
"older" and "newer" mechanisms for expressing modules, i.e., those of 
the concepts of entity relations (ER), frames, respectively the UML class 
diagrams [59,237,382,440], and to relate the latter to the RSL scheme, 
class and object specification mechanisms. 

• The objective is to enable the reader to structure large, abstract and 
formal specifications in terms of modules. 

• The treatment is discursive, semiformal and systematic. 

Example 10.22 and Sect. 10.3 is based on material first developed by Steffen 
Holmslykke [9,10]. 

Little boxes on the hillside, 
Little boxes made of ticky-tacky, 
Little boxes, little boxes, 
Little boxes, all the same. 
There's a green one and a pink one — 
And a blue one and a yellow one — 
And they're all made out of t icky-tacky — 
And they all look just the same. 

And the people in the houses. 
All go to the university, 
And they all get put in boxes, 
Little boxes, all the same. 
And there's doctors and there's lawyers — 
And business executives, 
And they're all made out of t icky-tacky — 
And they all look just the same. 

© Malvina Reynolds (1900-1978, USA) 

And they all play on the golf-course, 
And drink their Martini dry, 
And they all have pretty children, 
And the children go to school. 
And the children go to summer camp — 
And then to the university, 
And they all get put in boxes — 
And they all come out the same. 

And the boys go into business, 
And marry, and raise a family, 
And they all get put in boxes, 
Little boxes, all the same. 
There's a green one and a pink one — 
And a blue one and a yellow one — 
And they're all made out of t icky-tacky — 
And they all look just the same. 
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We somehow like the above "poem", first sung by Pete Seeger in the 1960s, 
when we lived and worked near San Francisco from where Ms. Reynolds hailed. 
Although it must be said to represent a "radical cultural elite's" lack of human 
compassion and this elite's usual love for "abstract man" and disrespect for 
the specific ordinary man — who, in the eyes of God, is unique, and, lo 
and behold, indeed is unique — this 1960's "protest" song, in my mind, can 
be used to contrast with what this chapter is about: Namely putting parts 
of specifications in little boxes and they are all either, when in the same 
specification, different, or, when representing a series of steps of refinement, 
they are all the same! 

10.1 Introduction 

We have, notably in Vol. 1, Chap. 8, Sect. 8.5 (Specification Algebras) and in 
Vol. 1, Chap. 9, Sect. 9.6.5 (Property-Oriented Specifications), seen examples of 
what we shall in this chapter refer to as modules (abstract data types, classes, 
etc.). 

Characterisation. By a module we shall understand a clearly delineated 
text which denotes either a single complex quantity, as does an object decla
ration in RSL, or a possibly empty, possibly infinite set of models of objects, 
as does a scheme declaration in RSL. • 

The RSL module concept is manifested in the use of one or more of the RSL 
class (class ... end), object (object identifier class ... end, etc.) and scheme 
(scheme identifier class ... end), etc., constructs. 

Characterisation. By modularisation we shall understand the act of struc
turing a text using modules. • 

This chapter is more about principles and techniques for, i.e., the pragmatics 
of modularisation, than about the "nitty-gritty" syntactic and semantic details 
of specific languages' module constructs. 

Characterisation. By a specification we shall, in RSL, understand a set of 
module declarations, i.e., of scheme and object declarations. • 

10.1.1 Some Examples 

Let us show some nonmodule examples which then lead us on to a better 
understanding of the module concept: 

Example 10.1 Stacks — An Algebraic Model: Assuming the Boolean data 
type, and assuming universal quantification wherever needed (!), we express 
a model in terms of sorts, function signatures and axioms. 
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type 
E, S 

value 
empty: Unit -> S 
is_empty: S -> Bool 
push: E x S ^ S 
top: S 4 E 
pop: S ^> S 

axiom 
is_empty (empty ()) 
top (empty ())=chaos 
pop (empty ())=chaos 
top(push(e,s))=e 
pop(push(e,s))=s 

Where the ... indicates that, perhaps, we need some more axioms in order to 
properly dispense of the stack data type operations. • 

Example 10.2 Stacks — Model-Oriented Model: We can express a model in 
terms of concrete types and explicit function definitions. Thus, if we gave a 
model for stacks, say as lists of elements, then we would get: 

type 
E 
S = E* 

value 
empty: Unit —> S, empty() = {) 
is_empty: S -»• Bool, is_empty(s) = s={) 
push: E x S -»• S, push(e,s) = (e}^s 
top: S -3- E, top(s) = if s={) then chaos else hd s end 
pop: S ^> S, pop(s) = if s={) then chaos else tl s end 

Example 10.3 Hierarchical Directory: In this example we only illustrate a 
model-oriented model. We leave it to the reader to decipher the formulas. 

type 
Dn, En, E 
D = Dn ^ (D [ (En ^ E)) 

value 
empty: Unit —> D 
empty () = [] 
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is_empty: D —> B o o l 
is_empty(d) = d = [ ] 

t y p e 
Ename = = nil | mkEn(n:En) 

v a l u e 

get: Dn* x Ename -> D -4- (D | E) 
get(dnl,en)(d) = 

i fdn l={) 
t h e n 

c a s e en of 
nil —)• d, 
nikEn(n) —> if n G d o m d t h e n d(n) e lse c h a o s e n d 

e n d 
e lse 

if h d dnl € d o m d 
t h e n get( t l dm,en) (d(hd dnl}} 
e l se c h a o s 

e n d 
e n d 

t y p e 
NmED = = mkE(en:En,e:E} | mkD(dn:Dn,d:D) 

v a l u e 

put: Dn* x NmED -s- D ^ D 
put(dnl,ned)(d) = 

c a s e dnl of 
(dn) -»• 

if dn g1 d o m d 
t h e n c h a o s 
e l se d f [dn 1-4 d(dn) f 

c a s e ned of 

mkE(en,e} -> [en i-> e ] , 
kmD(dn' ,d ') -4 [dn' H* d'] 

e n d ] e n d 
(dnj^dnl ' -> 

if dn € d o m d 
t h e n put(dnl ' ,ned)(d(dn)) 
e l se c h a o s 

e n d e n d 
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Example 10.4 Graphs — An Algebraic Model: We again leave it to the 
reader to decipher the formulas. Again sorts, observer functions, function sig
natures (with preconditions) and axioms. 

type 
N, G 

value 
obs_Ns: G ->• N-set 
obs_Es: G -> (NxN)-set 
empty: Unit —>• G 
is_empty: G —>• Bool 
insert_node: N ->• G 4 G 

pre: insert_node(n)(g): n 0 obs_Ns(g) 

delete_node: N - > G 4 G 
pre: delete_node(n)(g): n € obs_Ns(g) A 

~exist (n',n"):NxN • (n',n") 6 obs_Es(g) A n=nVn=n" 
insert_edge: N x N ^ G ^ G 

pre: insert_edge(n,n')(g): {tt)ii'}Cobs_Ns(g) A (n,n') ^ obs_Es(g) 
delete_edge: N x N - > G 4 G 

pre: delete_edge(n,n')(g): (n,n') e obs_Es(g) 
axiom 

is_empty (empty ()), 
obs_Ns(empty()) = {} 
obs_Ns(insert_node(n)(g)) = {n} U obs_Ns(g) 
obs_Es(insert_edge(n,n')(g)) = {(n,n')} U obs_Es(g) 

Where the ... indicates that, perhaps, we need some more axioms in order to 
properly dispense of the graph data type operations. • 

Example 10.5 Graphs: A Model-Oriented Model: We next give a rather sim
ple model: 

type 
N 
G = N -# N-set 

value 
empty: Unit ->• G 
is_empty: G —»• Bool 
insert_node: N -s- G -> G 
delete_node: N -+ G 4 G 
insert_edge: N x N - > G 4 G 
delete_edge: NxN -» G 4 G 
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empty() - [} 
is_empty(g) = g=[ ] 

insert_node(n)(g) = 
if n £ d o m g t h e n chaos e lse g U [n i-> {} ] e n d 

delete_node(n)(g) = 
if n #• d o m g t h e n chaos e lse g \{n} e n d 

insert_edge(n,n')(g) = 
if {n,n } C d o m g A n ^ g(n) 

t h e n g f [n H g(n) U {n'}] e lse chaos e n d 

delete_edge(n,n')(g) = 
if {n,n'} C d o m g A n' £ g(n) 

t h e n g f [n H g(n) \{n '} ] e lse chaos e n d 

We could have chosen a model of graphs tha t represented these rather directly 
as sets of pairs, and nothing else. Try it out yourself! • 

R e v i e w of E x a m p l e s 

We gave Examples 10.1-10.5 above so tha t we could make some remarks, 
such tha t these observations would help us motivate and justify the notion of 
modules. 

On Module Delineation: Objects and Schemes 

In our characterisation of what a module is, see Sect. 10.1, we "mandated" 
tha t there be some clear delineation. None of the examples above provided for 
tha t . An easy provision, such as we shall provide in RSL, is first "surrounding" 
the specification text by the keywords c lass and end: 

class specification_text e n d 

and then prefixing such a class expression in either of two ways: 

objec t name : c lass ... e n d 
s c h e m e NAME = c lass ... e n d 

A class expression (class . . . end) , as we shall see, denotes a set of models. An 
object declaration (object name : c lass . . . end) selects one such model and 
binds it to the object name. A scheme declaration ( s cheme NAME = c lass 
... end) gives the name NAME to the set of all the class expression models. 
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On Implementations 

The property-oriented specifications gave no clue as how to implement, even 
using abstract mathematical quantities (sets, Cartesians, lists and maps). 
The model-oriented specifications gave some such clues. In particular, Ex
ample 10.3 presents a rather involved pair of function definitions. A further 
implementation of put and get (of Example 10.3) would, in order to be be
lievable, most likely have to follow the involved structure of these function 
definitions. 

It would therefore be nice to have a property-oriented specification of the 
hierarchical directory of Example 10.3 — then the developer who is charged 
with providing efficient implementations is helped. To have one, equally ef
ficient implementation that covers a spectrum of "sizes" of directories, from 
maximum a few hundred entries within a few (say, five to six) levels of hi
erarchy, to millions of entries and depths of the order of hundreds, is not 
likely. Hence the provider of software that covers hierarchical directories can, 
depending on circumstances, replace one implementation with another. 

Stepwise Development 

In other words, we often find it desirable to develop software by first spec
ifying its functionality abstractly, say by a property-oriented definition, and 
then, in steps of refinement, concretising the specification. For that purpose 
it is convenient, and helps focus our correctness reasoning, if what is being 
implemented can be clearly delineated, i.e., "boxed"! 

Separation of Concerns 

Developing specifications, whether descriptions of domains, prescriptions of 
requirements or definitions of software design, is hard. To keep track, in one's 
mind even on paper, i.e., amongst computerised documents, of all specifi
cation parts is a formidable task. It can be ameliorated, helped and better 
supported through separation of concerns: letting module specifications take 
care of separate abstract data types. That is, it can be supported through 
modularisation: through the judicious use of modules, of module interfaces 
and of genericity of module specifications. Still, it is not easy! 

10.1.2 Preparatory Discussion 

We discuss these next topics, in a leisurely manner, for the reader's "arm
chair reading". We do so before we move into somewhat detailed coverage of 
principles, techniques and tools for modularisation according to a number of 
specification paradigms: the algebraic abstract data type approach, the RAISE 
approach, the frames approach, the entity/relations (ER) approach, and the 
UML class diagram approach [59,237,382,440]. 
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Software D e v i c e s 

Peter Lucas [307], we believe, was the first to enunciate the idea of "encapsu
lating" the types, variables, and functions (routines, etc.) tha t were specific 
to a specific da ta structure — like a stack, a queue, a tree, a graph, etcetera. 
He termed the name 'device', for such encapsulations. Devices usually are 
thought of as "mechanisms" tha t can be "plugged" in here, out there, and 
hence replaced. The idea of replacing one implementation of a device by an
other implementation of purportedly the same functions further justifies the 
device encapsulation concept. 

In one context, say small graphs, one implementation provides efficiency 
(by, for example, having low storage overhead for the code and auxiliary data, 
i.e., variables). However, in another context, say graphs with millions of nodes 
and millions of edges, another implementation of, of course the same functions, 
provides a bet ter efficiency than the former implementation. 

A b s t r a c t D a t a T y p e s i—>• Algebra ic S e m a n t i c s 

It was not till some years later tha t the seminal paper by Barbara Liskov and 
Stephen Zilles on Abstract Data Types (ADTs) was published [302]. From 
then on, the so-called School of Algebraic Semantics (for specifying algebras of 
ADTs) "took off". In a flurry of papers, [68,134,138-140], (notably) Burstall, 
Goguen and Thatcher laid out the semantic foundations, in terms of initial 
algebra semantics, for the idea of ADTs. More generally, in [69,70,135,137] and 
[124,136,162] they, Jouannaud and Futatsugi, followed up by proposing the 
OBJ series of algebraic specification languages: 0BJ-0-OBJ3. The most recent 
outgrowth of this line of research and development has been the two competing 
algebraic semantic specification languages Caf e-OBJ [123] and CASL [40,371]. 

T h e Frames A p p r o a c h 

We quote from Marvin Minsky [362]: 

"Here is the essence of the theory: when one encounters a new sit
uation (or makes a substantial change in one's view of the present 
problem), one selects from memory a structure called a 'frame'. This 
is a remembered framework to be adapted to fit reality by changing 
details as necessary. 

We can think of a frame as a network of nodes and relations. The top 
levels of a frame are fixed and represent things tha t are always t rue 
about the supposed situation. The lower levels have many ' terminals ' 
— slots tha t must be filled by specific instances or data . 
Much of the phenomenological power of the theory hinges on the in
clusion of expectations and other kinds of presumptions. A 'frame's 
terminals are normally already filled with "default" assignments. Thus 
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a frame may contain a great many details whose supposition is not 
specifically warranted by the situation. 
In this essay I draw no boundary between a theory of human thinking 
and a scheme for making an intelligent machine; no purpose would be 
served by separating them today, since neither domain has theories 
good enough to explain, or produce, enough mental capacity. 
Are there general methods for constructing adequate frames? The an
swer is both yes and no! There are some often-useful strategies for 
adapting old frames to new purposes; but I should emphasize tha t hu
mans certainly have no magical way to solve "all" hard problems! One 
must not fall into what Paper t calls the superhuman-human fallacy 
and require a theory of human behavior to explain even things tha t 
people cannot really do! 
More "logical" approaches will not work ... 

In simple cases, one can get such systems to "perform", but as we 
approach reality, the obstacles become overwhelming. The problem of 
finding suitable axioms — the problem of "stating the facts" in terms 
of always-correct, logical assumptions — is very much harder than is 
generally believed." 

Minsky's notion of 'frame' is often considered a precursor of object oriented 
programming. 

T h e E n t i t y - R e l a t i o n s h i p ( E R ) A p p r o a c h 

An entity represents a thing tha t can be identified. Usually a box is dia
grammed to represent a classified set, A, of entities, tha t is an entity set — 
say a sharp-edged box. A box identifier, A, names the entity set. Entities of 
an entity set may have at tr ibutes (types TAX , TA2 , • • •, TA0 ) • They are usually 
shown with the entity set name "inside" the A box. 

Entities can be related to each other. Relations are shown by lines between 
two or more boxes, A,B, Usually lines connect just two boxes. One usually 
adorns the edge (say, between two boxes) by some form of m:n labelling: m 
near the edge and near one box, say A, and n near the edge and near the other 
box, say B. The labelling shall mean: The m:n relation over A x B binds up 
to m different occurences of A entities to up to n different occurences of B 
entities. 

For different fixations of m and n we get various forms of general binary, or 
functional relations. As we shall see, entity-relationship diagrams (ER), can 
be said to be precursors to UML class diagrams. 

So we shall not go further into ER theory. Any textbook on relational 
database design would be good to consult [129,507], as would Peter Chen's 
paper on ER [79]. 
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Genera l P r a g m a t i c s of M o d u l a r i s a t i o n 

Modularisation is important for several reasons: Separation of concerns, dis
covery of basic concepts, validation and verification of developments, efficiency 
of tool support (i.e., document handling), etcetera. 

Genera l S e m a n t i c s of M o d u l a r i s a t i o n 

"Small" modules (i.e., textually small, with few identifiers) capture "small" 
models. The models are an easy way to understand what is being specified. 
Small modules can better be ascertained as to whether they designate a single 
model, as do objects, or possibly a "large", or even an infinite set, as do 
underspecified abstract da ta types (i.e., modules). 

Genera l S y n t a x of M o d u l a r i s a t i o n 

Usually modules are simply and explicitly delineated by suitably suggestive 
keywords: a matching (i.e., balancing, as do parentheses) pair of c lass and 
ends, as in RSL, for classes. The named prefixing of a class expression, as 
s c h e m e Scheme_Name = c lass . . . end, for schemes tha t can be further 
extended, used as parameters in other scheme definitions, or used in object 
declarations. 

s c h e m e A = class ... e n d 
s c h e m e B = e x t e n d A w i t h class ... e n d 
s c h e m e C(a:B) = class ... e n d 
objec t d:C(B) 

or as objec t Objec t_Name = c lass ... e n d 

Genera l M o d u l e Speci f icat ion M e t h o d 

But the real gist or crux of the mat ter is: "How does one, i.e., the software 
engineer, identify modules and compose specifications from modules?" This 
chapter shall t ry to cover some such principles, techniques and tools. 

But let the reader be duly warned: It is not easy. Tha t is, a decompo
sition of a specification into modules which is pleasing to some reader, may 
not be pleasing to another reader, and it is the writer who decides on the 
decomposition! So our advice, of this chapter, is not tha t clear-cut. 

10 .1 .3 S truc ture of C h a p t e r 

First, we cover the RSL module and the RAISE modularisation concepts 
(Sect. 10.2). And then we cover the UML class diagram concept [59,237,382,440] 
(Sect. 10.3). We also show how to reformulate RSL specifications of types and 
type constraints using UML class diagrams, and suggest a model of UML class 
diagram syntax and semantics in RSL. 
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10.2 RSL Classes, Objects and Schemes 

We now show, using RSL, how one can structure "large" specifications into 
"comfortable" parts . The key concepts of those parts are the RSL class , ob jec t 
and s c h e m e concepts. The c lass concept is at the base of the two other. 

10.2 .1 In troduc ing t h e RSL "class" C o n c e p t 

We need to motivate why we bundle declarations into classes. 

M e a n i n g of RSL D e c l a r a t i o n s — A R e v i e w 

Each declaration of a t ype , a value (typically a function), variable, a chan
nel, or an a x i o m s tands for something. A t y p e declaration, colloquially, such 
as we think about it when we write it down or read it, s tands for a set of val
ues. A function va lue declaration stands for a set of function values — a set 
because we may just give a signature, or because the function definition body 
is underspecified. A variable declaration, say with an initialising expression, 
stands for a set of variables, each with a specific initial value. A channe l dec
laration stands for one channel. An a x i o m declaration typically constrains 
the values declared elsewhere. 

First M o t i v a t i o n of t h e RSL "class" C o n c e p t : Focus 

We saw, in the previous subsection, tha t a single declaration could have many 
denotations. And we saw, in Examples 10.1-10.5, of the previous section, 
tha t a "bundle", tha t is, a collection of declarations together defined a soft
ware device, an abstract da ta type, tha t is, a useful, separable concept. By 
bundling these declarations together by means of the delineating keywords 
class . . . e n d , we may achieve a bet ter structuring of large specifications, i.e., 
specifications defining many such concepts. 

S e c o n d M o t i v a t i o n of t h e RSL "class" C o n c e p t : S e m a n t i c A l g e b r a s 

Now, what is then the meaning of a construct like c lass ... e n d (where the 
... is a set of declarations)? Well, we shall here take the meaning of a c lass 
clause to be a set of algebra mappings: one for each combination of values for 
each of the declarations. There can be many such algebras, or there can be 
zero. An algebra mapping maps identifiers of the declarations into a specific of 
the chosen values. Since the informal semantics of RSL is an important issue, 
let us give some contrasting examples: 

E x a m p l e 10.0 A Small Set of Class Models: 

class t y p e l:Int. va lue i:l. a x i o m i £ {!••"} e n d 
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The above class expression has seven models, expressed, not in RSL, but in 
"ordinary" mathematics. These models, which look a lot like RSL, are: 

{[>, ^ 1], [i t-» 2], [* i-> 3], [i i-» 4], [i h-> 5], [i •-> 6], [i <-->• 7]} 

• 

Example 10.7 A Singleton Set of Class Models: The simple class expression: 

class type N:Nat, variable v:N := 7 end 

yields the single model: 

That is, initialisation helps secure unique models. • 

Example 10.8 An Infinite Set of Class Models: The simple class expression: 

class value i:Int end 

yields the infinite set of models: 

{[i *-* n]\ n : Int} 

That is, under-definedness usually results in many, sometimes an infinite set 
of models — and which one(s) were you thinking of when writing down the 
specification? • 

Example 10.9 An Empty Set of Class Models: The simple class expression: 

class value i:Int, axiom i<0 A i>0 end 

yields the empty set of models: 
{} 

That is, over-definedness sometimes results in no models. Make sure that your 
specification does indeed specify something! • 

It is important to realise that the meaning of a model is also that all the iden
tifiers of the definition set of the mapping of the model are visible "outside" 
the class expression. 

Third Motivation of the RSL "class" Concept 

Example 10.10 Stack, I: Let us take the example of a stack class: 

class 
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type 
E, S = E* 

variable 
stackrS := {} 

value 
is_empty: UNIT —• read stack Bool 
is_empty() = stacks {) 
push: E -> wri te stack Unit 
push(e) = stack := (e)^stack 
top: Uni t ^ E 
top() = if is_empty() t h e n chaos else hd stack end 
pop: Uni t —> Unit 
pop() = stack := if is_empty() t h e n chaos else t l stack end 

end 

Suppose we need to speak of a specific model of the class denoted by the above 
class expression. Now, the idea is to introduce objects: 

Example 10.11 Stack, II: 

object 
STACK: 

class 
type 

E, S = E* 
variable 

stack:S := {} 
value 

is_empty: UNIT —» read stack Bool 
is_empty() = stack={) 
push: E -+ wri te stack Unit 
push(e) = stack := (e)^stack 
top: Unit -4- E 
top() = if is_empty() then chaos else hd stack end 
pop: Unit ^> Unit 
pop() = stack := if is_empty() then chaos else t l stack end 

end 

STACK denotes a specific choice of value assignments — in this case there 
really is only one model in the set anyway. When, in some text, we wish 
to express operations on stack we do so by prefixing operation names with 
STACK. For example, STACK.is_empty(): 
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Example 10.12 Stuck. Ill: 

... STACK.push(o) ... 

... let o. = STACK.topQ in ... oriel ... 

... STACK.popQ ... 

Fourth Motivation of the RSL "class" Concept: Named Schemes 

What are we to do when wishing several objects of the same class? Do we 
have to repeat the whole class expression again and again? No, we name the 
class expression, "making" it a scheme clause: 

Example 10.13 Stack IV: 

scheme 
STACKS = 

class 
t ype 

E, S = E* 
variable 

stack:S := {} 
value 

is_empty: UNIT —y read stack Bool 
is_empty() = stack={) 

push: E -> write stack Unit 
push(e) = stack := (e)^stack 

end 

Now declaration of several objects is easy and operations on these following 
the usual prefixing convention: 

object 

SI : STACKS, S2 : STACKS, ... 

value 

... let e = Sl.topQ in S2.push(e) end ... 
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We are now ready to introduce the RSL class, scheme and object concepts 
more systematically. 

10.2.2 The RSL "class" Concept 

Let < declaration_l > stand for a type, a value, a variable, a channel, or an 
axiom declaration. Then: 

class 
< declaration_l > 
< declaration_2 > 

< declaration_n > 
end 

is a class expression. It denotes a possibly empty, possible finite, possibly 
infinite set of models, each model being (like) an algebra: a set of values (i.e., 
models of types), a set of functions (over these values), etcetera (variables, 
channels). The axioms suitably constrain values, types, etc. 

All identifiers of the declarations of a class expression are usually distinct. 
Two or more identical, i.e., overloaded identifiers need be identifiers of function 
values and need be distinguishable by their different signatures. Each identifier 
declared in the class expression is bound, in the model, to a specific value, a 
specific function, etc. 

10.2.3 The RSL "object" Concept 

We saw that an RSL class denotes a set of models. How do we designate just one 
of these models? The answer is: by designating an object. That is, the decla
ration: object <class_expression> designates one model, an arbitrary one 
selected from the set of models denoted by the <class_express ion>. Since 
it may be cumbersome to list a whole <class_expression> every time we 
want to designate an object of that class, we name the <class_expression> 
and obtain a scheme. We shall show examples of object declarations later. 

10.2.4 The RSL "scheme" Concept 

There are several notions associated with schemes: naming, extension and 
hiding are the ones we shall treat now. 

Simple Schemes 

Let class ... end be some class expression. By a scheme we give a name to 
the set of models of that class expression: 

scheme A = class ... end 
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Some examples are in order. 

E x a m p l e 10 .14 Stack Scheme: We "schematise" Example 10.2: 

s c h e m e 
STACK = 

class 
t y p e 

E 
S = E* 

va lue 
empty: U n i t -> S, empty() = {) 
is_empty: S —• B o o l , is_empty(s) = s={) 
push: E x S -J- S, push(e,s) = (e}As 
top: S —>• E, top(s) = i f s={) t h e n chaos e l se h d s e n d 
pop: S —>• S, pop(s) = if s={) t h e n chaos e lse t l s e n d 

e n d 

E x a m p l e 10 .15 Graph Scheme: We next "schematise" Example 10.4: 

scheme 
GRAPH = 

class 
type N, G 
value 

obs_Ns: G -»• N-set 
obs_Es: G -)> (NxN)-set 
empty: Unit —• G 
is_empty: G —> Bool 
insert_node: N —¥ G -^ G 

pre: insert_node(n)(g): n 0 obs_Ns(g) 
delete_node: N - t G 4 G 

pre: delete_iiode(n)(g): n 6 obs_Ns(g) A 
~exist (n',n"):NxN • (n',n") <= obs_Bs(g) A n=n 'Vn=n" 

insert_edge: NxN -4 G -4 G 
pre: insert_edge(n,n')(g): {n,n'}Cobs_Ns(g) A (n,n') g obs_Es(g) 

delete_edge: NxN -> G -^ G 
pre: delete_edge(ii,ii') (g): (n,n') € obs_Es(g) 

axiom 
is_empty (empty ()), 
obs_Ns(empty()) = {} 
obs_Ns(insert_node(n)(g)) = {n} U obs_Ns(g) 
obs_Es(insert_edge(n,n')(g)) = {(11,11')} U obs_Es(g) ... 

end 



10.2 RSL Classes, Objects and Schemes 259 

Where the ... indicates tha t , perhaps, we need some more axioms in order to 
properly dispense of the graph da t a type operations. • 

S c h e m e E x t e n s i o n s 

Often it may be useful to decompose a large "flat" specification, including a 
large class expression, into several smaller class expressions. Most, if not all, 
of the specifications we presented in Vol. 1 and so far in the present volume 
have been "flat" specifications. Tha t is, they are without any class, object or 
scheme structuring. 

Let in the following conceptual scheme clause: 

scheme A = 
class 
< declaration^ > 
< declaration^ > 

< declarationini > 

< declaration! > 
< declaration^, > 

< declaration > 

< declaration! > 
< declaration^, > 

< declaration,^ > 
end 

If declarations <declarationJfe, > only depend on declarations <declarationjfe„ > 
for i strictly smaller than j , for j equal to 2 or 3, then the above scheme can 
be decomposed into the following sequence of scheme extensions: 

scheme A = 
class 
< declaration^ > 
< declaration^ > 

< declarationini > 
end 

scheme B = 
ex t end A with 
class 

< declaration! > 
< declaration^, > 

< declaration„2 > 
end 

scheme D = 
extend B with 
class 

< declarations! > 
< declarations, > 

< declaration,^ > 
end 

E x a m p l e 10.16 Scheme Extensions: From Example 10.1 we had: 

scheme 
STACK = 

class 
t y p e 

E, S 
value 

empty: Unit 
is_empty: S -
push: E x S -
top: S -4 E 

>S 
Bool 

-s end 

pop: S -^ S 
:iom 
is_empty (empty ()) 
top (empty ()) =chaos 
pop (empty ())=chaos 
top(push(e,s))=e 
pop (push(e,s))=s 
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This scheme can be decomposed into three "successive" schemes: 

scheme 
STACK^ 'pes ~~ class type E, S end 

scheme 

STACKsjgriatul.es
 = 

extend STACKfcvpes with 
class 

value 
empty: Unit —¥ S 
is_empty: S —> Bool 
push: E x S - > S 
top: S -4 E 
pop: S -3- S 

end 

scheme 
STACK. axioms 

extend STACK, 
class 

signatures with 

axiom 
is_empty (empty ()) 
top (empty ( )) =chaos 
pop(empty())=chaos 
top(push(e,s))=e 
pop(pusli(e,s))=s 

end 

where the ... indicates tha t , perhaps, we need some more axioms in order 
properly to dispense of the stack da ta type operations. • 

H i d i n g 

By "hiding" we mean to only "filter" some of the quantities, i.e., names (i.e., 
identifiers), away from being "visible" outside a scheme definition. But why? 
Well, let us examine two scheme definitions. Examples 10.17 and 10.18, with
out, respectively with, hiding clauses. 

E x a m p l e 10 .17 An Example in Need of Hiding: 

s c h e m e AlgS — 
class 

t y p e E, S 
value 

empty: U n i t —»• S 
is_empty: S —• B o o l 
push: E x S - > S 

top: S 4 E 

pop: S ^ S 
a x i o m 

i s_empty (empty ()) 
top (empty ( ) )=chaos 
pop (empty ())—chaos 
top(push(e,s))=e 
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pop (push (e,s))=s ... 
end 

scheme ModS = 
class 

type E, S = E* 
variable stack:S := {} 
value 

is_empty: Uni t —J- read stack Bool 
is_empty() = stack={) 

push: E -+ wri te stack Unit 
push(e) = stack := {e}"stack 

top: Uni t 4 E 
top() = if is_empty() t h e n chaos else hd stack end 

pop: Uni t 4 Uni t 
pop() = stack := if is_empty() t h e n chaos else t l stack end 

end 

In the algebraic specification we basically had to introduce the empty and the 
is_empty operations only implicitly "used" in the model-oriented specification. 
Also, outside the model-oriented scheme definition there really is no need to 
know how stacks, s:S, are implemented, nor to know the variable stack. So thus 
arises the idea of hiding what need not be knowable, that is, visible "outside" 
respective scheme definitions. Let us therefore repeat the scheme definitions, 
now with proper hiding clauses (hide ... in class ... end). 

Example 10.18 Example 10.17, but with hiding: 

scheme AlgS = 
hide empty, is_empty in 
class 

type 
E, S 

value 
empty: Uni t -> S 
is_empty: S -4- Bool 
push: E x S -J- S 
top: S 4 E 
pop: S 4 S 



262 10 Modularisation 

axiom 
is_empty (empty ()) 
top (empty ()) =ehaos 
pop(empty())=chaos 
top(push(e,s))=e 
pop (push (e,s))=s 

end 

scheme ModS = 
hide stack, S in 
class 

type E, S = E* 
variable stack:S := () 
value 

is_empty: Unit —>• read stack Bool 
is_empty() = stack=() 
push: E ->• write stack Unit 
push(e) = stack := (e)^stack 
top: Unit -3- E 
top() = if is_empty() then chaos else hd stack end 
pop: Unit >̂ Unit 
pop() = 

stack := if is_empty() then chaos else tl stack end 
end 

Thus the basic hide clause syntactically is: 

hide idi, id2, ..., idn in class ... end 

where the identifiers idj are those of some of the declarations in the class 
expression. 

Please recall that all identifiers declared in a class expression are visible 
outside that class expression. The hiding "takes place" at the level of the 
scheme definition. 

Etcetera 

In the next section we treat a very important scheme concept: That of pa-
rameterisation. There are other scheme concepts. We shall not cover them 
all here. That is, this book is not a reference manual to RSL. We leave that 
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to [130].1 The concepts that we shall not cover are those of module nesting 
and renaming. 

10.2.5 RSL "scheme" Parameterisation 

Motivation: Why and How Scheme Parameters? 

We motivate the pragmatic need for parameterised schemes through a com
mented example. 

Example 10.19 Motivation for Parameterised Schemes: Arbitrary Stack El
ements: Let us consider the stack example of earlier. Now "imperialised" (i.e., 
made imperative), "classified", (partially) "hidden" and "schematised": 

scheme STACK(E:class type Struct ... end) = 
hide S,s in 
class 

type 
S = E.Struct* 

variable s:S :— {) 
value 

push: E.Struct —> write s Unit 
push(e) = s:={e)~s 
top: Unit ^ read s E.Struct 
top() = if S=() then chaos else hd s end 
pop: Unit >̂ Unit, 
pop() = s:=if s=() then chaos else tl s end 

end 

Nothing has been said about stack elements. What are they? Well, as it ap
pears, it seems they are defined by the STACK scheme. But is that really 
convenient? Probably not! Since the visible operations need provide (stack) 
element arguments, it might be useful to have the stack concept, i.e., the 
type that E is, be defined "elsewhere" and then "imported" into the STACK 
scheme. In this way we can "instantiate" the STACK scheme to different kinds 
of elements: graphs and directories. • 

The above example leads us to the next example. 

Example 10.20 Parameterised Graph and Directory Schemes: In this ex
ample we "rewrite" the directory and graph definitions of Examples 10.3 and 
10.5 in scheme and class form. For these schemes (and classes) we make sure, 

This book is out of print, but it is hoped that soon a revised edition will appear 
on the open Internet. 
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in this example, that the type name of the "things" to be put on (inspected 
on, and popped from) the stack, is the same type name as for its elements, 
namely Struct: 

scheme DIRECTORY = 
class 

type 
Dn, En, E 
Struct = Dn ^ (Struct | (En ^ E)) 
Ename = = nil | mkEn(n.-En) 

value 
get: Dn* x Ename -» Struct -3- (Struct | E) 
get(dnl,en)(d) = ... 

type 
NmED = = mkE(en:En,e:E) | mkD(dn:Dn,d:Struct) 

value 
put: Dn* x NmED H> Struct -4 Struct 
put(dnl,ned)(d) = ... 

end 

scheme GRAPH = 
class 

type 
E 
Struct = E -„} E-set 

value 
insert_node: E -> Struct -4- Struct 
delete_node: E —> Struct ^> Struct 
insert_edge: ExE -> Struct ^> Struct 
delete_edge: E x E -> Struct -4- Struct 

insert_node(n)(g) = ... 
delete_node(n)(g) = ... 
insert_edge(n,n')(g) = ... 
delete_edge(n,n')(g) = ... 

end 

Now we can instantiate the abstract stack data type in at least two ways: 

... STACK(GRAPH) ... STACK(DIRECTORY) ... 

Such instantiations could be done in connection with object creations: 

object graph_stack : STACK(GRAPH) 
object directory_stack : STACK(DIRECTORY) 
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... graph_stack.push(g) ... 

... let g = graph_stack. top() in ... e n d ... 

... graph_stack.pop() ... 

... director_stack.push(d) ... 

... let d = director_stack.top() in ... e n d ... 

... director_stack.pop() ... 

T h e S y n t a x and S e m a n t i c s of P a r a m e t e r i s e d S c h e m e s 

The general syntax of scheme declarations looks like: 

s c h e m e 
< scheme_definitioni > 
< scheme_definition2 > 

< scheme_defmitionm > 

The general syntax of scheme definitions without and with parameters look, 
respectively, like: 

idg = class_expression 
idp(idi:class_expressioni, ... , id„:class_expression„) = class_expression 

for n > 1. If oidi, ... , oid„ are object identifiers, then the parameterised 
scheme idp may be instantiated in a scheme instantiation as follows: 

idp(oidi , ... , oid„) 

The scheme instantiation is thus used when instantiating objects. 
We shall leave out many technical details concerning proper matching of 

argument objects to parameter class expressions. This book is not a reference 
manual for RSL. For tha t consult a proper RSL reference manual such as the 
definitive [130]. These books propagate proper, generally applicable abstract 
and modelling principles and techniques. If we begin on the road to detailing 
"nitty-gritty" syntactic issues of this or tha t specification language, then we 
can easily lose sight of tha t . 

It is high time for a realistic, large example! 

10.2 .6 A "Large-Scale" E x a m p l e 

The first part of Example 10.21 presents an "old" double-example, given as 
Examples 2.5 and 2.6 in Sect. 2.3. Example 10.21 shall serve as a motivating 
(and reminding) background for the main example, i.e., Example 10.22. 
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The Contrasting Background Example 

Example 10.21 A Railway Net Specification: No Schemes: 

Narrative 

We introduce the phenomena of railway nets, lines, stations, tracks, (rail) 
units, and connectors. 

1. A railway net consists of one or more lines and two or more stations. 
2. A railway net consists of rail units. 
3. A line is a linear sequence of one or more linear rail units. 
4. The rail units of a line must be rail units of the railway net of the line. 
5. A station is a set of one or more rail units. 
6. The rail units of a station must be rail units of the railway net of the 

station. 
7. No two distinct lines and/or stations of a railway net share rail units. 
8. A station consists of one or more tracks. 
9. A track is a linear sequence of one or more linear rail units. 

10. No two distinct tracks share rail units. 
11. The rail units of a track must be rail units of the station (of that track). 
12. A rail unit is either a linear, or is a switch, or a is simple crossover, or is 

a switchable crossover, etc., rail unit. 
13. A rail unit has one or more connectors. 
14. A linear rail unit has two distinct connectors; a switch rail unit has 

three distinct connectors; crossover rail units have four distinct connectors 
(whether simple or switchable), and so on. 

15. For every connector there are at most two rail units which have that 
connector in common. 

16. Every line of a railway net is connected to exactly two distinct stations of 
that railway net. 

17. A linear sequence of (linear) rail units is a noncyclic sequence of linear 
units such that neighbouring units share connectors. 

Formalisation 

type 
N, L, S, Tr, U, C 

value 
1. obs_Ls: N -» L-set, 
1. obs_Ss: N -> S-set 
2. obs_Us: N -> U-set, 
3. obs_Us: L —• U-set 
5. obs_Us: S -J- U-set, 
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8. obs_Trs: S -» Tr-set 
12. is_Linear: U -» Bool, 
12. is_Switch: U ->• Bool 
12. is_Simple_Crossover: U -> Bool, 
12. is_Switchable_Crossover: U -> Bool 
13. obs_Cs: U -)• C-set 

17. lin_seq: U-set -> Bool 
lin_seq(us) = 
V u:U • u G us => is_Linear(u) A 
3 q:U* • len q = card us A elems q = us A 

V i:Nat • {i,i+l} C inds q => 3 c:C • 
obs_Cs(q(i)) D obs_Cs(q(i+l)) = {c} A 

len q > 1 => obs_Cs(q(i)) n obs_Cs(q(len q)) = {} 

Some formal axioms are now given; but not all! 

axiom 
1. V n:N • card obs_Ls(n) > 1, 
1. V n:N • card obs_Ss(n) > 2, 
3. 1:L • lin_seq(l) 
4. V n:N, 1:L • 1 G obs_Ls(n) => obs_Us(l) C obs_Us(n) 
5. V n:N, s:S • s G obs_Ss(n) => card obs_Us(s) > 1 
6. V s:S • obs_Us(s) C obs_Us(n) 
7. V n:N,l,l':L'{l,l'}Cobs_Ls(n)Al^l'^obs_Us(l)n obs_Us(l') = {} 
7. V n:N,l:L,s:S«l € obs_Ls(n)As G obs_Ss(n)=>obs_Us(l)n obs_Us(s) = {} 
7. V n:N,s,s':S«{s,s'}Cobs_Ss(n)As^s'=>obs_Us(s)n obs_Us(s')={} 
8. V s:S • card obs_Trs(s) > 1 

9. V n:N, s:S, t:T • s G obs_Ss(n) A t G obs_Trs(s) =*- lin_seq(t) 
10. V n:N, s:S, t,t';T • 

s G obs_Ss(n) A | t , t '} C obs_Trs(s) A t ^ t ' 
=» obs_Us(t) n obs_Us(t') = {} 

15. V n:N • V c:C • 
c G U { obs_Cs(u) | u:U • u G obs_Us(n) } 

^ card{ u | u:U • u G obs_Us(n) A c G obs_Cs(u) } < 2 
16. V n:N,l:L • 1 G obs_Ls(n) => 

3 s,s':S • {s,s'} C obs_Ss(n) A s^s' =>• 
let sus = obs_Us(s), sus' = obs_Us(s'), lus = obs_Us(l) in 
3 u:U • u G sus, u':U • u' G sus', u",u'":U • {u",u'"} C lus • 
let scs = obs_Cs(u), scs' = obs_Cs(u'), 

lcs = obs_Cs(u"), lcs' = obs_Cs(u'") in 
3 ! c,c':C • c ^ c' A scs (1 lcs = {c} A scs' f) lcs' = {c'} 

end end 
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More axioms need be formulated to fully constrain the sorts. • 

T h e S c h e m a t i s e d E x a m p l e 

The presentation of Example 10.21 was what we in Chap. 2 called hierarchical, 
from "largest" parts towards increasingly "smaller" (i.e., physically smaller) 
par ts . In the reworking of Example 10.21 we shall "turn things around": pre
senting the schemes in order from what we may consider the physically "small
est" phenomena towards the "largest" such. There is a lesson to be seen here: 
Namely tha t , when composing specifications (i.e., collections of scheme dec
larations) one may be well served in both developing and in presenting them 
"compositionally", i.e., (colloquially speaking) "bottom-up"! 

E x a m p l e 10 .22 A Railway Net Specification: Parameterisecl Schemes: To 
each sort in Example 10.21 we associate a scheme. 

s c h e m e Connectors = c lass t y p e C e n d 

s c h e m e Units (connectors : Connectors) = 
c lass 

t y p e U 
v a l u e 

12 is_Linear: U->Bool , 
12 is_Switch: U ^ B o o l , 
12 is_SimpleCrossover: U - ^ B o o l , 
12 is_SwitchableCrossover: U - ^ B o o l , 
13 obs_Cs: U—•connectors.C-set, 
17 lin_seq: U-set—>-Bool 

lin_seq(us) = 
(V u:U«u € us =>• is_Linear(u)A 
(3 q:U*«len q — c a r d usAe lems q=usA 

(V i :Na t«{ i , i+ l}Cinds q => 
(3 cxonnectors.C* 

obs_Cs(q(i)) n obs_Cs(q( i+ l ) )={c}A 
len q > l =$• obs_Cs(q(i)) ft obs_Cs(q( len q))={})))) 

e n d 

We could single out each of the mentioned four disjoint kinds of units, U, 
representing them as schemes. We show it only for the linear case: 

s c h e m e Linear (connectors : Connectors) = 
e x t e n d Units (connectors) w i t h 
c lass 

t y p e LU = U 
a x i o m 
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V u:LU«is_Lmear(u)A~is_Switch(u) 
A ~is_SimpleCrossover (u) A~is_SwitchableCr ossover (u), 

V u:LU: card obs_Cs(u}=2 
end 

We go on: 

scheme Sequence (connectors: Connectors,units: Units(connectors)) = 
class 

type Seq 
value obs_Us: Seq-mnits.U-set 
axiom V s: Seq»units.lin_seq(obs_Us(s)) 

end 

scheme Lines (connectors: Connectors,units: Units (connectors)) = 
extend Sequence(connectors,units) with 
class 

type L 
value 
obs_Seq: L^Seq, 
obs_Us: L—mnits.U-set 
obs_Us(l) = obs_Us(obs_Seq(l)) 

end 

scheme Tracks (connectors: Connectors,units: Units(connectors)) = 
extend Sequence(connectors,units) with 
class 

type Tr 
value 
obs_Seq: Tr—»Seq, 
obs_Us: Tr—>units.U-set 
obs_Us(t) = obs_Us(obs_Seq(t)) 

end 

scheme Stations( 
connectors: Connectors, 
units: Units (connectors), 
tracks: Tracks(connectors,units)) = 

class 
type S 
value 
S obs_Us: S-mnits.U-set, 
8 obs Trs: S-rtraeks.Tr-set 
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axiom 
5 V s:S«card obs_Us(s)>l, 
8 V s:S«card obs_Trs(s)>l, 
7 V s,s':S«s#s' => obs_Us(s) n obs_Us(s')={} 

end 

scheme Nets( 
connectors: Connectors, 
units: Units(connectors), 
lines: Lines(connectors,units), 
tracks: Tracks(connectors,units), 
stations: Stations(connectors,units,tracks)) = 

class 
type N 
value 
1 obs_Ls: N-»lines.L-set, 
1 obs_Ss: N->-stations.S-set, 
2 obs_Us: N-»units.U-set 

axiom 
1 V n:N«card obs_Ls(n)>l, 
1 V n:N.card obs_Ss(n)>2, 
4 V n:N,l:lines.L«l € obs_Ls(n)=^lines.obs_Us(l)Cobs_Us(n), 
6 V n:N,s:stations.S'S € obs_Ss(n)=>stations.obs_Us(s)Cobs_Us(n), 
7 V n:N,l:lines.L,s:stations.S«l € obs_Ls(n)As € obs_Ss(n)^> 

lines.obs_Us(l) 0 stations.obs_Us(s)={} 
end 

We leave it to the reader to check that the previous and the present formali-
sations "cover the same ground". • 

10.2.7 Definitions: Class, Scheme and Object 

Characterisation. By an RSL class we mean, basically, a set of algebras; each 
algebra being a set of distinctly named entities: types and values, including 
functions and behaviours; and variables and channels. • 

Characterisation. By a RSL scheme we mean a named class. • 

Characterisation. By a RSL object we mean a specific algebra. 
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10.3 UML and RSL 

Note 
This section was written by Steffen Holmslykke and edited by Dines Bj0rner. 

The Unified Modeling Language, UML, is roughly a diagrammatic approach 
to object-oriented modelling. UML has been widely used in industry as an aid 
in the software development process, this is probably due to the wide use of 
diagrams. A quality tha t diagrams provide is tha t they, for some, seem easy 
to comprehend and are therefore a supplement to a structured description. 

We refer to [59,237,382,440] for l i terature on UML. The Object Management 
Group, OMG [382], is an industry association which tends to the interests of 
UML users. 

10.3 .1 O v e r v i e w of UML D i a g r a m s 

Some of the more basic and classic diagrams of UML include: use case diagrams, 
sequence/collaboration diagrams, statechart diagrams (or just s tatecharts) , 
and UML class diagrams. 

U s e Case D i a g r a m s 

Use case diagrams give an overview of the use cases (behaviours) and the 
actors (including humans) who or which can perform them. A use case is a 
requirement tha t the system must fulfill. This kind of diagram is used in the 
requirements stage of the software development process and is a supplement 
to textual (informal or formal) language (Fig. 10.1). 

Browse concept notes 

Create concept note 

Fig. 10.1. Use case diagram with two use cases 

Figure 10.1 shows two use cases: browse concept notes and create concept 
notes. The figure is modified from [39]. 
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We shall not cover use case diagrams in these volumes. The use case di
agrams of UML correspond to domain descriptions and requirements prescrip
tions where we model users (agents, actors) by processes tha t communicate 
with the "things" shown as ovals in the use case diagrams, where these things 
are also modelled as processes. So there is nothing in use case diagrams tha t 
is not already to be modelled as behaviours according to the principles and 
techniques of these volumes. 

S e q u e n c e / C o l l a b o r a t i o n D i a g r a m s 

Sequence/collaboration diagrams are used in order to describe interaction be
tween objects. Sequence diagrams and collaboration diagrams are isomorphic, 
tha t is, the syntax of the diagrams is different but the semantics are the same. 
Sequence diagrams have a strong resemblance to message sequence charts. 

We shall cover sequence/collaboration diagrams, under the name of mes
sage sequence charts and live sequences charts, extensively in Chap. 13. 

Statechart D i a g r a m s 

Statechart diagrams are intended to model the internal state of an object and 
its transition from one state to another. We shall cover statecharts extensively 
in Chap. 14. 

10.3 .2 Class D i a g r a m s 

Class diagrams describe the static structure of a system, i.e., all the possible 
states which the entire system can be in at any given time. Class diagrams can 
be used both to describe a system at an abstract level focusing on relations, 
and later at an implementation level focusing on the specification of states. 
Figure 10.2 shows a class diagram for a stack such as described in RSL schemes 
in earlier examples: from Example 10.10 to Example 10.19. 

Elem 

Graph 

0..1 
<-

7± + element 

Directory 

• o Stack 

- isEmpty (): boolean 
-push (e:Elem):void 
- pop ():void 
- top (): Elem 

next 
0..1 I 

• prev 
0..1 

Fig. 10.2. UML Class diagram of a stack 
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UML "Standardisat ion" 

UML is under continuing development both in adding new diagrams to the 
existing collection and in refining existing diagrams. This is coordinated by 
the Object Management Group (OMG) [382]. 

Class diagrams are the subject of the rest of this section. 

10 .3 .3 Class D i a g r a m s 

A class diagram is a set of boxes and lines. Lines connect boxes, and a box 
either represents a class or an object construct. The lines connecting the 
boxes denote relationships of which there exist several kinds. In this section 
the association and the generalisation will be mentioned — leaving out the 
dependency relation and its derivatives.2 

Classes 

A class, syntactically speaking — i.e., a box — has three compartments: A 
name compartment , a compartment for at t r ibutes and a compartment for 
operations. Each class is uniquely named and represents a set of models, much 
like the s c h e m e construct in RSL. 

An at t r ibute corresponds to a variable declaration in RSL, and has a type 
and a binding. It is the set of at t r ibutes which constitute the state of the 
models which the class represents. 

A class diagram operation definition is equivalent to the signature of a 
value function declaration in RSL. A method in UML is an operation (a function) 
in RSL. The function (method) definition body can, however, not be given in 
class diagrams. The function can be specified, in UML, external to the box, 
using the English language or any language tha t is relevant. 

Unit_Measure 
— length Real 
+ GetLengthlnMeters () : Real 
+ GetLengthlnMeters () : Real 

Fig. 10.3. A UML class with one private variable and two public operations 

The following RSL specification gives an "equivalent" description to the one 
presented by the UML class diagram in Fig. 10.3. It should be noticed tha t 

2 One argument for doing so is that the semantics of dependency is unclear and 
its use mainly (and rarely) applies only when other relationships of class diagrams 
do not suffice. 
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the visibility concept in UML denoted by the signs " + " for Public and "—" for 
Private in the class is also to some extent available in RSL through the hide 
construct. 

s c h e m e Uni t_Measure = 
hide length ,conv_to_meters ,conv_to_yards in 
class 

variable length : R e a l 
value 

getLengthlnMeters : U n i t —> read length R e a l 
getLengthlnMetersQ = conv_to_meters (length) 
getLengthlnYards : U n i t —>• read length R e a l 
getLengthlnMeters () = conv_to_yards (length) 
conv_to_meters : R e a l —> R e a l 
conv_to_yards : R e a l —>• R e a l 

e n d 

objec t SomeUnit : Uni t_Measure 

Objects are often used to depict complex situations of a system. This is useful 
when generic descriptions with only classes are becoming hard to grasp. 

A s s o c i a t i o n 

Syntactically an association is a line between two or more classes, possibly 
decorated with several ornaments at the ends and around the centre of the 
line. An association semantically denotes the set of relationships (links) tha t 
can exist between the instances of the classes which it connects. So-called 
multiplicities can be added at the ends of the association denoting a constraint 
on the number of participating instances in the relationship, thus also reducing 
the valid relationships. 

The line connecting Station and Line classes in Figure 10.4 is an ordinary 
association. Tha t is, instances of the two classes may communicate with (or 
"call") each other. The multiplicities mean tha t an instance of the Line class 
must be connected to two instances of the Station class, and an instance of the 
Station class must be connected to one or more instances of the Line class. 

The lines connecting the classes in Fig. 10.5 are also association relation
ships, however, the filled diamonds at the Net class denote tha t they are 
composite associations. This is a whole-part relationship which is an exten
sion of the ordinary association — meaning tha t the Net class is partly defined 
by the three classes Unit, Line and Station. It also makes the whole, which 
in this case is the Net class, "responsible" for the parts , tha t is, instantiating 
the parts and establishing the links between them. 

The line connecting the Sequence class with the Linear class in Fig. 10.6 
is a shareable aggregation relationship denoted by the hollow diamond, and 
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Station 

connected to 

1..* 

Line 

Fig. 10.4. Ordinary association with multiplicities at both ends 

Fig. 10.5. Composite aggregate 

is also an association relationship. The relationship has the same semantics 
as composite aggregation apart from the "responsibility" for the parts . 

Sequence 

T 
sequence of 

1..* 

Linear 

Fig. 10.6. Shareable aggregate 

Links 

A link is a relationship between objects. It is an instance of an association. 
The objects which it connects must thus be instances of the participating 
classes of the association. So the link represents one of the relationships in 
the set tha t the association holds. Consequently, the link must satisfy the 
constraints added to the association through multiplicity. An association is 
thus a prerequisite for a link to exist. 
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Genera l i sa t ions 

Generalisations introduce a taxonomic structure between classes. The general
isation is a relationship between two classes which are designated as child and 
parent. The nonprivate at tr ibutes and operations of the parent class are in
herited by the child class in addition to the association relationships in which 
the parent participates. 

Switch | | SimpleCross 

Fig. 10.7. Generalisation of U class: parent for remaining classes 

The extend construct in RSL is the counterpart corresponding to the general
isation relationship. A simple example follows: 

s c h e m e Linear = e x t e n d U w i t h class e n d 

10 .3 .4 E x a m p l e : Ra i lway N e t s 

The UML class diagram presented in this section is based on the informal and 
formal descriptions of railway nets from Examples 10.21 and 10.22. It is there
fore particularly interesting to compare the latter — which is a modularized 
formal version — with the UML class diagram in Fig. 10.8 since it gives a hint 
of the strengths and weaknesses of the two specification languages (one, RSL, 
is formal, while the other, UML class diagrams, is informal). 

Note: Where, in the RSL specifications we used and use U for the sort of rail 
units, we shall, in the UML diagrams, use Unit, not to be confused with RSL's 
U n i t literal (as the meaning of ()). In the class diagram of Fig. 10.8 the model 
is divided into several smaller pieces which describe smaller par ts . In this case 
the classes represent the phenomena introduced in the informal description. 
These are basically the same which were used in Sect. 10.2.6 except for the 
(rail) Unit class, which instead uses generalisation to partially describe each 
of the specialised rail units. 

Items 1, 2, and 8 of Example 10.21 describe a consist of relationship 
between two phenomena. The latter item describes tha t a station consists of 
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—| SimpleCross 

| Connector | 1 SwitchCross 
' ' 0 2 

1 Switch 

- | Linear \-

- ^ ^ | Stati 

connected to 

sequence of y V 
Q j Sequence 

Fig. 10.8. UML class diagram of railway nets 

one or more tracks. This fits with the whole-part relationship that composition 
provides in the class diagram. Here the station is the whole, and it is not 
complete unless it has tracks, and the tracks cannot exist without a station. 
For example, item 8 is depicted in the class diagram as a solid line between 
the Station and Track classes, where the first is marked with a filled diamond 
at the end of the line indicating that it is the whole. 

Items 3, 9, and 5 of Example 10.21 use respectively a sequence of and set 
of to describe a relationship. This is again a whole-part relationship, however 
this time the parts are already part of the net. So to be able to maintain a 
reference to an existing part a shareable aggregation is used as a relation. For 
example, item 3 of Example 10.21 is depicted in the class diagram as a solid 
line between the Station and the Unit classes, where the first is marked with 
a hollow diamond at the end of the line indicating that it is the whole. 

In item 12 in the formalisation of Example 10.21 a unit is described as 
being either a Linear, Switch, SimpleCross or SwitchCross which in the class 
diagram is substituted by a generalisation relationship where the Unit is an 
abstract class (its class name is written in italics) so it cannot be instantiated. 
Both the informal description in item 12 of Example 10.21 and the correspond
ing way it is modelled in the class diagram suggest that another axiom should 
be added. In the formal model four Boolean functions are used to determine 
the type of a given unit. Here an axiom could be added which ensures that a 
unit only can be of one type. This is achieved in the class diagram since an 
object can only instantiate one class. The axiom could be as follows: 

V u : U • is_Linear(u) =^ 
~ (is_Switch(u) V is_SwitchableCrossover(u) V is_SimpleCrossover(u)) 

Additional axioms should be added for each of the three other possible situ
ations. 
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The two items 13 and 14 of Example 10.21 are overlapping, where the 
latter contains more information. The latter explicitly describes the number 
of connectors which a given unit must have, while the former just states that 
a unit has at least one connector attached. If the latter is fulfilled then so is 
the former, which makes it superfluous in this model. This was noticed while 
drawing the associations between the Unit class and its specialisations. Here 
item 14 would in the class diagram amount to an association between each of 
the specialised classes of Unit to the Connector class which is shown in the 
class diagrams. Item 13 would be an association between the abstract Unit 
class to the Connector class. If this were to be added then it would mean that 
each of the specialisations also would have this relation due to inheritance 
through generalisation, which is not intended. 

It is not possible to show items 4, 6, 7, 10, 11, 15, 16 and 17 of Exam
ple 10.21 in a class diagram, since they describe constraints on instances of a 
static structure. For example, item 4 is used and redisplayed for convenience: 
"The rail units of a line must be rail units of the railway net of the line". To 
be able to express this requirement we must be able to identify a particular 
unit and, if it is part of a line, then it must also be part of the net. This could 
be achieved by using the Object Constraint Language [382, Sect. 6]. We will 
not do so here. 

There is some similarity between the two classes Track and Line since they 
both represent a sequence of linear rail units. They are, however, still different 
since a Line connects two stations and a Track only exists within a station. 
The common features of the two can be generalised into a class Sequence, 
which represents a sequence of linear rail units, and then the two classes Line 
and Track can be specialisations of that class respectively specifying their 
restrictions. 

10.3.5 Comparison of UML and RSL OO Constructs 

Phenomena described in informal domain descriptions or in informal require
ments prescriptions are, in RSL specifications, usually represented by sorts. 
Besides a few observer functions these sorts are further unspecified. In class 
diagrams they are represented by classes, and these, as for RSL schemes, can 
be instantiated as objects (respectively RSL objects). 

Initially we usually choose an applicative style for RSL specifications. There 
is perhaps a closer relationship between schemes and classes if an imperative 
modelling style had been used since the object in RSL would then contain an 
explicit state based on variables. It is, however, a typical approach — when 
using the RAISE Method — to start with an applicative specification and later 
refine it to an imperative specification, one which is more implementation ori
ented. Hence we could argue that it is too early to determine the (assignable 
variable) states by which the phenomena could be modelled. This approach 
has also been used for class diagrams since none of the classes have any at-
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tributes or operations. (This is also the reason for not showing compartments 
in the diagrams above.) 

Links (which in UML are instances of associations) are (in terms of UML) 
used to express the communication of messages, tha t is, to designate the 
invocation of methods at the target UML object. The associations/links used 
in class diagrams in RSL can perhaps best be compared with qualification, 
tha t is, declarations from other objects including types, variables, functions, 
etc. With the use of qualification it also becomes possible, in RSL, to access 
the encapsulation of other objects and to invoke functions. 

The generalisation relationship in UML and the e x t e n d construct in RSL 
are similar since they both take respectively a class and a scheme and add 
more information. A specialised class, in UML, can add at t r ibutes or operations 
to the ones already present from the generalised class. This is also possible 
with the e x t e n d construct in RSL. 

10.3 .6 Re ferences 

Although RSL has modules it may be claimed, by some, not to be a "true 
object-oriented language". This does not, however, mean tha t it is impossible 
to express object-oriented models in RSL. The reason tha t RSL may be said 
to not be directly object-oriented is tha t it does not support references — in 
particular with regard to objects. 

As an example we use the three schemes Connectors, Units, and Lines 
from Example 10.22. The headers of the mentioned schemes are replicated 
below for convenience. The first scheme has no parameters since it does not 
use any sorts or functions from outside its own scheme. The Unit scheme 
needs to know of the Connectors scheme since it uses its sort. 

s c h e m e Connectors = c lass end, 
s c h e m e Units (connectors : Connectors) = c lass e n d 

The Lines scheme only needs information from the Units scheme and not from 
the Connectors scheme. However, to be able to instantiate the Units scheme 
an object instantiated from the Connectors scheme must be provided. 

It is not possible to pass an already instantiated object of units as the 
only parameter to the Lines scheme or, formulated in another way, it is not 
possible to pass an object by reference. This is a major difference between RSL 
and object-oriented modelling. Thus it is necessary to give an object of type 
Connectors as a parameter although it is not used by the Lines scheme. 

s c h e m e Lines ( 
connectors : Connectors, 
units : Units (connectors)) = c lass ... e n d 
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10.3 .7 Class D i a g r a m Limi ta t ions 

As mentioned earlier, class diagrams do not provide "compartment" space for 
all the information given in the informal description of railway nets, partic
ularly information tha t refers to the unique identity of an instance. Here it 
is necessary to use UML's Objec t C o n s t r a i n t Language, OCL [526,527], or 
resort, as we do, to RSL's predicate calculus. It is possible to express some 
(trivial) information in UML class diagrams which in RSL models is described 
using axioms. There are constraints on numbers such as the minimum number 
of stations in a net: Here one may use multiplicities. 

10.4 Discussion 

Several diverse issues need to be discussed. Our discussion, below, is not ex
haustive. More discussion will follow at the ends of other chapters and in 
other volumes of this series of three textbooks on software engineering. We 
lump a discussion of selected issues into one part , and then conclude with a 
'principles, techniques and tools' par t . 

10.4 .1 M o d u l a r i t y I ssues 

We have selected just five issues for closer examination. 

M o d u l a r Speci f icat ion and P r o g r a m m i n g 

The concept of modularity appears in many guises in the many different spec
ification and programming languages claiming to provide some form of modu
larity constructs. In this chapter we showed two extreme kinds of modularity: 
tha t of RSL, provided for in textual form, and tha t of UML, provided for in 
diagrammatic form. There are other formal specification languages also pro
viding modularity: B [2] and e v e n t - B [4], CAFEOBJ [96,123], CASL [40,369,371] 
and Z [210,230,479,480,542,543]. 

Stabi l i ty of M o d u l a r i t y C o n c e p t s 

In the mind of the current author the last word on modularity has yet to find 
its way into a proper formal specification language, respectively into a proper 
programming language. We have covered the modularity concept in these 
volumes. But we have done it less deeply than many a reader might have 
expected. We are happy with tha t . More final t reatments are needed. Some 
fascinating ones are already available — reflecting, in our mind, crucial bases 
which still have to find their way into commercially supported programming 
languages. The most exciting is tha t of Abadi and Cardelli [1]. 
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W h i t h e r O b j e c t - O r i e n t e d (OO) " P r o g r a m m i n g " ? 

Object-oriented ( 0 0 ) programming is but one of many useful programming 
styles, but it is not the only one. Other programming styles focus on functions 
(SML [168], and so on). Since languages like J ava [8,15,146,301,465,513] and 
C# [207], for all their virtues, rather heavily represent the OO school, their 
way of offering concurrent, i.e., parallel programming is "heavy-handed". It is 
complicated and "expensive", therefore programmers might be led to believe 
that concurrency is complicated and expensive [510], whereas it might not 
be so! Indeed, it is not so. We refer to the delightful [510] for a view of 
programming tha t plays down the singular importance of OO. 

S c h e m a , Objec t and M o d u l e Calcul i 

So an essence of this chapter and of our coverage is tha t it is, in our mind, too 
early to decide on which singular set of modularity concepts, whether those 
of UML, those of RSL, respectively those of C#, or other, to use. 

How to know what to ask for when choosing specification and programming 
languages? This question will not be answered here. To ask it properly the 
reader must have studied all volumes of this series of textbooks in software 
engineering. 

Become familiar with, for example, the two modularity concepts of this 
chapter and those of J ava [8,15,146,301,465,513], E i f f e l [344,345] or C# [207, 
346,347,401]. And then, in future projects find out what is then available, in 
some formal specification language or other (B, e v e n t B , . . . , RSL, Z) and 
in some programming language. Then settle for what you consider the most 
appropriate in which to abstract your ideas, respectively to finally program 
their concretisation. 

Formal i sa t ions of UML's Class C o n c e p t 

We should also, in this closing section, not forget to mention a t tempts to 
formalise the UML class (diagram) concept. One is given by the author of 
Sect. 10.3, Steffen Holmslykke [9,10]; a previous, also in RSL, is given by 
Ana Funes and Chris George [122]. A thorough, more theoretical t reatment 
of many UML concepts is given in Martin Grofie-Rhode's book [153]. 

10.4 .2 Pr inc ip le s , Techniques and Tools 

We summarise: 

Princ ip le s . The principle of modularity is tha t it is indeed possible to divide 
and conquer. • 
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Techniques. We have shown, basically, two sets of modularisation tech
niques: First we showed the RSL techniques of identifying classes, naming 
classes (thus defining schemes), and declaring objects, being instances of 
classes, i.e., one model out of the set denoted by a class. We also showed 
the UML techniques of boxes and relationships, the latter of various kinds: 
associations, links, generalisations, etc. • 

Tools. Thus we have shown two tools for modularisation: the RSL class, object 
and scheme constructs; and the UML class diagram constructs. • 

10.5 Bibliographical Notes 

The literature on modularisation is vast. The first object-oriented program
ming concepts, together with a language for expressing them, were those of 
Simula'67 [41,85,87,88]. See also the Internet Web page [472]. David Lorge 
Parnas has written persuasively about many issues of modularisation. We 
mention a few works [388-391] — where the last reference is to a collection 
of a sizable part of Parnas's rich production. SmallTalk is another fascinat
ing object oriented programming language. It has, as of 2004, its own home 
page: [476]. See also [141,142,544]. 

We refrain here from referencing the vast literature on UML. 

10.6 Exercises 

Exercise 10.1 Scheme Constructions. You are to select and solve one or more 
exercises, preferably one from each of the 6 groups of exercises listed below 
and to convert their formalisation into a set of two or more scheme definitions: 

1. Exercises 2.1 and 5.7: Documents 
2. Exercise 2.2: Part Assemblies 
3. Networks. Common to the next three exercises is that of a previous exer

cise, Exercise 4.1. Select one of either of: 
(a) Exercises 2.3 and 5.3: City Road Nets — Streets and Intersections 
(b) Exercises 2.4 and 5.4: Air Traffic Route Nets: Air Lanes and Airports 
(c) Exercises 2.5 and 5.5: Shipping Nets: Lanes and Harbours 

4. Exercise 2.6: Robots 
5. Languages. Select one of either of: 

(a) Exercise 3.3: Denotational Semantics: A Simple Bank 
(b) Exercise 3.4: Denotational Semantics: A Simple Banking Script Lan

guage 
(c) Exercise 3.5: Denotational (Continuation) Semantics: Language with 

Storable Label Values 
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(d) Exercise 3.6: Denotational (Continuation) Semantics: A Proper Corou
tine Programming Language 

6. Systems. Select one of either of: 
(a) Exercises 4.2 and 5.1: Supermarkets 
(b) Exercises 4.3 and 5.2: Manufacturing 
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Automata and Machines 

• The prerequisite for studying this chapter is that you are well familiarised 
with Chap. 4's coverage of Configurations: context and States. 

• The aims are to introduce the related concepts of finite state, infinite state, 
and pushdown stack automata and machines, and to show the usefulness 
of finite state and pushdown stack automata and machines in — mostly 
— concrete, operational (i.e., computational) specifications. 

• The objective is to help make sure that the reader can freely choose and 
usefully apply, when appropriate, the modelling principles and techniques 
of finite state and pushdown stack automata and machines — as well as to 
encourage the reader to more seriously study more specialised textbooks 
on automata and formal languages. 

• The treatment is informal, but systematic. 

. States . 
A state is a summary of past behaviour. We may speak of a usually very 
large — and as we shall call it — actual state space. And we may model 
this actual state space in terms of abstracted model states. Often the actual 
state space of past behaviours can be summarised in a small number of 
discrete model states. A kind of equivalence relation over the actual state 
space can be imposed. When this is possible, the principles and techniques 
of the present chapter apply. 

In this chapter we will survey a way of representing and hence "talking about" 
a certain class of states concept — a way that is different, in style but not in 
essence, from the way we have so far, above, treated the state concept. First 
we will define the general notions of discrete state automata and discrete state 
machines. These are "gadgets", or systems, sometimes also called "devices" 
(i) that possess either a finite or an infinite set of ("internal") states, (ii) that 
'accept', i.e., read, in any one state, (iii) any input from an environment, and 
of a finite or infinite type, called an alphabet of inputs. Upon (iv) reading 
such an input they undergo a state transition to a (possibly same) next state, 
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(v) while, possibly, yielding an output to an environment, and again of a finite 
or infinite type, called an alphabet of outputs. Then we shall specialise this 
notion to the two by two subclasses of finite and pushdown stack automata 
and machines — usually abbreviated by: FSAs, FSMs, PDAs and PDMs. 

11.1 Discrete State Automata 

Recall that the valves of the liquid container tank in Example 4.3 are said to 
be in either of two (mutually exclusive) states: open or closed. As a pair they 
can thus be in any of four states. What "drives" them from state to state? In 
this case it is the set and close valve operations. These operations sometimes 
change the state, and sometimes not! In the formalisation of the valve states in 
the imperative process model we used assignable variables. Their value range 
was finite and small, to wit: open or closed! When the value range of certain 
variables is finite and small, say two or three, then we can model the state of 
the "things" — which leads us to the variable model — instead in terms of 
finite state diagrams. 

Example 11.1 A Liquid Container System, III: Finite State Valve Automa
ton: With each valve we can thus associate a two-state state diagram, or, as 
we shall call it, a finite state automaton (left side of Fig. 11.1). We can also 
combine the two automata into one that has four states. Figure 11.1 shows 
the state transition effects in response to valve open and close actions (open_k 
and close_k). • 
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Legend: 
o open, c closed, oo both open, cc both closed, oc in_valve open out_valve closed, co - vice versa 

close_k: close valve k, open_k: open valve k - for k in {i,o}, i: in, o: out 

Fig. 11.1. The valve system: separate valves versus combined 
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We explain Fig. 11.1: The left side shows two state diagrams: The upper for 
the in valve; the lower for the out valve. Each of these state diagrams consists 
of two states and four transitions. States and transitions are labelled: states 
with state identifiers, and transitions with automaton input. The right side 
of Fig. 11.1 shows a four-state automaton. It is the product of the two 
automata shown on the left. State labels are pairs of abbreviations of the 
state labels of the left-hand-side diagrams. Transition labels are sets of 
possible automaton inputs. A transition, labelled i, from state s to state s' 
(where s may be s'), expresses that the automaton, when in state s and 
accepting input i, transits to state s'. At any one time the automata can 
be in exactly one state. How the inputs are presented and how the state 
changes are effected are not described, either by the diagram of Fig. 11.1 or 
by the formalisation given next. What is described is that in certain states 
certain inputs are acceptable, and when accepted will lead to a state change. 

Def in i t ion . By a deterministic state automaton we formally understand a 
three grouping: 

t y p e 
SA' = I-infset x S-infset x ((IxS) ^ S) 
SA = {|(a,tr,(/)):SA'«V(i,s):(IxS)«(i,s) € d o m ^=>i e aAs € crA</>(i,s) € <r|} 

There is an input alphabet, a, a set of states, a, and an input and state to 
next state transition function, <f>. Any or all of the three automaton compo
nents (alphabet, states and transition function) may be finite or infinite. The 
deterministic nature of the au tomata stems from there being at most one 
transition defined for every input and state pair. • 

Had there been two or more such next state transitions for any given input 
and state pair then the automaton would have been nondeterministic. 

Def in i t ion . By a nondeterministic state automaton we formally understand 
a three grouping: 

t y p e 
SA' = I-infset x S-infset x ((IxS) ^ S-infset) 
SA = {|(a,cr,</)):SA'«V(i,s):(IxS)«(i,s) € d o m ^=>i e aAs € crA</>(i,s) C a\} 

Possibly the same inputs and the same states. The difference between the 
deterministic and the nondeterministic finite state au tomata is tha t the state 
transitions of the deterministic au tomata are deterministic, tha t is, to one 
next state, whereas the state transitions of the nondeterministic au tomata are 
nondeterministic, tha t is, to any one of several next states. This is reflected 
in the two transition functions: (IxS) ^ S versus (IxS) ^ S-infset. • 

11 .1 .1 In tu i t ion 

The intuition behind a deterministic state automaton is as follows: The au
tomaton is in some state. Upon receiving, and we do not tell how, an input, 
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the automaton undergoes a transition to a possibly other state. Thus the au
tomaton is a discrete, conceptual device. It either remains in states when no 
next input is presented (and hence is stable), or it "moves" to a next state 
when an input is presented — where this next state may be the same state 
as the automaton was in before the input was presented. We do not explain, 
at present, what we mean by "input is presented". You may think of it as the 
automaton deciding, now and then, to input a symbol, i.e., to read from an 
input stream of symbols. 

11.1.2 Motivat ion 

We motivate, partly, the existence of (finite) state automata by presenting 
some derived examples. 

Example 11.2 "Concrete" Finite State Automata: Intuition: To help your 
intuition, let us present some familiar examples of automata, (i) The automa
ton that models the state of a four-door automobile with a (say, rear entry) 
luggage compartment. Any of the five mechanisms, the four doors and the one 
lid of the trunk, may be in an open or a closed "state". Hence the combined 
automaton may be in one of 25(= 32) states. State transitions may allow only 
for the single closing or the single opening of a door or the lid, or may al
low for multiple, simultaneous both openings and closings of these. A closed 
[an open] door (lid) cannot undergo a "local state" transition "being closed" 
["being opened"], (ii) Next, we present an automaton that is based on the 
previous example, (i), but where no distinction is made as to which of the 
four doors is open or closed. That is, there are two contributions: All or some 
doors open, and all doors closed. Join to that the state of the compartment 
lid and one gets a total of four states, (iii) Finally, we present an automaton 
that is based on the previous example, (ii), but where no distinction is made 
as to whether it is a door or a trunk lid that is open, or closed. Thus we have 
just two states. Exercises 11.1 and 11.2 are based on the above example, and 
ask you to draw appropriate finite state automata diagrams. • 

11.1.3 Pragmat ics 

We are fine with intuition, but why do we model certain phenomena and 
certain concepts as (finite) state automata? Again, we answer that question 
by discussing Example 11.2. 

Example 11.3 "Concrete" Finite State Automata: Pragmatics: Let us focus 
on case (ii) of Example 11.2. The four states could be labelled: Sffc, all doors 
and the lid closed; S* ,̂ all doors closed and the lid open; Sef0, some or all doors 
open and the lid closed; and S^, some or all doors open and the lid open. 
Now, why might we wish to make those foi;r distinctions? An answer might be 
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that we wish to make the performance of certain driver operations contingent 
upon the state. For example: In S^c

c the ignition key can be engaged, but 
headlamps cannot be turned off. In S(

d° the ignition key cannot be engaged 
but the compartment light can be turned on (and off). In S{/0 the ignition 
key cannot be engaged but headlamps can be turned on (and off). In Se

d° 
only headlamps can be turned on (and off). This is just a very tiny sample of 
possibilities. • 

Fig. 11.2. An infinite state automaton 

Example 11.4 An "Abstract, Informal" State Automaton: Figure 11.2 il
lustrates an infinite state automaton. State transition arrows labelled i have i 
designating inputs. State transition arrows labelled l\{ij}, where ij designates 
an input, stand for the possibly infinite set of labels ik for ik being an input, 
except ij. An, albeit, construed class of examples of such automata as just 
hinted at could be those which go from nonerror state to nonerror state when 
input an increasing series of numbers adhering to some predicate: next_prime, 
next_Fibonacci number, next_factoriaI, etc. At present, please do not ask for 
the "usefulness" of such an automaton! • 

We explain Fig. 11.2: The dashed and dotted right hand-side is intended 
to show that the state machine is infinite, and, in this case, that its state 
structure "continues" as indicated in the left part of the figure. By state 
structure we, in this case, mean: The upper part sequence of input symbol 
transitions (labelled ii, i-2, 13, ii) and next states (so, s\, S2, S3) continues 
with 15, . . . , in-i, in, • • •, respectively 54, • • •, sn, sn+i, ..., "ad infinitum", 
and the lower part ("error") state diversion se (with their ingoing, labelled 
transitions), is intended to also be the next state for the "ad infinitum" ex
tension. How the infiniteness, shown very informally in the otherwise formal 
state diagram, is representable, say inside a computer, is not indicated. In 
the two-dimensional figure it is shown by the informal use of ellipses (•••), 
dashed lines, etc. 

We will now show how one might be able to formally represent an infinite state 
automaton. 
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Example 11.5 An "Abstract, Formal" State Automaton: We continue Exam
ple 11.4 above. The problem we tackle is that of choosing the sequence of inputs. 
We arbitrarily — so as to be able to represent infiniteness as a closed, finite size 
expression — choose to let the sequence of acceptable inputs be the sequence of 
(say) Fibonacci numbers: 

F(0) = 1, F ( l ) = 1, F{n) = F{n - 1) + F{n - 2), n > 1 

We could have chosen any other sequence for which some functional expression, 
as above, can be established. Now the formal representation of the infinite state 
automaton follows the definition of state automata: 

o = Nat, a = { s(i) • i:Nat }, 
4>=[ (F(i) ,s( i ))^s( i+l) , ( j_i ,s( i ))^s_e | i , j_i :Nat . j_i /F(i) ] 

Even this definition is informal, i.e., it falls outside the formal syntax of B.SL, but it 
is mathematically precise. By s(i) is understood, not necessarily a function s applied 
to a natural number i, but basically just an ith state symbol such that no two such 
state symbols (s(i),s(k) for i^k) are the same^By j_ i is understood a natural number 
other than the ith Fibonacci number. The use of the suffix i in j _ i here is an informal 
but sufficiently precise usage. By s_e is understood a state symbol different from 
any s(i). • 

11.2 Discrete State Machines 

State automata can be extended into state machines. State automata have input 
and states. State machines have input, states and output. 

Definition. By a deterministic state machine we formally understand a four group
ing: 

type 
SM' = I-infset x S-infset x O-infset x ((IxS) ^ (SxO)) 
SM = {\(a,<r,ip,u):SM' • 

V (i,s):(IxS) • (i,s) <E dom V => 
i G QAS G crAlet (s',o)=V'(i)s) m s ' £ a^° £ w end|} 

where a, a and <j> are as for state automata, and u is an output alphabet (Fig. 11.3). 
We will defer further explanation of the role of the output alphabet and its appear
ance in ip. m 

Example 11.6 An "Abstract" State Machine: Figure 11.3 illustrates an (i.e., some 
arbitrarily chosen) infinite state machine. State transition arrows labelled 'i.o' have 
i designating inputs and o outputs. State transition arrows labelled l\{ij}.o' where 

You could, of course think of s being such a state-generating function. It would 
then be a bijection: no two s(i) and s(k) for i^k generating the same symbol! 
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i j designates an input and o' an output, stand for the possibly infinite set of labels 
i k.o' for i k being any input, except i j , and o' some output. State transition arrows 
labelled l.o' stand for the possibly infinite set of labels I.o' for i being any input, and 
o' some output. • 

l\{i1}.o' \l\{i2}.o' \l\{i3}.o' \l\{i4}.o' 

Fig. 11.3. An infinite state machine 

We explain Fig. 11.3: We refer to Figure 11.2 for the basic explanation 
of this state diagram. The new concept in machines, different from that of 
automata, is that of a specialised output. A state transition label i.o between 
states s and s' shall mean: Upon input i in state s the state machine transits 
to next state s' while yielding the output o. Neither the formalisation nor the 
graphic representation tells us anything about how this output is presented 
to an outside world: Only that it is. 

11.3 Finite State Automata 

On the basis of Example 11.1 we now generalise: Finite state diagrams — like 
tha t of Figure 11.1 — are sometimes called finite state automata , and some
times finite state machines. Figure 11.1 is called a finite state automaton. It 
is concretely characterised by a two-dimensional layout of a finite number of 
states, drawn here as "fat" state name-labelled circles, and directed, labelled 
edges (i.e., arrows) between these states. In the finite state automaton defi
nition below we shall abstract (i.e., formalise) this concrete representation — 
making the drawing into a mathematical structure. 

We can "arrow and box" conceive of a machine, more generally of a system, 
as a box with input and output (Fig. 11.4). 

We explain Fig. 11.4: It is just a very simple abstraction. It really "car
ries" only symbolic, iconic meaning: The box is intended to designate an 
arbitrarily complex or simple system: Here any kind of finite state automa
ton. The input arrow is intended to show that this system 'accepts' (i.e., 
reads) input. The "sketchy", incomplete state machine "inside" the box is 
intended to show two things: That inputs lead to next states and that the 
system focus is on the state behaviour. The output arrow is finally intended 
to show that the current state of the system can always be observed from 
an outside. 
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input 

1 

FSA \/ 

~^</ J state 

Fig. 11.4. An abstract machine [system] 

You can disregard the fragment automaton shown inside the box in Fig
ure 11.4. It is there only to relate back to state diagrams like Figure 11.1: 
The i's on arrows are the input i's provided to the machine [i.e., to the sys
tem]. The state output only means that one can observe, from outside the 
"box", which state "its" state machine (the finite state automaton) is in. 

11.3.1 Regular Expression Language Recognisers 

Usually finite state automata are seen as acceptors, or recognisers, of sen
tences of regular expression languages. We will define the concept of regular 
expressions shortly. For now, let us show an example. 

Example 11.7 A Unite state recognising automaton: The example starts 
with showing an initial and final state finite state automaton (Fig. 11.5). 
The automaton accepts, for example, the following sequence of symbols: Ini
tially either an a or a &, then either a c followed by any number, including 
zero, es, and then another e, or a d followed by any number, including zero, 
,fs, and then another d — with all of this "terminated" by either an o or a b. 
The above informal sentences are "modelled" by what is known as a regular 
expression shown at the bottom of Fig. 11.5. As explained, we show some of 
the acceptable transitions, but not all of the unacceptable transitions. The 
latter are thought of as being suitably labelled and going to an error or reject 
state which is not shown, but, as is the case for the also not shown transitions, 
the error state and error transitions can easily be added to the diagram. • 

We explain Fig. 11.5: In the initial state 0 the automaton of Figure 11.5 
accepts either a or b. All other inputs are rejected, i.e., not shown. Hence this 
leads to an error state, also not shown! We have shown the transitions from 
state 0 to state 1 as two separate arcs. They could have been "collapsed" 
into one whose label would then be the set of acceptable inputs (in state 0): 
a,b — as a list of symbols separated by commas. The choice of showing one 
or more arcs is just a stylistic choice! Accepting a or b leads to next state 1. 
In state 1 either c or d will be accepted. All other input will be rejected — 
and is hence not shown, again for simplicity. (As before, their input would 
lead to a transition to an error state.) Input c leads to next state 2. Input d 
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R = ( a l b ) ( c e * c l d f * d ) ( a l b ) 

Fig. 11.5. Finite state recogniser automaton 

leads to next state 3. In states 2 and 3, any number of inputs e, respectively 
f will be accepted — leading to the same state 2, respectively 3. Also in 
states 2 and 3, inputs c, respectively d, will be accepted (all inputs other 
than e,c, respectively f,d will be rejected, etc.), and lead to same next state 
4. Finally, in state 4 either a or b will be accepted and lead to final state 5. 

Example 11.7 shows tha t finite state au tomata can be used to model devices 
tha t recognise certain input sequences while rejecting others. Rejection takes 
place when a transition to an error state takes place. The languages of ac
ceptable sequences are called regular languages, and an acceptable sequence 
is called a sentence of a regular expression (language). 

11.3 .2 Regu lar E x p r e s s i o n s 

In Sect. 8.5.3 we covered the notion of regular expressions. For the sake of 
continuity, we present here another version of our explanation of this concept. 

Def in i t ion . By a regular expression we understand the following: 

• There is an alphabet, A. 
• Letters a, b, . . . , c (etc., of the alphabet A) are regular expressions. 
• If R and R' are regular expressions, then so are: 

RR , R , R | R , (R) 

The meaning of regular expressions a,RR',R*,R \ R' and (R) are: 

• Regular expression a s tands for the set {(a)} 
• Regular expression RR' s tands for the set 

{ r V | r : R A r' : R'} 

where ~ denotes concatenation of strings. 
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• Regular expression R* s tands for the set 

{ e , r , r ~ r ' , r ~ r ' ~ r " , r " r ' " ... ~r" ,r~r'~ . . . | r,r',r" : R} 

where . . . informally designate an arbitrary, including infinite number of 
repetitions of string (i.e., sentence) concatenations, and where e designates 
the empty (the null, the void) string2 . 

• Regular expression R \ R' s tands for the set 

{r | r : R V r : R1} 

• Regular expression (R) s tands for the set 

{r\ r : R} 

tha t is: Parentheses are used for grouping and for disambiguation. 

So regular expressions denote regular languages: specific strings, i.e., sen
tences, of symbols of an alphabet. • 

Def in i t ion . By a regular language we understand the denotation of a regular 
expression. • 

11 .3 .3 Formal Languages and A u t o m a t a 

So we have identified a class of languages called the regular languages. They 
can be defined by a regular expression. We postulate, i.e., we claim, but do 
not show: 

T h e o r e m 1 1 . 1 . Regular Language Recognition: To every regular expression 
there corresponds a finite state automaton that accepts exactly the sentences 
in the language of the regular expression. • 

T h e o r e m 11 .2 . Regular Language Generation: To every finite state automa
ton there corresponds a regular expression exactly whose sentences are accepted 
by that automaton. • 

We refer to appropriate textbooks (e.g., [6,200,217,444]) on automata and 
formal languages for proper t reatment of the concepts of finite state au tomata 
and regular languages, including algorithms for constructing regular expres
sions from finite state au tomata and finite state au tomata from regular ex
pressions. 

2The empty string e juxtaposed (concatenated: ") to any string s yields that 
string: s^e = s = e^s. 
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11.3.4 Automaton Completion 

In, for example, the Unite state recogniser automaton of Fig. 11.5 only ac
ceptable transitions were shown, but a "completion" was described in the 
explanation of Fig. 11.5. We show, in Fig. 11.6, the result of such a comple
tion: Now all states have (emanating) transitions which together "label" the 
full automaton alphabet. 

Regular epression: (alb)(ce'cldf'd)(alb) 

Fig. 11.6. Complete finite state recogniser automaton 

11.3.5 Nondeterministic Automata 

So far we have assumed deterministic automata, and we will continue to do so, 
and to consider also only deterministic machines. A deterministic (finite state) 
automaton (dFSA) is one for which there is at most one transition leading out 
from any state for any input. So, a nondeterministic (finite state) automaton 
(nFSA) is one for which there may be more than one transition leading out 
from any state for any input. Figure 11.7 shows an example nFSA. 

It can be shown that: 

Theorem 11.3. Nondeterministic FSA = Deterministic FSA. The recognis
ing power of nFSA is exactly the same as that of dFSA. In other words: To 
every nFSA there corresponds a dFSA with the same 'behaviour'. • 

We refer to classical texts [6,200,217,444] for more on nondeterministic au
tomata. 
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a,b,c 

a,c 

Fig. 11.7. Nondeterministic finite state automaton 

11.3 .6 M i n i m a l S t a t e F in i t e A u t o m a t a 

Figure 11.8 shows two finite state (regular language recognising) automata . 

Def in i t ion . Minimal State Finite Automaton: An FSA is said to be minimal 
if there is no other FSA which recognises the same language but with fewer 
(number of) states. • 

Legend: 
IF: Initial and Final states; A, B, AB: other states 

a,b: input symbols 

Regular Expression, re: (( a | b ) a* b )* 

®J0J. 
Minimal FSA 

Fig. 11.8. Two FSAs for the same regular language 

The automaton to the left in Fig. 11.8 is not a minimal state automaton for 
the language denoted by the regular expression, re, shown in the Fig. 11.8. 
The one to the right is minimal wrt. the re shown in the figure. 

T h e o r e m 11 .4 . Minimalisation of FSAs: There is an algorithm for con
structing a minimal state finite state automaton from a given finite state 
automaton. • 

We refer to [6,200,217,444] for more on minimalisation. 
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11.3 .7 F in i t e S t a t e A u t o m a t a Formal i sa t ion , I 

We state: 

Def in i t ion . Deterministic Finite State Automaton: Formally speaking, a de
terministic finite state automaton, FSA, is a five grouping: 

t y p e 

FSA' = I-set x S-set x Sj-set x S 0 -set x F 
F = (IxS) Trt S 
FSA = {| fsa:FSA' • wf_FSA(fsa) |} 

value 
wf_FSA(a,tT,itTS,otTS,(^) = 

a^{} A a^{} A i t r s^ j} A itrsCtr A o c s ^ { } A otrsCtr A 
V (i,s):(IxS) • (i,s) e d o m (f>^i£aAs£aA (f>(i,s) £ a 

Here we have tha t ct:l-set is a finite set of further unspecified tokens, the input 
alphabet; S is a finite set of further unspecified tokens; itr:Sj are the initial 
states; oa:S0 are the final states; and <f> : F is a finite map which represents an 
(input,present_state) to next_state transition function. The (completed) finite 
state automata , as defined, are said to be deterministic. For every state there 
is one next state defined for every input. • 

11 .3 .8 F in i t e S t a t e A u t o m a t a Rea l i sa t i on , I 

The pragmatics of the initial state set is tha t the automaton is s tarted in one 
of its initial states. Usually the set is a singleton set of just one state, the 
initial state. The pragmatics of the Gnal state set is tha t the automaton is 
expected to reach, sooner or later, one of its final states. Usually the set is 
a singleton set of just one state, the Gnal state. Once a sentence delivers the 
automaton, from an initial state, into a final state, the sentence is said to have 
been recognised, i.e., to have been accepted. The definition is loose: It allows 
incomplete, but not nondeterministic automata . 

E x a m p l e 11.8 A Finite State Automaton: The State Transition Function: 
We continue Example 11.7. We seek the representation of the au tomaton of 
Figure 11.5 The representation is: 

fsa: ({a,b,c,d,e},{0,l,2,3,4,5},{0},{5},<^) 
^ = [ ( 0 , a ) h 4 l , 

( 0 , b ) ^ l , 
( l , c ) ^ 2 , 
( 1 4 ) ^ 3 , 
( 2 , e ) ^ 2 , 
(2 ,C)H4, 
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( 3 , f ) ^ 3 , 
(3,d)<-»4, 
(4,a)H-5, 
(4,b)->5] 

Its regular expression was shown at the bot tom of Figure 11.5. • 

11 .3 .9 F in i t e S t a t e A u t o m a t o n Formal i sa t ion , II 

We can pseudo-formalise the notions of automaton input, s tate transition, 
input acceptance and rejection. Let il be a sentence (i.e., a string in some 
alphabet) , fsa some finite state automaton, Sj some (supposedly initial) state, 
se an error state — possibly completing the fsa, and bl a list of outputs from 
the fsa when started in state Sj with input il. 

va lue 
fsa:FSA, s e n t e n c e d 

start : FSA -> S 4 I" 4 B o o l " 
start(a!,cr,icrs,ocrs,</>)(sj)(il) = 

let se:S • se £ a in 
if Sj ^ itrs t h e n chaos 

e lse run(a,cr,i(TS,0(TS,<^)(se)(il)(sj)(()) 
e n d e n d 

run: FSA 4 S -> I" -> S 4 B o o l " 4 B o o l " 
run(fsa)(se)(il)(s)(bl) = 

if i l=() t h e n bl e lse 
let (a,a,ias,oas,<j>) = fsa, i = hd il in 
if i ^ a t h e n chaos 

e lse 
if (i,s) d o m </> 

t h e n 
let s' = <^(i,s) in 
run(fsa)(s e)( t l il)(s')((s' € ocrs)~bl) e n d 

e lse 
run(fsa)(s e ) ( t l i l ) (s e ) ( ( fa lse)~bl) 

e n d e n d e n d e n d 

The functions start and run are not proper RSL functions for infinite input — 
since they would then never terminate (hence the prefix "pseudo"). 

If the fsa is not complete, then a supposed error state, se, generated by 
the start function, and its use in the run function can "mimic" completion. If 
a supposed initial state, Sj, is not an initial s tate of the fsa then chaos ensues. 
If a next state, s', is in oas then the sentence so far input has been accepted. 
We decided to let the output response bl be reversed wrt. the sentence input. 
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In this way all we need to look at is the head of a possibly indefinitely long 
output to see whether the sentence received so far has been accepted. 

11 .3 .10 F in i t e S t a t e A u t o m a t a Rea l i sa t i on , II 

In general, we can represent an automaton in row/column tabular form, cF: 
the number of rows to equal the number of (completed) states, and the num
ber of columns to equal the number of symbols in the input alphabet. The 
table entries to contain next states. Thus we may encode states and alphabet 
symbols as natural numbers: 

t y p e 
cSs ' , d s ' :Na t - se t 
cSs = {| cssxSs' • ess = { m i n ess ... m a x ess} |} 
els = | | c isxls ' • cis = { m i n cis ... m a x cis} |} 

cF ' = ( N a t m ) n , cF = {| cf:cF' • wf_cF(cf) |} 
value 

wf_cF: cF ' -> B o o l 
wf_cF(cf) = 

V i , j :Nat • i,j £ e l e m s cf =^ 
len cf( i )=len cf(j)AV k:Nat«k £ e l e m s cf(i)=^(cf(i))(k)g e l e m s cf 

The notation ( N a t m ) n is not proper RSL. The type expression (Nat™)™ de
notes the n-fold Cartesians of m-fold Cartesians of natural numbers, i.e., the 
encoded states. We leave it as an exercise to the reader to reformulate the 
start and run functions (but consult Sect. 4.8.3). See Exercise 11.3. 

11.3 .11 F in i t e S t a t e A u t o m a t a — A S u m m a r y 

We have introduced core concepts of finite state automata: their structure, 
their recognising power, notions of determinism and nondeterminism, notions 
of minimality and ideas on realisation. It remains to summarise principles and 
techniques for introducing and using finite state automata . 

Princ ip le s . The principle of Unite state automata expresses when and where 
to consider modelling a phenomenon or a concept as a finite state automaton. 
The principle applies when a phenomenon or a concept (the thing) satisfies 
the following three criteria: (a) the thing can be thought of as consisting of 
one or more subthings (components, parts) , each of which can be thought of 
as taking on values, i.e., having (sub-state space) at t r ibutes tha t vary over 
a finite set of discrete, enumerable tokens (cf., Vol. 1, Chap. 10, Sect. 10.3), 
(b) where the "whole thing" can then be thought of as taking on a state 
space (of not necessarily all) of the combinations of the subthing at t r ibute 
values, and (c) where the resulting states can be associated with the possibility 
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or nonpossibility of certain events and actions occurring: Tha t is, they are 
acceptable or are being generated. • 

Examples 11.2 and 11.3 illustrated applicability of the above criteria, (a) The 
doors formed one subsystem, the compartment lid another (Example 11.2). 
(b) And their composition into one state space made sense (Example 11.2), (c) 
especially when, as illustrated in Example 11.3, seen in the light of permissible 
operator actions. 

Techniques . There are three parts to the formalisation of finite state au
tomata: (1) first, identification of possible state spaces; (2) then their "thin
ning" ("pruning") to just the "right" number; and (3) finally, the full rep
resentation of the automation as a two-dimensional diagram followed by its 
"embedding" as a value in the FSA type is postulated. As for (2): In deter
mining the number of states to be modelled the deciding factor is whether the 
resulting state space provides adequate discrimination. Either it is sufficient 
(not too few states) or it is redundant (too many states) to make deterministic 
(i.e., unambiguous) decisions as to admissibility of events and actions. • 

Examples 11.2 and 11.3 also illustrated applicability of the sufficiency and 
redundancy of state spaces: Cases (i) and (iii) provided too many, respectively 
too few, states, whereas case (ii) provided the right number and kind of states 
when compared with the desired driver operations (events and actions). 

11.4 Finite State Machines 

We refer to the definition of state machines given in Sect. 11.2. In this section 
we will motivate the concept of finite state machines through two examples. 
Example 11.9 shows the specification of the controller for a variant of the 
liquid tank example discussed in Examples 4.3 and 4.5. Example 11.10 shows 
the specification of a parser: a device which accepts sentences in a regular 
language specified by some grammar — a set of numbered rules — and which 
yields grammar rule numbers as their derivations3 are being recognised. 

11.4 .1 F in i t e S t a t e M a c h i n e Contro l lers 

We will now illustrate the use of finite state machines as a means of specifying 
controllers for reactive systems.4 The example of this section does not even 
touch upon the proper techniques for designing controllers for safety-critical 

3A derivation from a rule, Ri, of a grammar, G (of rules Rl , R2, . . . , Rn), is a 
sentence of the language defined by G starting with rule Ri. 

We are not going to present definitive material on how to properly specify such 
controllers! The reactive, embedded systems in question are usually also highly prone 
to faults in the physical equipment they control, and may thus be safety critical. 
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systems. We refer to hints made and references given to proper literature in 
Vol. 3, Chap. 27, Sect. 27.7. The example is illustrative. It is meant to motivate 
the concept of finite state machines. It is not meant to give specific controller 
design techniques. 

in-valve 

maxH sensor a 
medH sensor R 
minH sensor v 

a 
out-valve 

Fig. 11.9. A liquid container sensor/actuator system 

Example 11.9 A Liquid Container System (IV): Control: In Example 4.3 
we illustrated a notion of states of a physical system. In Example 4.5 we 
illustrated a notion of system development through domain modelling, re
quirements specification and software design. In this example we will look at 
the notion of system development from another viewpoint— with respect to 
a system essentially similar to that of Examples 4.3-4.5. Thus we shall exem
plify the system development notions of domain, requirements, and design. 
We shall, as part of the system development (rather than just software devel
opment) notion exemplify the addition of (further) nonsoftware components 
to the liquid container system: A lock, and some sensors and actuators, are 
joined to the physical system in order to facilitate certain control require
ments. In Vol. 3, Chap. 25 we shall review the concept of systems engineering 
— in contrast to the more narrow concept of software engineering that these 
volumes primarily cover. 

Compare Fig. 11.9 to Fig. 4.1. Basically the two systems that are desig
nated by these diagrams have very much in common. 

Changes to the liquid tank system (as compared to Example 4.3) are: A 
controller can (actuator) lock and unlock the out valve. A locked out valve 
is closed and cannot be opened. When unlocked, anyone can (actuator) open 
and close the out valve. A controller will be "sent" one of up to six inputs 
(from appropriate sensors) when the height of liquid in the tank reaches one 
of three positions: a maximal height, Hi, "from above" (sic!) or "from below" 
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(dHi, uHi), a medium height, Me, "from above" or "from below" (dMe, uMe), 
and a minimum height, Lo, "from above" or (even) "from below" (dLo, uLo). 

We assume that the reader understands the colloquial terms "reaches", 
"from above", "from below" and "sent an input". We make no assumptions 
about any specific relationship between s, the inflow capacity through the in 
valve (actuator) and the outflow capacity, w, throi;gh the out valve. We also 
assume that the controller system can be started in any state and that the 
liquid content may evaporate or be replenished, say through precipitation, or 
the like. 

An example of a possible control requirements specification is: The liquid 
tank contents must be fully replenished as soon as they reach the Low me
tering point (i.e.: the in valve must be open[ed]). During initial parts of this 
replenishment no one must withdraw liquid from the tank (i.e., the out valve 
must be closed). The in and out valves are otherwise allowed to be open at 
the same times. The controller may be started in any of the states of the in 
and out valves: opened/closed and locked/unlocked (with unlocked out valve 
being either opened or closed.) The controller must anticipate that liquid may 
disappear (e.g., evaporate) from or seep into the tank irrespective of the states 
of the valves. The designer is allowed to interpret the requirements initial part 
as is seen fit. The designer may, for example, make use, or may not make use, 
of the Medium [liquid height] sensing position. The controller is not to send 
open commands to an already open in valve, or to send unlock commands to 
an already unlocked out valve. 

A design specification for a finite state machine showing a controller that 
satisfies these requirements is shown in Figure 11.10. 

We now comment on the finite state controller design of Figure 11.10. 
The design is one of several possible solutions to the (loose) requirements. 
That is, the design reflects a number of design decisions that were taken by 
the designer as a result of the requirements not being complete. That is, not 
formulated in such a way as to answer all questions that a designer might wish 
to pose. More specifically, the design specifies: Whenever the liquid content 
falls below the minimum height, Lo, lock the out valve, and open — if not 
already so — the in valve. Whenever the liquid content falls below a medium 
height, Me, open — if not already so — the in valve. Whenever the liquid 
content goes above a medium height, Me, unlock — if not already so — the out 
valve. Whenever the liquid content attempts to rise above Hi, the maximum 
height, unlock — if not already so — the out valve, and close the in valve, and 
so on. Thus we leave it to the reader to decipher the meaning of all the state 
transitions. Please observe that there might be transitions which would only 
be encountered in a system that is started in a state (of the valves) and with 
certain (seemingly abnormal) liquid contents. • 

We have seen an example of a finite state machine primarily designed to 
cope with, i.e., control a system in, a number of normal as well as seemingly 



11.4 Finite State Machines 303 

Uhi: Passing Hi from below 
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Fig. 11.10. A liquid container controller 

abnormal states. We will now show an example of a more straightforward use 
of finite state machines, as so-called parsers. 

11.4 .2 F in i t e S t a t e M a c h i n e Parsers 

A parser is the same as a syntax analyser. By a syntax we shall here mean 
an ordinary BNF grammar. 5 There is given a grammar, in the form of a set 
of distinctly numbered rules. Each rule left-hand side names a nonterminal 
which, through the full grammar, denotes a language: a set of sentences. A 
parser for the grammar (wrt. some identified nonterminal root) inputs strings 
in the alphabet of the grammar and issues (outputs) rule numbers if and 
whenever part of an otherwise acceptable input string is a sentence in the 
language of the left-hand side of the numbered rule. As is shown in the liter
ature [6,200,217,444], finite state machines can parse regular languages. We 
will show an example. 

E x a m p l e 11.10 A Finite State Parser: There is given a BNF grammar which 
defines a language of numerals. Tha t BNF grammar is known to generate (to 
denote) a regular language. Without presenting the algorithms, either for 
deciding upon regularity, or for constructing the finite state (machine) parser 
we present tha t parser (Fig. 11.11). 

5We assume that the reader is familiar with the notion of BNF grammars — and 
otherwise refer to Sects. 8.4-8.5. 

{uLo,dLo}.n 
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We comment on the parser: The finite state parser requires what is known 
as a "stop" character. It is here chosen as the blank (_). It helps the parser 
to decide when a complete input has been received. We say that the grammar 
is LR(1): can left-to-right parse its input with a look-ahead (Left to Right) 
of one. Rule 0. is — separately from the other rules — introduced to provide 
for that "stop", and for separating the "stop" concern from the definition of 
the language, £JV, of numerals. The states s, i, p , r and f stand for the start, 
integer, (fraction) point, rational numeral, respectively final states. The next 
state label pairs {ij,... , •>'*}. < r}>;...; rq > express: any of the inputs it (for 
I from j to k) result in the output sequence rp;...; rq of BNF rule identifiers 
(here numerals). Empty outputs are allowed. The error output designates an 
error message. An error state and its transitions complete the machine. Notice 
that we have not provided for input (next state) transitions beyond the final 
and the error states. The machine is supposed to have served its purpose when 
it reaches either of these states and can be taken out of service, i.e., can be 
freed! • 

BNF Grammar 

0. <L> ::=<N> 

1. <N> ::=<!> '"' '3 

2. <N> ::=<R> 

3. <l> ::=<D> 

4. <l> ::= <I><D> 

5. <R> ::=<!> . <l> 

6. <D> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

{0,1,2,3,4,5,6,7,8,9}.<6,4> 

state 

{0,1,2,3,4,5,6,7,8,9}.<6,4> 
{.,_}.<error> 

error state 

Fig. 11.11. A BNF grammar and its finite state parser 

11.4.3 Fini te Sta te Machine Formalisat ion 

We express: 

Definition. By a Unite state machine we generally understand a seven group
ing: 

type 
I, S, O 
FSM' = I-set x S-set x S x S x S x O-set x F 
F = (I x S) ^ (S x O*) 
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FSM = {| fsm:FSM' • wf_FSM(fsm) |} 
v a l u e 

wf_FSM: FSM' ->• B o o l 
wf_FSM(a,cr,i_s,f_s,e_s,o_s,z/>) = 

{i_s,f_s,e_s}CcrAV (i,s):(IxS) • (i,s) € d o m ip 
=^ i € i_sAs £ crAlet (s',ol)=?/>(i,s) in s' € t rAelems olCo_s e n d 

Notation: a is an input alphabet, a is a state set, i_s is an initial s tate,6 f_s 
is a final s tate , 7 e_s is an error s tate,8 o_s is an action set, and ip is an "input 
and current state to next state transition and action output function". A 
finite state machine is also, sometimes, called a finite state transducer. Given 
a prefix, pil, of any input il, an fsm delivers, when started in an appropriate 
state, a transduction, tha t is, a prefix output , pol. • 

11 .4 .4 F i n i t e S t a t e M a c h i n e R e a l i s a t i o n 

Generally we can associate actions with machine outputs . And we can gen
eralise the finite state automaton functions start and run to machines. Let us 
assume an action context and state configuration type r, and let action desig
nators o:0 denote functions tha t transform configurations into configurations: 

t y p e 
s, i, r 
o = r -> r 

v a l u e 

run: FSM 4 S 4 l * 4 r 4 r 
run(a,tT,i_s,f_s,e_s,o_s,z/>)(s)(il)7 = 

ifil=(> 
t h e n 7 
e lse 

le t i = h d il i n le t (s',ol) = ?/>(i,s) i n 
run(a, tT, i_s,f_s,e_s,o_s,^)(s ' ) ( t l il)(M(ol)7) e n d e n d e n d 

p r e s € a A e l e m s il C a A ... 

M-. o* ->• r -> r 
M(ol)7 = if ol=(> t h e n 7 e lse M( t l o l ) (M(hd 01)7) e n d 

M: O -> r ->• r 
M(o)7 = 0(7) 

6In this definition we specify just one initial state. The reader is encouraged to 
reflect on a set of initial states. 

7In this definition we specify just one final state. The reader is encouraged to 
reflect on a set of final states. 

8Usually there is no need for more than exactly one error state. But the reader 
is encouraged to reflect on the possibility of discriminating among error states. 
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Dispensing with the semantic (i.e., the meaning) function M, we can replace 
the output list of action descriptions with a list of indices into branches of a 
case construct: 

t y p e 
O = {l . .n} 
FSM' = I-set x S-set x S x S x S x O-set x # , 

#• = = mk_!?(f :F, t : (0 ^ "RSL-Text")), 
F = (I x S) ^ (S x O), etc. 

The use of double quotes ("•••") is metalinguistic. The idea, as shown below, 
is tha t the semantic M function (for meaning) above is replaced by a macro-
substitution M function (also M). Recall, from definition of W, tha t t in M 
below selects the map in ^ which when applied to indices yields action text 
to be interpreted. This is a rather informal explication. 

v a l u e 

run: FSM 4 S 4 l * 4 r 4 r 
run(a,(T,i_s,f_s,e_s,o_s,V>)(s) (H)(7) = 

ifil=(> 
t h e n 7 
e lse 

le t i = h d il i n le t (s',o) = (f(^))(i,s) i n 
le t 7 ' = "M( 'p s i ) " (o ) (7 ) in 

run(a, tT, i_s,f_s,e_s,o_s,^)(s ' ) ( t l il) ( T ' ) e n ( l e n ( l e n ( i e n ( i 
p r e s € a A e l e m s il C a A ... 

The next function mimics a microprogrammed hardware computer: 

M: <P -> N a t ->• T ->• T 
M(^ ) (o ) ( 7 ) = 

(case o of: 

1-> M((t(V0)(i)), 
2 -> M((t(^))(2)), 

n A- M((t^))(n)) 
e n d ) (7) 
p r e o € {l-.n} A d o m t(ip) = {l-.n} 

M ("RSL-Text") = ... 

n is the maximum number of different output symbols. Each output symbol 
corresponds to an action as prescribed by some RSL expression RSL-Expr ( i ) . 

11 .4 .5 F i n i t e S t a t e M a c h i n e s — A S u m m a r y 

We have introduced core concepts of finite state machines: their structure, 
their transducing power and ideas on realisation. Issues such as determinism 
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and minimality carry over from the concept of finite state automata. It remains 
to summarise principles and techniques for introducing and using finite state 
machines. 

Principles. The principle of finite state machines is based on the principle of 
finite state automata (Sect. 11.3.11). If criteria (a-c) of the principle of finite 
state automata apply and if, in addition, the event phenomenon or an event 
concept of a transition into a next state is associated with an action being 
performed by the system being (hence) understood as a finite state machine, 
then one may well choose such an abstraction. • 

Techniques. The run and M functions together with the techniques for mod
elling finite state automata apply when modelling Unite state machines. • 

11.5 Pushdown Stack Devices 

Next, we move from finite states to infinite states. That is, we move from finite state 
controllers to finite state controllers plus an infinite stack whose (stacked) items encode 
"return" states. That is the topic of this section. 

11.5.1 Pushdown Stack Automata and Machines 

We have exemplified the use of pushdown stack machines in the section on 
computational semantics (Sect. 3.3). Pushdown stack devices (whether just 
automata or machines) are indispensable in practical compiler technology (as 
well as in many other forms of software technology), and their theory has been 
thoroughly studied [6,200,217,444]. We shall not, in these volumes, cover this 
theory other than through recalling a few theorems. In this brief introduction 
to pushdown stack devices (such as automata and machines) we shall, how
ever, attempt to motivate their existence — their pragmatics and hence aid 
the reader in deploying such devices whenever appropriate, and in studying 
automata and formal languages seriously. In the introduction to this section 
on automata and machines we briefly touched upon the notion of infinite state 
automata and machines. Pushdown stacks is one proper subclass of infinite 
state devices. Basically, they consist of a finite state device connected to a 
potentially infinite depth stack. 

One way of explaining these pushdown stack devices is as follows: A finite 
state device can handle regular languages. If a language consists of recursively 
nested "almost" regular sentences — where the beginning ("[", "(", "{", "(") 
and ending (")", " } " , ")", respectively "]") of recursion, in the sentences, is 
marked with nonregular language input symbols ("[, ]", etc.) — then the fi
nite state device that recognises the regular sublanguage can be extended with 
transitions corresponding to the recursion markers ("[, ]", etc.) where the out
put actions consist in stacking (pushing), respectively unstacking (popping), 
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state symbols corresponding to the bracketing symbols, and where the next 
state transitions are to the initial state for the parser of the specific lan
guage "between" the bracketing symbols, respectively to the popped state 
(Fig. 11.12). 

Example 11.11 A Conceptual Pushdown Stack Device: The language L, de
fined in Fig. 11.12, is a "toy" language that is, just about "smallest" wrt. 
recursion. Notice that upon input of " ]" , the device resumes (dotted . . . tran
sition) in either state i or state p depending on the top stack state symbol. 
We have not bothered to show error input transitions and an error state. • 

<L> ::= <E> 

<E> ::= <E> + <E> 

<E> ::=[<E>] 

<E> ::=a 

L: {a, a+a a+a+...+a [a] [a+[a+[a]]],...} ^ ^ 

LEGEND: "[.s": stack, "].u": unstack -state" of push-down stack 
after input o f " [ a + [ [ a + [" 

Fig. 11.12. A "toy" language and pushdown stack device 

We have motivated the existence of pushdown stack devices in one way: by 
referring to the handling (e.g., recognition) of sentences of a recursive — 
properly "nested" — language. We could exemplify the use of finite state 
controlled stack devices without first introducing (properly defining, etc.) a 
proper language. That is, we could exemplify them without first conceiving 
of the problem as that of handling (recognising or parsing) such a language. 

Example 11.12 A "Last In/First Out" System: An example could be the 
"last in, first out" (LIFO) handling of processes by an operating system for a 
monoprocessor. Processes present themselves to the operating system through 
interrupts (\/). The process irc being served at the moment of interrupt is 
stacked. The new (the interrupting) process TJ-J is served. When a served pro
cess has to wait for a monoprocessor resource it replaces the top stacked 
process, which is then served (i.e., unstacked). When a served process termi
nates it is removed from the system and the top stacked process is then served 
(i.e., unstacked). See Fig. 11.13. Notice that an interrupt can only occur when 
a process is running. We leave it to the reader to formalise the language of 
"inputs" that correspond to the above, "casual" specification. • 

[a+[[a+[.. 
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/ w a i t i n g 
esourJ ( R u n n i n g ) »( Finished) V for Resouro 

.s: stack .u: unstack i 

.w: switch .r: remove unstack y.S 

t o p p3:Running 

The state of a mo no-processor 
operating system after: 

p1 registers 
p2 waits 

p4 registers 

p5 registers 

p2 registers 

p3 registers 

p4 waits 

p5 finishes 

p4:Waiting 

p1:Running 

p2:Waiting 

Fig. 11.13. A monoprocessor operating system LIFO job stack 

11.5 .2 Formal i sa t ion of P u s h d o w n Stack M a c h i n e s 

We shall only define a concept of pushdown stack machines — leaving it to 
the reader to define a concept of pushdown stack automata , should tha t be 
needed! We cover the case only of finite state controls for these stack devices. 

Def in i t ion . A Unite state pushdown stack machine is a seven grouping: 

t y p e 
I, S, O, M 
P D M ' = I-set x S-set x O-set x S x S x f x * 
P D M = {| pda:PDA' • wf_PDA(pda) |} 
\p = Symbol* 
Symbol = = I | S | O | M 
<P = (In x S x Sy) ^ (S x P P x Ou) 
In = = nil | input(i:I) 
Sy = = null | Symbol 
P P = = void | push(sy:Symbol) | pop 
Ou = = nix | ou tpu t (o :0) 

value 

wf_PDM: P D M ' -> B o o l 
wf_PDM(a,cr,w,i_s,f_s,z/>,^) = 

{i_s,f_s} C a A 

V ( input( i) ,s ,y) :(InxSxSy) • (input(i),s,y) £ d o m </> =^ 
i e a A s e o - A y e {I,S,0,M,null} A 

V (i ,s ,y):(InxSxSy) • (i,s,y) € d o m </> =^ 
let (s',,o) = </>(i,s,y) in s' € a A 
case o of output(o) —> o £ ui, —>true e n d e n d 

The nil, null and nix "markers" are not input, are not stack-top symbols, are 
not output symbols, and void is not a symbol to be pushed onto the stack. 
Instead, when encountered in a next state transition they designate tha t the 
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current input, or the current stack-top is ignored, or that no output symbol is 
issued, respectively that no symbol is pushed onto the stack. Appropriate well-
formedness conditions express (for example) that a next state transition either 
accepts an input (i.e., input is different from nil), or accepts the stack-top 
symbol (i.e., the Sy component is different from null), or both. You may assume 
that an accepted input or stack-top symbol is consumed (i.e., removed). Many 
more "formal" things may be said about pushdown machines — but we leave 
that to appropriate textbooks. • 

We leave it to the reader, as Exercise 11.4, to formalise the behaviour of a 
pushdown stack machine — along the lines of the run function for finite state 
machines (cf. Sect. 11.4.4). 

Definition. We also leave it to the reader, as Exercise 11.5, to define and for
malise, as above, the concept of a pushdown stack automaton — achieving the 
same kind of similarity between pushdown stack automata (Sects. 11.3.7 and 
11.3.9) and pushdown stack machines (Sect. 11.4.3) as there exists between 
finite state automata and finite state machines. • 

The idea is, of course, and as hinted at in Sect. 8.5, that pushdown stack 
automata recognise context-free languages as now recalled: 

Definition. By a context-free grammar we understand a BNF grammar. • 

BNF grammars were introduced in Sect. 8.4. 

Definition. By a context-free language we understand the denotation of a 
context-free grammar. • 

We refer to Sect. 8.5 for the story on context-free grammars, context-free 
languages and the pushdown stack automata that recognise whether a sen
tence (a string of terminal symbols) is a member of a context-free language 
as denoted by a context-free grammar. 

11.5.3 Pushdown Stack Device Summary 

We summarise this very brief survey of pushdown stack devices by stating a 
principle and referring to modelling techniques. 

Principles. The principle of pushdown stack devices builds on the principle 
of finite state automata and machines (Sects. 11.3.11 and 11.4.5), cf. selection 
criteria (a-c) and (d), respectively. If these criteria (either just (a-c) or all: 
(a-d)) apply, and if (e) in addition the phenomenon or concept being analysed 
exhibits, or can be understood as possessing, some form of recursion, i.e., of 
properly embedded ("nested") instances of the same phenomenon or concept, 
or similar phenomena or concepts, then one may well choose abstraction in 
the form of a pushdown stack device: as an automaton if criterion (d) does 
not apply, as a machine otherwise. • 



11.7 Exercises 311 

Techniques. The techniques for modelling pushdown stack devices extend 
those of modelling finite state automata and machines (Sects. 11.3.11 and 
11.4.5). The extension amounts to the modelling of recursion. Many examples 
already shown have illustrated such modelling. We refer to Examples 3.4 and 
3.5. 

11.6 Bibliographical Notes: Automata and Machines 

The first paper on automata (and neural nets) was that of McCulloch and 
Pitts [335] (1943).The next papers on automata — in the context of computers 
— seem to have been those of Arthur W. Burks and Hao Wang [65,66] (1957), 
Stephen Kleene [265] (1956), Marvin Minsky [360] (1956), and Michael O. 
Rabin and Dana Scott [413] (1959). 

The following information (relating to the above references) is from H.V. 
Mcintosh [336]: 

Automata theory itself has an ancient history, if one thinks of au
tomata as mechanisms capable of performing intricate movements; 
but if the actual apparatus is discarded in favor of the activity itself, 
such a theory more properly begins with the neurophysiological ab
stractions of McCulloch and Pitts. Their refinement into the theory 
of regular expressions by Kleene constitutes one of several viewpoints, 
which have gone on to include semigroups (or monoids) of mappings 
of a set into itself, or even the theory of grammars. 

A decisive textbook on the theoretical foundations of automata and formal 
languages was, and is John E. Hopcroft and Jeffrey D. Ullman's [217] (1979). 

In our treatment we have covered the so-called Mealy Machines. In con
trast a Moore Machine is a machine whose output depends only on the state, 
whereas a Mealy Machine [548] is a machine whose output depends on the 
input and the state. 

11.7 Exercises 

Exercise 11.1 Automobile Door and Lid State Automata. Please draw the 
varieties of two-dimensional figures of finite state automata that model the 
three cases (i-iii) outlined in Example 11.2 (and the singular only or multiple 
openings and closings of doors and the lid) of an automobile. 

Once you have drawn the finite state automata, answer the following ques
tion: Which is its contribution to the context of the automobile and which is 
its contribution to the state of the automobile? 
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Exercise 11.2 Automobile States. We refer to Example 11.2 and to Exer
cise 11.1. In addition to the open or closed state of doors and the trunk lid 
of an automobile, you are to come up with three or four other examples of 
physical components of the automobile whose state value may affect the "driv-
ability" of the car. You are then to draw a two-dimensional figure of the finite 
state automaton resulting from these considerations. For simplicity adopt case 
(iii) of Example 11.2 as a starting point. 

Once you have drawn the finite state automata, answer the following ques
tion: Which is its contribution to the contexts of an automobile and which is 
its contribution to the state of an automobile? 

Exercise 11.3 Finite State Automaton Realisation. We refer to Sects. 11.3.9 
and 11.3.10. You are to redefine, for the formal model of Sect. 11.3.10, the 
start and run functions, as per Sect. 11.3.9. 

Exercise 11.4 Pushdown Stack Machine Behaviour. We refer to Sect. 11.5.2's 
formalisation of pushdown stack machines, and to Sect. 11.4.4's formalisation 
of the behaviour of finite state machines. Please formalise a function that 
describes the behaviour of pushdown stack machines. 

Exercise 11.5 Pushdown Stack Automata. We refer to Sect. 11.5.2's formal
isation of pushdown stack machines and to Sects. 11.3.7, 11.3.9 and 11.4.3's 
formalisation of finite state automaton and machines. Please formalise a def
inition of pushdown stack automata. 



Part VI 

CONCURRENCY AND TEMPORALITY 

• In this part we shall cover material that allows us to model both qualitative 
and quantitative aspects of concurrency and temporality. 

• The terms concurrency, temporality, qualitative, and quantitative will be 
briefly explained here: 
• By concurrency we mean the occurrence of two or more behaviours 

(i.e., processes) at the same time, or, in other words, concurrently. 
• By temporality we mean to characterise something with respect to 

time, or emphasising the timewise, or absolute, or relative time be
haviour of a phenomenon. 

• By qualitative aspects of concurrency and temporality we mean to 
emphasise when two or more behaviours (i.e., processes) synchronise, 
or exchange messages (i.e., communicate), or when one event occurs 
before, or after, or at the same time as some other event, or that a 
behaviour (i.e., a process) is deadlocked (unable to perform any action), 
or live (i.e., ready to perform a next action). 

• By quantitative aspects of concurrency and temporality we mean to 
emphasise some absolute time of, or time interval between, the occur
rence of some events. 

• Our coverage occurs in chapters named rather differently than how we 
normally name chapters. Whereas we elsewhere in these volumes name 
chapters after the methodological principles and techniques they cover, 
we shall, in this part, name three chapters after the tools they cover: Petri 
nets, message and live sequence charts, and statecharts. 
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Petri Nets 

Christian Krog Madsen is chief author of this chapter [317]. 

• The prerequisites for studying this chapter are that you have an all-round 
awareness of abstract specification (principles and techniques) and that 
you have a more specific awareness of parallel programming, for example, 
using CSP — as illustrated in Vol. 1, Chap. 21 of this series of textbooks 
— and that you have wondered if there are other mechanisms than, say, 
RSL/CSP, for modelling concurrency. 

• The aims are to introduce three kinds of Petri net languages: condition 
events, place transitions, and coloured Petri nets, to show varieties of ex
amples illustrating these specification mechanisms, and to relate Petri nets 
to RSL: To define, more precisely, when a Petri net specification can be ex
pressed as an RSL specification — and vice versa! 

• The objective is to enable the reader to expand on the kind of phenomena 
and concepts that can be formally modelled, now also, or specifically, by 
Petri nets, alone, or in conjunction with, for example, RSL — as well as to 
encourage the reader to more seriously study more specialised textbooks 
on Petri nets. 

• The treatment is from systematic to semi-formal. 

The field of Petri nets is fascinating. They were first conceived in the very early 1960s 
[400] as a means for understanding, through modelling, issues of concurrency, notably in 
physics. Petri nets have become a standard technique and tool in software engineering. 

12.1 The Issues 

In this chapter we review several variants of Petri nets, ranging from the 
basic condition event nets to coloured Petri nets. Each of the discussed types 
of Petri nets is modelled formally in RSL. Petri nets were first described by 
Carl Adam Petri in his doctoral thesis [400] in 1962. 
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Petri nets are composed from graphical symbols designating states (usually 
shown as circles: Q), transitions (usually shown as rectangles: Q), and arrows 
(shown as arrows: —>), linking states to transitions and transitions to states: 
0 ~ ^ O - * 0 - Depending on the type of Petri net, states may be called places 
or conditions, while transitions are also referred to as events. We refer to 
Fig. 12.1 for a "picture" of these basic building blocks. 

ARROW 

? T 
STATE TRANSITION 

Fig. 12.1. Petri net symbols 

The description of condition event nets and place transition nets is based on 
Reisig [420]. The description of coloured Petri nets is based on Jensen [238]. 

In what follows we shall avail ourselves of a somewhat imprecise use of 
language. This is done for reasons for readability. When some abstract entity 
has a graphical representation we shall use the name of the abstract entity to 
also denote its graphical representation. For example, in a Petri net a state is 
usually represented graphically as a circle, while a transition is represented by 
a rectangle. Suppose an arrow extends from the perimeter of the circle to the 
border of the rectangle. Then, we shall say that the arrow links the state to 
the transition. Really, what we should say is that the arrow links the graphical 
representation of the state to the graphical representation of the transition. 

Three kinds of Petri nets will be covered in Sects. 12.2-12.4. 

12.2 Condition Event Nets (CENs) 

This section is structured as follows: First, in Sect. 12.2.1, we informally ex
plain the syntax and semantics of condition event nets (CENs). Then, in 
Sect. 12.2.2 we present some small, typical examples. In Sect. 12.2.3 we de
velop a model of the syntax and semantics of CENs, in RSL. 

12.2.1 Description 

Condition event nets (CEN) are the most basic type of Petri nets. A CEN 
consists of conditions (states), events (transitions) and links (arrows) from 
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conditions to events and from events to conditions. Syntactically conditions 
are represented as circles, while events are represented as oblong, i.e., "thin", 
rectangles. 

An event may have a set of preconditions, which are conditions — that 
is, may be predicated by the holding of some conditions. Similarly, an event 
may have a set of postconditions, which are also conditions — that is, may 
be predicated by the holding of some conditions. A precondition of an event 
is represented graphically by an arrow emanating from the precondition and 
ending at the event. Similarly, a postcondition is represented by an arrow 
emanating from the event and ending at the postcondition. 

A condition may be marked with a token. Graphically this is represented by 
drawing a disc, •, inside the condition. A marking of a CEN is an assignment 
of tokens to some of the conditions in the CEN. A condition that is marked 
with a token is said to be fulfilled. Conversely, a condition that is not marked is 
said to be unfulfilled. If all the preconditions of an event are fulfilled and all the 
postconditions of the event are unfulfilled, the event is said to be activated 
(enabled)-1 An event that is activated may occur. If an event occurs, all its 
preconditions become unfulfilled and all its postconditions become fulfilled. 
Figure 12.2 illustrates the occurrence of an event. 

Fig. 12.2. CEN event occurrence with markings before and after the occurrence 

12.2.2 Small CEN Examples 

The first three examples of this subsection are all edited from Reisig's delight
ful Elements of Distributed Algorithms: Modelling and Analysis with Petri 
Nets [421]. 

Example 12.1 Producer-Consumer System, A One Element Buffer: We refer 
to Fig. 12.3. The producer is shown as the leftmost five symbols: the leftmost 
transition, the two leftmost states and the two leftmost arrows. The consumer 
is shown as the rightmost five symbols: the rightmost transition, the two 

This form of enablement amounts to the Petri net being contact-free. One can 
also define a Petri net theory based on events that do not rely on the postcondition 
being fulfilled. 
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ready to 
deliver 

r^Sy-
| | produce 

ready to 

! empty 

h^Dnr 
; deliver t t 

! filled 

ready to 

H § ) ^ 
ready to 

PRODUCER ONE ELEMENT BUFFER CONSUMER 

Fig. 12.3. A producer-consumer Petri net — Example 12.1 

rightmost states and the two rightmost arrows. The interface between the 
producer and the consumer represents a one-element buffer. It is shown as 
the centre two states, two transitions and eight arrows! 

One scenario of behaviour could be: The producer-consumer system is in 
a "total" state where the producer is ready to produce data, where the one-
element buffer is empty, and where the consumer is ready to remove data. See 
the leftmost Petri net of Fig. 12.4. 

A next "total" state is therefore one in which the producer makes a state 
transition, that is, actually produces. See the leftmost Petri net of Fig. 12.4. 

Now the deliver transition is enabled, and a next total state sees one 
transition and two state changes: The produced "something" is delivered, the 
producer changes from being ready to deliver to being ready to produce and 
the buffer is no longer empty. 

We leave it to the reader to show a next firing. • 

Fig. 12.4. A sequence of two firings (three "total" states) — Example 12.1 
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buffer cell 
#1 empty 

ready to 
produce 

buffer cell 
#1 ful l 

buffer cell 
#2 empty 

buffer cell 
#3 fi l led 

ready to 
remove 

Fig. 12.5. Three element sequential producer-consumer buffer — Example 12.2 

Example 12.2 Producer-Consumer, Three Element Sequential Buffer Sys
tem: To make a sequential queue, i.e., a first-in, first-out buffer, we replicate 
the one-element buffer three times (Fig. 12.5). 

We leave it to the reader to "experiment" with initial states and "try out" 
some firing sequences. • 

Example 12.3 A Producer-Consumer, Parallel (Heap) Buffer System: In 
this example, the producer, when ready to deliver, may choose either of the 
two buffer cells, if both are empty. In that case, the choice is nondeterministic. 
If one is filled, the producer will choose the other (deterministically). If both 
are filled, and one of these buffer cells gets emptied before the other, then the 
producer will choose that which gets first emptied. The buffer is no longer 
sequential, i.e., a queue, but is a heap (of capacity two). One buffer cell may 
be filled before, but emptied after the other buffer cell. • 

ready to 
remove 

PRODUCER CONSUMER 

PARALLEL BUFFER 

Fig. 12.6. Nondeterministic parallel buffer producer-consumer — Example 12.3 
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The next example is a "classic". Many have tried their hand at expressing, in 
one notation or another, the problem of the "Dining Philosophers", a problem 
posed by Dijkstra [102]. See Reisig's delightful Elements of Distributed Algo
rithms: Modelling and Analysis with Petri Nets [421] for a thorough treatment 
of various Petri net solutions to the "Dining Philosophers" problem. 

Example 12.4 Dining Philosophers: Figure 12.7 illustrates a CEN with a 
marking. The net represents a simplified model of the classical Dining Philoso
phers problem. The problem is set, say, in a monastery where five philosophers 
spend their life engaged in thinking. Their thinking is only interrupted when 
they have to eat. The monastery has a circular dining table with a place for 
each of the philosophers. At the centre of the table is a bowl with an endless 
supply of spaghetti. On the table there is a plate for each place and a fork 
between each pair of adjacent plates. To eat, a philosopher must use the two 
forks adjacent to his plate. The problem is then to devise a strategy that will 
allow the philosophers to eat without risking starvation. 

In the CEN there are only four philosophers, each of which is represented 
by two conditions, labelled Pxt and Pxe, where x is the number of the philoso
pher. When Pxt is marked, philosopher x is thinking. When Pxe is marked, 
philosopher a: is eating. The final four conditions, Fx, represent the four forks. 
When Fx is marked, fork x is free. 

In order for philosopher x to begin eating, he must currently be thinking, 
and the two adjacent forks must be free. This is represented by an event with 
preconditions Pxt, Fx and F(x + 1 mod 4). While philosopher x is eating he 
cannot be thinking, and the two adjacent forks are not free. This is represented 
by letting the postcondition of the event be Pxe. 

When philosopher x stops eating, he places the two forks on the table and 
begins thinking. This is represented by an event with precondition Pxe and 
postconditions Pxt, Fx and F(x + 1 mod 4). • 

12.2.3 An RSL Model of Condition Event Nets 

Definition. By a condition event Petri net we shall understand a structure 
as formalised in this section. • 

Syntax of CENs and a Static Semantics 

We first formalise a syntax and then a static semantics for CENs. 

type 
CEN = {[ c : CEN' • wf_CEN(c) |} 
CEN' = Cond-set x Event-set x PreCond x PostCond x Marking 
Cond 
Event 
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Fig. 12.7. Four dining philosophers condition event net — Example 12.4 

PreCond = Event jft Cond-set 
PostCond = Event ^ Cond-set 
Marking = Cond jft Mark 
Mark = = empty | token 

value 
wf_CEN : CEN' ->• Bool 
wf_CEN(cs,es,precs,postcs,mark) = 

[ 1 ] dom precs = es A 
[2] dom postcs = es A 
[3] cs = |J {rng precs U rng postcs}A 
[4] (V e:Event • e € es => precs(e) U postcs(e)^{}) A 
[ 5 ] dom mark = cs 

Annotations 

• A condition event Petri net (CEN) 
consists of a set of conditions, a set 
of events, preconditions, postcon
ditions and a marking. 

• Only well-formed CENs will be 
considered. 

Conditions and events are further 
unspecified entities. 
Preconditions are mappings from 
events to sets of conditions. 
Postconditions are mappings from 
events to sets of conditions. 
A marking is an assignment of 
marks to conditions. 
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A mark is either empty or a token. 3 every condition is a pre- or post-
. „-,-,•,., . ,, r , .„ condition of some event, and 

A CEN is well-formed if: , ^ . ^ . ' 
4 every event has at least one pre-

1-2 The set of events is identi- or postcondition, and 
cal to the definition sets of the 5 the marking includes all condi-
maps of pre- and postcondi- tions. 
tions, and • 

A D y n a m i c S e m a n t i c s 

Next, we describe the dynamic aspects of CENs, namely what it means for a 
condition to be fulfilled or unfulfilled and what it means for an event to be 
activated and to occur. 

value 

fulfilled : Cond x CEN 4 B o o l 
fulfilled(cond,(cs,es,precs,postcs,mark)) = mark(cond)=token 
pre cond £ cs 

unfulfilled : Cond x CEN 4 B o o l 
unfulfilled(cond,(cs,es,precs,postcs,mark)) = mark(cond)=empty 
pre cond £ cs 

activated : Event x CEN 4 B o o l 
activated(evt,cen) = 

let (cs,es,precs,postcs,mark) = cen in 
(V c : Cond • c £ precs(evt) => fulfilled(c,cen)) A 
(V c : Cond • c £ postcs(evt) => unfulfilled(c,cen)) 

e n d 
pre let (cs,es,precs,postcs,mark) = cen in evt £ es e n d 

occur : Event x CEN 4 CEN 
occur (evt,cen) = 

let (cs,es,precs,postcs,mark) = cen in 
(cs,es,precs,postcs, 
mark f [c H->- empty | c : Cond • c £ precs(evt) ] f 
[c !->• token | c : Cond • c £ postcs(evt) ]) 

e n d 
pre activated(evt,cen) 

Annotations • A condition is unfulfilled if the 
marking assigns empty to tha t 

• A condition is fulfilled in a CEN condition. 
if the marking assigns a token to 
tha t condition. 
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• An event is activated if all its pre- preconditions of the event are un-
conditions are fulfilled and all its fulfilled and all postconditions of 
postconditions are unfulfilled. the event are fulfilled. • 

• The occurrence of an activated 
event gives a new CEN where all 

12.3 Place Transition Nets (PTNs) 

This section is structured as follows: First, in Sect. 12.3.1, we explain, infor
mally, the syntax and semantics of place transition nets (PTNs). Then, in 
Sect. 12.3.2 we present some small, typical examples. In Sect. 12.3.3 we de
velop a model of the syntax and semantics of PTNs, in RSL. Section 12.3.4 
brings in further examples. 

12.3.1 Description 

Fig. 12.8. Transition in a place transition net, markings before and after occurrence 

We start by showing a place transition net, then we explain place transition 
nets more systematically. A simple extension to the condition event nets is to 
allow a marking to assign more than one token to a condition. The extended 
nets are known as place transition nets (PTNs). Conditions are now called 
places, and events are called transitions. In a PTN the places are labelled with 
a positive integer called the capacity. This indicates the maximum number of 
tokens that may be assigned to that place. The capacity may be omitted, 
which is interpreted as unlimited capacity. Additionally, arrows are labelled 
with a positive integer called the weight. If an arrow from a place, P, to a 
transition, T, is labelled with x, this signifies that for T to be activated, there 
must be at least x tokens at P, and when T occurs, x tokens will be removed 
from P. If an arrow from a transition, T, to a place, P, is labelled with x, 
this signifies that for T to be activated, x added to the number of tokens at P 
must be at most equal to the capacity of P, and if T occurs, x tokens will be 
added to the marking of P. If an arrow is not labelled it is to be understood as 
an implicit labelling with 1. Figure 12.8 shows the occurrence of a transition 
in a PTN. 
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12.3.2 Small P T N Examples 

The two examples of this section are edited from Reisig's two books: A Primer 
in Petri Net Design [420] and Petri Nets: An Introduction [419]. 

Example 12.5 System of Two Producers, a Capacity 10 Buffer, and Three 
Consumers: The PTN of Fig. 12.9 shows a system that can be understood as 
a two-producer, three-consumer and an intermediate maximum 10 production 
unit buffer system. Compare the present PTN with the CEN of Example 12.2. 
In the present system the capacity limit removes the need for the place (i.e., 
state) distinction between empty and filled buffers. • 

produce 

consumer 
receipt-
enabled 

consume 

Fig. 12.9. Two producer, buffer capacity 10 and three consumer system 

Example 12.6 Critical Resource Sharing: Figure 12.10 shows an example 
PTN modelling four processes that access a common critical resource. One 
process writes to the resource, while the other three processes read from the 
resource. To ensure data integrity, mutual exclusion must be enforced between 
the writing process and the reading processes. The protocol for mutual exclu
sion requires a reading process to claim a key before it may read, while the 
writing process is required to claim three keys before it may write. A process 
that cannot get the required number of keys must wait until more keys become 
available. The place Keys holds a token for each key that is unused. When 
a process finishes reading or writing it returns the claimed keys to the place 
Keys and proceeds to do some processing that does not access the critical 
resource. • 

12.3.3 An RSL Model of Place Transition Nets 

Definition. By a place transition Petri net we shall understand a structure 
as formalised in this section. • 
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Fig . 1 2 . 1 0 . Critical resource sharing 

Syntax of PTNs and a Static Semantics 

We first formalise a syntax and then a static semantics for PTNs (with finite 
capacity places). 

type 
PTN = {| ptn:PTN' • wf_PTN(ptn) |} 
PTN' = (Place ^ Nat) x Trans-set x Preset x Postset x Marking 
Place 
Trans 
Preset = Trans ^ (Place x Nat)-set 
Postset = Trans jfr (Place x Nat)-set 
Marking = Place ^ Nat 

value 
wf_PTN : PTN' ->• Bool 
wf_PTN(ps, ts, pres, posts, mark) = 

[ 1 ] dom pres = ts A 
[2] dom posts = ts A 
[3] {p | p:Place • 

3 pns: (PlacexNat)-set, n:Nat • 
(p,n) £ pnsApns £ rng pres U rng posts} = dom ps A 

[4] (V t:Trans • t £ ts => pres(t) U posts(t) ^ {}) A 
[5] (Vt:Trans« 

~(3 nl , n2 : Nat, p : Place • 
nl / n2 A p £ dom ps A 
({(p,nl), (p,n2)} C pres(t) V 
{(p,nl), (p,n2)} C posts(t)))) A 

[ 6 ] dom mark = dom ps A 
[7] (V p:Place • p £ dom ps =^ mark(p)<ps(p)) 
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Annotations 

• A place transition net consists of 
a set of places with associated ca
pacities, a set of transitions, a pre
set, a postset and a marking. 

• Only well-formed PTNs will be 
considered. 

• Places and transitions are further 
unspecified entities. 

• Presets are a mapping from transi
tions to sets of pairs of places and 
weights. 

• Postsets are a mapping from tran
sitions to sets of pairs of places 
and weights. 

• A marking is a mapping of places 
to marks. 

• A mark is a nonnegative integer. 
• A PTN is well-formed if: 

1-2 every transition in the set of 
transitions is included in the 
domain of the maps of presets 
and postsets, and 

3 every place is in the pre- or post-
set of some transition, and 

4 every transition has a non
empty preset or postset, and 

5 no transition can have a pre
set or postset that includes 
the same place more than once 
with different weights, and 

6 the marking covers all places, 
and 

7 for every place the number of to
kens assigned to it in the mark
ing must be at most equal to 
the capacity of the place. 

A Dynamic Semantics 

We formalise the dynamic aspects of PTN, namely what it means for a tran
sition to be activated and for a transition to occur. 

value 
activated: Trans x PTN ^ Bool 
activated (t,ptn) = 

let (ps,ts,pres,posts,mark) = ptn in 
(V p:Place,n:Nat • (p,n) e pres(t) => mark(p)>n) A 
(V p:Place,n:Nat • (p,n) e posts(t) =^ mark(p)+n<ps(p)) 

end 
pre let (ps,ts,pres,posts,mark) = ptn in t £ ts end 

occur: Trans x PTN ^ PTN 
occur(t,ptn) = 

let (ps,ts,pres,posts,mark) = ptn in 
(ps,ts,pres,posts, 

mark f 
[p i->- mark(p)— n | p:Place,n:Nat • (p,n) e pres(t)] f 
[p i->- mark(p)+n | p:Place,n:Nat • (p,n) e posts(t)]) 

end 
pre activated(t,ptn) 

Note, unlike for CENs, there is no notion of a place being fulfilled or unfulfilled. 
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Annotations 

• A transition is activated: 
• if for every place in its preset 

there are at least as many to
kens as the weight of the cor
responding arrow, and 

• if for every place in its postset 
the number of tokens at that 
place added to the weight of 
the corresponding arrow is at 
most equal to the capacity of 
the place. 

The occurrence of an activated 
transition produces a new mark
ing 
• in which the number of tokens 

at each of the places in the pre
set is reduced by the weight of 
the corresponding arrow, and 

• in which the number of to
kens at each of the places in 
the postset is increased by the 
weight of the corresponding ar
row. 

Example 12.7 PTN for Two-Producer/Three-Consumer System: We refer 
to Example 12.5. We illustrate, in this example, the RSL value of type PTN 
corresponding to the Two-Producer, Three-Consumer example Petri net in 
Fig. 12.9. 

scheme TwoProducerThreeConsumer = 
extend PlaceTransitionNet with 
class 

value 
pd, pp, b, cr, cc : Place, 
produce, deliver, receive, consume : Trans, 
ptn : PTN = ([pd H> 2, pp ^ 2, b H> 10, cr H> 3, cc H> 3], 

{produce, deliver, receive, consume}, 
[produce t-» { (pp, 1) }, 

deliver t-> { (pd, 1) }, 
receive i-» { (b, 1), (cr, 1) }, 
consume t-» { (cc, 1) } ], 

[produce i-+ { (pd, 1) }, 
deliver H-» { (pp, 1), (b, 1) }, 
receive t-» { (cc, 1) }, 
consume i-> { (cr, 1) } ], 

[pd H> 2, pp H 0, b H> 3, cc i-* 2, cr H-» 1 ]) end 

Here we first define the five places, pd represents producer delivery-enabled, 
pp represents producer production-enabled, b represents buffer, cr represents 
consumer receipt-enabled and, finally, cc represents consumer consum.ption-
enabled. Next, we define the four transitions using the names from the Petri 
net. Finally, we can define the value ptn representing the Petri net in Fig. 12.9. 
Notice that we define the capacity of the places pd and pp to two even though 
they do not have a capacity in the figure. This capacity is chosen such that 
it never becomes a constraint, since the initial marking limits the number of 
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tokens in pd and pp to two. Similarly, the two places cr and cc have a capacity 
of three. • 

12.3.4 Railway Domain Petri Net Examples 

Acknowledgement 

Martin Penicka, Czech Technical University, Prague, kindly provided the 
example of this subsection from his PhD Thesis [398]. 

We now bring in an example that can be linked to the railway net examples 
of either Chap. 2 (Examples 2.5-2.9) or Chap. 10 (Example 10.22). 

Example 12.8 Railway System Petri Nets: The example is large — so we 
dispense of shading. We will present a shaded paragraph to signal the end of 
this example. • 

Route Descriptions 

The subjects of this example are interlocking: the setting up of proper routes 
from station approach ("line departure") signals to platform tracks, and from 
these to the lines connecting to other stations. We shall therefore focus on 
constructing, for all such "interesting" routes of a station, a Petri net that 
models a proper interlocking control scheme. 

Routes are described in terms of units, switches and signals. In Sect. 2.3.3 
informal statements 22 and 23 (and like-numbered formula) defined routes 
and open routes. Routes are sequences of pairs of units and paths, such that 
the path of a unit/path pair is a possible path of some state of the unit, and 
such that "neighbouring" connectors are identical. There can be many such 
routes in a station. We are interested only in routes which start at an approach 
signal and end either at the track or on the line. In the example station of 
Fig. 12.11 there are 16 such routes. 

iV4 Sis 2 » "•• u" 

Uz Xi . U 4 ^ ^ < UT 1 fc Uio \ U n t Y. 
SigllT ^ S C i SigRl S i g u r / p 2 p4 ^SigR 

Ui X2 . / u , 4 Ue 2 . _ , £ 
S\g2Lr p 3 ^S igR2 SigL2^ 

Fig. 12.11. Example station 
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Interlocking Tables 

Depending on the local or national traditions, there are rules and regulations 
which stipulate how signals and switches are to be set (and reset) in order to 
facilitate the safe movement of trains within a station. One can formalise such 
rules (see, for example, [264]). From a mechanisation of such a formalisation 
and from the specific topology of a station layout, for example that abstracted 
in Fig. 12.11, one can then construct an interlocking table, such as the one 
given in Table 12.1. In that table S and T stand for straight and turn (position 
of switch), and R and G for red and green (colour of signal). 

Each row in an interlocking table corresponds to a proper route. The table 
expresses for each interesting route the requirements for switches (points and 
switchable crossovers) and the requirements for signal states. The table also 
lists all units which compose the route. If there are no requirements on the 
setting of switch or signal, it is marked with dash (-). We do not show how 
to formally construct such a table, but we refer to [164,165,264,471]. 

Table 12.1. Interlocking table for example station (by S* is meant Sigj) 

Requirements —* 

Routes 4. 

1- s l t - i 
2. S1L - 3 

3. s2L - i 

4. s2L - 2 

5. 52L - 3 

6. SL1 -Y 

7- sL2 - Y 

8- sL3 - Y 

9. s H - i 
10. S f l -2 
11. S H - 3 

12. s m - xj 

1<J- S B 1 - x 2 

14. sH 2 - x 2 

lO- SH3 - x l 

16. sR3 - x 2 

Switches 

acl PI PS Pi Pe 

s - s - -

T - S - -

T - T 

- S 

S - T - -

S - S S 

T - S S 

T T 

S - S S 

T - S S 

T T 

S - S - -

T - T 

- S 

T - S - -

S - T - -

Signals 

S 1 L S 2 L S L 1 s £ 2 s £ 3 S H S H 1 S H 2 S H 3 

G - - - - - R - R 

G - - - - - R - R 

R G - R R R 

G - - - - - R 

R G - - - - R R R 

G R R R -

R G R R -

R R G R -

R R R G -

R R R G -

R R R G -

R - - - - - G - R 

R R - - - - G R R 

R - - - - - G -

R - - - - - R - G 

R R - - - - R R G 

Units 

" 2 , 2 , 4 , 7 

" 2 , 2 , 5 , 8 

" 1 , 3 , 4 , 7 

" 1 , 3 , 6 

" 1 , 3 , 4 , 5 , 8 

" 1 0 , 1 3 , 1 4 

" 9 , 1 0 , 1 3 , 1 4 

" 1 1 , 1 3 , 1 4 

" 1 3 , 1 0 , 7 

" 1 3 , 1 0 , 9 , 6 

" 1 3 , 1 0 , 1 1 , 8 

" 4 , 2 

" 4 , 3 , 1 

" 3 , 1 

" 5 , 4 , 2 

" 5 , 4 , 3 , 1 

We can now start to build up Petri nets for a partial railway net from four 
subparts: Petri net for a unit, for a switch (i.e., point or switchable crossover), 
for a signal, and for a route. Please observe that all units have a basic Petri 
net. Additionally, switches have additional basic Petri nets — as we shall soon 
see. And, finally, although routes are basically sequences of units, routes also 
have their separate basic Petri nets. The full Petri net for a route is then a 
composition of all its unit, all its switch, and all its signal Petri nets — where 
the composition is implied by the interlocking table. 
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Petr i N e t for U n i t s 

A unit can be in either of two basic states. It is either free (a new route can 
be opened through the unit) or it is blocked, i.e., there is an already opened 
route through the unit. 

The Petri net for units is shown in Fig. 12.12a. Two places represent the 
two states: free and blocked. The initial marking consists of a token at the 
free place. 

One can notice tha t the Petri net for a unit in Fig. 12.12a will interminably 
circulate ("oscillate"). But this is not the final Petri net for a route. It is 
just one component. Later on, extra arcs will be added tha t will prevent 
"oscillations". 

Petr i N e t for S w i t c h e s 

A switch can be either a point or switchable crossover. A typical switch has 
two states: straight (S) and tu rn (T). A switch may be required to be set in 
a certain state in two ways: as a direct part of a route, or because it must be 
set for side protection (to avoid trains touching each other). In both cases, 
if there is an open route through switches, these switches must never change 
their states. 

(a) (b) 

1H<J1 ++ i. Straight 

Turn 

n_ fc j n 1 
Fig. 12.12. Petri nets for (a) units, (b) switches, (c) signals, and (d) routes 

Thus the Petri net for a switch has two places representing the two mentioned 
states: straight and turn. 

The initial marking consists of n tokens at the straight place, where n is the 
total number of routes which require settings of tha t switch. This number can 
be found from the interlocking table (here Table 12.1) as a count of required 
setting in the switch column. For the example station in Fig. 12.11, one finds 
tha t for switchable crossover sc l , n is 8; for point p2, n is 4 ( that is, 4 routes 
require settings of switch p2); etc. The switch can change state if and only if 
all n tokens are available. Later, when the whole Petri net will be constructed, 
we shall see tha t open routes through the switch cause the decrease of switch 
token numbers. This will help ensure tha t the switch can only change its state 
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when no route — tha t requires the actual state — is active. But the switch 
can still be part of several routes, as long as these routes require the switch 
to be in the same state. These requirements are captured by the Petri net in 
Fig. 12.12b. 

Petr i N e t for S ignals 

A signal has two states: hold and proceed2 . The Petri net for a signal has two 
places representing the two settings hold and proceed. 

The initial marking consists of m tokens at the 'Hold' place, where m is 
the number of routes which require setting of tha t signal. With Table 12.1, 
for the example station in Fig. 12.11, one finds tha t for for signal Sig1L, m 
is 8, for signal Sig2L, n 1S 6, etc. The signal can only change setting if all m 
tokens are available. This will ensure tha t the signal can only change its state 
when no route tha t requires the actual state is active, but the signal can still 
be part of several routes, as long as these routes require the signal to be in the 
same state. These requirements are captured by the Petri net in Fig. 12.12c. 

Petr i N e t for R o u t e s 

From text item 23 (Example 2.5, and formula 23 (Example 2.6)) of Sect. 2.3.3 
you can find tha t routes can be open or closed. A route can be open only when 
all its requirements on switch settings, signal settings and units occupancies 
are fulfilled. 

The Petri net for a route also has two places representing the two states: 
Open and Closed. The initial marking consists of one token at the 'Closed' 
place. The basic Petri net for a route is shown in Figure 12.12d. This corre
sponds to the route tha t has no requirements on switches, signals or units. 

C o n s t r u c t i o n of Pe tr i N e t for Inter locking Tables 

We will now indicate how to construct a Petri net, for the interlocking table 
of a station, from the four components already described (unit, switch, signal 
and route). The Petri net will be made by adding extra pairs of arcs for each 
requirement between these components. The example station of Fig. 12.11 
will be composed by these components: 16 Petri nets for routes, 14 Petri nets 
for units, 5 Petri nets for switches and 9 Petri nets for signals. The station 
shown has these numbers. 

2This is a simplistic view — a real signal is able to indicate the speed with which 
it may be passed. 
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Routes and Units 

A route can be open when all units that the route is composed of are free (not 
occupied by trains or blocked by another route in the station). To satisfy this 
requirement, a pair of arcs needs to be added between each route Petri net 
and all unit Petri nets that make up the route (Fig. 12.13A). 

i i i 

(A) ' ' • (B) V J ^ (C) / ' ^ 

Fig. 12.13. Arc additions for route (A) units, (B) switches and (C) signals 

Routes and Switches 

For each switch requirement it must be ensured that the switch cannot change 
state while the route through that switch is open. To satisfy this requirement, 
a pair of arcs has to be added between each route Petri net and all switch 
Petri nets of that route. The particular insertion of arcs depends on the re
quired state of the switch (as given in the interlocking table). This insertion 
is captured in the Petri net of Fig. 12.13B. Note that it is assumed that the 
route requires the switch to be set to the 'Turn' state. The case for 'Straight' 
follows accordingly. 

Routes and Signals 

The signal can be in the 'Proceed' state if and only if the route that starts 
at the signal is open. How to add a pair of arcs for a signal is illustrated in 
Fig. 12.13C. This is clearly the precondition for opening the route, which is 
the same as the precondition for adding switches. 

Summary 

The full Petri net for the example railway station and interlocking table thus 
contains 16 Petri nets for routes, 14 Petri nets for units, 5 Petri nets for 
switches, and 9 Petri nets for signals. The interlocking table then dictates very 
many of the arcs to be inserted — so many that readable diagrams become 
impossible. Clearly then, this is a case for tools. These tools can create the 
complete control program, based on Petri nets, for a station, and can check 
for liveness, deadlock, etc. 
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This is the end of Example 12.8. • 

Where the railway net examples of either Chap. 2 (Examples 2.5-2.9) or 
Chap. 10 (Example 10.22) expressed basic domain properties of static and 
dynamic rail nets, Example 12.8 (above) expresses basic requirements prop
erties of what a monitoring and control (computing) system must do. 

We have thus, in an engineering way, shown how to relate formal textual , in 
this case R.SL descriptions, to likewise formal, but now diagrammatic prescrip
tions. A formal, scientifically well-founded relationship between the Petri net 
prescription and the R.SL description requires more research before it can be 
soundly presented. This kind of research, of "integrating formal techniques", 
is currently a rich field of study.3 

12.4 Coloured Petri Nets (CPNs) 

This section is structured as follows: First, in Sect. 12.4.1 we explain, in
formally, the syntax and semantics of coloured Petri nets (CPNs). Then, in 
Sect. 12.4.2 we present some typical examples. In Sect. 12.4.3 we develop a 
model of the syntax and semantics of CPNs, in RSL. In Sect. 12.4.4 we consider 
timed CPNs. 

12.4 .1 D e s c r i p t i o n 

In the Petri net variants described above, tokens are indistinguishable, i.e., 
there is no way to tell one token apar t from another. In this section we discuss 
coloured Petri nets (CPNs), which are an extension of PTNs: A type-value 
system for tokens is now introduced. The term coloured refers to the fact tha t 
tokens are now distinguishable in tha t they have a value, called their colour, 
which is of a particular type, called their colour set. A colour set may define 
both simple and composite values. In a CPN each place has an associated 
colour set specifying the colour set of tokens at tha t place. The marking of 
a place is a multiset4 over the colour set of the place. A transition may have 
a sequence of guard expressions which evaluate to a Boolean value. Arrows 
from places to transitions and from transitions to places are called arcs. Arcs 
are inscribed with expressions tha t evaluate to a multiset over the colour set 
associated with the place from which they emanate or terminate. 

3— under the name: IFM: Integrating Formal Methods 
A multiset is an unordered collection of values, in which the same value may 

appear more than once. Multisets are also known as bags. The notation l , a + 2 ,6+4 ,c 
denotes a multiset containing one a value, two b values and four c values. If the 
number and reverse prime symbol are omitted, it is interpreted as a single value, 
e.g., a + 2sb is equivalent to lvo + 2sb. 
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Expressions may contain variables. A variable is typed with a colour set 
and may be bound to any value in that colour set. A binding is an assignment 
of colours to variables. A binding element is a pair (t, b) of a transition, t, and 
a binding, b, where b assigns a colour to each variable that appears in an arc 
expression of an arc emanating from or terminating at t. For a given binding 
a transition is enabled if the conjunction of its guard expressions evaluates to 
true, and for each arc terminating at the transition the multiset value of the 
arc expression may be removed from the place at which the arc emanates. A 
transition that is enabled under a given binding may occur. In that case tokens 
are removed from its input places and tokens are added to its output places. 
The colours of the tokens are determined by the value of the corresponding 
arc expressions. 

Complex CPNs may be simplified by splitting them into several smaller 
nets organised in a hierarchy. The simple nets are called pages. A page may 
have several instances that differ only in that each has its own marking, which 
is independent of the markings of the other instances of the page. 

A transition in a net may be elaborated 3JS cl pel ge, such that the page 
specifies the detailed behaviour of the transition. In this case the transition 
is labelled with the letters HS. It is important to realise that a hierarchi
cal net can always be converted to a nonhierarchical net specifying the same 
behaviour. Therefore, allowing hierarchical nets does not add to the express-
ibility of CPNs, but it may improve readability. 

The definition of CPNs does not mandate a particular language for dec
larations. The most often used language for specifying colours, colour sets, 
functions and expressions is known as CPN ML. This language is an exten
sion of Standard ML [359]. Here, we briefly list the additional facilities and 
assume the reader is familiar with Standard ML. Consult [341] for a thorough 
reference to CPN ML. 

Table 12.2 lists the facilities available in CPN ML for declaring colour sets. 
A range of built-in operators are available for the simple colour sets derived 
from bool, int, real and string. These operators include logical operators for 
bool, arithmetic operators for int and real, standard trigonometric, logarithmic 
and exponential functions for real and concatenation, substring and conversion 
functions for string. Multisets play an important role in CPNs, so CPN ML 
has operators for constructing, manipulating and comparing multisets over 
colour sets. Multisets are constructed using the back-quote operator (v) and 
the multiset union operator (+). The value empty denotes the empty multiset. 

CPN ML supports typed variables, which are local to a transition. Refer
ence variables with global-, page- or instance-level scope are also supported. 
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Table 12.2. CPN ML colour set declarations 
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The only effect of this colour set is to rename false to no and true to yes. 
Standard ML Boolean operators such as not, andalso and orelse may be applied 
to no and yes just as to false and true. 
There is no proper RSL equivalent for this colour set. A value definition is 
probably the closest match: t y p e Ml = = list2 | list3 | list4 | list5 | list6 value 
M = [ 2 >->• Iist2, 3 >->• Iist3, 4 >->• list4, 5 >->• list5, 6 i-> list6 ] 
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12.4.2 A CPN Example 

Example 12.9 Dining Philosophers Revisited: CPN: We illustrate CPN by 
revisiting the Dining Philosophers example (Example 12.4). This time we have 
five dining philosophers. The CPN diagram is shown in Fig. 12.14. Because 
of the expressibility of CPN we need only three places compared with the 12 
conditions in the CEN model. Before, we had a condition for each fork. Now, 
there is only one place which can be marked with a colour to indicate which 
of the forks are free. Similarly, the two conditions for each philosopher in the 
first example are translated into two shared places which are marked with a 
colour to indicate which philosophers are eating and which are thinking. The 
function S(x) is introduced to provide the mapping from a philosopher to the 
forks he uses. • 

F 

color P = with p1 | p2 | p31 p41 p5; 
color F = with f 1 | f2 | f3 | f41 f5; 
varx: P; 
fun S(x) = case x of 

p1 => Tf1 + 1'f2 
|p2=>1'f2 + 1'f3 
|p3=>1'f3 + 1'f4 
|p4=>1'f4 + 1'f5 
|p5=>1'f5 + 1'f1 

net: dining philosophers 

Comment on Fig. 12.14'-

The underlined characters £ and P. designate initial markings. P_ means 
that place Think is initially marked with all values of its colour set, i.e., 
{PI-,P2,P3,PA,P5,}- Correspondingly for Free. 

12.4.3 An RSL Model of Coloured Petri Nets 

Definition. By a coloured Petri net we shall understand a structure as for
malised in this section. • 

Syntax of CPNs and a Static Semantics 

We first formalise a syntax and then a static semantics for CPNs. 

Fig. 12.14. Coloured Petri 
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The net inscriptions (i.e., colour set declarations, colour definitions, arc 
expressions and transition guards) are abstracted as sorts to avoid having to 
define the full syntax of CPN ML or some other inscription language. 

Syntax and a Static Semantics 

type 
CPN = {| cpn:CPN' • wf_CPN(cpn) |} 
CPN' = ColDcls x Guard x Preset x Postset x Marking 
fi = i7-infset 
S 
ColDcls = Place ^ fi 
Guard = Trans ^ Pred* 
Place 
Trans 
Preset = Trans ^ ((Place x Exp) ^ N a t ) 
Postset = Trans ^ ((Place x Exp) ^ N a t ) 
Marking = Place ^ (S ^ Nat) 
Binding = Var -^ (S ^ Nat) 
Var 
Exp 
Pred 

value 
wf_CPN: CPN' ->• Bool 
wf_CPN(cf,g,pres,posts,mark) = 

dom pres = dom g A 
dom posts = dom g A 
{p|p:Place • 

3 e: Exp ,t: Trans • 
(p,e) £ dom pres(t) U dom posts(t)} = dom cf A 

(V t:Trans«dom pres(t)^{}Adom posts(t)^{}) A 
dom mark = dom cf A 
(V p:Place« 

p € dom cf =^ 
(V c:S • c £ dom mark(p) => typeof(c) = cf(p))) A 

(V t: Trans • 
t € dom pres U dom posts =^ 

(V p:Place,e:Exp • 
(p,e) £ dom pres(t) U dom posts(t) 

=> typeof(e) = cf(p))) 
(V t:Trans, p:Place, e,e':Exp • 

({(p,e),(p,e')}Cpres(t)V 
{(p,e),(p,e')}Cposts(t) ! =e')) 
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38 

39 

40 
41 
42 

43 

44 
45 

46 
47 
48 

49 
50 
51 

eval : Exp x Binding ^> S -^ N a t 

evalP : P r e d x Binding ^> B o o l 

evalPl : Pred*x Binding 4̂- B o o l 
evalPl(pl,b) = eva lP(hd pl,b) A evalPl(t l pl,b) 
p r e d o m b = obs_var(pl) 

typeof: ( E x p | £ ) ->• Q 

typm: (17-^ N a t ) ->• B o o l 
typm(ms) = V c,c':7i7«{c, c ' } C d o m ms =>• typeof(c)=typeof(c') 

typeof: (S ^ N a t ) ^ £ 
typeof(ms) = le t c:i7«c € d o m ms in typeof(c) e n d 
p r e typm(ms) 

obs_var: (Exp|Pred) —• Var-set 
obs_var: Pred* —> Var-set 
obs_var(pl) = U{obs_var(p) |p:Pred«p € e l e m s pi} 

Annotations 

(2-3) A CPN consists of a colouring 
declaration, a set of guards, presets, 
postsets and a marking. 
(4) A colour set (Q) is a possibly in
finite set of colours. 
(5) A colour (E) is a further unde
fined entity. 
(6) The colouring declaration maps 
places to colour sets. 
(7) For each transition there is a 
guard, which is a possibly empty se
quence of predicates. 
(8-9) Places and transitions are fur
ther undefined entities. 
(10) Each transition has a preset, 
which is a multiset of pairs of places 
and expressions. 
(11) Each transition has a postset, 
which is a multiset of pairs of places 
and expressions. 
(12) A marking assigns a multiset of 
colours to each place. 
(13) A binding maps variables to 
multisets of colours. 

(14-16) Variables, expressions and 
predicates are further undefined en
tities. 

(17-19) A CPN is well-formed, if, 
among other trivial things: 

• (20) the set of transitions which 
have a preset is identical to the 
set of transitions which have a 
guard, and 

• (21) the set of transitions which 
have a postset is identical to the 
set of transitions which have a 
guard, and 

• (22-25) the set of places which 
are in the preset or postset of 
some transition is identical to the 
set of those places which are as
sociated with a colour set, and 

• (26) no transition has an empty 
preset or postset, and 

• (27) every place which is associ
ated with a colour set also has a 
marking, and 
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• (28-30) the marking of every • (39) There is a function which evalu-
place consists of a multiset over ates a predicate under a given bind-
the colour set associated with the ing to a Boolean value. 
place, • (40-42) A predicate list is evaluated 
to1 » , u , ... as the conjunction of the values of the 

• (31-34) tor every transition every J 

, • c J. • i member predicates, arc emanating trom or termmat-
, ,, , .,. . . ., , • (43) It is possible to observe the 

ing at the transition is inscribed K ' , \ r 

.,, • i - i i colour set (type) of an expression and 
with an expression, which has a w r ' ^ 

, , i i it. i j. from a colour, colour set equal to the colour set 
• i. J -ii. , v i c i i • (44-45) A multiset of colours has 

associated with the place ot the y ' 
, matching types if any two colours in 

arc, and b J r J 

the multiset have the same type. 
• (35-37) two (or more) "parallel" , (46-47) It is possible to observe the 

arrows collapse into one single ar- colour set from a multiset of colours 
r o w - if the multiset has matching types. 

(38) There is a function which eval- • (49-51) The variables of an expres-
uates an expression under a given sion, predicate or predicate list can 
binding to a multiset over some " e observed. • 
colour set. • 

D y n a m i c S e m a n t i c s of C o l o u r e d Pe tr i N e t s 

Auxiliary Semantic Functions 

Before we turn to the dynamic aspects of CPNs, we specify four operations 
on multisets over colour sets: union, distributed union, difference and subset. 

Auxiliary Semantic Functions 

value 
ms_union: (E ^ N a t ) x (S -^ Nat)->-(Z' ^ N a t ) 
ms_union(msa,msb) = 

m s a \ d o m msb U m s b \ d o m msa U 
[d->-msa(c)+msb(c) | c : i>c € d o m msa fl d o m msb] 

ms_dunion: (S jft N a t ) - s e t —>• (S jft N a t ) 
ms_dunion(mss) = 

if mss = {} t h e n [] 
e lse 

let ms:(i7 -^ N a t ) • ms £ mss in 
ms_union(ms, ms_dunion(mss\{ms})) 

e n d 
e n d 

ms_diff : (E ^ N a t ) x (E ^ N a t ) -)• (E ^ N a t ) 
ms_diff(msr,msa) = 

msa \ d o m msr U 
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[ci->if msa(c)— msr(c)>0 then msa(c)—msr(c) else 0 end 
cr-S^c £ dom msr fl dom msa] 

ms_subset: (Z '^Nat ) x (S ^ N a t ) ->• Bool 
ms_subset(msr,msa) = 

V cr-S^c £ dom msr =>• c £ dom msaAmsa(c)>msr(c) 

Annotations 

• The union of two multisets is ob
tained as the union of those ele
ments which are in only one of the 
multisets with the sum of those el
ements which are in both multi
sets. 

• The distributed union of a set 
of multisets is defined recursively 
as the union of one member of 
the set with the distributed union 
of the rest of the set. The dis
tributed union of the empty set is 
the empty multiset. 

The difference between two multi
sets is obtained by removing the 
elements of the first multiset from 
the second multiset. If the second 
multiset does not contain as many 
elements as should be removed, all 
elements are removed. 
A multiset is a subset of another 
multiset, if and only if for every 
element in the first multiset, the 
second multiset contains at least 
as many instances of that element 
as the first multiset. • 

Transition Functions for Coloured Petri Nets 

With the above specification of multisets of colours we are now ready to specify 
what it means for a transition to be enabled and to occur in a CPN. 

Transition Functions 

value 
enabled : Trans x Binding x CPN ^> Bool 
enabled(t, b, cpn) = 

let (cf, gu, pres, posts, mark) = cpn in 
evalPl(gu(t), b) A 
(V p : Place • 

let ms={eval(e, b)|e:Exp«(p,e) £ dom pres(t)} 
in ms_subset(ms_dunion(ms), mark(p)) 
end) 

end 
pre let (cf, gu, pres, posts, mark) = cpn in 

t £ dom gu A 
dom b = obs_var(gu(t)) U variables(t)(cpn) end 

variables: Trans —>• CPN —• Var-set 
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variables ( t ) ( _ , _ ,pres,posts,_) = 
U{obs_var(e) |e:Exp • 3 p:Place • 

occur : Trans x 
occur(t, b , cpn) 

Binding x CPN 4 

= 

(p,e)e pres(t) U posts( t)} 

CPN 

let (cf, gu, pres, posts, mark) = cpn in 
(cf, gu, pres, posts, 
mark f 
[p i-> 

let ms= 
in ms_ 
e n d | i 

[p i-> 
let ms: 
i n ms_ 
e n d | i 

e n d 
pre let (cf, gu, 

t £ d o m gu 

={eval(e,b) e:Exp«(p 
diff(ms_dunion(ms) 
>:Place«3 e:Exp«(p,e) 

={eval(e,b) e:Exp«(p 

e) € d o m pres(t)} 
,mark(p)) 
£ d o m pres(t) ] f 

e) € d o m posts( t)} 
union(ms_dunion(ms), mark(p)) 
>:Place«3 e:Exp«(p,e) 

pres, posts, mark) = 
A 

d o m b = obs_var(gu(t)) U vari 
A enabled(t, b, cpn) e n d 

£ d o m posts(t)]) 

cpn in 

ables(t)(cpn) 

Annotations • When an enabled transition oc-

. A transition is enabled under a curs> t o k e n s a r e removed from its 
given binding if its guard condi- m P u t P l a c e s a n d t o k e n s a r e a d d e d 

tion evaluates to true, and for ev- t o l t s o u t P u t P laces> a s determmed 
ery input place the value of the b^ t h e v a l u e o f t h e a r c expressions 
corresponding arc expression is a u n d e r t h e S l v e n b m d l n S -
subset of the marking of the place. 

12.4.4 Timed Coloured Petri Nets 

In the above description of CPNs we have neglected temporal aspects in CPNs. 
The CPN model of time is based on a global discrete or continuous clock. 
Discrete or continuous durations may be attached to transitions and arc ex
pressions of arcs from transitions to places. Tokens may be labelled with a 
time-stamp indicating the earliest time the token may be removed from a 
place. 

To indicate that tokens of a particular colour set should have timestamps, 
the keyword timed is appended to the declaration of the colour set: color 
A = product int * string timed; A timed multi-set is a multi-set with 
time-stamps: 2V (2,"monday")@[5,16]+3v (3,"tuesday")@[14,20,21]. 
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Durations of transitions are specified as @ + x indicating that tokens added 
to the output places should be time-stamped with the time of the global clock 
plus x, where x is an integer or real value. Durations may also be specified on 
output arcs by appending @ + x to the arc expressions. 

In a timed CPN a transition may occur if it is both enabled and ready, i.e., 
guards are fulfilled, the required tokens are available, and the time-stamps of 
the tokens to be removed are less than or equal to the current model time. 

The execution of a timed CPN proceeds by executing all transitions that 
are enabled and ready. Whenever no further transitions are ready to be ex
ecuted, the global clock is advanced to the next time at which one or more 
transitions are enabled and ready. 

The model of CPNs given above could be refined to include a global clock, 
timestamps and durations, but we will not give such a model here. 

12.5 CEN Example: Work Flow System 

Example 12.10 Flow Systems and Petri Nets: This entire section (i.e., 
Sect. 12.5) is really one large example. Hence it is registered in this short, 
shaded paragraph, but otherwise set in ordinary text, figures and formulas! • 

In this section we shall analyse manufacturing production projects (i.e., their 
planning and execution) from the point of view of what goes on in the "real 
world". That is, our investigation is one of examining mostly the application 
domain, and only secondarily the requirements to possible software support. 

12.5.1 Project Planning 

Project Plans 

We make a distinction between project plans and projects. A project plan 
describes, generically, in which order, i.e., by what flow of control, the activities 
of a project must be carried out. (Whether they will be carried out in this 
way is immaterial to the problem we have decided to tackle.) A project is one 
of perhaps several ways in which a set of project plan-prescribed activities are 
indeed carried out. The project plan thus describes flow of control: in which 
orders activities are sequenced, etc. From a syntactic point of view, a project 
plan consists of nodes and directed edges. From a semantic point of view nodes 
denote activities, and edges denote transfer of control, i.e., flow of control. 
From a syntactic point of view, some edges are incident upon nodes from an 
"outside"; some edges emanate from nodes to an "outside"; and remaining 
edges connect nodes. Thus, to summarise, nodes prescribe actions (a,), and 
edges prescribe two things: the conveyance of resources of a specific kind (kj), 
and the flow of control from a set of activities to a next set of activities. 
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Figure 12.15 shows an example project plan that prescribes five activities. 
By Oj we here mean both the distinct labels of the nodes as well as further 
attributes of these nodes. By kj we mean some description of the kinds of 
"things" that flow from a node, or an outside, to a next node, or the outside. 
These things can be materials when the project is about manufacturing, or 
documents when the project is about software development, or completion 
and status (measurement, test) reports when the project is that of a major 
(preventive maintenance) overhaul of an aircraft. 

Fig. 12.15. A project plan 

type 
An, Ad, K 
PP ' :: s_i:(An ^ K) 

x s_g:(An ^ Ad x (An ^ K)) 
x s_o:(An ^ K) 

PP = {| P P : P P ' . wf_PP(pp) |} 
value 

mk_PP( 
[al H-» kl, a3 H-»k3"], /* s_i */ 
[al H-» (adl,[a2 H> k2, a3 h-» k3']), /* s_g */ 
a2 H+ (ad2,[a4 i-> k4", a5 ^ k5']), 
a3 ^ (ad3,[a4 i-> k4', a5 i-> k5"j), 
a 4 ^ (ad4,[]), 
a5 i-)- (ad5,[])], 

[a4 H> k7,a5 H> k6]) /* s_o */ 

The s_i part models which nodes are initial, i.e., input nodes and which kinds 
of resources flow into these nodes. The s_o part models which nodes are final, 
i.e., output nodes and which kinds of resources flow out from these nodes. 
The s_g part models the graph structure of the project plan: an acyclic — 
something not mentioned above — graph. A project might consist of several 
unrelated activities. But each activity has some inputs and some outputs, 
whether internally or externally. All project activities are distinctly designated 
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(named, An). All input and all output activities (i.e., nodes) are nodes of the 
project plan graph with no other inputs, respectively outputs , than those 
denned by the the s_i and the s_o parts . Ad and K denote activity and 
resource descriptions (i.e., types and definitions). 

The expression value m k _ P P ( . . . ) is tha t of the project plan of Fig
ure 12.15. PP is a subtype of PP ' . Well-formedness of pp:PP expresses tha t 
the " i /o" graph formed by the triple of the set of all external input nodes, the 
graph of nodes mapping to sets of successor nodes and the set of all external 
output nodes is a well-formed i /o graph. 

A well-formed i /o graph has (i) all external input and (ii) output nodes 
are nodes of the graph (i.e., in the definition set of this graph). In addition, 
(iii) no external input node has any predecessor nodes in the graph, (iv) no 
external output nodes has any successor nodes in the graph, and the graph 
itself is well-defined and acyclic. 

The well-definedness of a graph is tha t all nodes tha t can be reached, in 
one step, from a node (of the definition set d o m g) are defined in tha t set, 
and tha t no node can reach itself in one or more steps. The graph mapping g 
defines what a step is: If a is a node defined in the graph, then g(a) is the set 
of nodes tha t can be reached in one step from a. 

wf_PP: P P ' -> B o o l 
wf_PP(xim,im,xom) = 

w f _ I O G r a p h ( d o m xim, 
[ a !->• nas | 

a:An,nas:An-set«a £ d o m im A 
le t (,nxt) = im(a) i n nas = d o m nxt e n d ] , 

d o m xom) 

wf_IOGraph: An-se t x (An ^ An-se t ) x An-se t 
wf_IOGraph(ias,g,oas) = 

(i,ii) ias C d o m g A oas C d o m g A 
(iii) V a:An • a £ ias => 

~ 3 a':An • a' £ d o m g A a g" g(a') 
(iv) V a:An • a £ oas => g(a )={} A 
(v) wf_Graph(g) 

wf_Graph: (An jjt An-se t ) —> B o o l 
wf_Graph(g) = DefNodes(g) A aCyclic(g) 

DefNodes: (An ^ A n - s e t ) ->• B o o l 
DefNodes(g) = d o m g = U r n g g 

aCyclic: (An ^ An-se t ) —>• B o o l 
aCyclic(g) = V a:An • a £ d o m g => a g- Nodes(a,g) 



12.5 CEN Example: Work Flow System 345 

Nodes: A n x ( A n ^ An-se t ) -3- An-se t 
Nodes(a,g) = 

let as = g(a)U{a' | a',a":An«a" £ asAa'isin g(a")} in as e n d 
pre a € d o m g 

The function Nodes recursively gather the nodes, as, tha t can be reached from 
the node a in graph g in one or more steps. The recursion is well-founded: It 
s tarts with the set of successor nodes of a in g (which might be empty, and 
recursion stops), and goes on to gather successor nodes of those nodes already 
gathered in as. When no more nodes can be gathered — figuratively speaking, 
when a next recursion yields only nodes already in as — recursion stops. Tha t 
is, a minimum fixed point has been computed. So we here assumed a minimum 
fixed point semantics of such recursive equations as defining as.5 

P r o j e c t P l a n C o n s t r u c t i o n 

We distinguish between two kinds of project plan information: the structure 
of the inpu t /ou tpu t graph and its content. The structure has to do solely with 
nodes and edges and the labelling of nodes. The content has to do solely with 
at tr ibutes (descriptions) to be at tached to nodes and edges. The below items 
cover both. 

Project plans can be initialised: A project plan name is all tha t is provided. 
The project plan (i.e., the inpu t /ou tpu t graph) is initialised to empty. Activity 
descriptions (i.e., nodes and their at tr ibutes) can be inserted, [rejdefmed and 
deleted. Flow of control (i.e., edges and their at tr ibutes) can be inserted, 
[re]prescribed and removed. These project plan editions can be thought of as 
describing domain properties or prescribing requirements. In any case project 
plans are programmable active dynamic components. 

t y p e 
P P n 
P P S = P P n ^ P P 
Cmd = = mk_ in i tPP(ppn :PPn) 

| mk_newAct(an:An,ad:Ad) | mk_oldAct(an:An,ad:Ad) | ... 
J mk_newCtl(en:En,k:K) | mk_oldCtl(en:En,k:K) | ... 

value 

In t_Cmd: Cmd -> P P S H> P P S 

PPS models a project plan repository (a file cabinet full of plans, as in the 
domain description, or a database of such, as in a requirements prescription). 
Cmd models our scribblings when, with paper and pencil we draw and an
notate project plans, as in the domain, or a set of update commands tha t 

5Please note, however, that RSL does not have a minimum fixed point, but an all 
fixed point semantics. 
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can be issued against such a database, as in requirements. The semantic func
tion expresses tha t the project planning system (PPS) is a dynamic active 
programmable one. 

The node at tr ibutes, ad:Ad, may contain a rich variety of components, 
structured in some schematic way or another. We list some example of ad:Ad 
attr ibutes. 

• A description of the operation to be performed at the node, i.e., the action, 
together with its type (also called signature): from which predecessor nodes 
does it receive input values to the operation, of which type and in which 
quantities. 

• Which kind of other, the production resources, may be needed in order to 
carry out the operation: people (how many and with which skill qualifica
tions), equipment (machinery, etc.). 

• A further example: what is the expected duration of the operation ( r time 
units ±6 t ime units, where i f C r ) . 

• Wha t might be an earliest start time of the operation (say relative to 
project start t ime), and a latest such start time, and what might be the 
earliest, respectively latest finish t ime (etc.). 

• Wha t is the (expected and /or actual) cost per time unit, or total cost of 
carrying out the operation. 

• A final example: which are the reporting requirements: Must notification 
of readiness to commence (for example, arrival of all input) be given and to 
whom, notification of progress (or just recording thereof) and completion 
of activity, notification of unexpected events, including failures. 

• And so on. 

12.5 .2 P r o j e c t A c t i v i t i e s 

The following two sections present an analysis of the intended semantics of 
project plans. 

P r o j e c t F low of Control : "Waves" and Traces 

Project plans are "programs" tha t denote projects. Activities take time. Once 
an activity has finished, it "flows" [49,143-145] the produced resources (ma
terials, products) to an outside or provides these as input to next activities, 
thereby passing flow of control toward those next activities. An activity can, 
at the earliest, be commenced, i.e., initiated, once flow of control resides on 
all input edges. This is a clear restriction of the kind of meaning we at tach to 
project plans. If we wished to let two syntactically sequenced nodes stand for 
possibly overlapped, or overlappable activities, then we would advise another 
kind of graph, with perhaps more than one kind of node and one kind of edge. 
But we would basically describe those other graphs as we describe the present 
proposal: informally and formally. Once initiated flow of control passes from 
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the incident edges to the activity. A project plan may thus give rise to flow of 
control residing across many edges or in many nodes such that no two edges 
or nodes of a flow of control are on a path between any two activities or edges, 
and such that the flow of control captures all paths from any in-edge to any 
out-edge. 

We define a few technical terms: Priming: When a node activity has com
pleted it places the results of this activity (simultaneously) on each emanating 
edge, thereby priming all the edges. Firing: A node activity can be fired, i.e., 
starts at the earliest when all edges incident upon it are primed. Whether it 
actually fires is subject to a nondeterministic choice. For the time being we 
assume that that choice is internal to the node. Later we can refer to that 
choice externally, that is, to a project monitoring and control system. 

w3vy4 w5 v\(6 vy7,yv8,i|v9 

Fig. 12.16. A project trace: wo — wg 

Figure 12.16 shows an example "execution" of a project plan. Each dashed 
curve, a "wave", wt, stands for a point in time. At time t = 5(ws) the project 
activities reside at node az and on edges from 122 to a^ and ci2 to 05. The 
transition from time t = 5 to t = 6 results in no activities in any node. In 
transiting from (sometime after) time t = 6 to (possibly sometime before) 
time t = 7 an input takes place of "things" to node 05 from nodes a^ and 
CI3 (and the two corresponding edges are preempted; a firing or transition has 
taken place). Execution around this point in time could have seen a transition 
that also fired node a^ (simultaneously with that of node as). Thus there 
are many traces for any one graph. For the graph of Fig. 12.17 we have four 
example traces as shown in Fig. 12.18. 

We have not shown, but could show, several successive waves covering the 
same set of edges and nodes. We explain this as follows: Since activities in a 
node take time that would be fine wrt. just the nodes. Since flow of control 
transitions, in general, depend on the availability, i.e., also the nonavailabil
ity, of production resources that actually carry out the activities of a node, 
projects will, in general, have to be prepared for what appears to be "waiting" 
time along edges. 
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Fig. 12.17. Production plan 

Fig. 12.18. Production traces 

Theoretically speaking an edge does not, in and by itself, incur time con
sumption, but since firing a node can only take place when all edges incident 
upon it are primed, it may so appear as if time is "consumed" by an edge. 

Let En stand for edge names (i.e., names of possible locus of one flow of 
control), made up in either of three ways from relevant activity names: input, 
infix (graph internal) and output . We use the following abbreviations: FoC, 
flow of control; PT, project trace and PPD, project plan denotation. 

t y p e 
En = = mk_i(i :An) | mk_g(fn:An,tn:An) | mk_o(o:An) 
FoC = (An|En)-se t 
P T = FoC* 
P P D = P T - s e t 

Figure 12.16 shows the following project trace: 
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({el,e3},{al,e3},{el2,el3,e3},{a2,el3,e3},{a2,a3},{e24,e25,a3}, 
{e24,e25,e34,e35},{e24,a5,e34},{a4,e5},{e5,e6}) 

Many other project traces are possible. We chose not to show any repetitions 
of successive waves (project execution states). We leave to the reader to pencil 
a few alternatives onto Fig. 12.16. 

Project Plan "Execution" 

Given a project plan we can analyse it, and we can set it in motion! We 
will here only show the latter. We elaborate on the above: Given a project 
planning system, i.e., a collection of named project plans, and given a project 
plan name, we can initiate a project. For the time being we omit supplying the 
initial resources required to satisfy flow of control material needs. What this 
means will be explained later, but it essentially means that we can start the 
project, but no initial nodes will have anything to do, and will not fire since 
no input material is being provided. We model a project as a set of processes, 
one activity process for each node, an in-edge (input flow of control) process 
for each complete set of edges into a node, and an out-edge (output flow of 
control) process for each complete set of edges from a node of a project plan. 
Each in-edge process gathers input from a number of predecessor activities. 
Once all have been gathered, the sum total of input (material, documents, or 
other) is delivered to 'its' node process. (By 'its' node process we mean the 
node [activity process] of the triple: in-edge, node and out-edge processes.) 
Each initial node in-edge gathers its sole input from an outside activity node 
which is not defined, i.e., which is not part of the project plan as we have so 
far defined it. Each node process accepts such input from its in-edge process, 
processes the input, and delivers the result to its out-edge process. Each out-
edge process accepts input from 'its' activity process and then distributes it 
to a number of successor activity nodes' in-edge processes. 

An in_edge process An out_edge process The two generic processes 
correspond to the following 

generic project plan segment 

ak : 

TCI TCO 

An activity process 

Fig. 12.19. Generic flows of control and activities 
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Figure 12.19 shows what was implicit in the narrative above: that flows of 
control and activities can be modelled by generic processes. We show only the 
interior edge processes and related activities. 

For the project plan of Fig. 12.15, also shown to the left in Fig. 12.20, we 
get the configuration of in- and out-edge processes and of activity processes 
as shown to the right in Fig. 12.20. 

Abstract Project Plan In-edge, Activity and Out-edge Process Diagram 

Fig. 12.20. An instantiated process diagram 

For each activity process there are two channels: one from its in-edge process 
and another to its out-edge process. For each distinct (node-to-node) edge in 
the project plan (graph) there is a distinct channel from an out-edge process 
to an in-edge process. 

Tables CM, modelled as a maps, record some unique allocation of channels 
by indexes into collections of channels. No two recordings of channel indexes 
are the same, i.e., all (channels) are distinct. Tables CM record resource ori
gins: "such-and-such" nodes deliver "such-and-such" resources. Functions 0 
model activity input/output functions: Activities take resources and deliver 
resources (having machined them, or assembled and/or disassembled them, 
having augmented them, or otherwise). From the rm:RM's the activity is able 
to see the identity of the source activities which provide it with input. Simi
larly, the result resources are marked (or labelled) as to where they should be 
sent. 

type 
Ca, Ce, R 
CM' :: xim:(An ^ Ce) /* in-edge in channel index */ 

im:(An ^ ((CaxCa) x (An ^ Ce))) 
xom:(An ^ Ce) /* out-edge out channel index */ 

CM = {| cm:CM' • wf_CM(cm) |} 
RM = An ^ R 
O = RM ->• RM 

value 
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obs_K: R -> K 

To edges correspond a set of edge channels and their indexes, Ce; to nodes 
correspond a set of node (input and output) channels and their indexes. Edge 
channels carry (i.e., communicate) value pairs (i.e., values): the identity a:An 
of the source node of its other component, the resource value r:R of kind (type 
and quantity) k:K. Node input and output channels carry aggregations (here 
modelled as maps) of such pairings, rm:RM. 

Looked at in isolation, channel index maps, cm:CM, must satisfy the in
dex uniqueness criterion and otherwise be well-structured as (i.e., wrt.) an 
inpu t /ou tpu t graph — since it must fit, "hand-in-glove", with a project plan 
inpu t /ou tpu t graph. 

value 
wf_CM: CM' -> B o o l 
wf_CM(xim,im,xom) = 

w f _ I O G r a p h ( d o m xim, 
[a I—>• nas | a:An,nas:An-set • a £ d o m im A 

let ( ,nxt) = im(a) in nas = d o m nxt e n d ] , 
d o m xom) A 

let cs = |J { {c,c',cr,cd,co} U rng nxt 
| a:An,c,c':Ca,nxt:(A ^ C ) • 

a £ d o m im A ((c,c'),nxt) = im(a) } in 
card cs = 2 * card d o m im + noe(xim,im,xom) e n d 

noe: CM' -> N a t 
noe(xim,im,xom) = 

card ( d o m xim U d o m xom) 
+ { card as 

| a:An • a £ d o m im A 
let (,acm) = im(a) in as = d o m acm e n d } 

/ * + is a distributive sum operator */ 

The number of distinct channel indexes is calculable as follows: There will be 
two channels per node and one per edge. Among the edges we also have the 
external input and output edges. 

So we collect in cs a set of all the nonexternal channels and compare its 
cardinality to the what it should be based on the number of nodes and edges. 
If the values are equal, then all channel indexes are distinct. 

Please refer to Fig. 12.21. Given a node label (a:An) and given an appro
priate cm:CM one can identify, Cxi, the in-edge process input channel index 
for a, with a designating an input node; Cie, the internal out-edge process to 
internal in-edge process channel for for a, with a designating an internal node 
with successor node a'; and Cxo, the out-edge process output channel index 
for a, with a designating an output node. Cai and Cao yields activity a input, 
respectively output , channels. 



352 12 Petri Nets 

out foe in foe 
xin foe 

XI = A->Ce 

r-~4 

is VS7A 

act 

f ^ l X -
xout foe 

IM=A -> ((Ca*Ca)*(A->Ce)) 

CM = XIM * IM * XOM 

Fig. 12.21. A channel allocation 

XO=A -> Ce 

channel ke[i:Ce] (An x K), ka[i:Ca] RM 

value 
/* external input flow of control in-edge channel */ 
Cxi: An ->• CM ->• Ce, Cxi(a)(xim„) = xim(a) 

/* flow of control infix-edge channel */ 
Cie: AnxAn ->• CM ->• Ce 
Cie(a,a )(,im,) = let (,imm) = im(a) in let ce = iim(a) in ce end end 

/* activity in channel */ 
Cai: An —• CM —• Ca, Cai(a)(,im,) = let ((ci„),) = im(a) in ci end 

/* activity out channel */ 
Cao: An —• CM —• Ca, Cao(a)(,im,) = let ((,co,),) = im(a) in co end 

/* external output flow of control out channel */ 
Cxo: An ->• CM ->• Ce, Cxo(a)(,,xom) = xom(a) 

Note : The specification of in and out channels in the xin_foc, in_foc, act, 
out_foc and xout_foc signatures is not proper RSL [130]. Instead we use an 
ad hoc "shorthand" as follows: 

• In the function (i.e., process) signature we not only give the type of func
tion (i.e., process) parameters, but also the generic name of the parameter, 
viz.: a:An, sas:An-set, etc. 

• Then we use this parameter name to calculate the specific index of the in 
and out channels defined elsewhere in the signature. 

The above "improvisation" can be properly expressed in RSL by suitable use 
of parameterised schemes and object arrays. 
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Any input edge flow of control process of an activity a maintains a vari
able, initialised to "empty", in which is collected the output from predecessor 
activities, designated by the set of names of these (pas), i.e., from predeces
sor output edge flow of control processes. Once all predecessor activity results 
have been collected the accumulated result is provided as input to the activity. 

Technically this is modelled in terms of parallel comprehension. 

in_foc: p a s : A n - s e t x a : A n x C M 
—>• in {ke[Cie(a ' ,a)(cm)]|a ' :as} o u t ka[Cai(a)(cm) ] U n i t 

in_foc(pas,a) = 
(va r i ab l e rm:RM := []; 
|| {let r=ke[Cie(a ' ,a)(cm)]? in 

r m : = r m U [a'l-^r] end|a ' :An«a' £ pas}; 
ka[Cai(a)(cm)]!rm) 

Any output edge flow of control process parallel distributes to all its successor 
activities, designated by the set of names of these (sas), the result of ('its') 
activity a operation. 

out_foc: a : A n x s a s : A n - s e t x C M 
—> in ka[Cao(a)(cm)] o u t |ke[Cie(a,a ')(cm) ]|a':sas} U n i t 

out_foc(a,sas) = 
le t rm = ka[Cao(a)(cm) ]? in 
|| {let r= rm(a ' ) in 

ke[Cie(a' ,a)(cm)]!r end|a ' :An«a ' € sas} e n d 

Any activity process collects input from its in-edge process, applies the activity 
operation, o :0 , to the input, and outputs the operation result to its out-edge 
process. 

act: o : O x a : A n x C M —>• in ka[Cai(a)(cm) ] o u t ka[Cao(a)(cm) ] U n i t 
act(o,a,as) = ka[Cao(a)(cm) ]!o(ka[Cai(a)(cm) ]?) 

External input and output edge processes are special: 

v a l u e 
xin_foc: An ->• CM ->• U n i t 
xin_foc(a)(cm) = c[Cai(a)(cm) ]!c[Cxi(a) ]? 

xout_foc: An ->• CM ->• U n i t 
xout_foc(a)(cm) = c[Cxi(a)(cm) ]!c[Cao(a)(cm) ]? 

12 .5 .3 P r o j e c t G e n e r a t i o n 

Plans are to be carried out. The denotation of a plan, which is a syntactic 
entity, is a possibly infinite set of projects, i.e., a possibly infinite set of traces. 
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Traces are semantic entities. In this section we shall see how we "convert" from 
a plan to its denotation. 

The denotation is embodied in the behaviour of a set of processes, i.e., of 
their communication along edge and node channels. So we need "convert" a 
project plan, pp:PP to an RSL expression. We shall first s tate the pp:PP to RSL 
"conversion", in Section 12.5.3. Then, in Section 12.5.3, an abstract algorithm 
for assigning channel indexes to node and edge processes. 

P r o c e s s G e n e r a t i o n 

Project processes are multidimensional graphs. 
Given a project plan, pp:PP, we can express a comprehension of the project 

(process) of all the processes. Tha t is, a project plan, pp:PP, can be considered 
a program, i.e., "a piece of syntax", in the form of a da ta structure. Given 
the informal and formal expression of the semantics of each node and its 
inpu t /ou tpu t edges, a translation is required from the da ta structure, pp:PP, 
into RSL text. We do not express the translation in the form of a compiling 
algorithm from pp:PP into abstract RSL text, but in the form of the concrete 
text. You may thus consider project as being an interpreter: It takes the project 
plan da ta structure (i.e., syntax) and expresses the interpretation in the form 
of a comprehended RSL process expression. 

gCM(xi,g,xo) generates a pair of channels for each node in g, and one chan
nel for each internal (infix) and each external (in or out) edge and structures 
these into a cm:CM. 

value 
cm:CM = gCM(pp), 

project: P P —> U n i t 
project(xi,g,xo) = 

|| {xin_foc(a)(cm) 
| a:An • a £ d o m xi} 

II ( | |{in_foc(pas,a)(cm) 
| a:An«a £ d o m g A 

pas={a' |a ' :A«a' £ d o m g A 
let ( ,m)=g(a ) in a £ d o m m end}} ) 

|| ( | |{act(o,a)(cm) 
| a:An«aisin d o m g A 

let (o' ,)=g(a) in o = o ' end}) 
II ( | |{out_foc(a,sas)(cm) 

| a:An«a £ d o m g A 
let ( ,m)=g(a) in s a s = d o m m end}) 

|| ( | |{xout_foc(a)(cm) 
| a:An«a £ d o m xo}) 



12.5 CEN Example: Work Flow System 355 

The above generates, based on a project plan, a set of in and out flow of 
control edge and activity processes, and starts these. 

C h a n n e l A l l o c a t i o n 

The channel index generator function is now defined. 
Let us first recall the syntax of project plans pp:PP and the structure of 

the cm:CM channel allocations: 

t y p e 
A, K 
PP' :: (An ^ K) 

x (An ^ Ad x (An ^ K)) 
x (An Tjt K) 

P P = {| p p : p p ' . wf_PP(pp) |} 
Ce, Ca 
CM' :: xim:(An ^ Ce) / * in-edge in channel index */ 

im:(An ^ ( (CaxCa) x ( A n ^ C e ) ) ) 
xom:(An ^ Ce) / * out-edge out channel index */ 

CM = {| cm:CM' • wf_CM(cm) |} 

Ce and Ca are index sets. Each index indexes a channel in an appropriate 
object array of channels. 

objec t 
channe l ke[ i :Ce] : (AnxR), ka[i :Ca]:RM 

From a pp:PP a " l ink_load_and_go-t ime" channel index generator process 
gen generates an appropriate cm:CM. gCM "traverses" the pp:PP da ta struc
ture. For each distinct node and each distinct edge gCM invokes appropriate 
gCs, five times, respectively once, by accepting input from them via "compile-
time" channels eke, cka. 

objec t 
channe l cke:Ce, cka:Ca, chs:{s top} 

value 
gen: PP ->• CM U n i t , gen() = gCM(pp) || gCa() || gCe() 

gem: P P —>• in eke,cka out chs CM U n i t 
gCM(i,g,o) = 

let cm = 
([a i->- eke? | a:An • a € d o m i ] , 
[a i->- ((cka?,cka?), 

(let (,m) = g(a) in 
[a I—> eke? | a :An • a £ d o m m] e n d ) 



356 12 Petri Nets 

| a: An • a € d o m g) ], 
[a i->- eke? | a:An • a £ d o m o]) in 

(chs!stop| |chs!stop); 
cm e n d 

The generation of channel indexes is left to two gCz/ processes, one for 1/ = a, 
and one for v = e. As long as the gCM process requests generation of indexes 
it does so. As soon as the gCM process signals tha t all necessary indexes have 
been generated they stop. We show just the generic such process. The reader 
is asked to edit the below process into five similar processes each with their 
syntactic value (e or a) for v. 

gGv: U n i t —> out ck^ in ckz/ U n i t 

gCM) = 
variable cs^:Cz/-set := {}; loop:Bool := true; 
(while loop do 

let cz/:C^«c^ ^ cav in 
cs^:=cs^ U{cz/}; 
ckz/!cz/ e n d 

end) 

D 
(chs?; loop := false) 

12.6 C P N and RSL Examples: Superscalar Processor 

In this section we present two models of the MIPS R10000 superscalar pro
cessor [549]. One model is specified as a CPN, while the other is specified in 
RSL. The aim here is to compare the two styles of models rather than to give 
a complete model. The CPN model is closely based on a model by Burns et 
al. [67]. 

12.6 .1 D e s c r i p t i o n 

The description of this section is common to Examples 12.11 and 12.12. 
The R10000 is a 64-bit RISC microprocessor implementing the MIPS 4 

instruction set. The processor fetches and decodes four instructions per cycle 
and employs branch prediction. The processor has five fully pipelined exe
cution units: one load/s tore unit, two 64-bit integer ALUs, one 64-bit IEEE 
754-1985 floating point adder and one 64-bit floating point multiplier. The 
entire pipeline has seven stages. The R10000 has 33 64-bit logical integer 
registers and 32 64-bit logical floating point registers. 

Instructions are issued and executed out of order which may lead to da ta 
hazards. Data hazards arise when two instructions reference the same register. 
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If these instructions are executed out of order, the meaning of the program 
may be altered. To avoid data hazards the processor analyses dependencies 
among instructions and stalls instructions when there is a read-after-write 
(RAW), write-after-read (WAR) or write-after-write (WAW) dependency. 

When a conditional jump instruction is encountered, the processor at
tempts to predict the direction of the jump before the condition is evaluated. 
The prediction algorithm simply assumes the branch will go in the same di
rection as it did the last time it was evaluated. If it has not been evaluated 
before, it is assumed that no branch occurs. 

Subsequent instructions are fetched from the predicted direction and ex
ecuted speculatively. When the value of the condition is later evaluated, it 
is checked whether the branch prediction was correct. If the prediction was 
incorrect, instructions following the jump are cleared from the pipeline and 
new instructions are fetched from the other direction of the jump. Data eval
uated by instructions following a predicted branch is only written back to 
registers when the prediction has been confirmed. The R10000 may execute 
speculatively with up to four unconfirmed branches at a time. 

The MIPS instruction set uses three operand instructions, i.e., all arith
metic instructions take three arguments: two source registers and one des
tination register. The integer ALUs have a dual-stage pipeline, so they can 
operate on two instructions at a time. The floating point units have a four-
stage pipeline. The address unit has a three-stage pipeline. 

12.6.2 Coloured Petri Net Model 

Example 12.11 Super Scalar Processor; Petri Net: The example is large, six 
pages, so we leave it unshaded. We end it with a shaded paragraph. • 

Figure 12.22 shows the CPN model of the R10000 microprocessor. The accom
panying colour set declarations and function definitions are given below. We 
consider a model with five types of instructions: INT for integer operations to 
be handled by one of the two ALUs, FPADD for floating point addition, FP-
MULT for floating point multiplication, LS for load/store operations handled 
by the load/store unit and BRA for conditional jump. 

The model only represents the control part of the processor. Thus we 
cannot from the model infer the value of a given register at a particular place 
in the execution. Since the behaviour of jumps depends on values evaluated in 
the registers, we need some way to decide which instruction should be executed 
after a conditional jump. We choose to let this be a nondeterministic choice 
with an equal probablility of branching and continuing. 

The model is divided into six phases: instruction fetch, decoding, issue, 
execution, writeback and retire. 

In the fetch phase, instructions are loaded from memory (represented by 
the place In) one at a time. With each instruction loaded the program counter 
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Fig. 12.22. Simplified CPN model of the superscalar microprocessor MIPS R10000 

(PCI) is incremented by one. Instructions are buffered in the instruction 
queue (Instr. Queue) which may hold up to four instructions (this limit is 
enforced using the place Queue Limit). 

In the decode phase, the instructions are labelled with a branch gener
ation number. The branch generation number is incremented each time a 
conditional jump instruction is decoded and is used to ensure that instruc
tions which depend on unconfirmed branch predictions are not written back 
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to registers before the predictions have been confirmed. The program counter 
PC2 is used to ensure instructions are decoded in order. The place BP holds a 
branch prediction table, which records the direction of each of the previously 
evaluated branches. If a branch instruction is decoded, the program counters 
are updated to the address the branch is predicted to go to. 

In the issue phase, instructions are issued to one of the five execution 
units. Instructions are only issued if they have no conflicting register depen
dencies with any of the currently executing instructions and if the required 
execution unit is available. Instructions may be issued out of order when some 
instructions are stalled. 

In the execution phase, instructions are evaluated simultaneously in the 
five execution units and the results are stored temporarily. 

In the writeback phase, the place BW records the window for confirmed 
branch predictions. The lower bound is used to discard instructions that have 
been evaluated under an erroneous prediction, while the upper bound is used 
to stall instructions that depend on unconfirmed predictions. When jump 
instructions pass the writeback phase, the branch prediction table is updated 
to reflect the actual direction taken by the jump. If the branch prediction 
is confirmed, the upper bound of the branch window is incremented. If the 
prediction is found to be erroneous, the lower and upper bound of the branch 
window are increased to the current branch generation plus one. This ensures 
that instructions depending on the erroneous prediction will be discarded once 
they reach the writeback phase. Also, the program counters are changed to 
the actual target address of the jump. The place Eval is used to simulate the 
evaluation of conditions by randomly producing either the value true or false. 

color 
Line 
P C 
Branchgen 
Branchwindow 
Value 
InstType 
Inst 

IReg 
FReg 
Reg 
RegLine 
BraPredElem 

= int; 
= int; 
= int; 
= record low : int * high : int 
= bool; 
= with INT | ADD | MULT | L! 
= record 

no : Line * 
instr : InstType * 
soul : Reg * 
sou2 : Reg * 
tar : RegLine * 
branchgen : Branchgen; 

= index ireg with 1..33; 
= index freg with 1..32; 
= union ir : IReg +fr : FReg; 
= union reg : Reg +line : Line 
= record 

no : Line * 
jmp : Line; 

BRA; 
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BraPred = list BraPredElem; 
FUnit = w i t h ALU1 | ALU2 | FPADD | FPMULT | ADR; 
Limit = w i t h token; 

The colour set definitions are fairly straighforward. Line numbers (i.e., ad
dresses), program counters and branch generations are all integers. The branch 
window is a record with an upper and a lower bound. The instruction type 
is one of the five options. An instruction is characterised by a line number, 
an instruction type, two source and one target register and a branch gene
ration. For load/store and branch instructions, the two source registers are 
not used. The branch generation is not initially specified, but is added in the 
decode phase. There are 33 integer registers and 32 floating point registers, 
each identified by an indexed identifier (e.g., ireg(10) or freq(32)). A register 
may be either an integer register or a floating point register. For load/s tore 
and branch instructions, the target field contains an address rather than a 
register, hence the colour set RegLine. The branch prediction table is a list of 
records with the line number of the branch instruction and the line number 
of the instruction most recently jumped to. 

(* lookup : Line * BraPred —V Line *) 
lookup(no, bp) = 

if bp=[] then 0 else 
if #no (lid bp) =no then # jmp (hd bp) else lookup(no, tl bp) 

(* modbp : Inst * Line * BraPred —V BraPred *) 
modbp(inst, a, bp) = if #instr inst=BRA then 

if bp=[] then [{no=#no inst, jmp=a}] else 
if #no (hd bp)=#no inst 
then {no=#no inst, jmp=a} :: (tl bp) 
else ( h d b p ) :: modbp(inst, a, tl bp) 

else bp 

(* evaljmp : Inst * bool —V Line *) 
evaljmp(inst, t r ) = if tr then #line (#tar inst) else (#no inst)+l 

(* updpcl : Inst * BraPred * PC —> PC *) 
updpcl(inst, bp, pel) = if #instr inst=BRA then 

let val a =lookup(#no inst, bp) in 
if a<>0 then a else pcl + 1 

end 
else pel 

(* updpc2 : Inst * BraPred * PC ^ PC *) 
updpc2(inst, bp, pc2) = if #instr inst=BRA then 

let val a =lookup(#no inst, bp) in 
if a<>0 then a else pc2+l 

end 
else pc2+l 
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(* u p d b g : Inst * Branchgen —> Branchgen *) 

updbg( ins t , bg) = if # i n s t r i n s t = B R A t h e n b g + 1 e l s e bg 

(* u p d b p : Inst * BraPred * Line —> B raPred *) 
updbp( ins t , bp , pc) = if l o o k u p ( # n o inst, bp) = 0 

t h e n modbp( ins t , p c + 1 , bp) 
e l s e bp 

(* add t ag : Inst * BraStack —> Inst *) 
add tag ( ins t , bg) = { n o = # n o inst, 

i n s t r = # i n s t r inst, 

s o u l = # s o u l inst, 
s o u 2 = # s o u 2 inst, 
t a r = # t a r inst, 

b r anchgen=bg } 

(* isg : I n s tType * FUni t —> bool *) 
isg ( ins t t , fu) = c a s e inst t of 

B R A =S> f u = A L U l o r e l s e fu=ALU2 
| LS => f u = A D R 
| MULT =S> f u = F P M U L T 
| A D D => f u = F P A D D 
J I N T =S> f u = A L U l o r e l s e fu=ALU2 

(* regdeps : Inst —• Reg *) 
regdeps( ins t ) = 

c a s e ^ i n s t r inst of 
B R A =>• empty 

| LS =>• # r e g ( # t a r inst) 

| MULT => l ' ( # s o u l inst) + l ' ( # s o u 2 inst) + l ' ( # r e g ( # t a r inst)) 
| A D D => l ' ( # s o u l inst) + l ' ( # s o u 2 inst) + l ' ( # r e g ( # t a r inst)) 
| INT => l ' ( # s o u l inst) + l ' ( # s o u 2 inst) + l ' ( # r e g ( # t a r inst)) 

(* isfu : Inst * FUni t * FUni t —> Inst *) 
isfu ( inst , fu, fud) = if fu=fud t h e n inst e l s e empty 

(* wbg : Inst * Branchgen —• bool *) 
wbg( ins t , bw) = ( # i n s t r i n s t = B R A a n d a l s o ^ b r a n c h g e n i n s t < ( # h i g h b w ) + l ) 

o r e l s e # b r a n c h g e n i n s t < # h i g h bw 

(* eval : uni t —> bool *) 
eval () = Random. rnd ( ) <0 .5 

(* resetpc : Inst * Value * BraPred * P C —> P C *) 
rese tpc ( ins t , value, bp , pc) = 

if # i n s t r i n s t = B R A t h e n 
l e t j t =eva l jmp( ins t , va lue ) i n 

if j t = l o o k u p ( # n o inst, bp) t h e n pc e l s e j t 
e n d 
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else 
pc 

(* corbp : Inst * Value * BraPred —> BraPred *) 
corbp(inst, value, bp) = if value then modbp(inst, #line (# tar inst), bp) 

else modbp(inst, (#no inst)+l) 

(* updret : Inst * Branchwindow —> Inst *) 
updret(inst, bw) =i f ^branchgen inst<#low bw then empty else inst 

(* bpOK : Inst * Value * BraPred —• bool *) 
bpOK(inst, value, bp) = i f value then #line (# tar inst)=lookup(#no inst, bp) 

else (#no inst) + l=lookup(#no inst, bp) 

(* updbw : Inst * Branchwindow * Branchgen * Value * BraPred 
—> Branchwindow *) 

updbw(inst, bw, bg, value, bp) = 
if #instr inst=BRA then 

if bpOK(inst, value, bp) then 
{ low=#low bw, high=#branchgen inst } 

else 
{ low=bg+l, high=bg+l } 

else bw 

(* resetbg : Inst * Value * BraPred * Branchgen —> Branchgen *) 
resetbg(inst , value, bp, bg) = 

if #instr inst=BRA then 
if bpOK(inst, value, bp) then 

bg 
else 

bg+1 
else bg 

This paragraph marks the end of Example 12.11. 

12 .6 .3 RSL M o d e l : Supersca lar P r o c e s s o r 

E x a m p l e 12 .12 An RSL Model of the Superscalar Processor: We now present 
an RSL model corresponding to the CPN model. Again the example is large, 
eight pages, so we leave it unshaded. We end it with a shaded paragraph. • 

First, types corresponding to the colour sets of the CPN model are defined. 
The translation from CPN ML to RSL is straightforward. The map type in 
RSL is used to simplify the type for the branch prediction table. The last four 
types in the RSL model are needed for communication along channels or to 
return composite values from functions. 

s c h e m e SuperscalarProcessorTypes = 
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class 
type 

Line = Int, 
PC = Int, 
Branchgen = Int, 
Branchwindow :: low : Int high : Int, 
InstType = = INT | ADD | MULT | LS | BRA, 
Inst = = 

mk_Inst( 
no : Line, 
instr : InstType, 
soul : Reg, 
sou2 : Reg, 
tar : RegLine, 
branchgen : Branchgen <-> recon_bg), 

Reg' = = IReg(Nat) | FReg(Nat), 
Reg = 

{| r : Reg' • 
case r of 

IReg(n) ->• n e {1 .. 33}, 
FReg(n) ->• n £ {1 .. 32} 

end |} , 
RegLine = Reg | Line, 
BraPred = Line ^ Line, 
FUnit = = ALU1 | ALU2 | FPADD | FPMULT | ADR, 
Limit = Nat , 
BGCom = = RequestBG | UpdateBG(Branchgen), 
BPCom = = RequestBP | UpdateBP(BraPred), 
InstReadyls = = Some(Nat, Reg-set, FUnit) | None, 
InstReadyWb = = Some(Nat) | None 

end 

Annotations 

• Program line numbers, program counters and branch generations are in
tegers. 

• A branch window has a lower and upper bound, both integers. 
• There are five types of instructions: integer instructions, floating point 

addition, floating point multiplication, load/store and conditional branch. 
• An instruction is characterised by a line number, an instruction type, two 

source registers and one destination register, and a branch generation. 
• A register is one of 33 integer registers or 32 floating point registers. 
• The branch prediction table maps branch instruction line numbers to the 

line they most recently caused a jump to. 
• There are five functional units: two ALUs, one floating point adder, one 

floating point multiplier and one address unit. 
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• Limit is used to limit the number of instructions in the instruction queue 
to four. 

• BGCom describes the syntax for requesting and updat ing the current 
branch generation in the decode phase. 

• BPCom describes the similar syntax for requesting and updat ing the 
branch prediction table. 

• InstReadyls and InstReady Wb are returned by functions indicating whether 
instructions are ready in the issue and writeback phases, respectively. • 

In moving from the CPN model to the RSL model we use the following princi
ple: transitions become processes and places become parameters for processes. 
The principle is motivated by the observation tha t places are really buffers 
for values needed for computations, i.e., transitions. We aim to join places 
and transitions to form processes in such a way tha t we achieve a minimum 
of interprocess communication. 

Figure 12.23 illustrates the processes and channels in the RSL model. 
Processes are represented as boxes and channels as arrows. The arrow head 
indicates the direction of communication. All channels are used for one-way 
communication only. 

qi 

uq_alu1 uq_adr 

ic_alu1 

uq_alu2 
;_alu2 

uq_fpadd 

_< 
ic_fpmult 

ic_fpadd 

exec_fpadd exec_fpmult 

ic_adr 

uq_fpmult 

wq_fpadd 

wq_fpmult 
wq_alu1 

Fig. 12.23. RSL channels and processes 

c o n t e x t : SuperscalarProcessorTypes 

s c h e m e SuperscalarProcessor = 
e x t e n d SuperscalarProcessorTypes w i t h 
class 

channe l 
iq ,eq,uq_alul ,uq_alu2,uq_fpadd,uq_fpmult ,uq_adr ,wq,rq : Inst, 
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ql : U n i t , 
rs : Reg-set , 
p e l , pc2 : P C , 
ic : FUnit, 
w b _ b p : BraPred, 
b p _ w b : BPCom, 
wb_bg : Branchgen, 
bg_wb : BGCom 

value 
1 system : (Line ^ Inst) —> in any out any U n i t 

system(prg) = 
fetch(prg, 4, 1) 

II 
decode«>, [], 1, 1) 

II 
issue ( 

() -fr I r ; Hesc! 
[ALU1^2,ALU2h^2,FPADDh^4,FPMULTh^4,ADRh^3]) 

II 
execute () 

II 
writeback((), mk_Branchwindow(l , 1)) 

II 
retire(()) 

2 fetch : (Line ^ Inst) x Limit x P C —>• in ql, pe l out iq U n i t 
fetch(prg, 1, pe l ) = 

if p e l ^ d o m prg t h e n chaos 
e lse 

(if 1 > 0 t h e n iqlprg(pcl) ; fetch(prg, 1 — 1, pe l + 1) end) 

D 
(ql? ; fetch(prg, 1 + 1, pe l ) ) 

D 
(let p e l ' = pe l ? in fetch(prg, 1, pel ' ) end) 

e n d 

3 decode : 
Inst* x BraPred x P C x Branchgen —> 

in iq, b p _ w b , bg_wb out ql, p e l , eq, wb_bp , wb_bg U n i t 
decode(il, bp, pc2, bg) = 

if no(hd il) ^ pc2 t h e n decode(tl il, bp, pc2, bg) 
else 

(let i = iq? in decode(il ~ (i), bp, pc2, bg) end) 
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(case bp_wb? of 
RequestBP —>• wb_bp!bp ; decode(il, bp, pc2, bg), 
UpdateBP(bp') ->• decode(il, bp', pc2, bg) 

end) 

D 
(case bg_wb? of 

RequestBG —• wb_bg!bg ; decode(il, bp, pc2, bg), 
UpdateBG(bg') ->• decode(il, bp, pc2, bg') 

end) 
D 
(let i = hd il in 

ifinstr(i) = BRA 
then 

eq!recon_bg(bg + 1, i) ; 
ql!() ; 
if pc2 £ d o m bp 
then pcl!bp(pc2);decode(tl il,bp,bp(pc2),bg+l) 
else decode(tl il,bpt[pc2i->-pc2+l],pc2+l,bg+l) 
end 

else eq!recon_bg(bg,i);ql!();decode(tl il,bp,pc2+l,bg) 
end 

end) 
end 

4 issue : Inst* xReg-set x(FUnit ^ N a t ) ->• in eq,rs,ic 
out uq_alul,uq_alu2,uq_fpadd,uq_fpmult,uq_adr Unit 

issue(il, regs, units) = 
(let i = eq? in issue(il ^ (i), regs, units) end) 
D 
(let r = rs? in issue(il, regs U r, units) end) 
D 
(let u = ic? in issue(il, regs, units f [UH> units(u) + 1]) end) 
D 
(case findready_is(l, il, regs, units) of 

None —>• issue(il, regs, units), 
Some(n, re, fu) —>• 

(case fu of 
ALU1 ->• uq_alul!il(n), 
ALU2 -> uq_alu2!il(n), 
FPADD -> uq_fpadd!il(n), 
FPMULT -> uq_fpmult!il(n), 
ADR ->• uq_adr!il(n) 

end) ; 
issue(remove(n,il),regs\ re,unitsf [fuH->-units (fu) — 1 ]) 

end) 
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5 execute : U n i t —> in any out any U n i t 
executeQ = 

exec_alul( ( ) ) 

II 
exec_alu2(()) 

II 
exec_fpadd(()) 

II 
exec_fpmult(()) 

II 
exec_adr(()) 

6 exec_alul : Inst* —>• in u q _ a l u l out wq, ic U n i t 
exec_alul(i l) = 

(let i = u q _ a l u l ? in exec_alul( i l ^ (i)) end) 

D 
(wq!hd il ; icIALUl ; exec_a lu l ( t l il)) 

7 writeback : 
Inst* x Branchwindow —>• 

in wq ,wb_bp ,wb_bg out bp_wb,bg_wb, rq ,pc l ,pc2 U n i t 
writeback (il, bw) = 

(let i = wq? in writeback(il ^ (i), bw) end) 

D 
(case findready_wb(l, il, bw) of 

None —>• writeback(il, bw), 
Some(n) —>• 

let i = il(n), valu = random() in 
if branchgen(i) < low(bw) 
t h e n writeback(remove(n, il), bw) 
else 

if instr(i) = BRA 
t h e n / * Branch instruction */ 

bp_wb!RequestBP ; 
let bp = wb_bp? , target = evaljmp(i, valu) in 

if target = bp(no(i)) 
t h e n / * Branch prediction correct */ 

rq!i ; 
writeback( 

remove(n, il), 
mk_Branchwindow ( 

low(bw), 
if high(bw) > branchgen(i) 

t h e n high(bw) 
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else branchgen(i) 
end)) 

else /* Branch prediction incorrect */ 
rq!i ; 
pclltarget ; 
pc2!target ; 
bp_wb!UpdateBP(bpf[no(i)i->'target]); 
let bg = wb_bg? in 

bg_wb!UpdateBG(bg + 1) ; 
writeback(remove(n,il), 

mk_Branchwindow(bg+1 ,bg+1)) 
end 

end 
end 

else /* Nonbranch instruction */ 
rq!i ; writeback (remove (n, il), bw) 

end 
end 

end 
end), 

8 retire : Inst* —>• in rq Unit 
retire(il) = retire(il ~ (rq?)) 

9 findready_is : 
Int x Inst* x Reg-set x (FUnit jft Nat) —> InstReadyls 

findready_is(j, il, rs, fu) = 
if il = () then None 
else 

let i = hd il in 
case instr(i) of 

INT ->• 
avail (j,il, 

{soul (i) ,sou2(i) ,RegLine_to_Reg(tar(i))}, 
(ALU1, ALU2),rs,fu), 

ADD ->• 
avail (j,il, 

{soul (i) ,sou2(i) ,RegLine_to_Reg(tar(i))}, 
(FPADD),rs,fu), 

MULT -> 
avail (j,il, 

{soul (i) ,sou2(i) ,RegLine_to_Reg(tar(i))}, 
(FPMULT),rs,fu), 

LS -> 
avail (j,il,{RegLine_to_Reg(tar(i))},( ADR) ,rs,fu), 
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BRA ->• 
avail(j, il, {}, (ALU1, ALU2), rs, fu) 

e n d 
e n d 

e n d 

10 avail : Int xInst* x Reg-set xFUni t*x Reg-set x (FUnit ^ N a t ) —>• 
InstReadyls 

avail (j, il, regreq, fureq, rs, fu) = 
if fureq = () 
t h e n 

findready_is(j + 1, t l il, rs, fu) 
else 

if regreq C rs A fu(hd fureq) > 0 
t h e n Some(j, regreq, hd fureq) 
else avail (j, il, regreq, t l fureq, rs, fu) 
e n d 

e n d 

11 findready_wb : Int x Inst* x Branchwindow —>• Ins tReadyWb 
findready_wb(j, il, bw) = 

if il = () t h e n None 
else 

if branchgen(hd il)<high(bw) V 
(instr(hd il)= BRAAbranchgen(hd i l )<h igh(bw)+l ) 

t h e n Some(j) e lse findready_wb(j + 1, il, bw) 
e n d 

e n d 

12 evaljmp : Inst x B o o l —> Line 
evaljmp(i, t) = 

if t t h e n RegLine_to_Line(tar( i ) ) e lse no(i) + 1 e n d 

13 remove : N a t x Inst* —>• Inst* 
remove(n, il) = 

if il = () t h e n () e lse 
i f n = 1 

t h e n t l il e lse (hd il) ^ remove(n — 1, t l il) e n d 
e n d 

14 random : U n i t —>• B o o l 
e n d 

Annotations 
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(1) The effect of running the system with a program prg is the parallel 
composition of the six phases. 
(2) The parameters of the fetch process are the program, the number of 
free places in the instruction queue and the program counter. The process 
will either send the next instruction to the instruction queue, provided it 
has a free place, or receive notification that a place has been freed in the 
instruction queue, or receive a request to change the program counter. 
(3) The parameters of the decode process are the list of instructions in 
the instruction queue, the branch prediction table, the second program 
counter and the branch generation counter, decode will either receive an 
instruction from fetch, or receive a request to send or update the branch 
prediction table, or receive a request to send or update the branch gen
eration, or decode an instruction. If a branch instruction is decoded, the 
branch generation is incremented and the program counters set to the pre
dicted direction of the jump, otherwise the instruction is labeled with the 
current branch generation and the program counter is incremented. 
(4) The parameters of issue are the instructions in the execute queue, the 
set of unblocked registers and the free functional units. The issue process 
will either receive an instruction from decode, or receive notification of 
a register being freed, or receive notification of a functional unit being 
freed, or find an instruction that is ready to be issued and send it to the 
appropriate functional unit. 
(5) The execute process is simply the parallel composition of the five func
tional units. The exec_alul process will either receive an instruction from 
issue, or execute an instruction, pass it to writeback and signal that the 
unit is free. 
(6) The processes for the remaining functional units are entirely analogous 
and are omitted. 
(7) The parameters for writeback are the instructions in the writeback 
queue and the branch window, writeback will either input an instruction 
from the execute phase, or find an instruction whose result is ready to be 
written back. Instructions labeled with branch generations below the lower 
bound of the branch window are discarded. For branch instructions, the 
actual target is evaluated. If the branch prediction was correct, the branch 
window is updated and the instruction passed to retire. If the branch 
prediction was incorrect, the program counters are set to the correct target, 
the branch prediction table, the branch generation and the branch window 
are updated. 
(8) The retire process records all instructions that have been fully exe
cuted. 
(9) findready_is finds an instruction that may be issued, or signals that 
no such instruction is available. An instruction can be issued when there 
are no data hazards or structural hazards. A data hazard arises when two 
instructions require the same register. A structural hazard arises when two 
instructions require the same functional unit. 
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• (10) avail checks whether a given instruction may be issued. 
• (11) ftndready_wb finds an instruction whose result is ready to be written 

back, or signals that no such instruction exists. 
• (12) evaljmp evaluates the actual target of a branch instruction. 
• (13) remove removes the nth instruction in the instruction list. 
• (14) random produces a random value simulating the nondeterminism of 

branching. 

This paragraph marks the end of Example 12.12. 

12.7 Discussion 

The two models of the superscalar processor presented above describe the 
same behaviour using two very different notations. 

Of the two models, it seems to be easiest to get an initial understanding of 
the CPN model. This is because the graphical notation supports a layering of 
understanding. One layer is the structure of the diagram viewed as a directed 
graph combined with the labels of places and transitions. At this layer an 
initial intuitive understanding of the parts of the system and the main data 
flow is built. The next layer adds the colour set of places to get an idea of 
the possible values at that place. The last layer of understanding adds arc 
inscriptions to get the full picture. This is essentially a top-down progression 
of understanding. 

It is more difficult to get an initial understanding of the RSL model. This 
is because all the aspects of the model are mixed in the equations. This means 
that the layered way of understanding is not feasible. Instead, the way to un
derstand the specification is to study each function in isolation and then build 
up the full picture by composition. This is essentially a bottom-up progression 
of understanding. 

Even though the two models are in essence the same, there are some sub
tle differences, since the Petri net semantics is a true concurrency semantics, 
where two events (i.e., occurrences) may take place simultaneously. The RSL 
semantics, on the other hand, is an interleaved semantics, where two concur
rent events are interleaved, i.e. they may occur in arbitrary order, but not 
simultaneously. This difference is mostly a theoretical problem. 

Unlike most other graphical notations, coloured Petri nets have a well-
established formal semantics and there are several tools available for verifi
cation of Petri net models. Therefore, coloured Petri nets might not be an 
obvious candidate for integration with a formal specification language, such 
as RSL. However, one could imagine replacing CPN ML with a subset of RSL 
as the language for inscriptions to give greater expressivity. 
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12.8 Bibliographical Notes 

The — by now — classical literature on Petri Nets is made up from the 
following one report [400] and seven books [238,399,419-421] — [238] is a 
three volume book on Coloured Petri Nets. The field ('Petri Nets') is very 
much "alive and kicking" — as is witnessed by a vast, ever growing literature 
and regular conferences. Cf. the following URLs [239]: 

• www.daimi.au.dk/PetriNets/: 
Welcome to the Petri Net World 

• www.informatik.hu-berl in.de/top/pnml/about.html: 
Petri Net XML Markup Language. 

• p e t r i - n e t . s o u r c e f o r g e . n e t / : 
Platform Independent Petri Net Editor (PIPE). 

• p d v . c s . t u - b e r l i n . d e / ~ a z i / p e t r i . h t m l : 
What Is a Petri Net? 

• www.informatik.uni-hamburg.de/TGI/pnbib/: 
The Petri Nets Bibliography 

• www.informatik.uni-hamburg.de/TGI/pnbib/newsletter.html: 
Petri Net Newsletter. 

12.9 Exercises 

Exercise 12.1 PTiV for a Reader/Writer System. Consider a system where 
five processes access a common resource. Two of the processes write to the 
common resource, and the three other processes read from the resource. Devise 
a PTN model of this system, such that the following requirements are met: 

• A reader can read if no writers are currently writing. 
• A writer can write if no readers are currently reading and no writers are 

currently writing. 
• A process that cannot read or write must wait until it can do so. 

Exercise 12.2 PTN for a Fair Reader/Writer System. A simple solution to 
Exercise 12.1 has the problem that if readers continually arrive to read, a 
writer may have to wait indefinitely. This situation is called starvation. Modify 
the solution to Exercise 12.1 so that starvation can not occur, i.e. any process 
which attempts to access the common resource will eventually be granted 
access to the resource. Use the following strategy: 

• If a reader arrives when there are writers waiting, the reader must wait 
until one writer has written. 

• If a writer arrives when there are readers waiting, the writer must wait 
until all the readers have read. 
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Exercise 12.3 CPN for a Fair Reader/Writer System: Solve Exercise 12.2 
using a coloured Petri net instead. 

Exercise 12.4 Petri Nets for Railway Nets: Study the following papers: [161, 
276,277]. Suggest comparative, complementing Petri net models of railway 
phenomena based on CENs, PTNs and CPNs. 
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Message and Live Sequence Charts 

Christian Krog Madsen is chief author of this chapter [316,317]. 

• The prerequisite for studying this chapter is that you have an all-round 
awareness of abstract specification (principles and techniques). 

• The aims are to introduce the concepts of message sequence charts and 
of live sequence charts, and to relate these sequence charts to RSL/CSP. 

• The objective is to enable the reader to expand the kind of phenom
ena and concepts that can be formally modelled using message sequence 
charts and live sequence charts — or, we suggest, live sequence charts in 
conjunction with, for example, RSL. 

• The treatment ranges from systematic to formal. 

Live sequence charts (LSC) is a graphical language introduced by Damm 
and Harel [89] for specifying interactions between components in a system. 
It is an extension of the language of message sequence charts (MSC). MSCs 
are frequently used in the specification of telecommunication systems and 
are closely related to the sequence diagrams of UML [59,237,382,440]. Both 
the graphical and textual syntax of MSCs are standardised by the ITU in 
Recommendation Z.120 [227-229]. The standard gives an algebraic semantics 
of MSCs. LSC extends MSC by promoting conditions to first-class elements 
and providing notations for specifying mandatory and optional behaviour. 

Reader's Guide 

The description material on basic (and on high-level) MSCs in Sects. 13.1.2-
13.1.3 and on LSC in Sect. 13.2.1 is intended as quick tutorials as well as 
for quick reference. Sect. 13.3, on the important computer science topic of 
process algebra, and Sect. 13.4, on an algebraic semantics of LSCs, are both 
rather involved and may seem a bit detached from the context. The reader 
is encouraged to refer to the example in Sect. 13.2.2 for an understanding of 
LSCs, and to its continuation in Sect. 13.4.3 to see how the algebraic semantics 
of a chart is derived using the material of Sect. 13.3. 
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13.1 Message Sequence Char ts 

13.1 .1 T h e Issues 

In this section we describe message sequence charts (MSCs). They are a 
graphical notation for specifying sequences of messages exchanged between 
behaviours.1 We describe the components of MSCs and then provide a for-
malisation of the syntax in RSL. We follow the syntax requirements defined 
by Reniers [422,423]. Finally, we give a trace semantics of MSCs. 

Message sequence charts were first standardised by the C C I T T (now ITU-
T) as Recommendation Z.120 in 1992 [227]. The s tandard was later revised 
and extended in 1996 [228] and in 1999 [229]. The original s tandard specified 
the components of an MSC. The 1996 s tandard also specified how several 
MSCs (called basic MSCs) can be combined to form an MSC document, in 
which the relation between the basic MSCs is defined by a high-level MSC 
(HMSC). The most recent s tandard provides additional facilities for specifying 
the da ta tha t is passed in messages and also allows in-line expressions. 

13.1 .2 Bas ic M S C s ( B M S C s ) 

Informal P r e s e n t a t i o n 

A basic MSC (BMSC) consists of a collection of instances. An instance is an 
abstract entity on which events can be specified. Events are message inputs, 
message outputs , actions, conditions, timers, process control events and core-
gions. An instance is denoted by a hollow box with a vertical line extending 
from the bot tom. The vertical line represents a time axis, where time runs 
from top to bot tom. Each instance thus has its own time axis, and t ime may 
progress differently on two axes. Events specified on an instance are totally 
ordered in time. Events execute instantaneously and two events cannot take 
place at the same time. Events on different instances are partially ordered, 
since the only requirement is tha t message input by one instance must be 
preceded by the corresponding message output in another instance. 

Actions are events tha t are local to an instance. Actions are represented by 
a box on the timeline with an action label inside. Actions are used to specify 
some computation tha t changes the internal state of the instance. 

A message output represents the sending of a message to another instance 
or the environment. 

A message input represents the reception of a message from another in
stance or the environment. For each message output to another instance there 
must be a matching message input. 

1An alternative way of phrasing sequences of messages exchanged between be
haviours is events shared between two behaviours where these events may involve 
the communication of information. 
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A message exchange consists of a message output and a message input. A 
message exchange is represented as an arrow from the timeline of the send
ing instance to the timeline of the receiving instance. In case of messages 
exchanged with the environment, the side of the diagram can be considered 
to be the timeline of the environment. Each arrow is labelled with a mes
sage identifier. Message exchange is asynchronous, i.e., message input is not 
necessarily simultaneous with message output. 

Example 13.1 Figure 13.1 shows an MSC with two instances, A and B. 
Instance A sends the message mi to instance B followed by message mo sent 
to the environment. B then performs some action, a, and sends the message 
« 3 to .4. • 

A 

m7 

m3 

B 

a 

Fig. 13.1. Message and action events 

Example 13.2 Figure 13.2 shows two situations that violate the partial order 
induced by message exchange. Thus it is an invalid MSC. Because events are 
totally ordered on an instance timeline, the reception of message mi precedes 
the sending of mi. This conflicts with the requirement that message input be 
preceded by message output. 

The exchange of messages m-2 and m3 illustrates another situation that 
violates the partial order, as shown by the following informal argument. Let 
the partial order be denoted < and let the input and output of message tn 
be denoted by in(m) and out(m), respectively. Using the total ordering on 
events on an instance timeline we have: 

111(1713) < out{m-2) 

in(m.2) < ov-t(m-j) 

Using the partial ordering on message events we have 

out{m-2) < in(ni2) 

Now, by transitivity of <, in(m-j) < out^m-s), thus violating the partial or
dering on message events. • 
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A B 

m, 

m2 

Fig. 13.2. Illegal message exchanges 

Conditions describe a state that is common to a subset of instances in an 
MSC. Conditions in MSCs have no semantic importance and merely serve 
as documentation. (As we shall later see, they do have meaning in LSCs.) 
Conditions are represented as hexagons extending across the timelines of the 
instances for which the condition applies. The condition text is placed inside 
the hexagon. 

/ 

<z 

>i E 3 C 

> 

< C3 > 

Fig. 13.3. Conditions 

Example 13.3 Figure 13.3 illustrates conditions. Condition c\ is local to in
stance B. Condition c-2 is a shared condition on instances A and B. Condition 
C3 is a shared condition on instances A and C. Note that the timeline of B 
is passed through the hexagon for condition C3 to indicate that B does not 
share condition C3. • 

There are three timer events: timer set, timer reset and timeout. Timers are 
local to an instance. The setting of a timer is represented by an hourglass 
symbol placed next to the instance timeline and labelled with a timer identi
fier. Timer reset is represented by a cross (x ) linked by a horizontal line to 
the timeline. Timer timeout is represented by an arrow from the hourglass 
symbol to the timeline. Every timer reset and timeout event must be preceded 
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by the corresponding timer set event. There is no notion of quantitative time 
in MSC, so timer events are purely symbolic. Extensions of MSC with time 
have been studied in [38,280,296]. 

Example 13.4 Figure 13.4 shows the syntax for timer events. On instance 
A, the timer T is set and subsequently timeout occurs. On instance B, the 
timer T' is set and subsequently reset. • 

Fig. 13.4. Timer events 

An instance may create a new instance, which is called process creation. An 
instance may also cause itself to terminate. This is called process termination. 
Process creation is represented by a dashed arrow from the timeline of the 
creating instance to a new instance symbol with associated timeline. Process 
termination is represented by a cross as the last symbol on the timeline of the 
instance that terminates. 

A 

w 

B 

m, 
/ 

Fig. 13.5. Process creation and termination 

Example 13.5 Figure 13.5 shows the creation of instance B by instance A 
and the subsequent termination of B. • 

Coregions are parts of the timeline of an instance where the usual requirement 
of total ordering is lifted. Coregions are represented by replacing part of 
the fully drawn timeline with a dashed line. Within a coregion only message 
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exchange events may be specified and these events may happen in any order, 
regardless of the sequence in which they are specified. Message exchanges 
between two instances may be ordered in one instance and unordered in the 
other instance. 

Example 13.6 Figure 13.6 illustrates a coregion in instance B. Because of 
the coregion, there is no ordering on the input of messages mi and m.2 in 
instance B, so they may occur in any order. • 

A 

m, 

B 

m2 

C 

Fig. 13.6. Coregion 

In order to increase the readability of complex MSCs, the standard speci
fies a form of hierarchical decomposition of complex diagrams into a collec
tion of simpler diagrams. This is known as instance decomposition. For each 
decomposed instance there is a sub-MSC, which is itself an MSC. The sin
gle instance that is decomposed is represented by more than one instance in 
the sub-MSC. The behaviour observable by the environment of the sub-MSC 
should be equivalent to the observable behaviour of the decomposed instance. 

Example 13.7 In Fig. 13.7 instance B is decomposed into two instances, 
Bi and B2 in the sub-MSC. The message events in which B participates are 
represented as message exchanges with the environment in the sub-MSC. The 
message mint. exchanged between Bi and B-2 is internal to the decomposed 
instance, and is thus not visible in the main MSC. • 

An Example BMSC 

Example 13.8 A Basic Message Sequence Chart: Figure 13.8 shows an ex
ample BMSC that displays most of the event types discussed above. The 
chart contains three instances, ,4, B and C. Five events are specified on in
stance A: message output of a message labelled Msgl to instance B, a local 
action Actl, a condition Condi shared with B, message output of Msg4 and 
message input of Msg5. Seven events are specified on instance B: input of 
message Msgl from .4, a process creation event creating instance C, two mes
sage exchanges with C, a condition shared with .4, and a coregion with two 
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A 

— - ^ i - _ 

B 
decom
posed 

m2 

submsc B 

m, 

B? 

m int 

m2 

Fig. 13.7. Instance decomposition 

message exchanges with A. Note that B may either receive Msg4 and then 
send Msg5, or may send Msg5 and then receive Msg4- Instance C has six 
events: its creation by B, the setting of a timer, two message exchanges with 
B, timer timeout and subsequent process termination. • 

1 1 

/• 

Msg1 

Condi 

1 1 

Msg4 j 

1 1 

Msg5 

> 

1 1 

Msg2 

Msg3 

C 
.1 
'1 

> 

\ / 

< 1 

< 

Fig. 13.8. A basic message chart example 

An RSL Model of BMSC Syntax 

We first formalise basic message sequence charts. We defer the discussion of 
well-formedness conditions to Section 13.1.6. 

Definition. By a basic message sequence chart we shall understand a struc
ture as formalised in this section and in Sect. 13.1.8. • 
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scheme BasicMessageSequenceChart = 
class 

type 
BMSC' = BMSC_NamexInstanceSpec*xBody*, 
InstanceSpec = Inst_NamexKind, 
Kind = TypexKind_Name, 
Type = = System|Block|Process|Service|None, 
Body = Instance|Note, 
Instance = = mk_Inst(instn:Inst_Name,kind:Kind,evtl:Event*), 
Note = = mk_Note(t:Text), 
Event = 

ActionEvent | MessageEvent | ConditionEvent | TimerEvent | 
ProcessEvent | CoregionEvent, 

ActionEvent = = mk_Action(actname:Act_Name), 
MessageEvent = = 

mk_Input(inpid:MsgID,inpar:Par_Name*,inaddr: Address) | 
mk_Output(outid:MsgID,outpar:Par_Name*,outaddr: Address), 

ConditionEvent = = mk_Condition(conname:Con_Name,share:Share), 
TimerEvent = = 

mk_Set(setname:TimerId,dur:Duration)| 
mk_Reset(resetname:TimerId) | 
mk_Tinieout(toname:TimerId), 

ProcessEvent = = mk_Create(name:Inst_Name,par:Par_Name*)|mk_Stop, 
CoregionEvent = = mk_Concurrent(mess:MessageEvent*), 
MsgID = = 

mk_MsgN(mn:Msg_Name,parn:Par_Name*)| 
nik_MsgID(mid:Msg_Name,min:MsgInst_Name,parid:Par_Name*), 

Address = = mk_Env|nik_InstNanie(nanie:Inst_Name), 
Share = = mk_None|mk_All|mk_Shared(instl:Inst_Name*), 
Timerld = = 

mk_Tn(nametn:Timer_Name) | 
nik_Tid(nanietid:Timer_Name,tin:TimerInst_Name), 

Duration = = mk_None|mk_Name(name:Dur_Name), 
BMSC_Name, 
Inst_Name, 
Kind_Name, 
Act_Name, 
Par_Name, 
Con_Name, 
Timer_Name, 
TimerInst_Name, 
Dur_Name, 
Msg_Name, 
MsgInst_Name 

end 

Annotations 
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• A BMSC has a name, a sequence of instance specifications and a sequence 
of body elements. 

• An instance specification has an instance name and an instance kind. 
• An instance kind has a type and a name. 
• The type of an instance is either missing or is one of system, block, process 

or service. 
• A body element is either an instance or a note. 
• An instance has an instance name, an instance kind and a sequence of 

events. 
• A note is a textual description or comment. 
• An event is an action, message, condition, timer, process or is a coregion 

event. 
• An action event has a name. 
• A message event is either a message input or a message output. A message 

input is characterised by a message identifier, a possibly empty sequence of 
input parameters and an address identifying the sender. A message output 
has a message identifier, a possibly empty sequence of output parameters 
and an address identifying the recipient. 

• A condition event has a name and an identification of the instances that 
share the condition. 

• A timer event is the setting of a timer, the resetting of a timer or a timeout. 
All are characterised by a timer identifier, and, additionally, timer setting 
may specify a duration. 

• A process event is either a process creation or a process termination. A 
process creation gives a name and a sequence of parameters to the new 
process. 

• A coregion event contains a sequence of message events. 
• An address is either the environment or the name of an instance. 
• A condition may be local to an instance shared by all instances or shared 

by a subset of instances. 
• A timer identifier is either a timer name, or a timer name and a timer 

instance name. 
• A (timer-specified) duration is either unspecified or has a name. 
• Names are further unspecified entities. • 

13.1.3 High-Level MSCs (HMSCs) 

An Informal Presentation 

We now extend the above definition of BMSCs to allow several BMSCs to 
form an MSC document. To provide the link between BMSCs the high-level 
message sequence chart (HMSC) is defined. 

A HMSC consists of a number of nodes, each representing a BMSC, con
nected with arrows. One node is the start node and several nodes may be 
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end nodes. Arrows denote vertical composition of the BMSCs they connect, 
i.e., the events of the origin BMSC occur first, followed by the events of the 
destination BMSC. Nodes may have arrows to several other nodes, indicating 
alternatives. In that case the origin BMSC is composed vertically with one of 
the alternative destination BMSCs. The graph of nodes and arrows may have 
loops, indicating iteration. 

Nodes are represented by circles or rounded rectangles labelled with the 
name of the BMSC it denotes. Start nodes are indicated by an upside-down 
triangle (V) with an arrow pointing to the node. End nodes are indicated 
by a triangle (A) pointed to by an arrow from the node. Connectors may be 
introduced to improve legibility. When connectors are used, each node may 
have at most one incoming arrow and one outgoing arrow. Connectors then 
serve as junctions for arrows, where one incoming arrow may split into several 
outgoing arrows or vice versa. Connectors are represented as small circles. 
The annotations of the formal model of the syntax of HMSCs provide more 
specific details, see below. 

An Example HMSC 

Example 13.9 A High-Level Message Chart: Figures 13.9-13.10 show a sim
ple HMSC with three BMSCs. The chart models a client-server system, where 
a server offers some service, which the client can access. The start node of the 
HMSC is the BMSC Init in which the client logs on to the server and the 
server responds with a confirmation. Then one or more cycles of the BMSC 
Transfer follow, in which the client requests a resource and the server responds 
by returning that resource. Finally, the client logs off and the server closes the 
connection. • 

brw I 
Fig. 13.9. HMSC example, part 1 of 2 



13.1 Message Sequence Charts 385 

MSC Init 

Client Server 

Logon 

LogonOK 

I I I I 

MSC Transfer 

Client Server 

Request 

Response 

I I I I 

MSC End 
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Fig. 13.10. HMSC example, part 2 of 2 

13.1.4 An RSL Model of HMSC Syntax 

Definition. By a high-level message sequence chart we shall understand a 
structure as formalised in this section, in Sects. 13.1.6 and 13.1.8 and as a 
solution to Exercise 13.3. • 

The formalisation of HMSCs is simple, given the formalisation of BMSCs. 

context: BasicMessageSequenceChart 

scheme HighLevelMessageSequenceChart = 
extend BasicMessageSequenceChart with 
class 

type 
HMSC = (BMSC_Name^BMSC) 

x (BMSC_Name ^ BMSC_Name-set) 
x BMSC_Name 
x BMSC_Name-set 

end 

Annotations 

• A high-level message sequence chart is composed of a mapping of BMSC 
names to BMSCs, 

• a set of outgoing arrows for each BMSC, 
• a start node 
• and a possibly empty set of end nodes. • 

13.1.5 MSCs Are HMSCs 

Definition. By a message sequence chart we shall understand a high-level 
message sequence chart. • 
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13.1 .6 Syntac t i c We l l - formedness of M S C s 

Now tha t we have defined the full syntax of MSCs we are ready to specify the 
requirements for a chart to be well-formed. First, we specify conditions for a 
BMSC to be well-formed. These conditions were derived by Reniers [423]. 

context : HighLevelMessageSequenceChart 
scheme WellformedBMSC = 
extend HighLevelMessageSequenceChart with 
class 

type BMSC = {| b:BMSC'*wf_BMSC(b) |} 

value 
wf_BMSC:BMSC' -)• Bool 
wf_BMSC(n,s,b) = 

let 
inst=instances(n,s,b), 
instnames={instn(i)|i:Instance*i £ elems inst} 

in 
/* 1 */ 
(Vj,k:Nat* 

j ^ kA{j,k}Cinds inst=> 
inst(j) ^ inst(k)Ainstn(inst(j)) ^ instn(inst(k)))A 

/* 2 */ 

(s + <>=• 
(V i:Instance* 

(i £ elems inst) = ((instn(i),kind(i)) £ elems s)))A 
/* 3 */ 
({name(a)| 

a: Address* 
3 i:Instance,inpid:MsgID,pl:Par_Name*« 

i £ elems instAa ^= mk_EnvA 
mk_Input(inpid,pl,a) £ elems inputEvts(i)} U 

{name(a)| 
a: Address* 

3 i:Instance,inpid:MsgID,pl:Par_Name*« 
i £ elems instAa ^= mk_EnvA 
mk_Input(inpid,pl,a) £ elems outputEvts(i)}Cinstnames)A 

/* 4 */ 
(V i:Instance* 

i £ elems inst=>-
(V evt,evt':MessageEvent* 

(evt £ inputEvts(i)Aevt' £ inputEvts(i)A 
inpid(evt)=inpid(evt )Ainaddr(evt)=inaddr(evt )=> 

evt=evt')A 
(evt £ outputEvts(i)Aevt £ outputEvts(i)A 

outid(evt)=outid(evt')Aoutaddr(evt)=outaddr(evt')=> 
evt=evt')))A 

/* 5 */ 
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(V i:Instance« 
i G elems inst=>-

(V mi:MsgID,pl:Par_Name*,inaddr:Address* 
mk_Input(mi,pl,inaddr) G inputEvts(i)Ainaddr ^ mk_Env=>-

mk_Output(mi,pl,mk_InstName(mstn(i))) G 
outputEvts(lookup (name(inaddr) ,b))) A 

(V mi:MsgID,pl:Par_Name*,outaddr:Address* 
mk_Output(mi,pl,outaddr) G outputEvts(i)A 
outaddr ^ mk_Env=> 

mk_Input(mi,pl,mk_InstName(instn(i))) G 
inputEvts(lookup(name(outaddr),b))))A 

/* 6 */ 
~is_cyclic( 

{ss| 
ss:SxS,sss:(SxS)-set* 

ss G sssA 
sss G 

{po_inst(i,el,{}) U po_comm(i,el)| 
i:Inst_Name,k:Kind,el:Event* • 

mk_Inst(i,k,el) G inst}})A 
/* 7 */ 
(V ^Instance* 

i G elems inst=>-
(V c:ConditionEvent« 

c G evtl(i)=^ 
case share(c) of 

mk_Shared(il) —> 
(V i:Inst_Name« 

i G il=^ 
(3 k:Kind,el:Event*« 

mk_Inst(i,k,el) G b)), 
—> true 

end))A 
/* 8 */ 
(V i:Instance« 

i G inst=>-
(V cn:Con_Name,sh:Share• 

mk_Condition(cn,sh) G evtl(i)=> 
case sh of 

mk_None —> t r ue , 
mk_All -)• 

(V i':Instance« 
i' G inst=^ 

len (c|c in evtl(i) ,c=mk_Condition(cn,sh)} = 
len (c|c in evtl(i')* 

c=mk_Condition(cn,mk_All))), 
mk_Shared(il) —¥ 

(V i':Instance« 
i' G instAinstn(i') G elems il=>-
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len (c|c in evtl(i)*c=mk_Condition(cn,sh)} = 
len (c|c in evtl(i')* 

3 il':Inst_Name*« 
c=mk_Condition(cn,mk_Shared(il'))A 

eleras il = 
(elems il \ {instn(i')}) U 

{instn(i)})) 
end))A 

/* 9 */ 
(V i:Instance* 

i G inst=>-
(V n:Inst_Name,p:Par_Name** 

mk_Create(n,p) £ evtl(i)=>-
n £ instnamesAn ^ instn(i)))A 

/* 10 */ 
(let 

pcl= 
((name(Event_to_ProcessEvent (pc)) | 

pc in evtl(Body_to_Instance(i))* 
3 n:Inst_Name,p:Par_Name*« 

pc=mk_Create(n,p))|i in b*i £ inst) 
in 

(V l:Inst_Name**l £ e lems pcl=>len l=card eleras 1)A 
(Vj,j':Nat* 

{j,j'}Cinds pclAj ^ j '=> 
eleras pcl(j) (~1 elems pcl(j ) = {}) 

end) 
end, 

instances:BMSC —> Instance* 
instances(n,s,b) = 

(Body_to_Instance(i)|i in b*(V t:Text*i ^ mk_Note(t))), 

inputEvts:Instance —> MessageEvent* 
inputEvts(i) = 

(Event_to_MessageEvent(e) | 
e in evtl(i)* 

(3 inpid:MsgID,inpar:Par_Name*,inaddr:Address* 
e=mk_Input (inpid,inpar ,inaddr))), 

outputEvts:Instance —>• MessageEvent* 
outputEvts(i) = 

(Event_to_MessageEvent(e) | 
e in evtl(i)* 

(3 outid:MsgID,outpar:Par_Name*,outaddr:Address* 
e=mk_Input (outid,outpar,outaddr))), 

lookup:Inst_NamexBody* ^> Instance 
lookup(i,bl) = 
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case hd bl of 
mk_Inst(i ' ,_,_) —> 

if i=i ' t h e n Body_to_Instance(hd bl) else lookup(i,tl bl) end, 
—• lookup(i,tl bl) 

end 
p re (3 k:Kind,el:Event*,mk_Inst(i,k,el) £ bl) 

t y p e 
Dir = = In|Out,S=Dirx(Inst_NamexInst_NamexMsgID) 

value 
po_inst:Inst_NamexEvent*xS-set —• (SxS)-set 
po_inst(i,el,prev) = 

if el=() t h e n {} 
else 

case hd el of 
mk_Input(mi,p,ia) —> 

{(n,(In,(i,name(ia),mi)))|n:S»n £ prev} U 
po_inst(i,tl el,{(In,(i,name(ia),mi))}), 

mk_Output(mi,p,oa) —> 
{(n,(Out,(i,name(oa),mi)))|n:S«n £ prev} U 
po_inst(i,tl el,{(Out,(i,name(oa),mi))}), 

mk_Concurrent(mel) —> 
{(n,(In,(i,ia,mi)))| 

n:S,ia:Inst_Name,mi:MsgID,p:Par_Name*« 
n £ prevAmk_Input(mi,p,mk_InstName(ia)) £ mel} U 

{(n,(Out,(i,oa,mi)))| 
n:S,oa:Inst_Name,mi:MsgID,p:Par_Name*• 

n £ prevAmk_Output(mi,p,mk_InstName(oa)) £ mel} 
po_inst( 

i,tl el, 
{(In,(i,ia,mi))| 
ia:Inst_Name,mi:MsgID,p:Par_Name*• 

mk_Input(mi,p,mk_InstName(ia)) £ mel} U 
{(Out,(i,oa,mi))| 
oa:Inst_Name,mi:MsgID,p:Par_Name*« 

mk_Output(mi,p,mk_InstName(oa)) £ mel}), 
_ —> po_inst(i,tl el,prev) 

end 
end, 

po_comm:Inst_Namex Event* —¥ (SxS)-set 
po_comm(i,el) = 

if el=() t h e n {} 
else 

case hd el of 
mk_Output(mi,p,oa) —> 

{((Out,(i,name(oa),mi)),(In,(name(oa),i,mi)))} U 
po_comm(i,tl el), 
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_ —> po_comm(i,tl el) 
end 

end, 

is_cyclic:(SxS)-set —> Bool 
is_cyclic(sss) = 

(3 s:S*-
(V i:Nat«i>0Ai < len s=>(s(i),s(i+l)) G sss)A 
s(l)=s(len s)) 

end 

Annotations 

• A BMSC is well-formed if each of the following conditions hold: 
1. In a BMSC instances are uniquely named. 
2. If an interface is specified for a BMSC, then for each instance in the 

interface there must be an instance with the same name and kind in 
the body of the chart and vice versa. 

3. Every input and output event must reference instances which are de
clared in the body of the chart. 

4. On an instance there may be at most one message input with a given 
message identifier and address. On an instance there may be at most 
one message output with a given message identifier and address. 

5. For each message output to an instance, there must be a corresponding 
message input specified on that instance. For each message input from 
an instance, there must be a corresponding message output specified 
on that instance. 

6. A message output may not be causally dependent on its corresponding 
message input, directly or via other messages. This property is verified 
by constructing a partial order on communication events and checking 
that the directed graph obtained from this partial order does not con
tain cycles. A message event precedes all message events that follow it 
in an instance specification, and every message input is preceded by its 
corresponding message output. 

7. Only declared instances may be referenced in the shared instance list 
of a condition. 

8. A shared condition must appear equally many times in the instances 
sharing it. 

9. Only declared instances may be referenced in a process creation. 
10. There must not be more than one process creation event with a given 

instance name. 
• A timeout or reset event can only occur after a corresponding timer set 

event, and a stop event must be the last on the time line. • 

Now, we specify conditions for a HMSC to be well-formed. 

context: WellformedBMSC 
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scheme WellformedHMSC = 
extend WellformedBMSC with 
class 

type HMSC = {| h : HMSC' • wf_HMSC(h) |} 

value 
wf_HMSC : HMSC' -)• Bool 
wf_HMSC(b, a, s, e) = 

/* 1 */ 
d o m a = d o m b A 
/* 2 */ 
(V bmscs : BMSC_Name-set • bmscs £ rng a => bmscs C dom a) A 
/* 3 */ 
s £ dom b A 
/* 4 */ 
e C dom b 

end 

Annotations 

• A HMSC is well-formed, if each of the following conditions hold: 
• The set of arrows must emanate from BMSCs tha t are in the mapping of 

BMSC names to BMSCs. 
• The set of arrows must terminate at BMSCs tha t are in the mapping of 

BMSC names to BMSCs. 
• The start node must be in the mapping of BMSC names to BMSCs. 
• The end nodes must be in the mapping of BMSC names to BMSCs. • 

13 .1 .7 A n E x a m p l e : I E E E 802 .11 W i r e l e s s N e t w o r k 

E x a m p l e 13 .10 An IEEE 802.11 Wireless Network: We bring in a large ex
ample, this t ime without shading. • 

D e s c r i p t i o n 

We illustrate the use of MSCs by modelling the possible exchanges of frames 
between an access point and a station in an IEEE 802.11 wireless net
work [224]. 

We assume the wireless network is operating under the Distributed Coor
dination Function and tha t no frames are lost due to transmission errors or 
collisions. Also, we omit some frame subtypes used for power save functions, 
etc. 

A station is any device tha t conforms to the physical layer and medium 
access control layer specifications in the IEEE 802.11 standard. An access 
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point is a station that additionally routes frames between the wireless net
work and some other network (usually a wired LAN). IEEE 802.11 uses the 
carrier sense multiple access/collision avoidance (CSMA/CA) technology for 
accessing the medium. The HMSC is shown in Fig. 13.11 and the referenced 
BMSCs in Fig. 13.12. 

_s , , x , , i _ 
Deauth | |Disassoc| |Reassoc| | aBC | | aSend | |aRCSend] 

ES 
I sBC I I sSend I bRCSend 

TTT 
Fig. 13.11. HMSC of 802.11 wireless network with one access point and one station. 

Initially, the station has no contact with the access point. It discovers the ac
cess point by scanning the available channels. Scanning may be either passive, 
in which case it waits for a beacon frame from the access point, or it may be 
active, in which case it emits probe frames. If an access point receives a probe 
frame it will respond with a probe response frame giving information (timing, 
SSID, etc.) necessary for joining the network. Once the station has contact 
with a network, it must be authenticated. In an 802.11 network there are 
two authentication methods: open system and shared key. In the former, any 
station requesting authentication may become authenticated. More specifi
cally, the station will send an authentication request and the access point 
will respond with an authentication response. In the latter, only stations with 
knowledge of a shared secret key may become authenticated. In this case the 
authentication protocol consists of four messages. 

First, the station sends an authentication request. The access point replies 
with a challenge message containing a nonce value. The station encrypts the 
nonce value using the shared secret key and returns it in an authentication 
response frame. Then the access point decrypts the received encrypted nonce 
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Fig. 13.12. BMSCs referenced in Fig. 13.11 

and compares it with the original nonce. If they match the station is con
sidered authenticated. The outcome of the comparison is sent to the station, 
confirming either tha t it is authenticated or tha t authentication failed. 
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The next step is for the station to become associated with the access point. 
Several 802.11 networks, each with their own acces point, may be joined to 
form an extended logical network, within which stations may move freely. 
Association is a means of recording which access point in such an extended 
network a given station is currently able to communicate with. Each station 
may be associated with only one access point at a time, while an access point 
may be associated with zero, one or more stations. An association is estab
lished by the station sending an association request frame to the access point it 
wishes to associate with. The access point replies with an association response 
frame. 

A n RSL M o d e l of t h e I E E E 802 .11 E x a m p l e 

E x a m p l e 13 .11 An RSL Model of the IEEE 802.11 Example: We now show 
an RSL model tha t conveys the same information as the MSC model, namely 
the sequence of messages tha t may be passed in the given 802.11 wireless net
work. We model the two entities as two concurrent processes which exchange 
messages by communicating on two channels. We do not take advantage of 
the features of RSL to describe the contents of the messages or how they are 
formed. 

Text and formulas are not framed. • 

First, we define the types of frames. In IEEE 802.11 there are three overall 
types of frames: data, management and control frames. Each type of frame 
has several subtypes. 
s c h e m e IEEE80211 = 

class 
t y p e 

Frame = ManFrame | CtrFrame | DataFrame, 
ManFrame = = 

Beacon | 
ProbeRequest | 
ProbeResponse | 
OSAuthRequest | 
OSAuthResponse | 
SKAuthRequest | 
SKAuthChallenge | 
SKAuthResponse | 
SKAuthFinish | 
AssocRequest | 
AssocResponse | 
Deauthentication | 
Disassociation | 
ReassocRequest | 
ReassocResponse, 
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CtrFrame = = ACK | CTS | RTS, 
DataFrame = = Data | Broadcast 

channel s_a : Frame, a_s : Frame 
e n d 

Annotations 

• A frame is a management, control, or data frame. 
• A management frame has one of 15 subtypes. 
• A control frame has subtype acknowledgement, clear-to-send, or request-

to-send. 
• A data frame is a unicast data frame or a broadcast frame. 
• There is a pair of channels between the access point and the stations. • 

Now we describe the behaviour of the access point in terms of the communi
cations in which it will participate. Note tha t received messages only serve to 
advance the communication, while the contents and type of message received 
is ignored. Also note tha t in situations where the access point may do one of 
several things we abstract this choice as a nondeterministic internal choice. 
The specification is not robust in the sense tha t the access point does not 
check tha t the messages received from the station are of the correct type and 
subtype. 

contex t : IEEE80211 

s c h e m e IEEE80211_ap = 
e x t e n d IEEE80211 w i t h 
class 

value 
AP : U n i t —> in s_a out a_s U n i t 
AP() = (a_beacon() [] a_probe()) , 

a_beacon : U n i t —>• in s_a out a_s U n i t 
a_beacon() = a_s!Beacon ; (a_osauth() \] a_skauth()) , 

a_probe : U n i t —> in s_a out a_s U n i t 
a_probe() = 

let proberequest = s_a? in skip e n d ; 
a_s!ProbeResponse ; 
let ack = s_a? in skip e n d ; 
(a_osauth() \\ a_skauth() ) , 

a_osauth : U n i t —>• in s_a out a_s U n i t 
a_osauth() = 

let osauthrequest = s_a? in skip e n d ; 
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a_s!OSAuthResponse ; 
let ack = s_a? in skip end ; 
a_assoc(), 

a_skauth : Unit —• in s_a out a_s Unit 
a_skauth() = 

let skauthrequest = s_a? in skip end ; 
a_s!SKAuthChallenge ; 
let skauthresponse = s_a? in skip end ; 
a_s!SKAuthFinish ; 
let ack = s_a? in skip end ; 
a_assoc(), 

a_assoc : Unit —• in s_a out a_s Unit 
a_assoc() = 

let assocrequest = s_a? in skip end ; 
a_s!AssocResponse ; 
let ack = s_a? in skip end ; 
a_op(), 

a_op : Unit —> in s_a out a_s Unit 
a_op() = 

a_deauth() 

D 
a_disassoc() 
D 
a_reassoc() 
D 
a_abc() 
D 
a_asend() 
D 
a_arcsend() 
D 
a_sbc() 
D 
a_ssend() 
D 
a_srcsend(), 

a_deauth : Unit —>• in s_a out a_s Unit 
a_deauth() = 

let deauthentication = s_a? in skip end ; 
(a_osauth() \\ (a_skauth() 0 AP())), 
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a_disassoc : Unit —• in s_a out a_s Unit 
a_disassoc() = 

let disassociation = s_a? in skip end ; 
(a_deauth() [] a_assoc()), 

a_reassoc : Unit —>• in s_a out a_s Unit 
a_reassoc() = 

let reassocrequest = s_a? in skip end ; 
a_s!ReassocResponse ; 
let ack = s_a? in skip end ; 
a_op(), 

a s b c : Unit —> in s_a out a s Unit 
a_sbc() = let broadcast = s_a? in skip end ; a_op(), 

a_ssend : Unit —>• in s_a out a_s Unit 
a_ssend() = let data = s_a? in skip end ; a_s!ACK ; a_op(), 

a_srcsend : Unit —• in s_a out a_s Unit 
a_srcsend() = 

let rts = s_a? in skip end ; 
a_s!CTS ; 
let data = s_a? in skip end ; 
a_s!ACK ; 
a_op(), 

a_abc : Unit —>• in s_a out a_s Unit 
a_abc() = a_s!Broadcast ; a_op(), 

a_asend : Unit —• in s_a out a_s Unit 
a_asend() = a_s!Data ; let ack = s_a? in skip end ; a_op(), 

a_arcsend : Unit —>• in s_a out a_s Unit 
a_arcsend() = 

a_s!RTS ; 
let cts = s_a? in skip end ; 
a_s!Data ; 
let ack = s_a? in skip end ; 
a_op() 

end 

We now give the corresponding behaviour of the station. This is essentially the 
inverse of that of the access point. Again, choices are abstracted as internal 
nondeterminism. 

context: IEEE80211_ap 
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scheme IEEE80211_sta = 
extend IEEE80211_ap with 
class 

value 
STA : Unit —> in a_s out s_a Unit 
STA() = (s_beacon() 0 s_probe()), 

s_beacon : Unit —>• in a_s out s_a Unit 
s_beacon() = 

let beacon = a_s? in skip end ; 
(s_osauth() Q s_akauth()), 

s_probe : Unit —>• in a_s out s_a Unit 
s_probe() = 

s_a!ProbeRequest ; 
let proberesponse = a_s? in skip end ; 
s_a!ACK ; 
(s_osauth() [] s_akauth()), 

s_osauth : Unit —> in a_s out s_a Unit 
s_osauth() = 

s_a!OSAuthRequest ; 
let osauthresponse = a_s? in skip end ; 
s_a!ACK ; 
s_assoc(), 

s_akauth : Unit —> in a_s out s_a Unit 
s_akauth() = 

s_a!SKAuthRequest ; 
let skauthchallenge = a_s? in skip end ; 
s_a!SKAuthResponse ; 
let skauthfinish = a_s? in skip end ; 
s_a!ACK ; 
s_assoc(), 

s_assoc : Unit —>• in a_s out s_a Unit 
s_assoc() = 

s_a!AssocRequest ; 
let assocresponse = a_s? in skip end ; 
s_a!ACK ; 
s_op(), 

s_op : Unit —>• in a_s out s_a Unit 
s_op() = 



13.1 Message Sequence Charts 399 

s_deauth() 

n 
s_disassoc() 
n 
s_reassoc() 
n 
s_abc() 
n 
s_asend() 
n 
s_arcsend() 
n 
s_abc() 
n 
s_asend() 
n 
s_arcsend(), 

s_deauth : Unit —>• in a_s out s_a Unit 
s_deauth() = 

s_a!Deauthentication ; ((s_osauth() [] s_akauth()) \\ STA()), 

s_disassoc : Unit —>• in a_s out s_a Unit 
s_disassoc() = s_a!Disassociation ; (s_deauth() [] s_assoc()), 

s_reassoc : Unit —>• in a_s out s_a Unit 
s_reassoc() = 

s_a!ReassocRequest ; 
let reassocresponse = a_s? in skip end ; 
s_a!ACK ; 
s_op(), 

s_sbc : Unit —> in a_s out s_a Unit 
s_sbc() = s_a!Broadcast ; s_op(), 

s_ssend : Unit —> in a_s out s_a Unit 
s_ssend() = s_a!Data ; let ack = a_s? in skip end ; s_op(), 

s_srcsend : Unit —> in a_s out s_a Unit 
s_srcsend() = 

s_a!RTS ; 
let cts = a_s? in skip end ; 
s_a!Data ; 
let ack = a_s? in skip end ; 
s_op(), 
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s_abc : Unit —• in a_s out s_a Unit 
s_abc() = let broadcast = a_s? in skip end ; s_op(), 

s_asend : Unit —>• in a_s out s_a Unit 
s_asend() = let data = a_s? in skip end ; s_a!ACK ; s_op(), 

s_arcsend : Unit —> in a_s out s_a Unit 
s_arcsend() = 

let rts = a_s? in skip end ; 
s_a!CTS ; 
let data = a_s? in skip end ; 
s_a!ACK ; 
s_op() 

end 

This example has hopefully demonstrated the power of MSCs as a specifica
tion method. Clearly, the MSC specification is much more compact than the 
corresponding RSL specification, and it is also much more readable. The power 
of RSL, however, becomes apparent if one wants to add an additional layer of 
detail, for example, by adding parameters to the messages and explaining how 
parameters from incoming messages are related to the parameters of outgoing 
messages. While MSCs are good at specifying one aspect (namely sequences 
of events) of a system, RSL is expressive enough to specify many aspects. 

13.1.8 Semantics of Basic Message Sequence Charts 

We now give a semantics of BMSCs by defining an RSL function, S, that yields 
the possible traces of a given BMSC. A trace is a causally ordered sequence 
of events. Note that the semantics is in general nondeterministic, in the sense 
that a given BMSC may have many legal sequences of events. 

scheme BMSC_Semantics = 
extend WellformedBMSC with 
class 

value 
S : BMSC ->• (Event*)-set 
S(bmsc) = 

{el|el:Event*«el £ interleave(bmsc)AisValid(el,{})} 

interleave : BMSC -t (Event*)-set 
interleave(bmsc) = 

interleave((evtl(inst)|inst in instances(bmsc)),()) 

interleave : (Event*)* x (Event*)* —>• (Event*)-set 
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interleave(evtll, evtll') = 
i fev t l l= (> 

a t hen {} 
else 

let head = hd evtll in 
(let rest = interleave((tl head)^tl evtlPevtll',()) in 

b {(hd head)^r|r:Event*«r £ rest} end) 
c U interleave(tl evtll, (head)^evtll') 

end 
end 

isValid : Event* x Msg_Name-set —>• Bool 
isValid(evtl, mnms) = 

case hd evtl of 
mk_Outpiit(mnm,pars,adr) —>• 

isValid(tl evtl,mnms Ujmnm}), 
mk_Input(mnm,pars,adr) —>• 

id £ ids A isValid(tl evtl,mnms\{mnm}) 
end 

end 

Annotations 

• The semantics of a BMSC, S(bmsc), is a set of lists of events, where each 
list is an interleaving of the events of each of the instances in the BMSC, 
and the set contains only those lists that are valid. 

• The interleaving of a BMSC is an interleaving of the event lists of its 
instances. 
(a) The interleaving of an empty list of events is the empty set. 
(b) The interleaving of a non-empty list of event lists is obtained by selecting 

the head element of the head of the list and adding that element as the 
first element of all interleavings of the remaining event-lists, 

(c) and forming the union with the set of interleavings obtained from the 
rest of the list. 

• An event list is valid if every input event causally follows its corresponding 
output event in the list. • 

13.1.9 Semantics of High-Level Message Sequence Char t s 

We leave it as Exercise 13.3 for the reader to combine the above into functions 
which give a semantics of HMSCs. 
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13.2 Live Sequence Charts: Informal Presentation 

13.2 .1 Live S e q u e n c e Chart S y n t a x 

In this section we informally describe the components of live sequence charts 
(LSC). We return to the question of a formal semantics of a subset of LSCs 
in Sect. 13.4. 

Graphica l S y n t a x of Live S e q u e n c e Char t s 

LSCs were proposed by Damm and Harel [89] as an extension of MSCs. They 
identified a number of shortcomings and weaknesses of the MSC standard and 
proposed a range of new concepts and notation to overcome these problems. 

One of the major problems with the semantics of MSCs is tha t it is not 
clear whether an MSC describes all behaviours of a system or just a set of 
possible behaviours. Typically, the latter view would be used in early stages of 
development, while the former would apply in later stages when the behaviour 
is more fixed. Another problem noted by Damm and Harel is the inability 
of MSCs to specify liveness, i.e., MSCs have no constructions for enforcing 
progress. Damm and Harel also view the lack of semantics for conditions to 
be a problem. 

Universal and Existential Charts 

The most prominent feature of LSCs is the introduction of a distinction be
tween optional and mandatory behaviour. This applies to several elements in 
charts. A distinction is introduced between universal charts and existential 
charts. 

Universal charts specify behaviour tha t must be satisfied by every possible 
run of a system. This may be compared to universal quantification over the 
runs of the system. On the other hand, existential charts specify behaviour 
tha t must be satisfied by at least one run of the system. This is like exis
tential quantification over the runs of the system. The typical application of 
existential charts would be in the early stages of the development process, par
ticularly in domain modelling. An existential chart specifies a scenario tha t 
may be used to describe characteristic behaviours of the domain. 

Universal charts would typically be used later in the development process, 
particularly in requirements engineering and in requirements documents. Uni
versal charts are designated by a fully drawn box around the chart, while 
existential charts are designated by a dashed box. 

E x a m p l e 13 .12 Figure 13.13 shows a universal LSC with two instances, .4 
and B. The behaviour specified by this chart must (i.e., shall) be satisfied by 
every run of the system. 
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Figure 13.13 shows an existential LSC. This represents a scenario that at 
least one run of the system must satisfy. 

The four messages of Fig. 13.13 are discussed in Example 13.14 below. • 

A 

1 1 
B 

1 1 
m, 

m2 

m 3 

m 4 

1 

l _ 

A 

1 
m, 

m2 

B 

1 1 

J 

Fig. 13.14. Existential LSC 

Fig. 13.13. Universal LSC 

Precharts 

LSC introduces the notion of a prechart to restrict the applicability of a chart. 
The prechart is like a precondition that when satisfied activates the main 
chart. A given system need only satisfy a universal chart whenever it satisfies 
the prechart. An empty prechart is satisfied by any system. A prechart can be 
considered as the expression in an IF statement where the body of the THEN 
part is the universal chart. The prechart is denoted by a dashed hexagon 
containing zero, one or more events. 

Example 13.13 Figure 13.15 shows a universal LSC with a prechart consist
ing of the single message activate. In this case, the behaviour specified in the 
body of the chart only applies to those runs of the system where the message 
activate is sent from instance .4 to instance B. • 

"Hot" and "Cold" Messages 

LSC allow messages to be "hot" or "cold". A hot message is mandatory, i.e., if 
it is sent then it must be received eventually. This is denoted by a fully drawn 
arrow. For a cold message reception is not required, i.e., it may be "lost". This 
is denoted by a dashed arrow. 

Synchronous and Asynchronous Messages 

Also, a message may be specified as either synchronous or asynchronous. Syn
chronous messages are denoted by an open arrowhead •>, while asynchronous 
messages are denoted by a closed arrowhead -E>. 
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A B 

activate 

ready 

initialise 

ready 

Fig. 13.15. Prechart 

Example 13.14 Figure 13.13 illustrates the four kinds of messages: hot and 
cold, synchronous and asynchronous. Message mi is cold and synchronous. 
Message m2 is hot and synchronous. Message m% is cold and asynchronous. 
Finally, message m^ is hot and asynchronous. • 

Conditions 

In LSC conditions are promoted to first-class events. The difference is that con
ditions now have an influence on the execution of a chart, while in MSC they 
were merely comments. Again, a distinction is made between a hot (manda
tory) condition, which, if evaluated to false, causes nonsuccessful termination 
of the chart, and a cold condition (optional) which, if evaluated to false, causes 
successful termination of the chart. A hot condition is like an invariant which 
must be satisfied. 

By combining a prechart with a universal chart containing just a single 
hot condition that always evaluates to false, it is possible to specify forbidden 
scenarios, since the scenario expressed in the prechart will then always cause 
nonsuccessful termination. A shared condition forces synchronisation among 
the sharing instances, i.e., the condition will not be evaluated before all in
stances have reached it and no instance will progress beyond the condition 
until it has been evaluated. 

Example 13.15 Figure 13.16 illustrates two conditions. The first is hot, 
while the second is cold. If the hot condition evaluates to false, the chart is 
aborted, indicating an erroneous situation. If the second condition evaluates 
to false, the current (sub)chart is exited successfully. • 

Subcharts 

Iteration and conditional execution are obtained by means of subcharts. Sub-
charts are LSCs that are specified for a subset of the instances of the containing 
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A B 

A.enabled = true > 
4-

^ A. ready = true / 

Fig. 13.16. Conditions 

LSC and possibly additional new instances. Iteration is denoted by annotating 
the top-left corner of the chart with an integer constant for limited iteration 
or an asterisk for unlimited iteration. A subchart is exited successfully either 
when a limited iteration has executed the specified number of times, or when 
a cold condition evaluates to false. 

By combining subcharts with cold conditions, WHILE and DO-WHILE 
loops may be created. Additionally, a special form of subchart with two parts 
is used to create an IF-THEN-ELSE construct. The first part of the subchart 
has a cold condition as the first event. If the condition evaluates to true, the 
first part of the subchart is executed. If the condition evaluates to false, the 
second part of the subchart is executed. 

Example 13.16 Figure 13.17 illustrates limited iteration. Instance A will 
send the message mi 60 times to instance B. • 

_ j nz 
60 

m, 

Fig. 13.17. Limited iteration 

Example 13.17 Figure 13.18 illustrates unlimited iteration with a stop con
dition, essentially like a DO-WHILE loop. The message mi will be sent re
peatedly until the condition becomes false. Once that happens, the subchart 
is exited. • 
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A B 

Fig. 13.18. DO-WHILE loop 

Example 13.18 Figure 13.19 is similar to the previous situation, except that 
the condition is now checked before the first message is sent, thus mimicking 
a WHILE loop. 

• • 

Fig. 13.19. WHILE loop 

Example 13.19 Figure 13.20 is like Fig. 13.19 except that there is no iter
ation. Thus, the message nil will be sent once if the condition evaluates to 
true, and it will not be sent if the condition evaluates to false. Therefore, this 
construction is like an IF-THEN construct. • 

Example 13.20 In Fig. 13.21 the special construction for IF-THEN-ELSE 
is illustrated. The two subcharts represent the THEN and ELSE branches. If 
the condition evaluates to true, the first subchart is executed, otherwise the 
second subchart is executed. In either case, the subchart not chosen is skipped 
entirely. • 

Locations 

The distinction between hot and cold is also applied to the timeline of an 
instance. Any point where an event is specified on the timeline is called a 
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A B 

—NT— -*• \ 

< B.response = false / 
N . ^ . _ £ w 

m1 

Fig. 13.20. IF-THEN conditional 

A B 

terminate 

continue 

Fig. 13.21. IF-THEN-ELSE conditional 

location. A location may be hot indicating tha t the corresponding event must 
eventually take place, or cold indicating tha t event might never occur. A hot 
location is represented by the time line being fully drawn, while a cold location 
is represented by a dashed time line. The timeline may alternate between being 
fully drawn and dashed. 

The addition of cold locations conflicts with the representation of coregions 
inherited from MSCs. For this reason, the syntax for a coregion is modified to 
be a dashed line positioned next to the part of the time line tha t the coregion 
spans. 

E x a m p l e 13 .21 Figure 13.22 illustrates the syntax for optional progress. 
The timeline is fully drawn at the location where the message mi is sent 
and received, indicating tha t these events must eventually take place. This 
guarantees liveness. At the location where the message m^ is sent and received, 
the time line is dashed, indicating tha t neither instance is required to progress 
to the sending or receiving of m%. If an instance does not progress beyond a 
location /, then no event on the t ime line of tha t instance following I will take 
place. Thus, in this case, if ni2 is never sent, m^ will never be sent. • 
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A B 

II II 
m, 

m2 

m3 

Fig. 13.22. Optional progress 

13.2 .2 A Live S e q u e n c e Chart E x a m p l e , I 

E x a m p l e 13 .22 A Live Sequence Chart, Part I: We conclude this section 
with an example. This example is concluded by Example 13.23 in Sect. 13.4.3. 
We omit shading. • 

Figure 13.23 shows an example LSC with three instances. The first step is 
to convert the graphical syntax into the textual syntax. The result is shown 
below. 

A B 

• CD 
' < cond, \ \ 

^ > 

c 

\ m, 

m2 

cond2 u. 

/ / 
m3 

7 " \ / 

m s , 

' 
Fig. 13.23. Example live sequence chart 

lsc Example; 
ins tance A 

prechart 
hot hotcondition(conrfi) ; 
hot out rti\ t o B a sync ; 

e n d prechart b o d y hot out mi t o B a sync ; 
hot coldcondition(conrf2) ; 
hot out 1JI4 t o B sync ; 

e n d b o d y 
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end instance 
instance B 

prechart 
hot hotcondition(conrfi) ; 
hot in mi from A async ; 

end prechart 
body 

hot concurrent 
in 77i2 from A async ; 
in 77i3 from C async ; 

end concurrent ; 
hot coldcondition(conrf2) ; 
hot in 77J4 from A sync ; 
hot out 7715 to C async ; 

end body 
end instance 
instance C 

body 
hot out 7713 to B async ; 
cold in 77J5 from B async ; 
cold out me to env async ; 

end body 
end instance 

end lsc 

13.3 Process Algebra 

The ITU standard Z.120 for MSCs includes a formal algebraic semantics based 
on the process algebra PAf introduced by Baeten and Weijland [27]. In this 
section we first briefly review the definition of PAf following [326] and [26], 
and then present an extension of that algebra (named PAce), which will be 
used for defining the semantics of a subset of LSCs in Section 13.4.2 and for 
expressing communication behaviours of RSL specifications in Sect. 13.5.2. 

The material in this section cannot be considered to belong to the field of 
software engineering. Rather, it belongs to the field of computer science. The 
reader whose interest is mainly focused on the application of MSCs and LSCs 
to actual engineering problems may skip the rest of this chapter. Those who 
wish to gain a deeper understanding of the relations between sequence charts 
and RSL are encouraged to read on. 

The material that follows only scratches the surface of the topic of process 
algebras. The theoretical foundations for the process algebras presented here 
are given in [317]. 
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13.3 .1 T h e P r o c e s s A l g e b r a PAe 

The algebraic theory of PAe is given as an equational specification (SpAe, 
EpAe), consisting of the signature, SpAe, and a set of equations, EPAC. We 
first define the signature and equations and then give the intuition behind the 
definitions. 

Signature 

The one-sorted signature, SPA, , consists of 

1. two special constants 6 and e 
2. a set of unspecified constants A, for which {5, e} fl A = 0 
3. the unary operator y/ 
4. the binary operators + , •, || and []_ 

The unspecified set A is a parameter of the theory. Thus, applications of the 
theory require the theory to be instantiated with a specific set A. When the 
theory is applied to MSCs, the set A consists of identifiers for the atomic 
events of the chart. 

For convenience and following tradition, we will apply the binary operators 
in infix notation, i.e., instead of + (x,y) we will write x + y. To reduce the 
need for parentheses, operator precedences are introduced. The • operator 
binds strongest, the + operator binds weakest. 

Let V be a set of variables. Then terms over the signature SpAe with 
variables from V, denoted T{SpAe,V), are given by the inductive definition 

1. v € V is a term. 
2. a £ A is a term. 
3. 6 is a term. 
4. e is a term. 
5. If t is a term, then y/(t) is a term. 
6. If t\ and £2 are terms, then t\op £2 is a term, for op £ {+ , •, ||, []_}. 

A term is called closed if it contains no variables. The set of closed terms over 
SpAe is denoted T(SpAe). 

E q u a t i o n s 

The equations of PAf are of the form t\ = £2, where t i , t 2 G T(SpAe, V). For 
a £ A and x, y, z £ V the equations, EpAe, are given in Table 13.1. 

The special constant 8 is called deadlock. It denotes the process tha t has 
stopped executing actions and can never resume. The special constant e is 
called the empty process. It denotes the process tha t terminates successfully 
without executing any actions. The elements of the set A are called atomic 
actions. These represent processes tha t cannot be decomposed into smaller 
par ts . As mentioned above, the set A is given a concrete definition when 
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Table 13.1. Equations of PAe 

x + y = y + x (Al) 

(x + y) + z = x + (y + z) (A2) 

x + x = x (A3) 

(x + y)-z = x-z + y-z (A4) 

(x -y) • z = x • (y • z) (A5) 

x + S = x (A6) 

S • x = S (A7) 

x • e = x (A8) 

e • x = x (A9) 

x || y = x\Ly + y\Lx + y/(x) • y/(y) (Fl) 

e\lx = S (F2) 

6\Lx = S (F3) 

a • x\Ly = a-(x\\y) (F4) 

(x + y)\Lz = x\Lz + y\Lz (F5) 

V(6) = 6 (Tl) 

V(S) = S (T2) 

Via -x)=5 (T3) 

V(* + y) = y/(x) + V(y) (T4) 

the theory is applied. For example, in defining the semantics of MSCs, the 
set A will contain the symbols tha t identify the events in the chart, such 
as in(a,b,ml) identifying the event of instance b receiving message m l from 
instance a. 

The binary operators + and • are called alternative and sequential com
position, respectively. The alternative composition of processes x and y is the 
process tha t behaves as either x or y, but not both. The sequential composi
tion of processes x and y is the process tha t first behaves as x until it reaches 
a terminated state and then behaves as y. 

The binary operator || is called the free merge. The free merge of processes 
x and y is the process tha t executes an interleaving of the actions of x and y. 
The unary termination operator ^J indicates whether the process it is applied 
to may terminate immediately. The termination operator is an auxiliary oper
ator needed to define the free merge. The binary operator []_ is called the left 
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merge and denotes the process that executes the first atomic action of the left 
operand followed by the interleaving of the remainder of the left operand with 
the right operand. Like the termination operator, the left merge operator is 
an auxiliary operator needed to define free merge. 

To see why the termination operator is necessary, consider Eq. F l . What 
happens in the free merge is that all possible sequences of atomic actions 
from the two operands are generated. When both operands become the empty 
process, we want the free merge to be the empty process as well, i.e., we want 
the equation e || e = e to hold. Because of Eq. F2, the two first alternatives in 
F l become deadlock. However, the last alternative becomes the empty process, 
because of Eq. T l . Thus, with Eq. A6 we get the desired result. It is possible 
to give a simpler definition of the free merge without using the empty process 
or the termination operator, see [26], but for our purposes we need the empty 
process. 

Derivability 

We now define what it means for a term to be derivable from an equational 
specification. First, the two auxiliary notions of a substitution and a context 
are introduced. 

Definition 13.1. A substitution a : V —>• T(S,V) replaces variables with 
terms over S. The extension of a to terms over S, denoted a : T(S, V) —> 
T{E,V), is given by 

1. a(8) = S 
2. o-(e) = e 
3. a (a) = a for a £ A 
4. a(v) = cr(v) for v £ V 

5. a(V(x)) = V(Hx)) 
6. o(x op y) = a(x) op a(y) for op £ {+, •, ||, []_} 

A substitution that replaces all variables with variable-free terms, i.e., closed 
terms, is called closed. • 

Definition 13.2. A S context is a term C £ T(S,V U {•}), containing 
exactly one occurrence of the distinguished variable • . The context is written 
C[ ] to suggest that C should be considered as a term with a hole in it. 
Substitution of a term t £ T(S, V) in C[ ] gives the term C[0 i-» t], written 
C[t]. 

Definition 13.3. Let (S,E) be an equational specification and let t, s and u 
be arbitrary terms over S. The derivability relation, \~, is then given by the 
following inductive definition. 
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s = t£E => (S,E)\-s = t 

{S,E)\-t = t 

(S,E)\-s = t => (S,E)\-t = s 

(S,E)\-s = t A (S,E)\-t = u => (S,E)\-s = u 

(S,E) \- s = t =>• (E,E) h a(s) = a(t) for any substitution a 

{S,E)\-s = t => {£, E) h C[s] = C[t] for any context C[-] 

If (S,E) \- s = t, abbreviated E h s = t, then the equation s = t is said to be 
derivable from the equational specification (£,E). • 

Reduct ion to Basic Terms 

We now venture deeper into the theory of process algebra and term rewriting 
systems. The goal is to show that there exists a model of the equational speci
fication for PAe and that the equations EpAr form a complete axiomatisation, 
i.e., that whenever two terms are equal in the model, then they are provably 
equal using the equations. 

The first step is to show that any PAe term can be reduced to an equivalent 
so-called basic term consisting of only atomic actions, 5, e, + and •. This result 
makes subsequent proofs easier, because we need only consider these simpler 
terms. 

Definition 13.4. d and e are basic terms. An atomic action a £ A is a basic 
term. If a £ A and £ is a basic term, then a • t is a basic term. If t and s are 
basic terms, then t + s is a basic term. • 

The next step is to show that any PAe term can be reduced to a basic term. 
To do this, a term rewriting system is defined. 

Definition 13.5. A term rewriting system is a pair (£, R) of a signature, 
S, and a set, R, of rewriting rules. A rewriting rule is of the form s —> t, 
where s,t € T(S, V) are open terms over S, such that s is not a variable and 
vars(t) C vars(s), where vars(t) denotes the set of variables in the term t. 

The one-step reduction relation, —>, is the smallest relation containing the 
rules, R, that is closed under substitutions and contexts. • 

Definition 13.6. A term s is in normal form if there does not exist a term 
t, such that s —>• t. A term s is called strongly normalising if there exist no 
infinite sequences of rewritings starting with s: 

S —> Si —>• S2 —> • • • 

A term reduction system is called strongly normalising if every term in the 
system is strongly normalising. • 
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Table 13.2. Term rewriting system for PAe 

x + x ->• x (RA3) 
(x + y) • z —> x • z + y • z (RA4) 
(x • y) • z —• x • {y • z) (RA5) 
x + 5 ->• x (RA6) 
S • x ->• S (RA7) 
x • e ->• x (RA8) 
e • x ->• x (RA9) 

x || y ->• x[Li/ + y\\_x + y/(x) • Av) (RF1) 
e|]_x -)• <5 (RF2) 

Sl_x -)• <5 (RF3) 

a • x|]_y ->• a • (x || y) (RF4) 
a|]_x -)• a • x (RF4') 

(x + y)|L^^x|L^ + y|L^ (RF5) 

7(e) ^ e (RT1) 
7(5) ->• 5 (RT2) 
7(a • x) -> <5 (RT3) 

V(* + I/) -»• >/(*) + Av) (RT4) 

The term rewriting system for PAe is shown in Table 13.2. Essentially, a term 
rewriting system is a collection of equations, that can be applied only one way. 
Compared with the equations of PAe in Table 13.1, there are no rewrite rules 
corresponding to Al and A2, because these equations have no clear direction. 
Also, having a rule for Al would render the rewrite system non-terminating. 

A common method for proving normalisation of a term rewriting system 
is to define a partial ordering on the operators and constants of the signature 
S, and then extend this ordering to terms over S. There are several ways to 
define this extension. For our purposes, the so-called lexicographical variant 
of the recursive path ordering will suffice. The main reference for the following 
material is [26]. Other references are [27,95,251,267]. 

Definition 13.7. Let s,t € T(E,V). We write s >ipo t if s ->•+ t, where 
—>•+ is the transitive closure of the reduction relation —• defined by the rules 
RPOl-5 and LPO in Table 13.3. 
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Table 13.3. Reduction rules 

• 

• 

• 

• 

• 

• 

R P 0 1 . Mark head symbol (k > 0): 

H(ti,... ,tk) —• H*(ti,... ,tk) 
R P 0 2 . Make copies under smaller head symbol (H > G, k > 0): 

H*(tu ...,tk)^ G(H*(tu .. .,tk),..., H*(tu .. .,tk)) 
R P 0 3 . Select a rgument (k > 1, 1 < i < k): 

H*(ti,... ,tk) —tti 
R P 0 4 . Push * down (k > 1, I > 0): 

H*(ti,...,G(si,. ..,si),...,tk) -> H(ti,... ,G*(si,... ,si),... ,tk) 
R P 0 5 . Handling contexts: 

s ^ t => H(...,s,...)^H(...,t,...) 
L P O . Reduce i t h a rgument (k > 1, 1 < i < k, I > 0, 
i f has lexicographical s t a tus wrt . the i t h a rgument ) : 

Let t = H*(ti,... ,ti-i,G(si,... ,si),tt+i,... ,tk) 
t hen t —> H(t,..., t, G*(si,..., si),t,... , t) 

Theorem 13.8. Strong Normalisation (I) (Kamin and Levy [259]). Let (£, R) 
be a term rewriting system with finitely many rewrite rules and let > be a well-
founded partial ordering on S. If s >ipo t for each rewriting rule s —>• t € R, 
then the term rewriting system (S,R) is strongly normalising. • 

Proof. See [259]. 

The intuition behind Theorem 13.8 is that if x >ipo y, then y is a less com
plicated term than x, where we consider basic terms to be the simplest and 
general terms to be the most complicated. Thus, if all the rules can only make 
terms less complicated, we are bound to eventually reach a term that can not 
be simplified. 

Lemma 13.9. Strong Normalisation (II) The term rewriting system for PAe 

in Table 13.2 is strongly normalizing. • 

Proof. According to Theorem 13.8, it is sufficient to define a partial order
ing on SpAe and show that each rewriting rule satisfies the extension of the 
ordering to T(S). We use the partial order | | > [ ] _ > A / > - > + > e > ( 5 . • has 
lexicographical status with regard to the first argument. Below, we illustrate 
the derivation for rewrite rules RA4 and RA5. The remaining derivations are 
given in [316]. 

(x + y)-z >ipo (x + y)*z RPOl 

>iPo (x + y) •* z + (x + y) •* z RP02 

>iPo (x+*y)-z + {x +*y)-z RP04, RP05 

>iPo x-z + yz RP03, RP05 
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(x -y) • z >ipo (x -y) •* z RP01 

>iPo (x •* y) • ((x • y) •* z) LPO 

>iPo x • ((x •* y) • z) RP03, RP05, RP05 

>iPo x-(yz) RP03, RP05 

Thus, the term rewriting system for PAe is strongly normalising. • 

We are now ready to prove that every PAe term has an equivalent basic term. 

Theorem 13.10. For every PAe term, s, there is a corresponding basic term, 
t, such that PAf h s = t. • 

Proof. By the strong normalisation (II) theorem the term rewriting system 
for PAe is strongly normalizing. Thus, for every term t, there is a finite se
quence of rewritings 

t ->• t\ ->• h ->• • • • ->• s 

where s is in normal form. 
We use a proof by contradiction to show that s cannot contain 11, []_ or y/. 

Assume, therefore, that s is in normal form and that s = C[x \\ y]. But then 
the rewriting RF1 can be used, thus contradicting that s is in normal form. 
Now assume that s is in normal form and that s = C[x\\_y]. Then there are 
three cases 

• x = u\\_w. in this case we can use the argument recursively to show that 
u or one of its sub-terms can be reduced by a rewrite rule. This line of 
reasoning is valid since we deal with finite terms. 

• x = y/(u): in this case either x can be rewritten using one of RT1-4, or we 
can apply the whole argument to u to show that some sub-term of u can 
be rewritten. 

• in all other cases one of the four rewrite rules RF2-4 may be applied to s, 
thus forming a contradiction. 

Finally, we can use the same argument as above to show that if s = C[yf(x)] 
then either we can use one of the rewriting rules RT1-4 on s directly, or some 
sub-term of x can be reduced using a rewrite rule. 

Thus, in all cases we have a contradiction and the theorem follows. • 

13.3.2 Semantics of PAe 

We now proceed to define a semantics for PA€. See Table 13.4. 
We use a structural operational semantics in the style of Plotkin [402]. 

Based on the semantics, we define a behavioural equivalence on PAe terms, 
called bisimulation equivalence. We then show that the quotient algebra of PAf 

terms under bisimulation equivalence is a model of the equational specification 
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PAe, which implies soundness of the equations. Finally, we prove completeness 
of the equations. 

A Plotkin-style operational semantics is defined using a set of derivation 
rules. For our purpose, the premises and conclusion of a derivation rule are 
formulas of either the form 

a i 

or of the form 

Informally, the former formula means tha t process x can evolve into process x' 
by performing action a. The latter formula means tha t process x can terminate 
immediately and successfully. 

A formula </> is provable from a set of deduction rules, if there is a rule 

fl f2 <Pn 

such tha t there exists a substitution a : V —>• T(S, V) satisfying cr(ip) = <p 
and if a(tfi) is provable from the deduction rules for i = 1,2,... ,n. 

The deduction rules of the operational semantics for PAe are shown in 
Table 13.4. An empty premise is designated by a • above the line. 

Table 13.4. Structural operational semantics of PAe 

a 

a —> e 
a 

X —> 

x + y a 

a 

y -> 
x + y 

X 

x- y 

x \, 

x -y 

X 

x || y 

y 

x || y 

X 

a 

a 

a 

y 
a 

a 

a 

a 

a 

a 

/ 
X 

> x' 

y 

• y ' 

X 

x' -y 
a. I 

->• v 
> y' 
• X 

• x' || y 

• y' 

• x\\y' 

f 

X 

c|]_y 

Act 

Choi 

Cho2 

Seql 

Seq2 

Pari 

Par2 

Line 

• 
e I 

x I 
x + y I 

y I 
x + y I 
x I y I 

x -y { 
x I y I 
x || y I 

x I y I 
x\Ly 

xl 

X 

4 

EpT 

ChoTl 

ChoT2 

SeqT 

ParT 

—> x 

LmeT 

TerT 
y/(x) I 

X' || V 
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We seek a means of identifying terms that behave "in the same way". This 
form of behavioural equivalence is captured in the notion of bisimulation. 
Here, we use the strong formulation of bisimulation, due to Park [387]. 

Definition 13.11. Strong bisimulation equivalence ~C T(S) x T(U), is the 
largest symmetric relation, such that for all x,y £ T(£), if x ~ y, then the 
following conditions hold 

1. Vx' £ T(S) : x A x' => V £ T{£) : y ^ y' A x' ~ y' 

2 . x J. •<=> y J. 

Two terms, a; and y, are called bisimilar, if there exists a bisimulation relation, 
~, such that x ~ y. • 

It follows from the definition that the bisimulation relation is an equivalence 
relation, since it is reflexive, symmetric and transitive. 

The next step is to show that the bisimulation relation is a congruence. 
Having established this result, it is easy to show that the deduction system 
in Table 13.4 is a model of the equational specification PA€. This is the same 
as saying that the equations for PA€ are sound. 

Definition 13.12. (Congruence) Let R be an equivalence relation on T(S). 
R is called a congruence if for all n-ary function symbols / £ S 

x1Ry1A...AxnRyn =>• f{xi,...,xn)Rf(yi,...,yn) 

where xi,...,xn,yi,.-.,y„ £ T{E). • 

Definition 13.13. (Baeten and Verhoef [25]) Let T = (S,D) be a term de
duction system and let D = D(Tp, Tr), where Tp are the rules for the predicate 
(here J.) and Tr are the rules for the relation (here —>). Let / and J be index 
sets of arbitrary cardinality, let ti, Sj,t £ T(S, V) for all i € / and j £ J, let 
Pj,P G Tp be predicate symbols for all j £ J, and let Ri,R £ Tr be relation 
symbols for all i £ I. A deduction rule d £ D is in path formal if it has one of 
the following four forms 

{PjSj I j e J} u {uiUyi | i e / } 
f(xi,...,xn)Rt 

with / £ S an n-ary function symbol, X = {x\,... ,xn}, Y = {yi \ i £ / } , 
and X U Y C V a set of distinct variables; 

{PjSj j j £ J} U (frifryj I i € J} 

with X = {x},Y = {yi \ i £ / } , and X U F C V a set of distinct variables; 

{P j g j I j £ J} U (frifryj I i € 1} 
Pf(x!,...,Xn) 
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with / £ S and n-ary function symbol, X = {x±,... ,xn},Y = {i/i \ i £ I}, 
and X U Y C V a set of distinct variables or 

{PjSj | j £ J} U {frifrj/i | i € J } 
Pa; 

with X = {x}, F = {j/j | « £ / } , and X U Y C V a set of distinct variables. 
A term deduction system is said to be in path format if all its deduction 

rules are in path format. • 

Theorem 13.14. (Baeten and Verhoef [25], Fokkink [117]) Let T = (S,D) 
be a term deduction system. If T is in path format, then strong bisimulation 
equivalence is a congruence for all function symbols in S. • 

Proof. See [25]. 

Lemma 13.15. Let TpAe be the term deduction system defined in Table 13.4. 
Bisimulation equivalence is a congruence on the set of closed PAt terms. • 

Proof. We show that the deduction rules EpT and Choi are in path format. 
Writing 4- in non-fix notation, deduction rule EpT can be rewritten to 

H 
4(e) 

which is in the third form in Definition 13.13. Similarly, Choi can be rewritten 
to 

\X —} X \ 

x + y —t x' 

which is in the first form. 
It is easily verified that the remaining deduction rules are also in path 

format, so the lemma follows from Theorem 13.14. • 

Having established that bisimulation equivalence is a congruence, we can con
struct the term quotient algebra T(SPA£)/ ~. The reason we want to construct 
the quotient algebra is that it is an initial algebra, which is characterised by 
being the smallest algebra that captures the properties of the specification. 

Recall that given an algebra A with signature £, the quotient algebra 
under the congruence =, written A/= is defined as 

• The carrier set of A/= consists of the equivalence classes of the carrier set 
of A under the equivalence relation =, i.e., \A/=\ = { [x]= \ x £ \A\ }, 
where [x]= = { y \ y £ \A\ A x = y }. 

• For each n-ary function symbol JA in A, there is a corresponding n-ary 
function symbol JA/= m A/=, defined by 

fA/=([xi] = ,---,[xn] = ) = [fA(xi,...,Xn)] = 
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Theorem 13.16. The set of closed PAf terms modulo bisimulation equiva
lence, notation T(SpAe)/ ~, is a model of PAt. • 

Proof. Recall that a i7-algebra, A, is a model of an equational specification 
(£, E), if A |= E, i.e., if every equation derivable from E holds in A. Because 
bisimulation equivalence on PAe terms is a congruence by Lemma 13.15, it 
is sufficient to separately verify the soundness of each axiom in EpAe, i.e., to 
show if PAe \- x = y, then x ~ y. 

We illustrate the procedure by verifying equation Al. We have to show 
that there exists a bisimulation equivalence ~* such that x + y ~* y + x. Let 
~* be defined as { (x + y,y + x) | x,y £ T(EPAe) } U { (x,x) | x £ T(SPAJ}. 
Clearly, ~* is symmetric. We now check the first bisimulation condition, x + y 
can evolve only by following one of the two deduction rules Choi and Cho2. 
Suppose x —>• x', then x + y —>• x', but then we also have y + x —> x'. By 
definition x' ~* x', so the condition is satisfied in this case. The symmetric 
case y —>• y' follows from the same argument. Next, the second bisimulation 
condition must be checked. Suppose x \., then by ChoTl x + y 4- But in that 
case by ChoT2 y + x 4- Again the symmetric case y J. follows immediately. 

The above procedure can be applied to the remaining equations to show 
that equal terms are bisimilar. Thus, the theorem follows. • 

Finally, we show that PA€ is a complete axiomatisation of the set of closed 
terms modulo bisimulation equivalence, i.e., whenever x ~ y, then PAe h x = 

y-

Theorem 13.17. The axiom system PAe is a complete axiomatisation of the 
set of closed terms modulo bisimulation equivalence. • 

Proof. Due to Theorems 13.16 and 13.10 it suffices to prove the theorem for 
basic terms. The proof for basic terms is given in [26]. • 

13.3.3 The Process Algebra PAce 

The process algebra PAt introduced in the previous section is sufficiently 
expressive to define the semantics of MSCs. However, the extension to LSCs 
calls for the introduction of an additional operator. 

In this subsection we introduce the extended process algebra, called PAce, 
for process algebra with conditional behaviour. PAce is a conservative exten
sion of PAf, meaning that the theory of PAf also holds in PAct. We give an 
axiom system and a model of PAce, and show that the axiom system is sound 
and complete. Our task now is considerably easier, since most of the results 
for PAt can be directly transferred to PAc€. 

The signature of PAce, SpAce, consists of 

1. two special constants 6 and e 
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Table 13.5. Additional equations of PAce 

e > x = x CI 

6>x = e C2 

x + y > z = (x > z) + (y > z) C3 

a • x t> y = a • (x t> y) + a, where a £ A\ {a} C4 

2. a set of unspecified constants A, for which {5, e} fl A = 0 
3. the unary operator y/ 
4. the binary operators + , •, ||, [|_ and > 

The binary operator > is the conditional behaviour operator. The conditional 
behaviour of processes x and y is the process tha t either terminates success
fully or executes x followed by y. The other operators and constants have the 
same meaning as they do in PAe. 

Table 13.5 lists the additional equations EPACC for a £ A and x,y,z £ V. 

Table 13.6. Additional term rewriting rules for PAce 

e>x—>x RC1 

S > x ->• t RC2 

x + yt> z —>xt>z + yt>z RC3 

a • x t> y —> a • (xt> y) + a RC4 

a>y —> a- y + a RC4' 

T h e o r e m 13 .18 . The term rewriting system for PAce in Table 13.6 is strongly 
normalizing. • 

Proof. The proof is based on the proof of theorem 13.9. We add the condi
tional operator to the partial ordering: > > | | > [ ] _ > A / > - > - | - > e > ( 5 . We 
now show tha t the additional rewrite rules for PAcf satisfy the extension of 
the partial ordering to terms. 

e > x >iPo e >* x R P O l 

>ipo e RP03 
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6 > x >ip0 5 >* x RPOl 

>ipo e RP02 

x + y > z >iPo x + y >* z RPOl 

>ipo {x + y >* z) + (x + y >* z) RP02 

>iPo (x+*y>z) + (x+*y> z) RP04, RP05 

>ipo (xt>z) + (yt> z) RP04, RP05 

a-xpy >ip0 a • x >* y RPOl 

>ipo (a • x >* y) + (a • x >* y) RP02 

>ipo (a-xt>* y)+a RP02, RP05 

>ip0 (a • x >* y) • (a • x >* y) + a RP02 

>ipo {a* x)-(x>y)+a RPOl, RP03, RP05 

>ipo a • (x > y) + a RPOl, RP03 

a>y >iPo a>*y RPOl 

>iPo (a>*y) + (a>*y) RP02 

>iPo (a >* y)+a RP02, RP05 

>iPo (a >* y) • (a >* y) + a RPOl, RP03 

>iPo a-y + a RP03 , RP05 

Thus, the rewrite system for PAce is strongly normalizing. • 

In Theorem 13.10 we showed that every PAe term has an equivalent basic 
term. With the definition of a basic term from Definition 13.4, we have the 
similar result for PAce. 

Theorem 13.19. For every PAce term, s, there is a corresponding basic term, 
t, such that PAf h s = t. • 

Proof. We have already shown that the subset of PAct that corresponds to 
PAf can be reduced to basic terms. Thus, we only need to show that terms 
with the conditional operator can be reduced to basic terms. 

Because the term rewriting system for PAce is strongly normalizing by 
Theorem 13.18, then for every term t, there exists a finite sequence of rewrit-
ings 

t ->• t\ ->• h ->• • • • ->• s 

where s is in normal form. 
We use a proof by contradiction to show that s cannot contain >. Assume 

therefore, that s is in normal form and that s = C[x > y\. 
If x = C[u > w] then the argument can be applied recursively to show that 

u > w or one of it's sub-terms can be reduced, thus contradicting that s is in 
normal form. Otherwise, there are five possibilities 
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• x = e: then s can be reduced by RC1. 
• x = 6: then s can be reduced by RC2. 
• x = u + w: then s can be reduced by RC4. 

': then s can be reduced by RC5. 
• x = a: then s can be reduced by RC5 ' . 

All cases contradict tha t s is in normal form. Thus, every PAce term can be 
reduced to an equivalent basic term. • 

13 .3 .4 S e m a n t i c s for PAc£ 

The additional semantical rules for PAcf are shown in Table 13.7. 

Table 13.7. Extra semantic rules for PAce 

Conl 
x>y 

x > y —> x' > y 
a l 

a , 

e> x —> x 

x { y { x > y J, 

x I 

x>y I 

Con2 

Con3 

ConTl 

ConT2 

In order to prove tha t bisimulation is a congruence on the set of closed PAcf 

terms we need to introduce a generalisation of the path format used in the 
previous section. The generalisation is known as panth format for "predicates 
and ntyft/ntyxt hybrid format". It generalises the path format by allowing 
negative premises in the deduction rules. It is also a generalisation of the 
ntyft/ntyxt of Groote [154], which in tu rn along with the path format is a gen
eralisation of the tyft/tyxt format of Groote and Vaandrager [155]. The names 
of these formats are derived from the format of the premises and conclusion 
of the deduction rules, see Verhoef [514] for an explanation. 

The reference for the following material is Verhoef [514]. 

Def in i t ion 13 .20 . (Verhoef [514]) Let T = (S,D) be a term deduction sys
tem and let D = D(Tp,Tr), where Tp is the set of predicate symbols and Tr 

is the set of relation symbols. Let / , J , K and L be index sets of arbitrary 
cardinality, let Sj,ti,ui,Vk,t £ T(S,V) for all i£l,j£j,k£K and I £ L, 
and let Pj,P € Tp be predicate symbols for all j £ J , and let Ri,R £ Tr be 
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relation symbols for all i £ I. A deduction rule d £ D is in panth format if it 
has one of the following four forms 

{PjSj | j € J} U {URiyi | i € 1} U {^P;M; | i € £ } U {vk^Rk \ k £ K} 
f(xi,...,xn)Rt 

with / £ 17 an n-ary function symbol, X = {x\,... ,xn}, Y = {yi \ i £ / } , 
and X U Y C V a set of distinct variables; 

{PjSj | j € J} U {URiVi | i € J} U {^P;M; | ? € £ } U {vk^Rk \ k £ K} 
xRt 

with X = {x}, Y = {yi | i £ / } , and I U F C ^ a set of distinct variables; 

{P j S j | j € J} U {fjifri/i | i € 1} U {-.fjm | I € £ } U {vk^Rk \keK} 
Pf(x!,...,Xn) 

with / £ S and n-ary function symbol, X = {ici,... ,xn},Y = {yi | « £ / } , 
and X U F C V a set of distinct variables or 

{P j S j | j € J} U {fjifri/i | i € 1} U {-.fjm | ? € L } U {ffc^Pfc \keK} 
Px 

with X = {x}, Y = {yi \ i £ / } , and X U Y C V a set of distinct variables. 
A term deduction system is said to be in panth format if all its deduction 

rules are in panth format. • 

Before we can introduce the congruence theorem for the panth format we need 
to define some additional notions. 

Definition 13.21. Let T = (£, D) be a term deduction system. The formula 
dependency graph G of T is a labelled directed graph with the positive for
mulas of D as nodes. Let PF(H) denote the set of all positive formulas in H 
and let NF(H) denote all the negative formulas in H, then for all deduction 
rules H/C £ D and for all closed substitutions a we have the following edges 
inG: 

• for all h £ PF(H) there is an 
• for all s^R £ NF(H) there is for all t £ T(S) an edge a(sRt) A cr(C); 
• for all -iPs £ NF(H) there is an edge a(Ps) A- a(C). 

An edge labelled with a p is called positive and an edge labelled with an n is 
called negative. A set of edges is called positive if all its elements are positive 
and negative if the edges are all negative. • 

Definition 13.22. A term deduction system is stratifiable if there is no node 
in its formula dependency graph that is the start of a backward chain of edges 
containing an infinite negative subset. • 
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Def in i t ion 13 .23 . Let T = (E, D) be a term deduction system and let F be 
a set of formulas. The variable dependency graph of F is a directed graph with 
the variables occurring in F as its nodes. The edge x —>• y is an edge of the 
variable dependency graph if and only if there is a positive relation tRs £ F 
with x £ vars(t) and y £ vars(s). 

The set F is called well-founded if any backward chain of edges in its 
variable dependency graph is finite. A deduction rule is called well-founded if 
its set of premises is so. A term deduction system is called well-founded if all 
its deduction rules are well-founded. • 

We are now ready to formulate the main result of Verhoef [514]. 

T h e o r e m 13 .24 . (Verhoef [514]). Let T = (E, D) be a well-founded strati
fiable term deduction system in panth format, then strong bisimulation is a 
congruence for all function symbols in E. • 

Proof. See [514]. 

L e m m a 13 .25 . Let T = (EPACC,D) be the term deduction system in Ta
ble 13.7, then strong bisimulation is a congruence on the set of closed PAcf 

terms. • 

Proof. The proof relies on Theorem 13.24. 
First, we must check tha t the term deduction system is well-founded. No 

variable occurs more than once in the set of premises for any of the deduction 
rules, so it is clear tha t there are no cycles in the variable dependency graph. 
Hence, the term deduction system is well-founded. 

Next, we must show tha t the term deduction system is stratifiable. We 
use proof by contradiction. Assume the term deduction is not stratifiable. 
Then, there is some backward chain of edges in the formula dependency graph 
tha t contains an infinite negative subset of edges. The only negative edge in 
the graph is the one tha t stems from ConT2. Thus, there must be a cycle 
containing the edge a(x \) —>• a(x > y 4-)- This cycle must also contain at 
least one edge originating at the node a(x > y 4-) and terminating at some 
node, Z, see Figure 13.24. 

• <r(x I) 

: n 

f 
Z "* <r(x>y 4-) 

Fig. 13.24. Illustration for proof of congruence 

By the definition of the formula dependency graph, the edge a(x > y 4-) —> Z 
can only be in the graph because there is a deduction rule with x > y 4- as one 
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of its premises. However, there is no such rule, and we have a contradiction. 
Therefore, the term deduction system is stratifiable. 

Finally, we must verify that each of the deduction rules is in panth format. 
Since any rule that is in path format is also in panth format, we only need 
to check the additional rules for PAce, since the remaining rules were shown 
to be in path format in the proof for Lemma 13.15. The rule Conl can be 
trivially rewritten to 

\X —} X \ 

x > y —>• e 
which is in the first panth form. The rule ConT2 can similarly be rewritten to 

b4-(s)} 
i(x>y) 

which is in the third panth form. The remaining three rules are easily shown 
to also be in panth format. 

Thus, all the conditions of Theorem 13.24 are satisfied and the result 
follows. • 

Theorem 13.26. The set of closed PAct terms modulo bisimulation equiva
lence, notation T(SpACe)/ ~ , is a model of PAcf. • 

Proof. Recalling the proof for Theorem 13.16 we have to show that for each of 
the equations in EPACC , PAce h x = y implies the existence of a bisimulation, 
~, such that x ~ y. 

We give the proof for axiom C4. Let ~* be defined by { (a • x > y, a • (x > 
y)+a) \x,y G T(EPACe),a £ A } U { (x,y) | x,y GT(SPACf) }. Clearly, ~ . 
is symmetric. We first check the termination condition. By ConTl a • x > y J,, 
since a • x / . Similarly, a • (x > y) + a \., since a I (and actually also a-(x>y) I). 
Thus, the termination condition for bisimulation equivalence is satisfied. 

Now, we check the first bisimulation condition. There are two ways a-x>y 
can evolve: 

• a-x>y —>• e: then we get a- (x>y) + a —>• e and since e ~* e by definition, 
the bisimulation condition is satisfied in this case. 

• a-x>y —t x>y: similarly, a- (x>y) + a —>• x>y and again x>y ~* x>y, 
so the bisimulation condition is satisfied. 

The symmetric case for evolutions of a • (x > y) + a is entirely analogous. 
The remaining axioms can be checked with the same technique. • 

We now come to the final result showing that the axiom system for PAc€ is 
both sound and complete. 

Theorem 13.27. The axiom system PAce is a complete axiomatisation of the 
set of closed PAce terms modulo bisimulation equivalence. • 

Proof. Due to Theorems 13.26 and 13.19 it suffices to prove the theorem for 
basic terms. The proof for basic terms is given in [26]. • 
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13.4 Algebraic Semantics of Live Sequence Char ts 

In this section a subset of LSCs is given an algebraic semantics using the 
process algebra PAc€ from the previous section (Sect. 13.3). The presentation 
here is adapted from the description of the semantics of MSC given by Mauw 
and Reniers [326]. 

13.4 .1 Tex tua l S y n t a x of Live S e q u e n c e Chart s 

We give a textual syntax for LSC. The textual syntax is used to define the 
semantics in the next section. The textual syntax is presented as an extended 
BNF (EBNF) grammar below. The nonterminals Iscid, msgid and inst name 
are further unspecified identifiers. The nonterminal cond represents a further 
unspecified conditional expression. 

Table 13.8. EBNF grammar for textual syntax of LSCs 

(chart) ::= lsc <lscid> ; <inst def list> end lsc 

(inst def list) ::= <inst def> <inst def list> | < > 

(inst def) ::= instance <inst name> <prechart> <body> end instance 

(prechart) ::= prechart <location> end prechart 

(body) ::= body <location> end body 

(location) ::= hot <event> ; <location> | cold <event> ; <location> | < > 

(event) ::= <input> | <output> | <condition> | <coregion> 

(input) ::= in <msgid> from <address> <mode> 

(output) ::= out <msgid > to <address> <mode> 

(condition) ::= hot condition <cond> | cold condition <cond> 

(coregion) ::= concurrent <coeventlist> end concurrent 

(coeventlist) ::= <input> <coeventlist> | <output> <coeventlist> | < > 

(address) ::= <inst name> | env 

(mode) ::= sync | async 

We do not explain the mapping from an LSC to the textual syntax further as 
this is straightforward. Example 13.22 in Sect. 13.2.2 illustrates the mapping. 
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13.4 .2 S e m a n t i c s of Live S e q u e n c e Char t s 

In order to define the semantics of the subset of LSC, we instantiate the 
process algebra PAcf by specifying the set of atomic actions. We assume a 
set, A0, of atomic actions representing asynchronous (out) and synchronous 
(outs) message output 

A0 ={out(i,j,m) | i,j £ C((inst name)),m £ £((msgid))}U 

{outs(i,j,m) | i,j £ C((inst name)),m £ C((msgid))} 

Similarly, we assume a set, A{, of atomic actions representing asynchronous 
(in) and synchronous (ins) message input 

A{ ={in(i,j,m) | i,j £ C((inst name)),m £ £((msgid))}U 

{ins(i,j,m) | i,j £ C((inst name)),m £ C((msgid))} 

Conditions are also viewed as actions, so there is a set of atomic actions 
representing hot conditions 

Ahc = {hotcond(c) | c £ C((cond)) } 

and a set of atomic actions representing cold conditions 

Acc = {coldcond(c) | c £ C((cond)) } 

The set of atomic actions, A, of the instantiated process algebra is then 

A = A0UAiUAhcU Acc 

The process algebra PAc€ defined above does not place any constraints on 
the order of atomic events. In expressing the semantics of LSC the constraint 
tha t message input must follow the corresponding message output has to be 
expressed. To do this, the state operator \M,C is introduced. It is an instance 
of the general state operator [27]. 

For M C £((msgid)), x,y £ V, a £ A, i,j £ C((inst name)) and 
m £ C((msgid)), the state operator is defined by the equations in Table 13.9. 
The subscript M records the message identifiers of messages tha t have been 
output , but not yet input. The subscript C records the message identifiers of 
those synchronous messages tha t have been output , but not yet input. If C is 
nonempty and the next event is not the corresponding input event, deadlock 
occurs. This ensures tha t no other events can come between the output and 
input of a synchronous message. The instantiated process algebra with XM,C 
will be referred to as PALSG in the following. 

The semantics of LSCs will be defined by semantic functions over the syn
tactical categories of the textual syntax of LSCs. If (cat) denotes a syntactical 
category (nonterminal) in the ENBF grammar, then C((cat)) denotes the lan
guage of text strings derivable from tha t syntactical category. The notation 
VX denotes the power set of the set X. 
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Table 13.9. Definition of state operator \M,C 

^M,c(e) = e 
AM,c(e) = 8 
AM,C(5) = 5 

\M,c(a • x) = 6 
\M,c(a • x) = a • XM,<6(X) 

\M,c(out(i, env, m) • x) = 5 
\M,c(out(i, env, m) • x) = out(i, env, m) • A M , J ( I ) 

^M,c(out(i,j, m) • x) = 6 
\M,c(out(i,j,m) • x) = out(i,j,m) • \Mu{m},${x) 
\M,c(outs(i, env,m) • x) = S 
\M,c(outs(i, env,m) • x) = outs(i, env,m) • \M,$(X) 
\M,c(outs(i,j, m) • x) = 5 
\M,c(outs(i,j,m) • x) = outs{i,j,m) • \Mu{m},{m}(x) 
\M,c(in(env,j,m) • x) = S 
\M,c(in(env,j,m) • x) = in(env,j, m) • XM,<6(X) 

\M,c(in(i,j,m) • x) = in(i,j,m) • AM\{m},0(aO 
\M,c(in(i,j,m) • x) = 5 
\M,c(ins(env,j, m) • x) = 5 
\M,c(ins(env,j,m) • x) = ins(env,j,m) • \M,$(X) 

\M,c(ms(i,j,m) • x) = ins(i,j,m) • \M\{m},<l(x) 
\M,c(ins(i,j,m) • x) = S 
XM,C(X + y) = \M,C(X) + XM,C(H) 

XM,C(X t> y) = \M(X) > \M(V) 

if M = 0 
if M ^ 0 

if a £ A0 U Ai and C ^ 0 
if a <£ A0 U Ai and C = 0 
if C ^ 0 
if C = 0 
if m G M or C ^ 0 
if m 0 M and C = 0 
if C ^ 0 
if C = 0 
if m G M or C ^ 0 
if m <£ M and C ± 0 
if C ^ 0 
f C = 0 
f m G M and C = 0 
f m <£ M or C ^ 0 
f C ^ 0 
f C = 0 
f m G M and C = {m} 
f m ^ M o r C ^ {m} 

The semantic function for LSCs, 

SLscl • ] : C((chart)) -»• T ( ^ P ^ S C ) , 

is defined by 

< 5 L S C [ C / I ] = \$,$ {{\\i€lnstc(ch) Smstpcli]) > (\\ielnstc(ch) Sinstbodyli})) 

where Instc : C((chart)) —>• V(£((inst def))) is the set of instance definitions 
in the chart. It is defined by 

Instc(lsc (Iscid) ; (inst def list) endlsc) = Instidi((inst def list)) 

where in turn Instm : C((inst def list)) —> V(C((inst def))) is defined by 

Instldl(()) = 0 

Instidi((inst def) (inst def list)) = {(inst def)} U Instidi((inst def list)) 

The semantic function for instance precharts, 

Sinstpcl • ] : £((mst def)) -> T(SPALSC), 
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is defined by 

Sinstpc[instance (inst name) (prechart) (body) e n d i n s t a n c e ] = 

n(inst name) j- , , > | 

^pre-chart i \precnari) I 

The semantic function for instance bodies, 
^instbody\ 

] : C((inst def)) -> T(SPALSC), 

is defined by 
Sinstbody[instance (inst name) (prechart) (body) e n d i n s t a n c e ] = 

ciiinst name) rr /i j \ n 

Sbody '[(body)} 

For iid £ C((inst name) the semantic function for precharts, 

Stddyl • 1 : ^{(prechart)) -»• T(SPALSC), 

is defined by 

S^fechart[prechart (location) e n d p r e c h a r t ] = S[^ation[ (location) ] 

For iid £ C((inst name) the semantic function for instance bodies, 

^ [ • ] : A ( 6 o d ! / » - ^ n ^ P A l s o ) , 

is defined by 

Sb*dylbody (location) e n d b o d y ] = Sgd
cationl (location) ] 

For iid £ C((inst name) the semantic function for event lists, 

SiHationl • 1 = C{(locaUon)) -> T ( ^ P ^ £ S C ) , 

is defined by: 

" ioco t ton l 0 J = e 

Sj"cotton[hot (event) ; (location) ] = SeuentI (event) ] • Sj"cot,0„[ (location) ] 

^"cotton I c o l d (eweni) ; (location) ] = e + [S"^ent\ (event) ] • S u t t o n I (location) ] 

For iid £ C{(inst name) the semantic function for events, 

S^entl-j:C((event))^T(SPALSC), 

is defined by: 
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S"Ventlou^ (msgid) to (address) async] = out(iid, (address) , (msgid)) 

S"Ventlou^ (msgid) to (address) sync] = outs(iid, (address) , (msgid)) 

S"ventl*n (msgid) from (address) async] = in((address), iid, (msgid)) 

S'etientP11 (msgid) from (address) sync] = ins ((address) , iid, (msgid)) 

S"vent[hotcondition (cond)} = hotcond((cond)) 

S'^ent[coldcondition (cond)} = coldcond((cond)) 

S"vent[concurrent (coeventlist) endconcur ren t ] 
II Qtid [r T| 

We EC o E v ents ({coeventlist)) ^ event li^J 

where CoEvents : C((eventlist)) —>• V(£((event))) is defined by: 

CoEvents(O) = 0 

CoEvents {(event) (eventlist)) = {(event)} U CoEvents((eventlist)) 

13 .4 .3 T h e Live S e q u e n c e Chart E x a m p l e , II 

E x a m p l e 13 .23 The Live Sequence Chart, Part II: We end this section with 
an example tha t concludes Example 13.22 of Sect. 13.2.2. The example il
lustrates the process of deriving a PAisc term from the LSC diagram of 
Sect. 13.2.2. We derive the PALsc term from the textual syntax by using 
the semantic function for LSCs. Let the chart be denoted by ch, then the 
semantics of ch is given by the PALSC term below. 

Sisclchj -
\®$((hotcond(condi) • ov,t{A,B,mi) || 

hotcond (cond \) • in(A,B,mi)) 
> 
(out(A, B, m-i) • coldcond(cond-2) • outs(A, B, 777,4) 

(in(A,B,777,2) || in(C, A,m3)) • coldcond(cond-2) • 
ins(A,B,m,i) • out(B,C,m-i) 

ov,t(C, B, 7773) - (e + in(B, C, 777.5) • (e + ov,t(C, env, m$))))) 

13.5 Relating Message Char ts to RSL 

In this section, as well as in Sect. 14.7, we briefly review a number of ways of 
integrating different specification notations. We then define a subset of RSL 
and give an operational semantics based on the semantics for Timed RSL as 
defined by George and Xia [132] (see Sect. 15.4). We extend the semantic 
rules with behaviour annotations capturing the communication behaviour of 
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the RSL expression. Utilizing these behaviours, we define three satisfaction 
relations: one relating a universal LSC to an RSL specification, one relating 
an existential LSC to an RSL specification and, in Sect. 14.7, one relating a 
statechart to an RSL specification. 

13.5.1 Types of Integration 

Haxthausen [203] identifies three approaches to integrating different specifi
cation techniques: 

• the unifying, wide-spectrum approach 
• the family approach 
• the linking approach 

The wide-spectrum approach provides a complete semantical integration of 
the techniques. This was the approach adopted in the development of RSL. 
The advantage of this approach is that the same language is used throughout 
the development process. The disadvantage is that this approach results in a 
complicated semantics. 

The idea in the family approach is to define a reasonably expressive base 
language and then integrate other techniques by defining extension languages. 
The semantics of the extension languages are required to be consistent with 
the semantics of the base language. This approach is used in the CoFI [371] 
project, for which the base language is called CASL [40]. The advantage of the 
family approach is that the semantics is "only as complicated as it needs to 
be", in the sense that for a particular project, one uses the smallest language 
in the family that has the required facilities. 

In the previous two approaches a new semantics that subsumes the se
mantics of the individual techniques is developed. In contrast, in the linking 
approach the individual semantics are preserved, and the integration instead 
takes the form of a formal relation between the individual semantics. This 
approach is particularly suited for specification techniques that are funda
mentally different. 

There is also a fourth approach to integration, namely what we call the 
combination approach. In this approach one notation is embedded in the other 
to extend its expressiveness. An example is the coloured Petri nets, which are 
the result of the combination of classical Petri nets with an ML-like lan
guage [238,275] used for inscriptions on arcs and type definitions. Other ex
amples are the combinations of statecharts with CASL and statecharts with 
Z mentioned in the introduction. 

We believe that of the four approaches described, the linking approach is 
most suited for our purpose. By using this approach we do not have to "mas
sage" the familiar semantics of the individual techniques into a new frame
work. Additionally, all the tools (proof system, syntax checkers, code genera
tors) developed for RSL are immediately available in the integrated method. 
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In the rest of this chapter we therefore present how to link LSCs with RSL. 
In the next chapter we will explain how to link statecharts with RSL. 

13.5.2 An RSL Subset 

Syntax 

The subset of RSL defined below is almost the same as the subset defined 
by George and Xia [132] for Timed RSL. We omit the wait construct and 
use the standard input and output operators from RSL rather than the cor
responding operators in timed RSL (TRSL, [132]). Also, we exclude the special 
notation for recursive functions. For use in establishing the relation to LSCs 
and statecharts, we annotate the input and output operators with a message 
identifier. Similarly, the parallel and interlocking operators are annotated with 
two process identifiers. 

We assume familiarity with RSL and therefore skip an informal description 
of the operators and constructs of the RSL subset. 

The syntactic categories are 

• expressions denoted by E 
• variables denoted by x 
• identifiers denoted by id 
• channels denoted by c 
• reals denoted by r 
• types denoted by r 
• value definitions denoted by V 
• message identifiers denoted by msgid 

• process identifiers denoted by n 

The grammar of the subset of RSL is given below. 

V ::= id : r | id : r, V 

E ::= () | true | false | r | id | x | skip | stop | chaos 
| x := E | if E then E else E | let id = E in E | c?msgid | c\msgidE 
| E n E | E D E | E „ | | „ E | E „ H „ E | E ; E 
j A id : T • E | E E 

When in the following we refer to an RSL expression, we mean an expression 
within the subset of RSL defined here. 

Operational Semantics with Communication Behaviour 

Before presenting the rules of the operational semantics a number of defini
tions are needed. A store s is a finite map from variables (x) to values (v): 
s = [x I—>• « , . . . ] . An environment p is a finite map from identifiers (id) to 
values (v) : p = [id i->- v,... ]. A closure is a pair consisting of a lambda 
expression (A id : r • E) and an environment (p): [A id : r • E, p ]. 
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Compared to George and Xia [132], we modify the notion of a configuration 
to a triple < E,s,n >, where E is an expression, s is a store and n is a process 
identifier. Moreover, we augment configurations of the form a op s op P for 
°P =ll) II to include three process identifiers, i.e., a op (s,n, 771,772) op /?, 
where 771 is the identifier of the process represented by the configuration a, 
while 772 is the identifier of the process represented by /?. 

Inspired by Haxthausen and Xia [204], the rules of the operational seman
tics are extended to include communication behaviour in the form of a PAisc 
term. The transition relation has the form 

i _ e / 

p r <3!with <j> ~t a w i t h <f>' 

where p is the environment, a and a' are configurations, <f> and </>' are be
haviours and e is an event. The intuition is that the configuration a with the 
behaviour </> can evolve to the configuration a' with behaviour </>' by perform
ing the event e. 

There are two types of events, silent events and communication events. 
The silent event, e, denotes an internal change that is not externally visible. 
Communication events are either input events of the form c?msgid or out
put events of the form c\msgidE. The symbol o is used to denote any event, 
i.e., a situation where the transition is the same for a silent event and for a 
communication event. 

The only operational rules that change the communication behaviour are 
the rules for input, output, communication across a parallel or interlocking 
combinator and merging of two parallel processes. In all other rules, the com
munication behaviour is preserved. 

The process identifier, n, stored in a configuration is used to name pro
cesses in PAisc events. This information is needed to identify the sender and 
recipient in message input and message output events in the behaviours. 

The rules for the parallel and interlocking combinators apply the function 
merge that merges the stores on either side of a parallel composition. It is 
defined in RSL notation by: 

value 
merge(s,s',s") = s'f[xH>s"(x) | x £ dom(s")n dom(s) 's(x)/s"(x)] 

In the rules below we use a notation of the form: 

C 

P \- C2 

C3 

shorthand for the two rules: 

C 

P \~ C2 

and: 
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C 

P \~ C3" 

Also, for rules without premises, i.e., axioms, we write the symbol • above 

the line. 
Tables 13.10-13.23 each contain one rule. They are: 

Basic Expressions 
Configuration Fork 
Look Up 
Sequencing 
Assignment 
Input 
Output 
Internal Choice 
External Choice 
Parallel Combinator 
Interlocking Combinator 
Function 
Let Expression 
If Expression 

Table 13.10 
Table 13.11 
Table 13.12 
Table 13.13 
Table 13.14 
Table 13.15 
Table 13.16 
Table 13.17 
Table 13.18 
Table 13.19 
Table 13.20 
Table 13.21 
Table 13.22 
Table 13.23 

Table 13.10. Basic expressions 

p 

p 

h 

h 

< 

< 

skip, s 

chaos, 

n 

s, 

• 
-^with <p 

Tl > w i t h 

• 
<P ^ 

(),s,n > 

< chaos, 

with 

s,n 

4> 

^ w i t h 4> 

Table 13.11. Configuration fork 

• 
p h < Ei op E2,s,n > w i t h 0 —• < Ei, s,n > w i t h <p op < E2, s,n > w i t h <p 

where op € {|~l>0} 
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Table 13.12. Look up 

p 

p 

t[« 

h 

d 

< 

!->• v] 

id, s 

h 

t[ 

< 

d 

id, s 

i-¥ v] 

n 

n 

D 

-^with 

-^with 

4> 

D 

4> 

e 

e 

—> 

< 

< 

V 

V 

S, Tl ^ w i t h (p 

s f [id '-H, n ^ w i t h 4> 

Table 13.13. Sequencing 

D 

P 

P 

P 

h < E1;E2,s,n >with <#> ^> (< Ely s, n >; E2) wi th (p 1 

P I" « w i t h <p ->• « w i t h 0' 

h ( a ; i ? ) w i t h 0 —> ( t t ' ; B ) w i t h f 

a 
h (< t;, s,n >; S)wi th <#> -̂ » < E, s, n >with <#> 

Table 13.14. Assignment 

p \- < x := E,s,n >with <p -^ (x :=< S, s, n >)with 

P l~ Qwith 0 —r Ctwjth 0' 

p h (x := a)with <#> —• (a; := a') with 0' 

• 
p h < w, s, n >with 0 -̂ » < (), s f [a; i-¥ v], n >with <#> 

13 .5 .3 R e l a t i n g Live S e q u e n c e Chart s to RSL 

Syntact ica l R e s t r i c t i o n s 

There are a number of problematic issues with conditions in LSCs. For tha t 
reason we choose to omit hot and cold conditions when relating an RSL spec
ification to an LSC. This is done by removing all condition events from the 
PAisc term prior to checking satisfaction. 
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Table 13.15. Input 

• 
P I - \ C . msgid j S, 71 - > w i t h <p r \ Vf S, 71 ^ w i t h <p • ins(env,n,msgid) 

Table 13.16. Output 

• 
p \~ < c\magidE,s,n >with 4, —> {c\msgid < E,s,n >)with 4, 

9 ^~ "with 4, ~» «with 4' 

P I - \CmsgidQ^Jwith. <p r \CmsgidCX J w i t h <p' 

n 
1 / 1 \ msrp.d <- / \ 

P ' \ C msgid ^ V^S^Tl - > J w i t h <p ' \ U l ^? " - ^ w i t h <p • outs(n,env, msgid) 

Table 13.17. Internal choice 

• 
p h ( Q 11 /3)with 4> 

e 
—• 

e 
—• 

G^with 

Pwi th 

4> 

4> 

Since RSL only supports synchronous communication on channels, we re
strict the relation to cover synchronous messages only. More specifically, if an 
LSC contains asynchronous messages, no RSL specification can satisfy it. 

Sat i s fact ion R e l a t i o n 

Before we can define what it means for an RSL expression to satisfy an LSC, 
we introduce some auxiliary notions. In most cases we do not want an LSC to 
constrain all par ts of an RSL specification. Typically, we only want to constrain 
the sequence of a limited number of messages. For this reason we label each 
LSC with the set of events it constrains. We allow this set to contain events 
tha t are not mentioned in the chart. For an LSC ch this set is denoted Cch-

Below we need an event extraction function tha t yields the set of those 
event identifiers tha t occur in the PALSC te rm for an LSC. The event extrac
tion function, events : T(SpACe) —>• VEvent, is defined as 
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Table 13.18. External choice 

p 

p 

p 

h 

h 

h 

1_ " , 
P <~ O w i t h 4> —> 

C l w i t h <p Q / 3 w i t h tp 

P w i t h ^ [ J Q ^ w i t h <p 

p I - Q w i t h 0 

i t h if 

/ ? w i t h tp Q a - w i t h <p 

< v,s,n >with <p 

a w i t h <f>' D < v->s-> 

a w i t h </>' 
a 

a 

e 
—• 

e 

e 

i 
*-*with <p' 

f 

*-*with <p' 

a w i t h </>' 

^ w i t h (p' U P w i t h <p 

P w i t h ^ U ^ w i t h <p' 

a 
D awith <j>' - ^ <v,s,n >with <p 

n >with <p —> < Vy s, n > w i t h <p 

events (e) = 0 

events(in(ni,n2,m)) = {m} 

events(out(ni,7i2,7n)) = {m} 

events (ins (ni,ri2,m)) = {m} 

events (outs (n\,n2,m)) = {m} 

events(hotcondition(cond)) = 0 

events(coldcondition(cond)) = 0 

events(X • Y) = events(X) U events(Y) 

events(X + Y) = events(X) U events(Y) 

events(X || Y) = events(X) U events(Y) 

events(X > Y) = events(X) U events(Y) 

remcond(e) = e 

As explained above, we do not check LSC conditions when making the relation 
to RSL. The function removing conditions, remcond : T(SPACC) —>• T(SpACe), 
is defined as: 

remcond (in(n\,n2,m)) = m(ni,ri2,m) 

remcond (out (ni,n2,m)) = out(ni,n2,m) 

remcond (ins (ni,n2,7n)) = in(n\,n2,m) 

remcond (outs (ni,n2,7n)) = out(n\,n2,m) 
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Table 13.19. Parallel combinator 

• 

p 

p 

p 

p 

p 

p 

y- < Ei n i | | „ 2 E2,s,n > w i t h 4, 

h 

h 

h 

h 

h 

1_ „ c'-n,.V,idV
i 

"wi th 4, ( s , n , m , n 2 ) /3, 

/3with v || (s, n , m , n 2 ) || a . 

p h a v 

"wi th 4, ( s , n , n i , n 2 ) /3, 

/3with v || (s , n , n i , n 2 ) || " 

"wi th 4> ( » , n , m , n 2 ) | |< 

< V, s', 112 > w i t h <p\\ ( » , 11, 

p h ttw 

"wi th 4, ( » , n , n i , n 2 ) s^ 

s with *, II ( s , n , n i , n 2 ) || a . 

< v, s",n\ > w i t h 4>|| ( s , n , 

s with v II ( s , n , m , n 2 ) | |< 

^> < Ex 

" w i t h 

v i t h v 

fl/ith 0 

iMth <£ 

» l t h v 

j v i t h 0 

0' 

0 

0 

0 

V, s ' , 712 > 

n i , n a ) 

/ i t h <£ 

„ i t h ¥ 

w i t h 0 

m , n2 

», »i >wi th 4>|| ( s , n , n i , n 2 ) | |< -Bi, s, n 2 > w i t h (4 

P H /3with v > / 3 w i t h v , 

"wi th 4, • . . ( ( n i , n 2 l i i ) II ( s , n , n i , n 2 ) 

/ ^ w i t h y> • i . ( « l > » 2 , » ' l i ' ) 

/3with ,, • ^(na.nj.irf) II ( s , n , n i , n 2 ) 

II "wi th </> • ,„.t(n2,n1,m..,;;,i) 

" w i t h </>' 

"wi th «' II ( « , n , n i , n 2 ) || /3with *, 

/3with ,, II ( * , n , m , n 2 ) || a'„ith ^ 

a 

with v A « w i t h </> || ( s , n , m , n 2 ) || s^ , i t h v 

c^with <*. -^ s with ^ ( s , n , m , n 2 ) a w i t h $ 

A 
A 

4 

)n 
v, s", ni > 

" w i t h 0 ' 

"wi th «' II ( * , n , n i , n 2 ) || s'„ith v 

«with *, II ( s , n , m , n 2 ) || « ^ i t h ^, 

a 

s with v -^ < v,merge(s,s',s"),n > w i t h </>|l<̂  

with 4, A < v, merge(s, s'',»"), n > w i t h </>|l<̂  

remcond(hotcondition(cond)) = e 

remcond(coldcondition(cond)) = e 

remcond(X • Y) = remcond(X) • remcond(Y) 

remcond(X + Y) = remcond(X) + remcond(Y) 

remcond(X \\ Y) = remcond(X) || remcond(Y) 

remcond(X > Y) = remcond(X) > remcond(Y) 

Definition. A PALSC term, x, can simulate a PAce term, y, notation x >; y, 
if 

y 4-=>- x 4- A Vy' : j / -^ y' ^-3x' : x -^ x' Ax' yy' 
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Table 13.20. Interlocking combinator 

• 

p 

p 

p 

p 

p 

p 

y- < Ei ni\\n2E2,a,n > w i t h 4, - ^ < -El, 

h 

h 

h 

h 

h 

c'-mnnid" t _ , 

"wi th 4> tt ( » , n , m , n 2 ) \\ /3with v 

/3with v tt (», n , n i , n 2 ) tt "wi th </> 

P l~ "wi th </> 

"wi th (4 tt ( s , n , m , n 2 ) tt Avith ^ 

/3with v tt (si n,m,n2) tt "wi th </> 

"wi th (4 tt ( » , n , m , n 2 ) tt < " , * ' , 

<*' 

>̂ 

>̂ 

4 

« 2 

< v, s',n2 >wi th v # ( » , n , m , n 2 ) t 

P H "wi th </> 

"wi th « tt ( * , n , n i , n 2 ) tt *with v 

«with *, tt (s> " . " i . ™2) tt "wi th « 

A 

^ 

" 

s, »i >wi th 4, tt ( * , n , n i , n j ) 

)t < Ei,s, n2 > w i t h </> 

P H / 3 w i t h *, > / 3 w i t h v , 

"wi th « • . , ( ( M , „ 2 ,M) tt ( s , n , m , n 2 ) 

tt P w i t h ^ • /n(w1,w2,m.*fl'^) 

/3with v • i„(n2,ni,;.d) tt ( s , n , m , n 2 ) 

tt " w i t h 4, • . a i ( n 2 , n 1 , » . . j i i ) 

" w i t h 4>' 

"wi th «' tt («. " . "i> «a) tt /3with ,, 

/3with v tt ( * , n , m , n 2 ) )t "wi th </>< 

n 

>with v ^ "wi th 4, tt (s, " , " i , n 2 ) tt s with v 

"wi th </> ^ * w i t h v tt ( » , n , n i , n 2 ) )t "wi th </> 

w i t h 0 ' 

"wi th «' tt ( s , n , n i , n 2 ) )t s w i t h v 

«with *, tt (s, n , m , n 2 ) tt "wi th </>< 

n 

< v, s " , n i > w i t h (4 tt ( s , n , n i , n 2 ) )t s w i t h ^ 4- < u, merge(s, s',s"),n > w i t h <*||v 

s with *, tt (s> " . " i . ™2) tt < v, s", m >with ,̂ 4- < t), merge(s, s'',»"), n > w i t h <*||v 

Definition. A PALSC formula c&/i is called a communication behaviour of 
an RSL expression i? wrt. an initial store SQ, if and only if there exists a 
configuration a, such that 

[] h < E, s0,n >with e (A)* awith c6/i 

where (A)* denotes the transitive closure of the transition relation. If a is of 
the form < v,s,n >, where v is a value literal or a lambda expression, cbh is 
called a terminated behaviour. • 

We are now ready to define the satisfaction relations for universal and exis
tential LSCs. 
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Table 13.21. Function 

• 

p 

p 

p 

p 

p 

p 

p 

p 

h < Ex E2,s,n > w i t h 4, - ^ ( < -Ei, s , n > E 2 )wi th 4, 

P H "wi th 4> " ^ "wi th 4,' 

H (a -B)with 4, A ( a ' - B ) w i t h ^, 

a 

h < A id, : T • E, s, n > w i t h 4, - ^ < [A id : r • -B, p] , s, n > w i t h </> 

a 

h (< [Aid : T • - B i , p i ] , s, n > -B2)with .̂ - ^ ([A irf : r • £ 1 , p i ] < E2, s, n > ) w i t h 4, 

P H "wi th 4, A a ^ . t h ^, 

h ([Aid : r • B , p i ] a ) w i t h 4, A ([A «d : T • -B, p i ] a ' ) w i t h 4,' 

a 

h ([Aid : T • £ , p i ] < v, s, n > ) w i t h 4, A ([A id, : r • E, p i ] v ) w i t h 4, 

pi t [id i-> -y] H a w i t h 4, A « w i t h 4/ 

h ([Aid : r • a , p i ] « ) w i th </> ^> ([A id : T • a ' , p i ] - y ) w i t h ^ 

pi t [id M--u] h a w i t h (4 A < i / , s , n > w i t h ^/ 

h ([Aid : r • a , p i ] « ) w i th 4 ^ < « ' , s, n > w i t h 4,1 

Definition. (Satisfaction for universal LSC) An RSL expression E satisfies a 
universal LSC, ch, if for any initial store, SQ, for any terminated behaviour, 
cbh, of E there exists a PALSG term </>prefix and a PALSG term </>suffix, such 
that 

events (<f>preRx) C\Cch = 0 

evente(>suffix) n Cc/j = 0 

and 
^prefix • remcond(SLSclchJ) • Suffix h cbh 

Definition. (Satisfaction for existential LSC) An RSL expression E satisfies 
an existential LSC, ch, if for any initial store, so, there exists a terminated 
behaviour, cbh, of _E, a PALSC term </>prefix and a PALSC term < ŝuffix, such 
that 
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Table 13.22. Let expression 

• 

p 

p 

p 

h < let id = Ei in _B2,s,n >with </> —l (let id =< Ei,s, > in -E2)with 4, 

p r Qwith 4> —> a w i t h 0' 

h (let id = a in i?)with <#> —> (let id = a ' in -B)with ^ 

a 
1- (let id =< v,s,n> in S)w i th <#> -̂ » < -B[w/id], s, n >with 0 

Table 13.23. If expression 

• 

p 

p 

p 

p 

h 

h 

h 

h 

< if E t h e n E\ e l se E2,s,n > w i t h 4, —> (if < E, s,n > t h e n i ^ e lse -B2)w i th </> 

P H "wi th 4, A a V t h ^, 

(if a t h e n E\ e l se -B2)with (4 —• (if a ' t h e n i ^ e lse B 2 ) w i t h ^/ 

a 

(if < t r u e , s,n > t h e n i ^ e lse i?2)with </> —> < -Ei, s, n > w i t h 4, 

a 
(if < false , s,n > t h e n _Bi e lse i?2)with </> —> < -B2, s, n > w i t h 4, 

events(<f>preRx) C\Cch = 0 

evente(^ su f f ix) n Cc/j = 0 

and 
"̂ prefix • remcond(SLSclchJ) • Suffix >z cbh 

13.5 .4 Check ing Sat i s fact ion 

The satisfaction criteria defined in Definition 13.5.3 require checking tha t 
all behaviours of the RSL expression can be simulated by the semantics of 
the corresponding chart. In some situations the RSL expressions may have 
infinitely many behaviours, so in tha t case, this simple form of checking is not 
possible. 
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13.5 .5 Tool S u p p o r t 

Actually checking an RSL specification against a behavioural specification in 
the form of LSCs can be very tedious. For tha t reason, the methods defined 
above are of limited applicability without tool support . Tools should be de
veloped to extract the semantic terms from LSCs and RSL specifications and 
for checking the satisfaction relations. It would also be convenient to have a 
way of translating an LSC into a skeleton RSL specification. An automatic 
conversion would force the software engineer to use one particular style. 

13.6 Communicating Transaction Processes (CTP) 

Section 13.6 is the joint work of Yang Shaofa and Dines Bj0rner. Yang provided 
the Dining Philosophers example, Sect. 13.6.3, and the formalisation, Sect. 13.6.4. 

We refer to the published paper [439]. C T P s are formed by a relatively simple 
and elegant composition of Petri net places and sets of message sequence 
charts. 

13.6 .1 In tu i t ion 

CTPs are motivated by considering first a Petri net such as the one de
picted in the upper half of Fig. 13.25. The conditions (or places) are labelled 
Spll, Spl2, Spi , Sp2i, Sp22, Sp3i and SpS2. The events (or transitions) are la
belled T i , T 2 and T3. Our labelling of places reflects a pragmatic desire to 
group three of these (Sp1 , Spt , Spt ) into what we may then call control 
states of a process P i , two of these (Sp2 , Sp2 ) into control states of process 
Pi and the remaining two (Sp2 , Sp2 ) into control states of process J 3 . 

Fig. 13.25. Left: a Petri net. Right: a concrete CTP diagram 
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Secondly we consider each event as a message sequence chart. T\ has two 
instances corresponding to processes Pi and P^. For tha t (and the below 
implied) message sequence chart (s) messages are being specified for commu
nication between these instances and internal actions are being specified for 
execution. The firing of event T\ shall thus correspond to the execution of this 
message sequence chart. T2 has two instances corresponding to processes P? 
and Pz and T3 has three instances corresponding to processes P\, P? and J 3 . 

As for condition event Petri nets, tokens are placed in exactly one of the 
control states for each process. Enabling and firing take place as for condition 
event Petri nets. Transfer of tokens from input places to output places shall 
take place in two steps. First when invoking the transition message sequence 
chart where tokens are removed from enabling input places, and then when all 
instances of the invoked message sequence chart have been completed (where 
tokens are placed at designated output places). 

Thirdly we consider each event as a set of one or more message sequence 
charts with all message sequence charts of any given event involving the same 
processes. In doing so, we refine each event into a transaction schema. There is 
now the question as to which of the message sequence charts is to be selected. 
Tha t question is clarified by the fourth step motivating CTPs . 

Fourthly we predicate the selection of which message sequence charts are to 
be selected once a transaction schema is fired by equipping each of the message 
sequence charts with a guard, tha t is, a proposition. Associated with each 
process there is a set of local variables tha t can be, and usually are updated by 
the internal actions of the instances. The propositions are the conjunctions of 
one proposition for each of the instances, i.e., processes. A message sequence 
chart of a transaction schema is enabled if its guard evaluates to t rue. If 
two or more message sequence charts are enabled one is nondeterministically 
(internal choice) selected. A transaction schema is enabled if its input places 
are marked and at least one of the message sequence charts in this transaction 
schema is enabled. If a transaction schema has no message sequence charts 
enabled, then we will not enter this transaction schema. 

We are now ready to introduce CTPs properly. 

13.6 .2 N a r r a t i o n of C T P s 

C T P D i a g r a m s 

Consider Fig. 13.26. It is a generalisation of the right part of Fig. 13.25 which 
itself is just a reformatting of the left part of Fig. 13.25. 

A C T P diagram consists of an i n d e x e d set of s e t s of process (control) 
s t a t e s , an indexed set of transaction schemas, an indexed set of sets of process 
variables, and a "wiring" connecting control states via transaction schemas to 
control states. (The wiring of Fig. 13.26 is shown by pairs of opposite directed 
arrows.) 
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Process 

Control 

States 

"Wir ing" 

Transaction 
Schemas 

Process P1 

si_p1 

o o o 
Sj_p2 

o o o 

1 .. 
P1 || P2 || Pq 

Process Pq 

sk_pq 

o o o 

, 

""] 

PI II Pq 

Process • • » • D D D 
Variables 

n 

Variables of P1 Variables of P2 

Fig. 13.26. A schematic CTP diagram 

D D • 
Variables of Pq 

C T P P r o c e s s e s 

Figure 13.26 suggests a notion of processes, here named pi, P2, • • •, Pq ( m 

Fig. 13.26 P I , P2, . . . , Pq). It also suggests a number of transaction schemas, 
here named TSi, TS2, • • •, TSS. The figure then suggests tha t the processes 
have the following control states: 

-Pi ' Vspi i spi i • • • i spi J 

P2 ' 1 S P 2 ' S P 2 ' • • • ' SP2 J 

Pq '• \spq JPq' • > bVq S 

in Fig. 13.26: s i_p l , 
in Fig. 13.26: sj_p2, 

in Fig. 13.26: sk_pq. 

The schematic C T P diagram indicates some transaction schema input states 
for process pi\ 

i s 1 s2 
1 p . ' Pi 

s m i l 
bPi J ' 

by an arrow from the pi control states to TSj and some transaction schema 
output states for process pi by an arrow from TSj (back) to the pi control 
states. These two sets are usually the same. 

• The set of all allowable, i.e., specified state to next state transitions can 
be specified as a set of triples, each triple being of the form: 
• (s,tsn,s') for process pj : (sPi,tsn,s') 

where tsn names a transaction schema and where s and s' belong to a process. 

• If tsn supports processes Pi, Pj, ..., Pk, then there will be triples: 

* \ s P i i * s n , s
V i ) i \ s P j T t S n , S p . ) , . . . , \Spk,ZSn,Spk) 

Figure 13.27 hints at such transition triples. 
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Process P1 Process P2 

Control O G O G 
States ( 1 L. 

Process Pq 

sk-pq 

o o o 

Transaction 
Schemas 

TS_1 TS. 

{S1ITS 1,s1|) 
(s2k,TS_1.s2m) 

II | 

• • •" • • • "• • 

Variables of P1 Variables of P2 

Fig. 13.27. State to next state transitions shown for TS_1 only 

C T P Transact ion S c h e m a s 

Figure 13.28 indicates tha t a transaction schema consists of one or more t rans
action charts. 

PI ii PI ii PK 
Pi Pj Pk Pi Pj Pk Pi Pj Pk 

Transaction Chart # i.1 Transaction Chart # i.2 Transaction Chart # i.m 

T r a n s a c t i o n S c h e m a # i 

Fig. 13.28. Transaction charts of a transaction schema 

Each transaction schema, TS{, thus contains one or more transaction charts: 
Chj (for suitable i's and j ' s ) . 2 Each transaction chart contains one simple 
message sequence chart. Instances (i.e., vertical lines) of the message sequence 
charts are labelled by distinct process names. All transaction charts of a t rans
action schema contain message sequence charts whose instances are labelled 
by the same set of process names. 

C T P Transact ion Chart s 

To each transaction chart there is associated a process name indexed set, G3
n, 

of propositions for TSn t ransaction chart Ch3
n. See Fig. 13.29. 

2In Fig. 13.28 Ch\ is represented by Transaction Chart # i.j. 
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Simple CTP Message Sequence Charts 

Each instance of each simple message sequence chart of each transaction chart 
of each transaction schema may contain zero, one or more internal actions, 

• ° f > 
and input/output events: 

(input value offered on channel from process pj to process pi and assigned to 
process p^s variable v"), respectively, 

• (Pi-tPiV-el 

(output value of expression e\ over variables of process pi from process pi to 
process pj). The variables of respective processes are shown as square boxes 
in Fig. 13.26. 

ch-cn 
pi: prop-ci 

Pi 

(Tjri] 

(1) 

(31 

r 

k pi 

ei => vj 

vi <= ej' 

pj: prop-cj 

P 

E 
(2) 

(41 

i 

( i i 

r 
(3) 

ej => vk 

vj ' <= ek 

pk: prop-ck 

P k 

(21 

a-Pk 

3 
(4) 

Fig. 13.29. A transaction chart with a simple message sequence chart 

Figure 13.29 shows a transaction chart with a simple message sequence 
chart which prescribes the interaction among three processes, pi, pj and pk-
Instance pi shows the following sequence of events: 

• {aPi , (Pi^PjV-ei , a'pi , {pi^PjY-Vi , a'p\) 

The output/input messages (£,£') [or (P,1)], shown as labelled arrows: —> or 
i— correspond to the pairs of (output,input) events in respective processes. 

(1 e%—¥ 1'): the pair of ((pi ->• Pj)\eu (pj <- Pi)?Vj), 
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(2 —> 2'): the pair of ((pj ->• PkV-ej, (pk <- Pj)?-vk), 

(3' m ^ 3): the pair of ((pj -> Pi)\e'^ (pt «- Pj)?Vi), 

(4' %^- e* 4): the pair of ((pfc ->• Pj)\ek, (pj <- PkY-v)). 

E n a b l e d C T P Transact ion Char t s 

If the transaction schema is labelled with process names {pi,Pj,Pk} then one 
transition from control states of each of processes pi, pj and pk leads into each 
transaction chart of tha t transaction schema. In order for a transaction chart 
(of a transaction schema) to be enabled the following two conditions must be 
fulfilled: 

• One each of the input control states of processes Pi,Pj and pk must be 
marked. Tha t is, one each of si,., si., . . . . si™1, and si,., si., . . . . s™1, and ? Pt? Pi? ? Pi ? Pj? Pj? ? Pj ? 

slk' s'i>k' • • •' s pl 1 ' m u s t be marked. More precisely, all the control state 
preconditions of the transaction schema to which this chart belongs are 
fulfilled. 

• The indexed set of propositions for the transaction chart must all evaluate 
to true. 

In the example of the transaction chart of Fig. 13.29 the indexed set of proposi
tions are the three propositions prop-ci, prop-cj and prop-ck. Each proposition 
for any process pi of any transaction chart may contain variables, if so they 
must only be variables of tha t process. 

E n a b l e d Versus Invoked S c h e m a s and Chart s 

A distinction is being made between being enabled and being invoked. An 
invoked schema or chart must be enabled. Enablement means tha t the con
ditions for invocation are satisfied. Invocation means tha t an actual interpre
tat ion (i.e., execution) takes place with all a t tendant state changes possibly 
occurring. 

D e t a i l s of Invoca t ion and E x e c u t i o n 

We elaborate a bit further on the interpretation of a C T P program (i.e., 
diagram). Initially control rests in the process initial control states. No trans
action schema is invoked. 

Now zero, one or more transaction schemas may be enabled. For a t rans
action schema to be enabled the following must hold. One or more of the 
transaction charts of this transaction schema must be enabled. Tha t is, their 
guards must hold. Tha t is evaluate to t rue in the initial s tate of the process 
variables. One or more enabled transaction schema may now be invoked pro
vided tha t no two of them share processes. Invoking an enabled transaction 
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schema means the following: One of its enabled transaction charts will be non-
deterministically selected. To thus invoke an enabled and selected transaction 
chart means that the marking (i.e., the tokens) of the enabling process control 
states will be removed and "converted" into an instance ("program point") 
pointer for each of the process instances of the enabled and selected transac
tion chart, and those pointers are initially set to zero (0), i.e., the beginning, 
the "entry", of the transaction chart instances. 

The preceding paragraph outlines a step (in this case a zeroth step) of 
CTP program interpretation (i.e., execution). 

Now an interpretation of the instances of the enabled and selected trans
action chart takes place. Here we refer to the description of the semantics 
of BMSCs (basic MSCs) earlier in this chapter. A step is made up from ei
ther interpreting an internal action (which usually will update process control 
variables and hence atomic propositions), or interpreting an output event, or 
interpreting an input event. The instance program pointers are advanced one 
position for each such interpretation. When all instance program pointers of 
a specific transaction chart (of a specific transaction schema) reach their re
spective last positions, then the transaction chart and its transaction schema 
are disabled and the designated output control states are marked. 

At the same time as a step related to one particular enabled and invoked 
transaction schema and a transaction chart within it is being performed sim
ilar steps may be performed, concurrently, at or within other enabled and 
invoked transaction schemas and transaction charts within them. So, as an 
illustration, as one step of interpretation occurs properly within a transaction 
chart of one transaction schema, another such step of interpretation may oc
cur properly within a transaction chart of another transaction schema, and 
yet a third transaction chart may be enabled, selected, invoked, and so on. 

CTP Transitions 

The semantics of CTP calls for transitions from input control states via en
abled transaction schemas to (output) control states. Figure 13.27 hinted at 
such transitions. 

An invoked transaction chart will then result in the appropriate input 
states no longer being marked, in the execution of the simple message sequence 
chart, from top to bottom, in the updating of process variables (as the result 
of execution of each of the instances of the simple message sequence chart), 
and, once message sequence chart execution terminates, in the marking of one 
appropriate output state for each of the processes labelling that transaction 
chart. 

Which of the output states, for processes Pi,Pj and pk, that is, 

• which of s'p., s'p., . . . , s'™', and 
• which of s'1, s'2 , . . . , sPj', and 
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are selected is determined by which of the 

• \spi' " i n spi) 

transition rules had their 

part apply in the invocation of transaction schema tsn to which this chart 
belongs. 

For technical reasons no two otherwise distinct transition rules (sj., tsn, ss
Vi) 

and (s%., tsn,s^.) can have identical first pairs, i.e., 7 / ^ and cannot have 
identical last pairs, i.e. 6 ^ ip. Thus we assume that each transaction schema 
tsn, has exactly one input and one output control state for each process. 

The process control states are like places (conditions), and the transaction 
schemas are like transitions in a condition event Petri net. 

Firing (i.e., invocation) means that one or more enabled transaction 
schemas (that do not share processes) are selected, that is, one or more trans
action schemas for which the guards of one or more transaction charts evalu
ate to true (i.e., is enabled) — and that within each such selected transaction 
schema one such (enabled) transaction chart is selected (invoked). The invoked 
transaction charts are then "executed", as would a normal message sequence 
chart. Once any such message sequence chart execution has completed, the 
transition completes by marking the designated output control states. Since 
several transaction schemas may be enabled in this way one or more are cho
sen nondeterministically. And since within each transaction schema several 
transaction charts may be enabled one is chosen nondeterministically. 

13.6.3 A Dining Philosophers Example 

Before we formalise the diagrammatic language of CTPs we bring in an ex
ample. 

Example 13.24 Dining Philosophers: This whole section is one example, but 
we omit shading. • 

We model the classical dining philosophers problem using CTP. For simplicity, 
we consider the setting of just two philosophers. As illustrated in Fig. 13.30, 
two philosophers P I and P2 are seated on opposite sides of a round table and 
two forks Fl and F2 are placed between P I and P2. 
A plate of spaghetti is placed at the centre of the dining table. A philosopher 
alternates between eating and thinking. To eat the spaghetti, a philosopher 
must try to grab (the) two forks (here P I and P2). And when a philosopher 
finishes eating, he puts down both forks. The problem is to devise a strategy 
of using the forks such that the philosophers do not suffer starvation. 

The CTP program for the dining philosophers problem is shown in 
Fig. 13.31. 



13.6 Communicating Transaction Processes (CTP) 451 

Fig. 13.30. Two dining philosophers table with forks 

Process P1 Process F1 Process F2 Process P2 

Process 
Control 

States 

F1 || P2 F2||P2 

TS_1 TS_2 TS_3 TS_4 TS_5 TS_5' TS_4' TS_3' TS_2' TS_1' 

Process • • n n n n n n n n n n 
V a r i a b l e s isLeftFork isRightFork isHungry isPIReq heldBy isP2Req isPIReq heldBy isP2Req isLeftFork isRightFork isHungry 

Variables of P1 Variables of F1 Variables of F2 Variables of P2 

Fig. 13.31. Two dining philosophers CTP program 

There are four processes P I , P2, Fl and F2 corresponding to the two philoso
phers and the two forks. In transaction schema TS_1, PI tries to grab its 
left fork F l . In TSJ2, PI tries to grab its right fork F2. TS_3 represents 
the behaviour where P I is eating (after getting hold of both forks P I and 
P2). TS_A represents the behaviour where P I puts down both forks (after 
finishing eating). Finally, TS_b models the behaviour where P I is thinking. 
Analogously, transaction schemas TS_V, TSJ2', TS_3', TS_4', TS_5' rep
resent the behaviours where P2 tries to grab its left fork P2, P2 tries to grab 
its right fork P I , P2 is eating, P2 puts down both forks, and P2 is thinking. 

The initial control states of each process are shown by darkened places. 
The process P I has three variables, isLeftFork, isRightFork and isHungry, all 

of which are of type Bool. These three variables indicate whether P I holds its 
left fork, whether P I holds its right fork, respectively whether P I is hungry. 
Initially, P I holds neither fork and is hungry. The variables of P2 are set up 
similarly to P I . 

The process P I has three variables isPIReq, heldBy and isP2Req. The 
variable isPIReq (respectively isP2Req) is of type Bool and records whether 
there is a request from P I (respectively P2) to hold P I . The variable heldBy is 
an enumerated type variable that takes one of the three values mkNil (meaning 
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tha t F l is held by neither philosopher), mkPl (meaning tha t Fl is held by 
P I ) and mkP2 (meaning tha t F l is held by P2). The variables of F 2 are set 
up similarly to F l . 

In Fig. 13.32 we show the transaction charts of TS_1. 

P1 || F1 
P1:isHungry F1: heldBy = mkNil P1:isHungry F1: heldBy = mkNil P1:isHungry F1: heldBy = mkNil 
A-isLeftFork A- isPIReq A-isLeftFork A- isPIReq A-isLeftFork AisPIReq 

true => isPIReq 

isLeftFork<= true 

heldBy := mkP1 
I 

isPIReq := false 

true => isPIReq 

isLeftFork<= false 

isLeftFork<= true 

heldBy := mkP1 

| 
isPIReq := false 

Transaction Chart 1.1 Transaction Chart 1.2 Transaction Chart 1.3 

Fig. 13.32. Transaction schema TS_1 

There are three transaction charts 1.1, 1.2, 1.3. Chart 1.1 models the scenario 
tha t F l grants a fresh "grab" request by F l , while chart 1.2 models tha t F l 
rejects a fresh "grab" request by F l (but remembers this request). The chart 
1.3 models tha t F l grants a previously recorded request from F l . Obviously, 
the transaction charts of TS_2 are similar to those of TS_1 and thus we omit 
the details of TSJ2. 

Transaction schema TS_3 is shown in Fig. 13.33. 

PI 
P1: isLeftFork 
A isRightFork 

isHungry := false 

Transaction Chart 3.1 

Fig. 13.33. Transaction schema TS_3 

Since it only involves F l , we would have only internal actions of F l . In 
particular, the activity of eating is modelled by setting isHungry to false. 

The transaction schema TS_A is shown in Fig. 13.34. 
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P1: isLeftFork 
A isRightFork F1: heldBy=mkP1 

mkNN =>heldBy 

isLeftFork := false 

mkNM => held By 

isRightFork := false 

Transactio n Chart 4.1 

P1 

F2: heldBy=mkP1 

II F1 | F 2 

P1: IsLeftFork 
MsRightFork F1: heldBy=mkP1 

mkNM =>heldBy 

isRightFork := false 

mkNN => held By 

isLeftFork := false 

Transaction Chart 4.2 

F2: heldBy=mkP 

Fig. 13.34. Transaction schema TS_4 

There are two charts corresponding to whether P I first puts down its left 
fork or its right fork. 

Similarly to TS_3, the transaction schema TS_5 (shown in Fig. 13.35) 
models the activity of thinking by setting isHungry to true! Process P I (and 
also P2) alternates between communicating with P I and P2. Initially P I is 
ready to communicate with P I and P2 is ready to communicate with P2. 

PI 

P1: -isHungry 

isHungry := true 

Transaction Chart 5.1 

Fig. 13.35. Transaction schema TS_5 

We omit the details of TS_V, TS_2', TS_3', TS_4', TS_5' as they are 
analogous to TS_1, TSJ2, TS_3, TS_4, TS_5. 

End of Example 13.24. 

13.6.4 Formalisation of CTPs 

The Syntactic and Some Semantic Types 

type 
P, T, S, Var, Typ, VAL, Chtn, Exp, AP, Act 
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A n n o t a t i o n : 

P, T, S, Var, Typ, VAL, Chtn, Exp, AP, Act: Process names, transaction sche
ma names, process control states (i.e., names), variable identifiers, type 
designators (for example i n t e g e r , Boolean and so on), semantic values 
(for example I n t , B o o l and so on), chart names, expressions (further un
defined, but are usually variables, prefix expressions and infix expressions 
over usual integer operators and Boolean connectives), atomic proposi
tions (i.e., Boolean valued expressions over variables) and internal actions 
(assignments, conditional actions, etc.). »3 

t y p e 
Prog ' = PDecls x TDecls x Wiring x Init 
Prog = {| prog:Prog'« wf_Prog(prog) |} 

A n n o t a t i o n : 

Prog: A C T P program consists of well-formed combinations of process vari
able and transaction schema declarations, of wiring and the definition of 
an initialisation (of process control states and variable values). • 

t y p e 
PDecls = P TTI VarDecl 
TDecls = T ^ (Chtn ^ (Gd x Cht)) 

A n n o t a t i o n : 

PDecls, VarDecl: For each process there is a set of variables of specified type. 
TDecls: For each transaction schema name, T, there is a set of uniquely 

named, Chtn, transaction charts, with each chart consisting of a guard, 
Gd, and the chart proper Cht. • 

t y p e 
Wiring = T ^ (P ^ S x S) 
Init = P ^ (S x Varlnit) 
VarDecl = Var ^ Typ 

A n n o t a t i o n : 

Wiring: For each transaction schema and for each process (that applies to this 
schema) there is a pair of respectively input and output control states. 

Init, Varlnit: Wi th each process a control state, S, is associated an initialisa
tion, respectively the current values of all variables of this process. • 

t y p e 
Gd = P TTI Prop 
Prop = = mkTrue | mkAP(ap:AP) | mkNot(pr:Prop) 

| mkAnd(pr:Prop,pr :Prop) | mkOr(pr :Prop,pr :Prop) 

3m means: end of annotation. 
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A n n o t a t i o n : 

Gd, Prop: A transaction chart guard associates 
• to each of the processes associated with tha t chart 
• a proposition which is 
• either the value true, 
• or is an atomic proposition, 
• or a negated, 
• or a conjunctive 
• or a disjunctive 
proposition. • 

t y p e 
Cht = (P T& Ev*) x SendRecv 
Ev = = mkSe(p:P,e:Exp) | mkRe(p:P,v:Var) | mkAct (ac tAc t ) 
SendRecv = (P x Pos) ^ (P x Pos) 
Pos = N a t 
S = Var ^ VAL 
Varlnit = £ 

A n n o t a t i o n : 

Cht, Ev*, SendRecv: A transaction chart maps each of its associated processes 
into an instance — which is an event list — and a mapping, SendRecv, 
tha t relates output and input events in respective process instances. 

Ev: An event is either a send event (sending to p the value of expression e), or 
a receive event (receiving a value from p and storing it in v); or an event 
is an internal action. 

Pos: A position is an index into an event list. • 

Aux i l iary Syntac t i c and S e m a n t i c Func t ion S ignatures 

value 
typeof: Exp ->• VarDecl ->• Typ 

wf_AP: AP -> VarDecl -> B o o l 
wf_Exp: Exp —>• VarDecl —>• B o o l 
wf_Act: Act ->• VarDecl ->• B o o l 

A n n o t a t i o n : 

typeof: Extracts from an expression, given a set of variable declarations, the 
type of the value of the expression, if well-formed. 

wf_AP: Examines whether an atomic proposition is well-formed. 
wf_Exp: Examines whether an expression is well-formed, 
wf Act: Examines whether an internal action text is well-formed. • 
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value 
eval_AP: AP -> S -> B o o l 
eval_Exp: Exp ->• £ ->• VAL 
int_Act : Act ->• £ ->• S 

A n n o t a t i o n : 

eval_AP: Evaluates an atomic proposition. 
eval_Exp: Evaluates an expression. 
int_Act: Interprets an internal action, possibly leading to changes in the val

ues of variables. • 

Aux i l iary Func t ion S ignatures and Def in i t ions 

value 
participants: T —>• Prog' —> P - se t 
participants(t) (prog) = let (_ ,_ ,wir ing ,_)= prog in d o m wiring(t) e n d 

instances : Cht —>• P - s e t 
instances(cht) = let (pevs,_) = cht in d o m pevs e n d 

A n n o t a t i o n : 

participants: Extracts the set of process (names) participating in a transaction 
schema 

instances: Extracts the set of instances of a chart. • 

va lue 
x t r _ A P s : Prop ->• A P - s e t 
x t r_APs(p r ) = case pr of mkTrue —> {}, mkAP(ap) —>• {ap}, ... e n d 

eval_Prop: Prop —> S —>• B o o l 
eval_Prop(pr) (a) = 

case pr of mkTrue —>• true , mkAP(ap) —>• eval_AP(ap) (cr), ... e n d 

A n n o t a t i o n : 

xtr_APs: Extracts , from a proposition, the set of atomic propositions occur
ring in a proposition. 

eval_Prop: Evaluates a proposition. • 

We l l - formedness of C T P 

value 
wf_Prog : Prog ' —>• B o o l 
wf_Prog(prog) = 

All_Wired(prog) A All_Initialized(prog) A 
wf_Gds_and_Chts (prog) A wf_ Wiring (prog) A wf_Init(prog) 
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A n n o t a t i o n : 

wf_Prog: Conjunction of five constraints. • 

v a l u e 
All_Wired: Prog' ->• B o o l 
All_Wired(_,tdecls,wiring,_) = d o m tdecls = d o m wiring 

All_Initialized: Prog' -t B o o l 
All_Initialized(pdecls,_,_,init) = d o m pdecls = d o m init 

A n n o t a t i o n : 

AII_Wired: All transaction schemas are wired. 
All Initialized: Each process is initialized. (The initialization of a process in

cludes not only the variables but also an initial control state.) • 

v a l u e 
wf_Gds_and_Ch t s : Prog ' —>• B o o l 
wf_Gds_and_Chts (prog) = 

le t (pdecls,tdecls,_,_) = prog in 
V t:T«t £ d o m tdecls =>• 

le t (gd,cht) = tdecls(t)(chtn) in 
d o m gd = instances(cht) = participants(t)(prog) A 
wf_Gd(gd) (pdecls) A wf_Cht(cht) (pdecls) 

e n d e n d 

wf_Gd: Gd ->• PDecls ->• B o o l 
wf_Gd(gd) (pdecls) = 

V p:P«p £ d o m gd => V a p A P • ap £ x t r_APs(gd(p) ) 
=>• wf_AP(ap)(pdecls(p)) 

A n n o t a t i o n : 

wf_Gds_and_Chts: The guards and charts are well-formed. 
wf_Gd: Examines whether a guard is well-formed. • 

v a l u e 
wf_Cht: Cht ->• PDecls ->• B o o l 
/ * see later */ 

wf_Wiring: Prog —> B o o l 
wf_ Wiring (prog) = 

le t (pdecls,_,wiring,_) = prog in 
V t:T«t € d o m wiring =£> 
participants (t) (prog) C d o m pdecls 

e n d 
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A n n o t a t i o n : 

wf_Wiring: The wiring is well-formed. • 

va lue 
wf_Init: Prog ' —>• B o o l 
wf_Init(prog) = 

let (pdecls,_,_,init) = prog in 
V p:P«p € d o m init =>• 

let (s,varinit) = init(p) in 
(3 t:T,s':S • (s,s ')=wiring(t)(p)) A wf_VarInit(varinit)(vardecl(p)) 

e n d e n d 

A n n o t a t i o n : 

wf_lnit: The initialisation is well-formed (the initialisation includes both ini
tial control states and initial values of variables). • 

va lue 
wf_VarInit: Varlnit —>• VarDecl —>• B o o l 
wf_VarInit(varinit)(vardecl) = 

d o m vardecl = d o m varinit A 
V var:Var«var € d o m vardecl =>• 

typeof_VAL( varinit (var))= vardecl (var) 

typeof_VAL: VAL -> Typ 

A n n o t a t i o n : 

wf_Varlnit: All variables are initialised to values of the declared type. 
typeof_VAL: Similar to typeof. • 

We l l - formedness of Char t s 

value 
wf_Cht: Cht ->• PDecls ->• B o o l 
wf_Cht(cht)(pdecls) = wf_Evs(cht)(pdecls) A wf_SendRecv(cht)(pdecls) 

A n n o t a t i o n : 

wf_Cht: All events are well-formed and so are all send-receive pairs. • 

va lue 
wf_Evs: Cht -> PDecls -> B o o l 
wf_Evs(pevs,_)(pdecls) = 

V p:P,ev:Ev« 
p e d o m pevs A ev € e l e m s pevs(p) => 

case ev of 
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mkSe(q,exp)—>-q € d o m pevs\{p}Awf_Exp(exp)(pdecls(p)), 
mkRe(q,var)—>-q £ d o m pevs\{p}Ais_decl(var)(pdecls(p)), 
mkAct(act)—»wf_Act(act)(pdecls(p)) 

e n d 

A n n o t a t i o n : 

wf_Evs: All events are well-formed (with respect to source/target processes, 
expressions, etc.) 
• Sends and receives are between different instances, tha t is, processes. 
• Corresponding expressions are well-formed and corresponding vari

ables are declared. 
• Internal actions are well-formed. • 

v a l u e 
is_decl: Var —>• VarDecl —>• B o o l 
is_decl(var)(vardecl) = var € d o m vardecl 

wf_SendRecv: Cht ->• PDecls ->• B o o l 
wf_SendRecv(cht)(pdecls) = 

Well_Matched(cht)(pdecls) A All_Matched(cht) A ~is_cyclic(cht) 

A n n o t a t i o n : 

is decl: Examines whether the variable is properly declared. 
wf_SendRecv: The send-receive matching relation is well-formed. • 

v a l u e 
is_cyclic: Cht —>• B o o l 
is_cyclic(cht) = ... / * straightforward */ 

A n n o t a t i o n : 

is_cyclic: The transitive closure of the send-receive and instancewise mes
sage ordering relation contains cycles. (The specification of this predi
cate is clear from item / * 6 * / (Page 387) of Sect. 13.1.6 "Syntactic Well-
formedness of MSCs".) • 

v a l u e 
Well_Matched: Cht ->• PDecls -> B o o l 
Well_Matched(pevs,sendrecv)(pdecls) = 

c a r d d o m sendrecv = c a r d r n g sendrecv A 
V (p,i) ,(q, j) :PxPos • sendrecv((p,i)) = (q,j) =>• 

3 exp:Exp,var:Var* 
pevs(p)(i) = (q,exp) A 
pevs(q)(j) = (p,var) A 
typeof(exp)(pdecls(p)) = pdecls(q)(var) 
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A n n o t a t i o n : 

Well_Matched: The matching is proper. • 

value 
All_Matched: Cht -> B o o l 
All_Matched(pevs,sendrecv) = 

doni sendrecv = {(p, i) | (p, i ) :PxPos • is_Send_Ev(pevs(p)( i ) )} 

A n n o t a t i o n : 

AII_Matched: All send/receive events are matched. • 

value 
i s_Send_Ev: Ev ->• B o o l 
i s_Send_Ev(ev) = ca se ev of mkSe(_ ,_ ) —> t r u e , —> false e n d 

A n n o t a t i o n : 

is_Send_Ev: Examines whether an event is a send event. • 

D y n a m i c S e m a n t i c s , T y p e s 

Semantic Types 

t y p e 
P<7 = P ^ W 

& = n x E x 0 

A n n o t a t i o n : 

P<? : The current "stage" of a C T P program is given by associating with each 
process, a stage, &. 

<7: The process stage consists of a triple: the current program point, 77, the 
current values of all its variables, E, and the (evaluated) values of expres
sions of executed output (send) events, 0. • 

t y p e 
77 = = mkS(s:S) | mkT(t:T,chtn:Chtn,i :Pos) 
0 = Pos ^ VAL 
Pos = N a t 

A n n o t a t i o n : 

77 : The program pointer (of a process) either designates a process control 
state mkS(s:S) or a position i:Pos within a transaction chart chtn:Chtn of 
a transaction schema t:T; i=0 indicates tha t the process has just entered 
the chart. 



13.6 Communicating Transaction Processes (CTP) 461 

0: The output value queue (of executed output events) is a map from posi
tions, Pos, of output events to values VAL. 

Pos: Position of events ( input /output events and internal actions). • 

t y p e 
PA = P ^ A 

A n n o t a t i o n : 

PA : For each (invoked) process P we record its stepwise progress A. • 

t y p e 
A = T x Chtn x <P 
$ = = mkEnter | mkEv(i:Pos) | mkExit 

A n n o t a t i o n : 

A : The stepwise progress within a transaction chart, Chtn, of a transaction 
schema, T, is recorded by a quanti ty <P. 

$ : Either the process, at an instance, is at the point of entering, mkEnter, or 
leaving, mkExit, or is at some event position, mkEv(i:Pos). • 

Well-formedness 

value 
wf_PZl: PA -> Prog ->• B o o l 
wf_PZ\(p(5)(prog) = 

let (pdecls ,_ ,_ ,_) = prog in 
d o m p8 C d o m pdecls A 
V p:P«p £ d o m 6 => wf_/\(p)(p£)(prog) 
e n d 

A n n o t a t i o n : 

wf_PZl : 
• The invoked processes must first have been declared. 
• And for each such process its progress must be well-formed. • 

va lue 
wf_Z\: P -)• PA ->• Prog ->• B o o l 
wf_4(p)(p(5)(prog) = 

let (pdecls,tdecls,_,_) = prog, (t,chtn,</)) = pJ(p) in 
t £ d o m tdecls A chtn e d o m tdecls(t) A p e participants(t)(prog) A 
case (f> of 

mkEv(i) 
—> let (pevs,_) = tdecls(t)(chtn) in i £ inds pevs(p) e n d 

_ —>• V q:P«q £ participants(t)(prog) ^ ~pS(q) = p<5(p) 
e n d e n d 



462 13 Message and Live Sequence Charts 

Annotation: 

wf_Z\ : For the invoked process 
• the designated transaction schema and transaction chart (of that 

schema) must be declared, and the designated process (name) must 
be an instance of that chart. 

• In addition the program point (ppt) must be well-formed: 
• if an event index it must be into the process instance, otherwise 
• all processes of that transaction chart must be in the same (either 

entry or exit) state. • 

Dynamic Semantics, Functions 

Auxiliary Functions 

value 
xtr_preS: Prog ->• T ->• P ->• S 
xtr_preS(_,_,wiring,_)(t)(p) = 

let (s,_) = wiring(t)(p) in s end 
pre t £ dom wiring A p £ dom wiring(t) 

Annotation: 

xtr_preS : Extract from a transaction schema, the precondition (a control 
state) corresponding to a process. • 

value 
xtr_postS: Prog ->• T -> P -> S 
xtr_postS(_,_,wiring,_)(t)(p) = 

let (_,s) = wiring(t)(p) in s end 
pre t £ dom wiring A p £ dom wiring(t) 

Annotation: 

xtr_postS : Given a 
• program, a transaction schema (name) and a process (name) 
• yield the output control state (from the wiring). • 

value 
xtr_Ev: Prog -> (T x Chtn x P x Pos) -> Ev 
xtr_Ev(_,tdecls,_,_)(t,chtn,p,i) = 

let (_,(pevs,_)) = tdecls(t)(chtn) in pevs(p)(i) end 
pre t £ dom tdecls A chtn £ dom tdecls(t) A 

let (_,(Pevs)—)) = tdecls (t) (chtn) in 
p £ dom pevs A i £ inds pevs(p) end 

Annotation: 
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xtr_Ev : Given 
• a program, 
• a transaction schema name (within tha t program), 
• the name of a chart (within tha t schema), 
• a process (name) and 
• a position (within the designated chart) , 

yield the designated event. • 

v a l u e 
x t r _ P r o p : Prog -t (T x Chtn) ->• P ->• Prop 
x t r_Prop(_ , tdec l s ,_ ,_ ) ( t , ch tn) (p) = 

le t (gd,_) = tdecls(t)(chtn) i n gd(p) e n d 
p r e t £ d o m tdecls A chtn £ d o m tdecls(t) A 

le t (_,cht) = tdecls(t)(chtn) i n p £ instances(cht) e n d 

A n n o t a t i o n : 

xtr_Prop : 
• Given 

• a program, 
• a transaction schema name (within tha t program), 
• the name of a chart (within tha t schema), and 
• a process (name) 

• yield the designated proposition. • 

v a l u e 
las t_Pos: Prog -> (T x Chtn) ->• P ->• Pos 
las t_Pos(_ , tdec ls ,_ ,_) (t,chtn) (p) = 

le t (_,(pevs,_)) = tdecls(t)(chtn) i n l en pevs(p) e n d 
p r e t £ d o m tdecls A chtn £ d o m tdecls (t) A 

le t (_,cht) = tdecls(t)(chtn) i n p £ instances(cht) e n d 

A n n o t a t i o n : 

last_Pos : 
• Given 

• a program, 
• a transaction schema (name, within tha t program), 
• a chart (name, within tha t schema), and 
• a process (name, within tha t chart) 

• yield the position of the last event of the designated process ins tances 

v a l u e 
x t r_Send: Prog ->• (T x Chtn) -> (P x Pos) -> (P x Pos) 
x t r_Send(_, tdecls ,_ ,_)( t ,chtn)(p , i ) as (q,j) 

p r e t £ d o m tdecls A chtn £ d o m tdecls(t) A 
le t (_ ,(pevs,_))=tdecls( t ) (chtn) in 
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p € d o m pevs A i € inds pevs(p) e n d 
pos t let (_,(_,sendrecv))=tdecls( t)(chtn) in 

sendrecv((q,j)) = (p,i) e n d 

A n n o t a t i o n : 

xtr_Send : Extract the matching send event, given a receiving event. 
• The transaction schema and chart names must be declared and the 

event position be appropriate. 
• The matching send event (q,j) is then found from the send-receive 

mapping. • 

Initialization 

value 
init_Plf ,: Prog ->• P& 
init_P<?(prog) = 

let (_,_j_,init) = prog in 
[pi->'Convert_ ,Z'(init(p))|p:P«p € d o m i n i t ] e n d 

c o n v e r t ^ : (S x Varlnit) —>• \P 
convert_>?(s,varinit) = (mkS(s),varinit,[]) 

A n n o t a t i o n : 

init_P<? : To initialise a program is to create the collection of all process initial 
states. 

convert_!? : Mark the initial control state, use the initial control variable 
values and set the initial queues of values of expression of send events to 
empty. • 

Enabling 

value 
is_enabled: PA -t (Prog x P<?) ->• B o o l 
is_enabled(p(5)(prog,pz/>) = 

V p:P«p £ d o m p5 =>• let (t,chtn,<^>) = p<5(p) in 
case </> of 

mkEnter —>• is_enabled_Enter_Chtn(t,chtn)(prog,pz/>), 
mkExit —• is_enabled_Exit_Chtn(t,chtn)(prog,p?/>), 
mkEv(i) —• is_enabled_Ev(t,chtn,p,i)(prog,pz/>) 

e n d e n d 
pre wf_PZ\(p(5)(prog) 

A n n o t a t i o n : 

is_enabled : A program step, p6, is enabled at the current stage of the pro
gram, if every process step corresponding to processes in the domain of 
this program step is enabled. • 
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v a l u e 
i s_enab led_Ente r_Chtn : (T x Chtn) ->• (Prog x P # ) ->• B o o l 
i s_enabled_Enter_Chtn( t ,ch tn) (prog,p?/>) = 

V p:P«p £ participants(t)(prog) =>• 
le t s = xt r_preS(prog)( t ) (p) , 

pr = x t r _ P r o p (prog) (t,chtn) (p), 
(TT,O-,_) = pV>(p) in 

(7r=mkS(s)) A eval_Prop(pr)(tr) e n d 

A n n o t a t i o n : 

is_enabled_Enter_Chtn : A chart of a transaction schema can be entered if for 
every process participating in this transaction schema, its current control 
state is the precondition of this transaction schema, and the proposition 
associated with this process in the guard associated with this chart eval
uates to t rue with respect to the current values of variables. • 

v a l u e 
i s_enab led_Exi t_Chtn : (T x Chtn) -> (Prog x PW) ->• B o o l 
i s_enab led_Exi t_Chtn( t , chtn) (prog, pip) = 

V p:P«p £ participants(t)(prog) =>• 
le t (mkT(t ,chtn, i ) ,cr ,_)=p^(p) in i=last_Pos(prog)( t ,chtn)(p) e n d 

A n n o t a t i o n : 

is_enabled_Exit_Chtn : A chart of a transaction schema can be exited if for 
every process participating in this transaction schema, it has executed all 
its events in this chart. • 

v a l u e 
is_enabled_Ev: (T x Chtn x P x Pos) ->• (Prog x P\P) ->• B o o l 
is_enabled_Ev(t ,chtn,p, i) (prog,p?/>) = 

le t (mkT(t ,chtn, i ' ) ,_ ,_) = pV'(p) i n i'=i—1 A 
case xtr_Ev(prog)(t ,chtn,p, i ) of 

mkRe(q,_) —>• 
le t (q,j) = xtr_Send(prog)(t ,chtn)(p, i) in 
le t (mkT(t ,chtn , j ' ) ,_ ,_) = p^(q) i n j < j e n d e n d 

_ —>• t r u e 
e n d e n d 

A n n o t a t i o n : 

is_enabled_Ev : An event at a position of a process in a chart of a transaction 
schema is enabled, if this process has come to the previous position, and 
in case this event is a receive event, the matching send event has been 
executed. • 
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Firing 

value 
fire: (Prog x P\P) ->• PA ->• (Prog x P&) 
fire(prog,p^)(p(5) as (prog,p?/>') 

p r e is_enabled(p(5)(prog,p?/>) 
pos t pz/y=pz/>t[pi->-iipcl_|Z'(prog,pz/>)(p(5)(p)|p € d o m p5] 

A n n o t a t i o n : 

fire : Firing an enabled program step updates the current stage of every pro
cess. • 

va lue 
upd_<£: (Prog x PW) ->• PA ->• P -> & 
upd_<?(prog,pz/')(p(5)(p) = 

let (TT,(T,0) = pz/>(p), (t,chtn,^>) = p<5(p) i*1 

case (f> of 
mkEnter -> (mkT(t,chtn,0),<7,[]) 
mkEv(i) -> 

let a' = upd_i7(prog,cr)(p)(t ,chtn,i), 
8' = upd_(9(prog,#)(p)(t ,chtn,i) in 

(mkT(t,chtn,i),cr',6l') e n d 
mkExit —> let s = xtr_postS(prog)( t ) (p) in (mkS(s),a,[ ]) e n d 

e n d e n d 
pre ... 

A n n o t a t i o n : 

upd_!/' : Upon firing an enabled program step, the current stage of a process 
should be updated as follows. 
• If this process enters a chart of a transaction schema, then this process 

goes to position zero of this chart (in this transaction schema), retains 
the current values of variables and initializes an empty map of positions 
to values of expressions of send events. 

• If this process executes an event at a position of a chart of a transaction 
schema, then this process goes to this position and updates the current 
values of variables and the map of positions to values of expressions of 
send events. 

• If this process exits a chart of a transaction schema, then this process 
goes to the postcondition associated with this process of this transac
tion schema, retains the current values of variables and empties the 
map of positions to values of expressions of send events. • 

va lue 
u p d _ i 7 : (Prog x P f ) - > P - > ( T x Chtn x Pos) ->• S 
upd_i7(prog,p^)(p)( t ,chtn, i ) = 
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let (_,cr,_) = pV'(p), ev = xtr_Ev(prog)(t ,chtn,p, i ) in 
case ev of 

mkSe(q,exp) —>• a, 
mkRe(q,var) —> 

let (_,_,#) = p ^ ( q ) , 
(q,j) = xtr_Send(prog)(t ,chtn)(p, i) in a f [ var i->- 6(j) ] end, 

mkAct(act) —• int_Act(act)(cr) 
e n d e n d 

pre ... 

A n n o t a t i o n : 

upd_i7 : Upon execution of an event, the current values of variables should 
be updated as follows. 
• Executing a send event does not change the value of any variable. 
• Executing a receive event amounts to assigning the value of the expres

sion of the matching send event to the variable associated with this 
receive event, and leaving the values of all other variables untouched. 

• Executing an internal action amounts to evaluating it with respect 
to the current values of variables, possibly leading to changes in the 
values of variables. • 

va lue 
u p d _ 0 : (Prog x P f ) 4 P - > ( T x Chtn x Pos) ->• 0 
upd_@(prog,p^)(p)( t ,chtn, i ) = 

let (_,a,6) = pV>(p) in 
case ev of mkSe(q,exp) —> 6 U [i i->- eval_Exp(exp) (a) ], 

—>• 6 e n d e n d 
pre ... 

A n n o t a t i o n : 

upd_(9 : Upon execution of an event, the map of positions to values of expres
sion of send events is updated as follows. Executing a send event amounts 
to adding to this map the value of the expression of this send event as
sociated with its position. Executing a receive event or an internal action 
does not touch this map. • 

13.7 Discussion 

13.7 .1 Genera l 

We have covered two notions of sequence charts (SCs): Message SCs (MSCs) 
and Live SCs (LSCs). 
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MSCs arose in connection with the design of software for telephone switch
ing and da ta communication systems in the 1970s. MSC, as a language, was 
then known as the System Description Language (SDL). Work on SDL and 
MSC took place mainly under the auspices of the International Telecommu
nication Union, ITU. We refer to various URLs related to ITU, SDL and 
MSC [226]. 

MSCs, most likely due to the influence of Ivar Jacobson, one of the three 
technologists who did the principal design of UML4 [59,237,382,440], became 
one of the many diagrammatic facets of UML. 

LSCs took off from MSC. On one hand, David Harel and his colleagues 
(notably Werner Damm), have spearheaded LSC research and development, 
notably through the Come, Let's Play — Scenario-Based Programming Using 
LSCs and the Play-Engine [195]. On the other hand, it seems tha t , so far, the 
mostly software oriented computer science community has been at work on 
studying LSCs. The author happily confesses: The Play-Engine is a fascinating 
concept. 

We have also presented some material on theoretical foundations of MSCs 
and LSCs. The material presented in Sects. 13.3-13.5 represents one direction 
of research in the field of integrated formal methods. It is included to illustrate 
tha t certain techniques have advantages for certain applications in software 
engineering, and tha t choosing one technique (e.g., diagrams) does not pre
clude also using other techniques (e.g., formal specification in RSL). Indeed, 
in complex software engineering projects, several techniques will be needed 
to specify all the relevant aspects of a system. To ensure consistency between 
the different parts of the system specified using different techniques, relations 
among these techniques must be established. The relation between LSCs and 
RSL presented above and the corresponding relation between statecharts and 
RSL — presented in the next chapter (Sect. 14.7) — are two such examples. 

13.7 .2 Pr inc ip le s , Techniques and Tools 

This chapter has basically covered a tool: The sequence charts (MSCs and 
LCSs). As such we can hardly speak of 'A Principle of Sequence Char ts ' — 
such as we could for most other chapters ' title subjects. So we shall rearrange 
things a bit in this section on "Principles, Techniques and Tools". 

Princ ip le s . Choosing Sequence Charts: Sequence charts, as a modelling de
vice, can be chosen when the phenomenon to be abstracted and modelled 
exhibits concurrent and interacting behaviours, where the interaction "pat
terns" are of main interest, and then usually when there is a definite, "small" 
number of behaviours, typically less than a couple of dozen. • 

4Ivar Jacobson was with Ericsson in the later 1970s and early 1980s when SDL 
was first designed, and played a decisive role in that effort. 
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Which kind of sequence chart, whether MSCs or LSCs are chosen, is then a 
matter of sophistication, whether MSCs will do, or whether the more elaborate 
properties of LSCs are needed. Please contrast the above principle with that 
of Choosing Statecharts Sect. 14.8.2. 

Techniques. Creating Sequence Charts: The basic parts of sequence charts 
are the instances, corresponding to behaviours (i.e., processes), and the in
puts/outputs, corresponding to events (in the CSP jargon). All else are adorn
ments. • 

Tools. Sequence Charts: We refer to [226] for reference to MSC tools. The 
main, and overwhelmingly sophisticated, LSC tool is that of the Play-Engine 
[195]. A number of research investigation and exploratory tools are provided 
by Sun and Dong [493] for model-checking LSCs via translation to CSP and 
then using the FDR2 tool [442]. Others are provided by Wang, Roychoudhury, 
Yap and Choudhary [525] for symbolically executing LSCs using translation 
to constraint logic programming. There are many more. • 

13.8 Bibliographical Notes 

The basic references to MSCs are the three consecutive recommendations from 
the International Telecommunication Union, labelled Z.120 [227-229] (1992, 
1996 and 1999). Syntax recommendations for MSCs are given in Reniers [423]. 
Extensions of MSCs with time have been studied in [38,280,296]. 

The basic reference to LSCs is Damm and Harel's paper [89]. The main 
text on LSCs is now the book [195]. A delightful presentation of MSCs and 
LSCs is Harel and Thiagarajan [199]. The literature on Live Sequence Charts 
is emerging. A sample is: [58,64,89,187,191,278,493,525]. In [191] Harel, 
Kugler and Pnueli put forward further proposals for time in LSC, i.e., the 
"rich version" of LSC. Report [493] shows relations between the language of 
LSCs and CSP, and reports on translations of LSCs into CSP for purposes of 
using CSP's model checker FDR2 http:/ /www.fsel .com/fdr2_manual.html 
[442]. [525] shows how LSCs can be "symbolically executed" using constraint 
logic programming. Christian Krog Madsen [316, 317] analyses both MSCs, 
HMSCs and LSCs, establishes proper semantics for these and relates LSCs to 
RSL. UML contains various rudiments of MSCs [59,237,382,440]. 

Recent work by Roychoudhury and Thiagarajan merges ideas of Petri nets 
and MSCs. The result is called communicating transaction processes (CTP) 
[439] — and was treated in Sect. 13.6. 

A flurry of recent publications explore various uses of live sequence charts 
in software engineering and in biology! They are all authored or coauthored 
by D. Harel. Some recurrent coauthors are I.R. Cohen, S. Efroni, N. Kam, 
H. Kugler, R. Marelly and A. Pnueli [106-108,115,116,133,176-180,182-184, 
186,188-192,194,196,253-258,279,325]. 



470 13 Message and Live Sequence Charts 

13.9 Exercises 

Exercise 13.1 Automatic Teller Machine. Automatic teller machines (ATM) 
usually services credit and cash cards of a consortium of financial institutions 
(Diners, Mastercard, Visa, etc., as well as Citibank (New York, NY, USA), 
HSBC (Hong Kong and Shanghai Bank Corporation, London, UK), etc.). So 
you may think of four sets of "players": You, the card holders, the ATMs, the 
consortia, and the specific financial institutions of the consortia. A particular 
ATM is bound to a specific set of card types, one consortium, and a specific 
set of financial institutions. An ATM usually offers a number of services: cash 
withdrawal, cash deposit, cash transfer, inquiry about account status, etc. An 
example protocol for the opening of a card transaction using an ATM is as 
follows: user inserts card into the ATM; the ATM requests card password from 
the user; the user keys password into the ATM; the ATM requests verification 
from the consortium; the consortium requests verification from the financial 
institution of the card; the financial institution either OKs or does not OK 
the transaction and so informs the consortium; the consortium passes the 
verification response back to the ATM; and the ATM passes it back to the 
user. If response was OK, the user may continue. 

Exercise 13.1.1: Develop an appropriate MSC for a quadruplet of User, ATM, 
Consortium and Financial Institution instances. 

Exercise 13.1.2: Develop a possible MSC, following a successful, i.e., OK'ed 
verification opening, for a cash withdrawal transaction. 

Exercise 13.1.3: Develop a possible MSC, following a successful, i.e., OK'ed 
verification opening, for a cash transfer transaction. 

You are to fill in all relevant details left out above and to take into account 
that the user makes mistakes. 

Exercise 13.2 Two-Phase Commit Protocol. In many forms of distributed 
systems, the need arises for a group of parties to reach an agreement to perform 
some action. Each party has the option of vetoing the action, in which case all 
the other parties must not perform the action. Another possibility is that one 
or more parties fail before either committing or vetoing the action. In that 
case, the action must also be aborted by all parties. 

One application of this protocol is to implement distributed transactions. 
In this case, the parties must agree whether to commit or roll back the trans
action, such that it is either performed by all parties or by none. 

The protocol to be formalised is centralised, since a single distinguished 
party acts as the coordinator. The remaining parties are slaves (A and B). 

The informal description (given below) derives from [147] and is based 
on [469]. Based on this informal description you are to solve the following 
problems. 

Exercises 13.2.1-5: Formalise interactions between the environment, the co
ordinator and the slaves in terms of live sequence charts. 
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Exercise 13.2.6: Formalise the internal behaviour of the coordinator in terms 
of a finite state machine. 

Exercise 13.2.7: Formalise all of the above in RSL. 

The informal description of our version of the two-phase commit protocol goes 
as follows, one description part per live sequence chart: 

1. Protocol initiation: To start the whole thing it is assumed that an environ
ment requests the coordinator to set up requests to all slaves (here just 
two). Once that assumption (modelled in terms of a prechart) is satisfied, 
the coordinator in any order sends requests to all (i.e., both) slaves. 

2. Commit: When all (both) slaves commit to the requests (by sending such 
messages to the coordinator) the coordinator informs the slaves that the 
protocol has been successfully opened (by sending appropriate messages 
to the slaves). 

3. Abort by slave A: If slave A cannot participate in the protocol (i.e., send 
an abort message), but slave B can (i.e., commits), then the coordinator 
has to inform slave B of the abort. 

4. Abort by slave B: Vice versa: If slave B cannot the protocol (i.e., aborts), 
but slave A can (i.e., commits), then the coordinator has to inform slave 
A of the abort. 

5. Abort by both slaves: If all (i.e., both) slaves cannot participate in the 
protocol (i.e., abort), then the coordinator has to inform all slaves of the 
abort. 

It is suggested that the assumption, the when and the if's of the above five 
cases be modelled by precharts. 

6. Internal behaviour of coordinator: 

Coordination evolves around a finite state machine. In each state the coor
dinator expects input (i.e., messages) from either (initially) the environment, 
or, subsequently, from the slaves. In response to an input the coordinator 
sends outputs that amount to messages being sent to some or all slaves. 

In an initial state the coordinator will expect the environment, i.e., a user 
to request some action to be performed as a distributed transaction. Once 
the coordinator receives such a request it is passed on to, i.e., transmitted 
to the slaves. The coordinator now waits for responses from the slaves. The 
coordinator can only receive one response at a time. Either a commit from 
some slave or an abort from some slave. The coordinator, upon receiving one 
commit or one abort enters respective states in order to be able to receive, 
distinguish and properly react to subsequent responses from remaining slaves. 
If all slaves responds with commit, the transaction is committed. If at least 
one slave responds with abort, the whole transaction is aborted. 

7. An RSL Model: 
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You are to model the protocol in RSL. More specifically, to define a number 
of processes for the system, for example, the coordinator and the two slaves. 
The system process is suggested to be just the parallel composition of the 
coordinator process and the two slave processes. 

The coordinator process will wait to be invoked by inputting a request 
from the user. The requested action is transmitted to the two slaves. Next, 
the coordinator will input the responses from slave A and B, in some order. If 
both choose to commit, they are informed that agreement has been reached to 
commit. A function commit-action can be postulated to abstract the actual 
action to be performed. If either slave responds with abort, the other slave 
is informed that the transaction is aborted and the coordinator performs the 
necessary clean-up, abstracted, for example, by a function abort-action. 

The slave processes are entirely analogous. They first wait for a request 
to be received from the coordinator. Upon receipt, they decide - internal 
nondeterminism choice - to commit or abort. In the latter case, they tell the 
coordinator to abort and perform the necessary clean-up, abstracted by abort-
action. In the former case, they tell the coordinator to commit and await the 
response. Based on the coordinator's response, they either commit or abort 
the transaction. The nondeterministic choice is an abstraction of the process 
used to decide whether to commit or abort. 

Exercise 13.3 Semantics of HMSCs. We refer to the syntax and well-
formedness of BMSCs (Sects. 13.1.2 and 13.1.6), the semantics of BMSCs 
(Sect. 13.1.8), the syntax and well-formedness of HMSCs (Sects. 13.1.4 and 
13.1.6). 

Please define the semantics of HMSCs based on the formalisation given in 
the above referenced sections. 

Exercise 13.4 Remote Procedure Calls/Remote Method Invocation and Bro
ker Design Pattern. 

Procedure calls are a fundamental notion in most imperative computer 
languages. A procedure call occurs when the calling procedure requests the 
execution of the behaviour of the body of the called procedure. Typically, the 
called procedure returns some value once (and if) its execution terminates. 
A prerequisite for procedure calls is that the caller and callee are contained 
in the same executable or in shared libraries, which are linked in at runtime. 
The extended notion of remote procedure calls (RPC) does away with this 
limitation by allowing the caller and callee procedures to be contained in dif
ferent executables, processes and even on different computers. In the context 
of Java, RPC is called remote method invocation (RMI). The basic principle 
of "remoting" is to replace the callee with a proxy procedure, which exposes 
the same interface as the callee. Instead of performing the action the callee 
would, the proxy encodes the parameters it is passed, sends them to another 
proxy, which decodes the parameters and calls the real callee. Figure 13.36 
illustrates the setup, where the caller is named the Client, while the callee is 
named the Server. The ClientProxy appears to the Client as the Server would 



13.9 Exercises 473 

(i.e., it has the same interface). The Server Proxy appears to the Server as the 
Client would. 

Client Client Proxy Server Proxy Server 

mi CD nn 

unmarshallResult 

• 
unmarshallCall 

marshallResult 

• • • • 
Fig. 13.36. A remote procedure call protocol 

The purpose of the two Proxy objects is to hide the details of the t rans
mission of the call parameters and return value over some medium, which 
could be a network connection (for processes distributed on separate com
puters) or shared memory (for inter-process communication within the same 
computer) . The operation of encoding a call including its parameters is tra
ditionally called marshalling. The inverse operation of decoding a call with 
parameters is traditionally called unmarshalling. 

Exercise 13.4.1: Formulate an RSL specification of a simple RPC mechanism 
for a procedure (function) tha t takes two integers as arguments and re
turns their sum. Create a type to represent the marshalled format of the 
arguments. 

A downside with RPC is tha t once the program is written, the Client is locked 
to the Server. Suppose now tha t a more efficient implementation of the addi
tion function is written (call it Server'). To make Client call Server' instead 
of Server, Client must be modified. Thus this system works best in a static 
environment, where both Client and Server are developed at the same time. 
It can not easily adapt to a dynamic environment. One mechanism to intro
duce dynamic binding of the Client and Server is captured in the so-called 
Broker Design Pattern [71], which is central to CORBA [381] and J ava J i n i 
( J i n i e x t e n s i b l e remote i n v o c a t i o n ( J i n i ERI)) [494] technology. The 
idea is to introduce a broker, which maintains a list of available services in a 
distributed system. In the broker architecture, the ServerProxy will register 
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itself as a service with the broker and provide some form of identification of 
what the service does. When the ClientProxy is called, it will query the broker 
to find the location of a service that performs the action it needs. The broker 
will return some form of address or pointer to the ServerProxy. At this point, 
the rest of the protocol behaves like the R.PC protocol. Hence, once the broker 
has pointed the ClientProxy to the service, it no longer participates in the 
communication. 

Typically a service is identified by a text string, so the ClientProxy will 
ask for a service called Addition. 

Exercise 13.4.2: Extend the MSC in Fig. 13.36 to include the broker. 
Exercise 13.4.3: Extend the previous RSL specification to include the broker. 

The interested reader may like to compare the above description to the build
ing blocks of Web services such as XML [417,443,478,546], SOAP [516],WSDL 
[517] and UDDI [506]. 

Exercise 13.5 Generalised Dining Philosophers. We refer to Sect. 13.6.3. 
The example of that section showed a two-dining philosophers CTP program. 
Please show a CTP program solution for five dining philosophers 
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Statecharts 

Christian Krog Madsen is chief author of this chapter [316,317]. 

• The prerequisites for studying this chapter are that you have an all-round 
awareness of abstract specification (principles and techniques) and that 
you have a more specific awareness of parallel programming, for example, 
using CSP — as illustrated in Vol. 1 of this series of textbooks — and you 
have wondered about, or desired, other mechanisms than, say, RSL/CSP for 
modelling concurrency. 

• The aims are to introduce the concept, principles and techniques of using 
statecharts, to show varieties of examples illustrating uses of Statecharts, 
and to relate Statecharts to RSL/CSP: To define, more precisely, when a 
statechart specification can be expressed as an RSL/CSP specification — 
and vice versa! 

• The objective is to enable the reader to expand the kind of phenomena 
and concepts that can be formally modelled by, or in conjunction (com
plementary) with, for example, RSL using statecharts. 

• The treatment is systematic and semiformal. 

Statecharts are ascribed to David Harel [174, 175,185, 193, 197]. Others have con
tributed, notably Amir Pnueli [404]. Besides very professional tool support, in the form 
of S T A T E M A T E [197,198], the diagrammatic Statechart language has achieved some 
prominence by being coopted into UML [59,237,382,440]. 

14.1 Introduct ion 

In this section we describe statecharts [174,175]. As a language, Statecharts 
provides a graphical notation tailored for specifying the control Bow of re
active systems, i.e., event-driven systems which react to internal and exter
nal stimuli. Many electronic devices, such as digital clocks, radios, kitchen 
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appliances, smoke alarms, motion sensors, etc., are reactive systems. Com
puter programs, such as word processors and Internet browsers, that require 
some form of input from the user during execution are other examples of reac
tive systems. An "opposite" to reactive systems are transformational systems. 
They perform some computation and terminate once the result has been eval
uated. On closer examination, a reactive system actually encompasses several 
transformational systems, since whenever an event triggers a transition, the 
resulting change of state may be expressed as a function from states to states, 
i.e., a transformation on the state. There are several well-established methods 
for specifying transformational systems, for example, a direct definition of a 
function relating input values to output values, or indirectly through post
conditions stating properties of the output values, assuming the inputs satisfy 
some pre-conditions. 

Statecharts extends conventional state machines and state diagrams. It 
does so by providing a notation for hierarchical states and ways of specify
ing concurrency and communication. The addition of hierarchy is intended 
to prevent exponential increases in the number of states required to model 
complex systems. A variant of Harel's Statechart language has been included 
in the UML suite of diagram types [59,237,382,440]. 

14.2 A Narrative Description of Statecharts 

Like state machines and state diagrams, statecharts are centred around states 
and transitions. The behaviour of the system in response to internal and exter
nal stimuli depends on the state(s) it is currently in, called the active state(s). 
A transition describes a change of active state. A transition is triggered by 
an event or action and may set off other actions. Statecharts are represented 
graphically as so-called higraphs [175], utilizing area inclusion rather than the 
more conventional tree or graph structure for representing hierarchy. States 
are represented as rounded rectangles (for simplicity called boxes in the fol
lowing). A state, sc, that is fully contained within another state, sp, is called 
a substate of sp. 

States may be decomposed into substates using either AND or XOR de
composition. AND decomposition captures the property that when a system is 
in a given state, it must also be in all substates of that state. Conversely, XOR 
decomposition captures the property that when a system is in a given state, 
it must be in exactly one of the substates of that state. XOR decomposition 
is represented by having several substates. AND decomposition is represented 
by subdividing the box of the containing state with a dashed line and placing 
concurrent substates on either side of the line. 

Transitions are represented as arrows from states to states. An arrow 
is labelled with an identifier for the event that triggers the transition and, 
optionally, a condition enclosed in parentheses. In an extension of the original 
Statechart language, Pnueli and Shalev [404] allowed negative events to trigger 
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transitions. A negative event is interpreted as the absence of the event itself. 
The unary logical negation operator, -i, is used to negate events. Typically, a 
transition will be triggered by both positive and negative events, i.e., it will 
only occur if all the positive events are offered by the environment, while none 
of the negative events are offered. 

When a transition occurs, control is transferred from the origin state to 
the destination state. If the origin of a transition is a state with substates, 
control is relinquished by all substates. If the destination of a transition is 
a state that is AND decomposed into substates, control is assumed by all 
substates. If the destination is XOR decomposed, control is assumed by the 
default substate. Default states are indicated by a small filled circle with an 
arrow pointing to the box of the default substate. A default state functions 
like an initial state in a state machine. 

Example 14.1 Figure 14.1 shows a statechart with four states, A,B,C and 
D. State .4 is XOR decomposed into B and C, with B being the default state. 
The statechart responds to three different events, a, b and c. When the system 
is in state D it may go to state C upon receiving event c, or it may go to 
state A upon receiving event a. Since A is XOR decomposed, activating state 
.4 leads to activating state B as well, since B is the default substate for .4. 
If state A is active and event b occurs, the system will transition to state D, 
regardless of which substate of .4 is active. • 

'C W-
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• * 

C 
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(D 

Fig. 14.1. Statechart with XOR decomposition 

Example 14.2 Figure 14.2 shows a statechart with AND decomposition. The 
statechart responds to three events, a, b, and c. When the system is in state G 
and receives event c, states C and E will be activated concurrently. If either a 
substate of .4 or a substate of B is active, the occurrence of event c will cause 
G to become the active state. • 

The introduction of the concepts of AND and XOR states is the key to avoid
ing the exponential blow-up in the number of states as the system being mod
elled becomes increasingly complex. However, any statechart including either 
form of decomposition may be transformed into an equivalent (in a sense to 
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Fig. 14.2. Statechart with AND decomposition 

be defined precisely later) statechart without hierarchical states. The proce
dure to eliminate an XOR state is to extend every incoming transition to the 
default substate and for every outgoing transition add an outgoing transition 
with the same event trigger and action and target state to every substate. An 
AND decomposed state may be eliminated by forming new states for every 
possible combination of concurrent substates. 

Example 14.3 Figure 14.3(L) illustrates the unwinding of the statechart with 
XOR decomposition in Fig. 14.1 into a nonhierarchical statechart. In this 
case the unwound statechart is not more complicated than the original, since 
it has one less state but one more transition. In general, an unwound AND 
decomposed statechart will have at most the same number of states as the 
original and at least the same number of transitions as the original. 

Similarly Fig. 14.3(R) illustrates the unwinding of the Statechart with AND 
decomposition in Fig. 14.2 into a nonhierarchical statechart. In this case the 
resulting Statechart is considerably more complicated that the original. There 
are only 5 states compared to 6 in the original, but there are 13 transitions 
compared to 6 in the original. • 
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Fig. 14.3. Unwinding of XOR (L) and AND (R) into a simple statechart 
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Statechart supports the modelling concepts of abstraction and refinement. 
Abstraction is the process of extracting common properties from a model. 
Refinement is the process of adding additional details to a model. In the 
setting of statecharts both concepts rely on hierarchical decomposition. 

Abstraction is supported by moving the common properties (i.e., tran
sitions with the same event trigger and same destination state) of a set of 
states to a new state that has the original states as substates. Refinement 
is supported by adding new substates and internal transitions to an existing 
state. 

Example 14.4 (Example is taken from [174].) Figure 14.4 illustrates the pro
cess of abstraction for statecharts. In the statechart on the left, the transition 
on event b from states B and C is a common property of these two states. By 
introducing a new superstate, these two transitions can be replaced by one 
common transition, as shown in the statechart on the right. 

Figure 14.5 shows the process of refinement. In the intermediate step in 
the middle, the state D is refined to show additional details of its internal 
structure. However, now the two transitions from A to D become underspec-
ified, since it is not clear which of B and C should become active after one 
of the transitions has occurred. In the statechart on the right, the transitions 
have been extended to remove the underspecification. Alternatively, either B 
or C could have been defined as the default substate of D. • 
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Fig. 14.4. Abstraction 
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Fig. 14.5. Refinement 

A special kind of transition causes control to be transferred to the substate (s) 
that most recently had control instead of the default substate. This history-
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dependent type of transition may be related only to the immediate substates, 
or recursively to substates, substates of substates, and so on. 

In cases where no history is available, i.e., the first time control is trans
ferred to a state, the default substates are used. History-dependent transitions 
are represented by letting the arrow of the transition point to a symbol com
posed of an 'H' inside a circle. If the transition depends on the recursive 
history, the H symbol is decorated with an asterisk. 

In some situations, it is convenient to be able to forget the past history. 
For this purpose, a distinguished action, clh(S), that resets the history of a 
state S and all substates of S is introduced. Once the history has been reset, 
the next time a history-dependent transition occurs, the default state and not 
the most recently visited state will become the active state. 

Example 14.5 Figure 14.6 illustrates a Statechart with history dependent 
transitions. The first time a state is activated by a history transition, there 
is no history, so the default substate becomes the active state. Thus, in this 
case, the first time B is activated, F becomes active. 

Suppose now that E is the active state and that event a occurs, so .4 
becomes the new active state. If event a occurs now, D becomes the active 
state, since only the first level of the activation history is used. C was the 
most recently activated substate of B, so the default substate of C, namely 
D, is activated. If, on the other hand, event b occurs, E becomes the active 
state, since in this case the entire history is used. Finally, if B is active and 
event d occurs, all history is cleared for B, so the next history transition will 
cause the default substate to be activated. • 

Fig. 14.6. Statechart with history and recursive history 

The events that trigger transitions are typically the result of external stimuli, 
but may also be generated by timeouts when control has been in a given state 
for a predetermined period of time. We do not consider such timeouts here. 
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~\ 

Fig. 14.7. Example statechart 

Example 14.6 Figure 14.7 shows an example statechart modelling a reactive 
system that receives four kinds of stimuli from the environment (essentially 
like four buttons). 

Each kind of stimulus generates a unique event, called o, 6, c and d. The 
system is represented by state A. Initially, the system is in state B. When an 
event d occurs, control is transferred to state F. A b event will now transfer 
control to state E. An additional b event will transfer control to state G and 
H, which is the default substate of G, while a c event will transfer control 
back to state F. When the system is in any of the substates of G, a b event 
will cause control to be transferred to F. 

When the system is in any substate of D, an a event will transfer control to 
both J and K. Similarly, when another b event occurs, control is relinquished 
by both J and K and all their substates. Control is then transferred to the 
most recently visited states in D down to the lowest level, i.e., the states from 
which control was relinquished when the last a event occurred. 

The label "/clh(C)" on the transition from B to C is an action that in
dicates that when this transition occurs, the history of C and its substates is 
deleted all the way down to the lowest level. Thus, the next time the transition 
from J/K to D occurs, the default state will be entered. 

14.3 An RSL Model of the Syntax of Statecharts 

Definition. By a statechart we shall understand a structure such as infor
mally described in Sect. 14.2, a structure whose syntax is given in this section 
and a structure whose semantics is given in Sects. 14.5 and 14.6. • 
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The syntactic description of the Statechart language, as given in Sect. 14.2, 
is formalised in RSL. 

scheme Statechart = 
class 

type 
Statechart = {| sc : Statechart' • wf_Statechart(sc) |} , 
Statechart' = Stateld x StateHier x Trans x History, 
StateHier = Stateld ^ StateDef, 
StateDef = = mk_XOR(OptSId, Stateld-set) | mk_AND(StateId-set), 
OptSId = = mk_None | mk_Id(StateId), 
Trans = Stateld -^ Tr-set, 
Tr :: 

stid : Stateld 
typ : Type 
evt : Event 
cond : Condition 
act : Action, 

Type = = mk_History | mk_HistoryRec | mk_Direct, 
Event = Text, 
Condition, 
Action, 
History = Stateld ^ Stateld, 
Stateld 

value 
wf_Statechart : Statechart' —>• Bool 
wf_Statechart(sid, shi, tr, hi) = 

/* 1 */ 
sid € dom shi A 
/* 2 */ 
dom tr C dom shi A 
/* 3 */ 
dom hi C dom shi A 
/* 4 */ 
(V s : Stateld • 

s £ dom shi =>• 
case shi(s) of 

mk_XOR(_,ss) —>• ss C dom shi, 
mk_AND(ss) —> ss C dom shi 

end) A 
/* 5 */ 
(V s : Stateld • 

s £ dom shi =>• 
case shi(s) of 
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mk_XOR(os , ss) -> 
case os of 

mk_None —> true , 
mk_Id(sid ') —• sid' £ ss 

end, 
mk_AND(ss) -t t rue 

end) A 
/ * 6 */ 

(V s : Stateld • 
s £ d o m shi =>• 

case shi(s) of 
mk_XOR(os , ss) -> 

ss # {} => 
(3 s' : Stateld, t : Tr • 

s' € d o m t r A t £ tr(s ') A stid(t) 
has_default(s, shi), 

mk_AND(ss) ->• 
ss # {} => 

(3 s' : Stateld, t : Tr • 
s' € d o m t r A t £ tr(s ') A stid(t) 

has_default(s, shi) 
end) , 

has_default : Stateld x StateHier —>• B o o l 
has_default(sid, shi) = 

case shi (sid) of 
mk_XOR(os , ss) ->• 

ss = {} V 
case os of 

mk_None —> false, 
mk_Id(sid ') —> has_default(sid' , shi) 

end, 
mk_AND(ss) ->• 

ss = {} V (V s : Stateld • s € ss =>• has_default(s, shi)) 
e n d 

e n d 

Annotations 

• A statechart consists of an initial s tate identifier, a state hierarchy, a set 
of transitions and a history. 

• A state hierarchy maps state identifiers to state definitions. 
• A state definition is either an exclusive-or state or a both-and state. An 

exclusive-or state has an optional default substate identifier and a set of 
identifiers of substates. A both-and state has a set of identifiers of sub-
states. A substate is a state. 

= s)=> 

= s)=> 
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• From a state identifier the set of transitions emanating from that state can 
be found. 

• A transition is composed of destination stated identifier, a type, a trigger
ing event, a condition and an action. 

• A transition may either cause a transfer of control to the most recently 
visited state at the top level, or a recursive transfer of control to the most 
recently visited state all the way down to the lowest level, or a direct 
transfer of control to the destination state. 

• An event is a textual label identifying an exterior interaction. 
• Conditions, actions and state identifiers are further undefined entities. 
• The history is a mapping from state identifiers to substate identifiers. 
• A statechart is well-formed if 

• the initial state is in the state hierarchy, and 
• the states from which transitions emanate are in the state hierarchy, 

and 
• the states with a history are in the state hierarchy, and 
• all substates are in the state hierarchy, and 
• when an exclusive-or state has a default substate, then that substate 

is in the state hierarchy, and 
• if a transition terminates at a composite state, then that state has a 

default substate. 
• A state has a default state if it has no substates, or if it is an exclusive-or 

state and it has a default substate which in turn has a default state, or if 
it is a both-and state and all its substates have a default state. • 

The stdi function in case /* 6 */ is a selector function defined by the type 
equation for Tr. 

14.4 Examples 

We give a number of examples. The first two are by Martin Penicka. 

14.4.1 Railway Line Automatic Blocking 

Author: Martin Penicka 
This example was provided by Martin Penicka, the Faculty of Transporta
tion, Czech Technical University, Prague. 

Example 14.7 Railway Line Automatic Blocking: The example is large — 
so we present it without shading. • 
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The problem with high train speeds and low coefficients of friction between 
train wheels and tracks is tha t the drivers cannot stop their trains within 
sighting distance of another train or within sighting distance of a signal. This 
is the reason why automatic signalling is used on some lines. If there are 
junctions or turnouts then semiautomatic signalling is required. 

In this example we first narra te the principle of automatic line signalling. 
Then we give formal descriptions using statecharts . 

Narrat ive 

Lines are usually divided into segments I = (s\, S2, •••, S j - i , s«, Sj+i, •••, sn) 
(Fig. 14.8). Line I connects exactly two stations, staA and staB. A line can be 
in one of three possible states: OpenAB, OpenBA and Close . These states and 
their possible transition are described in detail in Sect. 14.4.2 on line direction 
agreement systems (LDAS). 

© sigBAn I sigBAui sigBA,, sigBAM, i 
— ••• — — ••• — 
~ \sigABu higAB,>sigABM I lsigAB„ 

S] ... Si.j St Sl+i ... Sn 

Fig. 14.8. Automatic line signalling 

Each segment can be in two states: s egFree and segOccupied. Segment Sj 
is in s egFree when no train is detected in the segment. Segment S{ is in 
segOccupied when a train is detected in the segment. 

General Line Segment 

For each inner segment S{, where i = (2, . . . , n — 1), there are two signals sigABi 
and sigBAi (one in each direction of travel). With each signal we associate four 
possible states: sigOnRed, sigOnYellow, sigOnGreen and sigOf f (Fig. 14.9). 

Signal sigABi is in 

sigOnRed state, when line I is in OpenAB state 
and segment Si is in segOccupied state; 

sigOnGreen state, when line I is in OpenAB state 
and both segment Si and Si+i are in segFree state; 

sigOnYellow state, when line I is in OpenAB state, 
and segment Si is in segFree 
and segment Si+i is in segOccupied state, 

sigOf f state, when line I is in OpenBA or Closed state. 

StaB 

Signal sigBAi is in 
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sigOnRed state, when line I is in OpenBA state, 
and segment Si is in segOccupied state; 

sigOnGreen state, when line I is in OpenBA state, 
and both segment Si and Si-i are in segFree state; 

sigOnYellow state, when line I is in OpenBA state, 
and segment Si is in segFree, 
and segment Si-i is in segOccupied state; 

sigOf f state, when line I is in OpenAB, 
or Closed state. 

sigOnGreern 

\ sigOnOff ^ [ sigOnYellow \ 

^ sigOnRed \ 

Fig. 14.9. Signal state machine — possible transitions 

Each segment has two signals, and each signal can be in four states. Therefore 
we have a potential number of 16 states, but possible combinations are: 

sigABi 
sigOnRed 

sigOnYellow 
sigOnGreen 

sigOff 

sigOff 

sigOff 

sigOff 

sigBAi 
sigOff 

sigOff 
sigOff 

sigOff 
sigOnRed 

sigOnYellow 

sigOnGreen 

First Line Segment 

For segment si there is only one signal sigBA±. And for segment sn there 
is only one signal sigABn (Fig. 14.8). The signals in the opposite directions 
(sigABi and sigBAn) are controlled manually or by interlocking in the sta
tions. 

Sta techar t s 

In this section, we show how description of automatic line signalling can be 
expressed using statecharts . 

General Model 

See Fig. 14.10. 
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Fig. 14.10. Statecharts of automatic line signalling 

Special Cases 

• First segment of a line: Fig. 14.11 left part . 
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Last segment of a line: Fig. 14.11 right part. 
General line segment: Fig. 14.12 left part. 
Line with one segment: no line signals. 
Line with two segments: Fig. 14.12 right part. 

( SEGMENT(1) 

H SIGNAL 
OFF ] 

OFF 
LINE 

( SEGMENT(n) 

J 

Fig. 14.11. First and last line segment 

14.4.2 Railway Line Direction Agreement System 

Author: Martin Penicka 
This example was also provided by Martin Penicka, the Faculty of Trans
portation, Czech Technical University, Prague. 

Example 14.8 Railway Line Direction Agreement System: The example is 
large — so we present it without shading. • 

In this example we first narrate the principle of the line direction agreement 
device. Then we give formal description examples using statecharts and live 
sequence charts. 

Each line connects exactly two stations. At any point in time, the line 
can be open in at most one direction. This is a safety requirement to protect 
head-on train crashes on the line. In the old days, a line specific sheet of 
paper (or a baton) was used, and only the station that had the sheet (or the 
baton) could send trains to the line. The sheet (or the baton) was sent by 
trains between stations. Later on, the sheet of paper was replaced by abstract 
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SEGMENT(i) 

AB-DIRECTION 

f j SIGNAL 1 

\ 
SIGNAL 

OFF 

GREEN 

SegFreefl-1) 

SIGNAL! 
I YELLOW | 

15 SegFraeflJ 

SIGNAL 
RED 

15-
OFF 
LINE 

AUTOMATIC LINE SIGNALLING 

SEGMENTS) 

SIGNAL in BA-DIRECTION 

H SIGNAL 
OFF 

H 

SEGMENT(2) 

SIGNAL In AB-DIRECTION 

H J5" 
OFF 
LINE 

Fig. 14.12. General segment and two segments 

tokens with electronically produced transitions (electric token block or radio 
electronic token block). 

Narrat ive 

The line direction agreement system (LDAS) is a device tha t is responsible 
for fail-safe communication (token transition) and train direction control on 
the line between two stations. 

Consider a line I tha t connects two stations: stationA and stationB. The 
line can be in one of three basic states: OpenAB (trains are allowed to travel 
from stationA to stationB), OpenBA (trains are allowed to travel from stationB 
to stationA) and Close (trains are not allowed to travel in either direction). 
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In each station there is one operator, who is responsible for sending trains 
to the line. Agreement on train direction between two such stations is then 
made by sending messages between the stations and the LDAS (Fig. 14.13). 

/ I n i t A B ^ 
/ AgreeA 
/ DisagreeA 

STATION 
A 

LDAS 

AskChangsA / \ AskChangeB 
OpenA J \ OpenB 

- \ ^ & o s e A / VcioseB^^-' 

AgreeB \ 
DisagreeB \ 

STATION 
B 

Fig. 14.13. Communication with LDAS 

The line direction agreement device therefore comprises three parts : LDAS, 
STATION A and STATION B. 

In both stations, the operator has three buttons: YES, NO and CHANGE. From 
STATION A to LDAS there are four types of commands which can be sent: 
ChangeA, AgreeA, DisagreeA and In i tAB. From STATION B to LDAS there 
are also four types of commands: ChangeB, AgreeB, DisagreeB and Ini tBA. 
LDAS can send any of three different commands to STATION A: OpenA, CloseA 
or AskChangeA, or three different commands to STATION B: OpenB, CloseB 
or AskChangeB. 

The behaviour of the system in response to internal and external stimuli 
depends on the state(s) it is currently in. Therefore, for graphical representa
tion of internal behaviour we introduce statecharts . The line direction agree
ment problem can be described by three statecharts and eight live sequence 
charts. 

Internal B e h a v i o u r of L D A S (Sta techart ) 

The first statechart tha t represents internal behaviour of the LDAS is shown in 
Fig. 14.14. The LDAS can be any one of several states during its operation. The 
three basic states tha t correspond with directions of the trains on the line are 
OPEN AB, OPEN BA and CLOSE. These basic states have several substates. 
All possible transmissions between these states are shown as arrows with a 
label in Fig. 14.14. 

The initialisation process starts in a default s tate of the system. The de
fault s tate is when the line is closed for both directions of train travel. The 
state is called the DEAD state. Two other states, INIT AB and INIT BA, can 
be reached from the s t a t e by receiving In i tAB or Ini tBA. 
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LDAS 

'ON-LINE 

^ 

r OPENAB 

ASKED 
AB 

^ 

DisagreeA/ 1 A c h a n g e B / 

CloseB y AskedChangeB 

• 

V 
k 

OFF-LINE 

LOCKED 
AB 

J 
k 

AgreeA / CloseA, OpenB _ ^ . 

^ AgreeB / CloseB, OpenA 

f 

\ 

OPEN BA 

LOCKED 
BA 

> 

ChangeA/ 1 A a s a g r e e B / 

AskChangeAy CloseA 

V 

ASKED 
BA 

A 
AgreeB/OpenA 1 Stop V Failure/CloseA, CloseB 

INIT 
AB 

* \ _ 
^InitAB/AskedChangsA 

DisagreeB/CloseA ,w DEAD 
initfiA/AskedChangeB ^ 

^ DisagreeA/ CloseB 

J 

AgreeA/ OpenB 

INIT 
BA 

^J 
Fig. 14.14. LDAS statechart 

Internal B e h a v i o u r of S t a t i o n A (Sta techart ) 

The statechart tha t represents the internal behaviour of STATION A is shown 
in Fig. 14.15 (left). It is composed of four states: LINE CLOSED, ASKED OPEN, 
ASKED CLOSE and LINE OPEN. 

The LINE CLOSED s tate is the default s tate of the station component. In 
Statecharts , default states are indicated by an arrow with a filled black dot 
at the end. 

When station manager presses the CHANGE but ton, a ChangeA command is 
sent to LDAS and the state is changed to ASKED OPEN. An answer CloseA 
changes the state back to LINE CLOSED, and an answer OpenA changes the 
state to LINE OPEN. When the STATION A component is in LINE OPEN s tate 
and LDAS sends AskChangeA command, a reply from the station manager is 
expected. 

STATION A 

• 

CHANGE / d l 

LINE 
CLOSED 

a n S 6 A j fcio. 
ASKED 
OPEN 

^YES/AgreeA 

• * AskCh 

OpenA ^ 

ASKED 
CLOSED 

A JNO/ 
angeA y 

LINE 
OPEN 

)lsagreeA 

STATION B 

• 

ChangeBirtton/Ch 

LINE 
CLOSED 

an9eB| Ac t e 

ASKED 
CHANGE 

^YES/AgreeB 

« * AskCh 

OpenB ^ 

ASKED 
CHANGE 

A 1 NO/ 
angeB y 

LINE 
OPEN 

)isagreeB 

Fig. 14.15. Station A (left) and B (right) statecharts 
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Internal B e h a v i o u r of S t a t i o n B (Sta techart ) 

The statechart tha t represents the internal behaviour of STATION B is shown 
in Fig. 14.15 (right). 

E x t e r n a l B e h a v i o u r (Live S e q u e n c e Chart ) 

In this section we show all possible communication scenarios — there are nine 
such — as live sequence charts. See Figs. 14.16-14.19. 

SA 

Q.. 
SB SA 

( PEAD )'\ 
InltAB _ / 

AskChangeB 

( ASI CED^ 

.___,s SB 

/ T 

»> 

Fig. 14.16. Initialisations to AB and BA directions 

The first pair of scenarios in Fig. 14.16 expresses the initialisations of the 
device. LDAS sends AskChange to one of the stations when two preconditions 
are fulfilled. These preconditions are: LDAS is switched off, and one of the 
stations has sent an initialisation command. A reply from the station manager 
is expected. The reply can be either YES or NO. 

5 SA 

( AS 
YES V - ^ 

KED, 

LD 

E 

AgreeA 

CloseA 

AS 

E 
S 

E 

OpenB 

B 

E 
S 

E 
A 

E 
LD 

E 

OpenA 

AS 

P / 

SB 

< ASKED ) 

AgreeB 

CloseB 

€ i ts 

5 

Fig. 14.17. Change direction approvals 

. Q . 
LDAS 

EE EE 
s 

E 
A 

E 
LD 

E 

CloseA 

AS SB 

/ (. AS 

DisagreeB 

KED) 
NO 

J 
> 

Fig. 14.18. Change direction disapprovals 
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, 3 S S S E_ 
( LDAS: ON-LIME, Direction; BA, Une Free ) \ /<( LDAS: OH-LINE, Direction: AB, Line Free" 

l=P 

ASKED ) < ASKED ) 

<c 
-g-—-g. 

>> 

Fig. 14.19. Change direction requests and failure detection 

14 .4 .3 W i r e l e s s R a i n G a u g e 

E x a m p l e 14.9 Wireless Rain Gauge: In this section we present a model of 
a wireless rain gauge. • 

D e s c r i p t i o n 

The rain gauge has two units: a container tha t collects and measures rain 
drops and a base station tha t displays the measurements. The container is 
mounted outdoors, while the base station is placed indoors. The two units 
communicate via a radio signal. The base station is shown in Figure 14.20. 

Fig. 14.20. OBH wireless rain gauge base station 

The base station records the daily precipitation and keeps a history of the 
precipitation for each of the previous nine days. Also, it records the accumu
lated precipitation from a given start date. The base station also includes a 
digital clock. 
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The base station has three displays and four but tons tha t are used to 
set up the station and switch between its modes. Additionally, the station 
has a reset but ton for restarting the station. The top display initially shows 
the current t ime and accumulated precipitation. If the but ton mode/set is 
pressed, the date is displayed, and if the but ton since is pressed, the start 
date of the accumulated precipitation measurement is displayed. The middle 
display indicates whether the base station receives a signal from the container. 
The but ton search is used to initiate a scan for a signal. The bot tom display 
shows the daily precipitation, and with repeated presses of but ton history the 
daily precipitation for each of the previous nine days. 

Statechart M o d e l 

Figure 14.21 shows the statechart for the rain gauge. In the initial s tate there 
are no batteries in the rain gauge. When batteries are inserted the three 
displays become operational. This is modelled by AND decomposition giving 
three concurrent states. 

The da te / t ime (top) display has four overall modes: time, date, s tart date 
of cumulative measuring and setup. Setup mode is entered by pressing and 
holding but ton mode/set for two seconds. If the but ton is released (indicated 
by the symbol m/s in the chart) before 2 seconds have elapsed, the date is 
displayed. 

The signal (middle) display has three modes: either there is no signal, or 
a scanning is in progress, or there is a correct signal. A new scan may be 
initiated by pressing search. 

The rain (bottom) display has two modes: normal operation showing pre
cipitation for the current day, or history mode, where total precipitation for 
one of the last nine days is shown. 

RSL M o d e l 

We translate the above statechart into RSL by creating a process for each state 
tha t has no sub-states. The process then responds to the events tha t cause 
transitions from the corresponding state. Special at tention must be awarded to 
the AND composition. Whenever a transition causes several concurrent states 
to assume control, the translation in RSL starts multiple concurrent processes 
in parallel. Whenever several concurrent states lose control, the translation in 
RSL causes all but one of the concurrent processes to terminate. The single 
remaining process calls the process corresponding to the next state. 

Timeouts are modelled as an external event. Note tha t the timeout du
rations specified in the Statechart are lost in this translation to RSL. If this 
quantitative temporal information is to be preserved, the extension of RSL 
with the Duration Calculus, called Timed RSL (TRSL [132]), may be used. 
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Wireless Rain Gauge 

battery inserted 

Dead ; 

battery removed 

Fig. 14.21. Statechart for wireless rain gauge 

scheme RainGauge = 
class 

t y p e 
Event = = 

Battlns | 
BattWeak | 
BattRem | 
SigFound | 
SigLost | 
ModeSet | 
ModeSetRel 
History | 
Since | 
Search | 
Reset | 
Timeout 

> Searching() 
|| Normal() 
II Time(), 

Dead() 
end, 

SinceDate : Unit —> in evt Unit 
SinceDate() = 

case evt? of 
Timeout —> Time(), 
Since —>• Time(), 
Reset —>• Time(), 
BattRem —>• sk ip , 
BattWeak ->• sk ip , 
_ —> SinceDate() 

end , 

channel evt : Event 

value 
Dead : U n i t —> 
Dead() = 

case evt? o f 
Battlns 

in evt Unit 

Date : Unit —> in evt Unit 
Date() = 

case evt? of 
Timeout —> Time(), 
ModeSet -> Time(), 
Reset —>• Time(), 
BattRem —>• sk ip , 



496 14 Statecharts 

BattWeak ->• sk ip , 
_ ->• Date() 

end , 

Wait : U n i t —• i n evt U n i t 
Wait() = 

Ti 
Ti 

S 
S_ 

S 
S_ 

S_ 

case evt? o f 
Timeout ->• S_1224(), 
ModeSetRel ->• Date(), 
Reset —• Time(), 
BattRem —> sk ip , 
BattWeak ->• sk ip , 
_ ->• Wait() 

end , 

me : U n i t —> i n evt U n i t 
me() = 
case evt? o f 

ModeSet ->• Wait(), 
Since —• SinceDate(), 
Reset —• Time(), 
BattRem —> sk ip , 
BattWeak ->• sk ip , 
_ —> Time() 

end , 

1224 : U n i t ->• i n evt U n i t 
_1224() = 

case evt? o f 
Timeout —> Time(), 
ModeSet ->• S_Hour(), 
Reset —>• Time(), 
BattRem —> sk ip , 
BattWeak ->• sk ip , 
_ ->• S_1224() 

end , 

Hour : U n i t —> i n evt U n i t 
_Hour() = 

case evt? o f 
Timeout —> Time(), 
ModeSet ->• S_Min(), 
Reset —>• Time(), 
BattRem —> sk ip , 
BattWeak ->• sk ip , 
_ ->• S_Hour() 

end , 

Min : U n i t —)• i n evt U n i t 

S_ 

S 
S_ 

S 
S_ 

S 
S_ 

N< 
N< 

_Min() = 
case evt? o f 

Timeout —> TimeQ, 
ModeSet ->• S_Mon(), 
Reset —• Time(), 
BattRem —>• sk ip , 
BattWeak ->• sk ip , 
_ - > S_Min() 

end , 

Mon : U n i t —• i n evt U n i t 
_Mon() = 

case evt? o f 
Timeout —> Time(), 
ModeSet ->• S_Day(), 
Reset —>• Time(), 
BattRem —)• sk ip , 
BattWeak ->• sk ip , 
_ - > S_Mon() 

end , 

Day : U n i t —> i n evt U n i t 
> a y ( ) = 

case evt? o f 
Timeout —> TimeQ, 
ModeSet ->• S_Date(), 
Reset —>• Time(), 
BattRem —)• sk ip , 
BattWeak ->• sk ip , 
_ ->• S_Day() 

end , 

Date : U n i t —> i n evt U n i t 
_Date() = 

case evt? o f 
Timeout —> TimeQ, 
ModeSet -> TimeQ, 
Reset —• TimeQ, 
BattRem —)• sk ip , 
BattWeak ->• sk ip , 
_ ->• S_Date() 

end , 

Drmal : U n i t —>• i n evt U n i t 
DrmalQ = 

case evt? o f 
History ->• H_D1(), 
Reset ->• NormalQ, 
BattRem ->• DeadQ, 
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BattWeak ->• Dead(), 
_ —> Normal() 

end , 

H_D1 : Uni t ->• in evt Uni t 
H_D1() = 

case evt? of 

Timeout —> Normal(), 
History ->• H_D2(), 
Reset —• Normal(), 
BattRem ->• Dead(), 
BattWeak ->• Dead(), 
_ - > H_D1() 

end, 

H_D2 : Uni t ->• in evt Uni t 
H_D2() = 

case evt? of 

Timeout —> Normal(), 
History ->• H_D3(), 
Reset —>• Normal(), 
BattRem -> Dead(), 
BattWeak ->• Dead(), 
_ -> H_D2() 

end, 

H_D3 : Uni t ->• in evt Uni t 

H_D3() = 
case evt? of 

Timeout —> Normal(), 
History ->• H_D4(), 
Reset —• Normal(), 
BattRem -> Dead(), 
BattWeak ->• Dead(), 
_ ->• H_D3() 

end, 

H_D4 : Uni t ->• in evt Uni t 
H_D4() = 

case evt? of 
Timeout —> Normal(), 
History ->• H_D5(), 
Reset —>• Normal(), 
BattRem -> Dead(), 
BattWeak ->• Dead(), 
_ -> H_D4() 

end, 

H D5 : Uni t ->• in evt Uni t 

H_D5() = 
case evt? of 

Timeout —> Normal(), 
History ->• H_D6(), 
Reset ->• Normal(), 
BattRem ->• Dead(), 
BattWeak ->• Dead(), 
_ - > H_D5() 

end, 

H_D6 : Uni t -> in evt Uni t 

H_D6() = 
case evt? of 

Timeout —> Normal(), 
History ->• H_D7(), 
Reset ->• Normal(), 
BattRem ->• Dead(), 
BattWeak ->• Dead(), 
_ - > H_D6() 

end, 

H_D7 : Uni t -> in evt Uni t 
H_D7() = 

case evt? of 

Timeout —> Normal(), 
History ->• H_D8(), 
Reset ->• Normal(), 
BattRem ->• Dead(), 
BattWeak ->• Dead(), 
_ - > H_D7() 

end, 

H_D8 : Uni t -> in evt Uni t 

H_D8() = 
case evt? of 

Timeout —> Normal(), 
History ->• H_D9(), 
Reset ->• Normal(), 
BattRem ->• Dead(), 
BattWeak ->• Dead(), 
_ - > H_D8() 

end, 

H_D9 : Uni t -> in evt Uni t 

H_D9() = 
case evt? of 

Timeout —> Normal(), 
History —> Normal(), 
Reset ->• Normal(), 
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BattRem —> Dead(), Timeout —> NoSignal(), 
BattWeak ->• Dead(), SigFound -)• SignalOK(), 
_ ->• H_D9() Reset ->• Searching(), 

end , BattRem —• sk ip , 
BattWeak ->• sk ip , 

NoSignal : U n i t —• i n evt U n i t _ —> Searching() 
NoSignal() = end , 

case evt? o f 
Search —• Searching(), SignalOK : U n i t —• i n evt U n i t 
Reset —• Searching(), SignalOKQ = 
BattRem —> sk ip , case evt? o f 
BattWeak —• sk ip , Search —> Searching(), 
_ —> NoSignal() SigLost —• Searching(), 

end , BattRem —• sk ip , 
BattWeak ->• sk ip , 

Searching : U n i t —> i n evt U n i t _ —> SignalOK() 
Searching() = end 

case evt? o f end 

This example vividly demonstrates the compactness of the Statechart nota
tion. The diagram fits on half a page, while the corresponding RSL specification 
takes up three pages double column. The statechart is certainly the easiest 
of the two models to gain an initial understanding of. The advantage of the 
RSL specification is that the expressivity of RSL allows the RSL model to be 
augmented to give a full specification of the system. 

Another issue is the ease with which one may go from a specification to an 
implementation. The step from a statechart to an implementation language is 
not obvious. As it stands, the RSL specification is closer to an implementation 
language, and the step may be made smaller by one or more steps of refinement 
of the model. 

14.5 A Process Algebra for Statecharts 

In this section we shall present a process algebra that may be used to give a 
semantics for the Statechart language. In the next section we link this process 
algebra to statecharts. Both of these sections contain advanced material that 
really belongs to the field of computer science rather than software engineer
ing. The reader primarily interested in the applications of statecharts may 
skip these two sections. 

It has proven difficult to provide a semantics for Statecharts This diffi
culty arises partly because of the property that an external event may trigger 
a transition that produces an event that in turn triggers a transition, etc. 
Thus one event may start a chain reaction of internal events. Furthermore, 
if a statechart is in a given state, it is also in all states enclosing the first 
state. Therefore, the global state or configuration of a statechart consists of a 
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variable number of states. An internal transition is called a microstep, while 
the whole chain reaction caused by an external event is called a macrostep. 

There are three desirable properties for a semantics for statecharts: the 
synchrony hypothesis, compositionality and causality. The synchrony hypoth
esis states that for any set of input events, the reaction of a statechart must 
be maximal in the sense that the chain reaction of microsteps should continue 
until no further microstep is possible. This is sometimes referred to as the 
maximal progress assumption. Also, the chain reaction must terminate before 
the next external event enters the system. The compositionality property en
sures that the behaviour of a system composed from subsystems is defined in 
terms of the observable behaviour of the subsystems. Thus the internal details 
of the sub-systems need not be known. The causality property ensures that 
for every event, there is a chain of events that lead to that event. Thus, no 
event can occur spontaneously. This property only applies to internal events, 
since external events — when viewed from the Statechart — will occur spon
taneously. 

14.5.1 SPL: The Statechart Process Language 

The process algebraic semantics for Statecharts is presented by Liittgen, van 
der Beeck and Cleaveland [314]. It is defined using the process algebra named 
Statecharts Process Language (SPL), which is inspired by the Timed Process 
Language of Hennessy and Regan [209]. 

The SPL process algebra is defined as a labelled transition system with 
two types of transitions: action transitions and clock transitions. Action tran
sitions correspond to events in Statecharts. Clock transitions represent pro
gression of time. The previously discussed microsteps of a Statechart corre
spond to action transitions, while clock transitions signal the beginning and 
end of a macrostep composed of a sequence of microsteps. 

Let A be a countable set of events, and let a $ A be a distinguished event 
called a clock event. Input actions are defined as (E, N), where E, N C A. The 
special case of (0, 0) is called an unobservable or internal event, designated 
by • (bullet). Output actions E are defined as subsets of A. 

The syntax of SPL is given by the BNF grammar: 

P ::= 0 | X | {E, N).P | [E]a{P) \P + P\P>P\P>aP\P\\P\P\L 

where AT is a process variable that stands for a process term, and L is a restric
tion set, i.e., a set of action identifiers that are hidden from the environment 
of X \ L. 0 is the empty process, i.e., the process which does not perform any 
actions. (E, N).P is the prefix operator applied to the process P. It represents 
the instantaneous input of the input action (E,N), which can only occur if 
all the events in E are offered by the environment, and none of the events in 
N are offered by the environment. The signal operator [E]a(P) signals the 
output of output action E to the environment of process P. The output ac
tion is cleared by the next clock transition. The disabling operator applied 
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to processes P and Q, written P>Q, is the process that either behaves as Q 
permanently disabling P, or behaves as Pt>aQ. The enabling operator applied 
to processes P and Q, written Pt>aQ, behaves as P disabling Q until the next 
clock transition. In combination, the disabling and enabling operators serve 
to define the behaviour when there are enabled transitions on several layers 
of a hierarchical state. 

14.5.2 Semantics of SPL 

The semantics of SPL is a Plotkin-style operational semantics [402] in the 
form of a labelled transition system. The labelled transition system is defined 
as (<S, E,—>,S), where S is the set of states, E = A\J {a} is the set of actions, 
including the special clock action, a, —»€ S x E x S is the transition relation, 

and S is the start state. Following tradition, P —>• P' will be used as an 
N 

abbreviation for (P,(E,N),P') £->•, and P A P' as an abbreviation for 

(P, tr, P ') £—>. The meaning of P —> P' is that process P can evolve to a 
N 

process P' whenever the environment of P outputs all the actions in E and 
none of the actions in N. 

Before the transition deduction system can be defined, the initial output 
action set must be defined. The initial output action set, notation S(P) for 
P £ <S, is defined by the equations in Table 14.1. Intuitively, S(P) is the set 
of actions that process P is immediately ready to output. 

Table 14.1. Initial output action sets 

I([P]a(P)) = E 

S(P + Q) = S(P) U S(Q) 
S(P| |Q) = S(P)u5(Q) 

S(P>Q) = S(P)uS(Q) 

I(X) = I(P), ifXd=P 
5(P \ L) = 5(P) \ L 

5(P >CT Q) = S(P) 

The term deduction system for action transitions is presented in Table 14.2. 
The term deduction system for clock transitions is presented in Table 14.3. 

14.5.3 Equivalence for SPL Terms 

We can now define a behavioural equivalence on SPL terms. As we did previ
ously for PAe, we choose the strong bisimulation equivalence. 



14.5 A Process Algebra for Statecharts 501 

Table 14.2. Action transitions 

• 

( P , ] V } . P 4 P 
N 

P 4 P ' 
N . , „ def p 

I 4 F 
N 

p 4 P ' 
N 

Pt>CTQ4P'>CTQ 
N 

P 4 P ' 
AT 

P > Q 4 P ' > C T Q 
N 

? 4 P ' 
N 

P + Q 4 P' 
N 

Q 4 Q ' 
N 

P + QjQ' 

N 

P > Q 4 Q ' 
N 

P 4 P ' 
N ;f \^n T\(n\ 

P\\Q*^»p.\\Q 

Q 4 Q ' 
W if \T Pi HYP1! 

P | | Q ^ T ) p | | Q , 
II - v N II - » 

P 4 P ' 
^ if p n f (?) 

P \ L 4 P ' \ L 
N\L 

Act 

Rec 

En 

Disl 

Suml 

Sum2 

Dis2 

= 0 

= 0 

Pari 

Par2 

Pari 

Def in i t ion 1 4 . 1 . Bisimulation1 equivalence, ~ C S x S, is the largest sym
metric relation such tha t whenever P ~ Q, then the following conditions hold: 

1In theoretical computer science a bisimulation is an equivalence relation between 
state transition systems, associating systems which behave in the same way in the 
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Table 14.3. Clock transitions 

• 
0 ^ 0 

if (E, N) + » 
{E,N).P ^ {E,N).P 
p Z» pi n 1+ Qi 

M w i f . g l ( P N Q ) 
P II Q ^ P' II Q' 

P ^ P',Q ^ Q' 

P>Q ^ P'>Q' 
p £^ pi 

if . 0 I (P \ L) 
P\L 1+ P>\L

 K X ' 

D 

[E]a(P) ^ P 

P ^ P',Q A Q' 

P + Q ^ P'+Q' 

p ^ p> 

Pt>C TQ ^ P>>Q 

p ^ p' if x '^ p 
X A P' 

tOut 

tSum 

tEn 

tRec 

tNil 

tAct 

tPar 

tDis 

tRes 

i . t{p) c S ( g ) 

2. If P 4 P', then 3Q' <E S : Q 4 Q' A g ~ Q'. 
TV JV 

Note tha t compared to the bisimulation relations defined for the process alge
bras PAe and PAce in Sect. 13.3.2 we have the extra requirement tha t bisimi-
lar processes have the same initial output sets. This requirement ensures tha t 
bisimilar processes have the same observable behaviour in terms of both input 
and output actions. 

sense that one system simulates the other and vice versa. Intuitively two systems 
are bisimilar if they match each other's moves. In this sense, each of the systems 
cannot be distinguished from the other by an observer [530]. 
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14.6 Semantics of Statecharts 

14.6 .1 A n S P L S e m a n t i c s for S ta techar t s 

We have now presented the tools for expressing the semantics of Statechart . 
The next step is to define the correspondence between a statechart and an 
SPL term. First, we place some restrictions on the composition of statecharts 
by defining a textual syntax, in the form of Statechart terms. Then we define 
a semantic function tha t maps Statechart terms to SPL terms. 

We need some additional notation. Let M be a countable set of names 
for statechart states, T be a countable set of names for statechart transitions 
and 77 a countable set of Statechart events. Every event e £ 77 has a negated 
event -ie. By definition, —i—ie = e. If E C 77 U {->e | e £ 77} then —*E is an 
abbreviation for {-ie | e £ E}. 

Now, Statechart terms are introduced. In order for a statechart to be ex
pressible as a Statechart term, it must have exactly one top-level state and 
it must have no history or interlevel transitions, i.e., transitions tha t cross 
the boundary of its containing state. History transitions are disallowed be
cause they make the semantics much more complicated. Interlevel transitions 
are disallowed because they preclude compositionality in both the syntax and 
semantics. Note, however, tha t a statechart with interlevel transitions can 
always be transformed into an equivalent statechart without interlevel t ran
sitions. 

1. Basic state: If n £ TV, then s = [n] is a Statechart term. 
2. XOR state: If n £ TV, si,...,Sk are Statechart terms for k > 0, T C 

T x { 1 , . . . , k} x V(n U -.77) x V{n) x { l , . . . , k}, and 1 < I < k, then 
s = [n : ( s i , . . . , Sfc), l,T] is a Statechart term. Here, s\,...,Sk are the 
sub-states of s, I is the index of the currently active state and T is the 
set of transitions between the substates of s. The default s tate is defined 
to be s±. A transition (t, ni, E, A, 77,2) with name t links state sni to state 
s„2, is triggered by the events in E and produces the actions in A. 

3. AND state: If n £ A", and s i , . . . , su are Statechart terms for k > 0, then 
s = [n : ( s i , . . . , Sk)] is a Statechart term. 

A Statechart term is considered well-formed if: 

• the set of names for states is disjoint from the set of names for transitions, 
i.e., j V n T = 0 ; 

• no transition produces an event tha t contradicts its trigger, i.e., for every 
transition {t,ni,E, A,n2), E n -<A = 0; 

• no transition produces an event tha t is in its trigger, i.e., for every transi
tion (t,n1,E,A,n2), E<^A = %. 

The set of well-formed Statechart terms is denoted SC. 
The function root yields the name of the state it is applied to. The function 

out yields the name of the destination state of the transition it is applied to. 
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Now, the embedding is defined. We give the definition first and then explain 
it below. The process algebra SPL is instantiated with the set of events A = 
II U -ill and the set of process variables V = {h \ n £ TV}. Let S Q be the 
distributed nondeterministic choice between the elements of the set Q, with 
S{ } = 0. Then the embedding function Sstc\" ] : SC —> TJJSPL is defined as: 

1. If s = [n], then Sstclsj=0. 
2. If s = [n : ( s i , . . . , sra), I, T] , then if ni = root(si), SstclsJ = ni, where for 

1 < i < n, hi = SStc\si\ > £{{[t}} \t£TA root (out (t)) = n»} along with 
the equations produced by S s t c l s i ] , • • • > -^stclsn]- The translation {[i]} of 
a transition t is defined below. 

3. If s = [n : ( s i , . . . , s„ ) ] , then Sstcls] = Sstclsij \\ • • • \\ SStclsnj, along 
with the equations produced by S'stc[siL • • • > •5s'tc[sn]. 

The translation of a transition t = (t, i, E, A,j) is defined as 

{[t]} = (E',N').[A^(En^n)]a(hj), 

where E' = ED II is the set of positive events in E, and N' = -i(Er\-iII)U-iA 
is the set of negated negative events in E combined with the negated events 
in A. 

The definition of the embedding requires an explanation. First, the se
mantics of a statechart is expressed as a set of equations rather than a single 
process term. This allows for recursion. The semantics of a basic state is the 
inactive process 0, since a basic state will not take part in any transitions. 
The semantics of an AND state is just the parallel composition of the seman
tics of its substates. The semantics of an XOR state is more involved. First 
observe tha t an XOR state may either stay in the currently active substate, 
or a transition t may occur, making out(t) the new active substate. This be
haviour is modelled by the disabling operator. In the former case the XOR 
state behaves like the currently active substate, disabling all transitions until 
the next clock event. In the latter case, the transition becomes an input prefix 
handling the triggering events in E, and an output signalling handling the 
actions in A. For the transition to occur, all the positive events in E and none 
of the negative events in E must be offered by the environment. This explains 
E' and partly N'. We include ->A in N' to ensure global consistency, meaning 
tha t no subsequent transition which requires the absence of the events in A 
fires in the same macrostep. The global consistency requirement also explains 
why the output includes the negative events in E, since the process is not 
allowed to produce an event which contradicts its trigger. 

14.6 .2 Sta techart E x a m p l e 

In this section the process of deriving an SPL expression from a statechart is 
illustrated. The example statechart is shown in Fig. 14.22. In this case, the 
statechart is already in a form suitable for conversion to a Statechart term. 
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9 > 
" h 

T 
n2 

Fig. 14.22. Example statechart 

If this were not the case, the statechart would first have to be modified to 
remove interlevel transitions and to have exactly one top-level state. 

The corresponding Statechart term si is listed in Table 14.4, along with 
terms for each of the substates of state m . The translation of the Statechart 
terms into SPL is straightforward. The result is listed in Table 14.5. 

Sl = 

S2 = 

S3 = 

S4 = 

S6 = 

S6 = 

S7 = 

S8 = 

S9 = 

SlO = 

[ni 

[H 
[n3 

[n4] 

M 
M 
M 
[n8] 

[ng 

[nio 

(S2,S3);l;{<ii ,3,{S},M),(i2 ,2,{A},0,3>}] 

(S9,si0)] 

(s4, s5, s6); 4; {{t3, 4, {a}, {x}, 5), (t4, 6, {6}, {y}, 5), (5, s4, {c}, {a}, 6), 

(t6,4,{d},{w},6)}] 

: (87, s8); s7; {<t6, 8, {e}, {g}, 7), (t7, 7, {/}, {r}, 8)}] 

Table 14.4. Statechart and substate terms 

14.7 Relating Statecharts to RSL 

We continue the subject of relating diagrammatic notations to RSL tha t we 
started in Sect. 13.5. 
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[*l] = 

M = 
M = 
N] = 
[s6] = 

[se\ = 

M = 
M = 
M = 

[*io] 

= n2 

n2 = 

n3 = 

= 0 

= M 
= 0 

= 0 

= 0 

= 0 

= 0 

= fli 

hi = 

«6 = 

« 6 = 

= fig 

fls = 

n-j = 

[S2]> 

IS3J> 

II [siO] 

[S4]> 

[SB]> 

[se]> 

[S8]> 

({h},0>.[0]a(n3) 

<{5},0).[0]a(n2) 

({a},{-x».[{x}] f f(n6) + 

(W,{-I/})-[{ff}]^(fte) 
({c},{^}>.[{«}]a(n7) 

<{e},{-g}>-[W]^(«7) 

({f},hr}).[{r}]a(ns) 

({d},{- vw}).[{w}]a(m) 

Table 14.5. Translation of statechart terms into SPL 

14.7.1 Syntactical Restrictions 

In statecharts negative events, i.e., the absence of events, can be part of the 
trigger of a transition. In RSL there is no way of checking whether a message 
is available on a channel without actually performing an input. Thus, the 
absence of an event cannot be detected. We therefore restrict the relation 
between Statechart and RSL to cover only triggers with all positive events. 
Specifically, if a statechart contains a negative event in a trigger, no RSL 
specification can satisfy it. 

14.7.2 Satisfaction Relation 

Similar to the approach for live sequence charts, we now want a method of 
extracting from an RSL specification its communication behaviour in the form 
of an SPL term. We do this in two steps: first we extract the communication 
behaviour as a PAisc term using the procedure defined for LSCs and then 
apply a function translating a PALSC expression into an SPL expression. 

Definition 14.2. Let translate : PALSC —> SPL be the function defined by 
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translate(e) = 0 

translate(in(s,r,m)) • X) = 0 > ({m}, ®).[$]a(translate(X)) 

translate(ins(s, r, m)) • X) = 0 > ({TO}, 0)\%]a{translate{X)) 

translate(out(s,r,m)) • X) = [{m}]a(translate(X)) 

translate(outs(s,r,m)) • X) = [{m}]a(translate(X)) 

translate(X || Y) = translate(X) \\ translate(Y) 

translate(X + Y) = translate(X) + translate(Y) 

The result of the translate function may not be in a convenient form, so we 
define an additional function, normalise, tha t simplifies an SPL term. 

Def in i t ion 14 .3 . Let normalise : SPL —t SPL be the function defined by 

normalise(0) = 0 

normalise(0 > (m, 0).(X)) = (0 > (m, 0}.normalise(X)) 

[m]a(normalise(X)) if X ^ [n]cr(Y) for every n and Y 
\ normalise([m U n]cr(Y)) if X = [n]a(Y) for some n and Y 

normalise(X || Y) = normalise(X) || normalise(Y) 

normalise(X + Y) = normalise(X) + normalise(Y) 

We can now define the satisfaction relation for a statechart . Unlike for LSCs 
we do not allow prefixes and suffixes, since the single statechart is supposed 
to provide the full specification of the communication behaviour of the object. 

Def in i t ion 14 .4 . (Satisfaction for statechart) An RSL expression E satisfies 
a statechart , eh, if for any initial store, SQ, for any terminated behaviour, cbh, 
of E 

Sstc\ch\ y normalise(translate(cbh)) 

14 .7 .3 Check ing Sat i s fact ion 

The satisfaction criteria given in Definition 14.2 require checking tha t all be
haviours of the RSL expression can be simulated by the semantics of the cor
responding chart. In some situations the RSL expressions may have infinitely 
many behaviours, so in tha t case this simple form of checking is not possible. 

Another problem arises when processes are recursive, as is often the case 
for statecharts . In this case, it is not enough to simply perform the transitions 
to check satisfaction. If the processes eventually terminate, an inductive proof 
on the number of recursions may be used to prove satisfaction. If the processes 
are nonterminating there is no base case, so induction cannot be used. In this 
case the more powerful principle of coinduction may be used. 
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14.7.4 Tool Support 

Actually checking an RSL specification against a behavioral specification in 
the form of statecharts can be very tedious. For that reason, the methods 
defined above are of limited applicability without tool support. Tools should be 
developed to extract the semantic terms from diagrams and RSL specifications 
and for checking the satisfaction relations. It would also be convenient to 
have a way of translating a statechart into a skeleton RSL specification. An 
automatic conversion would force the software engineer to use one particular 
style. 

14.8 Discussion 

14.8.1 General 

We have covered the concept of statecharts. An important property of state-
charts, as of Petri nets and of the sequence charts, is its reliance and focus on 
visualisation [174,175]. Over the years since statecharts were first put forward 
(around 1987), the semantics of the Statechart language has been studied and 
changed, both by the originators and by other researchers. So it is in keeping 
with this dynamic state of Statechart semantics that we also present ours! 

The material presented in the latter part of this chapter, i.e., Sects. 14.5-
14.7, like that of the latter part of the previous chapter, represents one di
rection of research in the field of integrated formal methods. So we repeat 
the words of Sect. 13.7.1: The later parts of the present chapter are included 
in order to illustrate that certain techniques have advantages for certain ap
plications in software engineering, and that choosing one technique (e.g., dia
grams) does not preclude also using other techniques (e.g., formal specification 
in RSL). Indeed, in complex software engineering projects, several techniques 
will be needed to specify all the relevant aspects of a system. To ensure consis
tency between the different parts of the system specified using different tech
niques, relations among these techniques must be established. The relation 
between Statechart and RSL presented in Sect. 14.7, and the corresponding 
relation between LSC and RSL, presented in the previous chapter, are two 
such examples. 

14.8.2 Principles, Techniques and Tools 

This chapter has basically covered a tool: the Statechart language. As such 
we can hardly speak of 'a principle of statecharts' — such as we could for 
most other chapters' title subjects. So we shall rearrange things a bit in this 
section. 
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Principles. Choosing Statecharts: Statecharts, as a modelling device, can be 
chosen when the phenomenon to be abstracted and modelled exhibits concur
rent and interacting behaviours, where the internal state "machinery" of each 
behaviour is of main interest, and usually when there is a definite, "small" 
number of behaviours, typically less than a couple of dozen. • 

Please contrast the above principle with that of Choosing Sequence Charts, 
Sect. 13.7.2. Note the distinction between interaction "patterns" in the former 
and internal state "machinery" as here. 

Techniques. The main techniques for constructing statecharts have been 
covered in Sects. 14.1, 14.2, and 14.4. Some techniques focus just on the 
construction of the statechart. Other techniques combine statecharts with 
sequence charts. And yet other techniques combine these with RSL. • 

Tools. The main statechart tool is that of STATEMATE. It is provided com
mercially by the firm of i-Logix (www.ilogix.com). • 

14.9 Bibliographical Notes 

The Statechart literature has been mentioned at various points in this chapter. 
A series of introductions and semantics have been presented by David Harel et 
al. [174,175,185,193,197]. Others have contributed, notably Amir Pnueli [404]. 
Professional tool support in the form of STATEMATE is covered in [197,198]. 

The process algebraic semantics for Statechart covered in this chapter 
is presented by Liittgen, van der Beeck and Cleaveland [314]. It is defined 
using the process algebra named Statecharts Process Language (SPL), which 
is inspired by the Timed Process Language of Hennessy and Regan [209]. 

Christian Krog Madsen, in his pre-MSc and his MSc thesis work [316,317] 
analysed Statecharts, and reformulated the above process algebraic semantic 
models and related a semantics of Statechart to RSL. 

Various forms of statecharts are found in UML [59,237,382,440]. 

14.10 Exercises 

Exercise 14.1 An Automated Train System. 
The following exercise is based on [185,188]. Consider Fig. 14.23. To the left 

is shown an abstraction of the simple topology of a cyclic railway net with six 
train terminals. Exactly two lines connect adjacent terminals, and terminals 
are connected to exactly two (other) terminals. Each pair of lines between 
adjacent terminals allows train traffic in opposite directions (as indicated by 
track arrows). Trains consists of single cars. Trains thus travel in clockwise 
and counterclockwise directions along the lines and may stop at terminals. 
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Within each terminal there are four tracks. All tracks can be reached from 
each of the two input lines. Both of the two output lines can be reached from 
all tracks. (This is, for example, secured by the shown topology of rail units: 
simple switch units, crossover switch units, crossover units and linear units. 
But the reader can ignore this detail.) 

r—[~^>—I P ' " " 
Linear 

| Unit 

Fig. 14.23. An automated train system: net and terminal 

A sequence of connected rail units between a line (into or out of a terminal) 
and a track (of tha t terminal) is called a route: an entry, respectively an exit 
route. A sequence of connected rail units is called a path. (Routes are special 
paths.) 

Each track can hold one train. Several trains are available to t ransport 
passengers between terminals. 

The system tha t we are to model, besides the lines, tracks and trains, also 
contains for each terminal a destination board, and also for each terminal a 
set of (as shown in Fig. 14.23, three) panels of but tons . Each panel provides 
a pushbut ton for each destination terminal, i.e., five but tons . 

Each train2 is equipped with an engine and a cruise control, the latter 
for controlling the train speed. The cruise control can be off or engaged or 
disengaged. A train in movement is to maintain maximum speed as long as it 
never comes within 80 meters of any other train (on a pa th) . A stopped train 
will continue its travel only if the shortest distance to any other train (on a 

2We do not show trains in Fig. 14.23 — but encourage the reader to sketch 
possible distributions of trains. 
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path) is at least 100 meters. A train also has a destination board (with six 
buttons). The train destination board is otherwise as for terminals. 

A control centre receives (i.e., monitors), processes and sends (i.e., con
trols) data from and to the components indicated above and as implied below. 

There possible scenarios, or, as they are called in UML [59,237,382,440], 
use cases — stated as requirements — are: 

Train approaching terminal: When a train is 100 meters from a terminal, the 
system shall (i) allocate it a track, shall (ii) allocate it an entry route 
(which connects from the line of the train to the allocated track) and 
shall (hi) set the relevant rail unit simple crossover switches from the 
incoming line along the entry route. If the train is to pass through the 
terminal without stopping, the system shall also (iv) allocate it an exit 
route. If allocations are not completed within the train being 80 meters 
from the terminal, the system shall (v) delay the train until all is ready. 

Train departing terminal: A train departs the terminal (vi) after being parked 
at a track (i.e., along a platform) for 90 seconds. The automated train 
system shall (vii) set the relevant rail unit simple crossover switches to the 
outgoing line along the exit route, shall (viii) engage the train engine and 
shall (ix) turn off the destination indicators on the terminal destination 
board. The train can then depart (x) unless it is within 100 meters of 
another (moving) train; if so, the system delays departure. 

Passenger in terminal: A passenger in a terminal wishes to travel to some 
destination terminal (other than the terminal at which the passenger is 
located). If there is no available train in the terminal destined for that 
terminal the passenger shall (xi) push the desired destination button (on 
a relevant panel) and shall wait until an appropriate train arrives. If the 
terminal contains an idle train, the system shall (xii) allocate it to that 
destination. If not, the system shall (xiii) send in a train from some other 
terminal. The system shall (xiv) indicate that a train is available by turn
ing on a flashing sign on the destination board. 

The problems to be solved are indicated as follows: 

1. Analyse the above text. Sharpen it if believed imprecise. State assump
tions not explicitly stated, but needed for answering below questions. 

2. Identify all relevant events. 
3. Draw suitable finite state machines, if felt useful in the prescription of 

requirements to the automated train system. 
4. Draw suitable UML (object) class diagrams, if felt useful in the prescription 

of requirements to the automated train system. 
5. Draw appropriate statecharts for trains, arrival, departure, and so on. 
6. Compare your solution to that of [185]. 

You may wish to augment and/or contrast your solutions, or that of [185], to 
solutions of either or both of the following questions: 
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7. Draw appropriate message or live sequence charts for relevant aspects of 
the automated train system. 

8. Reformulate the whole set of requirements in terms of: 
(a) An applicative specification program expressed in RSL. 
(b) An imperative specification program expressed in RSL. 
(c) A concurrent specification program expressed in RSL, i.e., in CSP/RSL. 

Exercise 14.2 A Shooting Game. The following exercise is based on material 
placed on the Internet by Matthew Carey [72]. It illustrates the reverse concept 
of unwinding. Unwinding a statechart was exemplified in Example 14.3. In 
this exercise we present a finite state machine and ask you to wind it into a 
statechart. 

Consider Fig. 14.24. The finite state machine represents the behaviour of 
a simple opponent in a computer game. State transitions are labelled by event 
names. 

player visible 

Fig. 14.24. Shooting game 

You can either read the text now following or, after carefully having studied 
Figs. 14.24 and 14.25, go straight to the formulation of the exercise at the end, 
just before the start of the next exercise. That is, the following italicised text 
pragmatically motivates the finite state machine of Fig. 14.24, but brings no 
material that is relevant to the construction of a proper statechart! 

The player is called H (for human) and the computer game is referred to 
as Q (for game). The computer game Q has four basic behaviours: stationary 
BLUE, random GREEN, hunting YELLOW, and fleeing R E D . 

Q starts in stationary BLUE. In stationary BLUE Q waits for an event to oc
cur. Either of the events TIMER going off, 7i approaching ('PLAYER NEARBY), 
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or being SHOT. Suppose that the TIMER goes off while Q waits in station
ary BLUE. This causes a transition to random GREEN. Q will start to move 
aimlessly about. This state prevents the world going into stasis when % is 
not around. At any one time most of Q 's fellows (so it is assumed) just stand 
there, but occasionally somebody will move to a new location. Relevant events 
for this state, i.e., random GREEN, are similar to stationary BLUE. The only 
difference is a separate timer setting. A % approaches. Q is informed that 
PLAYER H is NEARBY. Q then moves to a different random GREEN state. Be
haviour is same as before but different events become relevant. Q will now 
respond to observing SEEING PLAYER % (PLAYER VISIBLE), H LEAVING the 
area (PLAYER NOT VISIBLE), andTi being SHOT. If player H leaves (PLAYER 

NOT VISIBLE) then Q changes back to previous state. If Q spots player % 
(PLAYER VISIBLE) then Q will change to hunting YELLOW, trying to home in 
on PLAYER "H. While hunting Q may lose sight of the target (LOST TARGET). 

Q will then move back to most recent random GREEN. Etcetera, etcetera. We 
leave it to the reader to further analyse and verbalise Fig. 14.24. 

There are, however, some aspects with the finite state machine diagram of 
Fig. 14.24 that are less than desirable. As the reader may discover, there are 
several duplicate event transitions, for example, many shot events. This is a 
relatively simple behaviour. 

The idea therefore is to replace the finite state machine description of 
this game by a statechart description in which, approximately the states of 
the finite state machine of Fig. 14.24 are aggregated into superstates of the 
desired statechart as hinted at in Fig. 14.25. 

shot shot 

Fleeing & Shot 

Initial States 

Hunting, Erratic Sight 

- ^ Hunting & Lost 

Hunting, in Sight 

Fig. 14.25. Shooting game 
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Exercise 14.2.1 Shooting game sta.techa.rt: In the statechart to be drawn by 
the reader there will be three superstates: The fleeing R E D , the initial Blue 
&: Green and the hunting Green & Yellow. The latter has two substates, 
etc. You are to redraw Fig. 14.25 into a proper statechart with indications 
of default states, etcetera. Instead of the 17 state transitions of the finite 
state machine of Fig. 14.25 one can come down to nine state transitions, 
one for shot (in contrast to six), three for timer and one each for all of 
the rest. 

E x e r c i s e 14 .3 A Digital Watch. This exercise derives from [174,175]. We 
have changed the informal specification of the digital watch since there seem 
to be some inconsistencies and a certain kind of incompleteness amongst and in 
those papers. Harel's seminal papers also illustrates stepwise, albeit informal, 
but convincing development. 

The digital watch has a (i) display, (ii) five external but tons (a, /?, 7, 6, 
ui), a (iii) chime, an (iv) alarm, a (v) stopwatch, a (vi) a light illuminator, and 
a (vii) weak-battery indicator. 

QQSQQ 
' 10:21 am ' 

] P 

]y 
QQgQQ 

Monday 16 May 

] p 

] y 

Fig. 14.26. A digital watch showing time or date 

The display (i) can show the time (hour, minutes and seconds) or the date 
(weekday, day of month and month) . The chime (iii) can be turned on or off, 
i.e., be enabled or disabled, beeping on the hour if enabled. The alarm (iv) 
can likewise be enabled or disabled. The alarm beeps for 2 minutes when the 
time in the alarm setting is reached — unless any one of the but tons is pressed 
earlier. The stopwatch (v) has two display modes: regular and lap. 

External events (ii) a, /3, 7, 6 and ui signify the pressing of respective 
but tons . Event 2 m (not shown in Fig. 14.26, since it cannot be shown!) signifies 
tha t two minutes have elapsed since the last t ime any but ton was pressed. 

The digital watch states: 

The watch embodies the following states: time, alarm, chime, stopwatch, date, 
time/date update and alarm update, with time being the default s tate. A cycle 
of pressings of but ton a leads from state time through states alarm, chime, 
and stopwatch back to state time. The date s tate can be entered and left by 
pressing but ton S. When in the date s tate the display shows the date. The 
time/date update s tate is thus reached by pressing but ton 7. It can be left 
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from any of its substates by a pressing button /?. The alarm update state is 
likewise reached by pressing button 7. It can be left from any of its substates 
by a pressing button /?. If the user of the digital watch lingers on in the alarm, 
date, time/date update or alarm update states for more then 2 minutes, then 
an automatic time-out occurs, and the watch returns to the time state. 

Exercise 14.3.1: A statechart for the digital watch states: Construct a state-
chart for the digital watch as described up to this point. 

The time/date update state: 

The watch display time/date update occurs as the result of the cyclic settings 
of buttons 7 and UJ as follows. From the initial time/date update state sec one 
can reach the min, hour, day of week, day of month, and month substate by 
successive pressings of button 7 while button UJ is not pressed. In any of the 
states sec, min, hour, day of week, day of month, and month holding button ui 
pressed continuously while repeatedly pressing button 7 (one or more times) 
will advance the corresponding time or date counter. 

Exercise 14.3.2: A Statechart for the update state: Construct a statechart for 
the time update state as described up to this point. 

The alarm update state: 

The alarm update occurs as the result of the cyclic settings of button 7. 
From the initial alarm update substate min one can reach the min and hour 
substates, and one can update the corresponding setting by repeated pressings 
of the 7 and ui buttons as explained for the time/date update state. When in 
the alarm date state the display shows the alarm setting. If the user of the 
digital watch lingers on in the alarm date state for more then 2 minutes, then 
an automatic time-out occurs, and the watch returns to the time state. 

Exercise 14.3.3: Construct a statechart for the alarm update state as de
scribed up to this point. 

The stopwatch state: 

The stop watch state has two substates: zero and display/run, the first being 
the default state. The display/run state consists of two (orthogonal) states: 
display and run. The display state has two substates: regular and lap. The run 
state likewise has two substates: on and off. In the regular state the digital 
watch display shows the ordinary time, while in the lap state it shows the 
lap time. In the on state the stopwatch is running. And in the off state it is 
stopped. Pressing button /? from the zero to the display/run state causes it to 
make a transition to both (orthogonal) states: display and run, and to their 
substates regular and on, respectively. Repeatedly pressing button j3 while the 
digital watch is in the run causes it to stop and start alternatively. If button 
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6 is pressed in substate regular while state run is in substate off then the 
digital watch leaves the display/run state and returns to the zero state, else 
(state run in substate on) a transition is made to substate lap. Repeatedly 
pressing button S (state run in substate on) causes the display to switch to 
lap and back to regular. 

Exercise 14.3.4: Construct a statechart for the stop watch state as described 
up to this point. 

High-level description of the digital watch: 

We now assume that repeated pressing of the a button will lead the digital 
watch into substates of the states as they were previously left, i.e., we assume 
history dependence. 

Exercise 14.3.5: Combine the above statecharts, and add initialisations and 
history to the individual statecharts. Then construct an overall statechart 
for the digital watch. 



15 

Quantitative Models of Time 

• The prerequisite for studying this chapter is that you are well familiarised 
with abstract modelling, but have wondered how to model temporal issues 
such as explicit timing and explicit time durations. 

• The aims are to introduce the modal logics of temporal logic (TL), linear 
temporal logic (LTL), interval temporal logic (ITL), the duration calculus 
(DC), Timed RSL (TRSL), and to relate TRSL to the duration calculus. 

• The objective is to finally, with earlier chapters' coverage also of Petri 
nets, live sequence charts and statecharts, put the reader on a very strong, 
professional footing as concerns modelling concurrency and timing. 

• The treatment ranges from systematic to formal. 

Chapters 12-14 covered methods: principles, techniques and tools for expressing quali
tative aspects of systems such as concurrency, synchronisation between behaviours and 
events. We now cover methods for expressing such quantitative aspects of concurrent 
systems as timing within and between behaviours. 

15.1 The Issues 

We first identify a spectrum of from "soft" to "hard" temporalities, through 
some informally worded texts. On that background we can introduce the term 
real-time, and hence distinguish between soft and hard real-time issues. From 
an example of trying to formalise these in RSL, we then set the course for this 
chapter. 

15.1.1 Soft Temporalities 

First we present some examples of soft real-time statements: 

• You have often wished, we assume, that "your salary never goes down, say 
between your ages of 25 to 65". 
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• Taking into account other factors, you may additionally wish tha t "your 
salary goes up" . 

• Taking also into account tha t your job is a seasonal one, we may need to 
refine the above into "between un-employments your salary does not go 
down". 

The issue now is: How do we formalise those statements? 

15.1 .2 Hard T e m p o r a l i t i e s 

The above statements may not have convinced you about the importance of 
what this chapter has to offer. So let's t ry some other examples: 

• "The alarm clock must sound exactly at 6 am unless someone has turned 
it off sometime between 5 am and 6 am the same morning". 

• "The gas valve must be open for exactly 20 seconds every 60 seconds". 
• "The sum total of t ime periods — during which the gas valve is open and 

there is no flame consuming the gas — must not exceed one twentieth of 
the time the gas valve is open". 

• "The t ime between pressing an elevator call but ton on any floor and the 
arrival of the cage and the opening of the cage door at tha t floor must not 
exceed a given time ^ a r r j v a i " • 

This chapter presents some tools, i.e., languages, and some principles and 
techniques for expressing and analysing such, as we shall call them, temporal 
matters . 

15 .1 .3 Soft and H a r d R e a l - T i m e 

The informally worded temporalities of Sect. 15.1.1 can be said to involve 
time in a very "soft" way: No explicit times (e.g., 15:45:00), deadlines (e.g., 
"9 February 2006") or t ime intervals (e.g., "within 2 hours") were expressed. 
The informally worded temporalities of Sect. 15.1.2, in contrast, can be said 
to involve t ime in a "hard" way: Explicit times were mentioned. 

For pragmatic reasons, we refer to the former examples, the former invo
cations of temporality, as being representative of soft real-time, whereas we 
say tha t the latter invocations are typical of hard real-time. 

Please do not confuse the issue of soft versus hard real-time. It is as much 
hard real-time if we say tha t something must happen two years and five sec
onds from tomorrow at noon! 

15.1 .4 E x a m p l e s — "Ye Olde Way"! 

To paraphrase the point we try express the soft temporalities in an ordinary 
RSL way, in which we use an explicit model of time. 
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Example 15.1 Soft Real-Time Models Expressed in "Ordinary" RSL Logic: 
Let us assume a salary data base SDB which at any time records your salary. 
In the conventional way of modelling time in RSL we assume that SDB maps 
time into Salary: 

type 
Time, Sal 
SDB = Time -tf Sal 

value 
hi: (Salx Sal)| (TimexTime) ->• Bool 
eq: (SalxSal)| (Timex Time) -> Bool 
lo: (Salx Sal)| (TimexTime) ->• Bool 

axiom 
V a:SDB,t,t':Time • {t,t'}CdomcrAhi(t',t)=>~lo(CT(t'),<r(t)) 
V t,t':Time • 

(hi(t',t)=~(eq(t',t)Vlo(t',t))) A 
(lo(t\t)=~(eq(t',t)Vhi(t',t))) A 
(eq(t',t)=~(lo(t',t)Vhi(t',t))) ... /* same for Sal */ 

Example 15.2 Hard Real-Time Models Expressed in "Ordinary" RSL: To 
express hard real-time using just RSL we must assume a demon, a process 
which represents the clock: 

type 
Time = Real 

value 
time: Unit —• Time 
time() as t 

axiom 
time() j£ time() 

The axiom is informal: It states that no two invocations of the time function 
yield the same value. But this is not enough. We need to express that "im
mediately consecutive" invocations of the time function yield "adjacent" time 
points. Time provides a linear model of real-time. 

variable 
t l , t2 : Time 

axiom 
• (tl := time(); 

t2 := time(); 
t2 - t l — /* infinitesimally small time interval: ITime*/ A 
t2 > t l A ~ 3 t:Time« t l < t < t2 ) 
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ITime provides a linear model of intervals of real-time. The • operator is here 
the s tandard RSL modal operator over states: Let P be a predicate involving 
globally declared variables. Then DP asserts tha t P holds in any state of these 
variables. But even this is not enough; much more is needed. • 

At any rate, with the above extensions we really do have a "hard (even soft) 
t ime" in expressing the hard real-time problems! So we give up, and tu rn to 
the duration calculus to provide appropriate means. We shall, in Sect. 15.4, 
take up the above a t tempt . 

15 .1 .5 S t r u c t u r e of T h i s C h a p t e r 

In Sect. 15.2 we first briefly cover notions of intervals and some simple interval 
modal operators, indicating a logic of intervals, before we briefly survey classi
cal temporal logic. In Sect. 15.3, the main part of this chapter, we then cover 
the duration calculus. We do so by first showing examples before we build 
up a proper, albeit basically informal, presentation of the duration calculus. 
Some larger, strongly related examples end our t reatment of the duration cal
culus. They span from domain descriptions via requirements prescriptions to 
the specification of software design decisions. In Sect. 15.4 we extend RSL 
with timing, i.e., we introduce explicit temporal constructs thus making RSL 
into TRSL. Finally, in Sect. 15.5 we extend TRSL with features of the duration 
calculus. 

15.2 Temporal Logic 

We quote from [126]: 

"The term temporal logic has been broadly used to cover all ap
proaches to the representation of temporal information within a logical 
framework, and also more narrowly to refer specifically to the modal-
logic type of approach introduced around 1960 by Arthur Prior under 
the name of tense logic and subsequently developed further by logi
cians and computer scientists." 

"Applications of temporal logic include its use as a formalism 
for clarifying philosophical issues about t ime, as a framework within 
which to define the semantics of temporal expressions in natural lan
guage, as a language for encoding temporal knowledge in artificial 
intelligence, and as a tool for handling the temporal aspects of the 
execution of computer programs." 

1Of course, we really do not need to make a distinction between Time and ITime. 
The former tries to model a real-time since time immemorial, i.e., the creation of the 
universe. If we always work with a time axis that "started recently", i.e., a relative 
one, then we can "collapse" Time and ITime into just Time. 
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15.2.1 The Issues 

The basic issue is simple: to be able to speak of temporal phenomena without 
having to explicitly mention time. That goes for vague, or soft notions of time: 
what we could call soft real-time, that something happens at a time, or during 
a time interval, but with no "fixing" of absolute times nor time intervals. It 
also, of course, goes for precise, or hard notions of time: What we could call 
hard real-time, that something happens at a very definitive point in time, 
or during a time interval of a very specific length, and thus with "fixing" of 
absolute times or time intervals. 

Definition. By a temporal logic we shall understand a formal logic, for ex
ample, a propositional logic or a predicate calculus which is extended with one 
or more logical connectives that allow one to express time without explicitly 
having to quantify over times. • 

In this chapter we shall see a variety of systems of such connectives. These sys
tems are referred to as temporal logic, linear temporal logic, interval temporal 
logic and the duration calculi. 

15.2.2 A Philosophical Linguistics Background 

According to [126], Arthur Prior [409-411] developed a tense logic along the 
lines presented below: 

• Pp: "It has at some time been the case that p held" 
• Fp: "It will at some time be the case that p holds" 
• Hp: "It has always been the case that p held" 
• Gp: "It will always be the case that p holds" 

P and F are known as the weak tense operators, while H and G are known as 
the strong tense operators. The two pairs are generally regarded as interde-
finable by way of the equivalences: 

Pp = ~H(~p) 
Fp = ~G(~p) 

On the basis of these intended meanings, Prior used the operators to build 
formulas expressing various philosophical theses about time, which might be 
taken as axioms of a formal system if so desired. Some examples of such 
formulas, with Prior's own glosses (from [410]), are: 

Gp^Fp: 
What will always be, will be. 
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G(p=>q)=>(Gp=>Gq) 
If p will always imply q, then if p will always be the case, so will q. 

Fp^FFp 
If it will be the case that p, it will be (in between) that it will be. 

~Fp^>F~Fp 
If it will never be that p then it will be that it will never be that p. 

A special temporal logic is the minimal tense logic Kt. It is generated by the 
four axioms: 

p^HFp 
What is, has always been going to be. 

P^GPp 
What is, will always have been. 

H(p^q)^(Hp^Hq) 
Whatever always follows from what always has been, always has been. 

G(p^q)^(Gp^Gq) 
Whatever always follows from what always will be, always will be. 

We will end our philosophy-based tense (i.e., temporal) logic discourse here, 
to take up a line more akin to how temporal logics are usually presented in 
software engineering. We strongly encourage the reader to, for example, read 
the Web page: h t t p : / / p l a t o . s t a n f o r d . e d u / e n t r i e s / p r i o r / [126]. 

15 .2 .3 Interval T e m p o r a l Logic , ITL 

Although of broader importance than just for the classical temporal logic, we 
will now bring in some general notions of time intervals and time-interval-
related properties. Thus this section amounts to a very brief introduction to 
a variant of an interval temporal logic [105,372,373]. 

To paraphrase tha t we are working with a real-time concept, we use the 
type name Time:2 

t y p e 
Time = R e a l 

We assume, for simplicity, Time to be linear in the sense of Sect. 5.1.4. 

2We remind the reader that we are using a relative time interval, cf., Footnote 1. 



15.2 Temporal Logic 523 

Intervals and Subintervals : [c, d] C [b, e] 

By an interval we here mean an interval of time. By a subinterval we mean 
an interval embedded within another interval: Let b and e denote times, i.e., 
be R e a l s . Allow e to "move" toward oo. Let b < e. Then [b,e] denotes an 
interval. If b = e then [b, e] denotes a point (interval) of length 0. Let c and d 
denote times such tha t b < c < d < e, then the interval [c, d] is a subinterval 
of [b,e], written [c,d] C. [b,e]. 

L e n g t h of an Interval: [•] 

Let [b, e] designate an interval. Assume b < e. Tha t is, the interval is not a 
point. Let <f> be a predicate (over a state, i.e., over some state variables), such 
tha t (f> holds exactly in the interval [b, e]. Then we say tha t [</>] designates the 
length of time when <j> holds, and tha t tha t length is exactly e — b. 

In general \<f\ designates a length of time: 

[•]: (State -> Boo l ) ->• ITime 

Where ITime stand for t ime intervals over real numbers. Tha t is: Not a Time, 
but a t ime interval, i.e., the difference between two real Times. We shall later 
' interpret ' States in the formula above as functions from Time to B o o l . 

E x a m p l e 15.3 Some Standard Suhinteivah: 

• The t ime period of a weekday is a subinterval of the week, and its length 
is exactly 24 hours, or 1,440 minutes, or 86,400 seconds, or . . . 86.4 bil
lion microseconds, etc. 

• The next hour is a subinterval of the future, and its length is exactly 
60 minutes, etc. 

• The previous hour was a subinterval of the past , and its length was exactly 
60 minutes, etc. 

• The present hour is a subinterval of my life, and its length is exactly 
60 minutes, etc. 

T h e " S o m e t i m e " M o d a l i t y : O 

We often wish to express tha t some property, </>, holds of a phenomenon in 
some (possibly point) subinterval [c, d],c < d of an interval [b,e], b < e. For 
tha t we use the 'sometime' modality, i.e., operator, O: 

o<t> 
We read O </> as: It will sometime, from now on, but not necessarily just now, 
into a future, which, for our consideration starts now, at time b and stretching 
until time e, be the case tha t <f> holds. 
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Fig. 15.1. Visualisation of the O modality 

Graphically we can show a meaning of O </> (Fig. 15.1). 

E x a m p l e 15 .4 O: Some Current Possibilities: 

• O Emergency services will show up. 
• O Lunch will arrive. 

T h e '"Always" M o d a l i t y : • 

Given O, we can define the 'always' modality, • : 

• </> = -1 O->((> 

We thus read the above as: It will always, from now, and necessarily from 
just now, into a future, which, for our consideration starts now, at t ime b 
and stretching until t ime e, be the case tha t <f> holds. Here we have to make 
allowance for e going to infinity, 00. 

E x a m p l e 15.5 Platitudes and Truisms: 

• • The sun rises every day. 
• • The grass is greener on the other side. 

T h e R i g h t N e i g h b o u r h o o d E x p a n d i n g M o d a l i t i e s : O r , D r 

An interval [b,e] satisfies Or <p iff a right neighbourhood {[e,c],c > e) of the 
interval satisfies <j>. 

Graphically we can show a meaning of Or <f> (Fig. 15.2). 
We read Or(f> as follows: We are considering the usual time span: [b,e\. The 
expression Or<f> is to be thought of as being expressed, at a time sometime 
within tha t interval. Or<f> then expresses tha t right after expiration of tha t 
interval, i.e., as from time e and for some time (i.e., up till c), </> will hold. Or 

"provides access" to the immediate future. 

We can define D r : D r </> = - iO r- i^>. Tha t is, D r </> iff any right (i.e., 
immediate or very next future) neighbourhood of the ending point e of the 
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"present" "future" \ 

b e c 

[*--- Or t|) - - - ~\~ t|) «-| 

Fig. 15.2. Visualisation of the <>r modality 

interval [b, e] satisfies </>. We read nr<j> as follows: We are considering the usual 
time span: [b,e\. The expression Ur<p is to be thought of as being expressed, 
at a time sometime within that interval. Or<f> then expresses that right after 
expiration of that interval, i.e., as from time e and for any time (into the 
future), <f> will hold. 

Example 15.6 Future Hopes, Political Claims: 

• <>r Peace in our time. 
• D r It will get better and better. 

The Left Neighbourhood Expanding Modalities: O^, U^ 

An interval [b,e] satisfies Oi <p iff a left neighbourhood ([a,b],a <) of the 
interval satisfies <j>. 

Graphically we can show a meaning of Oe<j> (Fig. 15.3). Og "provides 
access" to "the immediate past". 

"past" "present" 

a b e 

h 4> - - - - -Hh 0/<i> H 

Fig. 15.3. Visualisation of the <>i Modality 

We read <>£<j> as follows: We are considering the usual time span: [b,e]. The 
expression <>£(f) is to be thought of as being expressed, at a time sometime 
within that interval. <>i4> then expresses that just before commencement of 
that interval, i.e., as from time a and for some time (i.e., up till b), <f> will hold. 

We can define Uf. Ut <f> = -i Oe -i </>. Ut <f> iff any left (i.e., immediate past) 
neighbourhood of the begin point b of the interval [b, e] satisfies <j>. We read Oe(f> 
as follows: We are still considering the usual time span: [b,e\. The expression 
Of<j) is to be thought of as being expressed, at a time sometime within that 
interval. Ot(f> then expresses that for all times, a, stretching "infinitely" back 
into a past, and up to b, <f> will hold. 
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Example 15.7 "Rewriting History": 

• <>£ It was better under the previous regime. 
• Ut The past was always better. 

The "Chop" Modality: ; ( ^ ) 

We often wish to express that some property, </>, holds of a phenomenon in 
some initial subinterval of an interval [b, e], and then that another property, 
ip, holds of a phenomenon in the remaining subinterval of an interval. For that 
we use the "chop" modality, i.e., operator, ;: 

<j> ; ip 

Graphically we can show a meaning of </> ; ip (Fig. 15.4). 

h <l> ; v H 

b e e 

h — <l> — 4 - v H 

Fig. 15.4. Visualisation of the "Chop" Modality 

Sometimes the chop operator, ;, is written as ". Sometimes we will use one, 
and sometimes the other form of operator symbol. 

Example 15.8 ";": "One Thing at a Time": Please consider the italicized 
sentences below as predicates. Then the examples illustrate uses of the chop 
operator. 

• He spent some time driving 5 
then he walked. 

• After motoring for some time; 
lie took a short walk; 
and finally he swam. 

• She waited for the bus; 
then the bus arrived', 
she got on the bus; 
then she watched the landscape glide by. 
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Defining O in Terms of Chop: ; ( ) 

We can then relate the operators: O and ; ( ^ ): 

O cj) = ( t rue ; <f> ; t rue) = (true " </> true) 

Since • can be denned in terms of O (D̂ > = -iO-i^>), and since O can be denned 
in terms of 'chop': ' ; ' (" '), we can take 'chop' as the basic "primitive" of an, 
or the, interval logic. 

Definition. By an interval temporal logic we shall understand a temporal 
logic whose concepts of time are captured by Time, a total partial order over 
a dense (time) point set, and ITime, i.e., time intervals, and whose connectives 
are those of • (always), Dr (always in right neighbourhood), Oe (always in 
left neighbourhood), O (sometime), Or (sometime in right neighbourhood), 
Oe (sometime in left neighbourhood), and the chop operator, expressed either 
by ~ or by ';'. 

Definition. By a linear temporal logic we shall understand the same as an 
interval temporal logic. • 

15.2.4 The Classic Temporal Operators: O, • 

The classical temporal logic basically "makes do" with the following two (in-
terdefmable) modalities: 

O: Sometime 
• : Always 

To recall, let <j>,ip denote any predicates, then: 

O ip : Sometime (from now on) ip will hold. 
• </> : Always (from now on) <f> will hold. 

Definition. By a classical temporal logic we shall understand a temporal 
logic whose connectives are those of • (always) and O (sometime). • 

We now "transfer" into (i.e., move on to) the main part of this chapter, to 
cover, in some detail, the duration calculus. In so doing we "bring with us", 
from the present section, the three (interdefmable) modalities: 

• (f> : (f> holds always 
O ip : ip holds sometime 
cj) ; ip : First </> holds, for some time; then ip holds, for some time 
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15.3 The Duration Calculus 

Just as I consider VDM and RSL, not only two specification languages, but also two 
strongly related approaches to software development, as being seminal in the current 
history of software engineering — and, mind you, I was strongly involved in the R&D of 
both — so I consider the duration calculi as being a similarly important development 
in our quest to conquer the complexity of systems specification. Hence I shall devote 
quite some space to covering the duration calculi — while otherwise referring to the 
seminal monograph [557]. Again, I am grateful to have been instrumental in bringing 
forth the duration calculi. 

The duration calculi is the creation, notably, of: 

• Zhou ChaoChen [166,167,169,170,221,438,475,522-524,545,551,552,554-564], 

and of his colleagues since 1989: 

Michael Reichhardt Hansen [166,167,169,170,555-558,562], 
Tony Hoare [559], 
Dang Van Hung [78,219-221], 
Anders Peter Ravn [475,558,559,562,563], 
Hans Rischel [475,558], 
Pandya K. Paritosh [166,545], 
Jens Ulrik Skakkebaak [473-475], 
Wang Ji [324,521,563], 
Xu QiWen [412], 

and many others — as shown from the citations. Above I have, except for the 
2004 monograph, 

• [557] by Michael Reichhardt Hansen and Zhou ChaoChen, 

listed only publications and reports for the first seven or so years of the du
ration calculus (actually duration calculi) history. The definitive book on the 
duration calculi is [557]. It contains an extensive list of references from earliest 
documents till and including 2003! 

15.3 .1 E x a m p l e s , Part I 

We show an example to lead the reader in the direction of what the duration 
calculus is all about . We leave it to you to decipher the below example. 

E x a m p l e 15.9 Elevator cum Lift: The "Quickie" Version: 
(1) For a lift system to be adequate it must always be safe and function 

adequately. There are three functional requirements. 
(2) For the lift system to be safe, then for any duration t ha t the door on 

floor i is open, the lift must be also at tha t floor. 
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(3) The length of time between when someone pushes a but ton , inside a 
lift cage, to send it to floor i, and the arrival of tha t cage a t floor i must be 
less than some t ime ts. 

(4) The length of t ime between when someone pushes a but ton , a t floor 
«', to call it to tha t floor, and the arrival of a cage at tha t floor must be less 
than some time tc-

(5) The length of t ime t ha t a door is open when a cage is at floor i must 
be a t least some time t0. 

(1) Req = 
• (SafetyReq A FunctReql 

(2) SafetyReq = ' 
[door=i] => [floor=i] 

(3) FunctReql = 
(fi € send] 

(4) FunctReq2 = 
(fi € call] : 

(5) FunctReq3 = 
[door^i] ; 

; t rue =>- •£<£«) 

; true => (<tc) 

A FunctReq2 A 

V (t<ts 

V (£<tc 

|"door=i] ; [door^i] => { 

; [dooi 

; [door= 

l>t0 

FunctReq3) 

•=i] 

=i] ; 

; true) 

true) 

A more detailed version of this example is found in Example 15.11. 

Maybe you got the idea? In any case, before going on to further, more extended 
examples, we bring in what might be called the three cornerstones of the 
duration calculus. Then we present some more examples. Then we bring in a 
proper reasonably detailed presentation of the duration calculus. Then, again, 
some more examples, and finally an axiom system, part of a proper proof 
system, for the duration calculus. 

15.3 .2 S o m e Bas ic N o t i o n s 

B o o l e a n S t a t e s , S t a t e A s s e r t i o n s and Character i s t i c Funct ions 

We model the behaviour of systems by expressing assertions about states and 
events. (For events we refer to Sect. 15.3.7.) Each state component can be 
thought of as an assignable (say RSL-declared) variable of some (say RSL-
defined) type. 

A Boolean state model of a system is a set of predicates over its state 
components. We call these predicates s ta te assertions. A s ta te assertion is a 
Boolean-valued function over time. For state component a the type of the 
predicate Pa is: 

variable 
a 

value 
Pa: Time ->• B o o l 
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Time is the set of real numbers, i.e.: 

R e a l 
t y p e 

Time 

Each such Boolean-valued function (over time) is also called a Boolean state 
(sometimes just a state) of the system. It is a characteristic function of the 
particular facet of the system tha t the state component, i.e., the variable, 
models. The set of all Boolean state functions thus describes the behaviour 
of the system. 

S t a t e D u r a t i o n s 

By a state duration of a state component, i.e., a state variable, a, we mean 
the duration of a Boolean state Pa (i.e., the state value being t ru th : t t ) over 
a t ime interval [b, e] as the accumulated presence of tha t state in the interval: 

rt=e 

/ (if P(t) = tt t h e n 1 e lse 0 end)St. 
h=b 

We shall mostly adopt the (type-incorrect) abbreviation: 

t=e 

P(t)5t, 
t=b 

in lieu of the former. It works if you encode t t as 1 and f f as 0! For the case 
tha t b < e and Jt~b P(t)St > £, we shall abbreviate ft~b P(t)St by \P~\, which 
reads: The duration of P. 

If P is t rue at some point t, but not in an interval before t, [b, t), nor in an 
interval after t, (t,a], then JP(t)5t = 0, i.e., [P~\ = 0. 

Ignition Flame Detector 

ah Valve 

Gas Reservoir 

Fig. 15.5. An abstracted gas burner 
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Example 15.10 Preliminary Gas Burner Considerations: 

What Is "the" Gas Burner? 

A gas burner consists of the following electromechanical components: a pipe 
leading from a gas reservoir to a valve; a valve which can be in either of four 
states: 

type 
Valve = = closed | opening | open | closing; 

an ignition apparatus which can be in either of two states: 

type 
Ignition = = ignite | idle; 

and a flame sensor which can be in either of two states: 

type 
Flame = = flame_on | no_flame 

We will presently not need to deal with the ignition; it is included for later 
reference. We can summarise these components in three state variables: 

variable 
valve:Valve 
ignitiomlgnition 
flame:FlameSensor 

The valve and the flame state components thus define two Boolean state as
sertions: 

value 
valve: Time —} Bool 
flame: Time —> Bool 

There is gas flowing iff the valve is opening, open or c los ing . There is flame 
burning iff the flamesensor senses f lame_on. 

Gas Leakage 

We can now define a general state assertion, leak: 

value 
leak: Time -> Bool 
leak(t) = valve(t) A ~flame(t) 

But what does it mean, with respect to valve(t), when we earlier stated that 
gas is flowing iff the valve is either opening, open or closing? We will not 
formally detail this issue here. Instead we appeal to the reader's intuition: 
When the valve is c losed, obviously no gas is flowing. When the valve is 
opening, and as from some degree of being between closed and open, gas 
is also flowing, and so on. 
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Gas Burner Requirements 

The real-time requirement for a gas burner is that the proportion of leak time 
in an interval [6,e] is not more than one twentieth (i.e., ^-) of the interval 
provided the interval [b, e] is at least 60 seconds long: 

(e - ft)>60sec => J^ leak{t)5t<^ 

We rewrite the above into: 

GasBurnerReq = £ > 60 => 20*/ Leak < t 

15.3.3 Examples , Pa r t I I 

We bring in one more detailed example before we explain the duration cal
culus. In Example 15.11 we give a detailing of the above elevator (cum lift) 
example (Example 15.9). By carefully explaining the application, its safety 
and functional requirements, and bringing in — so to speak out of thin air — 
the duration calculus formalisations of these requirements, it is hoped that the 
reader is better motivated for the subsequent systematic, and at times dry, 
presentation of the syntax and (informal) semantics of the duration calculus. 

Example 15.11 Elevator cum Lift: Function and Safety Requirements, the 
"Full" Version, Part I: We refer to the "quickie" version of this example, 
Example 15.9. 

P rob l em Descript ion 

We first give a problem domain description, and then we give a combined 
set of formal functional and safety requirements, expressed in the duration 
calculus. 

A simple, single lift system allows movement of a single lift cage between 
a finite number of floors, the starting and stopping of the lift [cage] and the 
opening and closing of floor doors — all in response to the pressing of floor 
call and cage send buttons. 

Components 

The lift system has the following immediate components: 

• a lift cage with send buttons, one for each floor, as immediate sub
components 

• motor (engine) 
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• N floors, each with a floor door and a call button as immediate sub
components 

In this version we abstract from passengers — assuming that a lift can carry 
any number of clients! 

The terms introduced are: lift system, [lift] cage, send buttons, floor, floor 
number, [floor] door, call button. The taxonomy is implied by their composi
tion. The system state is made up from the above components together with 
their attributes — which we now detail. 

There is a tacit understanding above that might have to be made more 
explicit: namely that floors are identified by natural numbers, say 0 to JV 
inclusive — and hence that two immediately adjacent floors differ by 1 in 
their floor number. 

Attributes 

The system and its components have the following attributes (that is: are of 
the following types, and have the following values): 

• The lift cage is either stopped at floor j for j lying between 0 and N 
inclusive, or is moving up (or down) between floors i and i + 1 (i and i — 1) 
for i lying between 0 and N — 1 (N and 1). 

• A floor door is either open or closed. 
• The motor is either running up (or down) or is stopped. 
• The motor, when running, runs at a constant speed — which causes the lift 

cage to move between immediately neighbouring floors in tm time units. 

The new terms introduced are: stopped, moving, open, close, running, speed, 
and time unit. Their taxonomy is implied by their interrelations, for example, 
motor running implies cage moving, and so on. 

Events 

We consider only the following events: 

• A send button is pressed for floor k, for k in the interval 0 to N inclusive. 
• A call button on floor k is pressed. 
• The opening (and closing) of floor doors. 
• The upward (downward) starting [and stopping] of the motor — implying 

the same for the cage! 

New terms are: [button] pressing, opening, closing, starting, stopping. As part 
of what we could call the taxonomy: button pressings are external input events 
caused by users, whereas motor and (hence) cage starting and stopping, and 
door opening and closing, are internal events caused by the system (in response 
to the system state and external events). 
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Behaviour 

A lift journey is behaviourally described: 

• Servicing a floor means that the lift cage is stopping at the floor (implying 
opening and closing of floor doors, etc.). 

• There is a request on floor j if floor j has not been serviced since a send 
button for that floor was last pressed. 

• If a lift moves from floor i to floor i + n where — 2 > n > 2, and a request is 
outstanding (pending) for any intermediate floor j (where j lies between i 
and i +n) then the lift will service floor j before proceeding to floor i +n. 

Invariants 

The above plus the invariants fully describe expectations: 

• There are at least two floors (a component invariant). 
• The cage has exactly one send button for each floor (a component invari

ant). 
• Pressing a call button at floor i causes the lift to service that floor within 

tc time units (a procedural, functional requirement). 
• Pressing a send button for floor i causes the lift to service that floor within 

ts time units (a procedural, functional invariant). 
• When a floor is serviced then the floor door is simultaneously open for at 

least t0 time units (a procedural, functional invariant). 
• A floor door may only be open if the lift cage is at that floor (a component 

[+event] safety invariant). 

Requirements: L Req 

The lift system, LS, shall be monitored and controlled by a computing sys
tem that shall respect the components, handle the events and satisfy the 
procedures and invariants enumerated above. 

Base Model 

type 
LS :: cage:Cages x floors:Floors x motor.Motor 
Cages = Buttons 
bs : Buttons = Nat ^ Button 
fs : Floors = Nat -^ Floor 
Floor :: call:B x door:Door 
Button = = Pressed | Off 
Motor = = Stopped | Up | Down 
Door = = Open | Closed 
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Formal Requirements 

To model that the lift is only at one floor, and the door is only open at, at 
most, one floor at a time we choose the following state variables: 

call: {0 , . . . ,n}—set call buttons pressed 
send: {0, n}-set send buttons pressed 
floor: {0, n} lift position 
door: {0 , . . . , n, closed} door state 

Thus we do not model lift positions between floors, call and send relate to fs, 
and 6s, respectively. 

L_Req = • (SafetyReq A FunctReq) 

To specify the requirements we introduce a static variable i which ranges over 
the floors 0 , . . . ,n. 

The safety property for the lift control system is: 
For every floor the door may only be opened if the lift is at that floor: 

SafetyReq = [door=i] => [floor=i] 

Notice, SafetyReq is equivalent to stating that "if the lift is not at floor i, 
then door i must be closed". 

In the formulation of the functional requirements we use the phase "to 
service a floor", which means that the lift is at the floor and that the door is 
open. As the safety requirement states that a door must only be open if the 
lift is at the floor, we will formalise servicing a floor by the door being open 
at that floor. 

FunctReq = FunctReql A FunctReq2 A FunctReq3 

Pressing a send button causes the lift to service the corresponding floor within 
ts tim.e units: 

FunctReql = 
([i G send] ; t rue =$> £<ts) V {£<ts ; [door=i] ; t rue) 

This requirement states that for every observation interval for which * € send 
holds initially, i.e., the send button for the ith floor is pressed, either the inter
val is shorter than or equal to ts or it may be divided into three subintervals 
where the first lasts at most ts, in the second the door at floor i is opened, 
and a final subinterval which is unconstrained. 

A similar condition must hold when pressing a call button: 
Pressing a call button causes the lift to service the corresponding floor 

within tc time units: 
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FunctReq2 = 
([i E call] ; true =$> £<tc) V (£<tc ; |"door=i] ; true) 

The system must guarantee that when a floor is serviced, the doors are open 
for at least ta time units: 

FunctReq3 = 
[door^i] ; |~door=i] ; [door^i] =• l>t0 

This completes the first part of the lift system example. The second part is 
given in Example 15.12. 

15.3.4 The Syntax 

The presentation of this part follows that of Skakkebaek et al. [475] (1992). 

Simple Expressions 

We define simple, i.e., atomic expressions. 

x,y,... ,z:State_ Variable 
a,b,...,c:Static_ Variable 
ff,tt:Bool_Const 
k,k',...,k":Const 

Static variables designate time-independent values. We assume some context 
which helps us determine the type of variables. 

State Expressions and Assertions 

We define state expressions and state assertions. A state assertion is a state 
expression of type Bool, and op is an operator symbol of arity n. We assume 
a context which helps us determine that an identifier is an op! 

se:State_Expr ::= Const | Bool_Const | op(sei,...,se„) 
P:State_Asrt ::= State_Expr 

We assume a context which helps us determine that a state expression is of 
type Bool, i.e., is a state assertion. 
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D u r a t i o n s and D u r a t i o n T e r m s 

If P is a state assertion, then J P is a duration. 
We define duration terms. 

d t :Dur_Term ::= / P | R e a l | op(dti , . . . ,dt„) | t 

i is an abbreviation for the duration term j tt. op is an n operator symbol of 
type Rea l . We assume a context which helps us determine tha t an identifier 
is an op! 

D u r a t i o n Formulas 

We define duration formulas. Let A be any n-ary predicate symbol over real-
valued duration arguments. We assume a context which helps us determine 
tha t an identifier is an A\ 

d:Dur_Form ::= A(dt i , . . . ,d t„) 
t rue | false | 
~ d ' | d iVd„ 
di ;d„ 
diAd„ 
di=>d„ 
diAd„ 
V a: d / * a is * / Static_Variable 

Delimiting parentheses can be inserted to clarify precedence. 

C o m m o n D u r a t i o n Formula A b b r e v i a t i o n s 

We make free use of the following common abbreviations: 

Od 
ad 

d\ ->• d'2 

£ = 0 
fP = £A£>0 

true; d; t rue 
-•(o- id) 

iii; t rue =^ d\ V (d : 1; d : 2; true) 

Precedence Rules: 

First 
Second 

Third 

-i • o 

V A ; 

point duration 
almost everywhere P 
somewhere d 
always d 
d<i follows d\ 
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15.3.5 The Informal Semantics 

The presentation of this part also follows that of Skakkebaek et al. [475] (1992). 
A particular system behaviour B assigns, for each state variable x, a func

tion from the semi-open time definition set [0, oo)3 to the type of the values 
containable in x. For each static variable a the function "selects" a value V(a). 
Each state expression then denotes a function obtained by evaluating the state 
expression for each point of time. 

For state assertions, P, we assume Unite variability, i.e., for any behaviour 
B, any observation interval can be divided into finitely many sub-intervals 
with P constant on each open subinterval, not including the interval begin 
and end points. 

An observation interval is an open and bounded interval: [b, e\. For a given 
interval the duration J P of a state assertion denotes the real number: 

rt=e 

/ (if P(t) = tt then 1 else 0 end)dt. 
h=b 

The integral is a measure of the set of points where P has the value tt. 
For any behaviour B and interval [b, e] duration terms denote real values, 

and atomic duration formulas denote Boolean values. The values of compos
ite duration formulas are obtained by the usual interpretation of the logical 
operators and quantification. The value of a "chop" formula d\ ; d^ is tt iff 
the interval [b,e] can be divided into [b,m] and [m,e], where b <m < e such 
that d\ evaluates to tt in [b,m] and G?2 evaluates to tt in [m, e]. 

The duration formula d holds on the interval [b, e] for the behaviour B just 
when d has value tt on [b, e] with any assignment V of values to the static 
variables. The duration formula d holds from start on the interval [b, e] for 
the behaviour B just when it holds on any interval of the form [0, T] for the 
behaviour B. A duration formula d is valid (a tautology) just when it holds 
for every behaviour B and every interval [b,e\. It is sufficient for a formula to 
be valid, that it holds from start for every behaviour. 

Definition. By a duration calculus we shall understand a temporal logic 
whose concept of time is captured by Real, whose formula connectives in
clude those of • (always), O (sometime), —>• (follows) and the chop operator, 
expressed either by " or by ';'> whose state, P, duration terms include those 
of JP (), o(ti, ...,tn), and t, and whose formulas further include those of |"| 
(point duration) \P~\ (almost everywhere P) and whose syntax and semantics 
is otherwise as stated in Sect. 15.3.4 and in this section. • 

3That is: from and including time 0 up to infinity (but, of course, not including 
infinity)! 
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15.3.6 Examples, Part III 

We bring in a long series of examples that illustrate a number of specification 
principles and techniques. Notably, they show the decomposition of problems 
into that of understanding the requirements, that of understanding the appli
cation domain (usually abbreviated the domain) and that of recording design 
decisions. We end this section by expressing some observations. 

The Elevator cum Lift Example: Design 

Example 15.12 The Elevator cum Lift Example: The Software Design: 

The Software Design, L_Design 

The simplest design we can think of is to let the lift service the floors suc
cessively, no matter whether they have requested service or not. We start by 
letting the lift service the ground floor, thereafter it services the first floor, the 
second floor, and continues in this way, until it reaches the top floor. Having 
serviced the top floor the lift returns to the ground floor, and the operation 
cycle is repeated. 

The state space for the simple design is the state space for the requirements 
extended with the variable move, which describes where the lift is heading or 
if it is idle: 

move : {0 , . . . , n, idle} 

We define the simple design by the predicate S: 

L_Design = Slinit A • SOperation 

Initially the lift is idle at the ground floor with the doors open and no requests 
for the lift: 

SInit = 
[move=idle Afloor=0 Adoor=0 Asend= {} Acall= { }]; tr ue 

vn 
SOperation is defined as: 

SOperation = SBehaviour A Door A Send A Call A Timing 

SBehaviour describes the lift behaviour: 

SBehaviour = Up A Down A Stop 

If the system is in a state where the lift is idle at floor i, it may proceed to a 
state where it moves towards the next floor upwards: 
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Up = [move=idleAfloor=iAi<n] -> [move=i+l] 

If the lift is at the top floor, it may move towards the ground floor: 

Down = |~move=idleAfloor=n] ->• [move=0] 

If the lift is moving towards a floor, it may reach this floor and become idle: 

Stop = [move=i] -> [move=idleAfloor=i] 

Door describes the door behaviour. If the lift is idle and at floor i, the door 
at floor i is open. Notice that because of the domain of the variable door all 
other doors are closed. If the lift is not idle, all doors are closed: 

Door = 
([move=idleAfloor=i] =$* [door=i]) 
A ([move^idle] => [door=closed]) 

If the lift is idle at position i, then i does not belong to send. At all other 
times i may belong to send: 

Send = fdoor=i] => fi 0 send] 

The specification of Call is similar to the specification of Send: 

Call = [door=i] =*• |"i g call] 

Timing defines the timing constraints which the system must fulfill. 

Timing = MinOpenTime A MoveTime 

MinOpenTime states that when a door is open, it is open for at least t0 time 
units. If t0 is chosen to be sufficiently large, this assures that people have a 
chance to get in and out of the lift before the door closes: 

MinOpenTime = [door^i] ; |~door=i] ; [door^] => £>t0 

It takes at most tm time units to move from one floor to another: 

MoveTime = [move^idle] => (<t 
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Domain Description: Assumptions, L_Domain 

If we try to prove that the design implies the requirements, i.e., that the 
design is a correct implementation of the requirements, we find that it is not 
possible. In order to succeed we need an assumption about the environment, 
namely that a door is open for at most tmnx time units: 

L_Domain = • SMaxOpen 
SMaxOpen = |~door=i] =^ (<tm(liC 

We make this assumption because if something prevents the door from closing 
we cannot guarantee that a request for the lift will be serviced within ts time 
units. 

The maximum time it may take before a floor is serviced corresponds to 
the maximum time it takes to service every other floor before the requested 
floor: 

ts<(n + l)- (tmax + tm) 

The time a door is open is less than or equal to the maximum time the door 
is open: 

Correctness of Simple Design wrt. Dom,ain and Requirements 

In order to check that the simple design, L_Design, is an implementation of 
the requirements, L_Req (see Page 535), we must prove that: 

L_Design A L_Domain =^ L_Req 

We omit the proof. • 

The Road-Rail Level Crossing Examples 

The presentation of this part also follows that of Skakkebaek et al. [475] (1992). 
We have chosen a rather large example, but we will present it in parts. In 

this way the reader can read the first example, or the first two, and so on. 
The aim of bringing in the examples is to illustrate well-nigh all aspects of the 
duration calculus, as well as to show a reasonably realistic, i.e., "large", i.e., 
"industrially scaled" example. We are grateful to Dr. Jens Ulrik Skakkebaek 
and to Profs. Anders Peter Ravn and Hans Rischel (and the publisher, the 
IEEE Computer Science Press) for permission to bring in the extensive, albeit 
substantially edited, quote. 

We will "chop" our presentation of the referenced paper [475] up into 
five parts: Example 15.13 deals with the safety and functional expectations 
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that one should have from a properly designed road-rail level crossing system. 
The next three examples deal with various assumptions about the domain of 
road traffic, rail traffic, i.e., trains, and the optical/mechanical devices that 
are to assist the road-rail level crossing system in achieving required safety 
and functionality. Example 15.14 deals with assumptions about road traffic. 
Example 15.15 deals with assumptions about train traffic, and Example 15.16 
deals with assumptions about the devices. Finally Example 15.17 outlines the 
monitoring and control strategy for the computing system, i.e., the machine 
design. 

The real purpose of the paper, i.e., [475], is, additionally, and hence quite 
importantly, to also show that one can indeed with the duration calculus 
axiom system prove correctness of a design with respect to the requirements 
and assumptions. 

road signal 

approaching , ... ,. ,. gate I 
. . ° traffic direction 
train »• 

ft os-1 rai l . 
^ s i g n a l . | [ _ _ ^ ' , 

approaching 

H — road 

area of crossing 

. single rail track 

• os-3: optical sensor #3 
gate 

-3>| passing 

* f ^ road signal 

Fig. 15.6. A road-rail level crossing 

Example 15.13 Road-Rail Level Crossing: Function and Safety Require
ments: 

Problem Description 

The problem is to describe the function and the safety of an optical-mechanical 
traffic system. The problem, in this example, is not to specify how to achieve 
function and safety, but only to specify what we mean by function and safety. 
Thus the problem is more a domain and a requirements specification than a 
computing systems design problem. 

Consider a road-rail level crossing (Fig. 15.6). All dimensions are rather 
"out of scale". The road-rail level crossing is for a single track rail with all 
trains passing only in one direction (left to right on the figure). Many factors 
determine the monitoring and control of road and rail traffic: 

(i) Road traffic is controlled by gates, one on either side of the track. 
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(ii) The gates close only when road traffic is not "stuck" in the crossing 
area (shown dashed). 

Road traffic is advised of approaching and crossing trains by road signals, 
one on either side of the track. When the gates are to be lowered these road 
signals are set to red. When the gates have been fully raised the road signals 
are set to green. 

(iii) Train traffic is controlled (i.e., advised) by a rail signal on the right 
side of the track of approaching trains, well before the crossing area. 

(iv) The rail signal indicates either STOP or GO for oncoming (i.e., ap
proaching) trains. 

(v) Optical sensors (os) monitor trains in the vicinity of the crossing area. 
(vi) A sensor, osi, is placed at a reasonable distance from the rail signal 

such that a train will reach the first sensor before it reaches the rail signal. 
(vii) A train enters the system whenever it is so determined by sensor (osi). 
(viii) A train has left the crossing whenever sensor 0S3 determines that the 

rear end of the train has passed the crossing. 
(ix) When a train approaches the gates are to be closed — provided there 

is no traffic "stuck" in the crossing area. 
(x) The rail signal is (to be) set to GO after the gates have closed. 
(xi) When no trains are approaching or passing, the rail signal must be 

set to STOP and the gates are to be opened. 
The main goal of the combination of optics and mechanics with a comput

ing system monitoring the traffic and controlling the gates and the signal is 
to ensure safety: 

(xii) The complete system (optics, mechanics, computing) must never al
low road and train traffic to pass the crossing area at the same time. 

(xiii) Furthermore, the system must ensure that both road and rail traffic 
are able to pass the crossing area within some reasonable time. 

(xiv) A train is passing whenever it is between sensors os-2 and 0S3. 

Forraalisation 

Let us refer to the required system as the Road-Rail Level Crossing System: 
R2tcs. 

The R2£cs accepts inputs from the optical and the gate sensors, and offers 
output (commands) to the signals and the gates. 

[1] State Variables 

The state consists of a number of variables: (a) one for the (rail) signal, (b) 
one for the two gates, (c) one for the road traffic and (d) one for the rail 
traffic. 

type 
Rail_Signal = = s top [ go 
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Gates —— opening | open | closing | closed 
Road_Traffie = = stopped | stuck_in_cross | free_to_cross 

variable 
signal:Rail_Signal 
gates-.Gates 
traffic:Road_Trafnc 

Trains are either approaching or passing. 

variable 
approach: Nat-set 
pass: Nat-set 

That is, a train is identified by a unique, natural number, i. If some part of 
train i is between the first two sensors (0S1-OS2), then train i is approaching, 
i.e., 

approach := {i} U approach ; 

And, if some part of train i is between the last two sensors (0S2-OS3), then 
train i is passing, i.e.: 

pass := {i} U pass ; 

Trains are active (wrt. crossing) if either approaching or passing (or both). 
One can define three state assertions concerning the state of trains: 

value 
passing: Unit —»• Bool 
passing() = pass / {} 

approaching: Unit —• Bool 
approaching() = approach ^ {} 

active: Unit —>• Bool 
active() = (approaching U passing) 7̂  {} 

[2] Requirements 

Now we are ready to express requirements: 

Req = •(SafeReqAFunReqiAFunReq-iAFunReqs) 

It turns out that we can express the functional requirements in terms of three 
state assertions. 
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[2.1] Safety Requirements 

If the gates are not closed or road traffic is "stuck" in the crossing, then the 
train must not pass: 

SafeReq = [((gates^closed)V(traffic=stuck))] =>• [~passing()] 

[2.2] Functional Requirements 

There are three functional requirements: 

1. FunReqi: The road traffic should maximally be held back for a predefined 
period of time tgtop: 

FunReqi = [trafflc=stopped] => £<£stop 

2. FunReqo: When all trains have left the crossing, the gates must be open 
for at least time £open: 

FunReq2 = 
[active]; [~active]; [active] => J*(gates=open)Mopen 

3. FunReq3: Provided the road traffic is not stuck, a single train must be able 
to pass within time ^ a c t ive : 

FunReqg = [i G activeA(traffie^stuck)] =$> ^<^active 

Example 15.13 illustrated principles and techniques of prescribing require
ments, as they were decomposed into those of safety and those of functional
ity. 

In the next three examples, Examples. 15.14-15.16, we "go backwards", as 
it were, to record the assumptions that any (later) design must (usually) make. 
That is, we describe (some facets of) the (application) domain. Normally, 
according to our "dogma", we first establish a domain description, before we, 
as we have just done, produce a requirements prescription, and, certainly long 
before we develop a software design specification. The design for the present 
problem domain of railway level crossings is recorded in Example 15.17. 

We somewhat arbitrarily, it may seem, but pragmatically this is very 
sound, decompose the domain description into three parts: Describing the 
road traffic, i.e., Domaini, describing the train traffic, i.e., Domain2, and de
scribing the supporting technology, i.e., the device technology, i.e., Domains. 
The relevant domain "theory" is the conjunction of these: 
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3 

Domain = • A Domain^ 
i=\ 

Example 15.14 Road-Rail Level Crossing: The Road Traffic Domain: 
We continue the railway level crossing example based on [475]. 
When running freely, i.e., without control, that is, without proper road 

signaling and gate control, the road traffic may eventually either stop properly 
in front of the gates, or get stuck in the crossing. Such stopped or stuck road 
traffic may subsequently become free, i.e., neither stopped nor stuck: 

RoadTrafficAssumpi = 
([Traffic=stopped] -»[Traffic=free]) 
A (fTraffic=free] -> ([Traffic=stopped] V [Traffic=stuck])) 
A ([Ttaffic=stuck]-»[Traffic—free]) 

Road traffic is stopped iff the gates are not open: 

RoadTrafficAssurnp2 = [Traffic—stopped] = [Gates^open] 

In closing, we record: 

Domaini = • A RoadTrafficAssump, 
8 = 1 

Example 15.15 Road-Rail Level Crossing: The Train Traffic Domain: 

Problem Description 

We continue the railway level crossing example based on [475]. 
Trains must only pass if the rail signal is set to GO: 

TrainTrafncAssumpi = [Passing] => [Signal] 

An active train travels in one direction only, i.e., initially approaches and 
finally passes: 

TrainTrafficAssump2 = 
[i £ ACt->]->[i € Appr A i 0 Pass] 
A [i € Appr A i $ Pass] -*• [i £ Pass] 
A [ i e Pass] -s- [i g Act] 

The last train in a series of trains passes the crossing before leaving the cross
ing: 

TrainTrafficAssump3 = 
([~Active] -> [ Approaching A ~Passing]) 
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A ([ Approaching A—Passing] -> [Passing]) 
A ([Passing] -> ([—Active] V [Active])) 
A ([Active]-?-[Passing]) 

The trains do not hesitate when the rail signal is GO: 

TrainTrafficAssump4 = [SignalAActive]=>f<Tgcjie(j 

The railway lines are not overloaded with trains: 

TrainTrafficAssump5 = 
[Active]; [~ Active]; [Active] 

=> t> T j n a c t j v e + T w a ^ t + T g a t e _ 0 p e n + T 0 p e n 

Assumptions 1, 2 and 4 are really just obvious domain facts. 
In closing, we record: 

Domain2 = • A TrainTrafficAssump,-
i=X 

Example 15.16 Road-Rail Level Grossing: The Device Domain: 
We continue the railway level crossing example based on [475]. 
It takes, at most, time T„a^e close ^or * n e gates to close if the road traffic 

is not stuck in the crossing: 

DeviceAssumpi = 
[Gates=closingATraffic^stuck] =>(<T„ate c i o s e 

It takes, at most, time T„&^e open f° r the gates to open: 

DeviceAssumpa = 
[Gates=opening] =>£<Tg a t e _ o p e n 

The physical properties of Gates constrain the value of gates to cycle: open, 
closing, closed, opening, open, ... (in that order): 

DeviceAssump3 = 
([Gates=open] ->• [Gates=closing]) 
A ([Gates=closing] -> [Gates=closed]) 
A ([Gates=closed] —»• [Gates=opening]) 
A ([Gates=opening] -> [Gates=open]) 

The rail signal switches between STOP and GO: 

DeviceAssump4 = 
([-Signal]-»[Signal]) A ([Signal]->• [-Signal]) 
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In closing, we record: 

4 

Domain3 = • A DeviceAssumpj 

• 

Finally we are ready to record the design decisions. 

Example 15.17 Road-Rail Level Crossing: The Software Design: 
We continue the railway level crossing example based on [475]. 
The software design was chosen by the system designers (Skakkebask, Ravn 

and Rischel of [475]) to facilitate a proof of correctness with respect to the 
requirements and the assumptions (i.e., the domain). 

The design decisions now presented are a formalisation of a finite state 
control, one that cycles through phases with inactive, approaching and passing 
trains. The overall design specification predicate is: 

3 4 

Design = • ( A Approach Trains^ A A PassingTrainSj) 

Approaching Trains 

The gates will remain open when no trains are present: 

ApproachTrainsi = 
([~Active] A ([Gates=open] ; true)) =$> [Gates=open] 

If trains are present, then the gates are open for at most T r e a c t : 

ApproachTrains2 = [Gates=openAActive]^>f<rreac^ 

It takes, at most, Tn^s before the rail signal is GO when the gates have closed: 

Approach Trains.3 = [()A~SignalAActive]^£<T-^n^g 

Passing Trains 

The gates remain closed as long as the rail signal is GO: 

PassingTrainsi = [Signal] ̂ > [~Gates=closed] 

The rail signal remains GO while trains are present: 

PassingTrains2 = [Active] A ([Signal] ; true) => [Signal] 

The rail signal will only indicate GO for at most Tin a c t ive a ^ e r t n e trains 
have left: 
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PassingTrains3 = [^ActiveASignal] =>£< ̂ Inactive 

The gates will remain closed for at most Twajt after all trains have left: 

PassmgTrains4 = 
[(Gates=closed)A~ActiveA~Signal]=^<Twa | t 

Some Observations 

Comments 

Some observations — after a long series of detailed examples — may now be 
in order: 

(1) For the first time, perhaps, in these text books, we have sketched one 
part of an entire, albeit small, development, reordering a bit: from domain 
descriptions (in the form of assumptions about the environment in which a 
software design is to serve), via requirements prescriptions, to software design. 

(2) The examples all focused, initially, on requirements. That is to be 
expected, as real-time applications are typically those related to safety-critical 
issues. 

(3) And those examples have then shown requirements to be expressible 
in two parts: safety-critical requirements issues, and functional requirements 
issues. We shall later, in Vol. 3 of these textbooks, call functional requirements 
domain requirements. 

(4) But there is one issue that we have "skirted": that of actually verify
ing the software designs that evolved from requirements prescriptions. Two 
examples illustrated the design versus requirements issue: Example 15.17 ver
sus Example 15.13: The road-rail level crossing; and Example 15.12 versus 
Example 15.11. So what are we to expect? 

Issues of Verification and Model Checking 

It was mentioned in Examples 15.17 and 15.12 that given domain assumptions, 
the design and the requirements, one could now, in the duration calculus, 
verify the correctness of the design with respect to the requirements and in 
light of the assumptions. But are we going to do that? No, not in the present 
three volumes of this series of textbooks! 

This requires an explanation! So we shall give one, briefly. As mentioned 
earlier, the three textbook volumes concentrate on 'formal methods "lite" '. 
That is, specification. Before we can state theorems to be proven we must 
master specification. But, of course, a, but not "the", main reason for formal 
specification is the ability to formally prove properties. We hope to write a 
volume in this series dedicated to verification and model-checking principles 
and techniques. These principles and techniques, however, become very much 
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"bound" to the chosen specification language (i.e., tools), whereas the specifi
cation principles and techniques "carry over" from one specification language 
to another. So we claim! 

The specificity of the model-checking and theorem-proving principles and 
techniques for specific specification language(s) is, presently, best covered in 
user manuals, monographs and textbooks dedicated to these specific nota
tions: Model-checking using SMV [80] or SPIN [149,215], and theorem-proving 
using HOL [380,393] or PVS [384,385]. 

A word of caution is, however, needed. Only when actually carrying out 
proofs of correctness, or only when actually preparing material for model 
checking can the developer really know how to structure certain specifica
tions: select which parts of a domain to emphasise, and how; formulate cer
tain requirements in one way, rather than another; and, accordingly choose 
one design over another. So by not covering these aspects here, the developer, 
you, the reader, has really not (yet) been taught "the final" word. So be it! 

To become a full-fledged, professional software engineer, takes more than 
just the present series of textbooks. For the present we refer to such semi
nal monographs and textbooks as [131] for RAISE and [557] for the duration 
calculus. 

15.3 .7 Trans i t ions and E v e n t s 

So far, in this chapter, we have considered states, assertions about these and 
their duration. In this brief section we shall consider how we express transi
tions between states — as an extension to the current duration calculus. 

Thus, if P is a state assertion which holds in a neighbourhood [t — 6-t,t) 
up to time t, and does not hold in a neighbourhood (t, t + 6+t] after time t, 
then we say tha t J. P holds at t. Vice versa, if Q is a state assertion which 
does not hold in a neighbourhood [t' — 6-f,t') up to t ime t', but which holds 
in a neighbourhood (t',t' — S+t'] after time t', then we say tha t f Q holds at 
t'. Figure 15.7 informally illustrates the issue. We can paraphrase this: f P 

to 

time 

Fig. 15.7. State Transitions 

is t rue at a point, and J, P is t rue at another point. 
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More generally, let [b, e] be an interval, and let P be a state assertion 
that holds for an interval [b — 6, b], S > 0 before b, then "YP holds for the 
interval [b, e] iff P holds during [b — 6,b]. Conversely, if Q holds for an interval 
[b, e + 6], 6 > 0 after e, then J*Q holds for the interval [b, e] iff Q holds during 
[b,e + S\. 

Figure 15.8 informally illustrates the issue. 
We can paraphrase this: * \ P holds in a non-point interval ([&, e]) after P 

held, and J*Q holds in a non-point interval ([&, e]) before Q holds. 

P 

J 
true 

false 

P Q 

8 b \ p / Q e 8 

Fig. 15.8. "Single" state transitions 

To express that certain before, respectively after, state assertions hold in a 
point interval, i.e., when (using the above interval notation [b,e]) b = e, we 
introduce the variant operator symbols: \ , respectively /^ 

\P= \ P A t = 0 

SQ = J*Q A i = 0 

We can paraphrase this: \P holds at a point (if P held for some time before 
that point), and /-Q holds at a point (if Q holds for some time after that 
point). 

To express that at some point (b, i.e., also e) a system changes state 
from (jp to GQ, that is, from P holding to Q holding, we write \PA /-Q. 
Figure 15.9 informally illustrates the issue. 

Finally, we introduce temporal operators which shall help us express that a 
state assertion holds, or does not hold at a point: T, respectively _L. Thus TS 
expresses: The state characterised by S holds at a point, and ± 5 expresses: 
The state characterised by S does not hold at a point. Formally: 

±S= \ n S A / n S 
TS = \ S A / S 

Figure 15.10 informally illustrates the issue. 
It is high time for an example. 
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true 

false 

time 

b 
e 

\ P 
/ Q 

Fig. 15.9. System state transition 

p 

i , 
true 

false 

0 

now 

i 

T P 

now 

Q 

J_Q 
time 

Fig. 15.10. Holds now, does not hold now 

Example 15.18 The Gas Burner State Machine: 
This example and its treatment within the duration calculus has been 

reported and published in several places: [300,522,523]. The proceedings [3] 
record many other ways of formalising the problem requirements and design 
solutions. The present exposition is edited from [557]. 

Example 15.10 stated the gas burner requirements: 

GasBurnerReq = £> 60 => 20*/ Leak < I 

A first design decision is that any leak should last for a period shorter than 1 
second: 

GasBurnerDesigni = n([Leak] => £<l) 

And the second design decision is that the distance between any two consec
utive leaks must be more than 30 seconds long: 

GasBurnerDesign2 = •(([Leak] ; [~Leak] ; [Leak]) =>• i'>30) 

Given the axiom system for the duration calculus one can prove: 

(GasBurnerDesigni A GasBurnerDesign2) => GasBurnerReq 

In [415,416] studies are made of the design problem. A finite state machine is 
suggested. In Fig. 15.11 we show a refinement of that machine. 
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Prepare 

Burning Ignite 

Fig. 15.11. A gas burner finite state control machine 

At any one time the gas burner is exactly in one of the five states: Idle: In state 
Idle gas is off (i.e., is being turned off and kept turned off). The gas burner is 
willing to accept a Heat_On_Request. If such an external event occurs, then 
the gas burger makes a transition to state Prepare. Prepare: The gas burner 
waits for 30 seconds after having arrived to state Prepare. Then it transitions 
to state Ignite. Ignite: In state Ignite the gas valve is opened and ignition 
attempts to set on the flame. If Eame is detected on then the gas burner 
control transitions to state Burning. Otherwise a "flame-on" detector — at 
some time after ignition and with (still) no flame causes a Flame_off event 
and the gas burner transitions to state Gas_Leak. Burning: In state Burning 
the flame is on. The flame will remain on, either until a flame Flame_off is 
detected, or a Heat_oiF_Request event occurs. In the former case a transition 
is made to Gas_Leak. State Gas_Leak handles both ignition and flame-off 
failures. The gas valve is to be closed within one second. Internally a gas 
burner event l_second is issued after at most one second, and the gas burner 
transitions to state Idle (in which gas is turned off). Now let us examine the 
properties of the gas burner control machine. 

It should now be obvious that the gas burner control machine is in some 
state: 

f| V [idle V Prepare V Ignite V Burning V Gas_Leak] (15.1) 

and is in at most one of these states: 

where «,; is any of the five states. 
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There are four events: 

Heat_On_Req 

30_seconds 

Flame_off 

Heat_Off_Req 

and seven state transitions: 

4 Idle => t Prepare (15.7) 
4- Prepare => f Ignite (15.8) 

4 Ignite =>• f (Burning V Gas_Leak) (15.9) 

4 Burning => t (Idle V Gas_Leak) (15.10) 
4. Gas_Leak => t Idle (15.11) 

Event 30_seconds occurs 30 seconds after the gas burner control machine has 
entered the Prepare state: 

(t Prepare ; {£ = 30)) = (f Prepare ; [Prepare] ; 30_second). (15.12) 

Flame_off handling must be done within one second: 

[Flame_off] => (I < 1) (15.13) 

Let us name expressions 15.1-15.13 Gas_Controller. Given the axiom system 
for the duration calculus one can deduce: 

Gas_Controller h GasBurnerDesigiii A GasBurnerDesign2 

In [477] transitions of that machine are subject to probabilities, and a Markov 
model is studied. We shall content ourselves here with transition probabilities 
one (i.e., 1) for all transitions. 

15.3.8 Discussion: From Domains to Designs 

We have covered core aspects of the duration calculus. The duration calcu
lus offers a logic based on intervals and real-time. One can use the duration 

(4 Idle A f Prepare) (15.3) 
(4 Prepare A f Ignite) (15.4) 
(4 (Ignite V Burning) A t Gas_Leak) (15.5) 
(4 Burning A t Idle) (15.6) 
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calculus to abstractly express constraints, i.e., requirements, on the duration 
of states. This was illustrated in Examples 15.9-15.11 and Example 15.13. 
One can also use the duration calculus to abstractly express properties of 
the domain, i.e., of the application area for which software is sought. This 
was illustrated in Examples 15.14-15.16. And one can finally hint at major 
design decisions also using the duration calculus. This was illustrated in Ex
amples 15.12, 15.17, and 15.18. 

Only in a very implicit sense can duration calculus expressions be said 
to specify sequential programs — such as we are normally prepared to im
plement in computing systems: in terms of sequential programs. A duration 
calculus expression, however, usually implies a sequential program, or a set of 
cooperating such. RSL specifications, the "closer" we get to software design, 
i.e., the more "concrete" such specifications become, rather specifically specify 
sequential programs. At least, it would be a good idea for the developer to 
make sure that this is so! 

Now how can we combine the ability of the duration calculus to express 
quantitative properties of software (to be designed) and the actual specifica
tion of such software? 

We turn to this question next. That is, we may seem to completely abandon 
thoughts and concepts of duration calculus, in favour of rather "down to 
earth" concepts of explicit timing in what could be considered a specification 
programming language, Timed RSL, TRSL. 

1 5 . 4 TRSL: RSL w i t h T i m i n g 

In this 
full RSL 
do it in 

section 
, just a 

we "extend" 
subset. It is 

actual software eng 

a subset of RSL with timing. 
enough, in a textbook like this 
ineering practice. 

Note 
to in 

we do not 
dicate how 

mean the 
one might 

This section is very much based on [132]. In a sense, we take up where Ex
ample 15.2 left us: That example tried, but it did not really achieve anything 
substantial. It just hinted at something! That "something" will now be put 
forward. That is, we shall present an extension to RSL which includes real-time 
facets. 

15.4.1 TRSL Design Criteria 

We wish to motivate why the extension of RSL is as it is. So we wish to express 
quantitative aspects of timing in what is basically RSL, i.e., in TRSL. RSL 
already allows us to express qualitative aspects of time. Notable illustrations 
are: First, something is specified to occur before something else. This is done 
using sequencing operators, notably ";". But it is also implied in the let ... 
in ... end construct. Second, something is specified to occur during the same 
time interval as something else. This is done using the parallel, ||, and the 
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interlock, jj- , composition of processes (P and Q): P\\Q and P \\ Q. Finally, 
something is specified to occur at the same time as something else. This is 
done using the inpu t /ou tpu t synchronisation and communication actions: c ? 
and civ. The quanti tat ive aspects of timing have to do with how long things 
take to do! 

T h e First TRSL D e s i g n D e c i s i o n 

In line with our long-held assumptions tha t applying a function to an argu
ment and obtaining the result value, and evaluating a composite expression 
in general, takes no time, tha t is, it occurs "instantaneously", we make the 
first design decision. 

To do this, we introduce an explicit new, i.e., not RSL, but TRSL construct: 

wait (e) 

Here e is an expression which yields real number values, t, of type time. If 
they are integers or natural numbers they are promoted to real values. If they 
are negative, they are promoted to the zero (real) value (0.0). 

The idea is tha t occurrence of wait (e) in some process P: 

clausebefore ; wait (e) ; clauseafter 

shall mean tha t process P waits t t ime units between evaluation of clausebefore 
and evaluation of clauseafter. 

T h e S e c o n d TRSL D e s i g n D e c i s i o n 

It is only natural to allow such wait clauses to occur in texts of process defi
nitions, and of different, i.e., several, such definitions. It is therefore natural to 
expect tha t outputs from one process and inputs to another process take time. 
Tha t is, tha t processes P and Q which wish to synchronise and communicate 
via channel c may be delayed, one or the other. In RSL we might schematically 
write: 

t y p e 
V 

channel 
c:V 

value 
P: U n i t ->• out c U n i t 
P() = ... c!v ... 

Q: U n i t —>• in c U n i t 
Q() = ... let v = c? in ... e n d ... 
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P||Q P||Q P||Q 

k? 

value 
of k? 
is 0 

Fig. 15.12. I/O elapsed times: three cases 

In reality RSL/CSP output/input may take time as shown in Fig. 15.12: 
In TRSL an output is an expression which yields a real-time interval value, 
namely, the time it takes from the start of evaluation of the TRSL output 
expression till the time that output is being consumed by some other process. 
If that other process's TRSL input expression is already ready to engage in the 
output/input event the TRSL output expression value is 0. 

In TRSL an input is an expression which yields both a value, the usual 
input value read from the channel, and a real-time interval value. In balance 
with the output expression value, an input expression's real-time interval value 
"measures", i.e., represents, the time elapsed from the input being ready and 
the communication taking place. 

So, only wait, output and input clauses when subject to "executions" may 
cause or allow time to elapse. In giving precise meaning to the wait and the 
output/input constructs, we adopt the maximal progress assumption: The 
time between an input or an output being ready to engage with one another 
and the actual communication event taking place is minimised. If an execution, 
based on an expression, can evolve without waiting for the environment, it 
will not wait. 

Consider the following construct: 

clausei |] (wait r ; clause2). 

What do we mean by it? clausei and clause2 do not initially wait. Taking the 
maximal progress assumption literally means that execution would evolve to 
be based only on clausei. But this would prevent the possibility of prescribing 
an execution that immediately performs clausei, or might wait r time units 
and then perform clause2. So we need a new operator (i.e., a new interpretation 
of |]) in the parallel and interlock expansion rules. 

Consider: 

value 
of k? 
is v 
and T 

k! v -

value 
of k!v 
is X 

value 
of k? 
is v 
and T 

value 
of k!v 
is 0 

x=0 
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( let v = c ? in clausei e n d ) Q ( wait r ; ) 

An execution based on this whole expression waits for its environment to offer 
an output on channel c. 

If the communication of channel c is available within r t ime units then the 
communication must be accepted and execution continues — now based on 
just clausei. If an output is not available within r time units then execution 
(of this whole expression) continues — now based on just clause2. 

15.4 .2 T h e TRSL L a n g u a g e 

We present the syntax and informal semantics of TRSL. 

S y n t a x 

We use the following abbreviations: 

E: expressions c: channels T: types 
x: variables r: reals V: value definitions 
t,id: identifiers T: Time 

We consider all constructs of TRSL to be expressions: 

= id:r 
id:T, V 

0 
t r u e 
false 
r 
T 

id 
X 

skip 
s top 
chaos 
x := E 
if E t h e n E e 
let id = 
wait E 
let t = 
let t = 

-- E i n 

c?x in 
c'.E in 

lse E end 
E e n d 

E e n d 
E e n d 

E\\E 
E \\ E 
E || E 
E \\E 
E ; E 
A id:T • E 
E(E) 
rec id:r • E 

S e m a n t i c s 

We need only concern ourselves with the following constructs: 

E ::= wait E \ E \\ E 
| let t = c?x in E e n d | E || E 
| let t = c!E in E e n d | E ff E 
\E\\E 

We explain these constructs: 
wait e: The expression e is evaluated. For simplicity we assume a good style 

of specification, tha t is, the expression e is a simple expression not involving 
any of the constructs now covered. Instead, e evaluates either to a real value, 
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r, or to a natural number, and in both cases a positive such. The natural 
number value is "promoted" to a real value, r . The behaviour in which wait 
e is being interpreted waits r time units and then proceeds. 

let t = c?x in e end: The behaviour in which this expression is being 
interpreted, at t ime to, expresses willingness to input a value, v, from channel 
c. Once it receives a value, v, at t ime t\, v is assigned to variable x and t is 
bound, in e, to the t ime interval value t\ — to promoted to a time value (!).4 

Then e is interpreted in a context tha t binds t to t\ — to and stores v in x. 

let t = c!e0 in e;, end: The behaviour in which this expression is being 
interpreted, at t ime to, expresses willingness to output a value, e0, to channel 
c. Once it delivers tha t value at t ime t\, £ is bound, in e, to the t ime interval 
value t\ — to promoted to a t ime value (!). Then e;, is interpreted in a context 
tha t binds t to t\ — to-

d\ 0 e2-' This is external choice between two expression processes. The 
environment determines whether e\ or e^ is chosen, as before. 

&L [I e 2 ; This is nondeterministic choice between two expression processes. 
The environment plays no role in which choice is made. One of the two ex
pressions is selected nondeterministically. 

ei || e%: This is the usual parallel combination of two expression processes. 
ei |f e 2 ; This is the interlock expression. It is similar to the parallel expres

sion combination, only more aggressive [132]. The two interlocked expression 
processes will communicate only if they are able to communicate with one 
another. If they are able to communicate with other concurrent processes, 
but not with one another, then they deadlock — unless one of them can ter
minate. According to [132], the interlock is the main novelty of the RSL/CSP 
process algebra. 

15 .4 .3 A n o t h e r Gas B u r n e r E x a m p l e 

For the next example we assume tha t the reader has followed earlier install
ments in the "unfolding saga" of gas burners: requirements, design, and so on 
(that is, Examples 15.10 and 15.18). 

E x a m p l e 15.19 A Gas Burner Software Design: Consider a possible system 
design as shown in Fig. 15.13. The four components have been singled out as 
follows: 

The gas burner "mechanics, etc." is the gas burner with gas pipe, valve, 
ignition and flame detector. We can think of this component as being the 
environment. 

Tha t environment will issue requests for Heat_0ff and Heat_On to be 
considered events tha t occur spontaneously in the environment. The flame 
detector similarly issues a Flame_On signal, which is likewise an event. 

4 See footnote 1. 
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Flame 
Control 

Flame_On 

gas off 

flame on 

flame off 

Main 
Control 

Gas_On 

heat req on 

heat req off 

no flame 

Heat_ 

Heat 
Control 

On Heat_off 

Environment: The Gas Burner Mechanics, etc. 

Fig. 15.13. A gas burner system: mechanics and computing system 

And that environment will respond to a Gas_On signal from the Main 
Controller. 

Let us first recall that the gas burner design decisions were: 

GasBurnerDesigni = •([Leak] => f<l) 
GasBurnerDesign2 = •(([Leak] ; [~Leak] ; [Leak]) => £>30) 

as expressed in Example 15.18. 
By introducing two state variables, gas and fiame, such that: 

Leak = gas A ~flame 

(and) into respectively the Main Controller and the Flame Controller pro
cesses, we may eventually be able to reason that the current (i.e., the evolv
ing) design is a correct implementation of the design decisions. This, then, is 
our reason for the decomposition into the components shown. 

The Flame Controller monitors the flame — in fact, it "mimics" the flame. 
It does so by maintaining a state variable flame, set to t rue when the flame 
is to be on, and to false otherwise. It responds to signals from the Main 
Controller: Flame_On, from the environment, sets flame to t rue , informs the 
Main Controller that the flame is on: flame_on, and, when receiving flame_off 
from the Main Controller sets flame to false. 

The Heat Controller senses whether the environment is requesting 
Heat_0n or Heat_0ff, and informs the Main Controller accordingly: 
heat_req_on, respectively heat_req_off. 

The Main Controller, through the Flame Controller and Heat Controller, 
monitors the environment, and, through directly issuing Gas_On signals to 
the environment that valve is to be opened and ignition "fired". The Main 
Controller maintains a variable gas, which is initially false, is set to t rue 
after a heat_req_on request has been received, is reset to false heat_req_off 
request has been received, and so forth! 

This prepares us for the TRSL specification of the Gas_Burner_System as 
consisting of the four processes: 
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channel 
flame_on, heat_req_on, heat_req_off: Unit, 
Flame_On, Heat_On, Heat_Off: Unit. 
gas_off, flame_off, no_flame, Gas_On: Unit, 

variable 
gas:Bool :— false, 
flame:Bool := false, 

value 
Main_Control: Unit —> 

in heat_req_on ,heat_req_off,fiame_on 
out gas_off,flame_off,no_flame,Gas_On 
write gas 
Unit 

Flame_ Control: Unit -> 
in gas_off,flame_aff,Flame_Ori 
out flame_on 
write flame 
Unit 

Heat_ Control: Unit ->• 
in no_flame,Heat_On,Heat_Off 
out heat_req_on,heat_req_off 
Unit 

Gas_Burner: Unit —»• 
in any 
out any 
write gas,flame 
Unit 

Gas_Burner_System: Unit —• write gas,flame Unit 

Gas_Burner_System() = 
while true do (Environment(} {} Gas_Burner()) end 

Gas_Burner() = 
Flame_Control() || Main_Control() |[ Heat_Control() 

Flame_ Control () = 
flame := false, 
((Flame_On?; flame := true; flame_on!; flame_off?; flame := false) 
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D 
(gas_off?)) 

Heat_Control() = 
Heat_On? ; heat_req_on!{) 
(no_flame? Q (Heat_Off? ; heat_req_off!())) 

Main_Control() = 
gas := false ; heat_req_on? ; wait(30) ; Gas_0n!() ; gas := true ; 
((flame_on? ; heat_req_off? ; gas := false ; flame_off!()) 

D 
(wait(l) ; gas_off!() ; gas := false ; no_flame!())) 

The Environment is here modelled in terms of four time durations: 
initial, Ttum_on, Twait_for_flame and rdo_nothing- We do not, i.e., we cannot, pre
scribe these. The Environment is biddable, but is not programmable, as are 
the other processes.5 

value 
Environment: Unit —• 

in Gas_On 
out Heat_On,Heat_Off,Flame_On 
Unit 

EnvironmentQ = 
waitfrinitiai) ; Heat_On!() ; Gas_On ? ; 
((wait(r tur„_on) ; Flame_On!{) ; wait(Twait_for_flame) ; Heat_Off!Q) 
n . 
W a i t (rclo_nothing ) ) 

15.4.4 Discussion 

Example 15.19 was postulated. Although it hinged upon Example 15.18, there 
really was nothing very explicit about the connection between Examples 15.19 
and 15.18. That is, we really ought prove that the Gas_Bumer_System of 
Example 15.19 is correct with respect to the design decisions of Example 15.18. 
The possibility of, and a reference to such a proof will be given in the next 
section, which links TRSL with the duration calculus. 

5The terms 'biddable' and 'programmable' will be explained in detail in Vol. 3, 
Chap. 10. 
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15.5 RSL with Timing and Durations 

This section was written by Chris W. George and Anne E. Haxthausen. It 
is reproduced here with their kind permissions. It constitutes an excerpt of 
Sect. 6 of our joint [48]. 

15.5.1 Review of TRSL 

To remind you of TRSL, see the previous section, we give here a few illustrative 
fragments. First, wait may just indicate a delay. Execution of the expression 
(cf. Sects. 15.4.1-15.4.2 and Example 15.21): 

sensor_state := high ; wait 6 ; sensor_state := low, 

will set and keep sensor_state high for precisely time 6, and then make it low. 
A time out can be modelled by an external choice involving a wait. Sup

pose we need to take some special (abnormal) actions if a signal normal does 
not occur within time t. The expression 

normal? ; ... 

D _ 
wait t ; abnormal!() 

will take the first choice provided an output on the channel normal occurs 
within time t. Otherwise, at time t, the wait terminates and the second choice 
becomes available. Provided there is some process waiting to handle the output 
abnormal, the principle of maximal progress will ensure the second choice 
occurs, and we would say the normal behaviour has timed out. 

Example 15.20 Train Separation Time: An example to illustrate the use 
of time dependence (which is used later in Example 15.21) follows. Suppose 
the correct behaviour of a system depends on an assumption that trains are 
separated by more than time S. It may be safe to just record this as an 
assumption on our part, because we know it is ensured by other parts of the 
system, or we may need to specify that if the trains are too close together then 
an error will be recorded, and some appropriate action taken. In the second 
case, where we need to record an error, we can specify something like: 

value 
detect : Unit —• in detect_train out train_detected, error Unit 
detect() = 

while true do 
let t = detect_train? in 

if t < S then error!() 
else train_detected!() 
end 
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end 
end 

An input or output can optionally return the time that it waited for synchro
nisation: This supports time dependence, i.e., following behaviour can depend 
on the value of this time. Here the behaviour of detect depends on the time t 
that the input detect_train (representing the hardware train detection unit) 
waits. If t is too small an error is signalled. Otherwise we pass on the detection 
event using another channel train_detected. Note that correct behaviour of 
detect, in the sense of only reporting actual errors (trains too close together), 
assumes that the value t is the same as the time since the last train, i.e., since 
the last communication on detect_train. This will only be true if there is no 
wait anywhere in the loop except for the communication on detect_train. In 
particular, we see that the process doing input on train_detected must always 
be ready when detect is ready to do output on that channel. This further im
plies that this other process must have a cycle time of at most 6. This process 
is described later in Example 15.21. • 

In [298,299] denotational semantics of Timed RSL are given using Duration 
Calculus, to the combination of which we now turn. 

15.5.2 TRSL and Duration Calculus 

The Duration Calculi are covered in the seminal work [557]. While TRSL is 
well-suited for timed design specifications, Duration Calculi is well-suited for 
timed requirement specifications. This suggests the following development 
method [204] (illustrated in Fig. 15.14) for real-time systems integrating TRSL 
and Duration Calculi specifications: 

R 

r ^ 
RSL Specification 

^ J 

SL Method 

RSL Spe 

Refinement 

cification 

DC Requirements 

^ ) 
Refinement 

DC Requ 

DC Method 

irements 

TRSL Specification 

Fig. 15.14. A development nethod for real-time systems 
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1. The RAISE method [131] is used for stepwise development of a speci
fication of the untimed properties of the system, start ing with an ab
stract, property-oriented RSL specification and ending with a concrete, 
implementation-oriented RSL specification. 

2. In parallel with the RSL development of the untimed system, a Duration 
Calculus requirement specification of the real-time properties of tha t sys
tem is developed. State variables in the Duration Calculus specification 
are variables defined (at least) in the last RSL specification (and in the 
TRSL specification). 

3. Timing information is added to the RSL specification achieving a TRSL 
specification of a real-time implementation. 

4. It must be verified tha t the TRSL specification satisfies the DC specifica
tion. 

Hence, there is no syntactic integration between the DC and TRSL specifica
tion, but only a consistency requirement tha t state variables used in the Du
ration Calculus specification are variables defined in the TRSL specification. 
The integration is made in the form of a satisfaction (or refinement) relation. 
The approach for defining this relation has been to make an abstract inter
pretation within the Duration Calculus formalism of TRSL process definitions. 
Technically this is done by extending the operational semantics of TRSL [132] 
with behaviours which are Duration Calculus formulas describing (parts of) 
the history of the observables of the system. The satisfaction relation between 
sentences in the two languages is then defined in terms of behaviours. The 
formal definition and proof rules can be found in [204]. 

E x a m p l e 15 .21 Implementation of Train Separation: We continue Exam
ple 15.20. 

P r o b l e m D e s c r i p t i o n 

In some railway control systems sensors are used for train detection. When a 
train s tar ts passing a sensor, the sensor becomes "high", and after a while it 
falls back to "low". In order for the control system to be able t o detect the 
high s tate , the sensor must stay in the high s ta te for a certain minimum of 
time, S. 

D C R e q u i r e m e n t s 

• (( |"sensor_state=low] • [sensor_state=high] • [sensor_state=low] )=>£><*>) 

This requirement says tha t any complete period with high state (i.e., one with 
a low state before and after) has a duration (£) of a t least 5. 
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TRSL Spec i f i c a t i on 

v a l u e 
S : Time 

type 
SensorState = = low | high 

variable 
sensor_state:SensorState := low 

channel 
train_detected:Unit 

value 
sensor : Unit -* in train_detected write sensor_state Unit 
sensor() = 

sensor_state := low 
while true do 

train_detected? ; 
sensor_state := high ; 
wait S ; 
sensor_state := low 

end; 

The process sensor models the behaviour of a sensor. It ensures the Duration 
Calculus requirement in terms of the sensor _state staying high for exactly d 
time units each time. 

In order to meet the system requirement that the sensor_state goes high 
after each and every train (or an error is reported) we also need to use the 
specification in Example 15.20 of the function detect to check that the trains 
are more than S apart. Recall that detect required that the loop containing 
the train_detected inputs has a delay between such inputs of at most (5, and 
that is clearly satisfied by sensor. (We also need some assurance that every 
train causes an output on detect_tram, which is an assumption about the 
train detection hardware.) 

Satisfaction Relation 

The following satisfaction relation expresses that the sensor process satisfies 
the previously stated Duration Calculus requirements: 

sensorQ satisfies 
D(( [sensor_state=low] • [sensor_state=high] • [sensor_state=low] )^i>5) 

The satisfaction relation can be proved to hold using proof rules in [204] and 
the Duration Calculus proof rules given in [557]. • 
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15.6 Discussion 

15.6 .1 Genera l 

We have covered three closely related facets of temporal logics. The classical 
temporal logic of 'sometimes' and 'always' (derived from Prior 's work), the 
more recent Interval and Linear Temporal Logics (which, for our purposes 
are the same, i.e., ITL=LTL) and the Duration Calculus (DC). For the latter 
there were extensions with respect to transition modalities. And for the latter 
there are further variants, for which we refer to the seminal book on DC [557]. 
Section 15.7 discusses further aspects of temporal logics. 

15.6 .2 Pr inc ip le s , Techniques and Tools 

We summarise: 

Princ ip le s . Quantitative Models of Time: A main principle concerning the 
t reatment of time appears to be: Try avoid bringing explicit t ime into your 
models. When reasoning, in your models, about time-dependent properties of 
the universe of discourse, avoid establishing (possibly quantified) variables of 
type time. Instead use the temporal logic modalities (for example, of 'some-
times' , 'always', etc.). • 

Techniques . Quantitative Models of Time: The techniques follow from the 
explicit choice of which temporal logic is chosen as the medium or tool of 
expression. With classical temporal logic, using only the 'sometime' (O) and 
the 'always' ( • ) modalities, the techniques can be cumbersome. With the 
Interval/Linear Temporal Logics the techniques allow for more sophistication. 
And with Duration Calculus we believe we have a comprehensive and rather 
satisfactory set of techniques covered in this chapter. • 

Tools . Quantitative Models of Time: Several tools, i.e., both languages of 
expression and software tools for supporting the use of these languages, exist: 

• (Ana)Tempura: An interpreter for executable Interval Temporal Logic for
mulae developed over the years [77]. 

• DCVALID: A suite of tools for Duration Calculus programmed by Paritosh 
K. Pandya at Tata Insti tute of Fundamental Research [386]. 

• TLA+ Tools : A set of tools for T L A + including syntax analyser, model 
checker and simulator [283]. 

There are many more. 
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15.7 Bibliographical Notes 

We have brought in material on temporal logic based primarily on Bruno 
Dutertre's I n t e rva l Temporal Logic (ITL) [105], and on Zhou ChaoChen 
and Michael Reichhardt Hansen's Duration Calculus (DC) [557]. Instead of, 
or as an adjunct to, the Duration Calculus, we could have presented Leslie 
Lamport's also very elegant and considerably researched and engineered TLA+, 
Temporal Logic of Actions [281,282,339]. We encourage the reader to study 
[557] (Duration Calculus) and [282] (TLA+). 

Amir Pnueli first [403], it seems, reported on the idea of using temporal logic 
to specify properties of certain kinds of programs. Zohar Manna and Amir 
Pnueli developed this idea into book form: [320,321]. Those books, as well as 
a third, so far unpublished volume [322] are at the basis of the powerful tool 
set: STeP, Stanford Temporal Prover [55,56,319]. 

Manna and Pnueli's approach, as many other verification-based approaches 
(HOL and I s abe l l e [380], PVS [384,385,466,467], and SPIN [215]), seems fo
cused, not on specification in the sense of the present volumes, namely of 
complete domains, complete requirements and complete software designs, 
but on the specification of a claimed property of some isolated, say cru
cial part of a domain, of some requirements or of some software design. 
The HOL, I s a b e l l e , PVS, SPIN, and STeP tools can then support verifi
cation of such a property. Linear Temporal Logic, LTL, a predecessor of 
Dutertre's work on In t e rva l Temporal Logic, ITL, is associated with Ben 
Moszkowski [372,373]. Sometimes LTL is also referred to as ITL. 

15.8 Exercises 

These exercises were kindly provided by Dr. Michael Reichhardt Hansen. 

Exercise 15.1. Miscellaneous Small Examples. Specify the following proper
ties using propositional duration calculus (i.e. Vx and 3x must not be used): 

1. Pressing the button, a green lamp is on within 3 seconds or a red lamp is 
on within 7 seconds. 

2. Gas is not leaking continuously for more than 5 seconds. 
3. An elevator door is open for at least 6 seconds. 
4. A light is on at least 15 seconds after the button has been pressed. 

Exercise 15.2. An Inverting C-Gate. An inverting C-gate is a circuit with 
two input ports X and Y and with an output port Z. The circuit has a 
constant delay of 6 > 0. The function of the gate is described by: 

• If X and Y are different at time t (i.e. X(t) ^ Y(t)), then Z(t + S) = Y(t). 
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• If X and Y have the same value at time t (i.e. X(t) = Y(t)), then Z does 
not change its value at time t + 6. 

Specify an inverting C-gate in propositional Duration Calculus. 

Exercise 15.3. Scheduling. Give specifications of the following scheduling 
disciplines: (1) Round Robin scheduling with a fixed time slice and (2) a 
first-come first-served scheduling. 

Try to avoid using universal and existential quantifications in your speci
fication. Make your specifications as simple as possible. 





Part VII 

INTERPRETER AND COMPILER 
DEFINITIONS 

This part will show how to specify compilers and interpreters for various 
kinds of programming languages. 

What do we mean by "specifying compilers and interpreters for a pro
gramming language"? 

• To specify the semantics of a programming language means to present 
formulas that ascribe semantic meanings to programs in that language. 

• To specify interpreters for a programming language means to present for
mulas that to each program in that language prescribe computations that 
yield the same result as if the meaning (function) was applied to program 
arguments. 

• To specify compilers for a (source) programming language, for a given tar
get computer, means to present formulas that to each program in that 
(source) language prescribes a sequence of instructions of the target com
puter — a sequence which, when applied to an initial computer state 
embodying (i.e., encoding) the program arguments, yields the same result 
as if the meaning (function) was applied to program arguments. 

We shall illustrate four kinds of programming language developments: 

• SAL: Interpreter and compiler specification of a simple applicative lan
guage. 

• SIL: Interpreter specification of a simple imperative language. 
• SMIL: Interpreter specification of a simple, modular imperative language. 
• SPIL: Interpreter specification of a simple parallel, imperative language. 

The CHILL [159,160] and Ada [54, 82] compilers developed in Denmark in 
the early 1980s were developed using the principles and techniques outlined 
in the next four chapters. 
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SAL: Simple Applicative Language 

• The prerequisi te for studying this chapter is that you are well familiar 
with the applicative modelling styles of RSL. 

• The aims are to introduce a notion of stepwise, informal, but systematic 
development of compiler specifications from denotational semantics defi
nitions, to do so for a simple applicative, i.e., functional language, and to 
illustrate classical, yet still fully relevant run-time structures for procedu
ral program execution (stacks, dynamic and static (lexicographic) chains, 
and the functional result (i.e., the FUNARG) problem. 

• The objective is to enable you — we claim — to far better understand, 
and hence far more safely implement, compilers for procedural languages. 

• The t r ea tmen t is systematic and ranging informal to formal. 

By applicative programming we shall mean the same as functional programming. 
Functional programming languages — including LISP [333], and modern ones like 
SML [168,359], Miranda [505] and Haskell [503] — focus on programming in terms 
of (i) function definitions, of (ii) function applications and (iii) functional values. Im
perative programming languages inherit two (i- i i) or all of these concepts. 

In this section we shall illustrate the development of a requirements for a 
compiler for a functional language, here referred to as the Simple Applica
tive Language (SAL). We start with a domain model of SAL in Sect. 16.3. 
Sections 16.4-16.6 "unravel" that semantics into a semantics definition ex
pressed, not in terms of an abstract specification, but in terms of constructs 
very close to ordinary (machine) programming. Section 16.7 defines an assem
bler language, and Sects. 16.8-16.10 define, as compiling algorithms, and in 
three different ways, the requirements: exactly which assembler language code 
a compiler must generate for each specific source language, SAL, construct. 
Section 16.8 does so semi-abstractly, while Sects. 16.9-16.10 do so in terms of 
what is known as attributed grammars. 

This chapter is necessarily detailed. The techniques and the main results 
of this chapter are those of Sects. 16.6 and 16.8. These results will be applied, 
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amongst others, in Chaps. 17 and 18. There we will present the denotational 
and the macroexpansion semantics without much detail — relying on the 
present sections' many such details. Only in this chapter will we present the 
further development of the macroexpansion semantics into compiling algo
rithms. 

16.1 A Caveat 

The formulas in this and the next chapters (Chaps. 17-19) are deliberately 
expressed in a deterministic subset of RSL, and in such a way that the chosen 
subset constitutes a general denotational semantics specification language, 
which allows full recursive map definitions involving recursive functions as 
range elements. The problem is that "full" RSL cannot handle the recursive 
definition of maps 

let rp = ip U [ n i-> f(s(n))(rp) ] in rp end 

where \p, n, f and s are some appropriate quantities. By resorting to a severely 
restricted subset of RSL and endowing that subset with a suitable minimal 
semantics — commensurate with the full RSL's all fix point semantics — we 
can meaningfully express such recursively defined maps. We thus take the 
liberty of doing so in this chapter of these volumes, and otherwise referring 
the interested reader to any of the standard textbooks on semantics: [93,158, 
432,448,499,533]. 

16.2 The SAL Syntax 

An informal description of a language would ideally consist of four parts: (i) 
a presentation of the pragmatics, (ii) informal presentation of the semantic 
types, (hi) informal presentation of the syntactic types, and (iv) informal pre
sentation of the semantics of each syntactic construct — all presented in some 
possibly interwoven fashion. Recall that we have argued that pragmatics is 
most important, that the semantic types capture the essence of the semantics, 
and that it is entities of the syntactic types that denote entities of semantic 
types. 

16.2.1 Informal Exposition of SAL Syntax 

SAL is a simple applicative language whose programs are expressions. There 
are nine expression categories: 
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EXPRESSION CATEGORIES 

Constants 
Variables 
Prefix expressions 
Infix expressions 
Conditional expressions 
Lambda. Functions 
Simple Let Blocks 
-Recursive Functions 
Applications 

EXAMPLES 

k 
id 
-e 
el + e2 
if et then ec else ea fl 
fun id.ed 
let id = ed in eb end 
le t rec gfid) = ed in eb end 
ef(ea) 

ABSTRACT SYNTAX NAME 

mk_Cst 
mk_Var 
mk_Pre 
mk_Inf 
mk_If 
L, mk_Lam 
mk_Let 
mk Rec 
mk_App 

Most of our RSL elaboration functions, not quite incidentally, will be expressed 
in a simple language like SAL. Blocks with multiple definitions can be "mim
icked" by multiply nested simple (Let) blocks. Multiple mutually recursive 
functions, however, cannot be explicitly defined other than through the use 
of formal function arguments. 

16.2.2 Formal Exposition of SAL Syntax 

From Sect. 16.2.1, it should be relatively easy to construct a formal syntax: 

type V 
Pro :: E 
E = = mk_Cst(i:Int) 

| mk_Var(v:V) 
© | mk_Pre(po:POp,e:E) 
0 j mk_Inf(le:E,io:IOp,re:E) 

| mk_If(b:E,c:E,a:E) 

I L 

| mk_Let(v:V,d:E,b:E) 
j mk_Rec(f:V,Ae:L,b:E) 
j mk_App(f:E,a:E) 

L = = mk_Lam(x:V,e:E) 
© POp = = minus | factorial | not | ... 
0 IOp = = add | sub | mpy | div | eq | neq | ... 

Constants stand for Integer numbers. No provision is made for explicitly repre
senting Booleans. The prefix constant operators, generically referred to as 0 , 
are then the usual ones: Arithmetic MINUS and FACTorial, and the Booleans, 
the logical NEGation; and so are the infix constant operators, generically re
ferred to as 0 , the arithmetic ADDition, SiJBtraction, MultiPlY, Divide, etc., 
and the logical AND, O R , iMPly, EQual, and Not EQual. Booleans can be 
represented implicitly as terms involving arithmetics and logical operators. 
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16 .2 .3 C o m m e n t s 

SAL may seem awfully trivial to those who are used to programming with 
an ample supply and type variety of assignable variables, but its realisation, 
as shown here, illustrates most of the more intricate aspects of interpreter 
and compiler design. The main reason for this should be seen in SAL's abil
ity to express nested block structures and to yield FUNction VALues out of 
their defining scope (that , is the so-called FUNARG 1 property [368,529]). 
The development thus concentrates on implementing the block structure and 
function invocation aspects. 

16.3 A Denotational Semantics 

16.3 .1 A n Informal S e m a n t i c s 

We suggest tha t the reader also keep a finger on the formula pages of 
Sect. 16.3.2 in order to bet ter follow the informal semantics explanation tha t 
now follows. Our use of initially capitalised sequences of pronouncable names 
is meant to refer to identifiers of the formal model. 

SAL programs express only three kinds of VALues: integer numbers, t ru th-
valued Booleans, and FUNction VALues. These latter are entities which are 
functions from VALues to VALues, where these latter VALues again include 
FUNctions, etc. The VALue of a variable identifier, 'id', is tha t of the possibly 
recursively defined defining expression: 'ed' (respectively: 'fixAg.Aid.ed') of the 
lexicographically youngest incarnation, tha t is, the "outward-going" statically 
closest embracing block, fix is the fix point-finding function which when ap
plied to 'Ag.Aid.ed' yields the "smallest" solution to the equation: 'g(id)=ed', 
in which 'g' occurs free in 'ed' (see Vol. 1, Chap. 7, Sect. 7.8.3). Infix and 
conditional expression VALues are as you expect them to be. The VALue of 
a block is tha t of the expression body, 'eb', in which all free occurrences of 
the 'id' of a let , respectively the 'g' of a l e trec . block header definition have 
been replaced (or substituted) by their VALues. Tha t is, 'ed' is evaluated in an 
environment, env' , which is exactly tha t extension of the block-embracing en
vironment, env, which binds 'id' (respectively 'g') to its VALue, and otherwise 
binds as env. The VALue of a lambda-expression, 'Aid.ed', is the FUNction of 
'id' tha t 'ed' denotes in the environment in which it is first encountered, tha t 
is, is first defined. Finally: the VALue of an application, 'ef(ea)', is the result 
of applying the FUNction VALue, tha t 'ef designates, to the VALue designated 
by 'ea'. 

1A specification or a programming language is said to have the FUNARG prop
erty if functions are first class values, that is, can be yielded as results of function 
invocation. See also footnote 5. 
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16.3 .2 A Formal S e m a n t i c s 

This definition expresses the semantics of SAL denotationally, i.e., in terms of 
mathematical functions, and homomorphically, i.e., the semantics of a com
pound syntactic object is expressed as the (homomorphic) functional compo
sition of the denotations, i.e., semantics of the individual, proper components. 
The denoted functions are themselves expressed in terms of semantic types, 
and these are again functional. 

The specification language used in this section is a syntactic subset of RSL 
whose semantics "subset" is one which allows recursive definition of functional 
values and which prescribes a minimum fix point semantics. We shall only 
assume this "subset RSL" in this section. 

S e m a n t i c T y p e s 

We make the distinction between designated values and (denoted) denota
tions. A value (v:VAL) is the result of an evaluation of an expression in some 
context which binds identifiers to values. A denotation (D:DEN) is the (usu
ally functional) meaning of an expression, regardless of the environment, i.e., 
as a function from environments to "something". 

t y p e 
ENV = V jd VAL 
VAL = Num | Tru | FCT 
Num :: Int 
Tru :: B o o l 
F C T :: VAL ^ VAL 
DEN = ENV ^ VAL 

Denotations are the semantic values of expressions. Expression evaluation 
must refer to values of identifiers, the evaluation of which needs an environ
ment in which to look up these values. Hence the denotation is a function from 
environments to values. Thus we speak of the denotation of an expression as 
its "semantic (i.e., denoted) value" and of the value of an expression as the 
"evaluated (i.e., designated) value". 

Operator M e a n i n g s 

The meanings of the operators are seen, denotationally, as functions from their 
operand values to result values. These functions are here expressed in terms 
of the specification language lambda function concept: 

value 
M: P O p ->• (Int ->• Int) 
M(o) = case o of: minus —>• Ax • —x, ... e n d 
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M: IOp -> (Int x Int ->• (Bool | Int)) 
M(o) = 

case o of: 
add —> Ax • Ay • x+y, ..., eq —> Ax • Ay • x=y ... 

end 

We shall use the operator meaning function M throughout the many-development-
stage treatment of SAL. 

Semantic Functions 

Programs are expressions to be evaluated in an empty environment. Otherwise 
we refer the reader to our informal exposition of the semantics of SAL starting 
in Sect. 16.3.1. 

value 
M: Pro 4 VAL, M: E 4 DEN 

[0 
[1 
[2 
[3 
[4 
[5 
[6 

[7 
[8 

M(mk_Pro(e)) = M(e)[] 
M(mk_Cst(k))p = k 
M(mk_Var(v))p = p(v) 
M(mk_Pre(o,e))p = M(o)M(e)p 
M(mk_Inf(le,o,re))p = M(o)(M(le)p,M(re)p) 
M(mk_If(b,c,a))p = if M(b)p then M(c)p else M(a)p end 
M(mk_Lam(v,e))p = Aa.(let np = p I [v H->- a] in M(e)np end) 
M(mk_Let(v,d,b))p = let np = p f [v h-> M(d)p] in M(b)np end 
M(mk_Rec(f,mk_Lam(v,e),b))p = 

let np = p f [ v 4 M(e)np] in M(b)np end 
M(mk_App(f,a))p = (M(f)p)(M(a)p) 

Observe the recursion in the definition of np in the definition of the meaning of 
recursive 'let' expressions. (It is the np, in the next but last line of the formulas 
above, which is being recursively defined.) Compare that to the definition of 
np in the two other semantics equations: Those of 'lambda' and simple 'let' 
expressions. 

By "moving" (~>) the M function argument p "over, onto the other side" 
of the defining equation (=) we get: 

M(e)p = £{p) ~> M(e) = Xp£(p) 

and we see that the meanings of expressions are indeed denotations of the 
right kind. 
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16.3.3 Review of SAL Semantics, 1 

The reader may feel cheated: We have explained the semantic functions of 
SAL in a language reminiscent of a subset of the RSL specification language. 
How can we defend this apparent circularity? Well, it is not circular. First, 
the two languages are indeed different. SAL has two environment bindings: 
one that allows defined (simple) functions to have their free identifiers bound 
in the embracing environment, and another that allows defined (recursive) 
functions to have free occurrences in the body of their definition of their 
function identifier bound in the environment their definition gives rise to, 
hence recursive. 

/* a simple binding */ 
(let f=4 in 
(let f=Ax.a+f 

in f(3) end) 
end) 

7 

/* in contrast to a recursive binding */ 
(let f=4 in 
(letrec f=Ax.if x=0 then 1 else x*f(n—1) end 

in f(3) end) 
end) 

6 

RSL has only recursive bindings, and since it always has that we leave out the 
suffix rec. Second, SAL is explained in terms of RSL, and RSL is defined in 
terms of mathematics. (We do not show, in these volumes, the RSL semantics 
— we only explain it informally!) So they only cosmetically look the same. 
In fact, we have indeed cheated: When in the semantics of recursive function 
definitions in SAL we defined a new environment recursively, we "went outside 
the realm" of RSL. Such recursive definitions of higher-order function types 
are, in general, not possible in RSL. So how can we defend that? We cannot, 
really, other than by saying: Since the function defined recursively is only 
recursive in itself, not by reference to several other functions defined at the 
same level — and since this is not possible in SAL, where at most one function 
can be defined at every let • in • end level, i.e., in each such "block activation" 
— one can show that there are indeed solutions to the recursive equations 
within the RSL semantics. 

We have, however, achieved a good basis for a development that now 
follows: via increasing steps of concreteness to a compiling algorithm for a hy
pothetical machine. In that sense it is not so important that SAL is a rather 
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"timid" language. Its concept of function definitions, blocks and function ap
plications is so powerful it can serve as a basis for our subsequent imperative, 
modular and parallel process language developments. 

16.3 .4 T w o A s i d e s 

Of T h i n g s to C o m e ! 

In subsequent sections we shall follow each example by giving further, in
creasingly more concrete examples. These definitions are increasingly more 
'computational ' , tha t is, can best be understood as specifying sequences of 
computations given an input, or, in other words, an initial binding of vari
ables to their meaning. The last definition "unzips" user-defined functions by 
permitt ing a compile-time macro-expansion of the definition. In doing so it 
relies on pre-processing SAL program-defined functions into label and g o t o 
"bracketed" metalanguage texts, and calls of these functions into (branch and 
link-like) gotos to such texts . The principles of properly saving, updating — 
tha t is, "setting-up" — and restoring — tha t is, "taking-down" and "rein
stalling" — calling and defining environments, form a detailed description. 
This description does this more than any of the preceding definitions, and of 
otherwise published accounts of this so-called static (environmentally preced
ing) and dynamic (call) activation chain mechanism. 

T h e M o s t R e c e n t Error 

Consider the following program2 : 

1. (let p = Ax. 
2. (let h = A(). 
3. skip 
4. in x(h()) 
5. end) 
6. in p(p) 
7. end) 

We will now assume tha t the reader has informally learned about implemen
tat ion of block structures, function definitions and function invocation, for 
example, in programming courses on functional or imperative programming. 
If not, then please skip this aside section, and proceed. These volumes, in 
particular the next sections, will then teach you that ! Tha t is, a main purpose 
of Sect. 16 is to show how informal explications, from [414] via [6,150] to [14], 
can be sharpened into far more precise descriptions. 

2This example is taken from Hans Langmaack [383]. In that reference Langmaack 
shows how Edsger W. Dijkstra [100] implemented his Algol 60 compiler for the X I 
machine. 
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correct 

( F ) 

(T) 

ra 

ra 

h i -

procedure h 

P 
X 

proc edure h 

erroneous 

procedure p 

program: 
begin 

I. procedure p(x) = 
begin 

2. procedure h() = 
3. begin skip end in 
4 X(h()) 
5. end in 

6 P(P) 
7. end 

Run time stack 

Fig. 16.1. The "most recent error" example 

Figure 16.1, in addition to repeating the program text in a slightly different 
notation, also shows a so-called activation stack for a program execution that 
has reached program point (3) via program points (6) and (4) in that order. 
As a result a "bottom-most" activation, [A"|, has been first established, at 
program point (1). The definition corresponding to program points (1-4) leads 
to activation [A~] recording the meaning, V, at this point, of procedure p. 
At program point (6) invocation (i.e., "call") p(p) results in activation _B_. 
It binds both the procedure identifier p and the formal parameter x to V. 
"Inside" procedure p's definition we note the meaning, H, at this program 
point (2), of procdure h in activation [cT|. At program point (4) invocation (i.e., 

"call") x(h) results in activation [_D]. It binds formal procedure identifier x, 
which has actual argument p, to V, and it binds formal parameter x, which has 
actual argument h, to "H. It is formal parameter x since the (formal) procedure 
invoked is named p whose formal parameter is x. Eventually program point 
(2) will be entered — since the actual argument, h(), of x(h()) has to be 
evaluated. This leads to an activation E which records a new meaning, H', 
for the locally defined procedure h. "Entering" the body of procedure named 
h, program point (3), leads to a final activation E which records the bindings 
of the formal procedure identifier h. The value of h passed as part of the actual 
argument in x(h()) is, of course, the value that h had at program point (4) — 
namely the "old", first % — and not the "most recent" 7i'. 
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16.4 A First-Order Applicative Semantics 

We continue our use of initially capitalised sequences of pronounceable names 
which are meant to refer to identifiers of the formal model. 

Implementation languages, including hardware machines, usually do not 
have function values — hence we must "transform" and make more concrete 
the function VALue, FCT, and the ENVironment concepts of the previous 
step of development (Sect. 16.3). Thus the abstract VALue of the previous 
stage of development (Sect. 16.3 Semantic Types) will be implemented in 
terms of less abstract , but still applicative, values VALa. FunCTion VALues 
are constructed from lambda expressions, i.e., text values, mk_Lam(v,e) and 
from ENVironments (Sect. 16.3 Semantic Types). Concrete FunCTion VALues 
(see Page 577) will be called CLOSures — referring to the "wrapping" of 
lambda-expression texts with concrete, implemented ENVironments. So we 
implement FunCTions as CLOSures. ENVironments — which before were maps 
from identifiers to abstract values — will now be implemented, ENVa, as lists 
of binding: pairs of identifiers and their now more concrete values, Bind*. 

By a first-order (applicative) semantics definition we mean one whose se
mantic types are nonfunctional, but which is still referentially t ransparent . 3 

Hence, if we were given, as a basis, a denotational semantics we would have 
to transform its functional components into such objects which by means of 
suitable "simulations" can mimic the essential aspects of the denotational 
definition. We now exemplify the notion of transforming functional types into 
non-functional ones. 

16 .4 .1 S y n t a c t i c T y p e s 

See Sect. 16.2.2 for the formal SAL syntax. 

16 .4 .2 S e m a n t i c T y p e s 

From the denotational semantics definition of SAL, two kinds of types are to 
be transformed: ENV = Id ^ DEN, and among DENotations: FUN = DEN 
-> DEN. 

The former objects were constructed by means of expressions: 

l e t np = p I [v I—>• a ] i n M(e)np e n d 
le t np = p f [v i-)- M(d)p] in M(b)np e n d 
le t n/9 = p | [v H> M(Ae)np] in M(b)np e n d 

3 By referential transparency we mean a property that a language may possess 
or not possess. A language is said to be referentially transparent if the meaning of 
a composite sentence remains the same whenever any sentence component has been 
replaced by another sentence component having the same meaning as the replaced 
component. 
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The latter objects were denoted by an expression basically of the lambda form: 

Aa.(let np = p f [v i->- a] in M(e)np end) 

We shall not motivate the transformation choices further, nor state general 
derivation principles. Rather we present the transformed objects as "faits ac-
complis": ENV objects, which are maps {yd), as ENVa objects of the tuple 
type, with extensions (f) accomplished in terms of concatenations (~), and 
functional application as directed, linear searches (l_search). The mathemat i 
cal functions, fun, denoted by lambda-expressions are then realized as so-called 
closures. These are "passive" (i.e., semisyntactic) structures, which pair the 
(syntactic) expression, d, to be evaluated, with the defining (semantic) envi
ronment, env', so tha t when fun is to be applied, fun(val), then a simulation 
of the application of clos to the transformed counterpart , arg, of val, is per
formed: applyl(clos.arg). 

Instead of now presenting the more concrete, first-order functional ela
boration functions we first present arguments for why we believe tha t our 
choices will do the job. Those arguments are stated as retrieve, tha t is, ab
straction functions and abs_ENV, abs_DEN, which apply to the transformed 
objects and yield the more abstract "ancestors" from which they were derived. 
We next observe tha t the definition is still functional, as was the denotational. 
All arguments are explicit, there is no reference to assignable/declared vari
ables. And we finally note tha t we cannot, given a specific expression, e, "stick" 
it into the I (function definition together with an initial, say empty environ
ment) and by macrosubsti tution eliminate all references to I. The reason for 
this failure will be seen in our stacking closures, whose subsequent application 
requires I. 

t y p e 
ENVa = Bind* 
Bind = = mk_Simp(id:V,den:VALa) | mk_Rec(f:V,Ae:L) 
VALa = Num | Tru | CLOS 
CLOS = = mk_CLOS(Ae:L,env:ENVa) 

DENa = ENVa ^ VALa 

We refer to the introductory parts of this section for a guide to the above 
definitions. 

16 .4 .3 A b s t r a c t i o n Funct ions 

Whenever a step of development concretises some types wrt. their appar
ently more abstract , earlier counterparts, it behooves the developer to state 
in which way the pairs of concrete versus abstract types relate. This is done 
here in terms of abstraction functions. Two such must be expressed: One tha t 
maps concrete (list of pairs) environments to the abstract (map) associations, 
abs_ENV; and one, abs_VALa, tha t maps concrete values, VALa, to abstract 
values, VAL. abs_ENV invokes abs_VALa. 
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value 
abs_ENV: ENVa ->• ENV 
abs_ENV(enva) = 

if enva = () t h e n [ ] e lse 
let p = a b s _ E N V ( t l enva) in 
case hd enva of 

mk_Simp(v,den) —• p f [v i->- abs_VAL(den) ], 
mk_Rec(f,£) —> let np = p I [f i-» M(£)np] in np e n d 

e n d e n d e n d 

Observe how abs_ENV makes use of the M function of the previous stage, as 
does abs_VAL: 

value 
abs_VAL: VALa -> VAL 
abs_VAL(vala) = 

case vala of 

mk_CLOS(mk_Lam(v,e) ,enva) 
->• Aa.(M(e)(abs_ENV(enva)) I [ v ^ a ] ) , 

_ —>• vala 
e n d 

16 .4 .4 Auxi l iary Funct ions 

Since the environment is no longer a map to which one can just provide 
identifiers and obtain, by map application, their values, we must search for 
it in the list. Since we conjoin new pairs to the list at its head, we search as 
from the head of the list.4 

value 

I_search: V x ENVa 4 VALa 
I_search(v,env) = 

if env = () t h e n chaos e lse 
case hd env of 

mk_Simp(v,den) —> den, 
mk_Rec(v,Ae) —>• mk_CLOS(Ae,env), 
_ —>• I_search(v, t l env) 

e n d e n d 

A series of embedded blocks, from outer to inner, may redefine an identifier. 
That is, an identifier of an embracing block may be redefined by an enclosed block. 
Identifier value pairs of inner blocks are concatenated to the head, and since they 
are the lexicographically scoped identifier values bound to inner occurrences of these 
identifiers we must first retrieve them. 
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And similarly, since function values are no longer "real" functions, but clo
sures, we must interpret these closures: 

value 

apply: CLOS x VALa 4 VALa 
apply(clos,arg) = 

case clos of 
mk_CLOS(mk_Lam(v,e) ,env) —> 

let env = (mk_Simp(v,arg))^env in I(e)env end, 
—>chaos 

e n d 

16.4 .5 S e m a n t i c Funct ions 

The reader is well-advised to compare, function definition by function defini
tion, those below, named I, with those, named M, in Sect. 16.3.2. 

. Semantic Function Signatures . 

Previous step: 

value 
M: Pro 4 VAL, M: E 4 DEN 

Present step: 

value 

I: Pro 4 VALa, I: E 4 DENa 

Program Interpretation 

Previous step: 

[0] M(mk_Pro(e) ) = M(e)[] 

Present step: 

[0] I (mk_Pro(e) ) = 1(e)() 

Constant Expression Interpretation 

Previous step: 

[1] M(mk_Cst (k) )p = k 
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Present step: 

[1] I(mk_Cst(k))(env) = k 

. Variable Expression Interpretation 

Previous step: 

[2] M(mk_Var(v))p = p(v) 

Present step: 

[2] I(mk_Var(v))(env) = I_search(v,env) 

. Prefix Expression Interpretation 

Previous step: 

[3] M(mk_Pre(o,e))p = M(o)M(e)p 

Present step: 

[3] I(mk_Pre(o,e))(env) = M(o)(I(e)(env)) 

. Infix Expression Interpretation 

Previous step: 

[4] M(mk_Inf(le,o,re))p = M(o)(M(le)p,M(re)p) 

Present step: 

[4] I(mk_Inf(le,o,re))(env) = M(o)(I(le)(env),I(re)(env)) 

. Conditional Expression Interpretation 

Previous step: 

[5] M(mk_If(b,c,a))/9 = if M(b)p then M(c)p else M(a)p end 
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Present step: 

[5] I(mk_If(b,c,a))(env) = if I(b)(env) then I(c)(env) else I(a)(env) end 

Lambda-Expression Interpretation 

Previous step: 

[6] M(mk_Lam(v,e))p = Aa.(let np = p f [v i->- a] in M(e)np end) 

Present step: 

[6] I(mk_Lam(v,e))(env) = mk_CLOS(mk_Lam(v,e),env) 

It is especially in the above function [re] definition we start to see the devel
opment! 

. Simple Let Expression Interpretation, 1 

Previous step: 

[7] M(mk_Let(v,d,b))p = 
let np = p f [v H->- M(d)p] 
in M(b)np end 

Present step: 

[7] I(mk_Let(v,d,b))(env) = 
let val = 1(d) (env) in 
let env = (mk_Simp(v,val))^env in 
1(b) (env ) end end 

Recursive Let Expression Interpretation 

Previous step: 

[8] M(mk_Rec(f,mk_Lam(v,e),b))p = 
let np = p f [v i->- M(e)np] 
in M(b)np end 
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Present step: 

[8] I(mk_Rec(f ,mk_Lam(v,e) ,b))(env) = 
let env = (mk_Rec(f ,mk_Lam(v,e)))^env in 1(b) (env) e n d 

Function Application Expression Interpretation 

Previous step: 

[9] M(mk_App(f ,a))p = 
let fct = M(f)p, arg = M(a)p in fct(arg) e n d 

Present step: 

[9] I(mk_App(f,a))(env) = 
let arg = 1(a) (env), fct = 1(f) (env) in apply (fct, arg) e n d 

16 .4 .6 R e v i e w 

The example development of this section is based on Reynolds [428]. The 
FUNARG notion5 is described in [368,529]. It remains to show tha t the 
first-order semantics of this section is correct wrt. the denotational semantics 
of the previous section. We shall not prove tha t here, instead we refer to 
the literature. The theorem to be proved amounts to a recursively defined 
predicate (see [350,498]). Early examples of fully rigorous proofs are given 
in [349,355,486,487]. Standard, more recent textbooks on semantics [93,158, 
432,448,499,533] also give correctness proof examples. 

We remind the reader tha t , in the case of the SAL, SIL and SMIL language 
definitions of Chaps 16-18, we are relying on a non-standard variant of the 
RAISE specification language RSL, a variant in which we basically disallow all 
nondeterminism (inch sets!) and otherwise constrain RSL in such a way as to 
obtain a traditional denotational semantics definition language with minimal 
fix point meanings. In this way we can define functional values recursively, as 
np. 

16.4 .7 R e v i e w of S A L S e m a n t i c s , 2 

In a small step of development we have concretised maps as lists of pairs, 
and functions as closures of function definitions and the context which binds 

5The FUNARG notion is that of being able to pass functions as parameters, 
and, more particularly, to have functions returned as values of function applications 
— whereby such returned functions may subsequently be applied "outside" their 
denning environment. 
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free identifiers of the function definition text. Simple value bindings are kept 
simple (mk_Simp), whereas recursively defined value bindings are marked as 
being so (mk_Rec). We have kept a functional (also known as applicative) 
definition style. 

This means that the semantics definition of this step does not yield func
tions as values, only closures. But function applications take place as if the 
applied closures are indeed functions. The definition of this chapter relies on 
the specification language scope concept to define local environments. 

16.5 An Abstract, Imperative Stack Semantics 

So far our semantics definitions have been recursively specified: on the induc
tive structure of the syntax of the object (source) languages, and on the com
putations they denote. In this section we unravel these recursions by means 
of stacks. That is, we transform (not necessarily only tail-recursive6) function 
definitions into nonrecursive function definitions plus a stack data structure. 

By an abstract state (machine) stack semantics we understand a defini
tion which typically employs globally declared variables of abstract, possibly 
higher-level, type. It expresses the semantics (not in terms of applicatively 
defined, "grand" state transformations on this state, but) in terms of state
ment sequences denoting a computational process of individual, "smaller" 
state transformations. 

16.5.1 Design Decisions — Informal Motivation 

In this section we shall state, and informally motivate, our decisions to change 
the applicative, hence explicitly provided semantic arguments (of semantic 
functions), to imperative, global state components. Hence these arguments 
now become implicitly provided. 

In the case of SAL we choose to map the semantic ENVa arguments onto 
a globally declared variable, estk (for environment stack), thereby removing 
these arguments from the elaboration function references. By doing so we must 
additionally mimic the metalanguage's own recursion capability. Otherwise we 
would be cheating by making no progress towards a more concrete definition, 
one that is expressed in a language more directly mechanisable by a computer 
without built-in stacks. 

Thus the type of estk is to become a stack of stacks. Each estk element 
is that stack of Vs and their values, which when looked_up properly (cf. 

By a function being tail-recursively denned we mean that the function definition 
is, schematically, of the form: value f,g: A —> B, h: A —• A, p: A —• Bool, f(a) = 
if p(a) then g(a) else f(h(a)) end. An example of a recursive function definition 
which is not tail-recursive is: value f,g,k: A —> B, h: A —• A, p: A —• Bool, f(a) = if 
p(a) then g(a) else let a = f(h(a)) in k(a ) end end. 



590 16 SAL: Simple Applicative Language 

abs_ENV) reflects the bindings of the so-called "lexicographically youngest 
incarnations" of each identifier in the static scope, tha t is, in "going outwards" 
from the identifier-use through embracing blocks towards the outermost pro
gram expression level. As long as no let or l e trec defined function is being 
applied, the estk will contain exactly one ENVa element. As soon as a defined 
function is applied, the calling environment is dumped on the estk stack. On its 
top is pushed the ENVa environment current when the function was defined. 

In addition, we choose to mechanize the recursive stacking of temporaries, 
by means of a global value stack, vstk. We could have merged vstk into estk, 
but at present we decide not to . Hence this abstract machine definition also 
requires further decomposition of the look_up operation. As before, we state 
our beliefs as to why we think the present development is on the right track. 
We do so by presenting retrieve (also known as abstraction) functions. 

16.5 .2 S e m a n t i c s Sty le Observat ions 

The abstract state machine semantics definition is said to be an operational, 
or to be a mechanical or, which is just a third name for the same idea, a 
computational semantics definition, since it specifies the meaning of SAL by 
describing the operation of a machine which effects the computation of the 
desired value. 

Such definitions rather directly suggest, or are, realisations. They do not 
possess or involve implicit, but instead explicit allocation and freeing. The 
implicit allocations and freeings would have to be done by the implemen
tat ion language processor (compiler) and its run-time system. The explicit 
allocations and freeings are determined by the definer, the person who writes 
down this stage of development. The allocation and freeing is of otherwise 
recursively nested (that is, stacked) values. 

The definition, however, still requires the presence, at run-time, of 0 — 
the interpreter. It still cannot be completely factored out of the definition 
for any given, nontrivial expression. Thus there still cannot be an exhaustive, 
macrosubsti tution process which completely eliminates the interpretive nature 
of the definition. 

The reason is as before: CLOSures are triplets of a function definition 
bound variable, id, a function body, d, and the recursive, defining environment, 
env2'. Together they represent, but are not, the function, fun. It must instead 
be mimicked; hence the required presence of 0 . 

16 .5 .3 Syntac t i c T y p e s 

See Sect. 16.2.2 for the formal SAL syntax. 
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16.5.4 Semantic Types 

It is always important to fix the semantic types first. But, since we are in 
a step of development where the syntactic types are fixed throughout most 
steps, we fix the semantic types second! 

type 
ENVi = ENVa* 

variable 
e_stk:ENVi := (()); 
v_stk:DENa* := (); 

16.5.5 Abstraction Functions 

value 
abs_ENVa: Unit 4 ENVa 
abs_ENVa() = hd cestk 

abs_DENa: Unit H> DENa 
abs_DENa() = hd c vstk 

16.5.6 Run-Time Functions 

We have the usual push, pop and top functions: 

value 
push_e: Bind —>• Unit 
pop_e: Unit —> Unit 
push_v: DENa ->• Unit 
pop_v: Unit ->• Unit DENa 

push_e(bind) = e_stk := ((bind)^hd ce_stk)^t l ce_stk 
pop_e() = e_stk := tl ce_stk 
push_v(v) = v_stk := (v)^c v_stk 
pop_v() = let val = hd c v_stk in v_stk := tl c v_stk; val end 

top_e: Unit —>• Bind, top_e() = hd hd ce_stk 
top_v: Unit ->• DENa, top_v() = hd c v_stk 

as well as some slightly less usual functions on stacks: 

len_e_stk: Unit ->• Nat 
len_e_stk() = len hd ce_stk 
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push_new_e : ENVa —>• U n i t 
push_new_e(env) = e_stk := ( env)^ce_s tk 

pop_o ld_e : U n i t —> U n i t 
pop_old_e( ) = e_stk := t l c e _ s t k 

The l_search function (Sect. 16.4.4) was recursively denned. Hence it was a 
function which returned a value. If a search is a t tempted for an identifier 
(id) which is not in the environment, then l_search specified chaos. We now 
respecify the applicative l_search into an imperative, operational 0_search in 
which we choose to change the recursion to iteration (more specifically, to a 
while loop search). 

We remind the reader tha t we here use a version of RSL variables in which 
these designate references. To get at their contained values we apply the 
contents operator c. In proper RSL there is no provision for making the dis
tinction between a variable designating a reference and a variable designating 
a value. All variables basically designate values. Variable names passed as pa
rameters to functions are passed by value, not by reference. But we will make 
the distinction anyway.7 

value 
0_search : V —> U n i t 
0_search(v) = 

variable 
found:Bool := false, 
index:Nat := 1; 

whi le ~c_found do 
case (top_e())(index) of 

mk_Simp(v,den) —> (push_v(den); found := t rue) , 
mk_Rec(v,e) —> 

let env = (( top_e())(k) | index<k<len_es tk( ) ) in 
push_v(mk_CLOS(mk_Lam(v,e) ,env) ) ; 
found := t rue end, 

_ —> if index = len_estk() 
t h e n chaos e lse index := c index + 1 e n d 

e n d e n d 

16 .5 .7 S e m a n t i c Funct ions 

T w o Invariants 

The two most important invariant properties to be obeyed by the semantic 
functions 0 are: 

7And we may probably miss a few such distinctions, forgetting to use the c 
operator. 
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1. They "each and all" specify the pushing of a value onto the value stack 
(i.e., the value stack after (some execution) contains one more element 
than before (such an execution)). 

2. They "each and all" specify that the environment stack is unchanged! 

Any stacking (pushing) onto the environment stack, as specified by any of 
the elaboration functions (0) must be restored (i.e., popped) by that same 
invocation of the 0 function. 

[0] Interpret Programs 

The reader is well-advised to compare function definition by function defini
tion, those below, named 0, with those, named I, in Sect. 16.4.5. 

Interpret Programs 

Previous step: 

value 
I: Pro 4 VALa 
I(mk_Pro(e)) = 1(e) () 

Present step: 

value 
O: Pro ->• Unit 
0(mk_Pro(e)) = 0(e) 

Recall: I is applicative, hence explicitly shows all arguments. 0 is imperative 
and relies on a global state, not shown. 

[1] Interpret Constant Expressions 

. Interpret Constant Expressions . 

Previous step: 

value 
I: E 4 DENa 
I(mk_Cst(k))(env) = k 

Present step: 

value 
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O: E -> U n i t 
0 ( m k _ C s t ( k ) ) = push_v(k) 

Recall: I results in a value, 0 in a side effect on the global state — here 
explicitly shown. 

[2] Interpret Variable E x p r e s s i o n s 

In both the previous and the present step of development we avail ourselves 
of the applicative, now imperatively defined search functions. 

Interpret Variable Expressions . 

Previous step: 

value 

I: E 4 DENa 
I(mk_Var(v))(env) = I_search(v,env) 

Present step: 

value 
O: E -> U n i t 
0(mk_Var (v ) ) = 0_search(v) 

Here the "packaging" of the ("further") evaluation into "similarly" named 
search functions at least leaves the impression tha t similar evaluations take 
place. Only careful comparisons of the l_search and 0_search functions — 
short of formal proofs — will reveal their "equivalence". 

[3] Interpret Pref ix E x p r e s s i o n s 

We keep on listing the previous step of development as a back-up for informal 
derivation. 

. Interpret Prefix Expressions . 

Previous step: 

value 

I: E 4 DENa 
I(mk_Pre(o,e))(env) = let val = 1(e)(env) in M(o)(val) e n d 

Present step: 

value 



16.5 An Abstract, Imperative Stack Semantics 595 

O: E -> U n i t 
0(mk_Pre (o ,e ) ) = 0 (e ) ; let val = pop_v( ) in push_v(M(o)(val)) e n d 

Observe how the 0 function effects the unstacking of val by "overwriting" the 
entire stack! 

[4] Interpret Infix E x p r e s s i o n s 

. Interpret Infix Expressions . 

Previous step: 

value 

I: E 4 DENa 
I(mk_Inf(le,o,re))(env) = 

let (rv,lv)=I(le)(env),I(re)(env) in M(o)(lv,rv) e n d 

Present step: 

value 
O: E -> U n i t 
0(mk_Inf(le,o,re)) = 

0( le) ; 0 ( re ) ; 
let r v=pop_v( ) , l v=pop_v( ) in push_v(M(o)(lv,rv)) e n d 

Again, a pair of unstackings is avoided through complete rewrite of, i.e., as
signment update to, the entire value stack. 

[5] Interpret C o n d i t i o n a l E x p r e s s i o n s 

. Interpret Conditional Expressions . 

Previous step: 

value 

I: E 4 DENa 
I(mk_If(b,c,a))(env) = 

let t = 1(b) (env) in if t t h e n 1(c) (env) e lse 1(a) (env) e n d e n d 

Present step: 

value 
O: E -> U n i t 
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0(mk_lf(b,c,a)) = 
0(b); let t = pop_v() in if t then 0(c) else 0(a) end end 

Definitions [0-5] were the simple semantic functions. Now we move on to the 
more interesting ones! 

[6] Interpret Lambda Expressions 

The two CLOSure-taking functions are, of course, different: One is applica-
tively denned, the other is imperatively denned. 

. Interpret Lambda-Expressions . 

Previous step: 

value 
I: E 4 DENa 
I(mk_Lam(v,e))(env) = mk_CLOS(mk_Lam(v,e),env) 

Present step: 

value 
O: E -> Unit 
0(mk_Lam(v,e)) = push_v(mk_CLOS(mk_Lam(v,e),top_e())) 

In either case, no real evaluation takes place; just the return, respectively the 
stacking, of a packed closure value. 

[7] Interpret Simple Let Expressions 

. Interpret Simple Let Expressions . 

Previous step: 

I(mk_Let(v,d,b))(env) = 
let val = 1(d) (env) in 
let env = (mk_Simp(v,val))^env in 
1(b) (env') end end 

Present step: 

0(mk_Let(v,d,b)) = 
0(d); 
let val = pop_v() in 
push_e (mk_Simp (v, val)); 
0(b); pop_e(); end 
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Now value stack unstacking must be performed explicitly. Furthermore, the 
applicative block structure of the specification language means that the lo
cally defined environment, env', no longer is known once l(b)(env') has been 
evaluated. The imperative, global state "stacking-up" to a new environment 
must, in contrast, be unstacked in order to bring balance, that is, to maintain 
the invariant. 

[8] Interpret Recursive Let Expressions 

Interpret Recursive Let Expressions 

Previous step: 

I(mk_Rec(f,mk_Lam(v,e),b))(env) = 
let env = (mk_Rec(f,mk_Lam(v,e)))^env in 
1(b) (env) end 

Present step: 

0(mk_Rec(f,mk_Lam(v,e),b)) = 
push_e(mk_REC(f,mk_Lam(v,e))); 
0(b); pop_e() 

Again, the local scope of env' is in contrast to the side effect on the global 
environment state: The latter stack (on environment activations) must thus be 
restored. Otherwise we see "practically speaking, the same kind of" recursive 
function value being bound in the environment before block body evaluation. 

[9] Interpret Function Application Expressions 

With this interpretation function the difference between the previous and the 
present step of development becomes obvious. 

. Interpret Function Application Expressions . 

Previous step: 

I(mk_App(f,a))(env) = 
let arg = 1(a)(env), fct = 1(f)(env) in apply(fct,arg) end 

Present step: 

0(mk_App(f,a)) = 
0(a); 0(f); 
case pop_v() of 

mk_CLOS(mk_Lam(v,e),env) —>• 
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(push_new_e((mk_Simp(v ,pop_v() ) )^env) ; 
0 (e ) ; pop_o ld_e( ) ) , 

—>• c h a o s e n d 

The first lines of the two function definition bodies "correspond" (an induction 
hypothesis). The rest of the 0 body definition "corresponds" to the apply 
function of Sect. 16.4.4. 

The reader is kindly invited to follow, for example, using left- and right-
hand index fingers, the previous and the present step formulas, clause by 
clause, in order to, informally, yet systematically, reason why the present step 
might well be "correct" wrt. the previous step! 

16.5 .8 R e v i e w of S A L S e m a n t i c s , 3 

We have motivated a change from an applicative to an imperative state for
mulation of our SAL semantics. This change entailed the introduction of two 
kinds of global variables: a stack for computed expression values, and a stack 
for deployed environments. The implicit stackings and unstackings of values 
and environments of a previous definition then had to be done explicitly while 
preserving respective invariants. We have shown the systematic transcription 
of previous I functions into the present 0 functions, and we have carefully 
related this step of development to a previous step. 

The classical example of stack semantics was tha t of Landin's SECD ma
chine: [284,286,288], also treated in Wegner's seminal book [528]. In the 1960s 
the IBM Vienna group developed elaborate (albeit applicative) stack machine 
semantics of the P L / I programming language [32,305,312]. The locally de
fined environments of Section 16.4 have been globalised into an imperative 
environment stack. Similarly for the locally defined expression values: Instead 
of keeping them locally defined they are pushed onto a value stack, and are 
unstacked when applied to primitive operations. 

From a functional definition we have therefore evolved into an imperative, 
assignment-oriented definition. This means tha t the implicit environment ex
tensions and the implicit "reversion" to embracing environments must now 
be explicitly defined. And this means tha t the definition of this section is 
more operational and technically detailed — with such details "clouding" the 
semantics picture. 

16.6 A Macro-expansion Semantics 

The idea of macro-expansion semantics seems to have first originated at the 
IBM Vienna Laboratory — as early as in 1961, with the late Hans Bekic [32], 
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in connection with the development of an Algo l 60 compiler for the first Aus
tr ian transistorised computer, the Mailiifteml (May breeze).8 Semantic function 
definitions are seen as defining compilers from source object languages to the 
target metalanguage. In this section, as well as in Chaps. 16-17, we deal with 
the special problems of effecting translations into such simple metalanguage 
constructs which have a direct counterpart in actual target object languages. 
Thus the basic idea is tha t semantic function (i.e., interpreter) definitions can 
be read as compilers from (as here the SAL) source language constructs into 
(as here RSL) specification language constructs. 

16.6 .1 A n a l y s i s of Stack S e m a n t i c s 

The unit of binding in the previous SAL definitions is tha t of a pair: an 
identifier and its abstract , respectively concrete, value. The abstract values 
were integers and functions. The concrete values were integers and closures. 
The bindings were, in the most recent models, kept as elements marked either 
"simple" or "recursive", and otherwise containing these pairs. Henceforth we 
shall implement such a pairing element as a so-called activation. 

An environment, till now, was first modelled as a map from identifiers to 
abstract values, then as a tuple of elements. Environment maps contained at 
most one pairing for any given identifier. Environment tuples were searched 
linearly, from head to tail, for a first occurrence of an identifier pairing — and 
thus allowed for subsequent, "earlier" bindings of the same identifier. These 
(earlier) bindings correspond to bindings in Let or Rec blocks embracing a 
binding of an inner block. 

In the abstract state machine stack semantics of SAL we observe a number 
of storage wise inefficient object representations. These are caused almost 
exclusively by our choice to stay with the closure representation, CLOS, of 
functions. Closures "drag" along with them, not only the function body text, 
but also the entire defining environment. This generally results in extensive 
duplication of dynamic scope information recorded (i.e., "stored") in ENVi. 

Therefore, the basic object transformation objective of this development 
step is now to keep only nonredundant environment information in the t rans
formed activation stack. We shall achieve this by "folding" the ENVi stack 
of ENVa stacks "back into" a pointer-based, tree-structured activation stack 
(STG). 

The collection of environment activations are tree-structured because SAL 
has the FUNARG property. This property is the following: Functions may not 
only accept, as arguments, but also result in functions. These argument and 
result functions will normally have been defined in environments different 
from the one (to and) from which they are (passed, respectively) returned. 
The previous sentences do not fully argue why the collection of environment 
activations are tree-structured. Such an explanation is given below. 

8— in poetic naming-contrast to the (imperial) Whirlwind computer designed 
at MIT (1951) 
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Each binding, to recall, will now become an activation (record). The linear 
list of bindings will be effected by augmenting the activation record with 
pointers. 

Let: 

((idn,vn),(idm,vm),...,(idi,vi),...,(id3,v3),(id2,v2),(idl,vl)) 

be one such CLOSure (and stack) environment. Then: 

[ pn i->- (pm,idn,vn), 
pm H-» (pk,idm,vm), 

pi H-» (pi—l,idi,vi), 

p3 h-» (p2,id3,v3), 
p2 h-» (pl,id2,v2), 
pi H> (nil,idl,vl)] 

could be a naive rendition of the tuple-modelled environment. The pointers pj 
'chain' the activation bindings in the order starting with the most recently (dy
namically) invoked blocks. (Bindings only — but always — occur in blocks.) 

If one of the values, for example, v2: 

((idn,vn),(idm,vm),...,(idi,vi),...,(id3,v3),(id2,v2),(idl,vl)) 

describes a closure whose environment part is a copy of the environment tuple 
as from the ith item: 

mk_CLOS (lambda, ((idi,vi),...,(idm,vm),(idn,vn))) 

then the list-modelled environment can be expressed: 

((idn,vn), 
(idm,mk_CLOS(lambda,((idi,vi),...,(id3,v3),(id2,v2),(idl,vl)))), 

(idi,vi), 

(id3,v3), 
(id2,v2), 
(idl,vl)> 

Instead of repeating the closure environment, we replace the environment 
part of a closure with a pointer whereby the map-modelled environment can 
be expressed: 

[ pn i->- (pm,idn,vn), 
pm i-» (p£,idm,mk_CLOS(lambda,pi)), 
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pi H-» (ph,idi,vi), 

p2 h-» (pl,id2,v2), 
p i H> (n i l , id l ,v l ) ] 

Invoking the closure identified by id2 in the stack model corresponded to 
pushing an entirely new environment, namely the one start ing from position 
i, as a new stack element. 

In the model we are about to decide upon, this will be effected by first 
introducing an additional pointer into each activation record, i.e., (pc,pe,id,v), 
such tha t the existing pointer, as before, designates the dynamic call (hence 
pc) sequence of activations. The new pointer designates the so-called lexico
graphically embracing environment chain of activations. 

This leads to the following last expression: 

[ po H-» (pn,pi,id,v), 
pn i->- (pm,pm,idn,vn), 
pm H-» (p£,p£,idm,mk_CLOS (lambda,pi)), 

pi H-» (ph,ph,idi,vi), 

p2 h-» (pl ,pl , id2,v2) , 
p i i->- (n i l ,n i l , id l ,v l ) ] 

where v is the value of e. 
We can visualise the above. Figure 16.2 does so, and also shows some 

state components, etc., components whose purpose will be explained now and 
formalised later. 

The six rectangles in the left column of Fig. 16.2 designate six registers. 
The big "almost" rectangle with the many ( 2 + . . . + 1 + . . . +2) five-component 
rectangles, labelled DSAO, DSA1, DSAi, DSAm and DSAn, inside it, denotes 
a storage whose space (cells, bytes, etc.) can be allocated, i.e., "claimed". 
Each of these 2 + 1 + 2 five-component (DSA) rectangles designates a record 
whose fifth field, the one shown to the right on the figure and labelled stack, 
designates local stack, i.e., varying space. The other fields are fixed-space 
record components. The arrows symbolise pointers. Thus the cp register links 
to the top rectangle: Given cp we can access the contents of tha t top rectangle. 
The three-pronged partly solid, partly dashed fork leading out from the ep 
register designates tha t the contents of tha t register successively "traverse" 
the ep chain. Notice tha t the traversal follows the (link, i.e., pointer) contents 
of the record ep fields. Thus it links directly from the top, DSAn, to the middle, 
DSAi, and onwards ( . . . ) . 

Activations, as we shall see, are never deleted. 
Hence, paths via dynamic pointers from activations (i.e., leaves) to the 

root signify a chain of dynamically preceding (i.e., calling) activations, with one 
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Fig. 16.2. "Snapshot" of a run-time state 

of these chains signifying the current, all other chains those of defining, en
vironment chains of FUNARG functions, i.e., functions having been returned 
as values of function applications. Each chain is statically and dynamically 
linked, corresponding to the sub chain of environmentally preceding, lexico
graphically youngest, that is, most recent, incarnations of statically embrac
ing blocks; respectively the complete chain of dynamically (call/invocation) 
preceding activations. We shall later call our activations DSAs (for dynamic 
storage activations), and the map from pointers to DSAs storage (STG). 

We can, however, only succeed in achieving this realisation of activations 
if, at the same time, we refine CLOSures into pairs of resulting program label 
points, Ifct, and defining environment activation stack pointers, p. From Ifct 
we are able to retrieve the Lambda-expression, and from p we are able to 
retrieve the defining environment. 

Informal Design Description 

To realise this goal we also, in this step, refine CLOSures by macro-expansion 
compilation of SAL texts, e, into extended meta-language texts. By a meta
language, macro-substitution, compiled (interpretive) semantics, to recall, we 
basically understand a definition in the metalanguage not containing any refer
ences to specifier-defined elaboration functions. We shall, however, widen the 
above to admit forms which contain such references. These are now thought of 
as references to elaboration macros. Hence they imply a preprocessing stage, 
called compiling, prior to interpretation of "pure" metatext. Pure metatext is 
a text which is free from references to specifier-defined functions. 
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We are given input source texts in the form of arguments to elaboration 
functions. To achieve an extended metalanguage definition, which can be so 
macro-expanded, recursive definitions of objects must be eliminated. We do 
so either by taking their fix points, or by "unzipping" them into mechanical 
constructions. 

Taking fix points, for example, results in: 

env' = fixAp:ENV • (env I [ id H-> M(d)p]) 

but tha t does not help us very much when we come to actual, effective rea
lisations on computers: Fix points are beautiful in theory, but "costly" in 
practice. Even though computers may be claimed to possess fix point-finding 
instructions, fix, they would have to be general enough to cater for the most 
complex case. Instead we unravel each individual use of recursion separately, 
and so far by hand. In the case of env' we do this by providing suitable stacks, 
pointer initialisations and manipulations. The guiding principle is to derive, 
from the more abstract definition to each occurrence of an otherwise recursive 
definition, a most fitting, efficient and economical realisation. In the next 
five subsections ([l]-[5]) we now go into a characterisation of the resulting 
definition at this stage. The definition represents two intertwined efforts: the 
further concretisation of run-time objects, here the ENVi stack into a further 
refined state, and the further decomposition of elaboration function definitions 
so tha t we can come to the point where C references can be successively 
eliminated. 

[1] T h e R u n - T i m e S t a t e 

We refer to Fig. 16.2 which shows a snapshot run-time state. 
In the abstract stack rendition of SAL we had separate environment and 

value stacks. We now merge these two stacks. Thus cstk and vstk are merged 
into the separately allocated DSAs of a storage (STG). These are chained 
together: dynamic chains by a CP (for: calling pointer) register, and lexico
graphic chains to (defining) youngest activations (block incarnations) by an 
EP (for: environment pointer) register. The exact functioning of this scheme is 
precisely described by the formulae. Hence it will not be informally described 
here. 

[2] M a c r o - e x p a n s i o n 

As outlined above we shall make extensive use of macro substitutions. 
Two kinds of text appear in our definitions: text tha t specifies compile-

time (i.e., macro-expansion) actions, and the text being generated. The former 
is preceded by asterisks (*, one per line of compile t ime action). 

The stacking (pushing) and unstackings (pops) of activations and values 
will be implemented by two pairs of functions. One may choose to do likewise 
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for these auxiliary functions, pop and push, or one may wish to keep these as 
s tandard run-time routines. At this stage we make no decision in this respect. 

[3] R e a l i s a t i o n of CLOSures 

Note the Rec or Lamb cases, " l e t r ec g(id)=d in b", respectively "Aid.ed". 
Upon evaluation of a Rec or a Lamb their defined function bodies, d, are not 
elaborated (until actually Applied). Since we have decided to macro-expand 
these texts "in-line" with the text in which they were defined, and since we are 
not to execute this text when otherwise elaborating the two definition cases, we 
shall (i) label their expansions, (ii) label the text immediately following these 
expansions, (hi) precede the expansion with a (metalanguage) g o t o around 
the thus expanded text (iv) and terminate the expanded text itself with a 
g o t o intended to return to the caller. The caller, it is expected, "dropped" a 
suitable return address in a global r a (return address) branch label register 
before going t o the label of the expanded function text. All this is performed in 
functions C ( m k _ L a m ( . . . ) ) ( . . . ) , respectively C(mk_Rec( . . . ) ) ( . . . ) ) . So what 
is left in the environment of the former CLOSures? The answer is: just the 
"bare bones", enough to reconstruct (that is, retrieve) the id, the d (text), 
and their defining environment: the former two from the (fct) label and the 
environment from contents of cp. 

Thus, in this definition, a function CLOSure has been realized as a FCT 
pair: (fct.ptr). This solution closely mirrors the way in which procedures are 
realized in actual programming language systems. 

[4] T h e C o m p i l e S t a t e — C o m p i l e - T i m e Spec i f i ca t i on 

We observe tha t Labels had to be generated for each Lamb, Appl and Rec 
(actually its Lamb par t ) . We describe only once (in C ( m k _ L a m ( . . . ) ) ( . . . ) and 
C ( m k _ R e c ( . . . ) ) ( . . . ) ) what metalanguage text to be generated. We shall view 
semantic function formulas as subject to (as already mentioned) a two phase 
process: the compile phase which macro-expands the SAL program into "pure" 
metatext , and the interpretation phase which performs actions as prescribed 
by the expanded text. 

Thus a number of lines of the formulae are executed at compile-time (they 
are marked by a preceding asterisk, *). All diet (in DICT) objects are likewise 
compile-time computed (marked d). All references to C functions are elimi
nated by the compile-time macro-substitution process already mentioned. Re
maining le t s are then to be executed at run time, tha t is, in the interpretation 
phase. In summary, the abstract compiler, whose working behaviour will not 
be formalized, performs three actions: it generates labels; it computes, dis
tributes and uses dictionaries (see next paragraphs, below); and it generates 
metalanguage (i.e., RSL) texts. 
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[5] The Compile Sta te — The Dict ionary 

Whereas in ENV1 and ENV2, VALues of ids were explicitly paired with these, 
in DSAs only the VALues are left, but in fixed positions (VR). 

Consider any variable, id. It is most recently defined at block depth n 
(respectively at block depths n,n',... ,n" since the same identifier may be 
redefined in embracing or even nonembracing, "disjoint" scopes). And it is 
used, for example, at block depth In, where 0 < n < In. 

There is thus no need to keep the variable names (i.e., identifiers) in the 
activation stack. The compile time DICT component thus serves the following, 
singular purpose (at least in this sample definition): for all ids in some context, 
to map them into the static block depth, n, at which they were defined. 
Since the static chain also touches exactly the embracing blocks, the difference 
In-n denotes the number of levels one has to chain back to get to the VALue 
corresponding to id. In fact, that is the whole, singular purpose of the static 
(EP) chain. Since it is furthermore observed that the only phase diet is used, 
in the compile phase, any reference to diet is seen also to be eliminated. 

Finally, observe that the unique label objects required for naming and by
passing defined function texts and for returning to calling points (designated, 
respectively, by Ifct, Ibyp and Iret), these unique label objects, once generated, 
shall be substituted into respective uses. 

Execut ion 

We refer — again — to the C function definitions below. The result of execut
ing what a SAL program prescribes is found on top of the temporary list (TL) 
set aside in each activation (about which — at block exit — we can assert a 
length of exactly one). So C pushes the result of any expression elaboration 
on top of the current DSA's TL — with the working register, ur, invariably 
also holding this result at the instance of pushing. 

A simple Let expression is executed by first finding the VALue of the locally 
defined variable, id, in the environment in which the Let is encountered. Then 
a new activation is set up to elaborate the body, b, of the Let. Working register 
ur is used to store the result temporarily while the activation is terminated, 
but not necessarily disposed of. The result is pushed on the TL of the invoking 
activation's DSA. Since the VALue so yielded might be a function which was 
"concocted" by the activation just left, and since that FunCTion may depend 
on its locally defined Variable VALues, we cannot, in general, dispose of the 
activation. 

This then accounts for our use of the square brackets, [...], around the 
reclamation of STorage shown. Normally these actions must not be performed 
unless it can be decided (for example, through some flow analysis means) that 
the FUNARG property is not used. FunCTion VALues will be realized as pairs: 
mk_FCT(lfct,ptr), where ptr is a pointer to that, or a contained, activation. 
This is again the FUNARG situation previously mentioned. By not disposing 
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of the DSA we are later able to "reactivate" the FunCTion defining activation. 
We leave it to the reader to "exercise" remaining aspects of the definition. 

16.6.2 Syntactic Types 

See Sect. 16.2.2 for a formal definition of syntactic types. 

16.6.3 Compile-Time Types 

Based on the above informal explanation we can now specify our design: 

type value 
LN = Nat get_Lbl: Unit ->• Unit Lbl 
DICT = Id ^ LN get_Lbl() = 
RSL /* macro-expanded text */ let lbl:Lbl • lbl ^ clbls in 
Lbl Ibis := {lbl} U clbls; 

variable lbl end 
lbls:Lbl-set := {} 

16.6.4 Run-Time Semantic Types 

Figure 16.2 shows a "snapshot" of a run-time state to which, more generally, 
correspond the following type and variable definitions: 

type 
Ptr, Lbl 
Pt = = nil() | ptr(Ptr) 
Lb = = null() | lbl(Lbl) 
Va = = void() | VAL 
STG = Ptr ^ DSA 
DSA = = mk_DSA(s_cp:CP,s_ep:EP,s_ra:RA,s_va:Va,s_stk:VAL*) 
CP,EP = Pt 
BR,RA = Lb 
VAL = Num | Tru | FCT 
Num :: Int 
Tru :: Bool 
FCT = = mk_FCT(s_br:BR,s_ep:EP) 

16.6.5 Run-Time State 

The state is initialised to a "bottom" activation with pointer ptr. 
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value 
pt r :P t r 

variable 

stg:STG := [ptr ^ mk_DSA(nil(),nil(),null(),void(),()) ]; 
cp,ep:Ptr := ptr; 
br,ra:Lbl := null(); 
ur,wr:VAL := void(); 

16.6 .6 R u n - T i m e Stack O p e r a t i o n s 

The value stack is now "within" each activation. Two operations, therefore, 
serve to pop and push from, respectively to, tha t value stack, into, respectively 
from, a register whose content is of type VALue, hence we (augmenting the 
specification language, as we shall be doing quite a lot in this section) express 
their type in terms of references to VALues. 

value 
pop: refVAL ->• U n i t 
pop(r) = 

let (c,e,a,v,stk) = (cstg)(cp) in 
stg := c s t g U [sp !->• mk_DSA(c,e ,a ,v , t l stk) ] 
r := h d stk 
e n d 

push: refVAL —>• U n i t 
push(r) = 

let (c,e,a,v,stk) = (cs tg) (ccp) in 
stg := c s t g U [cp !->• mk_DSA(c ,e ,a ,v , (c r )^s tk) ] 
e n d 

16 .6 .7 R u n - T i m e Stack Search for Variable Values 

The C_search operation should be compared, line for line, to the similarly 
named operation 0_search of Sect. 16.5. 

value 
C_search: N a t —>• U n i t 
C_search(n) = 

for i = l t o n d o ep := s_ep( (cs tg) (cep) ) end; 
ur := s_va( (cs tg ) (cep) ) ; push(ur); 
ep := c c p 

Before, in l_search and 0_search, the search was by identifier. Here it is by 
block depth. Before we had tha t each iteration of the search had to compare a 
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given identifier to an identifier of the stack. Here there is a "straight chaining 
back" to the defining activation. 

Assertions: The static chain pointer ep has the same value upon invo
cation of the above macro expanded text as the dynamic chain pointer cp. 
Search satisfies the invariant: After completion the top of the value stack — 
as well as register ur — has the value that results from evaluation of any 
expression. 

16.6.8 Macro-expansion Functions 

In the definitions that follow we will be using two forms of let . . . in . . . end 
constructs. One kind is here — extralinguistically — prefixed by asterisks (*), 
the others not. The former are to be read as directing compile-time generation 
of labels. Once generated, and the appropriately named label values properly 
substituted into the text following those asterisked let constructs, those as
terisked let constructs can be removed. What remains is the RSL text being 
generated. Invocations of the macros, C, result in text substitution. 

It is now important to observe that we have made all our design deci
sions: on how to represent environment as a stack of (dynamic save/storage) 
activations (DSAs), on how to represent CLOSures as pairs, not of text and 
environments, but as labels (to macro-expanded versions of that text) and 
pointers (to the top activation of the environment). 

Therefore all that remains is to rewrite the I interpretation function of 
Sect. 16.5. 

Invariant: Each invocation of C now leads to RSL text which interpreted 
by the RSL (semantics, i.e., by "its") machine shall lead to the value of the 
expression being thus evaluated left both on top of the current value stack 
and the ur register. This is true for all but the C function (etc.) when applied 
to programs. Here the evaluated value is to be also the value of the RSL clause. 

The reader is well-advised in comparing, function definition by function 
definition, those below, named C, with those, named 0, in Sect. 16.5.7. 

[0] Program Macro-expansion 

. Program Macro-expansion . 

Previous step: 

value 
O: Pro ->• Unit 
0(mk_Pro(e)) = 0(e) 

Present step: 

value 
C: Pro ^ Unit RSL 
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C(mk_Pro(e)) = 
C(e)([],0); ur := hd s_stk((cstg)(ccp)); r e t u r n c u r 

Assertion: C(e)([],0) leaves the value stack of the activation pointed to by 
cp with just one value: that of the expression being evaluated. The invariant 
is satisfied. 

[1] Constant Expression Macro-expansion 

. Constant Expression Macro-expansion . 

Previous step: 

value 
O: E -> Unit 
0(mk_Cst(k)) = push_v(k) 

Present step: 

value 
C: E ->• (DICTxLN) -> RSL Unit 
C(mk_Cst(k))((5,ln) = (ur := k; push(ur)) 

Assertion: The invariant is satisfied. 

[2] Variable Expression Macro-expansion 

. Variable Expression Macro-expansion 

Previous step: 

value 
O: E -> Unit 
0(mk_Var(v)) = 0_search(v) 

Present step: 

value 
C: E ->• (DICTxLN) -^ RSL Unit 
C(mk_Var(v))((5,ln) = C_search(ln-(5(v)) 

Assertion: From the definition of search we see that the invariant is satisfied. 



610 16 SAL: Simple Applicative Language 

[3] Pref ix E x p r e s s i o n M a c r o - e x p a n s i o n 

. Prefix Expression Macro-expansion 

Previous step: 

value 
O: E -> U n i t 
0(mk_Pre (o ,e ) ) = 0 (e ) ; let val = pop_v( ) in push_v(M(o)(val)) e n d 

Present step: 

value 
C: E ->• (DICTxLN) -> RSL U n i t 
C(mk_Pre(o,e))((5,ln) = C(e)(c5,ln); ur := M(o) (cur ) ; push(ur) 

A s s e r t i o n : The invariant is satisfied. 

[4] Infix E x p r e s s i o n M a c r o - e x p a n s i o n 

. Infix Expression Macro-expansion 

Previous step: 

value 
O: E -> U n i t 
0(mk_Inf(le,o,re)) = 

O(le); O(re); 
let r v=pop_v( ) , l v=pop_v( ) in push_v(M(o)(lv,rv)) e n d 

Present step: 

C: E ->• (DICTxLN) -^ RSL U n i t 
C(mk_Inf(le,o,re))((5,ln) = 

C(le)((5,ln); C(re)(<J,ln); 
pop(ur); pop(wr); u r :=M(o) (cu r , cwr ) ; push(ur) 

A s s e r t i o n : The invariant is satisfied. 

[5] C o n d i t i o n a l E x p r e s s i o n M a c r o - e x p a n s i o n 

. Conditional Expression Macro-expansion 

Previous step: 

value 
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O: E -> U n i t 
0(mk_lf(b ,c ,a) ) = 

0 ( b ) ; let t = p o p _ v ( ) in if t t h e n 0(c ) e lse 0 (a) e n d e n d 

Present step: 

value 
C: E ->• (DICTxLN) -> RSL U n i t 
C(mk_If(b,c,a))((5,ln) = 

* let l_al t = get_Lbl() , l_out = get_Lbl() in 
C(b)((5,ln); pop(ur); if ~ c u r t h e n g o t o 1 alt e lse skip end; 
C(c)((5,ln); g o t o l_out; label l_alt : C(a)((5,ln); labe l l_out: 
* e n d 

Asser t ion : The invariant is satisfied: ur and the top of the activation value 
stack both contain either the value of c or the value of a — as resulting from 
the above-specified evaluation. 

[6] L a m b d a - E x p r e s s i o n M a c r o - e x p a n s i o n 

. Lambda-Expression Macro-expansion . 

Previous step: 

value 
O: E -> U n i t 
0(mk_Lam(v ,e ) ) = push_v(mk_CLOS(mk_Lam(v ,e ) , top_e( ) ) ) 

Present step: 

value 
C: E ->• (DICTxLN) -> RSL U n i t 
C(mk_Lam(v,e))((5,ln) = 

* let lbypass = get_Lbl() , lfct = get_Lbl() in 
g o t o lbypass; 
label lfct: B(e)(d f [ v H d n + l ] , l n + l ) ; g o t o e r a ; 
label lbypass: ur := mk_FCT(l fc t , ccp) ; push(ur) 
* e n d 

The 0 definition specifies the value stacking of a CLOSure. Similarly here we 
value stack a FunCTion. The earlier definition embedded the program text in 
the value stack. Here tha t text is macro-expanded "in-line" with the program 
text with a "jump around" it! 

A s s e r t i o n : The invariant is satisfied: The CLOSure value, 
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mk_CLOS(mk_Lam(v,e),hdccstk), 

of the previous step of development is now a FunCTional value 

mk_FCT(lfct,ccp), 

Ifct designates the beginning of the macro-expanded text e, and c cp designates 
the top activation of env — with the static chain of the stack of activations 
designating "the rest". The FunCTional value is both in the working register 
ur and on top of the current activation's value stack. 

[7] Simple Let Expression Macro-expansion 

Simple Let Expression Macro-expansion 

Previous step: 

value 
O: E -> Unit 
0(mk_Let(v,d,b)) = 

0(d); 
let val=pop_v() in push_e(mk_Simp(v,val)); 0(b); 
pop_e(); end 

Present step: 

value 
C: E ->• (DICTxLN) -> RSL Unit 
C(mk_Let(v,d,b))((5,ln) = 

C(d)((5,ln); pop(ur); B(b)(c5t[v^ln+l],ln+l) 

Assertion: The invariant is satisfied: Line one of the body of C(mk_Let(v,d,b)) 
above corresponds to line one of 0(mk_Let(v,d,b)). 

Block Macro-expansion 

The B function (below, and as invoked, for example, from C(mk_Let(v,d,b)) 
above) derives from the last three lines of the 0(mk_Let(v,d,b)) function def
inition. The first and last of these prescribe the environment stacking, respec
tively environment unstacking, of a simple pairing of a variable to "its value". 
The first four lines of the body of the B(b)((5,ln) function definition correspond 
to line two of the body of the 0(mk_Let(v,d,b)) definition. The last five lines 
of the body below correspond to line four of the body of the 0(mk_Let(v,d,b)) 
definition. See lines two and four of the body of 0(mk_Let(v,d,b)) above. 
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value 
B: E ->• (DICT x LN) ->• RSL Unit 
B(b)(<5» = 

let ptr:Ptr • ptr ^ dom cstg in 
stg := cstg U [ptr i-» mk_DSA(ccp,cep,cra,cur,()) ]; 
cp,ep := ptr; 
C(b)((5,ln); 
pop(ur); 
ep := s_ep((cstg)(ccp)); 
ra := s_ra((cstg)(ccp)); 
cp := s_cp((cstg)(ccp)); 
[ stg := cstg \ {ptr}; ] 
push(ur) end 

The following assumptions are made about the auxiliary function B — in
voked both in C(mk_Lam(v,e))((5,ln) and C(mk_Let(v,d,b))((5,ln): When in
voked from C(mk_Lam(v,e))((5,ln) register ur contains a function argument 
value. See C(mk_App(f,a))((5,ln), the last pop(ur) below (subsection [9]). When 
invoked from C(mk_Let(v,d,b))((5,ln) register ur contains simply bound values. 
In either case the B(b)((5,ln) function definition specifies the copying of that 
register content onto the activation stack. 

We observe that the 'removal' of the DSA established upon block entry is 
put in square brackets ([...])! If the language (SAL) being modelled has the 
FUNARG property then (usually) we cannot remove activations as they may 
be referred to by ["returned"] function values. 

Let us consider the following SAL program fragment: 

(let f=Aa.G(a) in f(3) end) 

The first occurrence of f is a defining occurrence; the last occurrence is a using 
occurrence. The second occurrence of f is bound to the first. Let us assume 
the environment before entry to this fragment to be p. Let us annotate (to 
the left of the first and to the right of the second vertical divides) the above 
program with its environment bindings in the style of Section 16.3: 

p | (let f=Aa.G(a) in | p> =p f [ f ^ M(Aa.G(a))p] 
J I f(3) I p' 
p' I end) | p 

Here we have been a little lax in allowing ourselves to express the syntactic 
argument to M "as the text" rather than as the corresponding abstract value 
mk_Lam(a,G(a)). C(mk_Let(v,d,b)) places the function f value on top of the 
current activation's value stack as well as in working register ur. The body of 
B(b) places the ur content in the variable location (f) of the new activation 
— colloquially speaking in p', the one "on top of" p. ("Colloquially" since we 
are no longer working with p's but with DSA activations.) 
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[8] Recursive Function/Let Expression Macro-expansion 

Recursive Function/Let Expression Macro-expansion . 

Previous step: 

value 
0: E -> Unit 
0(mk_Rec(f,mk_Lam(v,d),b)) = 

push_e(mk_REC(f,mk_Lam(v,d))); 0(b); pop_e() 

Present step: 

value 
C: E ->• (DICTxLN) -> RSL Unit 
C(mk_Rec(f,mk_Lam(v,e),b))((5,ln) = 

* let lfct = get_Lbl(), lbypass = get_Lbl() in 
goto lbypass; 
label lfct: B(e)(c5 f [fHdn+l,vHdn+2],ln+2); goto era; 
label lbypass: 
let ptr:Ptr • ptr ^ dom c stg in 
ur := mk_FCT(lfct,ptr); 
stg := cstg U [ptr i->- mk_DSA(c cp,cep,c ra,cur,()) ]; 
cp,ep := ptr; 
C(b)((5t [ f^ ln+l ] , ln+l ) ; 
pop(ur); 
ep := s_ep((cstg)(ccp)); ra := s_ra((cstg)(ccp)); 
cp := s_cp((cstg)(ccp)); [ stg := cstg \ {ptr}; ] 
push(ur) 
end 
* end 

Assertion: The invariant is satisfied: The interpretation of a block with a 
recursively defined procedure is the composition of the interpretation of an 
ordinary block and a function definition — with the proviso that the DSA 
pointer is also contained in the function closure. The above remark on the 
FUNARG property also applies here. 

Let us, in the style of the simple definition of f above, in the annotations 
after definition of the B function, as invoked by the C(mk_Let(v,d,b) function 
definition body, consider the following recursive program: 

(letrec f = An.if n=0 then 1 else n*f(n—1) 
in f(3) end end) 
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Inspecting C(mk_Rec(f,mk_Lam(v,e),b)) we see tha t the f function value is 
"concocted" in the next, not the previous activation, and placed on this next 
activation. 

[9] F u n c t i o n A p p l i c a t i o n E x p r e s s i o n M a c r o - e x p a n s i o n 

. Function Application Expression Macro-expansion . 

Previous step: 

v a l u e 
O: E -> U n i t 
0 (mk_App(f ,a ) ) = 

0 ( a ) ; 0 ( f ) ; 
case pop_v() of 

mk_CLOS(mk_Lam(v,e) ,env) —>• 
(push_new_e((mk_Simp(v ,pop_v() ) )^env) ; 
0 (e ) ; pop_o ld_e( ) ) , 

_ —>• c h a o s e n d 

Present step: 

v a l u e 
C: E ->• (DICTxLN) -> RSL U n i t 
C(mk_App(f,a))((5,ln) = 

* le t lret = get_Lbl() in 
C(a)((5,ln); C(f)(<J,ln); 
case c_ur of 

mk_FCT(lfc t ,p t r ) ->• 
{ep:=ptr ,br :=lfct , ra:=lret , (pop(ur) ;pop(ur))}; 
g o t o cb r ; l a b e l lret:, 

_ —>• c h a o s 
e n d * e n d 

A s s e r t i o n : The invariant is satisfied: 

• The value stack unstacking 0 : vstk := t l t l cvstk; corresponds to C: 
(pop(ur);pop(ur)). 

• The function body evaluation 0 : 0(e) ; corresponds to C: br:=lfct; ...; g o t o 
c br;. 

• The C: ra:=lret, and the C: l a b e l lret:, "balance" the function definition 
C(mk_Lam(v,e))((5,ln)'s C: g o t o era; . 

• Otherwise stacking and unstacking of activations takes place inside B as 
invoked in C(mk_Lam(v,e))((5,ln). 
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16.6.9 Review of SAL Semantics, 4 

Function values of earlier steps of development so to speak embodied the func
tion definition texts (and their defining context, the environment). They did 
so either very implicitly, as in the "real" function values, FCT of Section 16.3, 
or they "packed" the function values into pairs of explicit text and concrete 
environments, as in the closures, CLOS of Sects. 16.4-16.5. In this section 
function values were finally implemented in terms of concepts close to actual 
(machine) programming: labels prefixing program texts and pointers to en
vironment stack records. In Sects. 16.3-16.5 the function definitions can be 
viewed as interpreters. The M, I and 0 function definitions interpret syntactic 
"things", that is, they express their values (or denotations). In this section 
C defines a compiler from source language texts into specification (viz.: RSL) 
texts — where the latter texts are void of any reference to interpretation 
and compilation functions. To do so it was necessary to extend RSL beyond 
proper RSL (!) by introducing labels and gotos. The result is a definition, C, 
which uses concepts very close to those of low-level (machine) programming 
languages. 

In the next section we shall postulate and define a computer architecture 
in terms of its machine programming concepts: registers, storage, storage ad
dresses, machine instructions and code (as sequences of instructions). Then, 
in the three subsequent sections, we end our development of SAL by present
ing three algorithms for compiling SAL expressions into machine code. In the 
section on the denotational semantics of SAL we laid down a domain model 
of SAL. The sections on first-order applicative, imperative stack and macro-
expansion semantics of SAL serve to develop part of a domain requirements 
for SAL. The compiling algorithms express those requirements. 

16.7 ASM: An Assembler Language 

In this section we illustrate the definition of a hardware computer, and its 
derivation from a macro-expansion semantics. The hardware computer defini
tion is in the form of an assembler language, that is, uses symbolic identifiers 
rather than absolute bit patterns. 

The structure of the hardware computer is solely determined by what we 
can "read off" from the macro-expansion semantics of Section 16.6. 

16.7.1 Semantic Types 

We systematically relate types and state variables of the macro-expansion 
semantics presented earlier to types and state variables of the hardware com
puter; we refer to Sect. 16.6.4 and to the formulas below. Labels correspond to 
labels. The DSA structured storage is mapped onto a "flat" storage: Pointers 
become locations. A DSA becomes a sequence of words: The first four words 
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are fixed, and are expected to be compiled so, and to contain two location 
values, a label value and an expression value. The next words are to act as a 
value stack for intermediate expression evaluation values. 

The fixed environment pointer registers, cp and ep, branch and return 
label registers, br and ra, and the intermediate expression evaluation value 
registers, uw and wr, will be mapped onto a group, reg, of general-purpose 
registers. Functions were pairs of a branch label and an environment pointer 
and become pairs of an instruction list label and a storage location. Values 
are type marked. 

value 
n,r:Nat a x i o m n > 3 2 , r > 5 

t y p e 
Lbl 
LBL = = mkLbl(lbhLbl) 
LOC = = mkLoc(loc:Loc) 
Loc = {| 0. .2n-l |} 
RNO = = mkRno(rno:Rno) 
Rno = {| 0. .2 r-l |} 
STG = Loc ^ VAL 
REG = Rno ^ VAL 
VAL = Int | B o o l | LBL | LOC | F C T 
F C T = = mkFct(lbl:LBL,loc:LOC) 
OUT = VAL* 

OUT shall, primitively, model computer output . 

16.7 .2 T h e C o m p u t e r S t a t e 

The basic state components are the storage, the group of registers and the 
output list. 

variable 
stg:STG := [ ... ] 
reg:REG := [ ... ] 
out :OUT := ( ... > 

16 .7 .3 T h e A d d r e s s C o n c e p t 

An address is a syntactic quanti ty consisting of a base register designator, and 
an integer displacement. An address denotes a location. 

t y p e 
Adr = Bas x Dis 
Bas = Rno 
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Dis = I n t 

v a l u e 
A: Adr ->• Loc 

A(b,d) = loc((creg)(b)) + d 
p r e 3 lo:Loc • (creg)(b)=mkLoc(lo) 
p o s t 0 < loc((creg)(b)) + d < 2™ 

16.7 .4 M a c h i n e I n s t r u c t i o n s 

The computer performs actions on the state as prescribed by code. The code 
is a linear, indexed sequence of instructions, kept separately from storage, 
with some instructions being (symbolic) labels, designated by unconditional 
and conditional jump instructions. 

t y p e 
Lbl 
Code = Ins* 
Ins = Sim | Sto | Lim | Lod | Fct | Jmp | Cjp | 

Mov | Adj | Pck | Unp | Out | Sto 

In detail: 

t y p e 
Sim = = mkSim(a:Adr,v:SiVal) 
Sto = = mkSto(a:Adr, r :Rno,n:Nat) 
Lim = = mkLim(r:Rno,v:LiVal) 
Lod = = mkLod(r :Rno,n:Nat ,a :Adr) 
mFct = = mkmFct(r :Rno,uo:mOp) 
dFct = = mkdFct(r :Rno,bo:dOp,ra:(RNO|Adr)) 
J m p = = mkJmp(tar :Tar) 
Cjp = = mkCjp(r:Rno,c:Cmp,tar:Tar) 
Cmp = = t ru th | falsity | zero | not_fct | ... 
Mov = = mkMov(fr:Rno,tr:Rno) 
Adj = = mkAdj(r:Rno,i:Int) 
Pck = = mkPck(frl:Rno,fr2:Rno,tr:Rno) 
Unp = = mkUnp(fr:Rno,tr l :Rno,tr2:Rno) 
Out = = mkOut(sou:Sou) 
Sou = = RNO | mkTx t ( t :Tex t ) 
Sto = = finish 

Storable and loadable values, monadic (unary) and dyadic (binary) operators, 
and jump target labels are: 
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t y p e 
SiVal = I n t | B o o l | ... 
LiVal = I n t | B o o l | LBL | ... 
mOp = = minus | not |... 
dOp = = add|sub|mpy|div|and|or |not |xor | lo| leq|eq|neq|geq|hi | . . . 
Tar = LBL | RNO 

A n n o t a t i o n s : 

• Sim designates the "store immediate" instruction. Sim is motivated by 
evaluation of constants. See the right hand side of C(mk_Cst(k))((5,ln). 
We have, rather conservatively, decided to maintain any (intermediate) 
expression value both in a working register and "on top" of the ("DSA" 
local) evaluation stack. 

• Sto designates the "store" instruction. Sto is motivated by the "end" of any 
expression evaluation. See the right hand side of C(mk_Cst(k))((5,ln) and 
the ur := ...; push(ur) lines of the C_search(n) variable stack search, and the 
C(mk_Pre(...))((5,ln), the C(mk_lnf(...))((5,ln), and the C(mk_Lam(...))((5,ln) 
interpretation functions. See also the "conservative" remark above (under 
Sim). 

• Lim designates the "load immediate" instruction. Lim is motivated by eval
uation of constants. (See the "conservative" decision remark just above, 
and at the right-hand side of C(mk_Cst(k))((5,ln) =.) 

• Lod designates the "load" instruction. Lod is motivated in the same way 
as was the store instruction. 

• mFct, dFct designates the monadic, respectively the dyadic, operation "ap
ply function" instructions. They are motivated by prefix and infix opera
tor applications. See the M(o)(...) clauses of the C(mk_Pre(o,_))(£,In) and 
C(mk_lnf(_,o,_))(£,In) functions. 

• Jmp designates the "unconditional jump" instruction. Jmp is motivated by 
the g o t o Ibypass and the g o t o era lines of the C(mk_Lam(...))((5,ln) and 
C(mk_Rec(...))((5,ln) functions. 

• Cjp designates the "conditional jump" instruction. Cjp is motivated by the 
if ~c_ur t h e n g o t o I a It e lse s k i p e n d line of the C(mk_lf(b,c,a))((5,ln) 
function. 

• Mov designates the "move" instruction. Mov is motivated by the ep := c cp 
line of the C_search(n) function and the cp,ep := ptr line of the interpreter 
function C ( m k _ R e c ( . . . ) ) ( . . . ) . 

• Adj designates the "adjust" (increment) instruction. It is motivated by 
the loop decrements (or, vice versa, increments) expressed in the for i = l 
to n d o ... e n d line of the C_search(n) function, as well as by the need 
to set aside sufficient storage, in each DSA-like invocation, for the local 
evaluation stack. Its size can be calculated, depth, from the expression, 
e, being evaluated. Stack DSA's are prescribed to be set aside in the two 
functions, B(b)((5,ln) and the C(mk_Rec(f,mk_Lam(v,e),b))((5,ln) functions 
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which handle blocks, hence stacking of DSA's: stg := c s tg U[ptn-»dsa] — 
where dsa = mk_DSA(ccp,cep,c ra,c ur,()). 

• Pck designates the "pack" instruction. It is motivated by the use of the 
mk_CLOS and mk_FCT (injector) functions of the 0 _ s e a r c h ( . . . ) and 
0 ( m k _ L a m ( . . . ) ) , respectively the C(mk_Lam( . . . ) ) and C(mk_Rec( . . . ) ) 
interpreter function definitions. 

• Unp designates the "unpack" instruction. It is motivated by the use of 
the mk_CLOS and mk_FCT (projector) functions of the 0(mk_App(f,a)) , 
respectively the C(mk_App(f,a)), interpreter functions. 

• Out designates the "output" (print) instruction. It is motivated by the 
r e t u r n clause of the C(mk_Pro(e)) interpreter function. 

16 .7 .5 M a c h i n e S e m a n t i c s 

Our semantics of ASM is (thus) expressed imperatively. 

I n t e r p r e t i n g C o d e 

A main function, Ic, applies to code, i.e., sequences of instructions. Ic invokes 
cue Ml, which is given all of the code, and is provided with a cue as to which 
instruction of code to interpret. For lc(code) the cue is 1. For cue Ml each 
instruction interpretation yields, besides a state change, the index, the cue, of 
the next instruction to be interpreted. 

v a l u e 
Ic: Code ->• U n i t 
Ic(code) = cue_Iil(code)(l) 

cue_Iil: Code ->• N a t ->• U n i t 
cue_Iil(code)(i) = 

if i > l e n code 
t h e n s k i p 
e lse 

le t j = Ii(code(i))(i) in 
le t cue = if j = i + l t h e n j e lse idx(code)(j) e n d 
cue_Iil (code) (cue) e n d e n d 

e n d 

F i n d L a b e l I n d e x 

A "link and load" time function converts symbolic labels to natural number 
list indices: 
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value 
idx: Code ->• Lbl ->• Nat 
idx(code)(l) = 

let cue:Nat • cue £ inds code A code(cue)=mkLbl(l) 
in cue end 

The Store Immedia te and Store Ins t ruct ions 

type 
Sim = = mkSim(a:Adr,v:SiVal) 
SiVal = Int | Bool | ... 
Sto = = mkSto(a:Adr,r:Rno,n:Nat) 

value 
Ii: Ins ->• Nat ->• Na t Uni t 

Ii(mkSim((b,d),v))(i) = 
let loc = A(b,d) in stg := cstg f [loc H->- v] end ; i + 1 

Ii(mkSto((b,d),r,n))(i) = 
let loc = A(b,d) in 
for j = 0 to n—1 do stg := c stg f [loc+j >->• (c reg)(r+j) ] end end ; 
i + 1 

The Load Immedia te and Load Ins t ruct ions 

type 
Lim = = mkLim(r:Rno,v:LiVal) 
LiVal = Int | Bool | LBL | ... 
Lod = = mkLod(r:Rno,n:Nat,a:Adr) 

value 
Ii: Ins ->• Nat ->• Na t Uni t 

Ii(mkLim(r,v))(i) = 
reg := c_reg f [r H> v]; i + 1 

Ii(mkLod(r,n,(b,r)))(i) = 
let loc = A(b,d) in 
for j = 0 to n—1 do reg := creg f [r+j <—>• (c stg)(loc+j) ] end end ; 
i+ 1 
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T h e A p p l y Func t ion Ins truc t ions 

For the apply functions we get down to the "nitty-gritty" details of the rep
resentation of bits in machine words. We abstract , obviously, leaving it to the 
reader to decipher the below: 

t y p e 
BITS = (true | false)"' 

value 
alltrue = ( t rue | i in ( l..w ) ) 
allfalse = ( false | i in ( l..w ) ) 

Val2Bits: VAL ->• BITS 
bits: B o o l -> BITS, bits(b) = ( b | i in ( l . .w ) ) 

t y p e 
mFct = = mkmFct(r :Rno,uo:mOp) 

value 
Ii: Ins ->• N a t ->• N a t U n i t 
Ii(mkmFct(r,o))(i) = 

case o of 
minus —>• c reg f [r H^ — (creg)( r ) ] , 
not —• c reg f [r i-» Not((creg)(r)) ], 

e n d 

Not: BITS ->• BITS 
Not(w) = ( ~w(i) | i in ( l . .w )) 

t y p e 
dFct = = mkdFct(r :Rno,bo:dOp,ra:(RNO|Adr)) 

value 
Ii: Ins ->• N a t ->• N a t U n i t 
Ii(mkdFct(r,o,ra))(i) = 

let vail = (creg)(r) , 
val2 = case ra of 

mkAdr(b,d) ->• (cs tg)(A(b,d)) , 
mkRno(rn) —>• (creg)(rn) 

e n d in 
reg := (creg) f [r i->-
case bo of 

add —> val l+val2 , sub —>• vail—val2, mpy —>• vall*val2, 
div —>• Div(vall,val2), and —>• And(vall,val2), or —>• Or(vall,val2), 
xor —> Xor(vall,val2), lo —> bi ts(val l<val2) , leq —>• bi ts(val l<val2) , 
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eq —>• bi ts(val l>val2) , neq —>• bi ts(val l^val2) , geq —• bi ts(val l>val2) , 
hi —• bi ts(val l>val2) , ... e n d ] e n d ; 

i + 1 

value 
Div: Int x Int —• Int 
Div(ij) as q 

pre i > 0 A j > 0 
pos t 3 m,r:NAT • i = m*j+r 

And: BITS x BITS -> BITS 
And(wl,w2) = ( wl(i) A w2(i) | i in ( l..w ) ) 

Or: BITS x BITS -> BITS 
0 r (wl ,w2) = ( wl(i) V w2(i) | i in ( l..w ) ) 

Xor: BITS x BITS -> BITS 
Xor(wl,w2) = ( wl(i) xor w2(i) | i in ( l..w ) ) 

T h e U n c o n d i t i o n a l J u m p Ins truc t ion 

t y p e 
J m p = = mkJmp(tar :Tar) 
Tar = LBL | RNO 

value 
Ii: Ins ->• N a t ->• Lbl U n i t 
I i(mkJmp(target))( i) = 

case target of 

mkLbl(lbl) -> lbl, 
mkRno(rno) —> (creg)(rno) 

e n d 

T h e C o n d i t i o n a l J u m p Ins truc t ion 

t y p e 
Cjp = = mkCjp(r:Rno,c:Cmp,tar:Tar) 
Cmp = = t ru th | falsity | zero | not_fct | ... 
Tar = = LBL | RNO 

value 
Ii: Ins -)• N a t -)• N a t U n i t 
Ii(mkCjp(rno,cond,target)) (i) = 

let 1 = case target of mkLbl( l ) —> 1, mkRno(rno ) —>• reg(rno) e n d in 
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if case cond of 
truth —>• (creg)(rno)=alltrue, 
falsity —>• ~((creg)(rno))=allfalse, 
zero —> (creg)(rno)=0, 
not_fct —• ~is_fct((creg)(rno)), 
... end 

then 1 else i+1 end end 

value 
is_fct: VAL -^ Bool 
is_fct(val) = case val of mkFct(r,o,ra) —> true, —>• false end 

The Register Move and Adjust Instructions 

type 
Mov = = mkMov(fr:Rno,tr:Rno) 
Adj = = mkAdj(r:Rno,i:Intg) 

value 
Ii: Ins ->• Nat ->• Nat Unit 
Ii(mkMov(fr,tr))(i) = reg:=cregf[tri-^(creg)(fr)] ; i+1 
Ii(mkAdj(r,i))(i) = reg:=cregf[ri-^(creg)(r)+i] ; i+1 

The Pack and Unpack Instructions 

type 
Pck = = mkPck(frl:Rno,fr2:Rno,tr:Rno) 
Unp = = mkUnp(fr:Rno,trl:Rno,tr2:Rno) 

value 
Ii: Ins -)• Nat -)• Nat Unit 

Ii(mkPck(r,l,a))(i) = 
reg := creg f [r i-̂  mkFCT((creg)(l),(creg)(a))] ; i + 1 
pre 3 lbl:Lbl • (creg)(l)=lbl A 3 loc:LOC • (creg)(a)=loc 

Ii(mkUnp(l,a,r))(i) = 
reg := creg f [li->-lbl(reg(r)),ai-^loc((creg)(r))] ; i + 1 
pre 3 la:Lbl,lo:LOC • (creg)(r)=mkFCT(la,lo) 
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The Output Instruction 

type 
Out = = mkOut(sou:Sou) 
Sou = = RNO | mkTxt(t:Text) 
Sto = = stop 

value 
Ii: Ins ->• Nat ->• Nat Unit 

Ii(mkOut(sou))(i) = 
out:=cout^case sou of mkRno(r)—»((creg)(r)),mkTxt(txt) —»(txt) end; 
i + 1 

The Finish Instruction 

Ii: Ins ->• Nat ->• Nat Unit 
Ii(nnish)(i) = stop ; 0 

16.7.6 Review of ASM 

We have suggested a machine language, i.e., a computer architecture. The data 
structures and the instruction repertoire of this computer were argued to "fit" 
the imperative and other constructs of the previous section's macro-expanded 
expressions. Thus it is claimed that this machine language will prove to be 
an effective target language into which to compile source language programs. 
This, therefore, is our next task: to show so. 

16.8 A Compiling Algori thm 

In Section 16.7 we developed the architecture of a machine, ASM, a computer, 
based on the macro-expansion semantics of Section 16.6. In the present section 
we shall demonstrate how one, informally, yet systematically and formally 
documented, can derive a compiling algorithm from SAL expressions to ASM 
code. By a compiling algorithm we understand a prescription that specifies 
which machine code to generate from any (SAL) expression (or, as we shall 
later indicate, from any imperative language program phrase). A compiling 
algorithm is thus a requirements prescription. 

We shall make use of the dictionary and lexicographic level number con
structs diet and In as before. An extra argument, stk, is passed to any com
piling function. It represents the current stack index to the target machine 
realisation of the TLs of the DSAs. 
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Since storage can, in general, not be reclaimed when a block body value 
has been computed (i.e., when a block expression has been evaluated), and 
since, in this version, we have decided to stick with the merge of the control 
information of the activations (cp, ep, ra) and the local variable (vr), with 
temporaries (tl:TL), we set aside, for the "linearly addressed" storage, the 
maximum amount of storage cells needed in any expression evaluation, and 
let tha t be an overcautious realisation, at this stage, of the TL components of 
DSAs. 

To tha t end a crude compiler function, depth, is defined, depth computes 
the number of temporaries, d, needed to compute any expression value, but 
takes into account tha t embedded Let and .Recursive function definition blocks 
lead to new activations for which separate stacks, TL, are set aside. We say 
tha t depth is crude since optimising versions are relatively easy to formulate, 
but would, in this example, lead to excessive numbers of formula lines. The 
disjoint DSAs of the macro-expansion semantics definition are now mapped 
onto a linear ("cell") storage. Each "new" DSA realisation consists of 4+d 
storage cells and the temporary stack, tha t is, cp, ep, ra, vr and tl:TL. 

16 .8 .1 Syntac t i c T y p e s 

See Sect. 16.2.2 for a formal definition of syntactic types. 

16.8 .2 C o m p i l e - T i m e T y p e s and S t a t e 

t y p e 
LN = N a t 
DICT = Id ^ LN 
RSL / * macro-expanded text */ 
Lbl 

variable 
lbls:Lbl-set := {} 

16 .8 .3 C o m p i l e - T i m e D y n a m i c Func t ion 

As before, we need to generate labels "on the fly": 

value 
get_Lbl: U n i t ->• Lbl 
get_Lbl() = 

let lbhLbl • lbl £ clbls in 
Ibis := {lbl} U clbls; 
lbl e n d 



16.8 A Compiling Algorithm 627 

16 .8 .4 C o m p i l e - T i m e S t a t i c F u n c t i o n 

depth was explained in the introduction above. 

v a l u e 
depth: Expr —>• N a t 
depth(e) = 

ca se e of 
m k _ C s t ( _ ) -> 1, 
mk_Var (_ ) —>• 1, 
mk_Pre (_ ,e ' ) —>• depth(e ') , 
mk_Inf(le,_,re) —>• max{depth( le) ,depth(re)} + l , 
mk_If(b,c,a) —• max{dep th (b ) ,dep th (c ) ,dep th (a )}+ l , 
m k _ L a m ( _ , ) —>• 1, 
m k _ L e t ( _ , d , _ ) —>• depth(d) , 
m k _ R e c ( _ , _ , _ ) ->• 1, 
mk_App(f ,a) —• max{dep th ( f ) , dep th (a )}+ l 

e n d 
m a x : N a t - s e t —>• N a t 
max(ns ) = le t n : N a t • n € ns A ~ 3 j : N a t • j £ ns A j > i i n n e n d 

p r e n s ^ { } 

16 .8 .5 R u n - T i m e C o n s t a n t V a l u e s 

The label lerror is global: Whenever evaluation fails, a jump is made to this 
label (an error message is output , and further evaluation stops). We shall 
refer to the constant identifiers cp, ep, ra, vr, pm, u, j , top, t, br repeatedly. 
Identifiers vr, pm, u and j designate "the same thing": the placeholder for 
local variables, function parameters , temporary values, and the for loop step-
counter value introduced below. Identifiers top and t designate "the same 
thing": The placeholder for the first (i.e., bot tom) stack value. 

v a r i a b l e 
lerror:Lbl := get_Lbl() 

v a l u e 
cp :Na t = 0, 
ep :Na t = 1, 
r a : N a t = 2, 
vr ,pm,u, j :Nat = 3, 
t o p , t : N a t = 4, 
b r : N a t = 5 

The cp, ep, ra, vr (u) values index the first four registers as well as the first four 
cells of any DSA realisation. Register indices top and br designate the current 
evaluation stack top register, respectively the branch (forward) register. 
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These constants (cp, ep, ra, vr, pm, u, j.top, t and br) will be used in this 
section and in Sects. 16.9 and 16.10 in corresponding compilation algorithms 
(pages 638-640 and 648-651). 

16.8.6 Compilation Functions 

In the development below we show first the macro-expansion function defini
tions, and then the compiling specifications, SAL construct by construct. 

[0] Program Compilation 

Program Compilation 

Previous step: 

C: Pro ^ RSL Unit 
C(mk_Pro(e)) = C(e)([],0); ur := hd 
s_stk((c_ stg) (c_ cp)) ;return c ur 

Previous step: 

CA: Pro ->• Unit Code 
CA(mk_Pro(e)) = 

* let lexit = get_Lbl(), de = depth(e) in 
( mkLim(cp,0), mkLim(ep,0), mkLim(top,t+de) ) 

~CA(e)([],0,tr 
( mkLod(u,l,mkAdr(p,t)), mkOut(u), mkJmp(lexit), 

lerror, mkOut("error"), lexit, finish ) 
* end 

[1] Constant Expression Compilation 

Constant Expression Compilation 

Previous step: 

C: E ->• (DICTxLN) -> RSL Unit 
C(mk_Cst(k))((5,ln) = (ur := k; push(ur)) 

Previous step: 

CA: E ->• DICT x LN x STK -> Code Unit 
CA(mk_Cst(k))(_,_,stk) = (mkLim(u,k),mkSim(mkAdr(cp,stk),k)) 
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2] Variable E x p r e s s i o n C o m p i l a t i o n 

Variable Expression Compilation: Previous step: 

Previous Step: 

C(mk_Var(v))(c5,ln) = C_search(c5(id)) 

C_search: N a t —> U n i t 
C_search(n) = 

for i = l to n do ep := s_ep( (cs tg) (cep) ) end; 
ur := s_va( (cs tg ) (cep) ) ; 
push(ur); 
ep := c_cp 

For such statements, <S(i), which do not change the step counter value j , it 
is immaterial whether we count up or down. The R.SL for loop can also be 
expressed using the second and last clause below. 

assert: 

/ * for certain kinds of <S(i) * / 

for j in ( l. .n ) do <S(j) e n d 

for j = 1 to n do <S(j) e n d 

for j in ( n . . l ) do <S(j) e n d 

for j = n by —1 t o 1 do <S(j) e n d 

variable j :Nat := n; 
whi l e c j ^ 0 do <S(j); j := c j — 1 e n d 

variable j :Nat := 1; 
whi l e c j ^ n + 1 do <S(j); j := c j + 1 e n d 

So, when at lexicographic level n, searching the stack of DSAs for the value 
of the variable defined at level In, we count "backwards", from In-n to 0. 

Variable Expression Compilation: Present step: 

Present Step: 

CA(mk_Var(v))((5,ln,stk) 
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* let n = S(y), 
* Hoop = get_Lbl() , 
* lload = get_Lbl() in 
( mkLim(j,ln—n), 

Hoop, 
mkCjpQ,zero,lload), 
mkLod(ep, l ,mkAdr(ep,ep)) , 
m k A d j ( j , - l ) , 
mkJmp(lloop), 
lload, 
mkLod(u, l ,mkAdr(ep,vr)), 
mkSto(mkAdr(cp,s tk) ,u , l ) , 
mkMov(ep,cp) ) 

* e n d 

[3] Pref ix E x p r e s s i o n C o m p i l a t i o n 

. Prefix Expression Compilation 

Previous step: 

C(mk_Pre(o,e))((5,ln) = 
C(e)(<5,ln); 
ur := M(o) (cur ) ; 
push(ur) 

Previous step: 

CA(mk_Pre(o,e))((5,ln,stk) = 
CA(e)((5,ln,stk) ~ 
( mkmFct(u,o) , 

mkSto(mkAdr(cp,stk) ,u, l ) ) 

[4] Infix E x p r e s s i o n C o m p i l a t i o n 

. Infix Expression Compilation 

Previous step: 

C(mk_Inf(le,o,re))((5,ln) = 
C(le)((5,ln); C(re)((5,ln); pop(ur); pop(wr); 
ur := M(o) (cu r , cwr ) ; 
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push(ur) 

Previous step: 

CA(mk_Inf(le,o,re))((5,ln,stk) = 
CA(re)((5,ln,stk) ~ CA(le)(c5,ln,stk+l) ~ 
( mkLod(u , l ,mkAdr(cp , s tk+l ) ) , 

mkdFct(u,o,mkAdr(cp,stk)) , 
mkSto(mkAdr(cp,stk) ,u, l )) 

[5] C o n d i t i o n a l E x p r e s s i o n C o m p i l a t i o n 

Conditional Expression Compilation 

Previous step: 

C(mk_If(b,c,a))((5,ln) = 
* let l_al t = get_Lbl() , l_out = get_Lbl() in 
C(b)(<$,ln); 
pop(ur); 
if ~ £ ur 

t h e n g o t o 1 alt 
else skip e n d 

C(c)((5,ln); g o t o l_out; 
label l_alt : C(a)(c5,ln); 
label l_out : 
* e n d 

Present step: 

CA(mk_If(b,c,a))((5,ln,stk) = 
* let lalt = get_Lbl() , lout = get_Lbl() in 
CA(b)((5,ln,stk) ~ 
( mkLod(u, l ,mkAdr(cp,s tk)) , 

mkCjp(u,falsity,lalt) ) ~ 
CA(c)((5,ln,stk) ~ 
( mkJmp(lout) , 

lalt ) ~ 
CA(a)((5,ln,stk) ~ 
( lout ) 
* e n d 
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[6] L a m b d a - E x p r e s s i o n C o m p i l a t i o n 

. Lambda-Expression Compilation 

Previous step: 

C(mk_Lam(v,e))((5,ln) = 
* let lbypass = get_Lbl() , lfct = get_Lbl() in 
g o t o lbypass; 
label lfct: B(e)(c5 f [v i -^ ln+ l ] , ln+ l ) ; 

g o t o e r a ; 
label lbypass: ur := mk_FCT(l fc t , ccp) ; push(ur) 
* e n d 

Present step: 

CA(mk_Lam(v,e))((5,ln,stk) = 
* let lbypass = get_Lbl() , lfct = get_Lbl() in 
( mkJmp(lbypass) , lfct ) ~ 
CA(e)((5 f [v H-> l n + l ] , l n + l , s t k ) ~ 
( mkJmp(ra) , 

lbypass, 
mkLim(u,lfct), mkPck(u,u,p) , mkSto(mkAdr(cp,s tk) ,u, l ) ) 

* e n d 

[7] S i m p l e Let E x p r e s s i o n C o m p i l a t i o n 

. Simple Let Expression Compilation 

Previous step: 

C(mk_Let(v,d,b))((5,ln) = 
C(d)((5,ln); pop(ur); 
B ( b ) ( ( 5 t [ v ^ l n + l ] , l n + l ) 

Previous step: 

CA(mk_Let(v,d,b))((5,ln,stk) = 
CA(d)((5,ln,stk) ~ 
( mkLod(u, l ,mkAdr(cp,stk)) ) " 
CB(b)((5 f [v H-> l n + l ] , l n + l , s t k ) 
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[*] Block Expression 

. Block Expressions . 

Previous step: 

B: E -> (DICT x LN) -> RSL Unit 
B(b)((5,ln) = 

let ptr:Ptr • ptr ^ dom c stg in 
stg := cstg U [ptr i->- mk_DSA(ccp,cep,cra,cur,()) ]; 
cp,ep := ptr; 
C(b)(<$,ln); 
pop(ur); 
ep:=s_ep((cstg)(ccp)); 
ra:=s_ra((cstg)(ccp)); 
cp:=s_cp((cstg)(ccp)); 
[ stg := cstg \ {ptr}; ] 
push(ur) 
end 

Present step: 

CB(b)((5,ln,stk) = 
* let dbl = depth(b) in 
( mkSto(mkAdr(top,cp),cp,t), 

mkMov(cp,top), 
mkMov(ep,top), 
mkAdj(top,t+dbl) ) ~ 

CA(b)((5,ln+l,stk) ^ 
( mkLod(u,l,mkAdr(cp,t)), 

mkLod(p,t—l,mkAdr(cp,cp)), 
mkSto(mkAdr(cp,stk),u,l) ) 

* end 

[8] Recursive Function/Let Expression Compilation 

. Recursive Function/Let Expression Compilation 

Previous step: 

C(mk_Rec(f,mk_Lam(v,e),b))((5,ln) = 
* let lfct = get_Lbl(), lbypass = get_Lbl() in 
goto lbypass; 
label lfct: 
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B(e)((5 f [fH->ln+l,vi->-ln+2],ln+2); 
goto era; 

label lbypass: 
let ptr:Ptr • ptr ^ dom cstg in 
ur := mk_FCT(lfct,ptr); 
stg := cstg U [ptr i-» mk_DSA(ccp,cep,cra,cur,()) ]; 
cp,ep := ptr; 
C(b)((5t [fr+ln+l],ln+l); 
pop(ur); 
ep:=s_ep((cstg)(ccp)); 
ra:=s_ra((cstg)(ccp)); 
cp:=s_cp((cstg)(ccp)); 
[ stg := cstg \ {ptr}; ] 
push(ur) 

end * end 

Present step: 

CA(mk_Rec(f,mk_Lam(v,e),b))(c5,rn,stk) = 
* let lfct = get_Lblb(), lbypass = get_Lbl(), db = depth(b) in 
( mkJmp(lbypass), lfct ) ~ 
CB(d)((5 f [f >->• ln+l,v H-> ln+2],ln+2,stk) 
( mkJmp(ra), 

lbypass, 
mkLim(u,lfct), 
mkSto(mkAdr(top,cp),cp,t—1), 
mkPck(u,u,top), 
mkSto(mkAdr(top,u),u,l), 
mkMov(cp,top), 
mkMov(ep,top), 
mkAdj(top,t+db) ) ~ 

CA(b)((5 f [f •-»• ln+l],ln+l,stk) ~ 
( mkLod(u,l,mkAdr(cp,t)), 

mkLod(cp,t—l,mkAdr(cp,cp)), 
mkSto(mkAdr(cp,stk),u,l) ) * end 

[9] Function Application Expression Compilation 

. Function Application Expression Compilation 

Previous step: 

C(mk_App(f,a))((5,ln) = 
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* let lret = get_Lbl() in 
C(a)((5,ln); C(f)(<J,ln); 
case £ u r of 

mk_FCT(lfc t ,p t r ) ->• 
{ep:=ptr , 
br:=lfct, 
ra :=lret , 
(pop(ur);pop(ur))}; 
g o t o cb r ; 

label lret:, 
_ —>• chaos 

e n d 
* e n d 

Present step: 

CA(mk_App(f,a))(c5,ln,stk) = 
* let lret = get_lbl() in 
CA(a)(c5,m,stk) ~ CA(f)(c5,ln,stk+l) ~ 
( mkLod(u , l ,mkAdr(cp , s tk+l ) ) , 

mkCjp(u,non_function,lerror), 
mkUnp(br,ep,u) , 
mkLim(ra,lret) , 
mkLod(pm,l ,mkAdr(cp,s tk)) , 
mkJmp(br ) , 
lret ) 

* e n d 

16 .8 .7 R e v i e w of C o m p i l i n g A l g o r i t h m 

Lest one should miss sight of it, it may be important to remind the reader 
of what we have done. We shall do it in the following fashion. The compiling 
function, CA, is just another functional program. It applies, at the root, to a 
complete SAL program represented in abstract form. And it applies, recur
sively, to subparts of tha t SAL program, and to sub-subparts, etc. The result 
of "performing" CA on a complete SAL program is an ASM program, i.e., 
ASM code. Tha t code can then be submitted to an ASM computer, i.e., an 
an ASM interpreter. 

The above kind of review is "repeated" for the next two kinds of compiling 
algorithms. Those compiling algorithms are, however, expressed in terms of 
what is known as a t t r ibute semantics. The reviews are found in Sects. 16.9.7 
and 16.10.7. 
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16.9 An Attribute Grammar Semantics 

By an attribute grammar semantics of a source language we understand (i) 
a set of usually concrete, BNF, grammar syntax rules defining the source lan
guage's character string representations; (ii) an association of what we shall 
call attributes, named and typed variables, to each syntactic category; and 
(iii) to each rule, i.e., to each pairing of a left-hand side nonterminal with a 
right-hand side alternative, i.e., a finite sequence of zero, one or more non
terminals (and terminals), a set of actions: one per attribute associated with 
either the left- or the right-hand side nonterminal. The actions are statement 
sequences. Their role is to assign values to the attributes. 

In Sect. 7.7.2 we gave a brief introduction to attribute grammar semantics, 
so we shall now assume the concept reasonably well known [45,128,262,270, 
272,304,328,532,541]. 

Let us, anyway, refresh our memory. The meaning of an attribute grammar 
semantics is as follows: Consider a source text and its corresponding (cum "an
notated") parse tree. To each tree node allocate a variable for each attribute 
associated with that node's syntactic category. Then compute the values of 
these according to the action sets. Two extreme cases arise: The value of an 
attribute is a function solely of the attribute values of the attributed vari
ables of the immediate descendant, or of the immediate ascendant nodes. In 
the former case we say that the attribute variable assigned to is synthesised, 
while in the latter case we say it is inherited. 

We first choose the same basic run-time realisation as propagated till now. 
For the sake of notational variety, and perhaps also your increased reading 
ability, we express the compiled target code in "free form". Hence the meaning 
is intended to be identical, down to the individual computation sequences. 
Thus the reader will observe a close resemblance between the example now 
given and that of the previous section. In fact, their main difference is one of 
style. 

To compute depth, see Sect. 16.8.4, we observe that it is computed from the 
leaves of the parse tree "up", i.e., it is a synthesized attribute. Following the 
depth function definition we therefore ascribe a depth attribute of type natural 
number to each of the syntactic categories and follow the specification given in 
the depth function definition to determine the specific assignment right-hand 
sides. We refer to each attribute grammar rule for details. 

stack (stk), level number (In) and dictionary (diet) attributes are all "passed 
down" from the parse tree root, and are thus inherited. Finally the code 
attribute is synthesized. It "stores" the so-far generated code text strings. We 
have not shown a formal BNF grammar for those strings, but leave that as an 
exercise for the reader. 
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16.9 .1 A b s t r a c t Syntac t i c T y p e s 

The concrete grammar presented in Sect. 16.9.2 is based on the abstract syntax 
of Sect. 16.2.2. 

16.9 .2 S A L BNF G r a m m a r , 1 

The concrete grammar chosen, at this stage, for SAL is LR(1) . Tha t is: proper 
SAL text strings need to look ahead, left-to-right, only one token (a keyword, 
a "k"onstant, an "id"entifier, a parenthesis, etc.), to determine the phrase 
structure. 

Pro : 
Exp : 

Lam : 
Blk : 

:= Exp 
:= k | 
:= id 
:= 0 Exp | 
:= ( Exp 0 Exp ) | 
:= if Exp then Exp else Exp end | 
:= let Id = Exp in Exp end | 
:= Lam | 
:= rec Id = Lam in Blk end | 
:= apply Exp ( Exp ) 
:= fun ( Id ) = Blk end 
:= Exp 

B N F Grammar 16.1. A first one for SAL 

We omit giving syntax for constants (k) and identifiers (id), and for monadic 
(©) and dyadic (0 ) operators. 

16 .9 .3 N o d e A t t r i b u t e s 

Syntax category 

Pro 
Exp, Lam 

Blk 

Attribute 

code 
code 
In (level number) 
diet (dictionary) 
stk (stack index) 
d (depth) 

code 
In (level number) 
diet (dictionary) 

Type 

Code 
Code 
Nat 
Id jft Nat 
Nat 
Nat 

Code 
Nat 
Id jft Nat 

Kind 

synthesised 
inherited 
inherited 
inherited 
inherited 
synthesised 
inherited 
inherited 
inherited 
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16.9.4 Constants 

As before, we need a single, hence global, program point to where jumps can 
be made in case of erroneous computation situations: 

global lerror = get_Lbl() 

In the compilation algorithms below we refer to some of the constants cp, ep, 
ra, vr, pm, u, j , top, t and br. Their natural number values were denned is 
Sect. 16.8.5. 

16.9.5 Some Typographical Distinctions 

In the compilation sections which now follow we have adopted some conven
tions concerning the use of roman and italic texts. Roman text designates 
auxiliary quantities whose values are to be evaluated in the code attribute 
computation process. Italic text designates code text to be generated. Since 
the code to be generated is text we surround it by double quotes as follows: 
"code". 

16.9.6 Compilation Functions 

[0] Program Compilation 

The final code text to be generated for an entire SAL program emerges from 
the codep attribute variable at the program root. 

We refer to Compiling Algorithm 16.1. 

[1] Constant Expression Compilation 

We refer to Compiling Algorithm 16.2. 

[2] Variable Expression Compilation 

We refer to Compiling Algorithm 16.3. 

[3] Prefix Expression Compilation 

We refer to Compiling Algorithm 16.4. 
Here © is used both to designate (denote) the source language monadic oper
ator as well as the target language's same! Just for convenience! 

[4] Infix Expression Compilation 

We refer to Compiling Algorithm 16.5. 
Here 0 is used as was 0 above, for prefix expressions. 
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Previous step: Present step: 

CA: Pro ->• U n i t Code 
CA(mk_Pro(e) ) = 

* let lexit = get_Lbl() , 
* de = depth (e) in 
( mkLim(cp,0), 
mkLim(ep,0), 
mkLim(top, t+de) ) 

~CA(e)([],0,tr 
( mkLod(u, l ,mkAdr(p , t ) ) , 

mkOut(u) , mkJmp(lexi t) , 
lerror, mkOut("error"), 
lexit, finish ) 

* e n d 

Prop 

local lexit 
codep 

lne 

dicte 

stke 

:= Expe 

= mk_lbl() in 
a 

R[cp] := 0 ; 
R[ep] := 0 ; 
R[top] := t + cde ; 
" ~ c codee ^ " 
R[u]:= 

cS[cR[cp]+t] ; 
Out := cR[u] ; 
goto lexit ; 
lerror ; 
output := "error" ; 
lexit: 

7 

• = 0 ; 

: = [ ] ; 
:= t ; 

Compiling Algorithm 16.1. Program compilation 

Previous step: 

CA: E ->• DICTxLNxSTK 
->• Code Unit 

CA(mk_Cst(k))(_,_,stk) = 
( mkLim(u,k), 

mkSim(mkAdr(cp,stk),k) ) 

Present step: 

Expe ::= k 

de := 1; 
codee := " 

S[cR[cp] + cstke] := k ; 
R[u] := k ; 

Compiling Algorithm 16.2. Constant expression compilation 

[5] C o n d i t i o n a l E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.6. 
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Previous step: 

CA(mk_Var(v))(c5,m,stk) = 
* let n = S(y), 
* lloop = get_Lbl() , 
* Uoad = get_Lbl() in 
( mkLim(j,ln—n), 

lloop, 
mkCjp(j,zero,Uoad), 
mkLod(ep, l ,mkAdr(ep,ep)) , 
m k A d j ( j , - l ) , 
mkJmp (lloop), 
Uoad, 
mkLod(u, l ,mkAdr(ep,vr)), 
mkSto(mkAdr(cp,s tk) ,u , l ) , 
mkMov(ep,cp) ) 

* e n d 

Present step: 

Expe ::= id 

local 
lloop = get_Lbl() in 
Uoad = get_Lbl() in 

de := 1 ; 
codee := " 

R[j]:=c lne-c dicte (id); 
lloop: 
ifcR[j]=0 
then goto Uoad: 
R[ep]:=c S[c R[ep]]+ep; 

R[i] :=£.R[i]-i; 
goto lloop ; 
Uoad: 
R[u]:=c S[c R[ep]]+vr; 
S[c R[cp]+c stke]:=c R[u]; 
R[ep]:=c R[cp]; 

Compiling Algorithm 16.3. Variable expression compilation 

[6] L a m b d a - E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.7. 

[7] S i m p l e Let E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.8. 

[*] B lock E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.9. 

[8] R e c u r s i v e F u n c t i o n / L e t E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.10. 

[9] Func t ion A p p l i c a t i o n E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.11. 
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Previous step: 

CA(mk_Pre(o,e))(c5,ln,stk) = 
CA(e)(c5,ln,stk) ~ 
( mkmFct(u,o) , 

mkSto(mkAdr(cp,s tk) ,u, l ) ) 

Present step: 

Expe ::= 0 Expa 

de := cd a ; 
lna := clne; 

stka := cstke; 
dicta := cdicte; 

codee := ccodea " 
a 

R[u]:=Q cR[u]; 
S[cR[cp]+cstke]:-
11. 

1 

=cR[u]; 

Compiling Algorithm 16.4. Prefix expression compilation 

Previous step: 

CA(mk_Inf(le,o,re))(c5,ln,stk) = 
CA(re)(c5,m,stk) ~ 
CA(le)((5,ln,stk+l) ~ 
( mkLod(u , l ,mkAdr(cp , s tk+l ) ) 

mkc!Fct(u,o,mkAdr(cp,stk)), 
mkSto(mkAdr(cp,stk) ,u, l )) 

Present step: 

Expe 

de 
ln;,lnr 

stk r 

Stk; 
diet; 
dict r 

codee 

:= ( Exp; 0 Expr ) 

= m a x ( c d ; , c d r ) ; 
= c ln e ; 
= stke ; 
= stke + 1 ; 

= dicte ; 
= dicte ; 
= ccode r " 

ccode; ~ 

R[u]:=c S[c R[cp]+c stke j ; 
R[u]:=cR[u] 

0 c S[c R[cp]+c stke j ; 
S[c R[cp]+c s tk e ] :=c R[u]; 
11. 

1 

Compiling Algorithm 16.5. Infix expression compilation 

16.9 .7 R e v i e w of A t t r i b u t e S e m a n t i c s , 1 

The below review should be compared to the review given, in Sect. 16.8.7, of 
the compiling algorithm of Sect. 16.8. 

Lest one should miss sight of it, it may be important to remind the reader 
of what we have done. We shall do it in the following fashion. Assume a SAL 
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Previous step: Present step: 

CA(mk_If(b,c,a))(c5,m,stk) = 
* let lalt = get_Lbl(), 
* lout = get_Lbl() in 
CA(b)(c5,m,stk) ~ 
( mkLod(u,l,mkAdr(cp,stk)), 

mkCjp(u,falsity,lalt) ) ~ 
CA(c)(c5,ln,stk) ~ 
( mkJmp(lout), 

lalt ) ~ 
CA(a)(c5,ln,stk) ~ 
( lout ) 
* end 

Expe : 

local 
lalt 

lout 
de 

ln6 

lnc 

lna 

stk6 

stkc 

stka 

dictj 
dictc 

dicta 

codee 

:= if Exp6 

t hen Expc 

else Expa end 

= get_Lbl() 
= get_Lbl() in 
= max(cdt,,cdc ,cda) + 1 ; 
= clne ; 
= clne ; 
= clne ; 
= cstke ; 
= cstke ; 
= cstke ; 
= cdicte ; 
= cdicte ; 
= cdicte ; 
= ccodef, " 

R[u]:=cS[cR[cp]+cstke ]; 
if ~c R[u] then goto lalt ; 
" " ccodec " " 
goto lout ; 
lalt: 
" " c codea ~ " 
tout: 

i 

Compiling Algorithm 16.6. Conditional expression compilation 

program. Assume that it has been properly parsed, and that the parse tree, 
with all its nodes, is somehow represented as a data structure in storage. 
What the attribute semantics given in this section prescribes is the follow
ing: To each node, the root and all the internal nodes, are associated the 
prescribed variables. Thus a variable declaration mentioned one time in the 
above definition, for a given syntactic category, is repeated for all nodes of 
that prescribed category. And all the parse tree nodes are further decorated 
with all the assignment texts of attributes semantics rules [0-9] for each given 
syntax rule. That is, they are repeated for each occurrence of subparse tree 
corresponding to that rule. Now, when all that has been done, an execution 
takes place. All the assignments are now to be effected. Some can be done 



16.10 Another Attribute Grammar Semantics 643 

Previous step: Present step: 

CA(mk_Lam(v,e))((5,ln,stk) = 
* let Ibypass = get_Lbl(), 
* lfct = get_Lbl() in 
( mkJmp(Ibypass), 

lfct ) ~ 
CA(e)((5 f [v ^ ln+l],ln+l,stk) 
( mkJmp(ra), 

Ibypass, 
mkLim(u,lfct), 
mkPck(u,u,p), 
mkSto(mkAdr(cp,stk),u,l) ) 

* end 

Expe : 

de 
In; 

Stk; 
diet; 

code; 

Lame : 

local 
Ifct 

Ibypass 
de 

\nb 

dictft 
codee 

:= Lam; 

= d, 
= lne 

= Stke 
= dicte 
= codee 

:= fun ( id ) = Blkft end 

= get_Lbl() in 
= get_l_bl() in 
= 1 ; 
= clne + 1 ; 
= cdicte f [ id i—>• clne + 1 ] ; 
= "goto Ibypass; 

lfctT 
"^ccodeft " " 
goto c R[ra]; 
Ibypass: 
R[u]:=lfct; 
R[u]:= 

mkFct(c R[u],c R[cp]); 
S[c R[cp]+c stke]:=c R[u]; 

1 

Compiling Algorithm 16.7. Lambda-Expression compilation 

right away: the inherited assignments at those nodes just "below", i.e., imme
diately next to, the root, the synthesised at those nodes that are just "above", 
i.e., immediately next to, a leaf. Once those assignments have been done ad
ditional assignments to synthesised and inherited attributed variables can be 
made, and so on. When no more assignments can be made, the root node code 
text variable contains the resulting ASM-like program, and that program, i.e., 
code, can now be executed. 

The above kind of review is repeated for the next kind of attribute seman
tics. That review is found in Sect. 16.10.7. 

16.10 Another Attribute Grammar Semantics 

The BNF grammar of Sect. 16.9.2 is both 'bottom-up' and 'top-down' analyz-
able. That did not matter very much in Section 16.9, since attribute variable 
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Previous step: 

CA(mk Let(v,d,b))((5,ln,stk) = 
CA(d)(c5,m,stk) 

^(mkLod(u, l ,mkAdr(cp,s tk))) 
^ C B ( b ) ( ( 5 t [ v ^ l n + l ] , l n + l , s t k ) 

Present step: 

Expe ::= le t v = Exp^ in Exp;, e n d 

de := cd 6 ; 
lnd := cln e ; 
Irif, := c ln e + 1; 

stk,j := cs tk e ; 

dictd := cdict e ; 
dictj := cdic t e f [vi -^cln e +l] ; 

codee := c c o d e , ^ 

R[u]:=c S[c R[cp]+c stke j ; 
" ^ccode^ " 

Compiling Algorithm 16.8. Simple let expression compilation 

value computations, that is, the computation based on attribute action clus
ter interpretations, still required the presence of the entire parse tree before 
any code text could be generated. In the present section we present an at
tribute grammar semantics specification of another compiling algorithm. The 
new compiling algorithm is based solely on a top-down parse of SAL expres
sions. That new algorithm is capable of generating code text simultaneously 
with parsing. Again we shall not argue how we choose a solution. Such ar
guments are left to proper, specialised texts on attribute grammar seman
tics [94,260,531]. 

Instead, we ask you to recall the twin stack abstract machine of Sec
tion 16.6. In the implementation of the DSA stack we shall let DSAs fit exactly 
four t positions: cp, ep, ra and vr. Temporaries are now to be allocated to a 
global, contiguous stack, STK. Since SAL is simply applicative, it permits, 
e.g., no GOTOs. This poses no problems as concerns correct indices into 
STK positions, i.e., the stack top. The STK is realised in the storage "below" 
the activation stack. Think of the target machine addressing being "wrapped 
around" the address zero to a maximum available storage address — and you 
get a scheme that was at least quite common in the early days of computing. 

To cope with known code text to be "delay generated" a global attribute, 
also called code, is introduced. It is treated like a stack. Pushing onto the stack 
corresponds to concatenation; pop to removing the head, the top element 
code, from the stack, and top to yielding that code. Pushing occurs for all 
code texts known when recognising the initial prefix string, as one does in 
top-down parsing, of a composite expression, to wit: ©, 0 , (, if, let, rec, 
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Previous step: 

CB(b)(5,ln,stk) = 
* let dbl = depth(b) in 
( mkSto(mkAdr(top,cp),cp,t), 

mkMov(cp,top), 
mkMov(ep,top), 
mkAdj(top,t+dbl) } ~ 

CA(b)(5,ln+l,stk) ~ 
( mkLod(u,l,mkAdr(cp,t)), 

mkLod(p,t—l,mkAdr(cp,cp)), 
mkSto(mkAdr(cp,stk),u,l) } 

* end 

Present step: 

Blk6 ::= Expe 

lne := clrif, + 1 ; 
dicte := dictf, ; 
stke := t ; 

codet, := " 
S[c R[top]+cp]:=c R[cp]; 
S[c R[top]+ep]:=c R[ep]; 
S[R[top]+ra]:=c R[ra]; 
S[R[top]+vr]:=cR[u]; 
R[cp]:=c R[top]; 
R[ep]:=c R[cp]; 
R[top]:= 

cR[top]+(t+cde); 

~ c c o d e e ^ " 
R[ep]:=c S[c R[cp]+ep]; 
R[ra]:=c S[c R[cp]+ra]; 
R[u]:=cS[cR[cp]+t]; 
R[cp]:=c S[c R[cp]+cp]; 
S[c R[cp]+c s tk e ) :=c R[u]; 

1 

Compiling Algorithm 16.9. Block expression compilation 

fun and apply. Popping of one part occurs when any expression has been 
completely analysed: k, id, ) and e n d . 

16 .10 .1 A b s t r a c t Syntac t i c T y p e s 

The concrete grammar presented in Sect. 16.9.2 is (still) based on the abstract 
syntax of Sect. 16.2.2. 

16.10 .2 S A L BNF G r a m m a r , 2 

To be able to have the full advantage of top-down parsing, we introduce the 
slight complication of representing infix (operand operator operand) expres
sions in prefix Polish form: operator(operand,operand). Other than this one 
complication the grammars look identical. We refer to Fig. 16.2. 

We omit giving syntax for constants (k) and identifiers (id), and for 
monadic (©) and dyadic (0 ) operators. 
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Previous step: 

The formulas in this and the next com
piling algorithm have been provided 
with let (de)compositions and otherwise 
typed in a smaller font so as to make the 
formulas fit within the paper margins. 

CA(mk_Rec(f,£,b))(<5,ln,stk) = 
* let mk_Lam(v,e) = £ in 
* let In' = ln+1, In" = ln '+l , 
* d = [fi—>-ln ,vi—>-ln ] in 
* let Ifct = get_Lbl(), 
* lbypass = get_Lbl(), 
* db = depth(b) in 

( mkJmp(lbypass),Ifct } " 
CB(d)(5td,ln",stk) 
( mkjmp(ra), 

lbypass, mkLim(u,lfct), 
mkSto(mkAdr(top,cp),cp,t —1), 
mkPck(u,u,top), 
mkSto(mkAdr(top,u),u,l), 
mkMov(cp,top), 
mkMov(ep,top), 
mkAdj(top,t+db) ) ~ 

CA(b)(5t[f^ln+l] , ln+l ,s tk) ~ 
( mkLod(u,l,mkAdr(cp,t)), 

mkLod(cp,t—l,mkAdr(cp,cp)), 
mkSto(mkAdr(cp,stk),u,l) } 

* end end end 

Present step: 

Expe : 
Lam : 

local 

Ifct 
lbypass 

de 

lnrf 

ln6 

dictd 

diet;, 
codee 

:= rec f = Lam in Blkf, end 
:= fun ( id ) = Blkd end 

= get_Lbl(), 
= get_Lbl() in 
= 1 ; 
= cln e+2; 
= c ln e +l ; 
= cdicte 

f[fi->-clne+l,idi->-clne+2]; 
= cdictef[fi->clne-|-l]; 
= " goto lbypass; 

lfc~t~ 
" coded~ 

goto c R[ra]; 
lbypass: 
R[u]:=lfct; 
R[u]:= 

mkFct(c R[u],c R[top]); 
S[c R[top]+cp]:=c R[cpj; 
S[cR[top]+ep ]:=cR[ep]; 
S[cR[top]+ ra ]:=cR[ra]; 
S[cR[top]+ vr]:=cR[u]; 
R[cp]:=cR[top]; 
R[ep]:=cR[top]; 
R[top]:=c R[top]+(t+c de); 

" code;,^ 
R[ep]:=c S[c R[cp]+ep]; 
R[ra]:=c S[c R[cp]+ra]; 
R[u]:=cS[cR[cp]+t]; 
R[cp]:=c S[c R[cp]+cp]; 
S[c R[cp]+c stke]:=c R[u];"; 

Compiling Algorithm 16.10. Recursive function/let expression compilation 

16 .10 .3 Globa l Variables 

There will thus be two global variables: code, which is t reated like a stack, 
and output, which is t reated as an out channel. Sometimes stacked code will 
be output . 

variable 
code:Code 

value 
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Previous step: 

CA(mk_App(f,a))(<5,ln,stk) = 
* let lret = get lblQ in 
CA(a)(<5,ln,stk) 
~ CA(f)(<5,ln,stk+l) ~ 
( mkLod(u,l,mkAdr(cp,stk+l)), 

mkCjp(u,non_function,lerror), 
mkUnp(br,ep,u), 
mkLim(ra,lret), 
mkLod(pm,l,mkAdr(cp,stk)), 
mkjmp(br), 
lret ) 

* end 

Present step: 

Expe : 

local lret 
de 

ln/,ln0 

stka 

Stk/ 
diet/,dict0 

code 

:= apply Exp/ ( Expa ) 

= get_Lbl() in 
= max{ cd/,c_da }; 
= clne; 
= cstke; 
= cs tk e +l ; 
= cdicte; 
= ccodea " 

ccode/ " 
"R[u]:= 
c S[c R[cp]+c stke +1]; 

if ~ no_fct c R[u]; 
then goto lerror; 
R[br]:=Lbl(cR[u]); 
R[ep]:=Loc(cR[u]); 
R[ra]:=lret; 
R[pm]:= 

c S[c R[cp]+c stke]; 
goto c R[br]; 
lret:"; 

Compiling Algorithm 16.11. Function application expression compilation 

Pro 
Exp 

Lam 
Blk 

:= Exp 
:= k | 
: = i d 
:= 0 Exp | 
:= 0 ( Exp , Exp ) | 
:= if Exp t h e n Exp else Exp end | 
:= let Id = Exp in Exp end | 
:= Lam | 
:= rec Id = Lam in Blk end | 
:= apply Exp ( Exp ) 
:= fun ( Id ) = Blk end 
:= Exp 

B N F Grammar 16.2. Another one for SAL 

push: Code* —>• U n i t , push(cl) = code := cl ~ ccode 
top: U n i t —>• Code, top() = h d c c o d e 
pop: U n i t —>• U n i t , pop() = code := t i c code 

channel 
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output: Code* 

16.10.4 Constants 

There is only one run-time constant: the label of the instruction as from where 
error situations are to be handled. 

global lerror = get_Lbl() 

In the compilation algorithms below we refer to some of the constants cp, ep, 
ra, vr, pm, u, j , top, t and br. Their natural number values were denned is 
Sect. 16.8.5. 

16.10.5 Node Attributes 

All attributes are now inherited. 

Syntax category 

Exp, Lam, Blk 
Attribute 
In (level number) 
diet (dictionary) 

Type 
Nat 
Id jjt N a t 

Kind 

inherited 
inherited 

16.10.6 Compilation Functions 

[0] Program Compilation 

We refer to Compiling Algorithm 16.12. 

[1] Constant Expression Compilation 

We refer to Compiling Algorithm 16.13. 

[2] Variable Expression Compilation 

We refer to Compiling Algorithm 16.14. 

[3] Prefix Expression Compilation 

We refer to Compiling Algorithm 16.15. 

[4] Infix Expression Compilation 

We refer to Compiling Algorithm 16.16. 
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Previous step: 

CA: Pro ->• U n i t Code 
CA(mk_Pro(e) ) = 

* let lexit = get_Lbl() , 
* de = depth (e) in 
( mkLim(cp,0), 

mkLim(ep,0), 
mkLim(top, t+de) ) 

^ C A ( e ) ( [ ] , 0 , t ) ^ 
( mkLod(u, l ,mkAdr(p , t ) ) , 

mkOut(u) , 
mkJmp(lexit) , 
lerror, 

mkOut( "error"), 
lexit, finish ) 

* e n d 

Present step: 

Pro ::= 

local lexit = 
lne := 

dicte := 
output ! 

push ( 

) 

Expe 

get_Lbl() in o
 .—

. 
" R[cp] := 0 ; 

R[ep] := 0 ; 
R[top] := t ; 
R[stk] := -1 ; "; 

( " R[u] := cS[-l] ; 
out := c R[u] ; 
goto lexit ; 
lerror: 
out := "error" ; 
lexit: finish : " ) 

Compiling Algorithm 16.12. Program compilation 

Previous step: 

CA: E ->• DICTxLNxSTK 
->• Code Unit 

CA(mk_Cst(k))(_,_,stk) = 
( mkLim(u,k), 

mkSim(mkAdr(cp,stk),k) ) 

Present step: 

Exp ::= k 

output ! "S[cR[stk]]:=k; 
R[u]:=k; 

R[stk]:=cR[stk]+l;" 

~ top(); 
pop () ; 

Compiling Algorithm 16.13. Constant expression compilation 

[5] C o n d i t i o n a l E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.17. 

[6] L a m b d a - E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.18. 
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Previous step: Present step: 

CA(mk_Var(v))(c5,m,stk) = 
* let n = S(y), 
* Hoop = get_Lbl() , 
* lload = get_Lbl() in 
( mkLim(j,ln—n), 

Hoop, 
mkCjp(j,zero,lload), 
mkLod(ep, l ,mkAdr(ep,ep)) , 
m k A d j ( j , - l ) , 
mkJmp(lloop), 
lload, 
mkLod(u, l ,mkAdr(ep,vr)), 
mkSto(mkAdr(cp,s tk) ,u , l ) , 
mkMov(ep,cp) ) 

* e n d 

Compiling Algorithm 16.14. Variable expression compilation 

Previous step: 

CA(mk_Pre(o,e))(c5,ln,stk) = 
CA(e)((5,ln,stk) 
^ (mkmFct(u,o), 

mkSto(mkAdr(cp,stk),u,l)) 

Present step: 

Expe ::= 0 Exp0 

lna := clne ; 
dicto := cdicte ; 
push ( ( " R[u] := Q cR[u] ; 

S[cR[cp]+cstke]:=cR[u];")); 

Compiling Algorithm 16.15. Prefix expression compilation 

[7] S i m p l e Let E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.19. 

[•] B lock C o m p i l a t i o n 

We refer to Compiling Algorithm 16.20. 

Expe 

local 
iioop 
lload 

output 

pop 

:=id 

= get_Lbl(), 
= get_Lbl() in 
! " 

R[j]:=c\ne- (cdicte) (id); 
Hoop: 
ifcR[j]=0 
then goto lload; 
R[ep]:=c S[c R[ep]]+ep; 
R[j]:=cR[j]-l; 
goto Hoop; 
lload: 
R[u]:=c S[c R[ep]]+vr; 
S[cR[stk]]:=cR[u]; 
R[stk]:=cR[cp]; 

~ topQ 

0 ; 
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Previous step: Present step: 

Expe ::= ( Exp; 0 Expr ) 

dict;,dictr := dicte ; 
push ( ( " " ) ~ 

( " 
R[u]:=cS[cR[stk]]; 
R[u]:=cR[u] 

0cS[cR[stk]+l]; 

R[stk]:=cR[stk]+l; 

S[cR[stk]]:=cR[u]; 

"> 

U 

Compiling Algorithm 16.16. Infix expression compilation 

[8] R e c u r s i v e F u n c t i o n / L e t E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.21. 

[9] Func t ion A p p l i c a t i o n E x p r e s s i o n C o m p i l a t i o n 

We refer to Compiling Algorithm 16.22. 

16 .10 .7 R e v i e w of A t t r i b u t e S e m a n t i c s , 2 

We refer the reader to the review of the a t t r ibute semantics of Sect. 16.9.7. 
Tha t review can serve, inter alia, also as a review of the present a t t r ibute 
semantics with the following exception: A special traversal of the tree is pre
scribed: from the root towards the leaves, and left-to-right. Tha t is, from 
subtrees associated with early SAL program text "towards" subtrees asso
ciated with later SAL program texts. In the present a t t r ibute semantics all 
a t t r ibuted variables are inherited and there is an auxiliary stack. In descend
ing down the parse tree of any SAL program, output of code is made at each 
node. Some output includes code text popped from tha t stack. Some node ac
tions, during descent, push code "fragments" onto the stack. When rightmost, 
i.e., "last" leaves have been traversed, then the output code can be executed. 

16.11 Discussion 

16.11 .1 Genera l 

We have covered the, perhaps most crucial, stages of development of a compiler 
for a functional programming language. From a most abstract , yet model-

CA(mk_Inf(le,o,re))((5,ln,stk) = 
CA(re)((5,ln,stk) 
~ CA(le)((5,ln,stk+l) ~ 
(mkLod(u , l ,mkAdr(cp ,s tk+l ) ) , 
mkdFct(u,o,mkAdr(cp,stk)) , 
mkSto(mkAdr(cp,stk) ,u, l )) 
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Previous step: 

CA(mk_If(b,c,a))(c5,m,stk) = 
* le t l a l t=get_Lbl ( ) , 
* lout=get Lbl() i n 
CA(b)(c5,m,stk) ~ 
( mkLod(u, l ,mkAdr(cp,s tk)) , 

mkCjp(u,falsity,lalt) ) ~ 
CA(c)(c5,ln,stk) ~ 
( mkJmp(lout) , 

lalt ) ~ 
CA(a)(c5,ln,stk) ~ 
( lout ) 
* e n d 

Present step: 

Expe : 

l oca l 
lalt 

lout 
\nb 

lnc 

lna 

dictj 
dictc 

dicta 

push 

:= if Exp;, 
t h e n Expc e lse Expa e n d 

= get_Lbl() 
= get_Lbl() i n 
= c ln e ; 

= c ln e ; 
= c ln e ; 
= cdict e ; 
= cdicte ; 
= cdicte ; 

( ( " 
R[u] := cS[cR[stk] ] ; 

R[stk] :=cR[stk] + 1 ; 
if ~ c R[u] then goto lalt : 

"rc 
goto lout ; 
lalt: 

lout: 

" ) 
) ; 

Compiling Algorithm 16.17. Conditional expression compilation 

oriented, denotational semantics, via steps of increasingly more operational, 
cum computational semantics to a compiling algorithm specification for that 
functional programming language. We presented three compiling algorithm 
models: An abstract compiling algorithm specification, and two attributed 
grammar compiling algorithm specifications. 

The transition from the semantics specification to the compiling algorithm 
specification represented the transition from domain description, to require
ments prescription. In this example that transition was just hinted at. In 
Vol. 3, Chap. 28, Sect. 28.2, we present some of the principles and techniques 
for that transition for realistic compiler development. 

We find that most, if not all, textbooks on compiler development fail in 
not presenting the kind of material here presented. 

Those 'textbooks on compiler development', to us, "jump" right into the 
middle of how proper compiler development can, or even ought, take place. To 
us, by omitting a serious and substantial treatment of exactly how to develop 
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Previous step: 

CA(mk_Lam(v,e))((5,ln,stk) = 
* let lbypass = get_Lbl(), 
* lfct = get_Lbl() in 
( mkJmp(lbypass), 

lfct ) ~ 
CA(e)((5t[v^ln+l],ln+l,stk)^ 
( mkJmp(ra), 

lbypass, 
mkLim(u,lfct), 
mkPck(u,u,p), 
mkSto(mkAdr(cp,stk),u,l) ) 

* end 

Present step: 

Lame 

local 
Ifct 

lbypass 
\nb 

dictf, 
push 

output 

:= fun ( id ) = Blkj end 

= get_Lbl() 
= get_Lbl() in 
= clne + 1 ; 
= c dictef [idi-̂ -c lne+l]; 

( " ( 
goto c R[ra] ; 
lbypass: 
R[u]:=lfct; 
R[u]:= 

mkFct(cR[u],cR[cp]); 
S[cR[stk]]:=cR[u]; 
R[stk]:=cR[stk]-l; 

")); 
! " goto lbypass ; lfct:" ; 

Compiling Algorithm 16.18. Lambda-Expression compilation 

the specification for a compiling algorithm, of exactly which target machine 
code the compiler shall generate for each source language construct in the 
program being compiled, those 'textbooks' skirt the most crucial issue, at 
least to us. 

But now, here, in this chapter, You have gotten it. Now you can much 
better exploit those other 'textbooks'. They are usually very good at covering 
syntactic issues: lexical scanning, and error correcting parsing. And, from 
textbook to textbook, some focus on code optimisation (albeit, as we claim, 
without a proper treatment of which code to generate, and why), and some 
focus on compiler dictionary techniques, and some on attribute grammars. All 
depending on their authors' own specialty. 

With the present chapter you can now much better exploit the better of 
'those other textbooks'. 

16.11.2 Principles, Techniques and Tools 

We summarise: 

Principles. Functional Programming Language Implementations: The devel
opment of interpreters and compilers for functional (and other) programming 
languages rests on a number of principles: (i) That denotations semantics 
specifications can be understood also as specifying translations from source 
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Previous step: 

CA(mk_Let(v,d,b))((5,ln,stk) = 
CA(d)((S,ln,stk)~ 
(mkLod(u,l,mkAdr(cp,stk)))^ 
CB(b)((5t[v^ln+l],ln+l,stk) 

Present step: 

Expe 

ln,i 
ln6 

stkd 

dictd 

dictj, 

push 

:= let v = 

:= cln e ; 
:= c ln e + l 
:= cs tk e ; 
:= cdict e ; 
:= cdict e < 

f [VH-J-C 1 

( ( " 
R[u]:=i 
R[stk]:= 

( " " ) 
) ; 

Exprf in Expf, e n d 

cdicte 

ne+l]; 

iS[cR[stk]]; 
=cR[stk]+l; 

Compiling Algorithm 16.19. Simple let expression compilation 

language constructs to specification (here RSL) constructs; (ii) tha t functional 
values constructed from, say, environments and source language constructs, 
can be redefined as closures of pairs of these; and (hi) tha t the specification 
language formulations can, eventually, be expressed in a variant tha t is close 
to machine language constructs. • 

Techniques . Functional Programming Language Implementation: The tech
niques, as also outlined in this chapter, involve (i) stepwise transformation 
of denotational specifications via first-order functional and first-order imper
ative constructions, to macro-expansion semantics; these intertwined with (ii) 
stepwise transformation of higher-order functional types into first-order da ta 
structures, eventually into simple pairs of stack pointers and program point 
labels; and these again intertwined with (iii) stepwise transformation of re
cursive run-time computational structures to stack-based such — in addition 
to several other techniques. • 

Tools . Functional Programming Language Implementation: As for other 
kinds of programming languages, tools applicable to the development of in
terpreters and compilers for functional languages are covered in the following 
textbooks: Lex (lexical scanners) and Yacc ("Yet Another Compiler Com
piler") [211,297], Attribute Grammars & Their Applications, [94], and the 
Cornell Synthesizer Generator (of interpreters and compilers), [424-426]. All 
books are essentially based on the a t t r ibute grammar idea of Donald E. 
Knuth [128,262,270,272,304,328,376,532,541]. 
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Previous step: 

CB(b)(c5,ln,stk) = 
* let dbl = depth(b) in 
( mkSto(mkAdr(top,cp),cp,t), 

mkMov(cp,top), 
mkMov(ep,top), 
mkAdj(top,t+dbl) ) ~ 

CA(b)(c5,hi+l,stk) ~ 
( mkLod(u,l,mkAdr(cp,t)), 

mkLod(p,t—l,mkAdr(cp,cp)), 
mkSto(mkAdr(cp,stk),u,l) ) 

* end 

Present step: 

Blk6 ::= Expe 

lne := clrif, + 1 ; 
dicte := dictf, ; 

output ! "S[cR[top]+cp]:=cR[cp]; 
S[c R[top]+ep]:=c R[ep]; 
S[R[top]+ra]:=c R[ra]; 
S[R[top]+vr]:=cR[u]; 
R[cp]:=c R[top]; 
R[ep]:=c R[top]; 
R[top]:=cR[top]+t; "; 

push ( ("R[ep]:=cS[cR[cp]+ep]; 
R[ra]:=c S[c R[cp]+ra]; 
R[u]:=cS[cR[cp]+t]; 
R[cp]:=c S[c R[cp]+cp]; 
S[cR[stk]]:=cR[u]; 
R[stk]:=cR[stk]+l;") 

) ; 

Compiling Algorithm 16.20. Block compilation 

We also refer to the useful URL: h t t p : / / d i n o s a u r . c o m p i l e r t o o l s . n e t / 
which informs on syntax handling tools (viz.: LEX, YACC, and related or sim
ilar tools). 

16.12 Review and Bibliographical Notes 

This chapter presents a major set of principles and techniques for compiler de
velopment: From denotational descriptions (Sect. 16.3), via increasingly more 
concrete, computational descriptions (Sects. 16.4-16.5), including a macro-
expansion description (Sect. 16.6), and via a formalisation of a target machine, 
to two forms of compiling algorithms (Sects. 16.8-16.10). 

The present chapter covered principles and techniques for describing what 
a compiler, for a functional programming language, should generate of ma
chine code. The first functional programming language was John McCarthy's 
LISP [333]. 

Current functional programming languages include Miranda [505], Haskell 
[503], and, notably SML [168,359]. We remind the reader that the terms 
'applicative programming' and 'functional programming', in this book, are 
treated synonymously. 
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Previous step: 

The formulas in this and the next com

piling algorithm have been provided 
with let (de)compositions and otherwise 
typed in a smaller font so as to make the 
formulas fit within the paper margins. 

CA(mk_Rec(f,£,b))(<5,ln,stk) = 
* let mk_Lam(v,e) = £ 
* In' = ln+1, ln"=ln '+l , 
* S = [fi—>-ln ,VH->ln ] i n 
* let lfct = get_Lblb(), 
* lbypass = get_Lbl(), 
* db = depth(b) in 
( mkJmp(lbypass),lfct } " 
CB(d)(5t<5',m",stk) 
( mkjmp(ra), 
lbypass, 
mkLim(u,lfct), 
mkSto(mkAdr(top,cp),cp,t —1), 
mkPck(u,u,top), 
mkSto(mkAdr(top,u),u,l), 
mkMov(cp,top), 
mkMov(ep,top), 
mkAdj(top,t+db) ) ~ 

CA(b)(5t[f^ln'], ln+l,stk) ~ 
( mkLod(u,l,mkAdr(cp,t)), 
mkLod(cp,t—l,mkAdr(cp,cp)), 
mkSto(mkAdr(cp,stk),u,l) } 

* end end 

Present step: 

Expe 

Lam 
local 

Ifct 
lbypass 

ln<; 
ln6 

dictd 

diet;, 

output 

push 

:= rec f = Lam in 

Blkft end 
:= fun ( id ) = Blk,; end 

= get_Lbl(), 
= get_l_bl() in 
:= clne + 2 ; 
:= clne + 1 ; 
:= cdicte f[fi->c ln e+l, 

idi—>-jc lne+2]; 
:= cdictef[fi->c lne + l]; 
! " goto lbypass ; 

lfcl^; 
( ( " gotocR[ra] ; 

lbypass: 
R[u] := lfct ; 
R[u] := 

mkFct (cR[u],cR[top]); 
S[cR[top]+cp]:=cR[cpj; 
S[c R[top]+ep]:=cR[ep]; 
S[cR[top]+ra]:=cR[ra]; 
S[c R[top]+vr]:=cR[u]; 
R[cp] := cR[top]; 
R[ep] := cR[top] ; 
R[top] := cR[top] + t ; 

")~C 
R[ep]:=cS[cR[cp]+ep]; 
R[ra]:=cS[cR[cp]+ra]; 
R[u]:=cS[cR[cp]+t]; 
R[cp]:=cS[cR[cp]+cp]; 
S[cR[stk]]:=cR[u]; 
R[stk]:=cR[stk]+l;") 

) ; 

Compiling Algorithm 16.21. Recursive function/let expression compilation 

Classical texts of compiler writing are: Randell and Russells's [414], Gries's 
[150], and Aho and Ullman's [6]. To us Randell and Russells's [414] and then 
Gries's [150] are acceptable: Focus on the run-time structures of compiled 
programs. Aho and Ullman's [6], also seminal, focuses more on lexical scanning 
and parsing — the authors having made substantial contributions to automata 
and formal language theory. Appel's [14] is, to us, not acceptable: Fails, in 
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Previous step: 

CA(mk_App(f,a))(<5,ln,stk) = 
* let Iret = get lblQ in 
CA(a)(<5,ln,stk) ~ 
CA(f)(<5,ln,stk+l) ~ 
( mkLod(u,l,mkAdr(cp,stk+l)), 

mkCjp(u,non_function,lerror), 
mkUnp(br,ep,u), 
mkLim(ra,lret), 
mkLod(pm,l,mkAdr(cp,stk)), 
mkjmp(br), 

Iret ) 
* end 

Present step: 

Expe 

local Iret 
ln/,ln0 

dict/,dict0 

push 

:= apply Exp/ ( Exp0 ) 

= get_Lbl() in 
:= clne ; 
:= cdicte ; 

( < " " ) ~ 
< " 
R[u]:=cS[cR[stk] - 1 ]; 
if ~ non function c R[u] 

then goto lerror; 
R[br]:=Lbf(cR[u]); 
R[ep]:=Loc(c R[u]); 
R[ra]:=lret; 
R[pm]:=cS[cR[stk]]; 
R[stk]:=cR[stk]-2; 
goto c R[br]; 
Iret: 

") 
) ; 

Compiling Algorithm 16.22. Function application expression compilation 

our opinion, to properly explain semantic issues — yet [14] has some rather 
worthwhile features: Techniques for program flow analysis being one of them. 

In our approach, of the present and the next chapters, we focus on seman
tics, and hence also on run-time structures of compiled programs. 

All of the above textbooks fail to cover what we have referred to as the 
FUNARG property of some programming languages [368,529]. 

Landin introduced the SECD machine concept [284,286,288]. Reynolds 
[428] provided beautiful insight into interpreters for higher-order functional 
programming languages, i.e., languages in which functions are "first-class cit
izens", i.e., can have functions as ordinary values. 

The IBM Vienna (Austria) Laboratory's work, in the 1960s and early 
1970s, on providing semantics for a rather unwieldy programming language, 
i.e., PL/1 [110,111], and of relating this to effective implementations — notably 
that of Bekic, Jones, Lucas and Walk [32,33,305,312] — serves as a foundation 
for our treatment of the present chapter. 

The "great, seminal epic" on denotational semantics and congruent, i.e., 
"correct" interpreter (and hence compiler) implementations is Milne and Stra-
chey's [350]. 

Attribute semantics was introduced by Knuth, propagated by Wirth, and 
otherwise studied by many others [45,128,262,270,272,304,328,532,541]. 
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Tools for handling at t r ibute semantics were developed by Kastens, Hutt , 
Zimmermann, Wilhelm, Deransart and Jourdan [94,260,531]. 

Wand [518, 520] investigates the transition from denotational semantics 
descriptions of programming languages to suitable computer architectures, 
i.e., machines "into" which effective compilations, and "on which" effective 
executions, can take place. 

The compiler textbook by Wilhelm can be recommended [531]. 

16.13 Exercises 

Exerc i se 16.1 Case Expression. Postulate a simple case expression: 

case expr_0 of 
cons t an t_ l —>• e x p r _ l , 
constant_2 —>• expr_2, 
... ->• ..., 
others —> expr_n, 

e n d 

Base expressions, expr_0, evaluate to either integer values, or Boolean values; 
constant_i designate corresponding values; expr_i are ordinary expressions; 
and the literal o thers serve to designate a "catch all other values constant!" 

Now, give a syntax for this kind of case expression, assume well-formedness, 
and define extensions to the four semantics of respective sections: 16.3 (deno
tat ional) , 16.4 (first-order applicative), 16.5 (abstract imperative stack), and 
16.6 (macro-expansion) — where these extensions define the semantics of the 
above kind of case expressions. 

Exerc i se 16.2 Macro-expansion Example. Let two typical SAL programs be: 

le trec f = An.if n = 0 t h e n 1 e lse n*f(n—1) e n d in f(5) e n d 
le trec f = An.case n of 0 —> 1, o thers —>• n*f(n—1) e n d in f(5) e n d 

Now you are to recast the above two expressions into the abstract syntax 
values of SAL, given in Sect. 16.2.2, and to macro-expand both as per the 
definition given in Sect. 16.6 (for the first of the above expressions), and tha t 
you have given for the simple case expression in Exercise 16.1 for the second 
of the above expressions. 

Exerc i se 16.3 ASM': Assembler Machine. Does the macro-expansion of case 
expression tha t you have given in Exercise 16.2 give cause for additional ma
chine language instructions? If so, suggest such (one or more) and extend the 
machine language presented in Sect. 16.7 accordingly. 

Exerc i se 16.4 Code Generation Example. For the two examples of Exer
cise 16.2 show their compilation into ASM (of Sect. 16.7), respectively ASM' (of 
Exercise 16.3, if relevant). 
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SIL: Simple Imperative Language 

• The prerequisi te for studying this chapter is that you are well familiar 
with the imperative modelling styles of RSL. 

• The aims are to show the applicability of the compiler development prin
ciples and techniques of Chap. 16, and to do so for a simple imperative 
language, but only in a phasewise transition from a denotational semantics 
to a macro-expansion semantics. 

• The objective is to enable you — we claim — to far better understand, 
and hence far more safely implement, compilers for procedural languages. 

• The t r ea tmen t is systematic and from informal to formal. 

The 
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17.1 The Background 

In the semantics of the simple applicative language, SAL, in Chap. 16, we got 
many seemingly tricky details reasonably straight: dynamic allocation and 
linking of block (and procedure) activations, and text (i.e., macro) expansion 
with insertion of labels and jumps to these. The same ideas can now be applied 
to SIL, the simple imperative language of the present chapter. We will apply 
them again, in Chap. 17, to a modular language1, SMIL, whose run-time 
activation stack resembles a cactus stack! 

In the semantics of SAL, in Chap. 16, we additionally showed how to trans
form a macro-expansion semantics, based on the design of a computer (cum 

By a modular language we mean one which offers modules of a kind similar to 
the scheme concept of RSL, cf. Chap. 10. 
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machine) language, into a compiling algorithm. Chapter 16 further showed 
the transformation of the compiling algorithm into either of two at t r ibute 
grammar semantics. We shall not show the steps to compiling algorithms and 
at t r ibute grammars in this chapter. The same principles and techniques as 
applied in Chap. 16 apply to the language developments of this chapter and 
Chap. 18. 

In this chapter we now illustrate the development of a pair of semantics: a 
denotational semantics and, in one "straight" step of development, a macro-
expansion semantics for a simple imperative language, SIL. The step from 
denotational to macro-expansion semantics can be made since we have al
ready illustrated the essential facets, namely tha t of implementing the block 
(including procedure) concept in terms of an activation stack. 

17.2 Syntactic Types 

The simple applicative language, SAL, of the previous chapter embodies all 
interesting aspects of expressions: constants, simple (unassignable) variables, 
prefix and infix expressions, conditional expressions, blocks, simple and recur
sive function definitions and function applications. Therefore in the exposition 
of SIL, we concentrate on the imperative features: declared and assignable 
variables, assignment statements, iterations (while loops) and calls of proce
dures as statements. Now also blocks will be considered statements. A block 
consists of zero, one or more (typeless) variable declarations; zero, one or 
more statement and parameterless procedure definitions (which are them
selves blocks); and a statement list. A while loop has a conditional expression 
and otherwise consists of a statement list. 

17.2 .1 C o n c r e t e , S c h e m a t i c S y n t a x 

We first show schematic examples of the various syntactic constructs: Fig. 17.1. 

17.2 .2 A b s t r a c t S y n t a x 

Then we show the usual kind of RSL abstract syntax. 

t y p e 
P, V, E 
Stm = = Blk | Asg | Whi | Call | StmL 
Blk = mk_Blk(vs:V-set ,pros:(P ^ Blk),s:Stm) 
StmL = mkSL(sl:Stm*) 
Asgn = mk_Asg(v:V,e:E) 
Whi = mk_Whi(e:E,s:Stm) 
Call = mk_Cal l (p:P) 
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We do not define expressions, e:E, but could, for example, assume those of 
SAL. 

17.3 Imperative Denotational Semantics 

We present the denotational semantics in the traditional style. First we present 
the semantic types, then the (usually auxiliary) functions (i.e., functions which 
are defined over values of semantics types only) and, finally, the semantic 
functions. 

17.3 .1 S e m a n t i c T y p e s 

Assignable variables, v:V, designate locations, l:LOC, of storage, stg:STG. 
And storage maps locations to values, vahVAL. We do not further specify any 
value, location, and therefore not any storage structuring — as was done in 
Sect. 8.7.1 (specifically subsection "Values and Value Types") onwards. An 
imperative metasta te variable, 'stg' , contains the storage. 

An applicative argument to all semantic functions is the environment, p, 
which binds visible (i.e., "in scope") variable identifiers to locations and visible 
(i.e., "in scope") procedure identifiers to their denotations, In other words, it 
binds functions from, in this simplifying case, no arguments, i.e., (), to partial, 
state-to-state changing functions, i.e., U n i t —>• U n i t . 

variable 
s t g : S T G : = [ ] ; 

t y p e 

STATEMENT CATEGORIES 

Block 

Assignment 

While loop 

Call 

EXAMPLES 

begin 
variables v,v',...,v"; 
procedures 

p = block, 
p' = block', 

p" = block"; 
s; s'; ...; s" 

end 
v := e 
while e 

do s; s'; ...; s" 
end 

call pQ 

CONSTRUCTOR 

mk_Blk 

mk_Asgn 

mk_Whi 

mk_Call 

Fig. 17.1. Syntactic constructs of SIL 
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LOC, VAL 

p:ENV = (V Tjt LOC) U (P ^ FCT) 
STG = LOC ^ VAL 

F C T = ( ) - > • U n i t 4 U n i t 

The U operator is, strictly speaking, not an RSL type constructor. But it could 
be, informally, so defined: 

( A ^ B ) U ( C ^ D ) = { | m - m : ( A ^ B ) V m : ( C ^ D ) |} 

When a procedure is called, its value, fct:FCT, is applied to an empty ar
gument, (), and implicitly to the imperative metasta te . This effects a state 
change, which in an imperative RSL definition is expressed as a U n i t to U n i t 
function. 

17.3 .2 Auxi l iary S e m a n t i c Funct ions 

Upon block entry, locations are allocated, one distinct location, per declared 
variable. 

value 
Alloc: U n i t ->• LOC U n i t 
Alloc() = 

let loc:LOC • loc ^ d o m c stg in 
stg := c s t g U [loc Ĥ - undefined]; 
re turn loc e n d 

17 .3 .3 S e m a n t i c Funct ions 

Since we express the semantic meaning function, M, in terms of operations 
upon an imperative metasta te we have tha t the signature of M includes U n i t 
to U n i t functionality. 

P r o c e d u r e D e n o t a t i o n s 

Procedure values, i.e., procedure denotations, are constructed from their defin
ing block, b:B, and environment, p:ENV, as the function, A, of no arguments, 
(), which when applied to such 'no arguments ' behaves as does the interpre
tation, M, of the procedure block in the defining environment. 

value 
Den(b)p = A().M(b)p 
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Statement and Expression Function 

value 
M: Stm ->• ENV ->• Unit ->• Unit 
M: Exp -> ENV -> Unit VAL 

M(mk_Blk(vs,pm,s))p = 
let mp = p f [ v 4 Alloc()|v:V • v € vs] in 
let np = mp j [p H> Den(pm(p))np | p:P«p € dom pm] in 
M(s)np; 
stg := cstg \ {np(v) | v:V • v £ vs} end end 

M(mkSL(sl))p = for i= l to len si do M(sl(i))p end 

M(mk_Asg(v,e))p = stg := cstg U [p(v) >-)• M(e)p] 

M(mk_Whi(e,s))p = 
let b = M(e)p in 
i fb 

then (M(s)p; M(mk_Whi(e,s))p) 
else skip 

end end 

M(mk_Call(p))p = (p(p))() 

Note how the meaning of the while loop mirrors the following source (i.e., 
SIL) text to source text transformation — had SIL had a conditional, i.e., an 
if then else statement: 

while e do si end 

if e then (si; while e do si end) else skip end 

In other words, one of the two conditional statement forms suffices. 

17.4 Macro-expansion Semantics 

We also present the macro-expansion semantics in the usual style. First, we 
present the syntactic types, then the compile-time semantics types, then the 
run-time semantic types, followed by abstraction functions (that relate run
time semantics values to semantic values of the denotational semantics) and 
finally the semantic functions, i.e., the macros. 
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17.4.1 Syntactic Types 

See Section 17.2 for a discussion of syntactic types. 

17.4.2 Compile-Time Semantic Types 

The RSL specification language is ad hoc extended to include labels and gotos. 
Labels are further unanalysed atomic entities. No two labels of any RSL Text 
are alike. At compile-time labels are "drawn" (get_Lbl) from a potentially 
infinite set of labels, Lbl. A compile-time (i.e., a meta-) variable contains 
those labels already inserted into expanded metatext. 

type 
Lbl 
<p = {Is} jjf Lbl-set 

variable 
ls:Lbl-set := {} 

value 
get_Lbl: Unit ->• Lbl 
get_Lbl() = 

let lbl:Lbl • lbl £ els in 
Is := {lbl} U els; 
return lbl end 

17.4.3 Run-Time Semantic Types 

"Snapshot" of a Run-Time State 

Figure 17.2 shows a "snapshot" of a run-time state: 

1 
cp | 

ep | 

ra | 

—1 
1 . 
1 • 

1 . 
1 S 

jj) 

va | IS 

Storage 

Fig. 17.2. "Snapshot" of a SIL run-time state 
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Figure 17.2 is reminiscent of Fig. 16.2. The four rectangles in a left column of 
the figure designate four registers. The big "almost" rectangle with the many 
( 2 + . . . +1) five-component rectangles, labelled ACTm, ACTn, and ACTi, in
side it denotes a storage whose space (cells, bytes, etc.) can be allocated, i.e., 
"claimed". Each of these 2 + . . . + 1 five-component (ACT) rectangles desig
nates a record whose fourth and fifth fields, the ones shown to the right on 
the figure and labelled pm and vs, designate procedure map (pm), respec
tively variable allocation space (vs). The pm field of the top ACTn "contains" 
two procedure name-labelled procedure closures (pairs of program point la
bels and environment stack activation pointers). The vs field of the top ACTn 
"contains" two variable bindings: from variable names to variable values. The 
other fields, cp, ep and ra (calling pointer (dynamic chain), static pointer 
(environment chain), and return address) values, are fixed space record com
ponents. The arrows symbolise environment stack activation pointers. Thus 
the cp register links to the top rectangle: Given cp we can access the contents 
of tha t top rectangle. The two-pronged, partly solid, part ly dashed, arrow 
leading out from the ep register designates tha t the contents of tha t regis
ter successively "traverse" the ep chain. Notice tha t the traversal follows the 
(link, i.e., pointer) contents of the record ep fields. Thus it links directly from 
the top, DSAn, to a "lower", ACTi, and onwards ( . . . ) . 

S e m a n t i c T y p e s 

t y p e 
P t r 
mSTG = P t r ^ ACT 
ACT = = mk_ACT(s_ep:EP,s_cp:CP,s_ra :RA,s_pm:PM,s_vs :VS, . . . ) 
CP, E P = = mk_nil() | P T 
RA = = mk_null() | LB 
P T :: P t r 
LB :: Lbl 
P M = P ^ CLOS 
CLOS = = mk_CLOS(lb:Lbl ,pt :Ptr) 
VS = V jjt VAL 

17.4 .4 R u n - T i m e S t a t e D e c l a r a t i o n and Ini t ia l i sat ion 

The run-time state resembles the state of a target machine — on which com
piled SIL programs are executed. Such a machine has a storage, stg, an eval
uation stack, stk, two environment pointer registers (cp, ep), a return address 
register (ra) and value register (va). 

value 
pt r :P t r 
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variable 
stg:STG 
cp:CP := 
ep:EP := 
ra:RA := 
va:VAL : 
stk:VAL* 

:= [ptri—>mk_ 
ptr; 
ptr; 
mk_null(); 

= undefined; 

: = ( ) 

_ACT(mk_ _nil() mk_ _nil() mk_ _null() 

17.4.5 Abstraction Functions 

It is always a good idea, before proceeding too deeply into macro function 
definitions, to try express how one can abstract from the concrete run-time 
state the denotation semantics storage, environment and functions. Below we 
sketch such an attempt. 

value 
abs_STG: Unit ->• dSTG 
abs_STG() = merge{ 

[let mk_ACT(_,_,_,_,vm) = (cstg)(pt) in 
makeLOC(pt,v)i->-vm(v) end|v:V«v £ dom vm]|pt £ dom(cstg)} 

makeLOC: Ptr x V ->• LOC 

abs_ENV: P ->• Unit ENV 
abs_ENV(ep) = 

if c_ep = mk_nil() then [] else 
let mk_ACT(_,ep',_,pm,vm) = (cstg)(ep) in 
let p = abs_ENV(ep') in 
p f [ P !->• abs_FCT(pm(p)) | p:P • p £ dom pm ] 

t [ v i—> makeLOC(ep,v) | v:V • v £ dom vm ] 
end end end 

abs_FCT: CLOS -> Unit ->• FCT 
abs_FCT(mk_CLOS(lb,ep)) = ... 

/* from lb to construct source text: Blk */ 
/* from ep to construct ENV: abs_ENV(ep) */ 

We remind the reader that the above sketches at most constitute rather in
formal reasoning. But perhaps this is enough in a compiler engineering envi
ronment, where the compiler writers have otherwise gone through a proper 
semantics course, for example, one based on any of [93,158,432,448,499,533]. 

17.4.6 Macros 

value 
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C: Stm ->• Unit -> RSL 
C(mk_Blk(vs,pm,s)) = 

* let lmap = [ p 4 get_Lbl() | p:P • p £ dom pm ], lout = get_Lbl() in 
let pt:Ptr • p g- dom cstg in 
let act = mk_ACT(ccp,cep,cra, 

[ p i->- mk_CLOS(lmap(p),pt) | p:P • p € dom pm ], 
[ v i->- undefined | v:V • v £ vs ]) in 

stg := cstg U [ pt i->- act ]; cp := pt; 
C(s); 
ep := s_ep((cstg)(ccp)); 
ra := s_ra((cstg)(ccp)); 
cp := s_cp((cstg)(ccp)); 
stg := cstg \ {pt} 
goto lout; 
( labellmap(p): M(pm(p)); goto era; | p:P • p € dom pn ) 
label lout: 
end end * end 

The metalinguistic pointed brackets, ( . . . ) , surrounding the text of the second-
to-last line express the compile-time distributed expansion of as many triplets 

label lmap(p): M(pm(p)); goto era; 

as there are procedures in the procedure map. 
Above we assumed that SIL does not have the FUNARG property. 
The "Chain" function links back through the environment chain of pointers 

until an activation is found in which the Chain argument, name, is found, 
either as a variable name or as a procedure name. 

Chain: P|V -> Unit 
Chain(name) = 

let mk_ACT(_,ep,_,pm,vm) = (cstg)(cep) in 
if name € dom pm U dom vm then skip else 
(ep := e; Chain(name)) end end 

The next three macros define the text to be generated for simple statements: 

value 
C(mk_SL(sl)) = ( C(sl(i)); | 1 < i < len si ) 

C(mk_Asg(v,e)) = 
C(e); Chain(v); 
let mk_ACT(cp,ep,pm,vm) = (cstg)(cep) in 
let act = mk_ACT(cp,ep,pm,vm f [v i-» cva]) 
stg := cstg f [ cep H->- act ] end end; 
ep := ccp 
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C(mk_Whi(e,sl)) = 
* let Hoop = get_Lbl() in let lout = get_Lbl() in 
label Hoop: C(e); 
if ~hd c stk then goto lout else skip end; 
( C(sl(i)); | 1 < i < len si ) 
goto Hoop; label lout: * end end 

C(mk_Call(p)) = 
Chain(p); 
let mk_ACT(_,_,_,pm,) = (cstg)(cep) in 
let mk_CLOS(lfct,eptr) = pm(p) in 
* let lout = get_Lbl() in 
ra := lout; ep := eptr; 
gotolfct; 
label lout: * end 
end end 

17.5 Discussion 

17.5.1 General 

We have briefly outlined a macro-expansion semantics based on a conventional 
denotational semantics of a simple imperative language, SIL. Only four kinds 
of statements were exemplified: blocks, assignments, while loops and subrou
tine invocation. The interesting statements are, of course, the block and the 
procedure (i.e., subroutine) invocation statements. The rest are "fillers". They 
are included to make the simple imperative language reasonably representa
tive. 

We observe that the basic principles of activation stacks, and of static and 
dynamic chains, are the same as for the simple applicative language, SAL, of 
Chap. 16. And that, of course, is the whole idea. We leave as exercises the 
inclusion of more statements in SIL, and of expressions and their evaluation. 

17.5.2 Principles, Techniques and Tools 

We summarise: 

Principles. Imperative Programming Language Implementations: The de
velopment of interpreters and compilers for imperial (and other) program
ming languages rests on basically the same principles as were outlined in 
Sect. 16.11.2 on a principle of functional programming language implementa
tion. • 
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Techniques. Imperative Programming Language Implementation: The tech
niques, as also outlined in this chapter, again, are very much the same as were 
outlined in Sect. 16.11.2 on techniques of functional programming language 
implementation. • 

Tools. Imperative Programming Language Implementation: Again we refer 
to Sect. 16.11.2 on functional programming language implementation tools. • 

17.6 Bibliographical Notes 

Two seminal books, long since out of print, on compiler construction must be 
mentioned: 

[414]: B. Randell, L. Russell: ALGOL 60 Implementation, The Translation 
and Use of ALGOL 60 Programs on a Computer (Academic Press, A.P.I.C. 
Studies in Data Processing, Vol.5., New York and London, 1964); and 

[150]: D. Gries: Compiler Construction for Digital Computers (John Wiley 
and Sons, New York, 1971). 

Both were very careful in presenting and motivating the compiling algorithm 
choices wrt. run-time stacks — in both cases for the Algol 60 programming 
language [24]. 

17.7 Exercises 

Exercise 17.1 Macro-expansion Example. Exemplify a very small SIL pro
gram. That is, please come up with one yourself, (i) Show it as a concrete text; 
(ii) then as an abstract syntax value as per the syntax given in Sect. 17.2.2; 
and finally (iii) macro expand this program as per the macro-expansion se
mantics of Sect. 17.4. 

Exercise 17.2 Assembler Language. Recall ASM, the assembler machine 
language of Sect. 16.7. It was "geared", i.e., fitted to cope with SAL. Now, 
based, for example, on your solution to Exercise 17.1, (i) does ASM have a 
sufficient instruction repertoire to cope with translations of SIL programs into 
ASM code? If so, argue that. If not, first argue why, and (ii) then suggest ap
propriate new, simple instructions along the line of ASM, Sect. 16.7 (i.e., add 
to the syntax of ASM, Sect. 16.7.4). Finally, (iii) extend the machine state 
of Sect. 16.7.2 (you may have to add new semantic types, cf. Sect. 16.7.1), if 
needed, and extend the semantics definition (as given in Sect. 16.7.5). 

Exercise 17.3 SIL': Expressions. Extend SIL into SIL' by detailing a (small) 
variety of expression forms (as per SAL, as given in Sect. 16.2). Then extend 
the syntax and denotational semantics definitions given in this chapter. Define 
also the corresponding macro-expansion semantics. 
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Exercise 17.4 SIL": Additional Statements. Extend SIL' into SIL", by 
adding new statements, for example, conditional (e.g., if .. then .. else .. fi 
and case .. of .. end), skip (i.e., do nothing) and iterative, say loop .. until 
.. end, statements. Then extend the syntax and denotational semantics defi
nitions given in this chapter. Define also the corresponding macro-expansion 
semantics. 

Exercise 17.5 SIL'": Function Procedures. Allow as part of block definitions 
those of function procedures, i.e., procedures which can be invoked in expres
sion forms and which result in values. That is: 

function f(a_l,a_2,...,a_n) = £(ai,a2,...,a„) 
... f(e_l,e_2,...,e_n) ... 

Define SIL'" as an extension to SIL" by adding the function procedure defi
nition clause and the function invocation expression. Then extend the syntax 
and denotational semantics definitions given in this chapter. Define also the 
corresponding macro-expansion semantics. 
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SMIL: Simple Modular, Imperative Language 

• The prerequisi te for studying this chapter is that you are familiar with 
the modularity concepts as introduced in Chap. 10. 

• The aims are to show the applicability of the compiler development prin
ciples and techniques of Chaps. 16-17, and to do so for a simple modular, 
imperative language, but only in a phase-wise transition from a denota-
tional semantics to a macro-expansion semantics. 

• The objective is to enable you — we claim — to far better understand, 
and hence far more safely implement, compilers for object-oriented lan
guages. 

• The t r ea tmen t is systematic and from informal to formal. 

Object-oriented languages are usually modular. Simula-67 [41], Modula (2 
and 3) [171,377,536], Oberon [418,537-540], E i f f e l [344,345], C++ [492] 
and Java [8,15,146,301,465,513] are modular languages. The RAISE spec
ification language, RSL, can be claimed to be object-oriented [130]. Modules 
are like abstract data types. In principle they can form a lattice of multiple 
inheritance-defined types, syntactically speaking. Semantically speaking, or 
more colloquially, operationally speaking, modules can be thought of as usu
ally dormant coroutines having own states. That is, modules denote a kind of 
objects. In this section we shall define an interesting, nontrivial modular and 
imperative language, SMIL. 

18.1 Syntactic Types 

SMIL programs consist of one main and an unordered collection of uniquely 
named submodules. All modules contain definition parts. Main modules, in 
addition, contain a statement list. Definition parts consist of unordered collec
tions of variable and/or possibly recursive procedure definitions. Definitions 
are either local, imported or exported. 
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Variable definitions consist in this (untyped) language of just variable iden
tifiers. Local and exported procedure definitions consist of unique procedure 
identifiers, parameter lists and bodies. Imported procedure definitions consist 
of just procedure identifiers. In what follows, we concentrate on modelling 
the modularity of the example language. We therefore leave unspecified state
ments, procedure parameter lists and procedure bodies. 

Since (as we shall later see) we need to allocate all variables "globally", 
i.e., also local ones, with possibly identically named local variables in distinct 
modules, we need to make all variable identifiers distinct. The nondistinctness 
is, of course, a static feature offered by the modular language, but it has no 
consequence for the dynamic semantics. So we choose to use the following 
syntactic types, where all submodules are uniquely named, and all imported 
variables are associated with their module of origin: 

t y p e 
M, Stmt, Proc 
Mn = {main} | M 
Prgr :: Main x (M ^ Sub) 
Main :: Defs x Stmt* 
Sub = Defs 
Defs :: Vars x Procs 
Vars = = mk_Vars(xvs:V-set , ivs:(Mn ^ V-set) , lvs:V-set) 
Procs = = mk_Procs(xps:Prom,ips:(Mn 7 j fP-set) , lps:Prom) 
Prom = P jff Proc 

xvs [xps] identify exported variables [procedures]; ivs [ips] identify, by mod
ule name, imported variables [procedures]. A static semantics, which we do 
not show, ensures tha t there are indeed such named modules in which these 
imported variables [procedures] are declared; lvs [lps] declare local variables 
[respectively procedures]. 

18.2 A Denotational Semantics 

18 .2 .1 S e m a n t i c T y p e s 

Variable identifiers designate locations, and procedure identifiers designate 
functions. Designations are semantic type entities and are recorded in envi
ronments. Storages are likewise semantic entities. 

t y p e 

ENV = (V TTI LOC) U ( P ^ FCT) 
STG = LOC ^ VAL 
F C T = VAL* -> U n i t x VAL 
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Here, we have foreseen and denned a global state for the semantic functions. 
That is, we model storage using an imperative formulation. Accordingly, side 
effects of procedures are modelled as transformations on the global state of 
the model. The choice of an imperative modelling technique is, however, only 
dictated by convenience, not by necessity. 

The total environment, p, has two parts: one, an incoming, structured in 
two levels and records all variable denotations, and another, an incoming and 
resulting, is structured in one level and records all exported denotations only: 

TENV = MENV U ENV 
MENV = Mn ̂  LENV 
LENV = V jrt LOC 

18.2.2 Auxiliary Functions 

Static Functions 

'Export' is a compile-time function: 

value 
Export: Defs ->• (V|P)-set 
Export (mk_Defs (mk_ Vars (xvs,_,_) ,mk_Procs (xmp,_,_))) = 

xvs U dom xpm 

Temporal Functions 

As before, we need to allocate (and free) variable locations: 

value 
Alloc: Unit ->• Unit x LOC 
Alloc() = 

let loc:LOC • loc ^ dom stg in 
stg := stg U [loc Ĥ- undefined]; 
loc end 

18.2.3 Semantic Functions 

The statement list of the main module is to be interpreted in an environment, 
mmp, which, besides its own local and exported variables and procedures 
also must record the designations of imported variables and procedures. To 
construct their designation the total environment, p, of all exported such is 
initially required. The contributions, mp and smsp, to the total p come from 
the exports of the main, respectively all the submodules. 
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First we compute variable locations, then procedure denotations. The rea
son for this "split" is the following. In computing locations we simultaneously 
allocate new such, i.e., perform side effects. In computing procedure denota
tions we need to know the denotations of all other procedures which can po
tentially be mutually recursively invoked. But no new allocations are effected. 
Both computations are recursively defined, but only the latter is genuinely 
recursive in tha t it recursively uses the environment which it constructs. It 
turns out tha t if we combined the variable location computation into the set 
of recursive definitions, then the totally undefined environment would be their 
minimal fix point solution — due to the side effect aspects. 

S e m a n t i c Func t ion T y p e s 

value 
I_prgr: Prgr —>• U n i t 
I_sl: Stmt ->• ENV -> U n i t 
C_Ldp: Defs -> U n i t x LENV 
C_Lsms: (M ^ Sub) -> U n i t x (M ^ LENV) 
C _ m m : Defs x Sub-set ->• TENV -> ENV x ENV 
C_sms: (M ^ Sub) -> TENV -> ENV 
C_dp : Mn -> TENV ->• ENV 
Proc_Den: Proc ->• ENV ->• F C T 

We start , here, by stating the type of all needed functions. This is a good 
way to structure or organize definition work: First the "interesting" types 
(the semantic types) are settled upon; next the type (i.e., signature) of the 
functions needed to create and manipulate them are settled upon and, finally, 
the bodies of the functions are "filled in". 

S e m a n t i c Func t ion Def in i t ions 

value 
I_prg(mk_Prgr(mk_Main(dp,s l ) , sms)) = 

let mlp = C_Ldp(dp) , 
sip = C_Lsms(sms) in 

let (mmp,dmmp) = C_mm(dp,sms)p, 
smsp = C_sms(sms)p, 
p = [main i-» mlp] U sip U smsp in 

I_sl(sl)(mmp) e n d e n d 

C_Ldp (mk_Defs (mk_ Vars (xvs ,_,lvs),_)) = 
[ v i-)- Alloc() | v:V • v £ xvs U lvs ] 

C_Lsms(sms) = [ m i->- C_Ldp(sms(m)) | m:M • m £ d o m sms ] 
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C_mm(dp,sms)p = 
let mk_Defs(mk_Vars(xvs, , ) ,mk_Procs(xpm, , )) = dp in 
let mmp = C_dp(dp,main)p in 
(mmp,mmp U 

U { C _ d p ( s m s ( m ) , m ) p / Export(sms(m)) 
| m:M«m £ d o m sms}) 

e n d e n d 

C_sms(sms)p = 
if sms = [ ] t h e n [ ] e lse let m:M • m £ d o m sms in 
C_dp(sms(m))p U Csms(sms \ {m})p e n d e n d 

C_dp(mk_Defs(mk_Vars(xvs, ivs ,) ,mk_Procs(xpm,ips, lpm)) ,m)p = 
let pm = xpm U 1pm in 
let np = p(m) 

U [vH^-p(v)|m:Mn,v:V • m £ d o m ivsAv £ ivs(m)] 
U [pH^-Proc_Den(pm(p))(np) | p:P • p £ d o m pm] 
U [ p ^ p ( p ) | p:P • p £ ips] in np e n d e n d 

18.3 A Macro-expansion Semantics 

We now develop the denotational semantics of Sect. 18.2 into a macro-
substitution semantics. We decide on realizing the combined (ENV.STG) com
plex in terms of a complex of so-called activations: one for the main module, 
and one for each of the submodules. All these activations are allocated simul
taneously. 

Each activation is uniquely designated by a pointer. Each activation con
tains allocations for all exported and local variables, and closures for all pro
cedures, whether exported, imported or local. 

18.3 .1 R u n - T i m e S e m a n t i c T y p e s 

t y p e 
E N V _ S T G = P t r ^ ACTV 
ACTV = = mk_ACTV(ssta:Pt,sdy:Pt,sra:Lbl,senv:sENV,sstg:sSTG,. . .) 

sENV = (V jjt P t r ) U (P jjt CLOS) 
sSTG = V jjt VAL 
CLOS :: P t r x Lbl 

The idea of the macro-expansion stage is (also) to expand the procedure body 
text into RSL (metalanguage) text "in-line" with the macro-expanded text 
which, through calls, refers to those procedures. 
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Suffice it here to summarize tha t invocations of procedures in a deno-
tational definition are effected by finding the procedure designation in the 
environment, and then applying this function to an evaluated argument list. 
In the macro-expanded, operational semantics version we have compiled all 
the source-language program text into metalanguage text; and procedure calls 
are effected by jumping to an appropriate metatext point, i.e., a label (in Lbl). 
The denotational procedure designation embodies the defining environment. 
Now the operational procedure closure contains, besides a label, a pointer 
to the appropriate activation. Procedure invocations occur in the calling en
vironment, i.e., lead to an activation stacked on top of the calling activation 
and chained to it by a dynamic pointer. Since procedures may possibly be 
passed as parameters to other procedures (i.e., to their invocation), or since 
procedure bodies may contain nested procedure definitions where inner ones 
may refer to outer ones, we also need to chain back to defining environments, 
i.e., we need, finally, in our activations, a static pointer (chain). All this pointer 
chaining is nothing new. We first introduced it in the operational semantics 
of SAL, then SIL! 

For each of the functions of Sect. 18.2 we have to redefine a correspond
ing set of macro-expansion functions. We now outline our design decisions. 
Our point is to illustrate a technique of going from abstract , denotational, 
to less abstract , more concrete operational definitions, and of how to relate 
them in an a t tempt to convince the reader of the possible correctness of the 
realization. In the following we refer to the denotational semantics (DS) for
mulae of Sect. 18.2.3 as (DS . . . ) and to those of this subsection as (MS . . . ) 
(mechanical, or macro-expansion semantics). 

We leave it to the reader to further study our solution below. 
In constructing the macro-expansion semantics the following auxiliary 

name suffix conventions are applied: macro-expansion (compile-time) suffix 
c and (metatext interpretation run-time) suffix r. 

18 .3 .2 C o m p i l e / R u n - T i m e S e m a n t i c T y p e s 

t y p e 
Lbl, P t r 
P T = = mk_ni l | P t r 
LB = = mk_nul l | Lbl 
VA = = mk_void | VAL 
LblM = M ^ PLM 
PLM = P ^ Lbl 
P t r M = M ^ P t r 
VarM = V ^ P t r 

value 

undefined:VAL 
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import 

local defns 

procedures 

export 

import 

s1;s1;...;sn 

sub ml 

variables 

export 

import 

local defns 

procedures 

export 

import 

variables 
export vi,vj 
import mt;ut; mj:vja,vjb;... mk:vkp,vkq 

local defns vl,v2,...,vi,...,vj,...vk 

sub m2 

variables 

export 

local defns 

procedures 

export 

import 

sub mn 

variables 

export 

import 

local defns 

procedures 

export 

import 

procedures 
export pq.pr 
import ma:pa; mb:pbx,pby;... mc:pci,pck 

local defns vl,v2,...,vi,...,vj,...vk 

Fig. 18.1. A cactus stack run-time state for modular programs 

18.3.3 Compile-Time Semantic Types 

variable 
ls:Lbl-set := {} 

value 
get_Lbl: Unit ->• Unit Lbl 
get_Lbl() = let lbl:Lbl • lbl £ els in Is := els U {lbl}; r e t u r n lbl end 

GLdp: Dp ->• Uni t x PLM 
GLdp (mk_Defs (_,mk_Procs (xpm,_,lpm))) = 

[ p H-» get_Lbl() | p:P • p € dom(xpm U 1pm) ] 

GLsmm: (M ^ Sub) -> Unit LblM 
GLsmm(smm) E [ I I H ) GLdp(smm(n)) | n:M • n € dom smm ] 

18.3.4 Semantic Functions 

value 
M_prgr: Prgr —>• Unit 
M_prgr(rnk_Prgr(rnk_Main(rnrn,sl),srnrn)) 

* let plm = G_Ldp(mm) in 
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* let nplm' = G_Lsmm(smm) in 
* let lout = get_Lbl() in 
let (xvm,mp) = M_Ldp(mm) in 
let (sxvm,snpm) = M_Lsmm(smm) in 
let vpm = sxvm U xvm, 

npm = snpm U [main i-> mp] in 
let nplm = nplm U [ main i—>• mp ] in 
I_ns(mm,nplm,main) (mp,vpm); 
( I_ns(smm(n) ,nplm,n)(npm(n) ,vpm); | n:Mn • n £ d o m smm ) 
cp := mp; ep := mp; 
Msl(sl); 
g o t o lout; 
E _ P (mm,nplm (main)); 
( E_P(smm(n),nplm(n)); | n:M • n £ dom smm ) 
label lout: end end end end * end end end 

M_Ldp : Defs -> U n i t x (VarM x Pt r ) 
M _ L d p (mk_Defs (mk_ Vars (xvs ,_,lvs),_)) = 

let p t r :P t r • ptr ^ d o m c s t g in 
let actv = mk_ACTV(mk_ni l ,mk_ni l ,mk_nul l , 

[ v i->- ptr | v £ xvs U lvs ], 
[ v i->- undefined | v £ xvs U lvs ],...) in 

stg := c s t g U [ ptr i-» actv ]; 
re turn ([ x i->- ptr | x:V • s £ xvs],ptr) 
e n d e n d 

M_Lsms: (M ^ Sub) -> U n i t x (VarM x Pt r ) 
MLsms(smm) = 

ca se smm of: 

[ ] " • ( [ ] . [ ] ) , - - • 
let n:M • n £ d o m smm in 
let (xvm,ptr) = M_Ldp(smm(n)) in 
let (rxvm,rnpm) = M_Lsms(smm \ {n}) in 
re turn (xvm U rxvm,rmp U [ni-> ptr] ) 
e n d e n d e n d e n d 

I_ns : Defs x LblM x Mn -> (Ptr x VarM) -> U n i t 
I_ns (mk_Defs (mk_ Vars (_, ivs,_), 

mk_Procs(xpm,ips, lpm)) ,nplm,n)(mpm,vpm) = 
let mk_ACTV(sta,dyn,ra,env,stg, . . . ) = (cs tg)(mpm(n)) in 
let env' = env 

U [ V H > vpm(v) | v:V • v £ ivs ] 
U [ p 4 mk_CLOS(mpm(n) , (nplm(n)) (p)) 

| p:P • p £ d o m ( x m p U lpm) ] 
U [ p 4 mk_CLOS(mpm(n ' ) , (nplm(n ' ) ) (p)) 
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| p:P,n':M • p € ips A n' € d o m nplm A p € nplm(n') ] in 
stg := c s t g U [ (mpm(n)) i-» mk_ACTV(sta,syn,ra,env' ,stg, . . . ) ] 

e n d e n d 

M_sl: Stm* ->• U n i t 
M_sl(sl) = ( M_c(sl(i)) | 1 < i < l en si ) 

E _ P : Defs ->• PLM -> U n i t 
E_P(mk_Defs (_ ,mk_Procs (xpm,_ , lpm)) ) (p lm) = 

( label plm(p): 
M_proc( (xmp U lpm) (p)); 
go toc ; ra ; | p:P • p € d o m ( x m p U lpm) ) 

18.4 Discussion 

18.4 .1 Genera l 

We remind the reader tha t the presentation given in this chapter, as well as 
the presentations given in Chaps. 16-17, assumes a deterministic subset of 
RSL, one for which the recursive definitions of environment (p) have minimal 
fix point solutions. Otherwise the definitions do not make any sense. We refer 
to s tandard textbooks [93,158,432,448,499,533] on denotational semantics 
for the full story. 

18.4 .2 Pr inc ip le s , Techniques and Tools 

We summarise: 

Princ ip le s . Modular Programming Language Implementations: The devel
opment of interpreters and compilers for modular (and other) program
ming languages rests on basically the same principles as were outlined in 
Sect. 16.11.2 on principles of functional programming language implementa
tion. • 

Techniques . Modular Programming Language Implementations: The tech
niques, as also outlined in this chapter, again, are very much the same as were 
outlined in Sect. 16.11.2 on techniques of functional programming language 
implementation. • 

Tools . Modular Programming Language Implementations: Again we refer to 
Sect. 16.11.2 on 'functional programming language implementation tools. • 
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18.5 Bibliographical Notes 

Modular languages are usually object-oriented ( 0 0 ) . Simula-67 [41], Modula 
(2 and 3) [171,377,536], Oberon [418,537-540], C++ [492], E i f fe l [344,345], 
Java [8,15,146,301,465,513], and C# [207,346,347,401] are such OO languages. 

18.6 Exercises 

Exercise 18.1 Syntactic Types for OO Languages. Select one of the OO 
programming languages: Modula (2 and 3) [171,377,536] or Oberon [418,537-
540] or E i f f e l [344,345] or C++ [492] or Java [8,15,146,301,465,513] or C# 
[207,346,347,401] and develop type definitions and syntactic well-formedness 
for programs in the chosen OO language. 

Exercise 18.2 SMIL' Expressions. As for Exercise 17.3 extend SMIL with 
suitable expressions and define both a denotational and a macro-expansion 
semantics. 

Exercise 18.3 Additional SMIL" Statements. As for Exercise 17.4 extend 
SMIL with suitable statements and define both a denotational and a macro-
expansion semantics. 

Exercise 18.4 SMIL'" Function Procedures. As for Exercise 17.5 extend 
SMIL with suitable function procedures and further expressions, and define 
both a denotational and a macro-expansion semantics. 
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SPIL: Simple Parallel, Imperative Language 

• The prerequisite for studying this chapter is that you are well famil
iar with RSL's CSP (Communicating Sequential Processes) language con
structs, such as covered in Vol. 1, Chap. 21. 

• The aims are to introduce a special style of defining functions, to use this 
style in giving an "interleave" semantics to a CSP-like language, and to 
thus illustrate the flexibility of the RSL specification language. 

• The objective is to ensure that the reader becomes a versatile professional 
software engineer. 

• The treatment ranges from intuitive via semiformal to almost formal. 

This section is structured as follows. First we state, in Sect. 19.1, the problem 
to be solved — while motivating why we wish to solve that problem. Then we 
outline, in Sect. 19.2, the syntax of programs in the chosen language. This 
is not always the best way to start when designing a new language. Usually 
it is better to start with decisions on what the basic concepts of the language 
should denote. In the Simple Parallel Imperative Language, SPIL, they — 
most abstractly — could be claimed to denote traces of input/output events. 
For illustrative purposes, that is, in order to bring in an example of a state 
transition system, we have here chosen a structural operational semantics-like 
definition. Some of the design, therefore, of the semantic types is arrived at, 
in Sect. 19.3, after an analysis of some of the more conventional process con
cepts. The rest of the design of the semantic types is finalised in Sect. 19.4, 
after an analysis of some of the special, technical process concepts. Finally, in 
Sect. 19.6 we present the detailed semantic functions. 

19.1 The Problem 

We face the problem of delineating a suitable variant of the syntax of an 
imperative version of a CSP-like [119,212,213,436] language — such as it, for 
example, is present in the RAISE Specification Language, RSL, [130,131], and 



682 19 SPIL: Simple Parallel, Imperative Language 

to give this language a semantics. In particular we must show principles and 
techniques for the design of a structural operational semantics [252,402]. 

We have chosen an imperative version of a CSP-like language for educa
tional reasons. It is close to occam [225,327], and its imperativeness is close to C 
[263], Modula (2 and 3) [171,377,536], Oberon [418,537-540], E i f f e l [344,345] 
or C++ [492], Java [8,15,146,301,465,513], and C# [207,346,347,401]. Hence, 
due to its resemblance to CSP, it is relatively easy to learn, and interesting 
parallel programs can thus quickly be established. 

19.2 Syntax 

We assume general familiarity with the concepts of CSP [119,212,213,436]. 

19.2.1 Informal Syntax 

Process Expressions 

With that familiarity — see Vol. 1, Chap. 21 — we shall just present an 
informal, schema-like syntax and shall only comment on the system definition. 

process (command) expressions 
pe : st 

I i ° 
| call pn(arl) 
I Pq_l II PQ_2 || ••• || pq_P 
I pq_ i II pq_ 2 n ••• n pq_i 
I (io_l -> pq_l) D (i«_2 -> pq_2) 0 - 0 (i«_n -> pq_n) 
I sy 

io ( input/output) commands 
io : c_i ? v 

I c_j ! e 

process (command) expression sequence 
pq : P e_i; P e_2; •••; pe_q 

Process expressions are either statements, or channel input/output com
mands, or are process invocation commands, or are structured, i.e., are paral
lel, ||, nondeterministic internal choice, [], or input/output guarded nondeter-
ministic external choice, Q, commands, or are system commands. Input/out
put commands name a channel and specify a variable or an expression, re
spectively. Structured process commands contain lists of process commands. 
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Expressions and Statements 

expressions 
e: k | v | id | ... 

expression (argument) lists 
arl : e_l, e_2, ..., e_m 

statements 
st : v := e 

| case e of: 
val_l I—>• do pq_ l end 
val_2 I—>• do pq_2 end 

val_n I—>• do pq_n end 
end 

| while e do pq end 
| do pq until e end 

Expressions are simple expressions, either constants, or variable names or for
mal identifiers (of procedure definitions), or are further unspecified. Process 
invocation argument lists are lists of simple expressions. Statements are either 
assignment statements, or are cases (i.e., multiway switch) conditional state
ments, or are repetitive (iterative) loop statements, either while or repeat. 

System Processes 

sy: system 
variables: v_ l , v_2, ..., v_w; 
channels: c_l, c_2, ..., c_s; 
process definitions: 

pn_l(fpl_l): pq_l ; 
pn_2(fpl_2): pq_2; 

pn_q(fpl_q): pq_q; 
initial process invocations: 

call pn_i(arl_i) 
|| call pn_j(arl_j) 

|| call pn_k(arl_k) 
end 

fpl : id 1, id 2, ..., id_m 

A program specification is a system specification. A system specification de
clares variables, introduces channels and defines processes. A system specifi-
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cation ends with specifying the (call) invocation of a subset of the defined 
processes. 

19.2.2 Formal Syntax 

pe 
Cn, Vn, Pn, Id, VAL 
P = S | 10 | C | Q 
S = = asg(lhs:Vn,rhs:E) 

| cas(b:E,switch(VAL^P*)) 
whi(b:E,seq:P*) 
rep(seq:P*,b:E) 

E = = ... 
| cst(vahVAL) 

fp(id:Id) 
| var(v:Vn) 

10 = = input(i:Cn) 

output(o:Cn,e:E) 
C = = call(pn:Pn,al:E*) 
Q = = pal(ps:P*-set) 

ind(ps:P*-set) 
xnd(ps:(IOPl-set)) 
sys(s:Sys) 

Sys = Vn-set 
x Cn-set 
x (Pn ^ PD) 
x C-set 

PD = Id* x P* 
I0P1 = 10 x P* 

Channel, variable and process names as well as process definition (formal 
parameter) identifiers are further unspecified atomic quantities. We do not 
specify what values are. 

We have arbitrarily chosen to model the system body of process invoca
tions as a map from distinct process definition names to process definitions. 
This pragmatic choice disallows the same process to be invoked more than 
once in a system body. One can easily remodel this part of the definition into 
one allowing such parallel invocations of identical processes. For our purpose, 
which is that of illustrating how we give an operational semantics to a process 
language, the present choice avoids complications that are not germane to the 
main purpose. 

19.3 Process Concepts and Semantic Types 

It is quite customary to hear the following being said by practicing program
mers and even computer programming lecturers: "and here the program calls 
a procedure", and other such anthropomorphisms. Programs do not do any
thing! They are innate texts. They prescribe that a suitable machine performs 
a number of actions. 

In this section, as well as throughout this technical note, we shall try 
avoid, as best we can, the above kind of anthropomorphisms. But we do not 
guarantee this! It has become an almost acceptable, yet unfortunate habit. 
It is acceptable when we are aware of the problem. Unfortunate, since this 
erroneous use of language may hide some deeper lack of understanding, and 
may reveal a lack of proper abstraction. It is desirable, we firmly believe, 
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that we in general make clear distinctions between syntactics, semantics and 
pragmatics matters. 

19.3.1 Syntactic Notions 

Textual 

By a process definition we understand a syntactic construct (a syntactic struc
ture), pd:PD. By a process name we understand a syntactic construct, pn:Pn, 
which names a process definition. By a process expression we mean the same as 
a process command, namely a syntactic construct, p:P. Statements are either 
simple (i.e., atomic) or composite (or structured) — as are process commands. 
The assignment statement is a simple statement. The case, while and until 
statements are structured statements. The sequential (;), parallel, (||) internal 
nondeterministic choice (|~|), guarded external nondeterministic choice ([]), 
the global, "outermost" and the inner, embedded system process commands 
are structured process commands. That is, a parallel program is a system 
process command, called the outermost global system process command. Any 
system process command properly contained in a process command, i.e., a 
system process command other than the global command, is said to be em
bedded, or inner. 

By prologue we understand either the formal parameter list of a procedure 
definition, or the variable and channel declarations and the process definitions 
of a system process command. By body we understand either the remaining 
part of respective process constructs: the list of process commands of a pro
cedure definition, the parallel (the call) invocation expression of a system 
command and the set of alternative process command lists of a parallel or of 
a nondeterministic command — whether internal or external choice. 

Contextual: Scope and Binding 

The notion of scope is a static notion to be obeyed by processes. A scope 
defines which variable names, channel names, formal parameter identifiers 
and process definition names may be referred to. That is, a scope statically 
delineates a program text, "from this line of program text to this line of 
program text, except those embedded lines" (where inner system commands 
redefine scope). 

System commands define the binding of these names and identifiers to 
their syntactic meaning: variable names to the fact that they are variables, 
channel names to the fact that they are channels, formal parameter identifiers 
to the fact that they are formal parameters and process names to their process 
definitions. The binding is effective in the scope of the names and identifiers. 

Contained, local system commands may redefine some or all of these names 
and/or may introduce new names. Redefinition allows a channel name in one 
scope to be a variable name in another scope. Those names and identifiers not 
redefined are inherited and thus are ported to the inner scope — for as long as 
further local system expressions do not redefine (syntactic) scope meanings. 
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Contextual: Hiding and Modularisation 

A process definition body, i.e., its sequence of process commands, is allowed 
to be just one command, and tha t command could be a system command. 
In this way the programmer is free to choose a set of local variables, local 
channels and local process definitions for each process definition (and none, if 
so decided, for the global system). 

In any case, system commands allow the declaration of variables private 
to the processes invoked by the system command — as well as the intro
duction of channels and definition of processes. Entities (variables, channels 
and processes) which are declared, introduced, respectively defined in a sys
tem command, are said to be hidden from the outside. They are not part of 
the surrounding scope, are not visible outside the system command. (System 
commands are like ordinary blocks in ordinary programming languages.) 

Process definitions can be said to define modules, i.e., object classes. This 
may be especially clear when their body consists of exactly one process com
mand which is a system command. These process definition modules can be 
invoked any number of times: in parallel, albeit, requiring, for technical rea
sons, just a tiny variation in actual argument lists, so as to make the process 
(the call) invocations distinct. 

So our language has several of the capabilities. The properties of a mod
ular, or object-oriented programming language. Tha t is, system command 
process definitions constitute modules and their (the call) invocation con
stitutes objects. Ou tpu t / inpu t synchronisation and communication between 
processes, i.e., objects, can be used to implement methods. Since we have not 
imposed any type discipline on our language we cannot talk about inheritance, 
let alone multiple inheritance, but the possibility of introducing such a type 
concept is straightforward. 

19.3 .2 M a c h i n e s and Interpreters 

Programs specify processes. Machines carry out processes: They provide re
sources to follow the prescriptions of a program. Amongst resources we men
tion storage for program variables, "stacks" of environments to handle process-
related scope mat ters . A machine which carries out the prescriptions of a pro
gram does so according to a prescription of the semantics of the programming 
language of tha t program. Such a prescription, when operational, is here called 
an interpreter for the programming language. 

19 .3 .3 S e m a n t i c N o t i o n s and T y p e s 

A c t i o n s 

By a process action we understand a smallest, indivisible atomic, step of a 
machine when following the prescription of a process command. Examples of 
process actions are: following the prescription of an assignment statement, or 
a pair of inpu t /ou tpu t commands, or a call command. 
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Processes 

By a process we understand a semantic construct: that which is prescribed (to 
be, and now being) executed by a machine — a possibly infinite sequence of 
process actions. By a process invocation we understand a semantic construct, 
the process action that obeys the prescription of a process call command. 
Examples of (usually) nonatomic processes are those that result from a ma
chine following the prescriptions of structured (i.e., composite) statements, 
and those that result from a machine following the prescriptions of structured 
(i.e., composite) process commands. 

Objects 

In general an object is here considered to be the (the call) invocation of a 
process definition. Its object-orientedness becomes all the more clear when 
one considers those of process definitions whose bodies are single system com
mands. It will, in general, prescribe its own variables — i.e., the object state. 
If the system processes do not refer to any variables declared in embracing 
system commands, then we see that object-orientedness is more transparent. 

Environments p :ENV — / 

The semantic type of environments is a "classical" type that has been con
ventionally used since the early 1960s. Environments are the semantic coun
terpart to syntactic scopes (and syntactic scope bindings). A system process 
establishes an environment: It inherits any surrounding environment, which is 
empty (nil, void) in the case of the global system process, and overrides (f) this 
with the operational semantic meaning of the names (re) defined by the system 
process (Sects. 19.5.1 and 19.6.13). A process definition when invoked also es
tablishes an environment: It inherits the environment of the scope in which 
the process is defined, and overrides f this with the binding of formal param
eter identifiers to actual argument values, position by position (Sects. 19.4.4 
and 19.6.9). 

Storages a : S 

The semantic type of storages is a "classical" type that has been conventionally 
used since the early 1960s. Each system process may contain processes that 
operate only on the system-declared variables. Different systems will then each 
have their own set of variables, i.e., their own storage. 

In the semantic model of this chapter we model the system storage concept 
in terms of a single, global metastorage, a : S. 

type 
a:S = LOC ^ VAL 

Since we do not detail a type concept, we shall say nothing about locations 
and values. 
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19.4 Process-Oriented Semantic Types 

In addition to the conventional semantic types of environments and storages 
the operational semantics definition of this technical note makes use of addi
tional semantic types: the type of unique process identifiers (not to be con
fused with process names1) ; the extension of the conventional environment to 
record bindings of (sets of) channels to the (singleton set of) process identifier 
created during prologue execution of system process in which they were in
troduced; and a heap for recording process continuations. In addition we also 
make use of process states, 7 : T, which record the state of a process tha t is 
subject to (eligible for) interpretation actions; the totality, i.e., the set, ip : &, 
of all "currently eligible" process states, referred to as the process state con
figuration; and the composition of all three: process state configuration, heap 
and storage into the program state, UJ : i?, which the JVext-state ("one-step" 
transition) function possibly transforms. 

19.4 .1 U n i q u e P r o c e s s Identif iers TT : U 

With every process we associate a unique process identifier, 7r : 77. 

t y p e 77 

When a set of parallel processes, pqs, of process TT are started, whatever se
quence of zero, one or more processes, pi, follows after this set (pqs), it cannot 
begin executing before the started processes have all terminated. 

Operationally we handle this as follows. Each started process, p q i , pq2, 
. . . , pq g , is given a globally unique identification, TT{, for i = 1 to n, and its 
own list of process commands, pqi, is affixed a stop(7Tj) process (command). 
The "continuation" process structure 

6 : ({7Ti,7r2,... ,irq},((pl,irho),irs)) 

is put on a heap (£ of "to be executed" processes) — where 7rs is the set of 
all process identifiers mentioned above, tha t is, initially ITS. Once any of the 
processes pq from pqs terminates, then its process marker, stop(7Tj), causes 
the removal of 7Tj from the unique continuation structure. Emptiness of the set 
{TTI, 7T2,..., TTq} means tha t all of the parallel processes pqs have terminated. It 
is then t ime to restore pi and to convert the heap "continuation" 9. Conversion 
is explained below. 

Similarly for process (the call) invocation. And, each set of channels al
located upon entry to a system process is marked in the heap by a likewise 
unique process identifier: (TT, { C I , C 2 , . . . , c^}). See Sects. 19.5.1, 19.6.7, 19.6.9 
and 19.6.13 for allocation to the heap, and Sect. 19.6.8 for updates to, inch 
conversions of the heap. 

We summarise: 
1A process definition has one name, but, depending on its number of possibly 

recursive (the call) invocations, may have many process identifications. 
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• With every syntactically denned contiguous sequence of process actions 
we associate a unique process identifier. 

• That is: 
• A process definition body gives rise to a unique process identifier. 
• Each process command list of a set of process command lists of a 

parallel process command gives rise to a unique process identifier. 
• A system process command gives rise to a unique process identifier. 

• Each channel is associated with the unique process identifier of the system 
process in which it is defined. 

19.4.2 The Heap £ : S 

Processes may (via the call) invoke processes defined in environments differ
ent from the one current at the place of invocation. A sequence of process 
commands may, properly within it, contain parallel process commands: 

pe_l ; (pe_21 || pe_22 || ... || pe_2n); pe_3 

Execution as prescribed by process expression pe_3 does not commence before 
all of pe_2i, for all i from 1 to n, have properly terminated. 

A heap is an abstract data structure to which arbitrary substructures can 
be allocated and from which they can be removed (freed). Furthermore, one 
can update these substructures. 

We introduce a heap state component, £ : S. The data structures allocated 
to the heap stand for process continuations: pairs of a sequence of process 
commands and the environment in which they are to be interpreted. Such pairs 
designate the program text after a process (the call) invocation, respectively 
after a parallel process command. 

type 
£:E = (77-set ^ (©(terminated)) U (77 i->- Cn-set) /* the heap */ 
0:0 = (p* x ENV) x Pi-set 

The heap, rather arbitrarily, is also used to keep the bindings of sets of system 
local channel names to unique process identifiers. See Sects. 19.4.1 and 19.4.3. 

The heap also conveniently records all process identifiers ever allocated, 
whether still in use (associated with a still visible channel, or a process that 
is still running) or out of service (because the channel is no longer visible or 
the process has terminated or finished). 

. Model Assertions . 

(i) The sets of ITS allocated to the heap on behalf of process continuations, 
8, are all disjoint, and (ii) the singleton sets, likewise of 7rs allocated to the 
heap on behalf of channels, are likewise disjoint from any process continua
tion 7rs, and (hi) the sets [known as process history identifiers] of 7rs' paired 
with pairs of process continuation and environments (i.e., process closures) 
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include the 7rs of its map inverse, a n d (iv) the union set of all the chan
nel binding singleton 7r sets ({ir}) and the union set of all process history 
identifier sets 7rs', at any point in the interpretation of a parallel program, 
identify the set of all so far allocated channels and processes.2We define, in 
Sect. 19.5.4, a function, Bound, which retrieves all these 7r's from the heap. 

We summarise: 

• A heap is a global state component. 
• It records all channels ever allocated by their unique process identifier. 
• It also records all process continuations, tha t is, the rest of a process 

definition body's process command list after a ca l l command or a parallel 
process command — as a process closure: 
* together with a defining environment, 
• and the set of process identifiers of the called process (a singleton set) 

or the parallel command's parallel processes process command. 
• If a process has, or a set of parallel processes have all, t e r m i n a t e d then 

it is, resp. they are, marked so in the heap. 

19 .4 .3 I n p u t / O u t p u t C h a n n e l B i n d i n g s 

t y p e 
QS = = stop(7r:77) 
QI = = in(c7r:(c:Cn,pi:77),v:Vn) 
QO = = out(c7r:(c:Cn,pi:77),e:E) 
QIO = QI | QO 
QIOP1 = QIO x Psl 
Psl = {| pi | pl:(P|QS)* • 

V i:Nat«i £ i n d s pi \ { len pi} 
=>• pl(i)g QIO A pl ( len p l )e QIO |} 

Syntactically input and output process commands name channels. Since sys
tem process definitions may redefine channels an environment (p) is estab
lished tha t binds, amongst others, channel names to the pair of these channel 
names and the unique process identifier of the composite parallel process in 
which they occur. 

We summarise: 

• Input and output commands may be encoded: QIO. 
• An encoded guarded command list, QIOP1, has its guard being an encoded 

input or output command and its last command being a s t o p marker. 

2 Some of these channels and processes may have been abandoned, respectively 
terminated. A channel is abandoned when it is no longer in the scope of a running 
process. 
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19.4 .4 E n v i r o n m e n t s p : E N V 

Variables are bound to their locations. Formal parameter identifiers of an in
voked procedure (definition) are bound to the actual argument values. Process 
names are bound to their closure, a pair of the process definition and the envi
ronment in which it was defined. S is the global storage; it binds locations to 
values. We only allow simple values: process and channel "denotations" (also a 
form of closures) are not allowed to be values. But one could think of another 
parallel, imperative language of so-called mobile processes [119,358,446] where 
such values are allowed. Each continuation, 9, process structure also contains 
the environment current at the instance the set, pqs, of parallel processes was 
first encountered. 

t y p e 
p: ENV = (Vn ^ LOC) 

U (C ^ 77) 
U (Id jft VAL) 
U (Pn ^ CLOS) 

CLOS = PD x ENV 

We summarise: 

• Environments provide for binding of 
• variables to locations, 
• channels to process identifiers, 
• formal parameter identifiers to argument values and 
• process definition names to process closures. 

19.4 .5 S t a t e C o m p o s i t i o n \P, r, S, S, fi 

The operational semantics is expressed as a (Next) s tate transition function, 
tha t structural operational semantics, but is written in a variant of 
RSL. The crucial issue is: Wha t is the state of a process? 

To keep track of all the varying number of specified processes at widely dif
ferent levels of definition, some deeply embedded in surrounding ("outer") pro
cess commands, others less deeply we introduce a state component, ip, which 
is a set of individual process states 7. The state 7 is like a continuation (8). 
The difference is tha t a state 7 may have translated some of its leading input / -
output process commands of its program text components, phSeqP, from the 
purely syntactical representational form (including an ordinary inpu t /ou tpu t 
process command, 10) to some internal, the QIO, forms (Sect. 19.6.6). Also, 
a state 7 may have translated some of its leading nondeterministic external 
choice process commands in a certain way, for instance, from the I0P1 form 
to the QI0P1 form, and from there to the NonPs forms (Sect. 19.6.11). 



692 19 SPIL: Simple Parallel, Imperative Language 

type 
IOsPl = SeqPl | NonPs 
SeqPl' = P " 
p ' = QIO | P | Stop 
Stop = = stop(pi:77) 
SeqPl = {| pi | pl:SeqPl' • 

V x:Nat • x e inds pi \ {1} ^> pl(x)£ QIO 
V x:Nat • x € inds pi \ {len pi} =>• V 7r:77 • pl(x) ^ stop(7r) |} 

NonPs = ((IO|QIO) x P*)-set x SeqPl 
T-T = IOsPl x ENV 
ip:\p = r-set 
n = (V x S x Z) \ {finish} 

The Global Sta te 

We summarise: 

• The global state consists of three state components: 
1. a storage, a : S 
2. a heap, £ : E 
3. a set of candidates for next actions, ip : W 

• Each next action candidate, 7 : r, consists of two parts: 
1. a possibly encoded textual part: 

• either a simple process command list 
• or a set of pairs of a guard and a command list, which stands for a 

nondeterministic external choice command 
2. and an environment. 

A 7 pair (iospl,p) 

• is either of the form (pl,p), where p! is a list of encoded process expressions 
(in SeqPl), 

• or of the form (((ioqios.pl'),pi"),p) where pi', pi" are lists of process expres
sions (in respectively P* and SeqPl) and ioqios is a set of pairs (ioqioj.plj) 
(in NonPs) where plj is a list of process expressions and ioqioj is a set 
of pairs of possibly encoded input/output clauses and lists of ordinary 
(un-encoded) process expressions. 

. Model Assertions . 
No two elements of ip derive from the same process, i.e., all their encoded 
7r's are distinct. 
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19.5 Initial and Auxiliary Semantic Functions 

19.5 .1 Start Func t ion 

value 
Start: Sy -> U n i t 
Start(sys(vs,cs,pdm,ps)) = 

let (ip,ir,Trs,a) = System(vs,cs,pdm,ps)([ ])([])([]) in 
NextCont(z/>,[{7r} i->- cs,7rs i->- (finish) ],tr) 
e n d 
assert card ip = card ps = card 7rs 

A card d o m a = card vs 
A card d o m p 

= card d o m vs + card cs + card d o m pdm 

19.5 .2 S y s t e m Funct ion 

The System function prepares a set, ip, of process continuations: pairs of 
program texts (lists of process commands) and environments; a set, ip's, of 
unique process identifiers, one for each process (the call) invocation (found in 
ps); and (updates) the storage, a. The environment, p, tha t is also (update) 
constructed by System is used in (is put into) the process closures of ip. All 
channel names are bound, in p, to a unique process identifier. It really doesn't 
mat ter which, as long as all channel names of a system receive the same 
identifier and tha t identifier is never bound to other systems' channel names. 

System(vs,cs,pdm,ps)(p) (£)(cr) = 
let ( p V ) = BindAndAlloc(vs)(p)(cr), 

7r:77,7rs:77-set • card 7rs = card ps A Free({7r}U 7rs,£) in 
let p" = p' U [c i-)- 7r | c:Cn • c e cs] U 

[ pn i->- (pdm(pn),p") | pn:Pn • pn € d o m pdm ] in 
let ip = Distribute(7rs,ps,p) in 
(?/>,7r,7rs,(T') e n d e n d e n d 
assert card ip = card ps 

Observe tha t the definition of p" is recursive. This recursion allows defined 
processes to invoke one another or themselves recursively. If such recursion, 
for some pragmatic reason or other, is not required, then the process definition 
closure need not be given the same environment to which it contributes (p1 

suffices). RSL [130,131], strictly speaking, does not permit us to express, in 
general, such recursive definitions. In the case of the semantics of this chapter, 
one can, however, show tha t there is indeed a suitable solution to the recursive 
definition of p". 
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19 .5 .3 B i n d and A l l o c a t e Funct ions 

The BindAndAlloc function is a "classical" variable binding and storage al
location function: To each variable a distinct location is found in storage and 
a binding provided in the environment. 

BindAndAlloc: Vn-se t -> ENV -> £ ->• £ x ENV 
BindAndAlloc(vs)(p)0) = 

i f v s = {} 
t h e n (p,a) 

else let v:Vn • v € vs, loc:LOC • loc ^ d o m a in 
let p' = p] [v H-̂  loc], 

a' = a U [loc H-> chaos ] in 
BindAndAlloc(vs \ {v})(p')(cr') e n d e n d 

e n d 

19 .5 .4 Free and B o u n d Funct ions 

The Free function checks tha t a set of process identifiers have never been 
allocated to the heap. 

Free: 77-set x S —> B o o l 
Free(7rs,0 = Bound(£) n ITS' = {} 

Bound: S —>• 77-set 
Bound(^) = 

let 7rs' = { 7r | TT:II • 7T € d o m ^ }, 

7rs" = U { 7TS | 7rs:77-set • (,7rs") € rng £ } in 
7rs' U 7rs" e n d 
assert d o m £ C 7rs' U 7rs" 

Free, Bound express whether a set of unique process identifiers are free, i.e., 
not used, not Bound, in the heap. Bound computes all process identifiers ever 
(i.e., so far) bound to channels (ITS'), respectively processes (TTS"). 

. Model Assertions . 

(i) If a 7r is in the definition set, i.e., the d o m a i n of the heap map, then it 
designates a set of channel names, and (ii) if a set {TTI,TT2, • • •, TT„} is in the 
domain of the heap map then it designates a pair of a process closure and 
a set, 7rs of process identifiers such tha t {TTI,TT2, • • •, TT„} C TTS. 

19.5 .5 D i s t r i b u t e Func t ion 

The Distribute function creates a set of process continuations, 7. These are 
pairs of process command sequences ending in a stop(7r) clause. The Next-
state transition function will inspect the head of these command lists of the 
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continuation in ip. The stop(7r) clause, when encountered, shall contribute to 
the eventual removal from the heap, £, of the process closure allocated there 
when certain process commands were first encountered. In the case of the 
initial system initialisation the clause f i n i s h is being retrieved — signifying 
that the whole program has terminated (Sects. 19.5.6 and 19.6.14). 

Distribute: 77-set x P-set x ENV -> f 
Distributees,pqs,p) = 

if 7rs={} /* assert: */ pqs={} 
then let 7r:77 • 7r £ 7rs, pq:P* • pq € pqs in 

{(pq^(stop(7r)),p)} U Distributees \ {7r},pqs \ |pq},p) end 
else {} 

end 
pre card 7rs = card pqs 

The Distribute and the BindAndAUoc functions, as a technicality, are ex
pressed using recursive descent on finite sets. 

19.5.6 Transition Loop 

NextCont: Q ->• Unit 
NextCont(V>,£,o-) = 

let Lij = Next(^,^,tr) in 
if Lij = finish then skip else NextCont(ui) end end 

The NextCont function has the Unit type since it may never terminate! We 
often define processes to willfully never terminate. 
. Model Assertion . 
If the interpreter encounters f i n i s h then the global system program has 
terminated. 

19.6 Semantic Functions 

19.6.1 The JVext-State Transition Function 

The iVext-state transition function inspects an ui state and delivers, always, 
an ui state. 

Next: tt ->• fl 
Next(ip,£,cr) = ... /* defined case by case */ ... 

Thus, in RSL, we write a structural operational semantics, i.e., a transition sys
tem definition of "mechanical", step-by-step executions of parallel programs. 

The idea is that the combined, i.e., the total state, ip, of all processes is 
investigated by inspecting an arbitrary component, 7, (of interest) "each time 
round the Next loop" (where NextCont defines that loop): 
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Next({((cmd)^pl ,p)} U ip,£,a) = ... 
Next({(((nd,pq),pl),p)} U ^,a) = ... 
a s s e r t 3 7r:77 • pl(len pi) = stop(7r) 

There are, as shown, two forms potentially subject to inspection. Here pi 
stands for encoded process expression lists (always ending with a stop(7r) 
command); pq stands for ordinary unencoded process expression lists; cmd 
stands for a single, possibly encoded process expression; and nd for a set of 
possibly encoded inpu t /ou tpu t ("guard") commands. 

The reader is directed towards the special, not strictly "RSL kosher(!)", 
use of formal parameter expressions as indicated above. The union of one (or, 
as for the inpu t /ou tpu t rendezvous, two) process states, a, with a "remain
ing" process state configuration, ip, expresses a suitable nondeterminism by 
the program interpreter: namely tha t process "progress" is arbitrary. Which 
of the many processes makes "next" steps depends on so many other circum
stances than those explicit from the program text: the availability of machine 
resources, the degree to which "real" concurrency can be provided for in the 
actually executing programs, etc. 

19.6 .2 T h e A s s i g n m e n t S t a t e m e n t 

Such a component, amongst many others, but one which is ready for execution, 
could be the "atomic" assignment statement: 

Nex t ({ ( (asgn(v ,e ) r P l , p )} U ^,a) = 
let loc = p(v), val = Eval_Expr(e) (p)(cr) in 
let a' = a f [loc i->- val] i n 
({(pl,p)} U ip,£,<r') e n d e n d 
pre v £ d o m p A loc £ d o m a A pi ^ () 

We see tha t the assignment statement is executed and disappears from the W 
component. 

We also get the meaning of an assignment: tha t of evaluating its "right-
hand side" expression and binding its value to the location of the "left-hand 
side" variable. 
. Language Assertion 

If evaluation of the expression terminates then the assignment statement 
will terminate. (It is here assumed tha t the variable is known.) 

19 .6 .3 T h e case S t a t e m e n t 

Now to the structured statements. First, the case switch: 
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Next({((cas(e,sw))~pl,p)} U ip,^,a) = 
let val = Eval_Expr(e) (p)(cr) in 
if val € d o m sw 

t h e n let pq = sw(val) in ({(pq~pl,p)} U ?p,£,,cr) e n d 
e lse chaos 

e n d e n d 
pre pi ^ () 

It generalises the two-way if t h e n e lse e n d switch. The Next transition is 
from the structured cases switch, if applicable, by replacing tha t statement 
by the selected list of process commands. 

The essential aspect of the case s tatement has been specified: the selection, 
if possible, of a continuation amongst a set of alternative such. If no case-list 
"guard" matches the case-expression value then chaos ensues: what happens 
next is left undefined! 
. Language Assertion 

If evaluation of the expression terminates and if interpretation of the selected 
case branch terminates then the case statement will terminate. 

19.6 .4 T h e while L o o p 

A transition involving the whi l e loop: 

Nex t ({ ( (whi (e ,pq ) r P l , p )} U ^,a) = 
let val = Eval_Expr(e) (p)(cr) in 
if val 

t h e n ({(pq~(whi(e,pq))~pl,/9)} U ip£,a) 
else ({(pl,p)} U y,£,<r) 

e n d e n d 
pre pi ^ () 

also results in either removing it altogether from the \P s tate component, or 
in prefix-appending its body to the process command list whose first element 
was tha t whi l e loop. This essentially expresses the meaning of a whi l e loop 
through its rewriting! 
. Language Assertion 

If the evaluation of the while expression when first encountered terminates, 
and if every subsequent interpretation of the while body of process expres
sions terminates, then the while clause terminates. 

19.6 .5 T h e repeat until L o o p 

Similarly for the repeat unt i l loop: 
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Next({((rep(pq,e))^pl,p)} U ip,£,a) = 
({(pq~(whi(e,pq))~pl,p)} U ip£,a) 

pre pi ^ () 

which likewise leads to a rewrite, i.e., a reshuffling of an appropriate state W 
component. 

. Language Assertion 

A language semantics assertion similar to tha t for the while loop can be 
formulated. 

19.6 .6 S i m p l e I n p u t / O u t p u t P r o c e s s e s 

Transitions involving the simple, atomic process synchronisation and commu
nication commands, either input or o u t p u t , result in their replacement by 
almost similar in, respectively out , commands. The replacements encode the 
proper, unique process identifier to which the command name is bound in 
the environment. The issue here is tha t one and the same channel name may 
have been declared in two different contexts which might bind these names to 
different process identifiers — hence they are not designating the same, but 
instead different channels. 

Next({((input(c,v))~pl,p)} U ip,£,a) = 
({« in ( (c ,p (c ) ) ,v ) r P l , p )} U ip&a) 
pre pi ^ () A v £ d o m p A p(v) £ d o m a 

A c € d o m p A c £ d o m £ 

Next({((output(c,e))~pl,p)} U V,*>) = 
({( (out ( (c ,p(c) ) ,e ) r P l ,p )} U y,£,<r) 
pre pi ^ () A c £ d o m p A c £ d o m £ 

If we are i n a 1 ? state where there is a "match", tha t is, one process wishes to 
input on a channel and another wishes to output on tha t channel, then the 
communication may take place. The value of the expression is communicated 
by being assigned to the receiving process's variable v. 

Next({((in((c,7r),v))^pl,p),((out((c,7r),e))^pl',p')} U 4>,t,a) = 
let loc = p(v), val = Eval_Expr(e)(p')( tr) in 
({ (p l ,p ) , (p lV)} U y,£,<r t [loc H- val]) e n d 
pre pi ^ () A v £ d o m p 

A p(v) £ d o m a A c £ d o m p 
A 7T £ d o m £ A c £ £(7r) 

This last transition rather neatly expresses why one refers to the inpu t /ou tpu t 
process commands as defining a rendezvous of two processes: their handshake 
synchronisation and communication (of a value from one process to a location 
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of the local storage of another process). The output clause expression is not 
evaluated till the rendezvous actually takes place. 

. Model Assertion . 
The two process states represent different processes: A process cannot syn
chronise and communicate with itself. 

19.6 .7 T h e Paral le l P r o c e s s C o m m a n d , || 

N e x t ( { ( ( p a r ( p q s ) r P l , p ) } U xj,£,a) = 
let 7rs:77-set • card 7rs = card pqs A Free(7rs,£) in 
let ip' = Dis t r ibu tees ,pqs ,p) , 

£' = £ U [ 7TS ^ ((pl,p),7rs) ] in 
(ip1 U ip,£',a) e n d e n d 
pre pi ?M) A ... 

The Distribute function yields a process continuation, 7, for each of the par
allel process expressions in pqs, and assigns it to the set, the W component, of 
all such process continuations. The rest of the process expression, pi, after the 
parallel process expression (essentially after pqs) is temporarily allocated to 
the heap. This models the semantics of the parallel process expression: Only 
after all of the parallel processes, now in ip', have terminated, will the process 
expression pi be honoured. 

19.6 .8 T h e stop P r o c e s s Technical i ty 

When the interpreter encounters a stop(7r) clause then the heap is inspected. 
If the process identified by the n was the last of a set of one or more parallel 
processes or was tha t of a process (call) invocation, then the invoking process 
continuation is restored and the original set of processes (represented by their 
identifiers) is marked as having t e r m i n a t e d . 

Next({((stop(7r)),p)} U xj,£,a) = 
let 7rs:77-set • 7rs £ d o m £ A 7r £ 7rs in 
let ((pq,/9'),7rs') = £(TTS) in 

let £' = if7rs={7r} 
t h e n £({71"}) U [ITS' H-» t e r m i n a t e d ] 
e lse £\7rs U [ 7rs\{7r} \-> ((pq,p'),7rs') ] e n d in 

if TTS={TT} t h e n ({(pq,p')} U ^,£',tr) e lse (ip,^',a) e n d 
e n d e n d e n d 
assert 7rs C 7rs' 

It is emphasized tha t the use of the stop(7r) clause is a technicality. Other 
means, other encodings could have been defined. In an operational semantics 
there usually are several such rather detailed and somewhat ad hoc technical 
choices. 
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19.6 .9 T h e P r o c e s s call C o m m a n d 

Invoking a denned process is t reated like start ing a single parallel process. 
This is so since a denned process may have been defined in a scope, i.e., with 
an environment (p'), different from tha t of the invoking process (p). 

Next({((call(pn,el))^pl,p)} U ip,£,a) = 
let ((idl,pq),//) = p(pn) in 
let p" = p ' t[ idl(i)H^Eval_Expr(el(i))(p)(cr) | i :Natn £ inds el] in 
let -rr-.n • Free({7r},0 i n 
({(pq^(stop(7r)),p")} U y,£ U [ W ^ ((pl,p),{7r})],a) 
e n d e n d e n d 
pre pi 7̂  () A pn € d o m p A l en el = l en idl A ... 

Actual arguments are bound to formal parameters, resulting in p". 

19 .6 .10 Internal N o n d e t e r m i n i s t i c P r o c e s s e s , [~| 

The definition of the internal nondeterministic process command is simple. 
The let clause expresses the internal nondeterministic choice: An arbitrary 
process expression, pq, from amongst pqs is chosen. 

Nex t ({ ( ( i nd (pqs ) r P l , p )} U V,£,<T) = 

let pq:P* • pq € pqs in ({(pq^pl,p)} U ?/>,£,c) e n d 
pre pi ^ (> A ... 

19.6 .11 E x t e r n a l N o n d e t e r m i n i s t i c P r o c e s s e s , [] 

The Next transition on external nondeterministic process command processes 
has to prepare for the eventuality tha t any number of the external nondeter
ministic alternative process potentialities is or will be ready to either input or 
output from ("completely") other processes. So all alternative process com
mands must, somehow, have their first, an input or an output command, 
be prepared, as were "ordinary" inpu t /ou tpu t commands, by finding the ap
propriate channel bindings. This is done by the MakelO function. Then we 
prepare a set of potential alternative process potentialities, one of which will 
eventually be selected and all the others discarded. 

Nex t ({ ( (xnd (gs ) r P l , p )} U ^,<T) = 
let g = { MakeIOpq(io)(p) | io:IOPl • io £ gs } in 
({((g,pl),p)} U y,£,<r) e n d 

MakelO: IOP1 -> ENV -> QIOP1 
MakelO ((io,pq))(p) = 

case io of: 
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input(c,v) ->• (in((c,p(c)),v),pq), 
output(c,e) —• (out((c,p(c)),e),pq) 

e n d 

assert v £ d o m p A 3 7r:77 • 7r £ d o m ( A c £ £(7r) 

19.6 .12 N o n d e t e r m i n i s t i c I n p u t / O u t p u t P r o c e s s e s 

There are now three possibilities of synchronisation and communication in
volving external nondeterministic process alternatives: 

• A potential external nondeterministic process alternative (of one process, 
7T) is enabled to input from another potential external nondeterministic 
process alternative (of another process, TT'), which is enabled for output . 

Next({(({(in((c,7r),v),pq)} U iopqps,pl),p), 

((({(out((c,7r),e),pq')} U i o p q p s ' ) , p l V ) } U ip&a) = 
let loc = p(v), val = Eval_Expr(e) (p')(cr) in 
({ (pq~pl ,p ) , (pq '~p lV)} U ^,C,cr t [loc ^ val]) e n d 
pre 7T € d o m ( A c £ £(-7r) A v € d o m p A loc £ d o m a A 

p ^ A p l ^ O A P 1 ' # 0 
assert {(pq^pl,p),(pq'^pl ' ,p ' )} n i' = {} 

• A potential external nondeterministic process alternative (of one process, 
7T) is enabled to input from another (not nondeterministic) process (TT1), 
which is enabled for output . 

Next({(({(in((c,i),v),pq)} U iopqps,pl),p), 

« o u t ( ( c , i ) , e ) ) ~ P r y ) } U il,£,o) = 
let loc = p(v), val = Eval_Expr(e) (p')(cr) in 
({(pq^pl,p),(pq'^pl ' ,P ')} U ^,C,cr t [loc ^ val]) e n d 
pre / * similar to above */ 
assert / * similar to above */ 

• And vice versa wrt. input and output . 

Next({(({(out((c,i) ,e),pq)} U iopqps,pl),p), 
« i n ( ( c , i ) , v ) r p l , / / ) } U ^,a) = 

let val = Eval_Expr(e)(p)(tr) , loc = p'(v) in 

({ (pq^p l ,p ) , (p l ' y )} U $£,a t [loc ^ val]) e n d 
pre / * similar to above */ 
assert / * similar to above */ 

Again we see the rendezvous of two distinct (hence parallel) processes over a 
channel, a "handshake" synchronising and communicating, as mentioned in 
Sect. 19.6.6. 
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19 .6 .13 T h e E m b e d d e d S y s t e m P r o c e s s C o m m a n d 

The embedded system process is very much like the global system process 
(Sect. 19.5.1). 

Next({((sys(vs,cs,pdm,ps))^pl,p)} U ?/>,£,tr) = 
let (ip',Tr,irs,cr') = System(vs,cs,pdm,ps)(p)(£)(cr) in 
(?/>' U </>,£ U [{?r} H> CS,7TS H> ((j)l,p),tp')],a') e n d 

pre pi ^ (> A ... 
assert ip' fl ^={}A{TT}UTTS fl Bound(£) = {}Acard ^ ' = c a r d psA... 

The auxiliary function System was defined in Section 19.5.1. 

19 .6 .14 A finish P r o c e s s Technical i ty 

If when inspecting a process continuation in the \P component the interpreter 
finds a f i n i s h clause, then we can assert tha t the program is terminating. 

Next({((finish),p)} U tp,^,a) = finish 
assert: £ = [] A ip = {} 

. Model Assertion . 
When a f i n i s h clause is encountered then the process state configuration 
is just a singleton set. Tha t is, ip is empty. And the heap type will consist 
only of the process identifiers of (all) processes ever activated (but now 
terminated) and those of all channels ever instantiated. 

19.7 Discussion 

19.7 .1 Genera l 

We have defined the syntax of a nontrivial CSP-like language. And we have 
given an operational, i.e., a computational style semantics of this language. 
To do so we contrived a rather complicated notion of configuration. The main 
idea of this chapter was to introduce the reader to this kind of structural 
operational semantics. We find it a useful exercise to understand this seman
tics. The semantics definition style of this chapter offers one way of defining 
concurrent systems and languages. Although unwieldy, it may serve well in 
smaller applications than the one shown here. 

Use of the structural operational semantics definition techniques of Plotkin 
[402] is advised since it lends itself more to a proof-oriented specification. We 
refer to current textbooks on semantics covering the operational semantics 
definition style [93,158,432,448,499,533]. 
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19.7.2 Principles, Techniques and Tools 

We summarise: 

Principles. Parallel Programming Language Definitions: Concurrent pro
grams are best characterised, it appears, by their transitions: from program 
point to program point, usually from points of interactions between threads 
of programs, i.e., processes, or between the concurrent program and its en
vironment. As a result, it is advisable to model concurrent programs, and 
hence parallel programming languages, by the kind of structural operational 
semantics exemplified in this chapter. • 

Techniques. Parallel Programming Language Definitions: A first decision 
that has to be made wrt. the definition of the semantics of a parallel program
ming language is that of the "atomicity" language constructs: The "coarsest 
atomicity" is that of assembling all internal actions between synchronisation 
and/or communication points of a process into one atomic step. The "finest 
atomicity" is that of considering the smallest possible evaluation step of also 
the declarations, expressions and statements between synchronisation and/or 
communication points as "atomic steps". From the decision of what consti
tutes an atomic step follows decisions wrt. configurations. • 

Tools. Parallel Programming Language Definitions: Since structural oper
ational semantics can often be written in the form of algebraic semantics 
rewrite rules [63,340], tools like interpreters for such algebraic semantic speci
fication languages as Caf eOBJ [123], Casl [40,371], and, especially, Maude [81], 
are interesting for checking out consistency and (relative) completeness of a 
structural operational semantics. • 

19.8 Bibliographical Notes 

The language of this chapter is a variant of CSP: Communicating Sequential 
Processes. In [213] the semantics of CSP is given in terms of a number of 
laws, i.e., axioms that determine properties of CSP programs. In [436] the 
semantics of CSP is given in a variety of ways: operationally, a la Plotkin 
[402], denotationally, where the semantic types are traces (of behaviours), 
and algebraically, i.e., in terms of laws. Kahn's approach to language design 
and language definition is also appealing [252]. 

In [119] we give a hybrid way of defining a semantics for a variant of CSP. 
A proper theoretical foundation for this approach has yet to be given. The 
language defined in [119] allows for the dynamic creation of processes, and for 
certain forms of process "mobility". By a mobile process we shall understand 
a process which can be communicated via channels — and thus which resides 
on a variety of processors. The 7r-calculus [358,446] provides an exciting theory 
for studying process mobility. 
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19.9 Exercises 

E x e r c i s e 19 .1 Multiple Client/Single Server Connectors. There is given a 
very simple parallel programming language, C„SiL, whose only programs are 
of the following multiple client/single server kind:3 

t y p e Cldx, M, T, E, r c = C l d x ^ r 
v a l u e jc'-Tc, o"£> 
c h a n n e l {cs[c]:M|c:Cldx} 
v a l u e 

system: U n i t —>• U n i t 
client: cCldx —> r —> w r i t e , r e a d cs[c] U n i t 

server: S —> r e a d , w r i t e {cs[c]|c:Cldx} U n i t 

system() = ||{client(c)(7o(c))|c:Cldx} || server(cr) 

client(c)(7) = 

le t m = some_c_value(7) i n 
cs[c]!m; / * request service */ 
le t m' = cs[c]? in / * service delivered */ 
client(c)(next_c_state(m')(7)) e n d e n d 

server(cr) = 
|]{let m = cs[c]? in / * receive service request */ 

l e t m' = some_s_value(c,m)(cr) in / * perform service */ 
cs[c]!m'; / * deliver service result */ 
server(next_s_state(i,m')(tr)) e n d e n d | c:Cldx} 

Assume the "some" and "next" functions. Programs c „ s i p in C„SiL are con
nectors between multiple clients and a single server communicating over sim
ply multiplexed channels. 

19.1.1 Formalise a syntax for C„SiL programs. Assume the "some" and "next" 
functions. 

19.1.2 Define a predicate which expresses tha t C„SiL programs are well 
formed. 

19.1.3 Define appropriate semantic types of run-time contexts and states and 
a set of next state functions tha t specify an elaboration of C„SiL programs 
in the style of this chapter. 

C„SiL programs differ only in the abstract "some" and "next" functions for 
which you can postulate two sets of semantic elaboration functions Val_fcts 
and Int fcts. 

3CnSiL programs are here expressed in a syntax similar to RSL. But CnSiL pro
grams are not to be considered RSL programs. 
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Exercise 19.2 Multiple Client /Multiple Server Connectors. There is given a 
very simple parallel programming language, CmS„L, whose only programs are 
of the following multiplexed client/server kind: 

type M, r, E, Cldx, Sldx, r c = C l d x ^ r , Ss=S\dxT^S 
value jc'-Tc, vs'-^s 
channel {cs[c,s]:M|c:Cldx,s:Sldx} 
value 

system: U n i t —>• U n i t 
client: cCldx —> r —> read,wr i te {cs[c,s]|s:Sldx} U n i t 
server: s:Sldx —» S —» wr i te , read {cs[c,s]|c:Cldx} U n i t 

system() = (||{client(c)(7o(c))|c:Cldx}) || (||{server(s)(crs(s))|s:Sldx}) 

client(c)(7) = 
let m = some_c_value(7) i n 
0{cs[c,s]!m; / * send service request * / 

let m' = cs[c,s]? i n / * receive service result * / 
client(c)(next_c_state(s,m')(7)) end | s:Sldx} 

end 

server(s)(cr) = 
0 { le t m = cs[c,s]? i n / * receive service request * / 

let m' = some_s_value(c,m)(cr) i n / * perform service * / 
cs[c,s]!m'; / * deliver service result * / 
server(s)(next_c_state(c,m')(7)) end end | cCldx} 

Assume the "some" and "next" functions. Thus programs c m s n p m CmSnL 
are very simple connectors between multiple clients and multiple servers com
municating over doubly multiplexed channels. Thus we assume that all servers 
can perform all the desired functions for any of the multiple clients. 

19.2.1 Formalise a syntax for CmS„L programs. Assume the "some" and 
"next" functions. 

19.2.2 Define a predicate which expresses that 
cm snP programs m CmSnL are 

well formed. 
19.2.3 Define appropriate semantic types of run-time contexts and states and 

a set of next state functions that specify an elaboration of CmS„L programs 
in the style of this chapter. 

CmS„L programs differ only in the abstract "some" and "next" functions for 
which you can postulate two sets of semantic elaboration functions Val_fcts 
and lnt_fcts. 

Exercise 19.3 Mobile Processes. There is given a "funny little, unstruc
tured" parallel programming language, M77L, with the following constructs: 
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1. process type 77 
2. process definition p() = body ; 
3. process variable process_var[0.. ]:TJ 
4. process_var[i] := start p() ; 
5. send value_expression to process process_var[j] ; 
6. receive ordinary_var from process process_var[k] ; 

i j,k are natural number-valued expressions, p stands for a variety of process 
names: p, pi, ..., pn, q, ... . process_var likewise for a variety of process vari
able names. The idea of this language is that a program consists of a single 
definition of a process identification type (item 1.), of a number of process defi
nitions (item 2.), and a process variable declaration (item 3.). Process variable 
declarations designate flexible vectors of an indefinite number of atomic type 
77-valued variables. (For simplicity you need only one such process variable 
declaration.) The process definition bodies consist of a sequence of ordinary 
variable declarations and of a statement sequence. Statements are either the 
usual complement of ordinary assignment, while-loop, if-then-else and other 
such statements — containing a usual complement of expressions. Statements 
are, additionally, selected from the three statements shown in items 4.-6. A 
program consists of one, an initialising process statement, for example pro-
cess_var[0] := start p() (item 4.). Finally the idea is that every process — 
once started — is assigned a unique process identifier being also the value of 
the start p() expression. Execution of a start clause (item 4.) in a process 
leads to the start up of a new process of the designated kind, the allocation 
of a fresh, that is, unique process identification to this process and the assign
ment of that identification to the designated process variable cell. Execution 
of a send clause (item 5.) first leads to the evaluation of the value expression, 
resulting in a value, v, then to the offering of output v to the process identi
fied by the designated process variable cell. Execution of the send clause only 
completes once the identified process has accepted v. Execution of a receive 
clause (item 6.), by some process, ir, proceeds as follows. Process ir, in a sense, 
by attempting to elaborate the receive clause, declares itself willing to receive 
any value from any (other) process. If no process is offering a value for process 
7r then execution of the receive clause waits until such a value is offered, if 
ever. 

19.3.1 Narrate and formalise a syntax for M77L programs. Assume a category 
of ordinary statements. 

19.3.2 Narrate and define a predicate which express that m7rp programs in 
M77L are well formed. 

19.3.3 Narrate and define appropriate semantic types of run-time contexts 
and states and a set of next state functions that specify an interpretation 
of M77L programs in the style of this chapter. 

State all appropriate assumptions. 
(M77L is a simplified version of the language presented in [119].) 
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Closing 

• The prerequisi te for studying this chapter is that you have now ended 
the study of this, the second, volume in our series of three volumes on 
software engineering. 

• The aims are to present a conclusion that covers Vols. 1 and 2 of these 
textbooks on software engineering, and to present a preliminary answer to 
What's Next? 

• The objective is to properly conclude Vol. 2, and to properly link Vols. 1 
and 2 to Vol. 3. 

• The t r ea tmen t is discursive. 

20.1 A Summary 

Volume 1 of this series of textbooks on software engineering focused on three 
aspects: (i) on the basic discrete mathematics used in most model-oriented 
formal specification languages, (ii) on the basic principles and techniques of 
abstraction and formal modelling, and (hi) on propagating, hand-in-hand with 
material on abstraction and modelling, the RAISE Specification Language, RSL. 

The present volume has focused on four aspects: (iv) further principles and 
techniques of abstraction and formal modelling (specification facets: hierar
chies and compositions, denotations and computations, and a crucial concept, 
which then is treated in various other guises in several chapters of this volume, 
that of time, space and time/space), (v) linguistics (pragmatics, semantics, 
syntax, and their summary in semiotics), (vi) diagrammatic and temporal 
specification techniques (modularity, automata and machines, Petri nets, mes
sage and live sequence charts, statecharts, and temporal logics [quantitative 
models of time]), and (vii) language definitions (of applicative [i.e., functional], 
imperative, modular and parallel programming languages) and how to develop 
prescriptions for what and how compilers should translate. 
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20.2 Conclusion: Volumes 1 and 2 

The division of topics covered by Vols. 1 and 2 was determined on pragmatic 
grounds: between what could be considered basic principles and techniques 
and what could be considered more advanced principles and techniques. With 
the basic ones the software engineer can specify simple abstract software de
signs. With the advanced principles and techniques the software engineer can 
specify requirements and domains. 

So, in one sense, we are, at the completion of Vol. 2, at road's end! We 
have presented, and expectedly you have learned, a necessary and, with the 
formal specification languages known today, sufficient set of tools. We have 
also presented principles and techniques for the abstract, formal modelling of 
such phenomena as are encountered when embarking upon software develop
ment, and such concepts as are "put inside" computers, i.e., when concluding 
software development. 

The hedge above, "with the formal specification languages known today", 
forewarns the reader that the immediate and the longer term futures will 
offer new specification paradigms and new specification languages. Some of 
these will be cleaner and more elegant than what we have today. Most others 
will not. Yet other proposals will offer means to abstractly model facets of 
phenomena and, notably, concepts for which we today seem not to have proper 
tools. We are thinking, as an example, of modelling (autonomous) agents 
which communicate messages of knowledge and belief of, and in, one another's 
knowledge (i.e., state), or of promise and commitment, and so on. 

So be prepared to look around. With the ballast provided by Vols. 1 and 2 
it should not be difficult for the practicing software engineer to keep abreast. 

20.3 Preview of Volume 3 

And, in another sense, at the completion of Vol. 2, we are at another road's 
start! 

Common to both Vols. 1 and 2 is that these two volumes focus on for
mal modelling and formal specification. Nothing substantial was said about 
informal, i.e., natural and professional language informal specification. 

The crucial points of Vol. 3 are summarised by these questions 

1. How does one start? 
2. How does one make formal models readable by everyone concerned? 
3. How does one decompose overall software development into manageable 

and believable parts? 

We shall try address these three issues below. 

1. 'Start' is meant in at least two ways. 
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(a) One starts, ideally, with the development of a model of the domain, 
then goes on to model the requirements, and finally one designs (and 
hence implements, i.e., "codes") the software. 

(b) And, one starts by rough sketching, i.e., by informally describing 
(prescribing, specifying) phenomena and concepts (of the domain, 
the requirements, the software). One then proceeds to analyse these 
sketches, forming concepts, and establishing terminologies (of the do
main, of the requirements, and of the software — three different sets 
of terms), and proceeds further to precisely narrate, i.e., again infor
mally describe (prescribe, specify) the domain, the requirements, the 
software — the latter possibly hand-in-hand with their formalisation. 

(c) Finally, one really starts by identifying phenomena and concepts, by 
analysing these into entities, functions, events and behaviours. 

2. Item 1 contained the answer to the second question above: How does one 
make formal models readable by everyone concerned? One does so by 
carefully constructing informal descriptions (prescriptions, specifications) 
of the formal models. 

3. Items 1 and 2 also contained the answer to the third question above: 
How does one decompose overall software development into manageable 
and believable parts? One does so by phasing the development into three 
well- and predefined phases, and each of these into well- and predefined 
stages, and these stages into steps. The latter are well-defined, but not 
predefined: arising, as they do, out of the specifics of the problem at hand. 

Some comments may be in order: 

3. Item 3 above, then, basically, announced a main purpose of Vol. 3: to bring 
in material that covers in "excruciating" details, the principles, techniques 
and tools of three phases of software development: domain model develop
ment, requirements model development, and software design, and within 
these a great number of mandatory stages, and optional and mandatory 
steps. 

2. Item 2 above implies that Vol. 3, after an introductory chapter on the 
domain/requirements/design triptych, restarts with six chapters on sub
jects that "cut across", i.e., are common to, the three parts on domain 
engineering, requirements engineering, and computing systems (i.e., no
tably software) design. This preamble covers documentation principles 
and techniques (documents), methods and methodology, models and mod
elling, descriptions (theory and practice), on defining and on definitions, 
and Michael Jackson's description principles. (The last two uses of the 
term descriptions also comprise prescriptions and specifications.) 

1. Statement 1(c) implies Vol. 3's Part III: Descriptions: Theory and Practice 
with its Chaps. 5, 6 and 7: Phenomena and Concepts, On Defining and 
On Definitions, and Jackson's Description Principles. Here are shown — 
from very basic principles — how one really "starts"! 
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Welcome to Vol. 3. Have as much fun reading it as we had in writing it! 

20.4 "UML"-ising Formal Techniques 

The present volume deviates from Vols. 1 and 3 in having three chapters and 
a crucial part of yet another chapter authored by former students of mine. 
Thereby this volume is able to show how many important formal specification 
techniques can be, as we term it, "UML"-ised. Rather than trying to formalise 
UML, we have taken the original notational subsystems, variants of which are 
claimed to have been incorporated into UML, under other names, and then we 
show how (yet other) variants can be used in conjunction with model-oriented 
formal specifications — as here, expressed in RSL. 

We find it futile to try formalise UML, for several reasons. 

• First, because UML initially did not build on sound foundations. When UML 
first came out it did not reflect 20-30 years of painstaking advances in 
programming methodology. Where it seemingly did, for example, inclu
sion of entity set relations (ER), it was not, as is ER, based on simple, yet 
sufficient foundations. Petri nets, in some shape or other, appear in UML, 
but it was not clear which variants of Petri nets, or whether the seman
tics of Petri nets was being followed. Similar to message sequence charts 
and statecharts — "by any other name they did not smell as sweet" in 
UML, and that is somehow rather unfortunate — because whatever UML 
was trying to achieve, Broadness of application, convenience of notation, 
and multiplicity of views,1 was, we believe, somewhat compromised. The 
diagrammatic notations of the ER's class diagrams, of Petri nets, of mes
sage and live sequence charts and of statecharts are important. Not all 
software engineers "think" or "read-consume" textually. Some are aided, 
significantly, by reasoning over diagrams. 

• Second, because UML lacks abstraction, it has no reasoning "power" (no 
logic, i.e., no proof system), and it has no way of relating two different 
class diagrams — is one an implementation of the other? That is, it has 
no notion of refinement or transformation, and has no precise language for 
expressing the nondiagrammatic parts of a specification (save those of the 
object constraint language, OCL). 

• Third, UML is a moving, unpredictable target: It makes little sense to follow 
on the heels of, or to try influence language design decisions made by 
the Object Management Group, OMG, which has been charged with that 
responsibility. 

We are quite confident that the "UML"-ised formal combinations of RSL with 
class diagrams, Petri nets, message or live sequence charts, and with state-
charts that you find in the present volume are, relatively speaking, far more 

This positive phrase is due to Chris George. 
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precise and cover as much ground as one can possibly expect. Where UML's 
class diagrams may have a few more twists (i.e., associations, etc.) to them, 
we find that, for example, RSL can easily express these for every specific in
stance. (But we find it increasingly cumbersome to formalise several of these 
associations, etc.) 
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APPENDIXES 





A 

Naming Convention 

Throughout the three volumes of this book we reasonably consistently use the 
following naming conventions. 

1. Names: Names serve to identify. In order to discuss matters one must 
identify phenomena and concepts, that is, give them names. 
(a) Categories of specification concepts: Specifications always con

ceptualise. Even when we name phenomena, these names represent 
not the phenomena but concrete concepts thereof. 
In specifications (descriptions and prescriptions) we make use of the 
following specification concepts: 
• types and values of types, 
• functions, 
• variables, 
• channels, 
• schemes, 
• objects and 
• parameters of types, values, functions and classes. 

(b) Choice of identifiers: The specifier is free to choose how to spell 
names. But generally it seems to be a good idea to deploy a consistent 
and known naming scheme. In the following sections we bring in the 
convention that has been employed in these volumes. 

(c) Mnemonics: We try to use such abbreviations of full names that are 
easy to remember yet do not fill up text and formula lines. Thus Stmt 
stands for the syntactic type of statements and stmt for a particular 
value of that type. 

(d) Identifiers: Names are expressed in terms of identifiers. Identifiers are 
finite, usually short sequences of one or more alphanumeric characters. 
Sometimes we use infix underscore, , to help compose names into 
memorisable identifiers. By an alphanumeric character we mean either 
one of the 26 Roman letters, or some Greek letter, or a digit. Some
times a succession of definitions of similarly typed value identifications 
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has the first be an ordinary identifier, say id, as described above, while 
subsequent identifications are primed versions of the identifier, that 
is, id', id", id'", etcetera. 

2. Type names: There are basically three kinds of types: 
• syntactic types, 
• semantic types and 
• pragmatic types. 
All our type names start with a capital letter. 
(a) Syntactic types: Letters of syntactic type names, except the ini

tial letter, are usually spelled in lowercase. Sometimes syntactic type 
names are composed from two or rarely three sub-names, each starting 
with a capital letter: GotoStmt. 

(b) Semantic types: Letters of semantic type names are usually all 
spelled in uppercase. 

(c) P ragmat i c types: We usually treat pragmatic types, i.e., types of 
practical convenience, as syntax types. 

3. Value names: We spell all letters of all identifiers of values in lowercase. 
And we usually try define such names that are lowercase, usually abbre
viated versions of the names of the type of these values. Thus if the type 
name is PartNumTbl then a value name of that type might well be pnt. 

If a value identifier names a set of element values of type B then we 
usually use the identifier bs. If it names a list of elements then b£ (or bl) 
is used. If it names map values (from type B to C) then bmc may be used. 
And so on. 

4. Special semantic type and value names: We consider the names of 
three kinds of semantic types and their corresponding values: 

• contexts or environments, 
• states and 
• configurations of contexts (or environments) and states. 
(a) Context or environment names: For contexts we normally use 

the value and type name abbreviations: ctx:CTX or decorated versions 
thereof. For environments we normally use the value and type name 
abbreviations: p:ENV or decorated versions thereof. 

(b) Sta te names: For states we normally use the value and type name 
abbreviations: a:S or decorated versions thereof. 

(c) Configuration names: For configurations we normally use the value 
and type name abbreviations: jm.r or 6:0 or decorated versions thereof. 

5. Function names: Function names range over a widest possible variety 
of identifiers. Special categories of functions are listed below. 

6. Auxiliary function names: Auxiliary functions are introduced in or
der to express main function definitions as succinctly as possible. Some 
auxiliary function categories, but far from all, are mentioned next. 
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(a) Observer functions: Observer functions, obs_B, apply to entities of 
type sorts, say of type A, and yield attributes or subentities of type B 
of these. Observer functions are postulated. They cannot be defined. 

(b) Is functions: Is functions, is_A, apply to entities of type sorts and 
yield truth values: true if the entity is of type A, false otherwise. Is 
functions are postulated. They cannot be defined. 

(c) Well-formedness functions: Well-formedness functions usually have 
their function names composed from a wf_ prefix. Well-formedness 
functions apply to values of concrete types to define those values which 
belong to a desired, i.e., well-formed, subtype. See also the next item: 
invariant functions. 

(d) Invariant functions: Invariant functions usually have their function 
names composed from an inv_ prefix. Invariant functions apply to 
values of concrete types to define those values which belong to a de
sired, i.e., invariant, subtype. The distinction between well-formed and 
invariant functions is pragmatic: By well-formedness we express a de
sired property of a usually composite value. By invariance we express 
that functions yielding values are expected to yield such which satisfy 
the invariance criterion. 

(e) Abstraction functions: Abstraction functions usually have their 
function names composed from an abs_ prefix. Abstraction functions 
apply to values of some concrete type and yield values of a claimed 
more abstract, yet concrete type. 

(f) Retrieve functions: Retrieve functions usually have their function 
names composed from a retr_ prefix. Retrieve functions apply to val
ues of some concrete type, Aj+i, and yield values of a claimed more 
abstract, yet concrete type, Aj — where type A,+i is said to be an 
implementation, a data reification, of Aj. 

(g) Injection functions: Injection functions usually have their function 
names composed from an inj prefix. Injection functions apply to val
ues of some type, Aj, and yield values of a claimed more concrete type, 
Aj+i. Aj+i is said to be an implementation, a data reification, of A,. 

7. Semantic function names: There are basically four kinds of semantic 
functions. 
• Evaluation functions apply to expressions and configurations (environ

ments and states) and yield values. 
• Interpretation functions apply to statements and configurations (envi

ronments and states) and yield state changes. 
• Elaboration functions apply to clauses (sometimes just expressions) 

and configurations (environments and states) and yield values and 
state changes. 

• A fourth category of semantic functions apply to declarations and con
figurations (environments and states) and yield environment and state 
changes. 
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• Meaning functions comprise the above: evaluation, interpretation and 
elaboration functions. 

• Compilation functions which apply to syntactic source language con
structs and compilation configurations (environments and states) and 
yield syntactic target language constructs. 

With the first three and the last two categories above we normally use the 
following varieties of semantic function names. 
(a) Evaluation function names: Either we name these functions by 

just the identifier V (or V), or by that identifier and some suffix, ac
cording to the syntactic category, say Expr (V_Expr), or we name these 
functions by just identifier eval (or val) — again possibly composed 
with some appropriate suffix (val_Expr). 

(b) Interpretation function names: Either we name these functions 
by just the identifier / (or I), or by that identifier and some suffix, 
according to the syntactic category, say Stmt (l_Stmt), or we name 
these functions by just identifier int — again possibly composed with 
some appropriate suffix (int_Stmt). 

(c) Elaboration function names: Either we name these functions by 
just the identifier / (or £), or by that identifier and some suffix, ac
cording to the syntactic category, say Clause (E_Clause), or we name 
these functions by just identifier elab — again possibly composed with 
some appropriate suffix (elab_Clause). 

(d) Meaning function names: Are either of the three kinds of names 
introduced above: evaluation, interpretation or elaboration function 
names — but sometimes we just "spell" the meaning function name 
as M (or M, M, or even M). 

(e) Compilation function names: These names we usually spell with 
an initial, capitalised C (or C, C, or even C), sometimes followed by a 
suffix which usually designates (abbreviates) the name of the syntactic 
category (i.e., the name of the type) of its arguments. 

8. Variable names: Variable names usually follow the naming convention of 
value names, see item 3 — possibly with the exception that the character 
v is (or characters var are) prefixed by the base stem of the value identifier. 

9. Channel names: Channel names usually are composed from two or three 
parts, optionally the character c, for channel, and two abbreviations, say c 
and s, of the names, say client and server, of the definitions of the processes 
between which the channels communicate. 

10. Scheme names: Scheme names are usually spelled in all capitals. 
11. Object names: Object names are usually spelled like are the schemes 

from which the objects are instantiated. 
12. Parameter names: Parameter names are usually spelled like are the 

values of the types designated. 
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Indexes 

• The prerequisite for studying this chapter is that you need look up where 
a term has been defined or is used. 

• The aim is to illustrate the breadth and depth, the variety and multitude 
of terms used in these volumes. 

• The objective is to satisfy your needs. 
• The treatment is systematic. 

Volume 1 Appendix B contains an extensive glossary. 

• Symbols Index 722 

Some abbreviations are found here. 
• Concepts Index 725 

Some abbreviations are also found here. 
• Characterisations and Definitions Index 744 

Characterised and defined terms here are usually spelled with cap
ital letters. 

• Authors Index 746 
Authors whose works have influenced the contents of this volume 
are listed here. Citations are usually to books by these authors. 
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B. l Symbols Index 

S y m b o l , Greek: Mark, token, ticket, watchword, outward sign, covenant. 

S y m b o l , M e a n i n g : Something tha t stands for, represents, or denotes 
something else; a material object representing, or taken to represent, 

something immaterial or abstract (1590); 
a written character or mark used to represent something; a letter, figure, 

or sign conventionally standing for some object, process, etc. (1620) 

The SHORTER OXFORD ENGLISH DICTIONARY 
On Historical Principles [303] 

An a t tempt has been made to structure the symbols index. You may have to 
look in more than one place to find a cross-reference to the first appearances 
of the symbol, literal or abbreviation tha t you are looking for, 

• Time/Space 722 • Statecharts 723 
• Modular RSL 722 • Temporal Logics 723 
• Petri Nets 722 • Duration Calculus 723 
• Message Sequence Charts 723 • Timed RSL: TRSL 723 
• Live Sequence Charts 723 • Abbreviations 724 

Volume 1 has an extensive symbols index covering RSL. We refer to tha t index. 

B . l . l T i m e / S p a c e 

= equality (time, space), 129 
> greater than or equal (time), 129 
> greater than (time), 129 
fl common space, 129 
{}= empty space predicate, 129 
{ } ^ non-empty space predicate, 129 
< less than or equal (time), 129 
< less than (time), 129 
^ nonequality (time, space), 129 
U union (space), 129 

CONTINUOUS continuity of func
tions, 130 

Al
p entity A at location p at t ime t, 

136 

B . l . 2 M o d u l a r R S L 

class as in c lass ... end, 248 

class class definition literal, 253-257 
e n d as in c lass . . . end, 248 
e x t e n d ... w i t h class extension, 259-

260 
hide scheme hiding, 260-262 
in as in h ide ... in class ... end, 261, 

262 
objec t object declaration literal, 253, 

257 
s c h e m e scheme definition literal, 

257-265 

B . 1 . 3 Petr i N e t s 

O state, 316 
0 transition, 316 
—>• arrow, links transitions to states 

and states to transitions, 
316 

• Petri net token, 317 
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B . 1 . 4 M e s s a g e S e q u e n c e Chart s 

° instance, 376 

| instance time axis, 376 
•(— message exchange, 377 
—>• message exchange, 377 
x timer reset, 378 
I connects BMSCs, 383 
j connects BMSCs, 383 
O node, 384 
o connector, 384 
V start node, 384 
A end node, 384 

B . l . 5 Live S e q u e n c e Chart s 

—> asynchronous message, 403 
—>• synchronous message, 403 
• empty premise, 417 

B . l . 6 S ta techar t s 

(E,N).P prefix operation, 497 
[E]cr(P) signal operation, 499 
A event alphabet, 499 
• unobservable event, 499 
(0, 0) unobservable event, 499 
|| parallel composition, 499 
\ restriction, 499 
a clock event, 499 
P>a Q enabling operation, 500 
P>Q disabling operation, 500 

B . l . 7 T e m p o r a l Logics 

Time duration time, 522 
ITime, duration time interval, 523 

• always, over states, 520 
[•, •] t ime interval b to e : [b,e], 523 
[</>] (f> holds in time length \<f\, 523 
O sometime, 523, 527 
• always, 524, 527 
Or sometime, right neighbourhood, 

524 

• r always, right neighbourhood, 524 
Oi sometime, left neighbourhood, 525 
• ^ always, left neighbourhood, 525 
^ chop (;), 526 

B . l . 8 D u r a t i o n Calcu lus 

Time t ime, 530 
ff falsity, 538 
t t t ru th , 538 

; chop, 529, 537, 538 
|~ duration delimiter, left, 529 
] duration delimiter, right, 529 
|~, ] duration delimiters, 529 
• always, 529, 535, 537 
i duration of / tt, 529, 537 
0 sometime, 535 
/ P s tate duration, 537, 538 
\P~\ almost everywhere P, 537 
f| point duration, 537 
->• follows, 537 
1 s tate transition: ON-s>OFF, 550 
t s tate transition: O F F - ^ O N , 550 
(t+S+t,t] DC: upward closed interval, 

550 
[t — 8-t,t) DC: downward closed in

terval, 550 
T state assertion holds, 551 
_L state assertion does not hold, 551 
/• raising, holds at point, 551 
y raising transition, 551 
\ falling, holds at point, 551 
"Y falling transition, 551 

B . 1 . 9 T i m e d R S L : T R S L 

wait wait clause, 556 

! process output , 556, 559 
? process input, 556, 559 
j} interlock process composition, 556, 

559 
|| parallel process composition, 556, 

559 
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Q TRSL: nondeterministic external 
choice, 559 

[] TRSL: nondeterministic internal 
choice, 559 

B.1.10 Abbreviations 

BNF: Backus-Naur Form, 183-186 
BMSC: Basic MSC, 376, 378 

CEN: Condition Event Petri Net, 
316-323 

CFG: context-free grammar, 186 
CFL: context-free language, 187 
CPN: Coloured Petri Net, 333-342 

DC: Duration Calculus, 525-564 

HMSC: High-level MSC, 383-391 

ITL: Interval Temporal Logic, 520-
525 

OCL: Object Constraint Language, 
280 

0 0 : Object-oriented, 281 

PN: Petri Net, 315-373 
PTPN: Place Transition Petri Net, 

323-333 

SOAP, 471 
SPL: Statechart Process Language, 

497-500 

TL: Temporal Logic, 515, 518-525 
TLA+: temporal logic of actions, 566 
TRSL: Timed RSL, 515 

UDDI, web service, 471 
UML: Unified Modeling Language, 

VIII, 243, 249, 252, 271, 375, 
465, 466, 473, 474, 507, 509, 
708-709 

WSDL, web services definition lan
guage, 471 

XML, extensible markup language, 
190-197, 206-207, 238 
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B.2 Concepts Index 

Conceive: To grasp with the mind. 

Conception: The act of conceiving, apprehension, imagination. 

Concept: The product of the faculty of conception, 
an idea of a class of objects, a general notion. 

The SHORTER OXFORD ENGLISH DICTIONARY 
On Historical Principles [303] 

The terms: a concept, an idea, a notion, an apprehension and an imagination 
are treated as similar terms. The concept index also lists common abbrevia
tions. 

abstract 
data type, 250 
state machine semantics, 589 
syntax, 181-183, 197-201 

XML Schema, 206 
for RSL type definitions, 205 

syntax, analytic, 181 
syntax, synthetic, 181 

abstraction 
Statechart, 479 
compositional, 35, 38 
context, 94-116 
denotational, 57 
function, 590 
hierarchical, 35, 38 
state, 94-116 

acceptance of input, 298 
acceptor automaton, 292 

input, 285, 297 
action, 98 

Statechart, 476 
and state are dual, 95 
BMSC, 376 
event, BMSC, 383 
input, 499 
name, BMSC, 383 
output, 499 
same as statement, 96 
set, initial output, 500 
transition, 499 

transitions, term deduction sys
tem, 500 

activate Petri net transition, 323 
activated event, Petri net, 317 
active state, Statechart, 476 
actor, 98 
address 

recipient, BMSC, 383 
sender, BMSC, 383 

airline timetable, 127-129 
algebra 

initial, semantics, 250 
process, LSC, 375 
quotient, 416 

algebraic 
process semantics, 499 
semantics, LSC, 375 
specification language, 250 

algorithm of compiling, 625-636 
allocation, 98, 675 

heap, 690, 691, 696, 697, 701 
storage, 664, 696 
unique process identifier, 691 

alphabet 
automaton input, 285 
input, 287 

alternative HMSC, 384 
always O, ITL, 524 
analyser syntax, 303 
analytic abstract syntax, 181 
AND 
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decomposition, Statechart, 476 
state, Statechart, 477 

anomalies, 219 
arc Petri net, 333 
arrow 

message exchange, BMSC, 377 
Petri net, 316 
transition, Statechart, 476 
weight, Petri net, 323 

A-series, time, 125 
assertion, state, DC, 536 
association 

composite, UML, 274 
multiplicity, UML, 274 
UML, 274 

asynchronous message, LSC, 403 
atomic expression, duration calculus, 

536 
attribute 

grammar semantics, 162-165, 
636-652 

inherited, 165 
synthesised, 164 

automata, 285-311 
deterministic, finite state, 297 
pushdown stack, 307-311 

automaton, 285-311 
acception, 297 
acceptor, 292 
alphabet, 285 
deterministic, 287, 295 
discrete state, 285 
finite state, 190 
infinite state, 289 
input, 298 
input acceptance, 298 
input rejection, 298 
minimal, 296 
nondeterministic, 287, 295 
push-down stack, 190 
recogniser, 292 
recognition, 297 
state, 285 
state transition, 285, 298 

auxiliary semantic functions, 695-697 

axiomatic semantics, 166-168 
axiomatised ontology, 238 

Backus-Naur Form, BNF, 183-186 
behaviour 

equivalence, 416, 500 
mandatory, LSC, 402 
optional, LSC, 402 
state, 112 
temporal, 127 

binder, 98 
binding, 98, 599, 687, 689, 691, 696, 

698, 702 
and context, 95 
element, Petri net, 334 
Petri net, 334 

bisimilar processes, 502 
bisimulation 

equivalence, 416 
strong, 418-419 

bisimulation, strong, 500 
block 

prologue, 69 
type instance, BMSC, 383 

BMSC 
• , instance, 376 
<-, message exchange, 377 
|, time axis, 376 
—>, message exchange, 377 
action, 376 

event, 383 
name, 383 

address, 383 
arrow, message exchange, 377 
Basic Message Sequence Chart, 

376-383 
body 

instance, 383 
note, 383 

condition, 376, 378 
event, 383 

coregion, 376, 379 
event, 383 

event, 376 
instance, 376 
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decomposition, 380 
kind, 383 
kind, name, 383 
name, 383 

instance type, 383 
block, 383 
process, 383 
service, 383 
system, 383 

matching message, 376 
message 

event, 383 
exchange, 377 
input, 376 
input event, 383 
output, 376 
output event, 383 

name, 383 
process 

creation, 379 
creation event, 383 
event, 383 
handling, 376 
termination, 379 
termination event, 383 

recipient address, 383 
sender address, 383 
time axis, 376 
timeout, 378 
timer, 376, 378 

event, 383 
event, reset, 383 
event, timeout, 383 
reset, 378 
set, 378, 383 

timer duration, 383 
BNF 

Backus-Naur Form, 183-186 
grammar, 183, 303 

footnote 1, 176 
body, 687 

instance, BMSC, 383 
note, BMSC, 383 

Boolean state model, duration calcu
lus, 529 

box 
class diagram, UML, 273 
dashed, existential LSCs, 402 
fully drawn, universal LSCs, 402 

Broker Design Pattern, 474 
B-series, time, 125 
buffer 

parallel, Petri net, 319 
Petri net, 318 
sequential Petri net, 319 

C++, 150, 673, 682, 684 
C#, 150, 281, 682, 684 
C, 150 
calculus 

duration, DC, 521 
of durations, 568 

call 
procedure, 473 
remote procedure (RPC), 473 

capacity of place, Petri net, 323 
causality Statechart, 499 
CFG 

context-free grammar, 186 
nonterminal, 186 
production, 186 
terminals, 186 

CFL, context-free language, 187 
channel 

communication, 223 
connector, 223 
terminal, port, 223 

chop ;, "~~ ITL, 526 
class 

RSL 
class concept, 257 
classes, 253-270 
classes, motivation, 253-257 

ontology, 238 
UML, 273 

diagram, 271-280 
diagram box, 273 
diagram line, 273 

clause, 155 
client-server, HMSC, 384 
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clock 
transition, 499 
transitions, term deduction sys

tem, 500 
closing XML tag, 193 
closure, 583 

of a context-free derivation, 187 
process, 697 
process definition, 693, 695 

cold 
location, LSC, 407 
message, LSC, 403 

colour 
Petri net, 333 
set, Petri net, 333 

coloured Petri net, 315, 333-342 
compile-time, 580 

translation, 78 
compiler view of semantic functions, 

72 
compiling algorithm, 625-636 
component 

as scheme, 223 
as type, 223 
function, 223 

verb, 223 
noun, 222 
of system, 219 
process, 223 
property 

adjective, 223 
adverb, 223 

composite association, UML, 274 
compositional abstraction, 35, 38 
compositionality Statechart, 499 
comprehension, of language, 216 
computation, 97 

in space/time, 96 
interval = "life-time", 95 
state, 75, 112 

computational 
linguistics, 216 
semantics, 74-86, 580, 590 

computing 
context, 94 

environment, 94 
name/value associations, 94 

state, 94 
storage, 94 

conceptual program, 114 
concrete 

semantics, 152 
syntax,183-186 

concurrency, 313 
qualitative, 313 
quantitative, 313 

condition 
Statechart, 476 
BMSC, 376, 378 
event, BMSC, 383 
Petri net, 316, 323 

condition event 
Petri net, 315-323 

configuration, 69, 94, 103, 154 
= context + state, 99 
abstraction, 94-116 
syntax, 173 

connection 
(shared) variable read/write, 223 
channel communication, 223 
of system, 219 

connector 
o, HMSC, 384 
(shared) variable access, 223 
channel, 223 
of system, 219 

contact-free Petri net, 317 
context, 98, 102, 153 

abstraction, 94-116 
and bindings, 95 
as pragmatic notion, 97 
as relevant bindings, 96 
computing, 94 
environment, 95, 97 
static, 97 
syntax, 173 

context-free 
derivation, 187 
derivation closure, 187 
grammar, CFG, 186 
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language, CFL, 187 
substitution, 187 

continuation, 67, 690, 691, 693, 699, 
701, 704 

process, 690, 695, 697 
continuous time, 127, 129 
control 

flow, 475 
stack, 76 
state, 114 

controller, finite state machine, 300 
coregion 

BMSC, 376, 379 
event, BMSC, 383 

correctness reasoning, 583 
CSP program, 687, 688 
CTP 

communicating transaction pro
cesses, VIII, 443-453 

dining philosophers, 450-453, 
474 

data 
abstract, type, 250 
state, 112 

DC, 4, 5 
atomic expression, 536 
Duration Calculus, 517, 527-566 
duration formula, 537 
state assertion, 536 
state duration, 530 
state expression, 536 

deadlock, interlock, 559 
decomposition 

AND, Statechart, 476 
hierarchical, Statechart, 479 
XOR, Statechart, 476 

deduction 
system, action transitions, 500 
system, clock transitions, 500 

default state, Statechart, 477 
definition module 

export, 673 
import, 673 
local, 673 

denotation, procedure, 664 
denotational 

abstraction, 57 
principle, 57, 58 
semantics, 57-74, 155-156, 576-

581, 663-665, 674-677 
for languages, 219 
for systems, 232 

denoted value, 577 
derivation 

closure, 187 
context-free, 187 
grammar, 300 

description 
domain, 549 
logic, 238 
logic, ontology language, 238-239 

descriptions, 217 
design, software, 549 
designated value, 577 
destination state, Statechart, 477 
deterministic 

automata, finite state, 297 
automaton, 287, 295 

development step, 249 
device, 285-311 

pushdown stack, 307-311 
software, 250 

diagram 
class diagram, UML, 271, 272-

280 
sequence/collaboration, UML, 

271, 272 
state, 286, 476 
statechart diagram, UML, 271, 

272 
use case diagram, UML, 271 

dining philosophers 
coloured Petri net, 336 
CTP program, 450-453, 474 
Petri net, condition event net, 

320 
disabling operator, 499 
discrete 

state 
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automaton, 285 
machine, 285 

time, 127, 129 
DO-WHILE, LSC, 405 
domain 

description, 549 
requirements, 549 

duration 
calculi, DC, 521 
calculus, DC, 517 
DC: state, 530 
formula, DC, 537 
term, duration calculus, 537 
timer, BMSC, 383 

duration calculus, 527-566, 568 
Boolean state model, 529 
duration term, 537 
state assertion, 529 

dynamic 
environment chain, 580 
state, 96 

Ei f fe l , 56, 281, 673, 682, 684 
elaboration, 155 

function, semantics, 153 
of "impure" expressions, 73 

embedded, 687, 693, 704 
system, footnote 4, 300 

enable Petri net transition, 323 
enabled event, Petri net, 317 
enabling operator, 500 
end 

node, HMSC, 384 
node: A, HMSC, 384 

entity-relationship, ER, 251 
environment, 663, 689 

and storage, 200 
computing, 94 

name/value associations, 94 
context, 95, 97 
module 

incoming, 675 
incoming and resulting, 675 

static, 97 
equivalence 

behavioural, 416 
bisimulation, 416 

equivalence behaviour, 500 
ER, entity-relationship, 251 
evaluated value, 577 
evaluation, 154 

function, semantics, 153 
no side-effect, 67 
of "ordinary" expressions, 73 
of "pure" expressions, 73 
run-time, 78 

event, 98 
Statechart, 476 
action, BMSC, 383 
BMSC, 376 
condition, BMSC, 383 
coregion, BMSC, 383 
first-class, LSC, 404 
internal, 499 
message, BMSC, 383 
negate, statechart, 476, 477 
occurrence, Petri Net, 317 
Petri net, 316, 323 
process 

creation, BMSC, 383 
termination, BMSC, 383 

process, BMSC, 383 
temporal, 126 
timer 

reset, BMSC, 383 
set, BMSC, 383 
timeout, BMSC, 383 

timer, BMSC, 383 
unobservable, 499 

existential LSCs, 402 
export, 675 

module definition, 673 
expression 

XML, 193 
"impure" elaboration, 73 
"ordinary" evaluation, 73 
"pure" evaluation, 73 
evaluation, side-effect, 67 
regular, 189, 293 
state, DC, 536 
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state-changing, 155 

file system formalisation, 224-226 
final state, 292, 297 
finite state 

automaton, 190 
machine, 190 
machine transducer, 305 

first-class event, LSC, 404 
first-order semantics, 582-589 
fix point, 576, 603 
flow 

of control, Statechart, 475 
work, system, 342-356 

flowchart, 112 
machine, 114 
recursive, 113 
state, 113 

formal syntax, 174 
formula, duration, DC, 537 
freeing, 98 
frontier of parse tree, 188 
fulfilled condition, Petri net, 317 
FUNARG, 576, 588, 599, 613, 614, 

669 
function 

lifting, 70 
of component, 223 
of part, 223 
semantic, 697-704 

auxiliary, 695-697 
functional requirements, 549 

generalisation, UML, 276 
generator structure, 186 
global 

CSP system, 689 
metastorage, 689 
storage, 693 
system, 687, 688, 695 
unique process identifier, 690 

grammar 
BNF, 303 
CFG nonterminal, 186 
CFG production, 186 

CFG terminal, 186 
context-free, CFG, 186 
derivation, 300 
regular, 300 
rule, 300 

guard, Petri net, 333 

hard 
real-time, 517, 518 
temporality, 517, 518 

heap, 691 
allocation, 690, 691, 696, 697, 701 
free, 691 
update, 691 

hiding, 260-262, 688 
hierarchical 

abstraction, 35, 38 
decomposition, Statechart, 479 
state, 476 

higraph, Statechart, 476 
history-dependent statechart, 480 
HMSC 

O, node, 384 
o connector, 384 
4-, connects BMSCs, 383 
t , connects BMSCs, 383 
alternative, 384 
client-server, 384 
high-level message sequence 

chart, 383-391 
loop, iteration, 384 
node, 383 

end, 384 
start, 383 

homomorphic principle, 58 
homomorphism, 58 
hot 

location, LSC, 407 
message, LSC, 403 

identification: see 'naming conven
tion', 719-722 

identifier 
scope, 95 
span, 95 

IF-THEN-ELSE, LSC, 405 
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imperative 
language, 661 
stack semantics, 589-598 

import module definition, 673 
"impure" expression elaboration, 73 
incarnation, 576, 590, 603 
indexical sentence, 146, 148 
inductive definition, 157-161, 200 
infinite state automaton, 289 
information state, 112 
inheritance, multiple, 688 
inherited attribute, 165 
initial 

algebra, 250 
output action set, 500 
state, 292, 297 
state, Statechart, 477 

inner, 687 
input 

?: from channel, 556 
acceptance, 298 
action, 499 
alphabet, 287 
message event, BMSC, 383 
rejection, 298 
to automaton, 298 

instance 
BMSC, 376 
body, BMSC, 383 
decomposition, BMSC, 380 
Petri net, 334 
type, 383 

block, 383 
process, 383 
service, 383 
system, 383 

instantiation of scheme, 265 
interlock 

deadlock, 559 
operator | | , 559 
process composition | | , 556 

internal event, 499 
Internet, 190, 238 
interpretation, 154 

function, semantics, 153 

of statements, 74 
interpreter, 688 
interval, 523 

subinterval, 523 
temporal logic, 568 
temporal logic, ITL, 521 

interval logic, 523 
invariant, 592 
invocation, 678 

remote method (RMI), 473 
iteration, loop, HMSC, 384 
ITL 

• , always, 524 
•^, always, left neighbourhood, 

525 
• r , always, right neighbourhood, 

524 
O, sometime, 523 
<>£, sometime, left neighbour

hood, 525 
O r , sometime, right neighbour

hood, 524 
ITime, time interval, 523 
Time time, 522 
;, ', chop, 526 
Interval Temporal Logic, 517, 

522-527, 568 

Java, 56, 150, 176, 281, 673, 682, 684 
Jini, Java, 474 

ERI, extensible remote invoca
tion, 474 

kind, instance, BMSC, 383 

labelled transition system, 416-417, 
499-502 

language, 214 
algebraic specification, 250 
and system, 217-233 
comprehension, 216 
concepts, 215 
context-free, CFL, 187 
intellectual concept, 217 
meta, 219 
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ontology, description logic, 238-
239 

professional, 218-219 
recogniser, 190 
regular, 190, 293, 300 
semantics, 219 
vs. system, 217 

languages 
domain-specific, 218 
professional, 218 
subsets of natural languages, 218 

left neighbourhood 
ne always, ITL, 525 
<>t sometime, ITL, 525 

lexicographic, 576, 601-603 
youngest incarnation, 590 

"life-time" = computation interval, 
95 

lifted function, 70 
line class diagram, 273 
linear temporal logic, LTL, 521 
linguistics, 216 

computational, 216 
natural language, 216 

link, UML, 275 
live sequence charts, 375, 402-443 
liveness of MSCs, 402 
local 

channel, 688, 691 
CSP system, 687 
module definition, 673 
process definition, 688 
storage, 701 
system, 704 
variable, 688 

location, 407 
cold, LSC, 407 
hot, LSC, 407 
storage, 663 

logic 
description, 238 
description, ontology language, 

238-239 
interval temporal, 521, 568 
linear temporal, 521 

of intervals, 523 
temporal, 517-569 
temporal, of actions, 568 
temporal, TL, 521 

loop iteration, HMSC, 384 
LSC 

—>: asynchronous message, 403 
—>•: synchronous message, 403 
algebraic semantics, 375 
asynchronous message, 403 
cold location, 407 
cold message, 403 
condition, first-class event, 404 
dashed box, existential, 402 
DO-WHILE, 405 
existential, 402 
first-class event, condition, 404 
fully drawn box, universal, 402 
hot location, 407 
hot message, 403 
IF-THEN-ELSE, 405 
live sequence charts, VIII, 4, 5, 

375, 402-443 
main chart, 403 
prechart, 403 
process algebra, 375 
subchart, 404 
synchronous message, 403 
universal, 402 
WHILE, 405 

LTL, Linear Temporal Logic, 517 

machine, 285-311, 688 
alphabet, 285 
discrete state, 285 
finite state, 190 
finite state, transducer, 305 
flowchart, 114 
Mealy, 311 
Moore, 311 
push-down stack, 190 
state, 285, 476 
state transition, 285 

machines, 285-311 
pushdown stack, 307-311 
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macro-expansion, 72, 580 
semantics, 157-161, 598-616, 

665-670, 677-681 
macrostep Statechart, 499 
macrosubstitution, 583, 590 
Mailiifternl, Austrian computer, 599 
main chart, LSC, 403 
mandatory behaviour, LSC, 402 
marking, Petri net, 317 
matching message 

BMSC, 376 
maximal progress assumption, State-

chart, 499,557 
Mealy machine, 311 
mechanical, 85 

semantics, 75 
system, 219 

mechanical semantics, 590 
mereology, 49 
message 

asynchronous, LSC, 403 
cold, LSC, 403 
event, BMSC, 383 
exchange, BMSC, 377 
hot, LSC, 403 
input, BMSC, 376 

event, 383 
output, BMSC, 376 

event, 383 
sequence chart 

basic, 376-383 
high-level, 383-391 

sequence charts, 375-401 
synchronous, LSC, 403 

metalanguage, 219 
microstep, internal transition, State-

chart, 499 
minimal automaton, 296 
mobile process, 705 
Modula2, Modula3, 673, 682, 684 
modular, 688 

language, 661 
modularisation, 252 
module, 673 

definition 

export, 673 
import, 673 
local, 673 

environment 
incoming, 675 
incoming and resulting, 675 

main, 673 
sub, 673 

Moore machine, 311 
morpheme, 215 
morphology, 215 
MSC 

liveness, 402 
message sequence charts, VIII, 4, 

5, 375-401 
multiplicity association, UML, 274 
multiset (footnote), 333 

name 
action, BMSC, 383 
BMSC, 383 
instance kind, BMSC, 383 
instance, BMSC, 383 
scope, 95 
span, 95 

naming convention, 719-722 
below entries are sorted accord

ing to their logical presenta
tion, 719 

names 
general, item 1, 719 
categories of specification con

cepts, item 1(a), 719 
choice of identifiers, item 1(b), 

719 
mnemonics, item 1(c), 719 
identifiers, item 1(d), 719 

type names 
general, item 2, 720 
syntactic types, item 2(a), 720 
semantic types, item 2(b), 720 
pragmatic types, item 2(c), 

720 
value names, item 3, 720 
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special semantic type and value 
names 

general, item 4, 720 
context or environment names, 

item 4(a), 720 
state names, item 4(b), 720 
configuration names, item 

4(c), 720 
function names, item 5, 720 
auxiliary function names 

general, item 6, 720 
observer functions, item 6(a), 

721 
is functions, item 6(b), 721 
well-formedness functions, 

item 6(c), 721 
invariant functions, item 6(d), 

721 
abstraction functions, item 

6(e), 721 
retrieve functions, item 6(f), 

721 
injection functions, item 6(g), 

721 
semantic function names 

general, item 7, 721 
evaluation function names, 

item 7(a), 722 
interpretation function names, 

item 7(b), 722 
elaboration function names, 

item 7(c), 722 
meaning function names, item 

7(d), 722 
compilation function names, 

item 7(e), 722 
variable names, item 8, 722 
channel names, item 9, 722 
scheme names, item 10, 722 
object names, item 11, 722 
parameter names, item 12, 722 

natural language linguistics, 216 
negate event, Statechart, 477 
negative event, Statechart, 476 
next 

next-state transition operator, 
697-698 

state transition function, 287 
node 

O, HMSC, 384 
end, HMSC, 384 
HMSC, 383 
start, HMSC, 383 

nondeterminism, 295 
nondeterministic 

automaton, 287, 295 
parallel buffer, Petri net, 319 

nonterminal, CFG, 186 
normalised program, 113 
note, body, BMSC, 383 
noun 

component, 222 
part, 222 
system, 222 

Oberon, 673, 682, 684 
object, 673, 689 

RSL object concept, 257 
constraint language, OCL, 280 
method, 688 
oriented, OO, 281, 282 
orientedness, 688, 689 

occur, Petri net, 334 
OCL, Object Constraint Language, 

280 
ontology, 42-44, 238 

language, description logic, 238-
239 

OO, Object-oriented, 281 
opening XML tag, 193 
operational 

macro-expansion semantics, 157-
161 

semantics, 161-162, 582-616 
semantics, structural, 416-417, 

500-502 
stack semantics, 162, 589-598 

operator 
disabling, 499 
enabling, 500 
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prefix, 499 
signal, 499 

optional behaviour, LSC, 402 
order, lexicographic, 590 
"ordinary" expression evaluation, 73 
origin state, Statechart, 477 
outer, 687, 693 
output 

!: to channel, 556 
action, 499 
initial action set, 500 
message event, BMSC, 383 

over-defined, 254 

page, Petri net, 334 
paradoxes, 219 
parallel 

||: process composition, 556 
buffer, Petri net, 319 

parse 
tree, 188 

frontier, 188 
tree, complete, 188 

parser, 303 
finite state machine, 300 

part 
as type, 223 
function, 223 

verb, 223 
noun, 222 
of system, 219 
process, 223 
property 

adjective, 223 
adverb, 223 

subpart, 219 
whole relation, 50 

Petri net, VIII, 4, 5 
activated event, 317 
arc, 333 
arrow weight, 323 
binding, 334 
binding element, 334 
colour, 333 
colour set, 333 

coloured, 315, 333-342 
condition, 323 
condition event, 315-323 
contact-free, 317 
diagram languages, 315-373 
dining philosophers 

coloured, 336 
condition event net, 320 

enabled event, 317 
event, 323 

occurrence, 317 
fulfilled condition, 317 
guard, 333 
instance, 334 
marking, 317 
occur, 334 
page, 334 
place, 323 

capacity, 323 
transition, 323-333 

postcondition, 317 
precondition, 317 
producer-consumer 

buffer, 318 
parallel buffer, 319 
sequential buffer, 319 

token, 317 
transition, 323 
unfulfilled condition, 317 
value, 333 
variable, 334 

phenomenological concept, exam
ple 2.5, 41 

phenomenology, 217 
phonetics, 215 
physical system, 219 
place 

capacity, Petri net, 323 
Petri net, 323 
transition Petri net, 323-333 

Polish 
notation, 78 
postfix notation, 76 

postcondition, Petri net, 317 
postfix notation, 76 
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pragmatics, 143, 145-148, 216 
as part of semiotics, 214 
configuration = context + state, 

99 
of modularisation, 244 
syntax & semantics, 217 

prechart, LSC, 403 
precondition Petri net, 317 
prefix operator, statechart, 499 
prefixing, 255 
prescription requirements, 549 
procedure 

call, 473 
denotation, 663, 664 

process, 689 
action, 688 
algebra, LSC, 375 
algebraic semantics, 499 
atomic = action, 688 
bisimilar processes, 502 
command, 687 
composite command, 687 
continuation, 690 
creation, BMSC, 379 

event, 383 
definition, 687 
event, BMSC, 383 
expression, 687 
handling, BMSC, 376 
invocation, 689, 691 
mobile, 705 
name, 687 
nonatomic, 689 
of component, 223 
of part, 223 
simple command, 687 
state, 112, 690 
termination, BMSC, 379 

event, 383 
terminology, 686-694 

dynamic, 688-694 
semantic, 688-694 
static, 687 
syntactic, 687 

type instance, BMSC, 383 

variable, 499 
producer-consumer 

buffer, Petri net, 318 
parallel buffer, Petri net, 319 
sequential buffer, Petri net, 319 

production, CFG, 186 
professional language, 218-219 
program, 687, 691, 693, 695, 697, 704 

parallel, 685 
schema, 113, 114 
state, 690 

prologue, 687 
block, 69 

property, ontology, 238 
PTPN, Place Transition Petri Net, 

323-333 
"pure" expression evaluation, 73 
pushdown 

stack automata, 190, 307-311 
stack device, 307-311 
stack machines, 190, 307-311 

qualitative 
aspects of time, 555 
concurrency, 313 
temporality, 313 

quantitative 
aspects of time, 555, 556 
concurrency, 313 
temporality, 313 

quotient, algebra, 416 

reactive system, Statechart, 475 
read automaton (machine) input, 285 
"real world", state, 94 
real-time 

hard, 517, 518 
soft, 517 

recipient address, BMSC, 383 
recognise automaton input, 297 
recogniser 

automaton, 292 
of a language, 190 

recogniser structure, 186 
recursion 
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removal, 74 
tail, 589 
tail, footnote 6, 589 
transformation, 589 

recursive 
descent, 159 
flowchart, 113 

referential transparency, 582, fn 3: 582 
refinement, 249 

Statechart, 479 
regular 

expression, 189, 293 
language, 190, 293, 300 

rejection of input, 298 
relation, entity-relationship, ER, 251 
remote 

method invocation (RMI), 473 
procedure call (RPC), 473 

rendezvous, 698, 700, 703 
representation of time, 127-129 
requirements 

domain, 549 
functional, 549 
prescription, 549 
safety-criticality, 549 

reset timer, BMSC, 378 
restriction set, 499 
retrieve function, 583, 590 
reverse Polish notation, 76, 78 
right neighbourhood 

• r , always, ITL, 524 
O r , sometime, ITL, 524 

RMI, remote method invocation, 473 
RPC, remote procedure call, 473 
RSL, 176 

type 
definition, 205 
definition of XML schema trans

lator, 207 
expression, 205 

rule, grammar, 300 
run-time, 590 

evaluation, 78 

safety 

critical requirements, 549 
criticality, footnote 4, 300 

scenario, 511 
schema 

XML, 195 
program, 113 

schematic program, 114 
scheme 

RSL scheme concept, 257-265 
RSL scheme parameterisation, 

263-265 
component, 223 
extension, 259-260 
instantiation, 265 
simple, 257 

scope, 687-689, 702 
identifier, 95 
name, 95 

semantic 
auxiliary functions, 695-697 
functions, 697-704 

compiler view, 72 
for languages, 219 
for systems, 232 

value, 577 
semantics, 143, 151-169, 216 

abstract state machine, 589 
algebra, initial, 250 
algebraic process, 499 
algebraic, LSC, 375 
as part of semiotics, 214 
attribute grammar, 162-165, 

636-652 
axiomatic, 166-168 
computational, 74-86, 589, 590 
concrete, 152 
denotational, 57-74, 155-156, 

576-581, 663-665, 674-677 
for languages, 219 
for systems, 232 

evaluator, 153 
first-order, 582-589 
interpreter, 153 
macro-expansion, 598-616, 665-

670, 677-681 
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mechanical, 590 
of modules, 244 
operational, 161-162, 582-616 
stack, 589-598 
syntax & pragmatics, 217 
type, 153 

semiotics, 143, 214, 215 
attribute grammar semantics, 

162-165 
axiomatic semantics, 166-168 
pragmatics, 145-148 
semantics, 151-169 

concrete, 152 
denotational, 155-156 
first-order, 582-589 
operational, 161-162, 582-616 

syntax, 173-204 
sender address, BMSC, 383 
sentence 

indexical, 146 
indexicality, 146, 148 
regular language, 300 

sentential structure, 214 
separation of concerns, 32 
sequence chart 

basic message, 376-383 
high-level, message, 383-391 

sequence charts 
live, 375, 402-443 
message, 375-401 

sequence/collaboration diagram, 
UML, 271, 272 

sequential 
buffer, Petri net, 319 
process, 98 

service 
type instance, BMSC, 383 

set timer, BMSC, 378 
side-effect, 154 

expression evaluation, 67 
signal operator, 499 
Simula 67, 673, 682 
simulation, 583 
SML, 150, 573, 657 
soft 

real-time, 517 
temporality, 517 

software 
design, 549 
device, 250 

sometime, O, ITL, 523 
space, 129-134 
space/time, 135-137 
span 

identifier, 95 
name, 95 

spatial, part whole relation, 50 
specification language, algebraic, 250 
spelling identifiers: see 'naming con

vention', 719-722 
stable state, 94 
stack, 583 

control, 76 
device, 307-311 
pushdown automata, 307-311 
pushdown machines, 307-311 
recursion implementation, 589 
recursion removal, 74 
semantics, 162, 589-598 

start 
node, HMSC, 383 
node: V, HMSC, 384 

state, 103, 154 
"real world", 94 
Statechart, 476 
abstraction, 94-116 
active, Statechart, 476 
and action are dual, 95 
AND, Statechart, 477 
applicative, 94 
as aggregated value of "actual 

world" components, 96 
as aggregated values, 94 
as dynamic, temporal, 96 
as semantic notion, 97 
as summary of computation, 95 
assertion, DC, 529, 536 
automaton, 285 

discrete, 285 
behaviour, 112 
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behaviour summary, 112 
changing expression, 155 
computation, 75, 112 
computing, 94 
control, 114 
data, 112 
DC: duration, 530 
default, Statechart, 477 
destination, Statechart, 477 
diagram, 286, 476 
expression, DC, 536 
final, 292, 297 
flowchart, 113 
hierarchical, 476 
imperative, 94 
information, 112 
information summary, 112 
initial, 292, 297 
initial, Statechart, 477 
machine, 285, 476 

discrete, 285 
finite controller, 300 
finite parser, 300 

model, Boolean, duration calcu
lus, 529 

origin, Statechart, 477 
Petri net, 316 
process, 112 
semantics, as value, 97 
set, 287 
side-effect, 154 
stable, 94 
syntax, 173 

as aggregation, 97 
transformation 

grand, 589 
small, 589 

transition, 285, 298, 550 
diagram, 286 

transition function, 287 
XOR, Statechart, 477 

Statechart, VIII, 4, 5, 475-516 
abstraction, 479 
action, 476 
AND 

decomposition, 476 
state, 477 

arrow, transition, 476 
causality, 499 
compositionality, 499 
condition, 476 
control flow, 475 
decomposition 

AND, 476 
hierarchical, 479 
XOR, 476 

default state, 477 
destination state, 477 
diagram, UML, 272 
event, 476 

negate, 477 
flow of control, 475 
hierarchical decomposition, 479 
higraph, 476 
history-dependent, transition, 

480 
initial state, 477 
macrostep, 499 
maximal progress assumption, 

499 
microstep, 499 
negate event, 477 
negative, 476 
origin state, 477 
reactive system, 475 
refinement, 479 
state, 476 

AND, 477 
default, 477 
destination, 477 
origin, 477 
sub, 476 
XOR, 477 

substate, 476 
synchrony hypothesis, 499 
transition, 476 
transition arrow, 476 
transition, history-dependent, 

480 
trigger, 476 



XOR 
decomposition, 476 
state, 477 

statechart 
diagram, UML, 271 

statement, 98 
composite, 687 
interpretation, 74 
simple, 687 
state changer, 96 
structured, 687 

static 
context, 97 
environment, 97 
environment chain, 580 

step of development, 249 
stepwise refinement, 249 
storage, 663, 689 

allocation, 664, 696 
computing, 94 
location, 663 
value, 663 

strong bisimulation, 418-419, 500 
structural operational semantics, 

416-417, 500-502 
structure, 217 

generator, 186 
recogniser, 186 

subchart, LSC, 404 
subinterval, 523 
subpart 

of part, 219 
of system, 219 

substate, Statechart, 476 
substitution, 576 

context-free, 187 
synchronisation and communication, 

688, 700, 703 
synchronous message, LSC, 403 
synchrony hypothesis, Statechart, 499 
syntactic type, 153 
syntactically correct, 174 
syntax, 143, 173-204, 216, 684-686 

abstract, 181-183, 197-201 
analyser, 303 
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as part of semiotics, 214 
concrete, BNF, 183-186 
formal, 174, 686 
informal, 684-686 
of configurations, 173 
of contexts, 173 
of modules, 244 
of states, 173 
of values, 173 
semantical structures, 173 
semantics & pragmatics, 217 
sentential structures, 173 

syntaxis, 174 
synthesised attribute, 164 
synthetic abstract syntax, 181 
system, 219-233 

air pump 
formalisation, 230 
language, 223 

and language, 217-233 
as type, 223 
component, 219 
concept, discussion, 232-233 
connection, 219 
connector, 219 
embedded, footnote 4, 300 
examples, 220 
intellectual, 222-232 

concept, 217 
labelled transition, 499 
linguistic, 222-232 
mechanical, 219 
noun, 222 
part, 219 
physical, 219-221 

phenomenon, 217 
property 

adjective, 223 
adverb, 223 

reactive, Statechart, 475 
safety critical, footnote 4, 300 
semantics, 232 
subpart, 219 
terminal, 219 
type instance, BMSC, 383 
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vs. language, 217 

tag, XML, 192, 193 
tail recursion, footnote 6, 589 
temporal 

behaviour, 127 
event, 126 
logic, 517-569 

interval, 521, 568 
linear, 521 
of actions, 568 
TL, 521 

state, 96 
temporality, 313 

qualitative, 313 
quantitative, 313 

term 
deduction system 

action transitions, 500 
clock transitions, 500 

duration, duration calculus, 537 
terminal 

(shared) variable, 223 
CFG,186 
channel (port), 223 
of system, 219 

time 
A-series, 125 
axis, BMSC, 376 
B-series, 125 
continuous, 127, 129 
continuum theory, 125-126 
discrete, 127, 129 
representation, 127-129 
space/time, 135-137 

time/space, computations in, 96 
timeline, LSC, 407 
timeout, BMSC, 378 
timer 

BMSC, 376, 378 
duration, BMSC, 383 
event, BMSC, 383 

reset, 383 
set, 383 
timeout, 383 

timetable, 127-129 
airline, 127-129 
train, 127-129 

TL, Temporal Logic, 517, 520-527 
TLA+, temporal logic of actions, 568 
token, Petri net, 317 
train timetable, 127-129 
transducer, finite state, 305 
transformation 

grand state, 589 
small state, 589 

transition 
Statechart, 476 
action, 499 
arrow, Statechart, 476 
between states, 550 
clock, 499 
history-dependent, statechart, 

480 
labelled, system, 499 
next state function, 287 
Petri net, 316, 323 
state, 285, 298 

translation, compile-time, 78 
translator, RSL type definitions to XML 

schemas, 207 
transparency, 582 

referential, fn 3: 582 
trigger, Statechart, 476 
TRSL, Timed RSL, 517 
type 

abstract data, 250 
definition, XML Schema, 206 
instance, 383 

block, 383 
process, 383 
service, 383 
system, 383 

of component, 223 
of part, 223 
of system, 223 
semantic, 689-694 
semantics, 153 
syntactic, 153, 684-686 
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UML, VIII, 243, 249, 252, 271, 375, 
468, 470, 475, 476, 509, 511, 
714-715 

association, 274 
composite, 274 
multiplicity, 274 

box, class diagram, 273 
class, 273 

diagram, box, 273 
composite association, 274 
diagram 

class, 271-280 
sequence/collaboration, 271, 

272 
statechart, 271, 272 
use case, 271 

generalisation, 276 
link, 275 
multiplicity association, 274 
Unified Modeling Language, 271 
use case, 271 

diagram, 271 
under-defined, 254 
unfulfilled condition, Petri net, 317 
universal LSCs, 402 
unobservable event, 499 
use case, 511 

diagram, UML, 271 
use of identifiers: see 'naming conven

tion', 719-722 

valuation 
of "ordinary" expressions, 73 
of "pure" expressions, 73 

value 
being denoted, 577 
being designated, 577 
evaluated, 577 
Petri net, 333 
semantic, 577 
storage, 663 
syntax, 173 

variable 
connector (shared) access, 223 
Petri net, 334 

process, 499 
verb 

component function, 223 
part function, 223 

weight, arrow, Petri net, 323 
WHILE, LSC, 405 
whole-part relation, 50 
work flow system, 342-356 

XML, 206-207, 238 
closing tag, 193 
expression, 193 
extensible markup language, 

190-197 
opening tag, 193 
schema, 195 

abstract syntax, 206 
tag, 192, 193 
translator from RSL type defini

tions to XML schemas, 207 
XOR 

decomposition, Statechart, 476 
state, Statechart, 477 
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B.3 Characteriations and Definitions Index 

Definition: The setting of bounds, limitation. 
The action of determining a question at issue, of defining. 

A precise statement of the essential nature of a thing. 
A declaration of the signification of a word or phrase. 

The SHORTER OXFORD ENGLISH DICTIONARY 
On Historical Principles [303] 

We shall list both characterisations and definitions. The latter are usually 
more formally expressed than the former. 

Abstract Syntax, 197 
Always Modality, ITL, • , 524 
Attribute Grammar Semantics, 162 

Basic Message Sequence Chart, 381 
BNF Grammar, 183 
Boolean State, DC, 529 

Characteristic Function, DC, 530 
Chop Modality, TL and DC, ;, ~, 526 
Class, 270 
Classical Temporal Logic, 527 
Coloured Petri Net, 336 
Compositional Abstraction, 38 
Computational Linguistics, 216 
Computational Semantics, 56, 161 
Concrete Semantics, 152 
Condition Event Petri Net, 320 
Configuration, 103, 154 
Context, 102, 153 
Context-Free Derivation, 187 
Context-Free Grammar, 186, 310 
Context-Free Language, 187, 310 
Context-Free Substitution, 187 

Denotational Semantics, 56, 155 
Deterministic Finite State Automa

ton, 297 
Deterministic State Automaton, 287 
Deterministic State Machine, 290 
Duration Calculus, 538 
Duration Formula, DC, 537 
Duration Term, DC, 537 
Duration, DC, 537 

Elaboration, 155 
Evaluation, 154 

Finite State Machine, 304 
Formal Syntax (I), 174 
Formal Syntax (II), 174 
Frontier Parse Tree, 188 

Hierarchical Abstraction, 38 
High-Level Message Sequence Chart, 

385 

Interpretation, 154 
Interval Length, TL, 523 
Interval Temporal Logic, 527 
Interval, TL, 523 

Language Comprehension, 216 
Linear Temporal Logic, 527 
Linguistics, 216 

Macro-expansion Semantics, 158 
Message Sequence Chart, 385 
Minimal State Finite Automaton, 296 
Modularisation, 244 
Module, 244 
Morphology, 215 

Natural Linguistics, 216 
Nondeterministic State Automaton, 

287 

Object, 270 
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Parse Tree, 188 XML Expressions, 193 
Phenomenological Concept, Exam- XML Schema, 195 

pie 2.5, 41 XML Tags, 193 
Phonetics, 215 
Place Transition Petri Net, 324 
Point State Assertion, DC, T, _L, 551 
Pragmatics, 145, 146, 216 
Process Context, 110 
Process State, 111 
Production Tree, 188 
Proof Rule Semantics, 166 
Pushdown Stack Automaton, 310 
Pushdown Stack Machine, 309 

Regular Expression, 189, 293 
Regular Language, 190, 294 

Scheme, 270 
Semantic Type, 153 
Semantical Structures, 176 
Semantics, 151, 216 
Semiotics, 214, 215 
Sentential Structures, 175 
Sometime and Always 

Left Neighbourhood Modalities, 
ITL, Oi,a^ 525 

Right Neighbourhood Modality, 
ITL, O r ,D r , 524 

Sometime Modality, ITL, O, 523 
Space, 129 
Specification, 244 
Stack Semantics, 162 
State, 103, 154 
State Assertion, DC, 529, 536 
State Assertion, DC, \ , /*, 551 
State Assertion, DC, *y, y \ 551 
State Duration, DC, 530 
State Expression, DC, 536 
State Transition, DC, J.,t, 550 
Statechart, 481 
Syntactic Type, 153 
Syntax, 174, 216 

Temporal Logic, 521 
Time, 122 
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B.4 Authors Index 

Author: The person who originates or gives existence to anything; 
an inventor, constructor, or founder. 

He who gives rise to an action, event, circumstance, or state of things. 

One who sets forth written statements; 
the writer or composer of a treatise or book. 

The SHORTER OXFORD ENGLISH DICTIONARY 
On Historical Principles [303] 

The authors listed here (many with [references] to (usually) their main books) 
are (co)authors of publications cited on the referenced page(s). Not all refer
enced publications have their authors listed here — but a very high proportion 
have been listed here! There are 196 such authors listed here! 

Abadi, Martin [1], 280 
Aho, Alfred [6], 204, 294-296, 303, 

580, 657 
Allen, James [7], 215 
Appel, Andrew [14], 580, 644, 657 
Aristotle 384-322 BC [28], 122 
Arnold, Ken [15], 56, 150, 176, 281, 

673, 682, 684 
Augustine of Hippo, 122 

Back, Ralph-Johan [20], 8 
Backhouse, Roland [21], 204 
Backus, John W. [22-24], 183 
Baeten, Jos CM., 409, 412 
Bekic, Hans [32,33], 86, 598, 658 
Birtwistle, G.M. [41], 673, 682 
Bj0rner, Nikolaj S., 568 
Blizard, Wayne D. [57], 136 
Booch, Grady [59,237,440], VIII, 243, 

249, 252, 271, 375, 468, 470, 
475, 476, 509, 511 

Broy, Manfred [62], 469 
Burks, Arthur W., 311 
Burns, Frank, 356 
Burstall, Rod M., 250 

Cardelli, Luca [1], 280 
Carey, Matthew, 512 
Carnap, Rudolf [73-76], 214, 234 
Cleaveland, Walter Ranee, 499, 509 

Clemmensen, Geert Bagge, 571 
Cohen, Irun R., 470 

Dahl, Ole-Johan [41], 282, 673, 682 
Damm, Werner, 4, 5, 402, 468, 469 
Danvy, Olivier, 88, 89 
de Bakker, Jaco W. [92,93], 70, 157, 

170, 215, 574, 588, 668, 681, 
704 

Deransart, Pierre [94], 644, 658 
Dijkstra, Edsger Wybe [97-99,113], 8, 

85, 320, 580 
Dong Jin Song, 469 
Dutertre, Bruno, 522, 568 

Efroni, Sol, 470 
Einstein, Albert, 121 
Euclid, 121 

Folkjaer, Preben, 683, 684, 693, 705, 
708 

Frost, Robert [121], VI 
Funes, Ana, 281 
Futatsugi Kokichi [123,125], 250, 705 

Ganzinger, Harald, 636, 658 
George, Chris W. [130,131], 7, 8, 110, 

176, 281, 431, 433, 434, 673, 
683, 695 

Gjaldbffik, Torben, 8 
Goguen, Joseph A., 250 
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Goldberg, Adele [141], 282 
Gosling, James [15,146], 56, 150, 176, 

281, 673, 682, 684 
Gray, James [148], 471 
Gries, David [113,150-152], 8, 580, 

657 
GroBe-Rhode, Martin [153], 281 
Gunther, Carl [156,158], 70, 157, 170, 

215, 574, 588, 668, 681, 704 

Haff, Peter L. [130,159], 176, 571, 673, 
683, 695 

Hansen, Kirsten Mark, 7 
Hansen, Michael Reichhardt [168, 

557], 4, 5, 7, 150, 528, 568, 
573, 657 

Harel, David [173,181,195], 4, 5, 115, 
402, 468-470, 475, 509, 511, 
514 

Harrison, Peter G. [114], 294-296, 303 
Havelund, Klaus [130,131], 176, 673, 

683, 695 
Haxthausen, Anne Elisabeth [130, 

131], 7, 8, 110, 176, 432,434, 
673, 683, 695 

Hehner, Eric C.R. [205,206], 8 
Hejlsberg, Anders, 150, 281, 682, 684 
Hennessy, Matthew [208], 499, 509 
Hoare, Sir Tony [213,214,435,437], 

528, 683, 684, 705 
Holmslykke, Steffen, VIII, 271, 281 
Hopcroft, John E. [6,217], 294-296, 

303, 311 
Hughes, Stephen [131], 8, 683, 695 
Hung, Dang Van, 528 

Jackson, Michael A. [231-236], 713 
Jacobson, Ivar [59,237,440], VIII, 243, 

249, 252, 271, 375, 468, 470, 
475, 476, 509, 511 

Jensen, Kurt [238], 4, 5, 316, 372, 432 
Jones, Clifford Bryn [44,52,246,247], 

8, 658 
Jouannaud, Jean-Pierre, 250 

Kahn, Gilles, 684, 705 

Kam, Na'aman, 470 
Kastens, Uwe [260], 644, 658 
Kay, Alan, 282 
Kennedy, Ken, 636, 658 
Kernighan, Brian [263], 150 
Kleene, Stephen C. [266], 311 
Knuth, Donald E. [269,271,273], 85, 

636, 655, 658 
Koelmans, Albert, 356 
Krog Madsen, Christian [316, 317], 

VIII, 315-372, 375-470, 
475-509 

Kugler, Hillel, 469, 470 

Lamport, Leslie [282], 568 
Landin, Peter, 74, 86, 88, 90, 598 
Langmaack, Hans [383], 580 
Leshniewski, Stanislaw [470], 49, 50 
Lindegaard, Morten Peter, 7 
Lindholm, Tom [301], 56, 150, 176, 

281, 673, 682, 684 
Lobachevski, Nikolai, 121 
Lorho, Bernard, 636, 658 
Lucas, Peter, 86, 250, 598, 658 
Liittgen, Gerald, 499, 509 

Manna, Zohar [318,320,321,323], 568 
Marelly, Rami, 470 
Mayoh, Brian, 636, 658 
McCarthy, John, 86, 88, 175,181, 183, 

192, 573, 657 
McCulloch, Warren S., 311 
Mcintosh, Harold V., 311 
McTaggart, John McTaggart Ellis, 

125 
Mealy, George H., 311 
Meseguer, Jose, 250, 705 
Meyer, Bertrand [343-345], 56, 281, 

673, 682, 684 
Milne, Robert [130,131,355], 8, 176, 

588, 658, 673, 683, 695 
Milner, Robin [356-359], 150, 573, 

657, 693, 705 
Minsky, Marvin [361], 250, 251, 311 
Moen Hagalisletto, Anders, 373 
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Moore, Edward F., 311 
Morgan, C. Carroll [363], 8 
Morris, Charles W. [364,365], 214, 

215, 234 
Morris, F. Lockwood [366,367], 63 
Moses, Joel [368], 576, 588, 657 
Mosses, Peter D. [370], 170, 705 
Moszkowski, Ben, 522, 568 

Naur, Peter [24], 183 
Nelson, Greg [377], 673, 682, 684 
Newton, Sir Isaac, 129 
Nielsen, Claux Bendix [130], 176, 673, 

683, 695 
Nikitchenko, Nikolai, 148 
Nygaard, Kristen [41], 282, 673, 682 

Oest, Ole N. [54], 571 

Penicka, Martin [398], VIII, 328-333, 
484-492 

Pandya, Paritosh K., 528 
Parnas, David Lorge [390], 282 
Peirce, Charles Sanders [394-397], 

214, 234 
Peleska, Jan, 7 
Peterson, James L. [399], 372 
Petri, Carl Adam [400], 4, 5, 315, 372 
Pitts, W.H., 311 
Plato [163], 122 
Plotinus, 122 
Plotkin, Gordon D., 416, 417, 500, 

684, 704, 705 
Pnueli, Amir [320,321], 469, 470, 475, 

476, 509, 568 
Prehn, S0ren [130,131], 8, 176, 673, 

683, 695 
Prior, Arthur N. [407-411], 125, 137, 

520,521 

Rabin, Michael O., 311 
Randell, Brian [414], 580, 657 
Ravn, Anders Peter, 7, 528, 541, 546-

548 
Reiser, Martin [418], 673, 682, 684 

Reisig, Wolfgang [419-421], 4, 5, 316, 
317, 320, 324, 372 

Reynolds, John C. [429,431,432], 8, 
70, 78, 157, 170, 215, 574, 
588, 658, 668, 681, 704 

Rischel, Hans [168], 7, 150, 528, 541, 
546-548, 573, 657 

Ritchie, Dennis [263], 150 
Roscoe, A. William [436], 683, 684, 

705 
Roychoudhury, Abhik, 443, 470 
Rumbaugh, James [59,237,440], VIII, 

243, 249, 252, 271, 375, 468, 
470, 475, 476, 509, 511 

Russell, Lawford John [414], 580, 657 

Salomaa, Arto [444], 294-296, 303 
Sangiorgio, David [446], 693, 705 
Schmidt, David A. [448,449], 70, 157, 

170, 215, 574, 588, 668, 681, 
704 

Scott, Dana, 86, 311 
Sestoft, Peter [250,465], 56, 150, 176, 

281, 673, 682, 684 
Sethi, Ravi [6], 204 
Sharp, Robin I. [469], 471 
Skakkebaek, Jens Ulrik, 7, 528, 541, 

546-548 
Storbank Pedersen, Jan [131], 8, 683, 

695 
Stoy, Joseph E. [486], 588 
Strachey, Christopher [355,463,488-

490], 63, 86, 658 
Stroustrup, Bjarne [492], 150, 673, 

682, 684 

Tennent, Robert D. [497,499], 70, 157, 
170, 215, 574, 588, 668, 681, 
704 

Thatcher, James, 250 
Thiagarajan, Pazhamaneri Subrama-

niam, 443, 469, 470 
Thompson, Stephen, 573, 657 
Tofte, Mads [359], 150, 573, 657 
Turner, David A. [91], 657 



Ullman, Jeffrey D. [6,217], 204, 294-
296, 303, 311, 580, 657 

van Benthem, Johan [508], 125 
Verhoef, Chris, 409, 412 
Viuf, Peter, 7 
von der Beeck, Michael, 499, 509 
von Wright, Joachim, 8 

Wagner, Eric, 250 
Wagner, Kim Ritter [130], 176, 673, 

683, 695 
Walk, Kurt, 86, 598, 658 
Walker, David [446], 693, 705 
Wand, Mitchell [519], 658 
Wang Hao, 311 
Wang Ji, 528 
Warren, Scott K., 636, 658 
Wegner, Peter [528], 598 
Weizenbaum, Joseph [529], 576, 588, 

657 
Wilhelm, Reinhard [531], 644, 658 
Wilner, Wayne T., 636, 658 
Winskel, Glenn [533], 70, 157, 170, 

215, 574, 588, 668, 681, 704 
Wirth, Niklaus [240, 534-536, 540], 

636, 658, 673, 682, 684 
Wright, Jesse B., 250 

Xia Yong, 7 
Xu Qiwen, 528 

Yakovlev, Alexandre, 356 
Yang Shaofa, VIII, 443-468 
Yap, Roland Hock Chuan, 470 
Yellin, Frank [146,301], 56, 150, 176, 

281, 673, 682, 684 

Zemanek, Heinz, 214, 234 
Zhou Chaochen [557], 4, 5, 7, 528, 568 
Zimmermann, Erich [260], 644, 658 
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